US20050230662A1 - Diaminostilbene derivatives - Google Patents
Diaminostilbene derivatives Download PDFInfo
- Publication number
- US20050230662A1 US20050230662A1 US11/142,443 US14244305A US2005230662A1 US 20050230662 A1 US20050230662 A1 US 20050230662A1 US 14244305 A US14244305 A US 14244305A US 2005230662 A1 US2005230662 A1 US 2005230662A1
- Authority
- US
- United States
- Prior art keywords
- triazinylamino
- stilbene
- bis
- disulfonic acid
- ethyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- TXVWTOBHDDIASC-UHFFFAOYSA-N 1,2-diphenylethene-1,2-diamine Chemical class C=1C=CC=CC=1C(N)=C(N)C1=CC=CC=C1 TXVWTOBHDDIASC-UHFFFAOYSA-N 0.000 title description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 13
- 239000001257 hydrogen Substances 0.000 claims abstract description 13
- 150000001340 alkali metals Chemical group 0.000 claims abstract description 5
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 4
- -1 4,4′-Bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid compound Chemical class 0.000 claims description 45
- 125000004432 carbon atom Chemical group C* 0.000 claims description 26
- 239000007864 aqueous solution Substances 0.000 claims description 15
- 125000002947 alkylene group Chemical group 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 10
- 238000005282 brightening Methods 0.000 claims description 9
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 claims description 5
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 claims description 5
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 5
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 5
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 claims description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000001624 naphthyl group Chemical group 0.000 claims description 2
- 150000002431 hydrogen Chemical group 0.000 claims 3
- 125000000217 alkyl group Chemical group 0.000 abstract description 20
- KRMMOHWZHDVMBQ-UHFFFAOYSA-N 2-[2-[2-sulfo-4-(1,3,5-triazin-2-ylamino)phenyl]ethenyl]-5-(1,3,5-triazin-2-ylamino)benzenesulfonic acid Chemical class C=1C=C(C=CC=2C(=CC(NC=3N=CN=CN=3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC1=NC=NC=N1 KRMMOHWZHDVMBQ-UHFFFAOYSA-N 0.000 abstract description 18
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract description 12
- 125000003118 aryl group Chemical group 0.000 abstract description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 abstract description 4
- 150000001342 alkaline earth metals Chemical group 0.000 abstract description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 abstract description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical group C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 description 34
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- 125000001424 substituent group Chemical group 0.000 description 16
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 13
- 125000003545 alkoxy group Chemical group 0.000 description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 239000003480 eluent Substances 0.000 description 5
- 238000004811 liquid chromatography Methods 0.000 description 5
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical group NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 5
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 0 [11*]CC1=NC(NC2=CC(C)=C(C=C)C=C2)=NC(N([21*])CCO)=N1.[12*]CC1=NC(NC2=CC=C(C=C)C(C)=C2)=NC(N([22*])CCO)=N1 Chemical compound [11*]CC1=NC(NC2=CC(C)=C(C=C)C=C2)=NC(N([21*])CCO)=N1.[12*]CC1=NC(NC2=CC=C(C=C)C(C)=C2)=NC(N([22*])CCO)=N1 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 4
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 229940126214 compound 3 Drugs 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 229960003080 taurine Drugs 0.000 description 2
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- FCHWWNDPZGBNEK-UHFFFAOYSA-A C.C.C1=CC=NC=C1.CN(CCC(O)CO)C1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(N(C)CCC(O)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1.CNC1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NC)=NC(NCCS(=O)(=O)O[K])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1.O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[K])C=C(NC4=NC(NCC(O)CO)=NC(NCCS(=O)(=O)O[K])=N4)C=C3)C(S(=O)(=O)O[K])=C2)=NC(NCC(O)CO)=N1)O[K].O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[K])C=C(NC4=NC(NCCOCCOCCO)=NC(NCCS(=O)(=O)O[K])=N4)C=C3)C(S(=O)(=O)O[K])=C2)=NC(NCCOCCOCCO)=N1)O[K].O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCCOCCO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(NCCOCCO)=N1)O[Na].O=S(=O)(O)CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O)C=C(NC4=NC(N(CCCO)CC(O)CO)=NC(NCCS(=O)(=O)O)=N4)C=C3)C(S(=O)(=O)O)=C2)=NC(N(CCCO)CC(O)CO)=N1.O=S(=O)(O)CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O)C=C(NC4=NC(N(CCO)CCC(O)CO)=NC(NCCS(=O)(=O)O)=N4)C=C3)C(S(=O)(=O)O)=C2)=NC(N(CCO)CCC(O)CO)=N1.[I-10].[I-11].[I-12].[I-13].[I-7].[I-8].[I-9] Chemical compound C.C.C1=CC=NC=C1.CN(CCC(O)CO)C1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(N(C)CCC(O)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1.CNC1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NC)=NC(NCCS(=O)(=O)O[K])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1.O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[K])C=C(NC4=NC(NCC(O)CO)=NC(NCCS(=O)(=O)O[K])=N4)C=C3)C(S(=O)(=O)O[K])=C2)=NC(NCC(O)CO)=N1)O[K].O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[K])C=C(NC4=NC(NCCOCCOCCO)=NC(NCCS(=O)(=O)O[K])=N4)C=C3)C(S(=O)(=O)O[K])=C2)=NC(NCCOCCOCCO)=N1)O[K].O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCCOCCO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(NCCOCCO)=N1)O[Na].O=S(=O)(O)CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O)C=C(NC4=NC(N(CCCO)CC(O)CO)=NC(NCCS(=O)(=O)O)=N4)C=C3)C(S(=O)(=O)O)=C2)=NC(N(CCCO)CC(O)CO)=N1.O=S(=O)(O)CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O)C=C(NC4=NC(N(CCO)CCC(O)CO)=NC(NCCS(=O)(=O)O)=N4)C=C3)C(S(=O)(=O)O)=C2)=NC(N(CCO)CCC(O)CO)=N1.[I-10].[I-11].[I-12].[I-13].[I-7].[I-8].[I-9] FCHWWNDPZGBNEK-UHFFFAOYSA-A 0.000 description 1
- KQSVFAKGMULZKT-UHFFFAOYSA-F C.CN(CC(O)C(O)C(O)C(O)CO)C1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(N(C)CC(O)C(O)C(O)C(O)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1.O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(Cl)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(Cl)=N1)O[Na].[H]N(C)CC(O)C(O)C(O)C(O)CO Chemical compound C.CN(CC(O)C(O)C(O)C(O)CO)C1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(N(C)CC(O)C(O)C(O)C(O)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1.O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(Cl)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(Cl)=N1)O[Na].[H]N(C)CC(O)C(O)C(O)C(O)CO KQSVFAKGMULZKT-UHFFFAOYSA-F 0.000 description 1
- QVMFDBNPTRYADB-UHFFFAOYSA-B C.ClC1=NC(Cl)=NC(Cl)=N1.NC1=CC=C(C=CC2=C(S(=O)(=O)O)C=C(N)C=C2)C(S(=O)(=O)O)=C1.NCC(O)CO.NCCS(=O)(=O)O.O=COO[Na].O=COO[Na].O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(Cl)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(Cl)=N1)O[Na].O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCC(O)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(NCC(O)CO)=N1)O[Na].O=S(=O)(O[Na])C1=CC(NC2=NC(Cl)=NC(Cl)=N2)=CC=C1C=CC1=C(S(=O)(=O)O[Na])C=C(NC2=NC(Cl)=NC(Cl)=N2)C=C1.[NaH].[NaH] Chemical compound C.ClC1=NC(Cl)=NC(Cl)=N1.NC1=CC=C(C=CC2=C(S(=O)(=O)O)C=C(N)C=C2)C(S(=O)(=O)O)=C1.NCC(O)CO.NCCS(=O)(=O)O.O=COO[Na].O=COO[Na].O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(Cl)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(Cl)=N1)O[Na].O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCC(O)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(NCC(O)CO)=N1)O[Na].O=S(=O)(O[Na])C1=CC(NC2=NC(Cl)=NC(Cl)=N2)=CC=C1C=CC1=C(S(=O)(=O)O[Na])C=C(NC2=NC(Cl)=NC(Cl)=N2)C=C1.[NaH].[NaH] QVMFDBNPTRYADB-UHFFFAOYSA-B 0.000 description 1
- JHILXCSZUANLBK-UHFFFAOYSA-F C.NCCC(O)CO.O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(Cl)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(Cl)=N1)O[Na].O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCCC(O)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(NCCC(O)CO)=N1)O[Na] Chemical compound C.NCCC(O)CO.O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(Cl)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(Cl)=N1)O[Na].O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCCC(O)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(NCCC(O)CO)=N1)O[Na] JHILXCSZUANLBK-UHFFFAOYSA-F 0.000 description 1
- BEWIGKPQDGOLEF-UHFFFAOYSA-F C.NCCOCCO.O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(Cl)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(Cl)=N1)O[Na].O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCCOCCO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(NCCOCCO)=N1)O[Na] Chemical compound C.NCCOCCO.O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(Cl)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(Cl)=N1)O[Na].O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCCOCCO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(NCCOCCO)=N1)O[Na] BEWIGKPQDGOLEF-UHFFFAOYSA-F 0.000 description 1
- LMTNKRDNPDSXHZ-UHFFFAOYSA-J CC(C)(CO)CNC1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCC(C)(C)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1 Chemical compound CC(C)(CO)CNC1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCC(C)(C)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1 LMTNKRDNPDSXHZ-UHFFFAOYSA-J 0.000 description 1
- MVOUGBQPYCFRPX-UHFFFAOYSA-J CC(CO)NC1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NC(C)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1 Chemical compound CC(CO)NC1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NC(C)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1 MVOUGBQPYCFRPX-UHFFFAOYSA-J 0.000 description 1
- ICMOAPATKAEHHQ-UHFFFAOYSA-J CC(O)CNC1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCC(C)O)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1 Chemical compound CC(O)CNC1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCC(C)O)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1 ICMOAPATKAEHHQ-UHFFFAOYSA-J 0.000 description 1
- VTYDCNHWJDPEEA-UHFFFAOYSA-A CCN(C1=NC(N(C)CCS(=O)(=O)O[Na])=NC(NC2=CC(S(=O)(=O)O[Na])=C(C=CC3=CC=C(NC4=NC(NCC(O)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3S(=O)(=O)O[Na])C=C2)=N1)C(O)O.CN(CC(O)CO)C1=NC(NCCS(=O)(=O)O[K])=NC(NC2=CC(S(=O)(=O)O[K])=C(C=CC3=CC=C(NC4=NC(NCC(O)CO)=NC(NCCS(=O)(=O)O[K])=N4)C=C3S(=O)(=O)O[K])C=C2)=N1.CN(CCS(=O)(=O)O[Na])C1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(N(C)CC(O)C(O)C(O)C(O)CO)=NC(N(C)CCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(N(C)CC(O)C(O)C(O)C(O)CO)=N1.CN(CCS(=O)(=O)O[Na])C1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCCOCCO)=NC(N(C)CCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(NCCOCCO)=N1.O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[K])C=C(NC4=NC(NCC(O)CO)=NC(NCCS(=O)(=O)O[K])=N4)C=C3)C([K])=C2)=NC(NCCC(O)CO)=N1)O[K].O=S(=O)=O.[H]N(CC(O)CO)C1=NC(N(C)CCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(N([H])CC(O)CO)=NC(N(C)CCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1.[I-26].[I-27].[I-28].[I-29].[I-30].[I-31] Chemical compound CCN(C1=NC(N(C)CCS(=O)(=O)O[Na])=NC(NC2=CC(S(=O)(=O)O[Na])=C(C=CC3=CC=C(NC4=NC(NCC(O)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3S(=O)(=O)O[Na])C=C2)=N1)C(O)O.CN(CC(O)CO)C1=NC(NCCS(=O)(=O)O[K])=NC(NC2=CC(S(=O)(=O)O[K])=C(C=CC3=CC=C(NC4=NC(NCC(O)CO)=NC(NCCS(=O)(=O)O[K])=N4)C=C3S(=O)(=O)O[K])C=C2)=N1.CN(CCS(=O)(=O)O[Na])C1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(N(C)CC(O)C(O)C(O)C(O)CO)=NC(N(C)CCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(N(C)CC(O)C(O)C(O)C(O)CO)=N1.CN(CCS(=O)(=O)O[Na])C1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCCOCCO)=NC(N(C)CCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(NCCOCCO)=N1.O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[K])C=C(NC4=NC(NCC(O)CO)=NC(NCCS(=O)(=O)O[K])=N4)C=C3)C([K])=C2)=NC(NCCC(O)CO)=N1)O[K].O=S(=O)=O.[H]N(CC(O)CO)C1=NC(N(C)CCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(N([H])CC(O)CO)=NC(N(C)CCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1.[I-26].[I-27].[I-28].[I-29].[I-30].[I-31] VTYDCNHWJDPEEA-UHFFFAOYSA-A 0.000 description 1
- VLIVFEHDWKUQDT-UHFFFAOYSA-F CN(CC(O)C(O)C(O)C(O)CO)C1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCC(O)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1.CN(CCS(=O)(=O)O[Na])C1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCCOCCO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(N(C)CC(O)CO)=N1.[I-32].[I-33] Chemical compound CN(CC(O)C(O)C(O)C(O)CO)C1=NC(NCCS(=O)(=O)O[Na])=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCC(O)CO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=N1.CN(CCS(=O)(=O)O[Na])C1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCCOCCO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(N(C)CC(O)CO)=N1.[I-32].[I-33] VLIVFEHDWKUQDT-UHFFFAOYSA-F 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 1
- QZBOIQZSMZTTNI-UHFFFAOYSA-J O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCCCO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(NCCCO)=N1)O[Na] Chemical compound O=S(=O)(CCNC1=NC(NC2=CC=C(C=CC3=C(S(=O)(=O)O[Na])C=C(NC4=NC(NCCCO)=NC(NCCS(=O)(=O)O[Na])=N4)C=C3)C(S(=O)(=O)O[Na])=C2)=NC(NCCCO)=N1)O[Na] QZBOIQZSMZTTNI-UHFFFAOYSA-J 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- 229940102253 isopropanolamine Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- WSZSUYCDEVZYNX-UHFFFAOYSA-N n-[4-[2-[4-(triazin-4-ylamino)phenyl]ethenyl]phenyl]triazin-4-amine Chemical class C=1C=NN=NC=1NC(C=C1)=CC=C1C=CC(C=C1)=CC=C1NC1=CC=NN=N1 WSZSUYCDEVZYNX-UHFFFAOYSA-N 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D251/00—Heterocyclic compounds containing 1,3,5-triazine rings
- C07D251/02—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
- C07D251/12—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D251/26—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
- C07D251/40—Nitrogen atoms
- C07D251/54—Three nitrogen atoms
- C07D251/68—Triazinylamino stilbenes
Definitions
- the present invention relates to a 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative which is favorably employable in an aqueous fluorescent brightening solution, an aqueous photographic silver halide emulsion, an aqueous solution for processing a photographic silver halide-containing material.
- the invention further relates to use of the 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative for brightening a variety of materials with fluorescence.
- German Patent (DE) No. 1,945,316 discloses 4,4′-bis-(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives which show high fluorescent brightening effect on cellulose fibers.
- the disclosed derivatives have a sulfoethylamine substituent group on the 2-position of its triazine ring and additionally a morpholine or alkanolamine substituent group on the 4-position.
- alkanolamines are monoethanolamine, methylethanolamine, diethanolamine, isopropanolamine, and diisopropanolamine.
- the 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives to be employed in the form of aqueous solutions such as photographic silver halide emulsions and aqueous solutions for processing photographic silver halide-containing material are preferably well soluble in water or an aqueous solution.
- the derivatives should be rapidly dissolved in an aqueous medium and then should be hardly deposited during the storage of the aqueous solution.
- Japanese Patent Provisional Publications No. 6-329,936 and No. 6-332,127 disclose 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives which are employable as fluorescent brightening agents for an aqueous solution for processing photographic silver halide material.
- the disclosed derivatives have high solubility in the aqueous solution and are hardly deposited even when the processing solution is kept at low temperatures.
- a preferred compound is such derivative that the triazine ring is substituted on its 2-position with ethylamine having a sodium sulfonate salt [therefore, four sodium sulfonate groups are introduced into the derivative] and further substituted on its 4-position with an alkanolamine (e.g., 2-methyethanolamine).
- an alkanolamine e.g., 2-methyethanolamine
- the known 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives do not show satisfactory solubility in an aqueous medium from the viewpoints of practical use of the fluorescent brightening agent.
- the desired high solubility is attained by introducing into the 4-position of the triazine ring of the 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative an amino group having an alkylene substituent of 2 to 8 carbon atoms in which the alkylene substituent has a hydroxyl group or a hydroxyalkyl group of 1 to 3 carbon atoms as a substituent or has an intervening ether bonding.
- the present invention resides in a 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative having the following formula (1): in which
- the 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives of the invention is included in the general formula (SR) of the diaminostilbene compound for fluorescent brightening agent which is disclosed in the aforementioned Japanese Patent Provisional Publication No. 6-332127.
- SR general formula of the diaminostilbene compound for fluorescent brightening agent which is disclosed in the aforementioned Japanese Patent Provisional Publication No. 6-332127.
- the specifically defined 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives of the invention are not described in the publication.
- the present invention further resides in an aqueous solution containing a 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative of the above-mentioned formula (1).
- the invention furthermore resides in a method of brightening a surface of material with fluorescence which comprises applying a 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative of the formula (1) onto the surface of material.
- an alkyl group for R 11 and R 12 has 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms.
- the alkyl group can be a straight chain alkyl group, a branched chain alkyl group, or a cyclic alkyl group.
- the alkyl group can have one or more substituent groups. Examples of the substituent groups include a hydroxyl group, a sulfo group, and an alkoxy group. The alkoxy group preferably has such alkyl group as mentioned above.
- alkyl groups for R 11 and R 12 include methyl, ethyl, n-propyl, isopropyl, n-octyl, 2-hydroxyethyl, 3-hydroxypropyl, 2-hydroxypropyl, 2-sulfoethyl, 2-methoxyethyl, 2-(2-hydroxyethoxy)ethyl, 2-[2-(2-hydroxyethoxy)ethoxy]ethyl; and 2-(2-[2-(2-hydroxyethoxy)-ethoxy]ethoxy)ethyl.
- Each of R 11 and R 12 preferably is hydrogen, methyl, ethyl, n-propyl, n-butyl, or 2-sulfoethyl, and more preferably hydrogen, methyl, ethyl, or 2-sulfoethyl. Most preferred is hydrogen or atom.
- R 21 and R 22 examples are those described hereinbefore for R 11 and R 12 .
- Preferred examples of R 21 and R 22 include hydrogen, methyl, ethyl, n-propyl, isopropyl, 2-hydroxyethyl, 3-hydroxypropyl, 2-hydroxypropyl, 2,3-dihydroxypropyl, 2-sulfoethyl, 2-(2-hydroxyethoxy)ethyl, and 2-[2-(2-hydroxyethoxy)ethoxy]ethyl.
- More preferred examples include hydrogen, methyl, ethyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 2,3-dihydroxpropyl, and 2-(2-hydroxyethoxy)ethyl. Most preferred are hydrogen and methyl.
- the aryl group for R 21 and R 22 has 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms, more preferably 6 to 8 carbon atoms.
- the aryl group can have one or more substituents.
- the substituents include a hydroxyl group, a carboxyl group, an alkyl group, and an alkoxy group.
- the alkyl group and alkoxy group of the substituent can be the same as those described hereinbefore for R 11 and R 12 .
- Examples of the substituted and unsubstitued aryl groups for R 21 and R 22 include phenyl, naphthyl, 4-hydroxyphenyl, 3,5-dicarboxyphenyl, 4-methoxyphenyl, and 3-isopropylphenyl.
- the aryl group preferably is phenyl or 4-hydroxyphenyl.
- the alkylene group for L 1 and L 2 is an alkylene group having 2 to 8 carbon atoms which has, as a substituent, a hydroxyl group or a hyroxyalkyl group having 1 to 3 carbon atoms. Otherwise, the alkylene group has an ether bonding which intervenes the alkylene chain at an optional position.
- Preferred examples of the alkylene group for L 1 and L 2 include those of the following formulas 1) to 5):
- alkylene group for L 1 and L 2 include that represented by the following formula (2): —(CH 2 CH 2 O) n CH 2 — (2) in which n is an integer of 1 to 3, preferably 1 or 2. Most preferably, n is 1.
- M is a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, ammonium group, or pyridinium group.
- alkali metal atoms include Li, Na, K, Rb, Cs, and Fr.
- alkaline earth metal atoms include Ca, Sr, Ba, and Ra.
- Preferred are Na and K.
- ammonium groups include triethylammonium and tetrabutylammonium.
- the alkylene group for L 1 or L 2 of the formula (1) has a hydroxyl or hydroxyalkyl substituent and contains in its structure two or more asymmetric carbon atoms to which the substituent is attached, there are a plurality of stereoisomers having the same formula. Any of the isomers can be employed singly or in combination.
- the 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative of the formula (1) can be prepared by referring to the descriptions of Journal of Society of Organic Synthetic Chemistry, vol. 17, page 528 (1959) [written by Hirotsugu Matsui] and Japanese Patent No. 2,618,748.
- the compound of the formula (1) can be prepared by the steps of reacting a diaminostilbene derivative with cyanuric chloride, reacting the resulting 4,4′-bistriazinylaminostilbene derivative with taurine, and finally reacting the resulting product with hydroxyalkylamine. Otherwise, a process starting from a dialkylaminostilbene derivative can be adopted.
- the reaction can be performed in a solvent such as water or an organic solvent (e.g., alcohol, ketone, ether or amide). Water and water-miscible organic solvents are preferred.
- the reaction solvent can be a mixture of appropriate solvents. Preferred is an aqueous acetone solvent.
- a base is employed in the reaction. Examples of the bases include organic bases such as triethylamine, pyridine, and 1,8-diazabicyclo[5,4,0]-7-undecene, and inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, and sodium hydride.
- the inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate are preferably employed.
- the reaction is generally performed at a temperature in the range of ⁇ 20° C. to 120° C., preferably ⁇ 10° C. to 90° C.
- the reaction in the first step is preferably performed at a temperature of ⁇ 10° C. to 10° C.
- the reaction in the second step is preferably performed at a temperature of 0° C. to 40° C.
- the reaction in the third is preferably performed at a temperature of 50° C. to 90° C.
- the obtained product of Compound (I-1) had a purity of 96.0% (determined by liquid chromatography).
- Example 4 In a three-necked flask were placed Compound 4 which had been prepared in the same manner as in Example 1 (i.e., same scale and same synthetic process) and 825 mL of water. The content was stirred at room temperature, and to the stirred content was dropwise added 144.6 g of Compound 6 at room temperature for 10 minutes, while the stirring was continued. After the dropwise addition was complete, the content was stirred at an inner temperature of 85° C. for 3 hours. The reaction mixture was concentrated in a rotary evaporator. When the residual content reduced to approximately 900 mL, a crystalline product precipitated and the concentration procedure was stopped. The content was then stirred with chilling with ice, and the precipitated crystalline product was collected on filter by suction.
- the obtained product of Compound (I-4) had a purity of 94.4% (determined by liquid chromatography which was performed in the same manner as in Example 1).
- Example 4 In a three-necked flask were placed Compound 4 which had been prepared in the same manner as in Example 1 (i.e., same scale and same synthetic process) and 825 mL of water. The content was stirred at room temperature, and to the stirred content was dropwise added 144.4 g of Compound 7 at room temperature for 10 minutes, while the stirring was continued. After the dropwise addition was complete, the content was stirred at an inner temperature of 85° C. for 3 hours. The reaction mixture was concentrated in a rotary evaporator. When the residual content reduced to approximately 800 mL, a crystalline product precipitated and the concentration procedure was stopped. The content was then stirred with chilling with ice, and the precipitated crystalline product was collected on filter by suction.
- the obtained product of Compound (I-11) had a purity of 97.3% (determined by liquid chromatography which was performed in the same manner as in Example 1).
- Example 4 In a three-necked flask were placed Compound 4 which had been prepared in the same manner as in Example 1 (i.e., same scale and same synthetic process) and 825 mL of water. The content was stirred at room temperature, and to the stirred content was dropwise added 268.5 g of Compound 8 at room temperature for 10 minutes, while the stirring was continued. After the dropwise addition was complete, the content was stirred at an inner temperature of 85° C. for 3 hours. The reaction mixture was concentrated in a rotary evaporator. When the residual content reduced to approximately 900 mL, a crystalline product precipitated and the concentration procedure was stopped. The content was then stirred with chilling with ice, and the precipitated crystalline product was collected on filter by suction.
- the obtained product of Compound (I-22) had a purity of 96.1% (determined by liquid chromatography which was performed in the same manner as in Example 1).
- the resulting aqueous methanol solution was applied on to a filter paper sheet, and the paper sheet was dried.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The following 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative is well soluble in water:
in which each of R11 and R12 is hydrogen, or a specifically substituted or unsubstituted alkyl group; each of R21 and R22 is hydrogen, a specifically substituted or unsubstituted alkyl group, a specifically substituted or unsubstituted aryl group; M is hydrogen, alkali metal, alkaline earth metal, ammonium, or pyridinium.
in which each of R11 and R12 is hydrogen, or a specifically substituted or unsubstituted alkyl group; each of R21 and R22 is hydrogen, a specifically substituted or unsubstituted alkyl group, a specifically substituted or unsubstituted aryl group; M is hydrogen, alkali metal, alkaline earth metal, ammonium, or pyridinium.
Description
- The present invention relates to a 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative which is favorably employable in an aqueous fluorescent brightening solution, an aqueous photographic silver halide emulsion, an aqueous solution for processing a photographic silver halide-containing material. The invention further relates to use of the 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative for brightening a variety of materials with fluorescence.
- Tamehiko Noguchi describes in Journal of Society of Organic Synthetic Chemistry (Yuki Gosei Kagaku Kyoukaishi), vol. 19, p. 920 (1961) and vol. 20, p. 64 (1962) that 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives are useful as fluorescent brightening agents.
- U.S. Pat. No. 2,875,058, No. 2,933,390, and No. 2,945,762 describe 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives are employable as additives for a photographic silver halide emulsion.
- German Patent (DE) No. 1,945,316 discloses 4,4′-bis-(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives which show high fluorescent brightening effect on cellulose fibers. The disclosed derivatives have a sulfoethylamine substituent group on the 2-position of its triazine ring and additionally a morpholine or alkanolamine substituent group on the 4-position. Examples of the alkanolamines are monoethanolamine, methylethanolamine, diethanolamine, isopropanolamine, and diisopropanolamine.
- The 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives to be employed in the form of aqueous solutions such as photographic silver halide emulsions and aqueous solutions for processing photographic silver halide-containing material are preferably well soluble in water or an aqueous solution. In more detail, the derivatives should be rapidly dissolved in an aqueous medium and then should be hardly deposited during the storage of the aqueous solution.
- Japanese Patent Provisional Publications No. 6-329,936 and No. 6-332,127 disclose 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives which are employable as fluorescent brightening agents for an aqueous solution for processing photographic silver halide material. The disclosed derivatives have high solubility in the aqueous solution and are hardly deposited even when the processing solution is kept at low temperatures. The latter 6-332,127 publication indicates that a preferred compound is such derivative that the triazine ring is substituted on its 2-position with ethylamine having a sodium sulfonate salt [therefore, four sodium sulfonate groups are introduced into the derivative] and further substituted on its 4-position with an alkanolamine (e.g., 2-methyethanolamine).
- According to the studies of the present inventors, the known 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives do not show satisfactory solubility in an aqueous medium from the viewpoints of practical use of the fluorescent brightening agent.
- It is an object of the present invention to provide 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives which show increased solubility in an aqueous medium.
- As a result of further studies performed by the inventors, it has been discovered that the desired high solubility is attained by introducing into the 4-position of the triazine ring of the 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative an amino group having an alkylene substituent of 2 to 8 carbon atoms in which the alkylene substituent has a hydroxyl group or a hydroxyalkyl group of 1 to 3 carbon atoms as a substituent or has an intervening ether bonding.
-
-
- each of R11 and R12 independently is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms which has one or more substituents selected from the group consisting of hydroxyl, sulfo, and alkoxy;
- R21 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms which has one or more substituents selected from the group consisting of hydroxyl, sulfo, and alkoxy, an aryl group having 6 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms which has one or more substituents selected from the group consisting of hydroxyl, carboxyl, alkyl, or alkoxy, or a group represented by the formula of -L1-CH2OH wherein L1 is an alkylene group having 2 to 8 carbon atoms which has one or more substituents selected from the group consisting of hydroxyl and hydroxylalkyl having 1 to 3 carbon atoms or which has an intervening ether bonding;
- R22 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms which has one or more substituents selected from the group consisting of hydroxyl, sulfo, and alkoxy, an aryl group having 6 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms which has one or more substituents selected from the group consisting of hydroxyl, carboxyl, alkyl, or alkoxy, or a group represented by the formula of -L2-CH2OH wherein L2 is an alkylene group having 2 to 8 carbon atoms which has one or more substituents selected from the group consisting of hydroxyl and hydroxylalkyl having 1 to 3 carbon atoms or which has an intervening ether bonding; and
- M is a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, ammonium group, or pyridinium group.
- The 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives of the invention is included in the general formula (SR) of the diaminostilbene compound for fluorescent brightening agent which is disclosed in the aforementioned Japanese Patent Provisional Publication No. 6-332127. However, the specifically defined 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivatives of the invention are not described in the publication.
- The present invention further resides in an aqueous solution containing a 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative of the above-mentioned formula (1).
- The invention furthermore resides in a method of brightening a surface of material with fluorescence which comprises applying a 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative of the formula (1) onto the surface of material.
-
- In the formula (1), an alkyl group for R11 and R12 has 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms. The alkyl group can be a straight chain alkyl group, a branched chain alkyl group, or a cyclic alkyl group. The alkyl group can have one or more substituent groups. Examples of the substituent groups include a hydroxyl group, a sulfo group, and an alkoxy group. The alkoxy group preferably has such alkyl group as mentioned above.
- Examples of the alkyl groups for R11 and R12 include methyl, ethyl, n-propyl, isopropyl, n-octyl, 2-hydroxyethyl, 3-hydroxypropyl, 2-hydroxypropyl, 2-sulfoethyl, 2-methoxyethyl, 2-(2-hydroxyethoxy)ethyl, 2-[2-(2-hydroxyethoxy)ethoxy]ethyl; and 2-(2-[2-(2-hydroxyethoxy)-ethoxy]ethoxy)ethyl.
- Each of R11 and R12 preferably is hydrogen, methyl, ethyl, n-propyl, n-butyl, or 2-sulfoethyl, and more preferably hydrogen, methyl, ethyl, or 2-sulfoethyl. Most preferred is hydrogen or atom.
- Examples of the alkyl groups for R21 and R22 are those described hereinbefore for R11 and R12. Preferred examples of R21 and R22 include hydrogen, methyl, ethyl, n-propyl, isopropyl, 2-hydroxyethyl, 3-hydroxypropyl, 2-hydroxypropyl, 2,3-dihydroxypropyl, 2-sulfoethyl, 2-(2-hydroxyethoxy)ethyl, and 2-[2-(2-hydroxyethoxy)ethoxy]ethyl. More preferred examples include hydrogen, methyl, ethyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 2,3-dihydroxpropyl, and 2-(2-hydroxyethoxy)ethyl. Most preferred are hydrogen and methyl.
- The aryl group for R21 and R22 has 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms, more preferably 6 to 8 carbon atoms. The aryl group can have one or more substituents. Examples of the substituents include a hydroxyl group, a carboxyl group, an alkyl group, and an alkoxy group. The alkyl group and alkoxy group of the substituent can be the same as those described hereinbefore for R11and R12. Examples of the substituted and unsubstitued aryl groups for R21 and R22 include phenyl, naphthyl, 4-hydroxyphenyl, 3,5-dicarboxyphenyl, 4-methoxyphenyl, and 3-isopropylphenyl. The aryl group preferably is phenyl or 4-hydroxyphenyl.
- The alkylene group for L1 and L2 is an alkylene group having 2 to 8 carbon atoms which has, as a substituent, a hydroxyl group or a hyroxyalkyl group having 1 to 3 carbon atoms. Otherwise, the alkylene group has an ether bonding which intervenes the alkylene chain at an optional position.
-
- More preferred are those of the above-mentioned formulas 1) to 4), namely, alkylene groups having one or more hydroxyl substituent groups. Most preferred are those of the formulas 1) and 4).
- Other preferred examples of the alkylene group for L1 and L2 include that represented by the following formula (2):
—(CH2CH2O)nCH2— (2)
in which n is an integer of 1 to 3, preferably 1 or 2. Most preferably, n is 1. - In the formula (1), M is a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, ammonium group, or pyridinium group. Examples of the alkali metal atoms include Li, Na, K, Rb, Cs, and Fr. Examples of the alkaline earth metal atoms include Ca, Sr, Ba, and Ra. Preferred are Na and K. Examples of the ammonium groups include triethylammonium and tetrabutylammonium.
-
- When the alkylene group for L1 or L2 of the formula (1) has a hydroxyl or hydroxyalkyl substituent and contains in its structure two or more asymmetric carbon atoms to which the substituent is attached, there are a plurality of stereoisomers having the same formula. Any of the isomers can be employed singly or in combination.
- The 4,4′-bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid derivative of the formula (1) can be prepared by referring to the descriptions of Journal of Society of Organic Synthetic Chemistry, vol. 17, page 528 (1959) [written by Hirotsugu Matsui] and Japanese Patent No. 2,618,748.
- In more detail, the compound of the formula (1) can be prepared by the steps of reacting a diaminostilbene derivative with cyanuric chloride, reacting the resulting 4,4′-bistriazinylaminostilbene derivative with taurine, and finally reacting the resulting product with hydroxyalkylamine. Otherwise, a process starting from a dialkylaminostilbene derivative can be adopted.
- The reaction can be performed in a solvent such as water or an organic solvent (e.g., alcohol, ketone, ether or amide). Water and water-miscible organic solvents are preferred. The reaction solvent can be a mixture of appropriate solvents. Preferred is an aqueous acetone solvent. Generally, a base is employed in the reaction. Examples of the bases include organic bases such as triethylamine, pyridine, and 1,8-diazabicyclo[5,4,0]-7-undecene, and inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, and sodium hydride. The inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate are preferably employed. The reaction is generally performed at a temperature in the range of −20° C. to 120° C., preferably −10° C. to 90° C. In more detail, the reaction in the first step is preferably performed at a temperature of −10° C. to 10° C.; the reaction in the second step is preferably performed at a temperature of 0° C. to 40° C.; and the reaction in the third is preferably performed at a temperature of 50° C. to 90° C.
- The present invention is further described by the following non-restricting examples.
-
- 1) Preparation of Compound 3
- In a three-necked flask were placed 103.5 g of Compound 1 and 680 mL of acetone. The content was chilled to −5° C. by placing the flask in an ice-acetone bath. To the chilled content was dropwise added under stirring an aqueous solution of 101.9 g of Compound 2 and 58.3 g of sodium carbonate in 960 mL of water for a period of one hour. The temperature of the flask content increased to −1° C. After the dropwise addition was complete, the ice-acetone bath was removed, and the flask content was further stirred for one hour. The precipitated crystalline product was collected on filter by suction, to obtain the desired Compound 3. Thus obtained product was submitted to the next step without drying and purifying.
- 2) Preparation of Compound 4
- In a three-necked flask were placed the Compound 3 obtained above and 1.9 L of water. The content was stirred on a water bath, and to the stirred content was added 68.8 g of taurine. Further, an aqueous solution of 58.3 g of sodium carbonate in 275 mL of water was dropwise added for a period of one hour under stirring. After the dropwise addition was complete, the water bath was removed and the stirring was continued for 3 hours. To the stirred content was added 550 g of sodium chloride, and the stirred is continued for one hour. The precipitated crystalline product was collected on filter by suction, to obtain the desired Compound 4. Thus obtained product was submitted to the next step without drying and purifying.
- 3) Preparation of Compound (I-1)
- In a three-necked flask were placed the Compound 4 obtained above and 825 mL of water. The content was stirred at room temperature, and to the stirred content was dropwise added 125.3 g of Compound 5 at room temperature, while the stirring was continued. After the dropwise addition was complete, the content was stirred at an inner temperature of 85° C. for 3 hours. The reaction mixture was concentrated in a rotary evaporator. When the residual content reduced to approximately 800 mL, a crystalline product precipitated and the concentration procedure was stopped. The content was then stirred with chilling with ice, and the precipitated crystalline product was collected on filter by suction. To thus obtained crystalline product was added 1.5 L of methanol, and the resulting mixture was stirred for one hour under reflux. The reaction mixture was cooled to room temperature, and subjected to filtration using suction, to obtain 206.0 g (yield: 72%) of the desired Compound (I-1).
λmax(H2O)=346.3 nm(ε=4.83×104) - The obtained product of Compound (I-1) had a purity of 96.0% (determined by liquid chromatography).
- The liquid chromatography was carried out under the following conditions:
-
- Column: TSK-gel ODS-80 (available from Toso Co., Ltd.)
- Eluents:
- Eluent A (20 mL of PIC A reagent, available from Waters Corp., was added to 1 L of water)
- Eluent B (20 mL of PIC A reagent was added to a mixture of 800 mL of methanol and 200 mL of water)
- Eluent A/Eluent B=50/50 (0 min.)→0/100 (35 min.)
- Detecting wavelength: 346 nm
The purity was determined from a peak area of the chromatographic chart.
-
- In a three-necked flask were placed Compound 4 which had been prepared in the same manner as in Example 1 (i.e., same scale and same synthetic process) and 825 mL of water. The content was stirred at room temperature, and to the stirred content was dropwise added 144.6 g of Compound 6 at room temperature for 10 minutes, while the stirring was continued. After the dropwise addition was complete, the content was stirred at an inner temperature of 85° C. for 3 hours. The reaction mixture was concentrated in a rotary evaporator. When the residual content reduced to approximately 900 mL, a crystalline product precipitated and the concentration procedure was stopped. The content was then stirred with chilling with ice, and the precipitated crystalline product was collected on filter by suction. To thus obtained crystalline product was added 1.5 L of methanol, and the resulting mixture was stirred for one hour under reflux with heating. The reaction mixture was cooled to room temperature, and subjected to filtration using suction, to obtain 216.5 g (yield: 78%) of the desired Compound (I-4).
λmax(H2O)=346.5 nm(ε=4.77×104) - The obtained product of Compound (I-4) had a purity of 94.4% (determined by liquid chromatography which was performed in the same manner as in Example 1).
-
- In a three-necked flask were placed Compound 4 which had been prepared in the same manner as in Example 1 (i.e., same scale and same synthetic process) and 825 mL of water. The content was stirred at room temperature, and to the stirred content was dropwise added 144.4 g of Compound 7 at room temperature for 10 minutes, while the stirring was continued. After the dropwise addition was complete, the content was stirred at an inner temperature of 85° C. for 3 hours. The reaction mixture was concentrated in a rotary evaporator. When the residual content reduced to approximately 800 mL, a crystalline product precipitated and the concentration procedure was stopped. The content was then stirred with chilling with ice, and the precipitated crystalline product was collected on filter by suction. To thus obtained crystalline product was added 1.5 L of methanol, and the resulting mixture was stirred for one hour under reflux with heating. The reaction mixture was cooled to room temperature, and subjected to filtration using suction, to obtain 249.7 g (yield: 85%) of the desired Compound (I-11).
λmax(H2O)=354.5 nm(ε=4.92×104) - The obtained product of Compound (I-11) had a purity of 97.3% (determined by liquid chromatography which was performed in the same manner as in Example 1).
-
- In a three-necked flask were placed Compound 4 which had been prepared in the same manner as in Example 1 (i.e., same scale and same synthetic process) and 825 mL of water. The content was stirred at room temperature, and to the stirred content was dropwise added 268.5 g of Compound 8 at room temperature for 10 minutes, while the stirring was continued. After the dropwise addition was complete, the content was stirred at an inner temperature of 85° C. for 3 hours. The reaction mixture was concentrated in a rotary evaporator. When the residual content reduced to approximately 900 mL, a crystalline product precipitated and the concentration procedure was stopped. The content was then stirred with chilling with ice, and the precipitated crystalline product was collected on filter by suction. To thus obtained crystalline product was added 1.5 L of methanol, and the resulting mixture was stirred for one hour under reflux with heating. The reaction mixture was cooled to room temperature, and subjected to filtration using suction, to obtain 302.9 g (yield: 88%) of the desired Compound (I-22).
λmax(H2O)=348.6 nm(ε=4.36×104) - The obtained product of Compound (I-22) had a purity of 96.1% (determined by liquid chromatography which was performed in the same manner as in Example 1).
- The aforementioned Compound (I-2) and compound (I-12) were prepared in manner similar to those described in Examples 1 to 4.
- EXAMPLE 7
- Compounds I-1, I-2, I-4, I-11, I-12, and I-22 obtained above, and the Comparison Compounds a, b, c and d were subjected to evaluation of solubility in water.
- Water (100 mL) was added to 20 g of each sample, and the mixture was placed on a warm bath (at 40° C.), and stirred using a magnetic stirrer, so that the added sample was dissolved in the warm water. Then, the obtained aqueous solution was placed on an ice bath under stirring.
- The conditions of the aqueous mixture in the dissolving procedure and the aqueous solution on the ice bath were observed for evaluating solubility in water at 40° C. and 0° C. The results are seen in the following Table.
Compound Solubility at 40° C. Solubility of 0° C. Comp. I-1 dissolved within 120 sec. No deposition within 180 sec. Comp. I-2 dissolved within 150 sec. No deposition within 180 sec. Comp. I-4 dissolved within 150 sec. No deposition within 180 sec. Comp. I-11 dissolved within 120 sec. No deposition within 180 sec. Comp. I-12 dissolved within 140 sec. No deposition within 180 sec. Comp. I-4 dissolved within 140 sec. No deposition within 180 sec. Comp. a some insoluble remained at 300 sec. Not examined Comp. b some insoluble remained at 300 sec. Not examined Comp. c dissolved at 200 sec. Deposition found at 120 sec. Comp. d dissolved at 180 sec. Deposition found at 150 sec. Comparison Compound a Comparison compound b Comparison compound c described in DE 1946316 Comparison compound d described in Japanese Patent Application No.6-332127 - EXAMPLE 8
- In 1 mL of water was dissolved 10 mg of each of Compounds I-1, I-2, I-3, I-4, I-5, I-11, I-12, I-13, I-14, I-21, and I-22. The aqueous solution was diluted with methanol to give 5 mL of an aqueous methanol solution.
- The resulting aqueous methanol solution was applied on to a filter paper sheet, and the paper sheet was dried. Thus treated filter paper sheet was irradiated with a UV light (λ=254 nm). All paper sheets emitted blue fluorescence.
Claims (7)
1. 4,4′-Bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid compound having the following formula:
in which
each of L1 and L2 is an alkylene group having 2 to 8 carbon atoms which has an intervening ether bonding;
each of R11 and R12 independently is hydrogen, methyl, ethyl, n-propyl, n-butyl, or 2-sulfoethyl;
each of R21 and R22 independently is hydrogen, methyl, ethyl, n-propyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 2,3-dihydroxypropyl, 2-sulfoethyl, 2-(2-hydroxyethoxy)ethyl, 2-[2-(2-hydroxyethoxy)ethoxy]ethyl, phenyl, naphthyl, 4-hydroxyphenyl, 3,5-dicarboxyphenyl, 4-methoxyphenyl, and 3-isopropylphenyl; and
M is an alkali metal atom.
2. 4,4′-Bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid compound of claim 1 , wherein at least one of L1 and L2 is a divalent group which is represented by the following formula:
—(CH2CH2O)nCH2—
in which n is an integer of 1 to 3.
3. 4,4′-Bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid compound of claim 2 , wherein n in the formula is 1 or 2.
4. 4,4′-Bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid compound of claim 1 , wherein each of R11 and R12 in the formula independently is a hydrogen or methyl.
5. 4,4′-Bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid compound of claim 1 , wherein each of R21 and R22 in the formula independently is hydrogen, methyl, ethyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 2,3-dihydroxypropyl, 2-(2-hydroxyethoxy)ethyl, 2-[2-(2-hydroxyethoxy)ethoxy]ethyl, phenyl, or 4-hydroxyphenyl.
6. An aqueous solution in which a 4,4′-Bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid compound of claim 1 is dissolved in water.
7. A method of brightening a surface of material with fluorescence which comprises applying onto the surface an aqueous solution in which a 4,4′-Bis(1,3,5-triazinylamino)stilbene-2,2′-disulfonic acid compound of claim 1 is dissolved in water.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/142,443 US20050230662A1 (en) | 1999-09-30 | 2005-06-02 | Diaminostilbene derivatives |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11-280694 | 1999-09-30 | ||
| JP28069499A JP4054495B2 (en) | 1999-09-30 | 1999-09-30 | Diaminostilbene derivatives |
| US09/678,330 US6919452B1 (en) | 2000-10-03 | 2000-10-03 | Diaminostilbene derivatives |
| US11/142,443 US20050230662A1 (en) | 1999-09-30 | 2005-06-02 | Diaminostilbene derivatives |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/678,330 Division US6919452B1 (en) | 1999-09-30 | 2000-10-03 | Diaminostilbene derivatives |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050230662A1 true US20050230662A1 (en) | 2005-10-20 |
Family
ID=34738950
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/678,330 Expired - Fee Related US6919452B1 (en) | 1999-09-30 | 2000-10-03 | Diaminostilbene derivatives |
| US11/142,443 Abandoned US20050230662A1 (en) | 1999-09-30 | 2005-06-02 | Diaminostilbene derivatives |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/678,330 Expired - Fee Related US6919452B1 (en) | 1999-09-30 | 2000-10-03 | Diaminostilbene derivatives |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US6919452B1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090252768A1 (en) * | 2006-06-27 | 2009-10-08 | Itzhack Polacheck | Use of stilbene derivatives for treatment and prevention of aquatic mold infections |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ATE494423T1 (en) * | 2008-06-11 | 2011-01-15 | Kemira Germany Gmbh | COMPOSITION AND METHOD FOR PAPER BLEACHING |
| RU2413719C2 (en) * | 2008-11-28 | 2011-03-10 | Альбина Ивановна Леонтьева | Method of producing belophor kd-2 |
| KR101421622B1 (en) | 2012-06-29 | 2014-07-23 | 삼원산업주식회사 | Fluorescent Whitening Agent of stilbene type havingproperty of preventing oxidation and Process ofproducing thereof |
| PT2781648E (en) * | 2013-03-21 | 2016-03-07 | Clariant Int Ltd | Optical brightening agents for high quality ink-jet printing |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3193548A (en) * | 1965-07-06 | Fluorescent triazinylstilbenes | ||
| US3309363A (en) * | 1964-05-11 | 1967-03-14 | American Cyanamid Co | Das triazine brightener |
| US4466900A (en) * | 1981-09-22 | 1984-08-21 | Ciba-Geigy Corporation | Process for the preparation of fluorescent brightener formulations which are stable on storage |
| US5395742A (en) * | 1993-05-18 | 1995-03-07 | Fuji Photo Film Co., Ltd. | Diaminostilbene series compound and a method for forming an image using the same |
| US6632594B2 (en) * | 2000-01-28 | 2003-10-14 | Fuji Photo Film Co., Ltd. | Photographic processing composition containing a diaminostilbene derivative and image forming method using the same |
-
2000
- 2000-10-03 US US09/678,330 patent/US6919452B1/en not_active Expired - Fee Related
-
2005
- 2005-06-02 US US11/142,443 patent/US20050230662A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3193548A (en) * | 1965-07-06 | Fluorescent triazinylstilbenes | ||
| US3309363A (en) * | 1964-05-11 | 1967-03-14 | American Cyanamid Co | Das triazine brightener |
| US4466900A (en) * | 1981-09-22 | 1984-08-21 | Ciba-Geigy Corporation | Process for the preparation of fluorescent brightener formulations which are stable on storage |
| US5395742A (en) * | 1993-05-18 | 1995-03-07 | Fuji Photo Film Co., Ltd. | Diaminostilbene series compound and a method for forming an image using the same |
| US6632594B2 (en) * | 2000-01-28 | 2003-10-14 | Fuji Photo Film Co., Ltd. | Photographic processing composition containing a diaminostilbene derivative and image forming method using the same |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090252768A1 (en) * | 2006-06-27 | 2009-10-08 | Itzhack Polacheck | Use of stilbene derivatives for treatment and prevention of aquatic mold infections |
| US8377934B2 (en) | 2006-06-27 | 2013-02-19 | State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization | Use of stilbene derivatives for treatment and prevention of aquatic mold infections |
Also Published As
| Publication number | Publication date |
|---|---|
| US6919452B1 (en) | 2005-07-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12060383B2 (en) | Protected fluorescent reagent compounds | |
| US10005908B2 (en) | Methine-substituted cyanine dye compounds | |
| US7655409B2 (en) | Cyanine dye compounds | |
| US8039642B2 (en) | Pyrenyloxysulfonic acid fluorescent agents | |
| CA2251985A1 (en) | Squarate dyes and their use in fluorescent sequencing method | |
| US9688857B2 (en) | Fluorescent probe | |
| US20050230662A1 (en) | Diaminostilbene derivatives | |
| CA2553556A1 (en) | Concentrated optical brightener solutions | |
| EP2610315B1 (en) | Methine-substituted cyanine dye compounds | |
| CN101712637B (en) | Labeled compound and detection method using same | |
| CN1221439A (en) | Use of triazine-based UVAs for use as quenchers in paper-making processes | |
| JP4054495B2 (en) | Diaminostilbene derivatives | |
| EP3870044B1 (en) | Complexes and ligands | |
| FR2611365A1 (en) | PROCESS FOR THE PREPARATION OF ASYMMETRIC STILBENE DERIVATIVES CONTAINING TRIAZINYL GROUPS | |
| JPH03160056A (en) | Triphene dioxazine dye | |
| CN1326843C (en) | Diamino-1,2-diphenyl ethylene derivs. | |
| JP4115527B2 (en) | Process for producing bis-alkoxy-triazinyl-amino-containing stilbene disulfonic acids or their derivatives | |
| US5248811A (en) | Process for producing sulfoalkyl-substituted hydroxylamines | |
| US20240385087A1 (en) | Method for staining mitochondria | |
| JP2618748B2 (en) | Triazine derivatives and their synthesis | |
| KR940007310B1 (en) | Pyrazoline compound | |
| JP2002173487A (en) | Soluble 2,6-dinaphthylaminotriazine | |
| CA2407103A1 (en) | Process and intermediates for the preparation of 1-(9h-carbazol-4-yloxy)-3-[2-(2-methoxy-phenoxy)-ethylamino]-propan-2-ol, carvedilol or acid addition salts thereof | |
| US20250297107A1 (en) | Rhodamine fluorescent compounds and methods of use thereof | |
| US5097042A (en) | Water-soluble benzimidazolotriazole derivative or salt thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |