US20050233155A1 - Process for controlling thin film uniformity and products produced thereby - Google Patents
Process for controlling thin film uniformity and products produced thereby Download PDFInfo
- Publication number
- US20050233155A1 US20050233155A1 US11/147,746 US14774605A US2005233155A1 US 20050233155 A1 US20050233155 A1 US 20050233155A1 US 14774605 A US14774605 A US 14774605A US 2005233155 A1 US2005233155 A1 US 2005233155A1
- Authority
- US
- United States
- Prior art keywords
- susceptor
- thermocouple
- substrate
- temperature reading
- controlling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 230000008569 process Effects 0.000 title claims abstract description 23
- 239000010409 thin film Substances 0.000 title description 16
- 239000000758 substrate Substances 0.000 claims abstract description 114
- 238000000151 deposition Methods 0.000 claims abstract description 40
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims description 68
- 239000002243 precursor Substances 0.000 claims description 14
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 230000008021 deposition Effects 0.000 abstract description 32
- 238000012545 processing Methods 0.000 abstract description 14
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 abstract description 12
- 230000035945 sensitivity Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 64
- 238000005229 chemical vapour deposition Methods 0.000 description 13
- 238000005137 deposition process Methods 0.000 description 10
- 238000009826 distribution Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 8
- 239000003566 sealing material Substances 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- -1 silicon nitrides Chemical class 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000000427 thin-film deposition Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910007264 Si2H6 Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910001293 incoloy Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000012705 liquid precursor Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4586—Elements in the interior of the support, e.g. electrodes, heating or cooling devices
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
Definitions
- the present invention relates generally to thin film deposition processes, and more particularly to controlling the processes to improve thickness uniformity of thin films deposited on large surface area applications.
- a susceptor is a mechanical part that holds a substrate in a processing chamber for a fabrication step, such as chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD) or physical vapor deposition (PVD), for example.
- the susceptor includes a substrate mounting plate mounted on a stem, along with a lift assembly for raising and lowering the substrate within the processing chamber.
- the substrate mounting plate is heated to facilitate the fabrication process.
- a heating element is disposed within the mounting plate.
- Most films deposited by CVD are deposited with source materials in a process chamber into which at least one of several types of energy (e.g., plasma, thermal, microwave) are inputted to facilitate the deposition process.
- the source materials are, of course, dependent upon the type of layer to be deposited, and may include gaseous materials such as SiH 4 , H 2 , N 2 , NH 3 , PH 3 , CH 4 , Si 2 H 6 , and O 2 ; and/or liquid source materials which may include metal ions and organosilicate components like TEOS, for example.
- the films are very sensitive to temperature conditions as they are being deposited, especially those deposited with an organosilicate liquid source, since the vapor pressures of the organosilicate liquid sources are highly temperature dependent. Consequently, temperature control is a key factor in achieving film consistency when depositing thin films on large surface area substrates, such as glass plates used in the flat panel industry.
- depositions performed on large scale flat panel substrates have an additional set of problems to be addressed which are not critical when depositing on semiconductor wafers.
- a major difference is that the flat panel substrates are generally glass, which is significantly less thermally stable than a silicon wafer. Glass substrates, as opposed to silicon wafers cannot be processed above about 600° C. since too much structural stability is lost above this temperature as the glass begins to liquefy.
- the film uniformity is a key property in determining the performance of the product, since substantially the entire substrate may be used as the final product, compared with, for example, a semiconductor wafer which is divided into many components so that each final component only depends on the uniformity of the film in a much smaller area in and immediately around a portion of the wafer.
- the susceptors in the prior art include a single heating element that inputs energy to the susceptor (and thus the substrate) as a whole, with feedback to vary the temperature of the substrate by varying the input through the heating element.
- U.S. Pat. No. 5,977,519 discloses a susceptor having dual heating elements with dual and generally parallel loops, to provide for a generally radially symmetric temperature distribution across the mounting plate while allowing for heat losses at the outside surface.
- this patent does not address the temperature dependence of the films, particularly the organosilicate films, but merely aims to compensate for heat losses at the outside surface, so as to maintain a generally even heating of the substrate.
- U.S. Pat. No. 5,844,205 discloses a substrate support structure that includes a pair of heating elements arranged in inner and outer loops so that the perimeter of the support structure may be heated to a higher temperature than the interior, for example.
- This control is performed to compensate for the greater heat losses that are experienced at the perimeter of the support structure.
- the goal of the control is to attempt to provide a uniform substrate temperature by compensating with additional heating of the substrate near the perimeter.
- this patent does not address the temperature dependence of the films, particularly the organosilicate films, but merely aims to compensate for heat losses at the outside surface so as to maintain a generally even heating of the substrate.
- U.S. Pat. No. 5,534,072 discloses a multi-chamber CVD processing system in which multiple lamp heaters are positioned in back of a substrate and provided with separate power controllers to vary the light supplied by each lamp heater in an effort to attain uniform temperature over the entire substrate surface. Additionally, a stepped area is machined on the susceptor surface that is in contact with the substrate. By controlling the step-machined region and its depth, the disclosure indicates that it is possible to make the temperature distribution on the substrate surface more uniform. As with the previously discussed patent, the goal of this patent is also to achieve temperature uniformity over the substrate during processing. This patent does not address the temperature dependence of the film, particularly the organosilicate films, in any way other than to generally discuss that temperature uniformity is desirable.
- U.S. Pat. No. 6,225,601 discloses a technique for heating a susceptor in which the temperatures of first and second heating elements are controlled so that the difference between the temperatures of the first and second heating elements does not exceed a predetermined value while the temperatures of the heating elements are raised to their respective final temperature setpoints.
- this patent is directed primarily to a control system for controlling the relative temperatures between heating elements as they are heated up. This patent does not address the temperature dependence of organosilicate films, much less those films formed using TEOS.
- a method of controlling thickness uniformity of a film deposited on a substrate may include the steps of providing a substrate in a processing chamber; controlling a temperature of at least two distinct locations on the substrate to include a perimeter area of a surface of the substrate and an area of the surface inside of the perimeter area; maintaining the temperature of the perimeter area of surface of the substrate within a range between about 10° C. less than the temperature of the area of the surface inside of the perimeter area to about 20° C. higher than the temperature of the area of the surface inside of the perimeter area; and depositing the organosilicate film, wherein the organosilicate film deposited has a film uniformity less than or equal to about 10%.
- the temperature of the perimeter area of the surface may be controlled by a first heater element in a susceptor and underlying the perimeter area of the substrate, and the temperature of the area of the surface inside of the perimeter area is controlled by a second heater element in the susceptor and underlying the area inside of the perimeter area, said controlling comprising maintaining the temperature of the perimeter area within a range of about 380° C. to about 410° C., while maintaining the area inside of the perimeter area at about 390° C.
- the organosilicate film is formed using TEOS as a precursor, and the deposition of the organosilicate layer is controlled by maintaining the temperature of the perimeter area at about 390° C. while maintaining the areas inside of the perimeter at about 390° C.
- the temperature of the perimeter area is controlled to greater than 390° C. to about 400° C. while maintaining the area inside of the perimeter at about 390° C.
- the temperature of the perimeter area of the substrate is maintained at greater than 400° C. to about 410° C. while maintaining the area inside of the perimeter at about 390° C.
- Substantially uniform thin organosilicate films may be produced using TEOS according to the invention by maintaining the temperature of the perimeter area of a substrate, during deposition, at about 390° C. to 410° C. while maintaining the area inside of the perimeter at about 390° C.
- the temperature control comprises maintaining the temperature of the perimeter area within a range of about 350° C. to about 460° C., while maintaining the area inside of the perimeter area within a range of about 340° C. to about 450° C., while maintaining the temperature of the perimeter area of a surface of the substrate within a range between about 10° C. less than the temperature of the area of the surface inside of the perimeter area to about 20° C. higher than the temperature of the area of the surface inside of the perimeter area.
- Methods of depositing thin organosilicate films according to the invention may include chemical vapor deposition, PECVD, PVD, rapid thermal processing and other known deposition methods.
- TEOS TEOS
- present invention applies to a wide variety of thin films that may be deposited in connection with semiconductor and flat panel technologies, for example.
- Thin films having improved thickness uniformity are also a subject of the present invention.
- FIG. 1 is a cross-sectional view of a CVD processing chamber which may be used to practice the present invention.
- FIG. 2A is a top view of a substrate mounting plate, or susceptor, according to the present invention.
- FIG. 2B is a schematic, sectional view of the substrate mounting plate of FIG. 2A , taken along line 2 - 2 .
- FIG. 3 is a top view of a prior art susceptor employing a single heater line throughout to heat the entire susceptor plate surface.
- FIG. 4 is a view of the susceptor of FIG. 2A with a schematic representation of a chamber wall surrounding the susceptor.
- FIG. 5 is a view of the susceptor of FIG. 3 with a schematic representation of a chamber wall surrounding the susceptor.
- FIG. 6 is a graph showing the relationship between film thickness uniformity and various temperature profiles of a substrate upon which the films are being deposited.
- FIG. 7 is a graph showing logarithmic (log 10 ) plots of deposition rates of polycrystalline silicon thin films deposited on oxidized silicon substrates using PECVD (dark circles) and low pressure CVD without plasma enhancement (white circles). See Haijar, J.-J.; Reif, R.; and Adler D.: J Electronic Mat., 15, 279 (1986).
- FIG. 8 is a graph showing the linear relationship between temperature change and deposition rates of an organosilicate film using TEOS as a source material.
- substrate broadly covers any object that is being processed in a process chamber.
- large substrate refers to substrates larger than 300 mm wafers and includes, for example flat panel displays or glass plates.
- film uniformity refers to the maximum variance in thickness of the minimum or maximum thickness of the film from the average thickness of the film, as a percentage.
- the film thicknesses are generally measured at distinct locations along the diagonals (when the application is a flat panel) of the substrate while excluding a perimeter area having a width of about 10 mm.
- the present invention is directed to improving film thickness uniformity both during and after the deposition of a thin film on a substrate.
- thin films are deposited in a CVD chamber, with particular attention being paid to the deposition of organosilicate films using TEOS as a precursor.
- the present invention although very advantageously used in the CVD deposition of organosilicate films from TEOS, is not limited to such, and may be practiced with other films, such as metallic films, silicon films and other organosilicate films, for example, and may also be practiced in other sorts of processing chambers, such as chambers which carry out rapid thermal processing or physical vapor deposition, for example. Many of the details described are specific to the implementation described and may be changed as known by those skilled in the art.
- CVD includes a group of processes known and used in the art for, among other things, depositing a thin film layer onto a substrate.
- the substrate is supported in a vacuum deposition process chamber, and the substrate is heated to several hundred degrees Centigrade.
- Deposition gases and/or liquids are injected into the chamber, and a chemical reaction occurs to deposit a thin film layer onto the substrate.
- the thin film layer may be a dielectric layer (such as silicon nitride, silicon oxide or organic silicon oxides and the like), a semiconductor layer (such as amorphous silicon) or a metal layer (such as tungsten).
- the deposition process may be plasma enhanced or thermally enhanced.
- a CVD apparatus 130 includes a susceptor 135 having a substrate mounting plate 20 mounted on a stem 137 .
- the susceptor 135 is positioned within a vacuum deposition process chamber 133 .
- An upper face 22 of the mounting plate 20 supports a substrate, such as a glass panel (not shown), in a substrate processing or reaction region 141 .
- a lift mechanism (not shown) is provided to raise and lower the susceptor 135 .
- Lift pins may pass through lift pin holes 162 in the mounting plate 20 to facilitate the transfer of substrates into and out of the chamber 133 through an opening 142 in a sidewall 134 of the chamber 133 by a robot blade (not shown).
- Deposition process precursor material(s) (gases and/or liquids, indicated by arrow 123 ) flow into the chamber 133 through an inlet manifold 126 .
- the precursor material(s) then flow through a perforated blocker plate 124 and holes 121 in a process gas distribution faceplate 122 (indicated by small arrows in the substrate processing region 141 of FIG. 1 ).
- the upper face 22 of the mounting plate 20 is parallel and spaced-closely to the faceplate 122 .
- a radio frequency (RF) power supply (not shown) may be used to apply electrical power between the gas distribution faceplate 122 and the susceptor 135 so as to excite the process gas/liquid mixture to form a plasma.
- the constituents of the plasma react to deposit a desired film on the surface of the substrate on the mounting plate 20 .
- the deposition process gases may be exhausted from the chamber through a slot-shaped orifice 131 surrounding the reaction region 141 into an exhaust plenum 150 . From exhaust plenum 150 , the gases flow by a vacuum shut-off valve 152 and into an exhaust outlet 154 which connects to an external vacuum pump (not shown).
- FIG. 2A a top view of the upper surface 22 of the substrate mounting plate 20 of susceptor 137 is shown.
- the upper face 22 of mounting plate 20 is configured to support a substrate 10 (shown in phantom) upon which the film is to be deposited.
- the mounting plate 20 may be a rectangular shaped body fabricated of high purity 100 . 1 grade, anodized, cast aluminum, as shown, for flat panel applications, for example. Other shapes and sizes may of course be constructed as suitable for their specific applications.
- An outer heating element 24 and an inner heating element 26 are disposed beneath the surface 22 of the mounting plate 20 . For ease of understanding, the heating elements are shown in FIG. 2A even though they are located beneath the top surface 22 and would not be visible.
- the heating elements 24 and 26 may provide dual and generally parallel loops. This dual loop pattern provides for a generally radially-symmetric temperature distribution across the mounting plate 20 , while allowing for anomalies that would be presented in the locations of the lift pin holes 162 .
- the heating elements are separately controllable and are monitored by independent thermocouples 28 , each thermocouple 28 being located in a position representative of the area to which each respective heating element supplies energy. At least one thermocouple is provided for each heating element respectively. In the example shown in FIG. 2B , two thermocouples 28 are provided in the vicinity of each of heater elements 24 and 26 , respectively. One thermocouple is used to provide the feedback signal for controlling each respective heating element, and the other is a backup, should the first thermocouple fail.
- This independent control arrangement allows the peripheral area of the susceptor, and thus the peripheral area of the substrate to be controlled independently of the inner area by controlling the input of outer circuit 24 , while the temperature of the inner area of the substrate is controlled and monitored by input through the inner circuit 26 and monitoring of the associated thermocouple(s).
- Other heating element configurations are possible, including the provision of greater than two independently controllable heater element circuits.
- Heating elements 24 and 26 may be identical in construction, differing only in length and positioning in the mounting plate 20 .
- Heating elements 24 and 26 may each include an electrically-conductive outer sheath, a heating filament and an electrically-insulative and thermally-conductive sealing material disposed therebetween, as is known in the art.
- the sealing material prevents the burn-out or short-circuiting of the heating filament by providing a thermally-conductive but electrically-insulative filler between the filament 32 and the outer sheath 30 .
- Heat from the filament is conducted by the sealing material to the outer sheath, and heat from the outer sheath is conducted to the mounting plate 20 to heat a substrate supported thereon.
- the outer sheath may be constructed of a thermally and electrically conductive material, such as a metal.
- the outer sheath may be stainless steel or incoloy.
- the filament may be constructed from a nichrome wire, which is a composite of nickel and chromium.
- the sheath may have an outer diameter D which may be about 0.220 to 0.314 inches.
- the sealing material may be composed of substantially pure diamond powder, such as an industrial grade diamond material available from, for example, Beta Diamond Products, of Yorba Linda, Calif.
- the diamond powder may be composed of particles having an average particle size between about five and fifty microns. Most of the particles may have a particle size of about fifteen to thirty microns.
- the sealing material may be composed of a ceramic material such as magnesium oxide or boron nitride, for example, or of a mixture of a diamond powder and a ceramic material such as magnesium oxide or boron nitride.
- the heating elements 24 and 26 may be constructed according to conventional techniques. In brief, a filament is positioned in the center of an empty sheath. One end of the sheath is sealed, a sealing material is poured into the sheath, and the assembly is shaken to settle the sealing material. Then the other end of the sheath is sealed, and the assembly is drawn through a set of pressurized rollers to compact it. Finally, the heating element is bent into the desired shape.
- the mounting plate 20 is attached to the stem 137 of the susceptor 135 .
- the mounting plate 20 may include a top plate, a base plate, and a braised region therebetween (not shown). Disposed in the mounting plate 20 between the top plate and base plate are the heating elements 24 and 26 (see also FIG. 2B ).
- the stem 137 includes a hollow core and is configured to mate with the base plate of the mounting plate 20 . A vacuum tight joint is made such that the inside of the hollow core is at ambient (atmospheric) pressure.
- four heating element tubes are disposed within the hollow core of the stem 137 .
- Each heating element tube includes a conductive lead wire (not shown) for attachment to an end of a filament of a heating element.
- the stem 137 holds two grounding wires (not shown) for attachment to the outer sheath of each heating element.
- the heating element tubes are terminated at the end of the stem 137 , and the lead wires are connected to a heater controller (not shown), which in turn powers the heating elements and monitors the temperature of the mounting plate.
- Two lead wires for each heating element are connected to the heater controller to run a current through the filament of the heating element.
- Each heating element is separately controllable by the controller and is also provided with independent feedback means in the form of one or more thermocouples (two, in the example shown in FIG.
- the ground wire is connected to a ground to ground the sheath of each heating element, respectively.
- the grounded outer sheath prevents the current flowing through the filament from disturbing any plasma in the substrate processing region.
- FIG. 3 shows a top view of an example of a prior art susceptor having a mounting plate 200 with an upper surface 220 which is designed to support a substrate for deposition of a film thereon.
- a single heating element 240 is disposed beneath the surface 220 of the mounting plate 200 for heating the surface 220 and the substrate when it is supported thereon.
- the heating element 240 is shown (in phantom) even though it is located beneath the top surface 220 and would not be visible. Due to the provision of only one heating circuit 240 , no differential heating control of the surface 220 is possible.
- the chamber walls 134 are not independently heated or directly heated in any manner.
- the chamber walls will then generally be significantly cooler than the susceptor mounting plate and the substrate. For this reason, it is known that a temperature gradient can exist in a radially outward direction from the center of the substrate during the deposition process.
- the outside surface of a chamber wall 134 has been measured to be about 100° C. during a vapor deposition process in which the heat element 240 is controlled to a thermocouple reading of about 400° C.
- the center of the substrate may have a temperature of about 350° C. during the deposition (the actual substrate temperature is about 50° C. lower than the reading by the thermocouple)
- the periphery of the substrate being much closer to the walls 134 of the chamber, will experience greater heat losses, and it would not be unusual to measure a temperature approaching 330° C. on the periphery of some substrates.
- the temperature of the periphery of the substrate can only be increased by increasing the input through the single heater element 240 . This action however, will of course increase the temperature of the interior area of the substrate concomitantly and the temperature gradient problem will not be corrected, since the center area of the substrate will always be hotter than the peripheral area of the substrate with such an arrangement.
- Organosilicate layers such as those produced using TEOS as a source material, for example, are particularly susceptible to the influences of temperature on deposition rates. Whereas the deposition rates for amorphous silicon and silicon nitrides increase with increasing temperature, the deposition rate for TEOS decreases with increasing temperature with the deposition rate also being much more temperature sensitive with changes in temperature than that of amorphous silicon or silicon nitrides. That is, the change in deposition rates for amorphous silicon or silicon nitrides is exponentially related to changes in temperature, while for organosilicate films, such as those produced using TEOS, for example, the relationship is linear.
- FIG. 7 shows logarithmic (log 10 ) plots of deposition rates of polycrystalline silicon thin films deposited on oxidized silicon substrates using PECVD (dark circles) and low pressure CVD (without plasma enhancement) (white circles) (see Haijar, J.-J.; Reif, R.; and Adler D.: J. Electronic Mat., 15, 279 (1986).
- PECVD plasma enhanced chemical vapor deposition
- FIG. 8 shows the linear relationship between temperature change and deposition rates of organosilicate films using TEOS as a source material.
- This plot shows that, for example, an increase in susceptor temperature from about 350° C. to about 400° C. results in a decrease in the deposition rate of from about 1050 ⁇ /min to about 900 ⁇ /min.
- the organosilicate film deposited using TEOS as a precursor is very temperature sensitive and requires very particular attention in order to achieve substantial film uniformity in a deposited film.
- the present inventors Rather than setting a uniform temperature distribution across the substrate, as an ideal surface for a uniform thin layer distribution, the present inventors have determined that controlling the peripheral area of the substrate to have a somewhat higher temperature than the inner area of the substrate will result in the application of a thin layer that is more nearly uniform than the case where a thin layer is deposited on a substrate having a uniform temperature across the entire substrate. This effect is most pronounced with the organosilicate liquid precursors, whose vapor pressure are very temperature dependent, although the same relationship is seen, although to a lesser extent for other precursor liquids and gases.
- a dual heater element susceptor 137 having heater elements 24 and 26 in the plate was employed in a PECVD chamber (AKT 3500 PECVD Chamber, AKT, Inc., Tokyo, Japan) for the deposition of thin layers of TEOS on glass substrates having dimensions of 550 mm ⁇ 650 mm.
- TEOS liquid was used as a source material.
- Thermocouples 28 were used to provide feedback for independent control of the temperatures of the heating elements 24 and 26 , as described above.
- TEOS was flowed into the chamber at a flow rate of 300 sccm, helium was inputted at 100 sccm and oxygen was inputted at 5000 sccm.
- RF energy of 13.56 MHz was inputted at a power density of about 0.45 W/cm 2 and a spacing of 500 mils was used to generate a plasma for performing the deposition.
- the deposition process was carried out for 60 seconds and repeated at various inner/outer temperature ratios which are noted in Table 1 below. TABLE 1 Inner Outer Average Film Film Temperature Temperature Thickness Uniformity 390° C. 380° C. 927 ⁇ 10.1% 390° C. 390° C. 895 ⁇ 8.6% 390° C. 400° C. 900 ⁇ 5.0% 390° C. 410° C. 897 ⁇ 4.1%
- the deposition rate was generally about 1000 ⁇ /min.
- the results of the thickness measurements per minute across the length of the film (in a line through the center of the film) are shown graphically in FIG. 6 , for each of the four runs shown in Table 1.
- TEOS liquid was used as a source material.
- Thermocouples 28 were used to provide feedback for independent control of the temperatures of the heating elements 24 and 26 , as described above. After mounting the substrate on the susceptor in the chamber and sealing the chamber, TEOS was flowed into the chamber at a flow rate of 700 sccm, helium was inputted at 240 sccm and oxygen was inputted at 6480 sccm.
- the power density of the RF energy used to generate the plasma was about 0.45 W/cm 2
- power densities of about 0.3 to 0.7 W/cm 2 may be successfully employed, more preferably about 0.4 to 0.5 W/cm .
- many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Processes for controlling thickness uniformity of thin organosilicate films as they are deposited on a substrate, and as they finally result. During deposition of the film, which may be accomplished by CVD, PECVD, rapid thermal processing or the like, the substrate temperature is controlled to establish a temperature profile particularly suited to the extreme temperature sensitivities of the deposition rates of organosilicate films such as those deposited from TEOS as a source material.
Description
- This patent application is a continuation of application Ser. No. 09/938,435 filed Aug. 23, 2001.
- The present invention relates generally to thin film deposition processes, and more particularly to controlling the processes to improve thickness uniformity of thin films deposited on large surface area applications.
- Thin film uniformity (i.e., substantially constant thickness of the film throughout) is an important criterion in the production of semiconductor and LCD devices, to obtain good performance and viable components over the entirety of a work piece. A susceptor is a mechanical part that holds a substrate in a processing chamber for a fabrication step, such as chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD) or physical vapor deposition (PVD), for example. The susceptor includes a substrate mounting plate mounted on a stem, along with a lift assembly for raising and lowering the substrate within the processing chamber. The substrate mounting plate is heated to facilitate the fabrication process. Typically, a heating element is disposed within the mounting plate. Most films deposited by CVD are deposited with source materials in a process chamber into which at least one of several types of energy (e.g., plasma, thermal, microwave) are inputted to facilitate the deposition process. The source materials are, of course, dependent upon the type of layer to be deposited, and may include gaseous materials such as SiH4, H2, N2, NH3, PH3, CH4, Si2H6, and O2; and/or liquid source materials which may include metal ions and organosilicate components like TEOS, for example. The films are very sensitive to temperature conditions as they are being deposited, especially those deposited with an organosilicate liquid source, since the vapor pressures of the organosilicate liquid sources are highly temperature dependent. Consequently, temperature control is a key factor in achieving film consistency when depositing thin films on large surface area substrates, such as glass plates used in the flat panel industry.
- In contrast to depositions on semiconductor wafers, which occur on a relatively small scale (even the move from 200 mm to 300 mm is small in comparison with substrates used in the flat panel industry, which can run from 550 mm×650 mm and upwards of 1 m×1.2 m) depositions performed on large scale flat panel substrates have an additional set of problems to be addressed which are not critical when depositing on semiconductor wafers. A major difference is that the flat panel substrates are generally glass, which is significantly less thermally stable than a silicon wafer. Glass substrates, as opposed to silicon wafers cannot be processed above about 600° C. since too much structural stability is lost above this temperature as the glass begins to liquefy. Coupling this problem with the large surface area of the flat panels gives rise to serious concerns over bowing or sagging of the substrate in the middle portion thereof during processing at elevated temperatures. Additionally, the relatively small surface area of a semiconductor wafer facilitates the striking of a small, tightly controlled plasma for PECVD processes, whereas control and consistency of a plasma over an entire flat panel is much more challenging.
- In this regard, the uniform deposition of organic components, TEOS in particular, to form organosilicate films on flat panels has proven extremely problematic, as research over the last five years has not yet been successful in providing a solution for manufacturing thin organosilicate films, using TEOS as a precursor, on flat panels of 550×650 mm or greater with ≦10% film uniformity.
- As the substrate size increases, temperature control of the film deposition processes becomes even more critical because of the larger surface area and greater temperature variances across the face of the substrate, compared to what occurs with a substantially smaller substrate. Further, in examples such as flat panels, the film uniformity is a key property in determining the performance of the product, since substantially the entire substrate may be used as the final product, compared with, for example, a semiconductor wafer which is divided into many components so that each final component only depends on the uniformity of the film in a much smaller area in and immediately around a portion of the wafer.
- Generally, the susceptors in the prior art include a single heating element that inputs energy to the susceptor (and thus the substrate) as a whole, with feedback to vary the temperature of the substrate by varying the input through the heating element. U.S. Pat. No. 5,977,519 discloses a susceptor having dual heating elements with dual and generally parallel loops, to provide for a generally radially symmetric temperature distribution across the mounting plate while allowing for heat losses at the outside surface. However, this patent does not address the temperature dependence of the films, particularly the organosilicate films, but merely aims to compensate for heat losses at the outside surface, so as to maintain a generally even heating of the substrate.
- Similarly, U.S. Pat. No. 5,844,205 discloses a substrate support structure that includes a pair of heating elements arranged in inner and outer loops so that the perimeter of the support structure may be heated to a higher temperature than the interior, for example. This control is performed to compensate for the greater heat losses that are experienced at the perimeter of the support structure. Thus, the goal of the control is to attempt to provide a uniform substrate temperature by compensating with additional heating of the substrate near the perimeter. However, similar to U.S. Pat. No. 5,977,519, this patent does not address the temperature dependence of the films, particularly the organosilicate films, but merely aims to compensate for heat losses at the outside surface so as to maintain a generally even heating of the substrate.
- U.S. Pat. No. 5,534,072 discloses a multi-chamber CVD processing system in which multiple lamp heaters are positioned in back of a substrate and provided with separate power controllers to vary the light supplied by each lamp heater in an effort to attain uniform temperature over the entire substrate surface. Additionally, a stepped area is machined on the susceptor surface that is in contact with the substrate. By controlling the step-machined region and its depth, the disclosure indicates that it is possible to make the temperature distribution on the substrate surface more uniform. As with the previously discussed patent, the goal of this patent is also to achieve temperature uniformity over the substrate during processing. This patent does not address the temperature dependence of the film, particularly the organosilicate films, in any way other than to generally discuss that temperature uniformity is desirable.
- U.S. Pat. No. 6,225,601 discloses a technique for heating a susceptor in which the temperatures of first and second heating elements are controlled so that the difference between the temperatures of the first and second heating elements does not exceed a predetermined value while the temperatures of the heating elements are raised to their respective final temperature setpoints. Thus, this patent is directed primarily to a control system for controlling the relative temperatures between heating elements as they are heated up. This patent does not address the temperature dependence of organosilicate films, much less those films formed using TEOS.
- With the trend being to move to larger and larger flat panels, improved temperature controls are needed to insure that well-performing products are achieved through film deposition processes. A need remains for a solution that will consistently produce relatively uniform thin films of organosilicate films, and particularly those formed using TEOS as a precursor, on relatively large scale substrates, such as flat panels.
- The present invention is directed toward the improvement of thin film thickness uniformity over the entirety of a deposited thin film. A method of controlling thickness uniformity of a film deposited on a substrate may include the steps of providing a substrate in a processing chamber; controlling a temperature of at least two distinct locations on the substrate to include a perimeter area of a surface of the substrate and an area of the surface inside of the perimeter area; maintaining the temperature of the perimeter area of surface of the substrate within a range between about 10° C. less than the temperature of the area of the surface inside of the perimeter area to about 20° C. higher than the temperature of the area of the surface inside of the perimeter area; and depositing the organosilicate film, wherein the organosilicate film deposited has a film uniformity less than or equal to about 10%.
- The temperature of the perimeter area of the surface may be controlled by a first heater element in a susceptor and underlying the perimeter area of the substrate, and the temperature of the area of the surface inside of the perimeter area is controlled by a second heater element in the susceptor and underlying the area inside of the perimeter area, said controlling comprising maintaining the temperature of the perimeter area within a range of about 380° C. to about 410° C., while maintaining the area inside of the perimeter area at about 390° C.
- In one example, the organosilicate film is formed using TEOS as a precursor, and the deposition of the organosilicate layer is controlled by maintaining the temperature of the perimeter area at about 390° C. while maintaining the areas inside of the perimeter at about 390° C. In another example the temperature of the perimeter area is controlled to greater than 390° C. to about 400° C. while maintaining the area inside of the perimeter at about 390° C. In another example, the temperature of the perimeter area of the substrate is maintained at greater than 400° C. to about 410° C. while maintaining the area inside of the perimeter at about 390° C.
- Substantially uniform thin organosilicate films, may be produced using TEOS according to the invention by maintaining the temperature of the perimeter area of a substrate, during deposition, at about 390° C. to 410° C. while maintaining the area inside of the perimeter at about 390° C.
- In other examples involving deposition on substrates having dimensions of 730 mm×920 mm, the temperature control comprises maintaining the temperature of the perimeter area within a range of about 350° C. to about 460° C., while maintaining the area inside of the perimeter area within a range of about 340° C. to about 450° C., while maintaining the temperature of the perimeter area of a surface of the substrate within a range between about 10° C. less than the temperature of the area of the surface inside of the perimeter area to about 20° C. higher than the temperature of the area of the surface inside of the perimeter area.
- Methods of depositing thin organosilicate films according to the invention may include chemical vapor deposition, PECVD, PVD, rapid thermal processing and other known deposition methods.
- A particular example of a thin film deposition is described using TEOS as the source material, although the present invention applies to a wide variety of thin films that may be deposited in connection with semiconductor and flat panel technologies, for example.
- Thin films having improved thickness uniformity are also a subject of the present invention.
-
FIG. 1 is a cross-sectional view of a CVD processing chamber which may be used to practice the present invention. -
FIG. 2A is a top view of a substrate mounting plate, or susceptor, according to the present invention. -
FIG. 2B is a schematic, sectional view of the substrate mounting plate ofFIG. 2A , taken along line 2-2. -
FIG. 3 is a top view of a prior art susceptor employing a single heater line throughout to heat the entire susceptor plate surface. -
FIG. 4 is a view of the susceptor ofFIG. 2A with a schematic representation of a chamber wall surrounding the susceptor. -
FIG. 5 is a view of the susceptor ofFIG. 3 with a schematic representation of a chamber wall surrounding the susceptor. -
FIG. 6 is a graph showing the relationship between film thickness uniformity and various temperature profiles of a substrate upon which the films are being deposited. -
FIG. 7 is a graph showing logarithmic (log10) plots of deposition rates of polycrystalline silicon thin films deposited on oxidized silicon substrates using PECVD (dark circles) and low pressure CVD without plasma enhancement (white circles). See Haijar, J.-J.; Reif, R.; and Adler D.: J Electronic Mat., 15, 279 (1986). -
FIG. 8 is a graph showing the linear relationship between temperature change and deposition rates of an organosilicate film using TEOS as a source material. - Before the present techniques and films are described, it is to be understood that this invention is not limited to particular methods of deposition or films described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
- Where a range of values is provided, it is understood that each intervening value (to the tenth of the unit of the lower limit unless the context clearly dictates otherwise) between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
- It must be noted that as used herein and in the appended claims, the singular forms “a”, “and”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a film” includes a plurality of such films and reference to “the heater element” includes reference to one or more heater elements and equivalents thereof known to those skilled in the art, and so forth.
- The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
- The term “substrate” broadly covers any object that is being processed in a process chamber. The term “large substrate” refers to substrates larger than 300 mm wafers and includes, for example flat panel displays or glass plates.
- The term “film uniformity” refers to the maximum variance in thickness of the minimum or maximum thickness of the film from the average thickness of the film, as a percentage. The film thicknesses are generally measured at distinct locations along the diagonals (when the application is a flat panel) of the substrate while excluding a perimeter area having a width of about 10 mm.
- The following abbreviations are used throughout the specification:
-
- CVD is used for chemical vapor deposition.
- PECVD is used for plasma enhanced chemical vapor deposition.
- TEOS is an acronym designating tetraethoxysilane.
- The present invention is directed to improving film thickness uniformity both during and after the deposition of a thin film on a substrate. In the examples described below, thin films are deposited in a CVD chamber, with particular attention being paid to the deposition of organosilicate films using TEOS as a precursor. However, it is noted that the present invention, although very advantageously used in the CVD deposition of organosilicate films from TEOS, is not limited to such, and may be practiced with other films, such as metallic films, silicon films and other organosilicate films, for example, and may also be practiced in other sorts of processing chambers, such as chambers which carry out rapid thermal processing or physical vapor deposition, for example. Many of the details described are specific to the implementation described and may be changed as known by those skilled in the art.
- CVD includes a group of processes known and used in the art for, among other things, depositing a thin film layer onto a substrate. In general, the substrate is supported in a vacuum deposition process chamber, and the substrate is heated to several hundred degrees Centigrade. Deposition gases and/or liquids are injected into the chamber, and a chemical reaction occurs to deposit a thin film layer onto the substrate. The thin film layer may be a dielectric layer (such as silicon nitride, silicon oxide or organic silicon oxides and the like), a semiconductor layer (such as amorphous silicon) or a metal layer (such as tungsten). The deposition process may be plasma enhanced or thermally enhanced.
- As shown in
FIG. 1 , aCVD apparatus 130 includes asusceptor 135 having asubstrate mounting plate 20 mounted on astem 137. Thesusceptor 135 is positioned within a vacuumdeposition process chamber 133. Anupper face 22 of the mountingplate 20 supports a substrate, such as a glass panel (not shown), in a substrate processing orreaction region 141. A lift mechanism (not shown) is provided to raise and lower thesusceptor 135. Lift pins (not shown) may pass through lift pin holes 162 in the mountingplate 20 to facilitate the transfer of substrates into and out of thechamber 133 through anopening 142 in asidewall 134 of thechamber 133 by a robot blade (not shown). - Deposition process precursor material(s) (gases and/or liquids, indicated by arrow 123) flow into the
chamber 133 through aninlet manifold 126. The precursor material(s) then flow through aperforated blocker plate 124 andholes 121 in a process gas distribution faceplate 122 (indicated by small arrows in thesubstrate processing region 141 ofFIG. 1 ). Theupper face 22 of the mountingplate 20 is parallel and spaced-closely to thefaceplate 122. A radio frequency (RF) power supply (not shown) may be used to apply electrical power between thegas distribution faceplate 122 and thesusceptor 135 so as to excite the process gas/liquid mixture to form a plasma. The constituents of the plasma react to deposit a desired film on the surface of the substrate on the mountingplate 20. - The deposition process gases may be exhausted from the chamber through a slot-shaped
orifice 131 surrounding thereaction region 141 into anexhaust plenum 150. Fromexhaust plenum 150, the gases flow by a vacuum shut-offvalve 152 and into anexhaust outlet 154 which connects to an external vacuum pump (not shown). - Referring to
FIG. 2A , a top view of theupper surface 22 of thesubstrate mounting plate 20 ofsusceptor 137 is shown. As noted, theupper face 22 of mountingplate 20 is configured to support a substrate 10 (shown in phantom) upon which the film is to be deposited. The mountingplate 20 may be a rectangular shaped body fabricated of high purity 100.1 grade, anodized, cast aluminum, as shown, for flat panel applications, for example. Other shapes and sizes may of course be constructed as suitable for their specific applications. Anouter heating element 24 and an inner heating element 26 (both shown in phantom) are disposed beneath thesurface 22 of the mountingplate 20. For ease of understanding, the heating elements are shown inFIG. 2A even though they are located beneath thetop surface 22 and would not be visible. - The
24 and 26 may provide dual and generally parallel loops. This dual loop pattern provides for a generally radially-symmetric temperature distribution across the mountingheating elements plate 20, while allowing for anomalies that would be presented in the locations of the lift pin holes 162. The heating elements are separately controllable and are monitored byindependent thermocouples 28, eachthermocouple 28 being located in a position representative of the area to which each respective heating element supplies energy. At least one thermocouple is provided for each heating element respectively. In the example shown inFIG. 2B , twothermocouples 28 are provided in the vicinity of each of 24 and 26, respectively. One thermocouple is used to provide the feedback signal for controlling each respective heating element, and the other is a backup, should the first thermocouple fail. This independent control arrangement allows the peripheral area of the susceptor, and thus the peripheral area of the substrate to be controlled independently of the inner area by controlling the input ofheater elements outer circuit 24, while the temperature of the inner area of the substrate is controlled and monitored by input through theinner circuit 26 and monitoring of the associated thermocouple(s). Other heating element configurations, of course, are possible, including the provision of greater than two independently controllable heater element circuits. -
24 and 26 may be identical in construction, differing only in length and positioning in the mountingHeating elements plate 20. 24 and 26 may each include an electrically-conductive outer sheath, a heating filament and an electrically-insulative and thermally-conductive sealing material disposed therebetween, as is known in the art. In operation, the sealing material prevents the burn-out or short-circuiting of the heating filament by providing a thermally-conductive but electrically-insulative filler between the filament 32 and the outer sheath 30. Heat from the filament is conducted by the sealing material to the outer sheath, and heat from the outer sheath is conducted to the mountingHeating elements plate 20 to heat a substrate supported thereon. The outer sheath may be constructed of a thermally and electrically conductive material, such as a metal. Specifically, the outer sheath may be stainless steel or incoloy. The filament may be constructed from a nichrome wire, which is a composite of nickel and chromium. The sheath may have an outer diameter D which may be about 0.220 to 0.314 inches. - The sealing material may be composed of substantially pure diamond powder, such as an industrial grade diamond material available from, for example, Beta Diamond Products, of Yorba Linda, Calif. The diamond powder may be composed of particles having an average particle size between about five and fifty microns. Most of the particles may have a particle size of about fifteen to thirty microns. Alternatively, the sealing material may be composed of a ceramic material such as magnesium oxide or boron nitride, for example, or of a mixture of a diamond powder and a ceramic material such as magnesium oxide or boron nitride.
- The
24 and 26 may be constructed according to conventional techniques. In brief, a filament is positioned in the center of an empty sheath. One end of the sheath is sealed, a sealing material is poured into the sheath, and the assembly is shaken to settle the sealing material. Then the other end of the sheath is sealed, and the assembly is drawn through a set of pressurized rollers to compact it. Finally, the heating element is bent into the desired shape.heating elements - Referring again to
FIG. 1 , the mountingplate 20, as noted, is attached to thestem 137 of thesusceptor 135. The mountingplate 20 may include a top plate, a base plate, and a braised region therebetween (not shown). Disposed in the mountingplate 20 between the top plate and base plate are theheating elements 24 and 26 (see alsoFIG. 2B ). Thestem 137 includes a hollow core and is configured to mate with the base plate of the mountingplate 20. A vacuum tight joint is made such that the inside of the hollow core is at ambient (atmospheric) pressure. In this example, four heating element tubes (not shown) are disposed within the hollow core of thestem 137. Each heating element tube includes a conductive lead wire (not shown) for attachment to an end of a filament of a heating element. In addition, thestem 137 holds two grounding wires (not shown) for attachment to the outer sheath of each heating element. The heating element tubes are terminated at the end of thestem 137, and the lead wires are connected to a heater controller (not shown), which in turn powers the heating elements and monitors the temperature of the mounting plate. Two lead wires for each heating element are connected to the heater controller to run a current through the filament of the heating element. Each heating element is separately controllable by the controller and is also provided with independent feedback means in the form of one or more thermocouples (two, in the example shown inFIG. 2B ), so that the temperature in the area surrounding each heating element can be monitored independently by the controller. In addition, the ground wire is connected to a ground to ground the sheath of each heating element, respectively. The grounded outer sheath prevents the current flowing through the filament from disturbing any plasma in the substrate processing region. -
FIG. 3 shows a top view of an example of a prior art susceptor having a mountingplate 200 with anupper surface 220 which is designed to support a substrate for deposition of a film thereon. Asingle heating element 240 is disposed beneath thesurface 220 of the mountingplate 200 for heating thesurface 220 and the substrate when it is supported thereon. For ease of understanding, theheating element 240 is shown (in phantom) even though it is located beneath thetop surface 220 and would not be visible. Due to the provision of only oneheating circuit 240, no differential heating control of thesurface 220 is possible. During a CVD deposition process, thechamber walls 134 are not independently heated or directly heated in any manner. Assuming that the chamber exists in a room at room temperature, which is generally the case, the chamber walls will then generally be significantly cooler than the susceptor mounting plate and the substrate. For this reason, it is known that a temperature gradient can exist in a radially outward direction from the center of the substrate during the deposition process. - For example, referring to
FIG. 5 , the outside surface of achamber wall 134 has been measured to be about 100° C. during a vapor deposition process in which theheat element 240 is controlled to a thermocouple reading of about 400° C. In this case, while the center of the substrate may have a temperature of about 350° C. during the deposition (the actual substrate temperature is about 50° C. lower than the reading by the thermocouple), the periphery of the substrate, being much closer to thewalls 134 of the chamber, will experience greater heat losses, and it would not be unusual to measure a temperature approaching 330° C. on the periphery of some substrates. With the configuration shown inFIG. 5 , the temperature of the periphery of the substrate can only be increased by increasing the input through the single heater element 240.This action however, will of course increase the temperature of the interior area of the substrate concomitantly and the temperature gradient problem will not be corrected, since the center area of the substrate will always be hotter than the peripheral area of the substrate with such an arrangement. - For this reason, there have been approaches in the art directed toward improving the temperature distribution along a substrate by providing more than one heat source per susceptor, as have been described above. However, these approaches have been directed at maintaining constant temperature distribution, to overcome inconsistencies in the temperature distribution due to the configuration of the susceptor plate, the areas of contact between the susceptor plate and substrate, and to heat losses at the periphery, for example.
- The present inventors have determined that thin layers deposited on substrates are temperature dependent for their thickness uniformity properties, in varying degrees, depending upon the composition of the layer that is deposited. Organosilicate layers, such as those produced using TEOS as a source material, for example, are particularly susceptible to the influences of temperature on deposition rates. Whereas the deposition rates for amorphous silicon and silicon nitrides increase with increasing temperature, the deposition rate for TEOS decreases with increasing temperature with the deposition rate also being much more temperature sensitive with changes in temperature than that of amorphous silicon or silicon nitrides. That is, the change in deposition rates for amorphous silicon or silicon nitrides is exponentially related to changes in temperature, while for organosilicate films, such as those produced using TEOS, for example, the relationship is linear.
-
FIG. 7 shows logarithmic (log10) plots of deposition rates of polycrystalline silicon thin films deposited on oxidized silicon substrates using PECVD (dark circles) and low pressure CVD (without plasma enhancement) (white circles) (see Haijar, J.-J.; Reif, R.; and Adler D.: J. Electronic Mat., 15, 279 (1986). Referring to the PECVD plot, it can be observed that an increase in deposition temperature from about 500° C. to about 550° C. results in an increase in deposition rate from about 150 Å/min to about 180 Å/min. -
FIG. 8 , in comparison, shows the linear relationship between temperature change and deposition rates of organosilicate films using TEOS as a source material. This plot shows that, for example, an increase in susceptor temperature from about 350° C. to about 400° C. results in a decrease in the deposition rate of from about 1050 Å/min to about 900 Å/min. As can be seen, the organosilicate film deposited using TEOS as a precursor is very temperature sensitive and requires very particular attention in order to achieve substantial film uniformity in a deposited film. - Rather than setting a uniform temperature distribution across the substrate, as an ideal surface for a uniform thin layer distribution, the present inventors have determined that controlling the peripheral area of the substrate to have a somewhat higher temperature than the inner area of the substrate will result in the application of a thin layer that is more nearly uniform than the case where a thin layer is deposited on a substrate having a uniform temperature across the entire substrate. This effect is most pronounced with the organosilicate liquid precursors, whose vapor pressure are very temperature dependent, although the same relationship is seen, although to a lesser extent for other precursor liquids and gases.
- For example, referring to
FIG. 4 , a dualheater element susceptor 137 having 24 and 26 in the plate was employed in a PECVD chamber (AKT 3500 PECVD Chamber, AKT, Inc., Tokyo, Japan) for the deposition of thin layers of TEOS on glass substrates having dimensions of 550 mm×650 mm. TEOS liquid was used as a source material.heater elements Thermocouples 28 were used to provide feedback for independent control of the temperatures of the 24 and 26, as described above. After mounting the substrate on the susceptor in the chamber and sealing the chamber, TEOS was flowed into the chamber at a flow rate of 300 sccm, helium was inputted at 100 sccm and oxygen was inputted at 5000 sccm. RF energy of 13.56 MHz was inputted at a power density of about 0.45 W/cm2 and a spacing of 500 mils was used to generate a plasma for performing the deposition. The deposition process was carried out for 60 seconds and repeated at various inner/outer temperature ratios which are noted in Table 1 below.heating elements TABLE 1 Inner Outer Average Film Film Temperature Temperature Thickness Uniformity 390° C. 380° C. 927 Å 10.1% 390° C. 390° C. 895 Å 8.6% 390° C. 400° C. 900 Å 5.0% 390° C. 410° C. 897 Å 4.1% - The deposition rate was generally about 1000 Å/min. The results of the thickness measurements per minute across the length of the film (in a line through the center of the film) are shown graphically in
FIG. 6 , for each of the four runs shown in Table 1. - A clear relationship is shown between temperature and film thickness uniformity, where the lower the temperature is at the periphery of the substrate, the thicker is the film formation there. It is noted that by correcting the temperature of the periphery of the substrate to equal that of the inner temperature, the film uniformity was only improved slightly (as compared to an example where the periphery is colder). By increasing the temperature of the periphery to 400° C. with the inner temperature at 390° C., a dramatic improvement in film uniformity was measured. By increasing the outer temperature still further to 410° C. with an inner temperature of 390° C. a still further improvement in film uniformity was recorded. Particularly, a dramatic decrease in the thickness of the peripheral portions of the layer resulted by increasing the outer temperature above that of the inner temperature.
- The results of depositions of thin layers of organosilicates using TEOS on glass substrates having dimensions of 730 mm×920 mm are shown below in Table 2. TEOS liquid was used as a source material.
Thermocouples 28 were used to provide feedback for independent control of the temperatures of the 24 and 26, as described above. After mounting the substrate on the susceptor in the chamber and sealing the chamber, TEOS was flowed into the chamber at a flow rate of 700 sccm, helium was inputted at 240 sccm and oxygen was inputted at 6480 sccm. RF energy of 13.56 MHz was inputted at a power of 1900 Watts and a spacing of 470 mils was used to generate a plasma for performing the deposition. The deposition process was carried out for 600 seconds in each of the first two runs shown in Table 2 and for 700 seconds in the third run.heating elements TABLE 2 Inner Outer Average Film Film Temperature Temperature Thickness Uniformity 400° C. 420° C. 8494 Å 6.4% 430° C. 450° C. 6731 Å 6.7% 450° C. 460° C. 8292 Å 6.0% - While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. For example, although in some specific examples, the power density of the RF energy used to generate the plasma was about 0.45 W/cm2, it is noted that power densities of about 0.3 to 0.7 W/cm2 may be successfully employed, more preferably about 0.4 to 0.5 W/cm . In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
Claims (24)
1. A method of controlling the temperature of a susceptor for supporting a substrate within a process chamber, comprising the steps of:
providing a susceptor within a process chamber;
coupling a first heating element to a first portion of the susceptor;
coupling a second heating element to a second portion of the susceptor that is radially inward of the first portion;
providing first and second thermocouples, wherein each thermocouple produces a temperature reading;
coupling the first thermocouple to a third portion of the susceptor between the first portion and the second portion;
coupling the second thermocouple to a central portion of the susceptor that is radially inward of the third portion; and
controlling the first and second heating elements in response to the temperature readings of the first and second thermocouples.
2. The method of claim 1 , wherein the first portion of the susceptor is adjacent the perimeter of the susceptor.
3. The method of claim 1 , wherein the controlling step comprises controlling the first and second heating elements so that the temperature reading of the first thermocouple is higher than the temperature reading of the second thermocouple.
4. The method of claim 1 , wherein the controlling step comprises controlling the first and second heating elements so that the temperature reading of the first thermocouple is at least 10 degrees C. higher than the temperature reading of the second thermocouple.
5. The method of claim 1 , wherein the controlling step comprises controlling the first and second heating elements so that the temperature reading of the first thermocouple is in the range of 10 to 20 degrees C. higher than the temperature reading of the second thermocouple.
6. The method of claim 1 , further comprising, concurrently with the controlling step, the steps of:
supporting a substrate on the susceptor; and
supplying a precursor material into the process chamber so as to deposit a film on the substrate.
7. The method of claim 6 , wherein the controlling step comprises:
controlling the first and second heating elements so that the temperature reading of the first thermocouple exceeds the temperature reading of the second thermocouple by an amount great enough so that said film deposited on the substrate has a uniformity of thickness less than or equal to 6.7 percent.
8. The method of claim 6 , wherein the controlling step comprises:
controlling the first and second heating elements so that the temperature reading of the first thermocouple exceeds the temperature reading of the second thermocouple by an amount that improves the uniformity of the thickness of said film relative to the uniformity of the thickness of a film that would be produced if the temperature readings of the first and second thermocouples were equal.
9. The method of claim 1 , wherein the susceptor is large enough to support within the chamber a substrate having dimensions of at least 550 mm×650 mm.
10. A method of depositing a film on a substrate, comprising the concurrent steps of:
providing a susceptor within a process chamber;
providing first and second heating elements respectively positioned so as to heat first and second portions of the susceptor, wherein the first portion of the susceptor is radially outward of the second portion of the susceptor;
providing first and second thermocouples respectively coupled to the first and second portions of the susceptor, wherein each thermocouple produces a temperature reading;
supporting a substrate on the susceptor;
supplying a precursor material into the process chamber so as to deposit a film on the substrate; and
controlling the first and second heating elements so that the temperature reading of the first thermocouple is at least 10 degrees C. higher than the temperature reading of the second thermocouple.
11. The method of claim 10 , wherein the first portion of the susceptor is adjacent the perimeter of the susceptor.
12. The method of claim 10 , wherein the controlling step comprises:
controlling the first and second heating elements so that the temperature reading of the first thermocouple is in the range of 10 to 20 degrees C. higher than the temperature reading of the second thermocouple.
13. The method of claim 10 , wherein the controlling step comprises:
controlling the first and second heating elements so that the temperature reading of the first thermocouple exceeds the temperature reading of the second thermocouple by an amount great enough so that said film deposited on the substrate has a uniformity of thickness less than or equal to 6.7 percent.
14. The method of claim 10 , wherein the controlling step comprises:
controlling the first and second heating elements so that the temperature reading of the first thermocouple exceeds the temperature reading of the second thermocouple by an amount great enough so that said film deposited on the substrate has a uniformity of thickness that is better than the uniformity of the thickness of a film that would be produced if the temperature readings of the first and second thermocouples were equal.
15. A method of depositing a film on a substrate, comprising the concurrent steps of:
providing a susceptor within a process chamber;
providing first and second heating elements respectively positioned so as to heat first and second portions of the susceptor, wherein the first portion of the susceptor is radially outward of the second portion of the susceptor;
providing first and second thermocouples respectively coupled to the first and second portions of the susceptor, wherein each thermocouple produces a temperature reading;
supporting a substrate on the susceptor;
supplying a precursor material into the process chamber so as to deposit a film on the substrate; and
controlling the first and second heating elements so that the temperature reading of the first thermocouple exceeds the temperature reading of the second thermocouple by an amount great enough so that said film deposited on the substrate has a uniformity of thickness less than or equal to 6.7 percent.
16. The method of claim 15 , wherein the first portion of the susceptor is adjacent the perimeter of the susceptor.
17. The method of claim 15 , wherein the controlling step comprises:
controlling the first and second heating elements so that the temperature reading of the first thermocouple is at least 10 degrees C. higher than the temperature reading of the second thermocouple.
18. The method of claim 15 , wherein the controlling step comprises:
controlling the first and second heating elements so that the temperature reading of the first thermocouple is in the range of 10 to 20 degrees C. higher than the temperature reading of the second thermocouple.
19. A substrate having a film formed thereon by the concurrent steps of:
providing a susceptor within a process chamber;
providing first and second heating elements respectively positioned so as to heat first and second portions of the susceptor, wherein the first portion of the susceptor is radially outward of the second portion of the susceptor;
providing first and second thermocouples respectively coupled to the first and second portions of the susceptor, wherein each thermocouple produces a temperature reading; and
supporting a substrate on the susceptor;
supplying a precursor material into the process chamber so as to form a film on the substrate; and
controlling the first and second heating elements so that the temperature reading of the first thermocouple exceeds the temperature reading of the second thermocouple by an amount great enough so that said film deposited on the substrate has a uniformity of thickness that is better than the uniformity of the thickness of a film that would be produced if the temperature readings of the first and second thermocouples were equal.
20. The method of claim 19 , wherein the first portion of the susceptor is adjacent the perimeter of the susceptor.
21. The substrate of claim 19 , wherein the controlling step comprises:
controlling the first and second heating elements so that the temperature reading of the first thermocouple exceeds the temperature reading of the second thermocouple by an amount great enough so that said film deposited on the substrate has a uniformity of thickness less than or equal to 6.7 percent.
22. The substrate of claim 19 , wherein the controlling step comprises:
controlling the first and second heating elements so that the temperature reading of the first thermocouple is at least 10 degrees C. higher than the temperature reading of the second thermocouple.
23. The substrate of claim 19 , wherein the precursor material includes TEOS.
24. The substrate of claim 19 , wherein the precursor material includes an organosilicate material.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/147,746 US20050233155A1 (en) | 2001-08-23 | 2005-06-08 | Process for controlling thin film uniformity and products produced thereby |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/938,435 US6962732B2 (en) | 2001-08-23 | 2001-08-23 | Process for controlling thin film uniformity and products produced thereby |
| US11/147,746 US20050233155A1 (en) | 2001-08-23 | 2005-06-08 | Process for controlling thin film uniformity and products produced thereby |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/938,435 Continuation US6962732B2 (en) | 2001-08-23 | 2001-08-23 | Process for controlling thin film uniformity and products produced thereby |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050233155A1 true US20050233155A1 (en) | 2005-10-20 |
Family
ID=25471441
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/938,435 Expired - Lifetime US6962732B2 (en) | 2001-08-23 | 2001-08-23 | Process for controlling thin film uniformity and products produced thereby |
| US11/147,746 Abandoned US20050233155A1 (en) | 2001-08-23 | 2005-06-08 | Process for controlling thin film uniformity and products produced thereby |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/938,435 Expired - Lifetime US6962732B2 (en) | 2001-08-23 | 2001-08-23 | Process for controlling thin film uniformity and products produced thereby |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US6962732B2 (en) |
| EP (1) | EP1419287A1 (en) |
| JP (3) | JP2005509279A (en) |
| KR (2) | KR100803445B1 (en) |
| CN (2) | CN1733966A (en) |
| TW (1) | TWI223837B (en) |
| WO (1) | WO2003029517A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070113786A1 (en) * | 2005-11-23 | 2007-05-24 | Celetech Semiconductor, Inc. | Radio frequency grounding rod |
| US20090269512A1 (en) * | 2008-04-28 | 2009-10-29 | Applied Materials, Inc. | Nonplanar faceplate for a plasma processing chamber |
| US20130048629A1 (en) * | 2011-08-26 | 2013-02-28 | Yu Jin KANG | Susceptor |
Families Citing this family (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6962732B2 (en) | 2001-08-23 | 2005-11-08 | Applied Materials, Inc. | Process for controlling thin film uniformity and products produced thereby |
| US7127367B2 (en) | 2003-10-27 | 2006-10-24 | Applied Materials, Inc. | Tailored temperature uniformity |
| US8536492B2 (en) * | 2003-10-27 | 2013-09-17 | Applied Materials, Inc. | Processing multilayer semiconductors with multiple heat sources |
| US20050100682A1 (en) * | 2003-11-06 | 2005-05-12 | Tokyo Electron Limited | Method for depositing materials on a substrate |
| US7611758B2 (en) * | 2003-11-06 | 2009-11-03 | Tokyo Electron Limited | Method of improving post-develop photoresist profile on a deposited dielectric film |
| WO2005103874A2 (en) * | 2004-04-16 | 2005-11-03 | Cascade Basic Research Corp. | Modelling relationships within an on-line connectivity universe |
| US7712434B2 (en) * | 2004-04-30 | 2010-05-11 | Lam Research Corporation | Apparatus including showerhead electrode and heater for plasma processing |
| US7429718B2 (en) * | 2005-08-02 | 2008-09-30 | Applied Materials, Inc. | Heating and cooling of substrate support |
| US8222574B2 (en) * | 2007-01-15 | 2012-07-17 | Applied Materials, Inc. | Temperature measurement and control of wafer support in thermal processing chamber |
| CN101903996B (en) * | 2007-12-21 | 2013-04-03 | 应用材料公司 | Method and apparatus for controlling temperature of a substrate |
| US8111978B2 (en) * | 2008-07-11 | 2012-02-07 | Applied Materials, Inc. | Rapid thermal processing chamber with shower head |
| JP2013538455A (en) | 2010-09-03 | 2013-10-10 | テーエーエル・ソーラー・アーゲー | Substrate heating device |
| JP5254308B2 (en) * | 2010-12-27 | 2013-08-07 | 東京エレクトロン株式会社 | Liquid processing apparatus, liquid processing method, and recording medium storing program for executing liquid processing method |
| US8734903B2 (en) | 2011-09-19 | 2014-05-27 | Pilkington Group Limited | Process for forming a silica coating on a glass substrate |
| CN103094155A (en) * | 2011-11-07 | 2013-05-08 | 无锡华润上华科技有限公司 | Processing equipment of semiconductor device |
| CN102443786A (en) * | 2011-11-08 | 2012-05-09 | 上海华力微电子有限公司 | Method for improving uniformity of plasma enhanced chemical vapor deposition film |
| KR101376956B1 (en) * | 2012-05-16 | 2014-03-21 | 주식회사 유니텍스 | Reactor for vapor phase deposition and method of forming organic film |
| USD713200S1 (en) | 2012-08-31 | 2014-09-16 | Applied Materials, Inc. | Susceptor with heater |
| US9157730B2 (en) * | 2012-10-26 | 2015-10-13 | Applied Materials, Inc. | PECVD process |
| USD717113S1 (en) | 2013-03-13 | 2014-11-11 | Applied Materials, Inc. | Susceptor with heater |
| US9543171B2 (en) * | 2014-06-17 | 2017-01-10 | Lam Research Corporation | Auto-correction of malfunctioning thermal control element in a temperature control plate of a semiconductor substrate support assembly that includes deactivating the malfunctioning thermal control element and modifying a power level of at least one functioning thermal control element |
| US9869017B2 (en) * | 2014-07-10 | 2018-01-16 | Applied Materials, Inc. | H2/O2 side inject to improve process uniformity for low temperature oxidation process |
| US10460932B2 (en) * | 2017-03-31 | 2019-10-29 | Asm Ip Holding B.V. | Semiconductor device with amorphous silicon filled gaps and methods for forming |
| CN108728828A (en) * | 2017-04-20 | 2018-11-02 | 中微半导体设备(上海)有限公司 | CVD equipment and its temprature control method and heater |
| CN110331386A (en) * | 2019-07-09 | 2019-10-15 | 长江存储科技有限责任公司 | The method of film is formed on a semiconductor wafer |
| CN113151785B (en) * | 2020-01-22 | 2022-02-08 | 中国工程物理研究院激光聚变研究中心 | Film preparation assembly, film preparation method and application thereof |
| CN114517290A (en) * | 2022-01-21 | 2022-05-20 | 中环领先半导体材料有限公司 | APCVD film forming processing technology for improving film thickness uniformity of LTO film |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6451390B1 (en) * | 2000-04-06 | 2002-09-17 | Applied Materials, Inc. | Deposition of TEOS oxide using pulsed RF plasma |
Family Cites Families (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0227715A (en) * | 1988-07-15 | 1990-01-30 | Mitsubishi Electric Corp | Heating stage for vapor growth device |
| US5156820A (en) * | 1989-05-15 | 1992-10-20 | Rapro Technology, Inc. | Reaction chamber with controlled radiant energy heating and distributed reactant flow |
| EP0412644A3 (en) | 1989-08-08 | 1991-03-20 | Applied Materials, Inc. | Low temperature low pressure thermal cvd process for forming conformal group iii and/or group v-doped silicate glass coating of uniform thickness on integrated structure |
| JPH0737359B2 (en) * | 1989-08-24 | 1995-04-26 | 三菱電機株式会社 | Vapor phase growth equipment |
| US5059770A (en) | 1989-09-19 | 1991-10-22 | Watkins-Johnson Company | Multi-zone planar heater assembly and method of operation |
| US5098865A (en) * | 1989-11-02 | 1992-03-24 | Machado Jose R | High step coverage silicon oxide thin films |
| JPH04142742A (en) * | 1990-10-03 | 1992-05-15 | Fujitsu Ltd | Controlling method for temperature distribution |
| JP3068914B2 (en) * | 1991-09-30 | 2000-07-24 | 株式会社東芝 | Vapor phase growth equipment |
| JP2579809Y2 (en) * | 1991-10-04 | 1998-09-03 | 国際電気株式会社 | Single wafer CVD system |
| JPH05259086A (en) * | 1992-03-10 | 1993-10-08 | Nec Kagoshima Ltd | Thin film transistor array manufacturing device |
| US5534072A (en) | 1992-06-24 | 1996-07-09 | Anelva Corporation | Integrated module multi-chamber CVD processing system and its method for processing subtrates |
| JP3103227B2 (en) * | 1992-12-09 | 2000-10-30 | 株式会社日立製作所 | Method for manufacturing semiconductor device |
| JPH06204143A (en) * | 1992-12-28 | 1994-07-22 | Hitachi Ltd | Cvd equipment |
| JPH0945624A (en) | 1995-07-27 | 1997-02-14 | Tokyo Electron Ltd | Leaf-type heat treating system |
| US5844205A (en) | 1996-04-19 | 1998-12-01 | Applied Komatsu Technology, Inc. | Heated substrate support structure |
| US5795833A (en) | 1996-08-01 | 1998-08-18 | Taiwan Semiconductor Manufacturing Company, Ltd | Method for fabricating passivation layers over metal lines |
| JP3473297B2 (en) | 1996-11-14 | 2003-12-02 | セイコーエプソン株式会社 | Method for forming silicon oxide film and method for manufacturing thin film transistor |
| US5763021A (en) * | 1996-12-13 | 1998-06-09 | Cypress Semiconductor Corporation | Method of forming a dielectric film |
| US6616767B2 (en) * | 1997-02-12 | 2003-09-09 | Applied Materials, Inc. | High temperature ceramic heater assembly with RF capability |
| US5977519A (en) | 1997-02-28 | 1999-11-02 | Applied Komatsu Technology, Inc. | Heating element with a diamond sealing material |
| US6352594B2 (en) * | 1997-08-11 | 2002-03-05 | Torrex | Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors |
| US6143666A (en) * | 1998-03-30 | 2000-11-07 | Vanguard International Seminconductor Company | Plasma surface treatment method for forming patterned TEOS based silicon oxide layer with reliable via and interconnection formed therethrough |
| US6225601B1 (en) * | 1998-07-13 | 2001-05-01 | Applied Komatsu Technology, Inc. | Heating a substrate support in a substrate handling chamber |
| EP1135659B1 (en) | 1998-11-13 | 2006-05-10 | Mattson Technology Inc. | Apparatus and method for thermal processing of semiconductor substrates |
| JP4353601B2 (en) * | 2000-01-04 | 2009-10-28 | 株式会社アルバック | Plasma CVD equipment |
| KR100767294B1 (en) * | 2000-06-23 | 2007-10-16 | 캐논 아네르바 가부시키가이샤 | Cvd apparatus |
| US6962732B2 (en) | 2001-08-23 | 2005-11-08 | Applied Materials, Inc. | Process for controlling thin film uniformity and products produced thereby |
-
2001
- 2001-08-23 US US09/938,435 patent/US6962732B2/en not_active Expired - Lifetime
-
2002
- 2002-08-19 KR KR1020047002658A patent/KR100803445B1/en not_active Expired - Fee Related
- 2002-08-19 CN CNA2005100871836A patent/CN1733966A/en active Pending
- 2002-08-19 JP JP2003532725A patent/JP2005509279A/en not_active Withdrawn
- 2002-08-19 KR KR1020077026776A patent/KR20070116186A/en not_active Ceased
- 2002-08-19 EP EP02759414A patent/EP1419287A1/en not_active Withdrawn
- 2002-08-19 WO PCT/US2002/026456 patent/WO2003029517A1/en not_active Ceased
- 2002-08-19 CN CN02818269.3A patent/CN1555424B/en not_active Expired - Lifetime
- 2002-08-23 TW TW091119194A patent/TWI223837B/en not_active IP Right Cessation
-
2005
- 2005-06-08 US US11/147,746 patent/US20050233155A1/en not_active Abandoned
-
2010
- 2010-12-28 JP JP2010292775A patent/JP2011139068A/en not_active Withdrawn
-
2014
- 2014-06-12 JP JP2014121476A patent/JP5917607B2/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6451390B1 (en) * | 2000-04-06 | 2002-09-17 | Applied Materials, Inc. | Deposition of TEOS oxide using pulsed RF plasma |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070113786A1 (en) * | 2005-11-23 | 2007-05-24 | Celetech Semiconductor, Inc. | Radio frequency grounding rod |
| US20090269512A1 (en) * | 2008-04-28 | 2009-10-29 | Applied Materials, Inc. | Nonplanar faceplate for a plasma processing chamber |
| WO2009134588A3 (en) * | 2008-04-28 | 2010-03-18 | Applied Materials, Inc. | Nonplanar faceplate for a plasma processing chamber |
| US8097082B2 (en) | 2008-04-28 | 2012-01-17 | Applied Materials, Inc. | Nonplanar faceplate for a plasma processing chamber |
| US20130048629A1 (en) * | 2011-08-26 | 2013-02-28 | Yu Jin KANG | Susceptor |
| US9638376B2 (en) * | 2011-08-26 | 2017-05-02 | Lg Siltron Inc. | Susceptor |
Also Published As
| Publication number | Publication date |
|---|---|
| US20030044621A1 (en) | 2003-03-06 |
| JP2011139068A (en) | 2011-07-14 |
| JP2014209641A (en) | 2014-11-06 |
| CN1555424B (en) | 2015-12-02 |
| KR20070116186A (en) | 2007-12-06 |
| EP1419287A1 (en) | 2004-05-19 |
| TWI223837B (en) | 2004-11-11 |
| US6962732B2 (en) | 2005-11-08 |
| CN1733966A (en) | 2006-02-15 |
| JP2005509279A (en) | 2005-04-07 |
| KR100803445B1 (en) | 2008-02-13 |
| CN1555424A (en) | 2004-12-15 |
| WO2003029517A1 (en) | 2003-04-10 |
| KR20040032958A (en) | 2004-04-17 |
| JP5917607B2 (en) | 2016-05-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6962732B2 (en) | Process for controlling thin film uniformity and products produced thereby | |
| US7919722B2 (en) | Method for fabricating plasma reactor parts | |
| US5772770A (en) | Substrate processing apparatus | |
| US6372084B2 (en) | Plasma processing apparatus with a dielectric plate having a thickness based on a wavelength of a microwave introduced into a process chamber through the dielectric plate | |
| TWI391996B (en) | Method for reducing total defects of plasma-assisted chemical vapor deposition film | |
| US5653808A (en) | Gas injection system for CVD reactors | |
| JP3164956B2 (en) | Method for depositing amorphous silicon thin film at high deposition rate on large area glass substrate by CVD | |
| US20030049372A1 (en) | High rate deposition at low pressures in a small batch reactor | |
| US20030070616A1 (en) | Method and apparatus for electrostatically maintaining substrate flatness | |
| JPH04123257U (en) | Bias ECR plasma CVD equipment | |
| CN103069543A (en) | Gas distribution showerhead with high emissivity surface | |
| US5390626A (en) | Process for formation of silicon carbide film | |
| US6924231B2 (en) | Single wafer processing method and system for processing semiconductor | |
| US20030121898A1 (en) | Heated vacuum support apparatus | |
| US7211514B2 (en) | Heat-processing method for semiconductor process under a vacuum pressure | |
| KR20200021404A (en) | Coating material for processing chambers | |
| KR20240146328A (en) | A silicon carbide deposition system by chemical vapor deposition comprising internal pressure control system | |
| CN119753621A (en) | A method for preparing large-area diamond by high temperature HFCVD method | |
| JPH09153485A (en) | Vapor phase growth equipment | |
| JPS6299463A (en) | Deposited film formation method | |
| CN118880453A (en) | A production process for 100-faceted cubic diamond | |
| JPH11100672A (en) | Plasma gas phase reactor | |
| JPS62224673A (en) | Formation of deposited film | |
| JPH0831425B2 (en) | Plasma gas phase reaction method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |