[go: up one dir, main page]

US20050225014A1 - Filter extraction mechanism - Google Patents

Filter extraction mechanism Download PDF

Info

Publication number
US20050225014A1
US20050225014A1 US10/692,096 US69209603A US2005225014A1 US 20050225014 A1 US20050225014 A1 US 20050225014A1 US 69209603 A US69209603 A US 69209603A US 2005225014 A1 US2005225014 A1 US 2005225014A1
Authority
US
United States
Prior art keywords
vessel
housing
transfer mechanism
screw
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/692,096
Other languages
English (en)
Inventor
Donn Armstrong
Richard Anderson
Lance Jacobsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineos Pigments USA Inc
Original Assignee
International Titanium Powder LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2003/027647 external-priority patent/WO2004022798A1/fr
Application filed by International Titanium Powder LLC filed Critical International Titanium Powder LLC
Priority to US10/692,096 priority Critical patent/US20050225014A1/en
Priority to PCT/US2004/033823 priority patent/WO2005042792A1/fr
Publication of US20050225014A1 publication Critical patent/US20050225014A1/en
Assigned to CRISTAL US, INC. reassignment CRISTAL US, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL TITANIUM POWDER, L.L.C.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/02Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material
    • B30B9/12Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using pressing worms or screws co-operating with a permeable casing
    • B30B9/121Screw constructions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This invention relates to the Armstrong process as described in U.S. Pat. Nos. 5,779,761, 5,958,106 and 6,409,797, the disclosures of each of which is incorporated herein by reference.
  • a slurry consisting of excess reductant metal, salt particles produced and elemental material or alloy particles or powder produced.
  • This slurry is thereafter treated by a variety of methods. However, all of the methods have in common the separation of excess liquid metal from the slurry and thereafter separating the remaining liquid metal and the produced salt from the desired product which is the elemental material or alloy.
  • liquid sodium is used as a reductant for titanium tetrachloride to produce titanium powder.
  • Yet another object of the present invention is to provide a transfer mechanism of the type set forth for the Armstrong Process in order to transfer slurry from an inerted vessel or container to a vacuum or inerted chamber for further processing wherein a plug established in the transfer mechanism isolating the vessels or containers.
  • Yet another object of the present invention is to provide a transfer mechanism between a first vessel containing a slurry of liquid and solids and a second vessel with at least one of the first and second vessels being under a protective atmosphere and/or vacuum, comprising a housing in communication with the first and the second vessels, a screw having at least one helical thread along a longitudinal shank within the housing for transferring material from the first vessel to the second vessel, the screw and the housing cooperating to compress the slurry, whereby slurry entering the housing from the first vessel has the solids therein concentrated as the slurry is transported by the screw toward the second vessel while liquid is expressed from the slurry as the solids are concentrated until the concentrated solids form a plug isolating the second vessel from the first vessel while solids discharge into the second vessel.
  • a further object of the invention is to provide a transfer mechanism between a first vessel containing a slurry of liquid alkali or alkaline earth metal or mixtures thereof and metal or alloy or ceramic particles and halide salt particles and a second vessel with at least one of the first and second vessels having a protective atmosphere and/or vacuum therein, comprising a housing in communication with the first and the second vessels, a screw having at least one helical thread along a longitudinal shank within the housing for transferring material from the first vessel to the second vessel, the screw and the housing cooperating to increase the concentration of solids in the slurry between the first and the second vessels until the concentrated particles form a plug isolating the second vessel and the protective atmosphere or vacuum therein from the first vessel and the protective atmosphere or vacuum therein while solids discharge into the second vessel.
  • a final object of the present invention is to provide a method of concentrating and transferring a slurry of a liquid and solids from one container to another while isolating the environments within the containers from each other, comprising providing communication between the containers, transporting slurry from one container toward another container while expressing liquid from the slurry thereby increasing the solids concentration thereof until a plug is formed between two containers isolating same while solids from the plug are transferred to the another container.
  • FIG. 1 is a schematic illustration showing the two vessels and an embodiment of the transfer mechanism therebetween;
  • FIG. 2 is a schematic illustration of an alternate embodiment of the present invention.
  • FIG. 3 is a schematic illustration of yet another embodiment of the present invention.
  • FIG. 4 is a schematic illustration of a further embodiment of the present invention.
  • a transfer mechanism 10 which includes a double walled conduit including an outer conduit wall 11 having a liquid outlet 12 and end walls 13 , the wall 11 being preferably but not necessarily cylindrical. Interior of the cylindrical wall 11 is an inner tube or conduit 15 having a portion 16 which is solid and a portion 17 which is apertured and may be a mesh of any suitable size.
  • the inner tube or conduit 15 may either be cylindrical as illustrated in FIG. 1 or conical as will be explained, the inner conduit 15 has a discharge end 18 thereof which opens into a vacuum chamber 25 and has an inlet end 19 thereof which opens into a container or vessel 20 in communication with the reactor as illustrated in the Armstrong patents previously referenced and incorporated herein.
  • a feed screw 30 is positioned within the inner conduit 15 and includes a rotatable shank 31 having a helical thread 32 positioned on the shank 31 as is well known in the art.
  • the thread 32 may have a constant or a variable pitch.
  • the pitch is the distance between adjacent threads and the variable pitch may preferably be a progressive pitch in which the pitch decreases from the vessel 20 toward the container or vessel 25 , for a purpose hereinafter described.
  • the transfer mechanism 10 is used in conjunction with a material made by the Armstrong Process. More particularly, for purposes of illustration only, the slurry discussed herein will be a combination of liquid sodium, sodium chloride particles and particles of titanium and/or a titanium alloy. As set forth in the Armstrong patents, a variety of metal and non-metal products may be made thereby and it is intended that the present invention not be limited to any particular product made by the Armstrong Process and certainly not limited to the preferred product described herein.
  • the vessel or container 20 preferably operated under an inert atmosphere or under vacuum has therein a slurry of the particles previously described and as the slurry enters the portion 19 of the inner conduit or tube 15 and the feed screw 30 is rotated as illustrated in the drawings by rotation of the shank 31 , the slurry is moved along the feed screw from left to right as illustrated in FIG. 1 . Because of the progressive pitch of the feed screw 30 in FIG. 1 , that is the threads 32 thereof are closer together so that the pitch decreases from left to right, the solid material is concentrated as it is moved from the container or vessel 20 to the container or vessel 25 .
  • the portion 17 of the conduit or tube 15 is apertured or porous, liquid sodium drains therethrough and passes out of the outlet 12 for further processing. Therefore, the slurry as it is transported from container or vessel 20 to container or vessel 25 becomes more concentrated as liquid is drained therefrom and the density increases as the pitch between the adjacent threads diminishes.
  • the formation of a seal by the transfer mechanism 10 is a critical aspect of the present invention because separation of liquid sodium and salt from the desired particles of the ceramic or metal alloy, as described in the Armstrong patents may include distillation in a vacuum chamber or a vessel 25 or removal of the liquid metal by vaporization with a hot inert sweep gas and the Armstrong reactor itself may be an inerted vessel such as with argon. Accordingly, it is important for a seal or plug to be formed between the two containers or vessels in order to permit continuous operation between the two vessels without the necessity of shutting down one of the vessels during transfer or destroying the protective atmosphere in the vessel 20 or the vacuum or protective atmosphere in vessel 25 .
  • the transfer mechanism 10 A has a housing 15 A conical in shape and the screw 30 therein may or may not be a progressive pitch screw.
  • the screw threads in the embodiment illustrated in FIG. 2 may not need to be closer together, that is the pitch need not be diminished in order to reduce the volume of the material between adjacent threads and the housing wall as the material is moved from left to right or from vessel 20 A to vessel 25 A.
  • FIG. 3 there is shown another embodiment of the present invention in which the shank 31 B of the screw 30 B is conical in shape with the larger end of the cone being adjacent the vessel 25 B and with the pitch between adjacent threads 32 B being constant or diminishing. In either case, the volume of the area between adjacent threads and the inner container 15 B diminishes as the material is moved from the vessel 20 B to the vessel 25 B.
  • FIG. 4 there is shown a further embodiment 10 C of the present invention in which a cylinder 15 C interconnects vessels 20 C and 25 C and transports slurry while concentrating same between the two vessels.
  • Slurry entering the inlet 19 C of the cylinder 15 C is concentrated upon rotation of screw 30 C due to movement of the helical thread 32 C upon rotation of the shaft 31 C.
  • the outlet end 18 C of cylinder 15 C is an apertured plate having an effective diameter smaller than the inlet 19 C thereby restricting flow of the slurry causing in cooperation with the screw 30 C and housing or cylinder 15 C the solids in the slurry to concentrate while liquid is expressed from the slurry and is separated therefrom through outlet or drain 12 C.
  • a plug is formed which isolates, as hereinbefore explained, vessel 20 from vessel 25 , thereby permitting the continuous production of slurry in vessel 20 , or a vessel or container in communication therewith, and continuous separation of solids, even if wet with liquid, by the transfer mechanism 10 C in vessel 25 or a vessel in communication therewith for further treatment in the same or different environment as vessel 20 .
  • separation of Na and/or NaCl from Ti or Ti alloy powder in vessel 25 may be accomplished by distillation and/or by a hot inert sweep gas followed by passivation and/or washing the water.
  • a hot inert sweep gas followed by passivation and/or washing the water.
  • liquid Na may be present at about 60% by weight of the slurry leaving vessel 20
  • the wet solids discharged into vessel 25 may have Na present only in the range of from about 20 to about 50% by weight.
  • the invention includes movement and concentration of material from one container to another without compromising the environment of either container.
  • the containers may be connected pipes or vessels, and the environments may be vacuums, inerted atmospheres or otherwise.
  • concentration of solids in a slurry to transport solids from one environment to another while forming a seal or plug therebetween so as to isolate the environments from each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
US10/692,096 2002-09-07 2003-10-22 Filter extraction mechanism Abandoned US20050225014A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/692,096 US20050225014A1 (en) 2002-09-07 2003-10-22 Filter extraction mechanism
PCT/US2004/033823 WO2005042792A1 (fr) 2003-10-22 2004-10-14 Mecanisme d'extraction de filtre

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US40891902P 2002-09-07 2002-09-07
PCT/US2003/027647 WO2004022798A1 (fr) 2002-09-07 2003-09-03 Dispositif a vis utilise pour transferer de la boue reactionnelle contenant du ti dans une enceinte sous vide
US10/692,096 US20050225014A1 (en) 2002-09-07 2003-10-22 Filter extraction mechanism

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/027647 Continuation-In-Part WO2004022798A1 (fr) 2002-09-07 2003-09-03 Dispositif a vis utilise pour transferer de la boue reactionnelle contenant du ti dans une enceinte sous vide

Publications (1)

Publication Number Publication Date
US20050225014A1 true US20050225014A1 (en) 2005-10-13

Family

ID=34549892

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/692,096 Abandoned US20050225014A1 (en) 2002-09-07 2003-10-22 Filter extraction mechanism

Country Status (2)

Country Link
US (1) US20050225014A1 (fr)
WO (1) WO2005042792A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7621977B2 (en) 2001-10-09 2009-11-24 Cristal Us, Inc. System and method of producing metals and alloys
US7632333B2 (en) 2002-09-07 2009-12-15 Cristal Us, Inc. Process for separating TI from a TI slurry
US7753989B2 (en) 2006-12-22 2010-07-13 Cristal Us, Inc. Direct passivation of metal powder
US8821611B2 (en) 2005-10-06 2014-09-02 Cristal Metals Inc. Titanium boride
US8894738B2 (en) 2005-07-21 2014-11-25 Cristal Metals Inc. Titanium alloy
US9127333B2 (en) 2007-04-25 2015-09-08 Lance Jacobsen Liquid injection of VCL4 into superheated TiCL4 for the production of Ti-V alloy powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897050B2 (en) * 2007-04-12 2011-03-01 Accudyne Systems, Inc. Dense gas means for extraction of a solute from solids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919087A (en) * 1972-07-25 1975-11-11 Secondary Processing Systems Continuous pressure filtering and/or screening apparatus for the separation of liquids and solids
US5160428A (en) * 1989-07-24 1992-11-03 Kuri Chemical Engineers, Inc. Continuous filter press
US6309570B1 (en) * 1998-01-14 2001-10-30 American Equipment Systems Vacuum extrusion system for production of cement-based articles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836302A (en) * 1972-03-31 1974-09-17 Corning Glass Works Face plate ring assembly for an extrusion die
JPS60255300A (ja) * 1984-05-31 1985-12-16 Yamato Sangyo Kk スクリユ−プレス型汚泥脱水機
JPS63207612A (ja) * 1987-02-24 1988-08-29 日本碍子株式会社 セラミツク押出法及びそれに用いる装置
US5958106A (en) * 1994-08-01 1999-09-28 International Titanium Powder, L.L.C. Method of making metals and other elements from the halide vapor of the metal
JPH1190692A (ja) * 1997-06-24 1999-04-06 Chiyoda Corp スクリュープレス
CN1681950A (zh) * 2002-09-07 2005-10-12 国际钛金属粉末公司 用于将含钛反应浆料转移到真空容器中的螺杆装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919087A (en) * 1972-07-25 1975-11-11 Secondary Processing Systems Continuous pressure filtering and/or screening apparatus for the separation of liquids and solids
US5160428A (en) * 1989-07-24 1992-11-03 Kuri Chemical Engineers, Inc. Continuous filter press
US6309570B1 (en) * 1998-01-14 2001-10-30 American Equipment Systems Vacuum extrusion system for production of cement-based articles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7621977B2 (en) 2001-10-09 2009-11-24 Cristal Us, Inc. System and method of producing metals and alloys
US7632333B2 (en) 2002-09-07 2009-12-15 Cristal Us, Inc. Process for separating TI from a TI slurry
US8894738B2 (en) 2005-07-21 2014-11-25 Cristal Metals Inc. Titanium alloy
US9630251B2 (en) 2005-07-21 2017-04-25 Cristal Metals Inc. Titanium alloy
US8821611B2 (en) 2005-10-06 2014-09-02 Cristal Metals Inc. Titanium boride
US7753989B2 (en) 2006-12-22 2010-07-13 Cristal Us, Inc. Direct passivation of metal powder
US9127333B2 (en) 2007-04-25 2015-09-08 Lance Jacobsen Liquid injection of VCL4 into superheated TiCL4 for the production of Ti-V alloy powder

Also Published As

Publication number Publication date
WO2005042792A1 (fr) 2005-05-12

Similar Documents

Publication Publication Date Title
US20050225014A1 (en) Filter extraction mechanism
JP2010516893A (ja) TiCl4の金属熱還元によるチタンの連続的製造法
US2813833A (en) Method of and apparatus for breaking down of froth
WO2004022798A1 (fr) Dispositif a vis utilise pour transferer de la boue reactionnelle contenant du ti dans une enceinte sous vide
US3468633A (en) Countercurrent solid-liquid treating apparatus
NO750539L (fr)
AU2003273279B2 (en) Process for separating ti from a ti slurry
CN109231217A (zh) 氯硅烷残液急冷除金属氯化物的系统和方法
JP2001262246A (ja) スポンジチタンの製造方法
US3529933A (en) Method for treating a solid particulate material with a fluid
EP1569736B1 (fr) Lame d'air circonferentielle et ses applications
WO2005021807A2 (fr) Systeme, procede et appareil de separation
GB2164589A (en) Separating mixtures of solids of different specific gravity
JP6513460B2 (ja) 分離濾過システムおよび分離濾過方法
WO1989000612A1 (fr) Dispositif assurant une decompostion biologique continue de mineraux et de leurs concentres
CN2797341Y (zh) 用于含钛矿物氯化制备四氯化钛的装置
CN212403889U (zh) 含杂污泥干化预处理系统
CN214132223U (zh) 一种用于分离果汁的卧螺离心机
KR101133485B1 (ko) 인듐 및 염화제2철을 함유하는 에칭 폐액으로부터의 인듐의 회수 방법과 그 장치
US3439432A (en) Method and means for purging pulverulent materials of occluded gases
CN218609316U (zh) 一种微正压黄药合成装置
JP3099358B2 (ja) 粉粒体の脱気装置
CN211282979U (zh) 螺旋下料装置与钛白粉气固分离袋滤器
CN210815187U (zh) 一种具有有机溶剂回收功能的反应釜
JPH06180391A (ja) 炭酸ガス吸収塔

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CRISTAL US, INC., MARYLAND

Free format text: MERGER;ASSIGNOR:INTERNATIONAL TITANIUM POWDER, L.L.C.;REEL/FRAME:021853/0269

Effective date: 20081016