US20050214157A1 - High strength steel - Google Patents
High strength steel Download PDFInfo
- Publication number
- US20050214157A1 US20050214157A1 US11/092,434 US9243405A US2005214157A1 US 20050214157 A1 US20050214157 A1 US 20050214157A1 US 9243405 A US9243405 A US 9243405A US 2005214157 A1 US2005214157 A1 US 2005214157A1
- Authority
- US
- United States
- Prior art keywords
- weight
- above zero
- composition
- steel
- furnace temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/28—Normalising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0075—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0093—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
Definitions
- This invention relates to manufacturing steel.
- Articles such as anchor bolts are used in the utility industry to secure transmission poles to concrete bases. Such articles require a strong material that exhibits good low temperature impact strength.
- One suitable material for such articles is steel having a minimum Charpy v-notch impact strength at 20 F of 15 Ft-lb and minimum yield strength of 75,000 psi.
- Such steels are typically manufactured according to a process that involves normalizing the steel in a furnace at high temperatures, followed by a separate, high temperature tempering treatment, to ensure production of steels that consistently have the required mechanical properties.
- Ti, Nb and Al can be present individually or in combination in amounts of up to 0.025% by weight Ti, up to 0.025% by weight Nb and up to 0.04% Al.
- the above-described steel composition is charged to a furnace, where it is normalized by heating the composition at a furnace temperature between about 1500° F. and about 1650° F.
- the composition may be further treated by tempering the composition by heating at a furnace temperature between about 850° F. and about 1000° F.
- one advantage of the composition is that steels having mechanical properties sufficient for applications such as anchor bolts may be consistently produced without the separate tempering step. The ability to eliminate the tempering step, in turn, reduces the overall cost of producing the steel product.
- Useful steels have the elemental compositions described in the Summary of the Invention, above.
- Preferred steels have the following elemental compositions (where all percentages are weight percentages):
- a representative has the following composition: 0.35% carbon; 1.43% manganese; 0.019% phosphorus; 0.021% sulfur; 0.42% silicon; 0.33% copper; 0.25% nickel; 0.18% chromium; 0.04% molybdenum; 0.132% vanadium; and 0.0212% nitrogen.
- titanium, niobium and aluminum can be present individually or in combination in amounts of up to 0.025% by weight titanium, up to 0.025% by weight niobium and up to 0.04% aluminum.
- Iron, Fe is the main element in steel.
- Carbon, C is a principal element responsible for hardness in steel and a wide range of other properties including strength, ductility, impact strength, etc. Generally, carbon increases tensile strength and decreases ductility.
- Manganese, Mn, as an element in steel generally increases hardenability, toughness, and tensile strength of the steel, though it may decrease ductility. Manganese helps in stabilizing steel microstructures and helps prevent degradation of iron carbide structures to iron and graphite. Manganese can also help offset negative effects of other elements, and can assist in reducing brittleness and possible tearing of the steel.
- Silicon, Si acts as a deoxidizer of steel. Silicon can improve tensile strength, but reduces machinability and can promote graphitization.
- Copper, Cu, can cause tearing and poor surface quality of the steel.
- Cooper can stiffen the steel, but decreases ductility.
- Cooper also imparts corrosion resistance to the steel.
- Nickel improves hardenability and stiffens steel, but it decreases ductility. Nickel acts to reduce distortion in heat-treating and enables milder quenching. Nickel also improves fatigue properties, toughness, corrosion resistance, and also improves the surface quality of steel.
- Chromium, Cr improves wear resistance and improves the resistance to softening during heat-treating. Chromium also stiffens steel and reduces ductility and improves hardenability, but can increase the brittleness of steel.
- Molybdenum can greatly increase hardenability. It also increases stiffness and decreases ductility. Molybdenum can improve control of heat treatment by inhibiting formation of certain steel microstructures. It can also increase corrosion resistance, toughness, and fatigue properties. Molybdenum can also be particularly expensive.
- Vanadium, V can help control the steel grain size and reduces the growth of austenite structures. Vanadium also improves abrasion resistance, and improves yield strength, toughness, and hardness. It also can be particularly expensive.
- Nitrogen can increase the strength of steel and improve weldability. It also increases brittleness and can lead to increased porosity of the steel.
- Phosphorus, P can improve hardenability and corrosion resistance. It also can improve machinability of the steel. However, it decreases ductility and impact strength, sometimes significantly. Control of phosphorus content can also affect the required heat time in steel preparation.
- S is used to improve machinability. Generally, it decreases impact strength, ductility, and weldability. It also can decrease surface quality and may lead to tearing.
- Tin, Sn is generally used to coat steels. As an alloy element, Tin decreases surface quality and may lead to tearing. It also increases brittleness of the steel.
- Titanium, Ti, and Niobium, Nb provide grain refinement, precipitation strengthening and sulfide shape control by forming a number of compounds like nitrides and carbides. Titanium and Aluminum, Al, act as strong deoxiders of steel as well. This group of elements improves yield strength and toughness.
- the composition is charged to a furnace, where it is normalized by heating the composition at a furnace temperature between about 1500° F. and about 1650° F.
- the composition may be in the form of, for example, bars, ingots, plates, sheets, or the like.
- the composition if desired, may be further treated by tempering the composition by heating at a furnace temperature between about 850° F. and about 1000° F. However, the tempering is not required and is preferably eliminated, thereby lowering overall production costs.
- the normalization step may be performed by charging the composition at an initial furnace temperature at about 1600° F., and then lowering the furnace temperature to a furnace temperature at about 1500° F. once the composition temperature approaches 1500° F. In one approach, the composition is held at the initial furnace temperature for about 15 to 30 minutes, and then held at the second furnace temperature for about 30 to 45 minutes.
- the first part of the process can be referred to as the “thermal head,” while the second part can be referred to as the “soak.”
- Another alternative for normalizing includes charging the composition at an initial furnace temperature at about 1500° F., and maintaining the furnace temperature at about 1500° F. once the composition temperature approaches 1500° F. This alternative only uses the soak portion of the process. The process will work in such a manner, but the time must be increased accordingly.
- a shorter or longer thermal head time may be utilized, with the time depending on the first temperature of the furnace.
- the process heats the bars above the transformation temperature (typically about 1450° F.), and keeps them at that higher temperature for some time.
- the normalizing temperature used depends on the specific chemistry, or combination of elements, of the steel, though temperatures in the range of about 1500° F. to about 1650° F. are expected.
- the initial furnace temperature and second furnace temperature will vary from the example discussed above.
- the first initial furnace temperature may be 1625° F.
- the furnace temperature is reduced to 1525° F. to complete the normalizing.
- the product exits the furnace and is allowed to cool on an exit conveyor.
- a steel reinforcing bar may be created using a rolling process from the composition.
- the bar meets or exceeds the requirements of ASTM A615 Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement, which are as follows:
- Heat S61270 with a grade description of 75S-M5, had a composition including iron and other untested elements as well as the following elements with their amounts: Element % C 0.32 Mn 1.43 P 0.02 S 0.018 Si 0.42 Sn 0.01 Cu 0.33 Ni 0.25 Cr 0.18 Mo 0.04 Cb 0.002 Al 0.001 N 0.02 Co 0.01 Ti 0.003 V 0.132 Ca 0.0007
- This composition was formed into bars and then charged to a furnace with an atmospheric temperature of about 1600° F.
- the bars were allowed to heat until the surface of the bars approached about 1500° F. This heating required about 20 minutes.
- the temperature of the furnace was reduced to about 1500° F.
- the bars were held at this temperature for about 35 minutes. Thereafter, the bars exited the furnace and were allowed to cool on the exit conveyor.
- the composition was then tested.
- the composition received a score of 6.46 under ASTM G101 “Standard Guide for Estimating the Atmospheric Corrosion Resistance of Low-Alloy Steels.”
- the yield strength of the composition was 81.7 k.p.s.i. and the tensile strength was 108.3 k.p.s.i. Additionally, the composition has an elongation test result of 20.63% and the Charpy impact strength was 35.5 ft-lbs.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
A steel composition that includes: about 0.25-0.37% by weight Carbon; about 1.20-1.55% by weight Manganese; about 0.1-0.015% by weight Vanadium; about 0.20-0.30% by weight Nickel; about 0.30-0.50% by weight Silicon; about 0.30-0.45% by weight Copper; about 0.017-0.025% by weight Nitrogen; and Iron as the main constituent.
Description
- This application claims priority to U.S. provisional application No. 60/557,367, filed Mar. 29, 2004, which is relied on and incorporated by reference.
- This invention relates to manufacturing steel.
- Articles such as anchor bolts are used in the utility industry to secure transmission poles to concrete bases. Such articles require a strong material that exhibits good low temperature impact strength. One suitable material for such articles is steel having a minimum Charpy v-notch impact strength at 20 F of 15 Ft-lb and minimum yield strength of 75,000 psi. Such steels are typically manufactured according to a process that involves normalizing the steel in a furnace at high temperatures, followed by a separate, high temperature tempering treatment, to ensure production of steels that consistently have the required mechanical properties.
- Steel compositions are described that include iron as the main constituent and the following additional elements:
-
- (a) about 0.25-0.37% (preferably about 0.30-0.34%, more preferably about 0.30-0.32%) by weight carbon;
- (b) about 1.20-1.55% (preferably about 1.25-1.50%, more preferably about 1.35-1.45%) by weight manganese;
- (c) about 0.1-0.15% (preferably about 0.11-0.14%) by weight vanadium;
- (d) about 0.20-0.30% by weight nickel;
- (e) about 0.30-0.50% (preferably about 0.35-0.45%) by weight silicon;
- (f) about 0.30-0.45% by weight copper; and
- (g) about 0.017-0.025% (preferably about 0.018-0.022%, more preferably about 0.019-0.021%) by weight nitrogen. The composition may also include one or more of the following elements:
- (h) up to about 0.30% (preferably up to about 0.25%, more preferably up to about 0.20%) by weight chromium;
- (i) up to about 0.035% (preferably up to about 0.025%, more preferably up to about 0.020%) by weight phosphorus;
- (j) up to about 0.04% by weight sulfur (preferably up to about 0.02%);
- (k) up to about 0.06% by weight tin; and/or
- (l) up to about 0.06% (preferably up to about 0.04%) by weight molybdenum.
- In some embodiments, Ti, Nb and Al can be present individually or in combination in amounts of up to 0.025% by weight Ti, up to 0.025% by weight Nb and up to 0.04% Al.
- Other elements may also be present in the steel in low percentages.
- To prepare steel having good mechanical properties (e.g., steels having good low temperature impact strength coupled with high yield and tensile strength such as 75S steel), the above-described steel composition is charged to a furnace, where it is normalized by heating the composition at a furnace temperature between about 1500° F. and about 1650° F. Optionally, the composition may be further treated by tempering the composition by heating at a furnace temperature between about 850° F. and about 1000° F. However, one advantage of the composition is that steels having mechanical properties sufficient for applications such as anchor bolts may be consistently produced without the separate tempering step. The ability to eliminate the tempering step, in turn, reduces the overall cost of producing the steel product.
- The details of one or more embodiments of the invention are set forth in the description below. Other features, objects, and advantages of the invention will be apparent from the description and from the claims.
- Useful steels have the elemental compositions described in the Summary of the Invention, above. Preferred steels have the following elemental compositions (where all percentages are weight percentages):
-
- Steel No. 1: 0.30-0.32% carbon; 1.35-1.45% manganese; 0.35-0.45% silicon; 0.30-0.45% copper; 0.20-0.30% nickel; up to 0.20% chromium; 0.11-0.14% vanadium; 0.019-0.021% nitrogen; and optionally molybdenum, phosphorus, sulfur, and/or tin;
- Steel No. 2: 0.30-0.34% carbon; 1.25-1.50% manganese; 0.35-0.50% silicon; 0.30-0.45% copper; 0.20-0.30% nickel; up to 0.25% chromium; 0.10-0.15% vanadium; 0.018-0.022% nitrogen; and optionally molybdenum, phosphorus, sulfur, and/or tin;
- Steel No. 3: 0.25-0.37% carbon; 1.20-1.55% manganese; 0.35-0.50% silicon; 0.30-0.45% copper; 0.20-0.30% nickel; up to 0.30% chromium; 0.10-0.15% vanadium; 0.017-0.025% nitrogen; and optionally molybdenum, phosphorus, sulfur, and/or tin.
- A representative has the following composition: 0.35% carbon; 1.43% manganese; 0.019% phosphorus; 0.021% sulfur; 0.42% silicon; 0.33% copper; 0.25% nickel; 0.18% chromium; 0.04% molybdenum; 0.132% vanadium; and 0.0212% nitrogen.
- In some embodiments, titanium, niobium and aluminum can be present individually or in combination in amounts of up to 0.025% by weight titanium, up to 0.025% by weight niobium and up to 0.04% aluminum.
- Minor amounts of other elements may also be present in the steel.
- The individual effect of the various elements in an alloy is obscured by the presence of other elements. Together, the combination of elements in the steel alloy provides the desired properties. Although the individual effect of the elements cannot be easily isolated from the combined effect of the alloy, it is generally recognized that certain elements will have certain effects. The various elements and their generally recognized effects can be described as follows.
- Iron, Fe, is the main element in steel.
- Carbon, C, is a principal element responsible for hardness in steel and a wide range of other properties including strength, ductility, impact strength, etc. Generally, carbon increases tensile strength and decreases ductility.
- Manganese, Mn, as an element in steel generally increases hardenability, toughness, and tensile strength of the steel, though it may decrease ductility. Manganese helps in stabilizing steel microstructures and helps prevent degradation of iron carbide structures to iron and graphite. Manganese can also help offset negative effects of other elements, and can assist in reducing brittleness and possible tearing of the steel.
- Silicon, Si, acts as a deoxidizer of steel. Silicon can improve tensile strength, but reduces machinability and can promote graphitization.
- Copper, Cu, can cause tearing and poor surface quality of the steel. Cooper can stiffen the steel, but decreases ductility. Cooper also imparts corrosion resistance to the steel.
- Nickel, Ni, improves hardenability and stiffens steel, but it decreases ductility. Nickel acts to reduce distortion in heat-treating and enables milder quenching. Nickel also improves fatigue properties, toughness, corrosion resistance, and also improves the surface quality of steel.
- Chromium, Cr, improves wear resistance and improves the resistance to softening during heat-treating. Chromium also stiffens steel and reduces ductility and improves hardenability, but can increase the brittleness of steel.
- Molybdenum, Mo, can greatly increase hardenability. It also increases stiffness and decreases ductility. Molybdenum can improve control of heat treatment by inhibiting formation of certain steel microstructures. It can also increase corrosion resistance, toughness, and fatigue properties. Molybdenum can also be particularly expensive.
- Vanadium, V, can help control the steel grain size and reduces the growth of austenite structures. Vanadium also improves abrasion resistance, and improves yield strength, toughness, and hardness. It also can be particularly expensive.
- Nitrogen, N, can increase the strength of steel and improve weldability. It also increases brittleness and can lead to increased porosity of the steel.
- Phosphorus, P, can improve hardenability and corrosion resistance. It also can improve machinability of the steel. However, it decreases ductility and impact strength, sometimes significantly. Control of phosphorus content can also affect the required heat time in steel preparation.
- Sulfur, S, is used to improve machinability. Generally, it decreases impact strength, ductility, and weldability. It also can decrease surface quality and may lead to tearing.
- Tin, Sn, is generally used to coat steels. As an alloy element, Tin decreases surface quality and may lead to tearing. It also increases brittleness of the steel.
- Titanium, Ti, and Niobium, Nb, provide grain refinement, precipitation strengthening and sulfide shape control by forming a number of compounds like nitrides and carbides. Titanium and Aluminum, Al, act as strong deoxiders of steel as well. This group of elements improves yield strength and toughness.
- To produce steel having useful mechanical properties suitable for applications such as anchor bolts, the composition is charged to a furnace, where it is normalized by heating the composition at a furnace temperature between about 1500° F. and about 1650° F. The composition may be in the form of, for example, bars, ingots, plates, sheets, or the like. The composition, if desired, may be further treated by tempering the composition by heating at a furnace temperature between about 850° F. and about 1000° F. However, the tempering is not required and is preferably eliminated, thereby lowering overall production costs.
- The normalization step may be performed by charging the composition at an initial furnace temperature at about 1600° F., and then lowering the furnace temperature to a furnace temperature at about 1500° F. once the composition temperature approaches 1500° F. In one approach, the composition is held at the initial furnace temperature for about 15 to 30 minutes, and then held at the second furnace temperature for about 30 to 45 minutes. The first part of the process can be referred to as the “thermal head,” while the second part can be referred to as the “soak.”
- Another alternative for normalizing includes charging the composition at an initial furnace temperature at about 1500° F., and maintaining the furnace temperature at about 1500° F. once the composition temperature approaches 1500° F. This alternative only uses the soak portion of the process. The process will work in such a manner, but the time must be increased accordingly.
- In another alternative, a shorter or longer thermal head time may be utilized, with the time depending on the first temperature of the furnace. In summary, the process heats the bars above the transformation temperature (typically about 1450° F.), and keeps them at that higher temperature for some time.
- Also, the normalizing temperature used depends on the specific chemistry, or combination of elements, of the steel, though temperatures in the range of about 1500° F. to about 1650° F. are expected. Depending on the composition, the initial furnace temperature and second furnace temperature will vary from the example discussed above. For instance, in another alternative, the first initial furnace temperature may be 1625° F. When the composition surface temperature approaches 1525° F., then the furnace temperature is reduced to 1525° F. to complete the normalizing. Following normalization, the product exits the furnace and is allowed to cool on an exit conveyor.
- In one embodiment, a steel reinforcing bar may be created using a rolling process from the composition. The bar meets or exceeds the requirements of ASTM A615 Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement, which are as follows:
-
- Minimum Yield Strength (ASTM A370-03a): 75,000 psi;
- Minimum Tensile Strength (ASTM A370-03a): 100,000 psi;
- Minimum Elongation (ASTM A370-03a): 10%;
- Bend Test 9d Pin (ASTM A370-03a): 90 degrees;
- In addition, the bar exhibits a minimum Charpy V-Notch Impact Strength at −20° F. (ASTM A673) of at least 15 ft-lb and a minimum ASTM G101 Atmospheric Corrosion Index of at least 6.0.
- The invention will now be described further by way of the following example.
- Heat S61270, with a grade description of 75S-M5, had a composition including iron and other untested elements as well as the following elements with their amounts:
Element % C 0.32 Mn 1.43 P 0.02 S 0.018 Si 0.42 Sn 0.01 Cu 0.33 Ni 0.25 Cr 0.18 Mo 0.04 Cb 0.002 Al 0.001 N 0.02 Co 0.01 Ti 0.003 V 0.132 Ca 0.0007 - This composition was formed into bars and then charged to a furnace with an atmospheric temperature of about 1600° F. The bars were allowed to heat until the surface of the bars approached about 1500° F. This heating required about 20 minutes. Then, the temperature of the furnace was reduced to about 1500° F. The bars were held at this temperature for about 35 minutes. Thereafter, the bars exited the furnace and were allowed to cool on the exit conveyor.
- The composition was then tested. The composition received a score of 6.46 under ASTM G101 “Standard Guide for Estimating the Atmospheric Corrosion Resistance of Low-Alloy Steels.” The yield strength of the composition was 81.7 k.p.s.i. and the tensile strength was 108.3 k.p.s.i. Additionally, the composition has an elongation test result of 20.63% and the Charpy impact strength was 35.5 ft-lbs.
- A number of embodiments of the invention have been described. Nevertheless, it will be understood the various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
Claims (31)
1. A steel composition, comprising:
about 0.25-0.37% by weight Carbon;
about 1.20-1.55% by weight Manganese;
about 0.1-0.15% by weight Vanadium;
about 0.20-0.30% by weight Nickel;
about 0.30-0.50% by weight Silicon;
about 0.30-0.45% by weight Copper;
about 0.017-0.025% by weight Nitrogen; and
Iron as the main constituent.
2. The steel composition of claim 1 , further comprising:
from above zero up to about 0.30% by weight Chromium.
3. The steel composition of claim 1 , further comprising:
from above zero up to about 0.035% by weight Phosphorus.
4. The steel composition of claim 1 , further compromising:
from above zero up to about 0.04% by weight Sulfur.
5. The steel composition of claim 1 , further comprising:
from above zero up to about 0.06% by weight Tin.
6. The steel composition of claim 1 , further comprising:
from above zero up to about 0.06% by weight Molybdenum.
7. The steel composition of claim 1 , further comprising:
from above zero up to about 0.30% by weight Chromium;
from above zero up to about 0.035% by weight Phosphorus;
from above zero up to about 0.04% by weight Sulfur;
from above zero up to about 0.06% by weight Tin; and
from above zero up to about 0.06% by weight Molybdenum.
8. The steel composition of claim 1 , comprising:
about 0.30-0.34% by weight Carbon;
about 1.25-1.50% by weight Manganese;
about 0.1-0.15% by weight Vanadium;
about 0.20-0.30% by weight Nickel;
about 0.30 0-0.50% by weight Silicon;
about 0.30-0.45% by weight Copper;
about 0.018-0.022% by weight Nitrogen; and
Iron as the main constituent.
9. The steel composition of claim 8 , further comprising:
from above zero up to about 0.25% by weight Chromium.
10. The steel composition of claim 8 , further comprising:
from above zero up to about 0.25% by weight Chromium;
from above zero up to about 0.025% by weight Phosphorus;
from above zero up to about 0.04% by weight Sulfur;
from above zero up to about 0.06% by weight Tin; and
from above zero up to about 0.06% by weight Molybdenum.
11. The steel composition of claim 1 , comprising:
about 0.30-0.32% by weight Carbon;
about 1.35-1.45% by weight Manganese;
about 0.11-0.14% by weight by Vanadium;
about 0.20-0.30% by weight Nickel;
about 0.35-0.45% by weight Silicon;
about 0.30-0.45% by weight Copper;
about 0.019-0.021% by weight Nitrogen; and
Iron as the main constituent.
12. The steel composition of claim 11 , further comprising:
from above zero up to about 0.20% by weight Chromium.
13. The steel composition of claim 11 , further comprising:
from above zero up to about 0.20% by weight Chromium;
from above zero up to about 0.02% by weight Phosphorus;
from above zero up to about 0.02% by weight Sulfur;
from above zero up to about 0.06% by weight Tin; and
from above zero up to about 0.04% by weight Molybdenum.
14. The composition of claim 1 , further comprising
from above zero up to about 0.025% by weight Titanium;
from above zero up to about 0.025% by weight Niobium; and
from above zero up to about 0.04% by weight Aluminum.
15. The composition of claim 1 , further comprising from above zero up to about 0.025% by weight Titanium.
16. The composition of claim 15 , further comprising from above zero up to about 0.04% by weight Aluminum.
17. The composition of claim 15 , further comprising from above zero up to about 0.025% by weight Niobium.
18. The composition of claim 1 , further comprising from above zero up to about 0.025% by weight Niobium.
19. The composition of claim 18 , further comprising from above zero up to about 0.04% by weight Aluminum.
20. The composition of claim 1 , further comprising from above zero up to about 0.04% by weight Aluminum.
21. A method of making a steel, comprising:
(a) providing a steel composition, comprising:
about 0.25-0.37% by weight Carbon;
about 1.20-1.55% by weight Manganese;
about 0.1-0.15% by weight Vanadium;
about 0.20-0.30% by weight Nickel;
about 0.30-0.50% by weight Silicon;
about 0.30-0.45% by weight Copper;
about 0.017-0.025% by weight Nitrogen; and
Iron as the main constituent.
(b) charging the composition into a furnace; and
(c) normalizing the composition by heating at a furnace temperature between about 1500° F. and about 1650° F.
22. The method of claim 21 , wherein the steel comprises a 75S steel.
23. The method of claim 21 , further comprising:
(d) tempering the composition by heating at a furnace temperature between about 850° F. and about 1000° F.
24. The method of claim 21 , wherein the normalizing step comprises:
charging the composition at an initial furnace temperature at about 1600° F.; and
lowering the furnace temperature to a furnace temperature at about 1500° F. once the composition temperature approaches 1500° F.
25. The method of claim 24 , wherein the composition is held at the initial furnace temperature for about 15 to 30 minutes, and wherein the composition is held at the second furnace temperature for about 30 to 45 minutes.
26. The method of claim 21 , wherein the steel composition provided is in the form of bars, ingots, plates, or sheets.
27. The method of claim 21 , wherein the normalizing step comprises:
charging the composition at an initial furnace temperature at about 1500° F.; and
maintaining the furnace temperature at about 1500° F. once the composition temperature approaches 1500° F.
28. The method of claim 21 , further comprising:
(d) cooling the composition in air.
29. A steel anchor bolt, comprising:
about 0.25-0.37% by weight Carbon;
about 1.20-1.55% by weight Manganese;
about 0.1-0.15% by weight Vanadium;
about 0.20-0.30% by weight Nickel;
about 0.30-0.50% by weight Silicon;
about 0.30-0.45% by weight Copper;
about 0.017-0.025% by weight Nitrogen; and
Iron as the main constituent.
30. The steel anchor bolt of claim 29 , further comprising:
from above zero up to about 0.30% by weight Chromium;
from above zero up to about 0.035% by weight Phosphorus;
from above zero up to about 0.04% by weight Sulfur;
from above zero up to about 0.06% by weight Tin; and
from above zero up to about 0.06% by weight Molybdenum.
31. The steel anchor bolt of claim 29 , wherein said steel anchor bolt meets the requirements of 75S steel.
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/092,434 US20050214157A1 (en) | 2004-03-29 | 2005-03-29 | High strength steel |
| US11/375,186 US20060188384A1 (en) | 2004-03-29 | 2006-03-14 | High strength steel |
| PCT/US2006/010563 WO2006104834A2 (en) | 2005-03-29 | 2006-03-24 | High strength steel |
| MX2007011917A MX2007011917A (en) | 2005-03-29 | 2006-03-24 | High strength steel. |
| CA002602518A CA2602518A1 (en) | 2005-03-29 | 2006-03-24 | High strength steel |
| US12/388,989 US20090155118A1 (en) | 2004-03-29 | 2009-02-19 | High Strength Steel |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US55736704P | 2004-03-29 | 2004-03-29 | |
| US11/092,434 US20050214157A1 (en) | 2004-03-29 | 2005-03-29 | High strength steel |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/375,186 Continuation-In-Part US20060188384A1 (en) | 2004-03-29 | 2006-03-14 | High strength steel |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050214157A1 true US20050214157A1 (en) | 2005-09-29 |
Family
ID=35064321
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/092,434 Abandoned US20050214157A1 (en) | 2004-03-29 | 2005-03-29 | High strength steel |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20050214157A1 (en) |
| CA (1) | CA2561703A1 (en) |
| MX (1) | MXPA06011336A (en) |
| WO (1) | WO2005094360A2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060188384A1 (en) * | 2004-03-29 | 2006-08-24 | Kan Michael Y | High strength steel |
| US20100064856A1 (en) * | 2007-01-04 | 2010-03-18 | Sms Siemag Aktiengesellschaft | Process and plant for producing steel |
| US20100143067A1 (en) * | 2008-11-03 | 2010-06-10 | Powers Fasteners, Inc. | Anchor bolt and method for making same |
| US20110236696A1 (en) * | 2010-03-25 | 2011-09-29 | Winky Lai | High strength rebar |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4406713A (en) * | 1981-03-20 | 1983-09-27 | Kabushiki Kaisha Kobe Seiko Sho | Method of making high-strength, high-toughness steel with good workability |
| US4619714A (en) * | 1984-08-06 | 1986-10-28 | The Regents Of The University Of California | Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes |
| US20060188384A1 (en) * | 2004-03-29 | 2006-08-24 | Kan Michael Y | High strength steel |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3905332B2 (en) * | 2001-07-10 | 2007-04-18 | 株式会社住友金属小倉 | Steel for high strength bolts |
-
2005
- 2005-03-29 US US11/092,434 patent/US20050214157A1/en not_active Abandoned
- 2005-03-29 WO PCT/US2005/010657 patent/WO2005094360A2/en not_active Ceased
- 2005-03-29 CA CA002561703A patent/CA2561703A1/en not_active Abandoned
- 2005-03-29 MX MXPA06011336A patent/MXPA06011336A/en unknown
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4406713A (en) * | 1981-03-20 | 1983-09-27 | Kabushiki Kaisha Kobe Seiko Sho | Method of making high-strength, high-toughness steel with good workability |
| US4619714A (en) * | 1984-08-06 | 1986-10-28 | The Regents Of The University Of California | Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes |
| US20060188384A1 (en) * | 2004-03-29 | 2006-08-24 | Kan Michael Y | High strength steel |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060188384A1 (en) * | 2004-03-29 | 2006-08-24 | Kan Michael Y | High strength steel |
| US20100064856A1 (en) * | 2007-01-04 | 2010-03-18 | Sms Siemag Aktiengesellschaft | Process and plant for producing steel |
| US20100143067A1 (en) * | 2008-11-03 | 2010-06-10 | Powers Fasteners, Inc. | Anchor bolt and method for making same |
| US20110236696A1 (en) * | 2010-03-25 | 2011-09-29 | Winky Lai | High strength rebar |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2561703A1 (en) | 2005-10-13 |
| MXPA06011336A (en) | 2007-04-02 |
| WO2005094360A3 (en) | 2008-06-26 |
| WO2005094360A2 (en) | 2005-10-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20090155118A1 (en) | High Strength Steel | |
| US12297517B2 (en) | Steel for hot stamping, hot stamping process and hot stamped component | |
| US8317946B2 (en) | Seamless steel pipe and method for manufacturing the same | |
| KR101094310B1 (en) | Weldable ultra high strength steel with excellent low temperature toughness and manufacturing method | |
| US8414713B2 (en) | High strength military steel | |
| US10458007B2 (en) | Quench and temper corrosion resistant steel alloy | |
| US20060102257A1 (en) | Steel composition and parts forged by a forging die | |
| CN114107839A (en) | Low-alloy cast steel, heat treatment method thereof and application thereof in railway industry | |
| CN118345316B (en) | Wear-resistant steel plate and preparation method thereof | |
| US9518313B2 (en) | High strength, high toughness steel alloy | |
| US8652273B2 (en) | High tensile steel for deep drawing and manufacturing method thereof and high-pressure container produced thereof | |
| KR20200136068A (en) | Steel Material for Structural Fastening with Improved Delayed-Fracture Resistance and Manufacturing Method of Structural Fastener Using by This | |
| KR101300158B1 (en) | High carbon steel sheet superior in tensile strength and toughness and method for manufacturing the same | |
| KR101301617B1 (en) | Material having high strength and toughness and method for forming tower flange using the same | |
| US7081174B2 (en) | Process for producing steel products having improved grain size properties and machinability | |
| US20050214157A1 (en) | High strength steel | |
| US11634803B2 (en) | Quench and temper corrosion resistant steel alloy and method for producing the alloy | |
| KR100940038B1 (en) | Hot forged steel for excellent impact toughness, manufacturing method thereof and parts for automobile chassis manufactured by the same | |
| CA2602518A1 (en) | High strength steel | |
| KR101400578B1 (en) | Shape steel and method of manufacturing the same | |
| US20080112839A1 (en) | 655 Mpa Grade Martensitic Stainless Steel Having High Toughness and Method for Manufacturing the Same | |
| KR20110075316A (en) | Steel wire for high toughness spring with excellent fatigue life, spring and manufacturing method thereof | |
| KR20100127548A (en) | Tempered alloy steel V- フ ree non-alloyed steel and manufacturing method thereof | |
| MX2007011917A (en) | High strength steel. | |
| CN118406971A (en) | 1000 MPa-level structural steel and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: GERDAU AMERISTEEL US INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STUECK, GARY;KAN, MICHAEL;REEL/FRAME:015956/0462 Effective date: 20050405 |
|
| AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, GE Free format text: SECURITY AGREEMENT;ASSIGNOR:GERDAU AMERISTEEL US INC.;REEL/FRAME:017127/0213 Effective date: 20051028 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |