US20050203030A1 - Novel effectors of dipeptidyl peptidase IV - Google Patents
Novel effectors of dipeptidyl peptidase IV Download PDFInfo
- Publication number
- US20050203030A1 US20050203030A1 US10/727,209 US72720903A US2005203030A1 US 20050203030 A1 US20050203030 A1 US 20050203030A1 US 72720903 A US72720903 A US 72720903A US 2005203030 A1 US2005203030 A1 US 2005203030A1
- Authority
- US
- United States
- Prior art keywords
- pharmaceutical composition
- thiazolidine
- pyrrolidine
- isoleucyl
- pharmaceutically acceptable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/16—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
- C07D295/18—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
- C07D295/182—Radicals derived from carboxylic acids
- C07D295/185—Radicals derived from carboxylic acids from aliphatic carboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/05—Dipeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/426—1,3-Thiazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/427—Thiazoles not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/02—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
- C07D277/04—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
Definitions
- hyperglycaemia and associated causes and sequelae are treated by the administration of insulin (e.g. material isolated from bovine pancreas or obtained by genetic engineering techniques) to the diseased organisms in various forms of administration.
- insulin e.g. material isolated from bovine pancreas or obtained by genetic engineering techniques
- All methods known hitherto, including more modern procedures, are distinguished by the requirement of a large amount of material, by high costs and often by a distinct impairment of the quality of life of the patients.
- the conventional method (daily i.v. insulin injection, customary since the 1930s) treats the acute symptoms of the disease, but after prolonged use leads inter alia to serious vascular changes (arteriosclerosis) and nerve damage.
- alanyl pyrrolidide and isoleucyl thiazolidide as inhibitors of DP IV or of DP IV-analogous enzyme activity is already known from PCT/DE 97/00820 and the use of isoleucyl pyrrolidide and isoleucyl thiazolidide hydrochloride is already known from DD 296 075.
- Isoleucyl thiazolidide, which is used in the latter prior art, is a natural, that is to say L-threo-isoleucyl thiazolidide: on the priority date and also on the application date of the two specifications, only that form, the natural form, of isoleucyl thiazolidide was available.
- diabetes mellitus patients must be “stabilised” individually in order that their illness can be treated in an optimum manner. In some cases, for example, a reduction in the activity by DP IV effectors ought to be sufficient. It is also possible that too high a level of inhibitor activity and the permanent administration of the same medicament, especially in view of the life-long duration of treatment, may result in undesirable side-effects. Furthermore, it could also be desirable to improve certain transport properties in order to increase the rate of absorption of the effectors in vivo
- the present invention relates to dipeptide compounds and compounds analogous to dipeptide compounds that are formed from an amino acid and a thiazolidine or pyrrolidine group, and salts thereof, referred to hereinafter as dipeptide compounds, and to the use of the compounds in the treatment of impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also of sequelae of diabetes mellitus in mammals.
- the invention therefore relates also to a simple method of lowering the blood sugar concentration in mammals with the aid of dipeptide compounds as activity-reducing effectors (substrates, pseudosubstrates, inhibitors, binding proteins, antibodies etc.) for enzymes having activity comparable to or identical to the enzymatic activity of the enzyme dipeptidyl peptidase IV.
- dipeptide compounds as activity-reducing effectors (substrates, pseudosubstrates, inhibitors, binding proteins, antibodies etc.) for enzymes having activity comparable to or identical to the enzymatic activity of the enzyme dipeptidyl peptidase IV.
- DP IV or DP IV-analogous activity occurs in the blood circulation where it splits off dipeptides highly specifically from the N-terminus of biologically active peptides when proline or alanine are the adjacent residues of the N-terminal amino acid in their sequence.
- glucose-dependent insulinotropic polypeptides gastric inhibitory polypeptide 1-2 (GIP 1-42 ) and glucagonlike peptide amide-1 7-36 (GLP-1 7-36 ), that is to say hormones that stimulate glucose-induced secretion of insulin by the pancreas (also called incretins), are substrates of DP IV, since the latter is able to split off the dipeptides tyrosinyl-alanine and histidylalanine, respectively, from the N-terminal sequences of those peptides in vitro and in vivo.
- GIP 1-42 gastric inhibitory polypeptide 1-2
- GLP-1 7-36 glucagonlike peptide amide-1 7-36
- DP IV and DP IV-analogous enzyme activity of the cleavage of those substrates in vivo can be used to bring about effective suppression of undesired enzyme activity under laboratory conditions and also in the case of pathological conditions in mammalian organisms.
- diabetes mellitus Type II including adult-onset diabetes
- the aim of the invention is therefore to provide new (especially activity-reducing) effectors for the treatment of e.g. impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also of sequelae of diabetes mellitus in mammals, and a simple method of treating such diseases.
- dipeptide compounds or analogues of dipeptides that are formed from an amino acid and a thiazolidine or pyrrolidine group, and salts thereof.
- FIG. 1 depicts capillary zone electrophoretic separation of the isomers of isoleucyl thiazolide this separation is representative of a 1:1:1:1 mixture of L-threo-Ile-Thi*fum, L-allo-Ile-Thia*fum, D-threo-Ile-Thia*fum, D-allo-Ile-Thia*fum;
- FIG. 2 depicts capillary zone electrophoretic separation of Ile-Thia*fumarate this separation is representative of a 1:1000 mixture of L-threo-Ile-Thia*fumarate to D-allo-Ile-Thia*fumarate;
- FIG. 3 depicts a graphic representation of serum DP VI activity after oral administration of various H-Ile-Thia stereoisomers (5 ⁇ M/300 g rat). Enazyme activity influenced only by L-Allo-Ile-Thia and L-threo-Ile-Thia; and
- FIG. 4 depicts action of various aminoacyl-thiazolidides on the glucose tolerance of rats (oral glucose tolerance test with 2 g/300 g Wistar rat at time point, administration of DP IV inhibitors 10 minutes prior to oral glucose stimulation).
- the endogenous (or additionally exogenously administered) insulinotropic peptides GIP 1-42 and GLP-1 7-36 are broken down to a reduced extent by DP IV or DP IV-like enzymes and therefore the decrease in the concentration of those peptide hormones or their analogues is reduced or delayed.
- the invention is therefore based on the finding that a reduction in the DP IV or DP IV-like enzymatic activity acting in the blood circulation has an effect on the blood sugar level. It has been found that
- dipeptide compounds in which the amino acid is selected from a natural amino acid, such as, for example, leucine, valine, glutamine, proline, isoleucine, asparagine and aspartic acid.
- a natural amino acid such as, for example, leucine, valine, glutamine, proline, isoleucine, asparagine and aspartic acid.
- the administration, where possible oral administration, of the high-affinity, low molecular weight enzyme inhibitors according to the invention is a more economical alternative e.g. to invasive surgical techniques in the treatment of pathological symptoms.
- invasive surgical techniques e.g. to invasive surgical techniques in the treatment of pathological symptoms.
- the dipeptide compounds according to the invention therefore exhibit at a concentration (of dipeptide compounds) of 10 ⁇ M, especially under the conditions indicated in Table 1, a reduction in the activity of dipeptidyl peptidase IV or DP IV-analogous enzyme activities of at least 10%, especially of at least 40%. Frequently a reduction in activity of at least 60% or at least 70% is also required. Preferred effectors may also exhibit a reduction in activity of a maximum of 20% or 30%. Furthermore, the transport properties of the present compounds, especially by the peptide transporter Pep T1, are significantly improved.
- Especially preferred dipeptide compounds are L-allo-isoleucyl thiazolidide and salts thereof. Those compounds surprisingly exhibit an approximately five-fold improvement in transport by the peptide transporter Pep T1 in comparison with L-threo-isoleucyl thiazolidide, while having approximately the same degree of action with respect to glucose modulation.
- the salts of the dipeptide compounds according to the invention may be, for example, organic salts such as acetates, succinates, tartrates or fumarates, or inorganic acid radicals such as phosphates or sulphates. Special preference is given to the fumarates, which have an excellent action combined with a surprisingly high degree of stability towards hydrolysis and are considerably less soluble than the hydrochlorides. Those properties are also advantageous from the galenical standpoint.
- L-threo-isoleucyl pyrrolidide and salts thereof especially the fumaric salts
- L-allo-isoleucyl pyrrolidide and salts thereof especially the fumaric salts.
- the salts of the dipeptide compounds can be present in a molar ratio of dipeptide (-analogous) component to salt component of 1:1 or 2:1.
- a salt is, for example, (Ile-Thia) 2 fumaric acid.
- Especially preferred salts are the fumaric salts of L-threo-isoleucyl thiazolidide and L-allo-isoleucyl thiazolidide.
- the invention accordingly relates to effectors of dipeptidyl peptidase IV (DP IV) or DP IV-analogous enzyme activity and their use in lowering the blood sugar level in the serum of a mammalian organism below the glucose concentration that is characteristic of hyperglycaemia.
- the invention relates especially to the use of the effectors of DP IV or DP IV-analogous enzyme activity according to the invention in preventing or alleviating pathological metabolic anomalies in mammalian organisms, such as, for example, impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also sequelae or diabetes mellitus in mammals.
- the invention relates to a method of lowering the blood sugar level in the serum of a mammalian organism below the glucose concentration that is characteristic of hyperglycaemia, characterised in that a therapeutically effective amount of at least one effector of DP IV or DP IV-analogous enzyme activity according to the invention is administered to a mammalian organism.
- the invention relates to pharmaceutical compositions, that is to say medicaments, that comprise at least one compounds according to the invention or a salt thereof, optionally in combination with one or more pharmaceutically acceptable carriers and/or solvents.
- compositions may be, for example, in the form of parenteral or enteral formulations and may contain appropriate carriers or they may be in the form of oral formulations that may contain appropriate carriers suitable for oral administration. They are preferably in the form of oral formulations.
- compositions may contain one or more active ingredients having a hypoglycaemic action, which may be active ingredients known by those skilled in the art.
- effectors of DP IV or DP IV-analogous enzyme activity according to the invention can be used for lowering the blood sugar level in the serum of a mammalian organism below the glucose concentration that is characteristic of hyperglycaemia or for the production of a corresponding medicament.
- effectors of DP IV or DP IV-analogous enzymes administered according to the invention can be used in pharmaceutically acceptable formulations or formulation complexes as inhibitors, substrates, pseudosubstrates, inhibitors of DP IV expression, binding proteins or antibodies of those enzyme proteins or combinations of those different substances that reduce the DP IV or DP IV-analogous protein concentration in the mammalian organism.
- Effectors according to the invention are, for example, DP IV-inhibitors such as the dipeptide derivatives or dipeptide mimetics L-allo-isoleucyl thiazolidide and the effectors indicated in Table 1 and fumaric salts thereof.
- the effectors according to the invention enable the treatment of patients and diseases to be adjusted individually, it being possible especially to avoid intolerances, allergies and side effects occurring in individual cases.
- the compounds also exhibit different effectiveness behaviours over time.
- the physician carrying out the treatment has the opportunity to respond in various ways according to the individual situation of a patient: he is able, on the one hand, to set accurately the speed of onset of the action and, on the other hand, the duration of action and especially the strength of action.
- the method according to the invention represents a new kind of procedure for lowering raised blood glucose concentrations in the serum of mammals. It is simple, capable of commercial exploitation and suitable for use in therapy, especially of diseases that are based on above-average blood glucose values, in mammals and more especially in human medicine.
- the effectors are administered, for example, in the form of pharmaceutical preparations that comprise the active ingredient in combination with customary carrier materials known in the prior art.
- they will be administered parenterally (e.g. i.v., in physiological saline) or enterally (e.g. orally, formulated with customary carrier materials, such as, for example, glucose).
- the effectors will need to be administered one or more times per day in order to achieve the desired normalisation of the blood glucose values.
- a dosage range in human beings may lie in the range of from 0.01 mg to 30.0 mg per day, preferably in the range of from 0.01 to 10 mg of effector substance per kilogram of body weight.
- the blood sugar level in the serum of the organism being treated falls below the glucose concentration that is characteristic of hyperglycaemia, thus making it possible to prevent or alleviate metabolic anomalies such as impaired glucose tolerance, glycosuria, hyperlipidaemia and possible severe metabolic acidoses and diabetes mellitus, which are clinical syndromes resulting from raised glucose concentrations in the blood over a prolonged period.
- metabolic anomalies such as impaired glucose tolerance, glycosuria, hyperlipidaemia and possible severe metabolic acidoses and diabetes mellitus, which are clinical syndromes resulting from raised glucose concentrations in the blood over a prolonged period.
- molecular weight 130 The molecular weights of the aminoacyl thiazolidides vary between 146 (glycyl thiazolidide), 203 (isoleucyl thiazolidide) and 275 (tryptophanyl thiazolidide).
- the molecular weights of the sulphonylureas vary in the range around 500 to 700 Da.
- aminoacyl thiazolidides are hydrolysed by aminopeptidases and by acidic hydrolysis to form endogenous substances, such as amino acids and cysteamine, so that the use of the compounds according to the invention as orally available anti-diabetics constitutes an enrichment of pharmacy.
- mice In rats and mice, experimentally induced hyperglycaemia can be treated to a better than average extent by oral administration of the compounds used according to the invention as shown in Tables 2 and 3. The administration of 500 to 1000 times the effective dose did not result in any demonstrable pathological change during three-week toxicological experiments on rats and mice.
- aminoacyl pyrrolidides and aminoacyl thiazolidides can be broken down by the enzymes proline aminopeptidase and prolidase present in the mucosa cells of the small intestine, in serum and in liver cells and that the thiazolidine ring has a tendency to open in the presence of acids (for example in the stomach) with the formation of the corresponding cysteamine derivative. It was therefore surprising to find that the active ingredients have a dose-dependent effectiveness after peroral administration.
- the active ingredients according to the invention are analogously suitable for use in combination therapies, in a suitable galenical form, for achieving the desired normoglycaemic effect.
- the compounds used according to the invention can be made in a manner known by those skilled in the art into the customary formulations, such as, for example, tablets, capsules, dragees, pills, suppositories, granules, aerosols, syrups, liquid, solid and cream-type emulsions and suspensions and solutions using inert, non-toxic, pharmaceutically acceptable carriers and additives or solvents.
- the therapeutically effective compounds are in each case preferably present in a concentration of approximately from 0.1 to 80% by weight, preferably from 1 to 50% by weight, of the total mixture, that is to say in amounts sufficient to achieve a dosage within the indicated range.
- the substances can be administered as medicaments in the form of dragees, capsules, bitable capsules, tablets, drops and syrup, as well as in the form of pessaries and nasal sprays.
- the formulations are produced, for example, by extending the active ingredient with solvents and/or carriers, optionally using emulsifiers and/or dispersing agents, and optionally, for example where water is used as diluent, organic solvents may be used as auxiliary solvents.
- auxiliaries may be mentioned by way of example: water, non-toxic organic solvents, such as paraffins (e.g. mineral oil fractions), vegetable oils (e.g. rapeseed oil, groundnut oil, sesame oil), alcohols (e.g. ethyl alcohol, glycerol), glycols (e.g. propylene glycol, polyethylene glycol); solid carriers, such as, for example, ground natural minerals (e.g. highly dispersed silicic acid, silicates), sugars (e.g. unrefined sugar, lactose and dextrose); emulsifiers, such as non-ionic and anionic emulsifiers (e.g.
- paraffins e.g. mineral oil fractions
- vegetable oils e.g. rapeseed oil, groundnut oil, sesame oil
- alcohols e.g. ethyl alcohol, glycerol
- glycols e.g. propylene glycol, polyethylene
- polyoxyethylene fatty acid esters polyoxyethylene fatty alcohol ethers, alkylsulphonates and arylsulphonates
- dispersing agents e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone
- glidants e.g. magnesium stearate, talcum, stearic acid and sodium lauryl sulphate
- optionally flavourings e.g. magnesium stearate, talcum, stearic acid and sodium lauryl sulphate
- tablets may also comprise other additives, such as sodium citrate, calcium carbonate and calcium phosphate, together with various supplementary ingredients, such as starch, especially potato starch, gelatin and the like. It is also possible to use glidants, such as magnesium stearate, sodium lauryl sulphate and talcum, for tableting purposes.
- glidants such as magnesium stearate, sodium lauryl sulphate and talcum, for tableting purposes.
- tastes correctors or colorings to be added to the active ingredients in addition to the auxiliaries mentioned above.
- parenteral administration it is possible to use solutions of the active ingredients using suitable liquid carrier materials.
- intravenous administration it has generally proved advantageous to administer amounts of approximately from 0.01 to 2.0 mg/kg, preferably approximately from 0.01 to 1.0 mg/kg, body weight per day in order to achieve effective results, and in the case of enteral administration the dosage is approximately from 0.01 to 2 mg/kg, preferably approximately from 0.01 to 1 mg/kg, body weight per day.
- the solution is introduced into soft gelatin capsules in a manner known by those skilled in the art.
- the capsules are suitable for chewing or swallowing.
- the above constituents are mixed together and then combined with a solution, prepared from polyvinylpyrrolidone 2.0 kg polysorbate 0.1 kg and water about 5.0 kg and granulated in a manner known by those skilled in the art by grating the moist mass and, after the addition of 0.2 kg of magnesium stearate, drying.
- the finished tablet mixture of 30.0 kg is processed to form domed tablets each weighing 300 mg.
- the tablets can be coated or sugar-coated in a manner known by those skilled in the art.
- Buffer, water/inhibitor and enzyme were preheated to 30° C. and the reaction was started by the addition of substrate which was likewise preheated. Determinations were carried out four times. The measuring time was 10 minutes.
- the rotation values were recorded at different wavelengths on a “Polarimeter 341” or higher, from the Perkin-Elmer company.
- the mass spectra were recorded by means of electrospray ionisation (ESI) on an “API 165” or “API 365” from the PE Sciex Company.
- ESI electrospray ionisation
- the salts have the following data which is shown in Table 5.: TABLE 5 IT*salt K i M (gmol- 1 ) Mp (° C.) succinate 5.1e ⁇ 8 522.73 116 tartrate 8.3e ⁇ 8 352.41 122 fumarate 8.3e ⁇ 8 520.71 156 hydrochloride 7.2e ⁇ 8 238.77 169 phosphate 1.3e ⁇ 7 300.32 105 Testing the Solubility of Salts of Ile-Thia Ile-Thia*fum
- Boc-protected amino acid Boc-Ile-OH is placed in ethyl acetate and the batch is cooled to about ⁇ 5° C.
- N-Methylmorpholine is added dropwise, pivalic acid chloride (on a laboratory scale) or neohexanoyl chloride (on a pilot-plant scale) is added dropwise at constant temperature. The reaction is stirred for a few minutes for activation.
- N-Methylmorpholine (laboratory scale) an thiazolidine hydrochloride (laboratory scale) are added dropwise in succession, thiazolidine (pilot-plant scale) is added.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Diabetes (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Urology & Nephrology (AREA)
- Emergency Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Endocrinology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Thiazole And Isothizaole Compounds (AREA)
- Saccharide Compounds (AREA)
- Pyrrole Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Detergent Compositions (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Plural Heterocyclic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
Description
- The present application is a continuation of application U.S. Ser. No. 10/361,956, filed on Feb. 10, 2003, which is a continuation of application U.S. Ser. No. 09/723,638, filed on Nov. 28, 2000, which claims priority of DE 198/23831.2 filed on May 28, 1998 and subsequent PCT EP 99/03712 application filed on May 28, 1999.
- According to the current state of the art, hyperglycaemia and associated causes and sequelae (including diabetes mellitus) are treated by the administration of insulin (e.g. material isolated from bovine pancreas or obtained by genetic engineering techniques) to the diseased organisms in various forms of administration. All methods known hitherto, including more modern procedures, are distinguished by the requirement of a large amount of material, by high costs and often by a distinct impairment of the quality of life of the patients. The conventional method (daily i.v. insulin injection, customary since the 1930s) treats the acute symptoms of the disease, but after prolonged use leads inter alia to serious vascular changes (arteriosclerosis) and nerve damage.
- More recently the installation of subcutaneous depot implants (the insulin is released in metered amounts, and daily injections are unnecessary) and implantation (transplantation) of intact Langerhan's cells into the functionally impaired pancreatic gland or into other organs and tissues have been proposed. Such transplants require a high level of technical resources. Furthermore, they involve a surgical intervention into the recipient organism, which is associated with risks, and even in the case of cell transplants require methods of suppressing or circumventing the immune system.
- The use of alanyl pyrrolidide and isoleucyl thiazolidide as inhibitors of DP IV or of DP IV-analogous enzyme activity is already known from PCT/DE 97/00820 and the use of isoleucyl pyrrolidide and isoleucyl thiazolidide hydrochloride is already known from DD 296 075. Isoleucyl thiazolidide, which is used in the latter prior art, is a natural, that is to say L-threo-isoleucyl thiazolidide: on the priority date and also on the application date of the two specifications, only that form, the natural form, of isoleucyl thiazolidide was available.
- It has been established that those compounds, especially L-threo-isoleucyl thiazolidide, are good effectors for DP IV and DP IV-analogous enzyme activities, but the use of that compound may give rise to certain problems in the case of some patients or some forms of the disease:
- Depending upon the symptoms and the severity e.g. of diabetes mellitus it would be desirable, for example, to have available effectors that have an action different from that of the known compounds: for example, it is known that diabetes mellitus patients must be “stabilised” individually in order that their illness can be treated in an optimum manner. In some cases, for example, a reduction in the activity by DP IV effectors ought to be sufficient. It is also possible that too high a level of inhibitor activity and the permanent administration of the same medicament, especially in view of the life-long duration of treatment, may result in undesirable side-effects. Furthermore, it could also be desirable to improve certain transport properties in order to increase the rate of absorption of the effectors in vivo
- The present invention relates to dipeptide compounds and compounds analogous to dipeptide compounds that are formed from an amino acid and a thiazolidine or pyrrolidine group, and salts thereof, referred to hereinafter as dipeptide compounds, and to the use of the compounds in the treatment of impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also of sequelae of diabetes mellitus in mammals.
- The invention therefore relates also to a simple method of lowering the blood sugar concentration in mammals with the aid of dipeptide compounds as activity-reducing effectors (substrates, pseudosubstrates, inhibitors, binding proteins, antibodies etc.) for enzymes having activity comparable to or identical to the enzymatic activity of the enzyme dipeptidyl peptidase IV.
- DP IV or DP IV-analogous activity (for example the cytosolic DP II has a substrate specificity almost identical to DP IV) occurs in the blood circulation where it splits off dipeptides highly specifically from the N-terminus of biologically active peptides when proline or alanine are the adjacent residues of the N-terminal amino acid in their sequence.
- The glucose-dependent insulinotropic polypeptides: gastric inhibitory polypeptide 1-2 (GIP1-42) and glucagonlike peptide amide-1 7-36 (GLP-17-36), that is to say hormones that stimulate glucose-induced secretion of insulin by the pancreas (also called incretins), are substrates of DP IV, since the latter is able to split off the dipeptides tyrosinyl-alanine and histidylalanine, respectively, from the N-terminal sequences of those peptides in vitro and in vivo.
- The reduction of such DP IV and DP IV-analogous enzyme activity of the cleavage of those substrates in vivo can be used to bring about effective suppression of undesired enzyme activity under laboratory conditions and also in the case of pathological conditions in mammalian organisms. For example, diabetes mellitus Type II (including adult-onset diabetes) is based on a reduced secretion of insulin or disorders in the receptor function resulting inter alia from anomalous incretin concentrations arising from proteolysis.
- The aim of the invention is therefore to provide new (especially activity-reducing) effectors for the treatment of e.g. impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also of sequelae of diabetes mellitus in mammals, and a simple method of treating such diseases.
- This aim is achieved according to the invention by the provision of dipeptide compounds or analogues of dipeptides that are formed from an amino acid and a thiazolidine or pyrrolidine group, and salts thereof.
-
FIG. 1 depicts capillary zone electrophoretic separation of the isomers of isoleucyl thiazolide this separation is representative of a 1:1:1:1 mixture of L-threo-Ile-Thi*fum, L-allo-Ile-Thia*fum, D-threo-Ile-Thia*fum, D-allo-Ile-Thia*fum; -
FIG. 2 depicts capillary zone electrophoretic separation of Ile-Thia*fumarate this separation is representative of a 1:1000 mixture of L-threo-Ile-Thia*fumarate to D-allo-Ile-Thia*fumarate; -
FIG. 3 depicts a graphic representation of serum DP VI activity after oral administration of various H-Ile-Thia stereoisomers (5 μM/300 g rat). Enazyme activity influenced only by L-Allo-Ile-Thia and L-threo-Ile-Thia; and -
FIG. 4 depicts action of various aminoacyl-thiazolidides on the glucose tolerance of rats (oral glucose tolerance test with 2 g/300 g Wistar rat at time point, administration of DP IVinhibitors 10 minutes prior to oral glucose stimulation). - On administration, preferably oral administration, of these effectors to a mammalian organism, the endogenous (or additionally exogenously administered) insulinotropic peptides GIP1-42 and GLP-17-36 (or alternatively GLP-17-37 or analogues thereof) are broken down to a reduced extent by DP IV or DP IV-like enzymes and therefore the decrease in the concentration of those peptide hormones or their analogues is reduced or delayed. The invention is therefore based on the finding that a reduction in the DP IV or DP IV-like enzymatic activity acting in the blood circulation has an effect on the blood sugar level. It has been found that
- 1. the reduction in DP IV or DP IV-analogous activity leads to an increase in the relative stability of the glucose-stimulated or externally introduced incretins (or analogues thereof), that is to say by administration of effectors of DP IV or DP IV-analogous proteins it is possible to control the breakdown of incretin in the blood;
- 2. the increase in the biological breakdown stability of the incretins (or their analogues) results in a change in the action of endogenous insulin;
- 3. the increase in the stability of the incretins brought about by the reduction in DP IV or DP IV-analogous enzymatic activity in the blood results in a subsequent change in the glucose-induced insulin action and therefore in a modulation of the blood glucose level that is controllable by means of DP IV-effectors.
- Especially suitable for that purpose according to the invention are dipeptide compounds in which the amino acid is selected from a natural amino acid, such as, for example, leucine, valine, glutamine, proline, isoleucine, asparagine and aspartic acid.
- The administration, where possible oral administration, of the high-affinity, low molecular weight enzyme inhibitors according to the invention is a more economical alternative e.g. to invasive surgical techniques in the treatment of pathological symptoms. Through a chemical design of stability, transport and clearance properties, their mode of action can be modified and matched to individual characteristics.
- As mentioned above, it may be necessary, for example in the case of the long-term treatment of diabetes mellitus, to provide effectors having a defined activity with which it is possible to meet the individual needs of patients and to treat their symptoms. The dipeptide compounds according to the invention therefore exhibit at a concentration (of dipeptide compounds) of 10 μM, especially under the conditions indicated in Table 1, a reduction in the activity of dipeptidyl peptidase IV or DP IV-analogous enzyme activities of at least 10%, especially of at least 40%. Frequently a reduction in activity of at least 60% or at least 70% is also required. Preferred effectors may also exhibit a reduction in activity of a maximum of 20% or 30%. Furthermore, the transport properties of the present compounds, especially by the peptide transporter Pep T1, are significantly improved.
- Especially preferred dipeptide compounds are L-allo-isoleucyl thiazolidide and salts thereof. Those compounds surprisingly exhibit an approximately five-fold improvement in transport by the peptide transporter Pep T1 in comparison with L-threo-isoleucyl thiazolidide, while having approximately the same degree of action with respect to glucose modulation.
- Further illustrative compounds are given in Table 1.
- The salts of the dipeptide compounds according to the invention may be, for example, organic salts such as acetates, succinates, tartrates or fumarates, or inorganic acid radicals such as phosphates or sulphates. Special preference is given to the fumarates, which have an excellent action combined with a surprisingly high degree of stability towards hydrolysis and are considerably less soluble than the hydrochlorides. Those properties are also advantageous from the galenical standpoint.
- Also preferred are L-threo-isoleucyl pyrrolidide and salts thereof, especially the fumaric salts, and L-allo-isoleucyl pyrrolidide and salts thereof, especially the fumaric salts.
- The salts of the dipeptide compounds can be present in a molar ratio of dipeptide (-analogous) component to salt component of 1:1 or 2:1. Such a salt is, for example, (Ile-Thia)2 fumaric acid.
- Especially preferred salts are the fumaric salts of L-threo-isoleucyl thiazolidide and L-allo-isoleucyl thiazolidide.
- The invention accordingly relates to effectors of dipeptidyl peptidase IV (DP IV) or DP IV-analogous enzyme activity and their use in lowering the blood sugar level in the serum of a mammalian organism below the glucose concentration that is characteristic of hyperglycaemia. The invention relates especially to the use of the effectors of DP IV or DP IV-analogous enzyme activity according to the invention in preventing or alleviating pathological metabolic anomalies in mammalian organisms, such as, for example, impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also sequelae or diabetes mellitus in mammals. In a further embodiment, the invention relates to a method of lowering the blood sugar level in the serum of a mammalian organism below the glucose concentration that is characteristic of hyperglycaemia, characterised in that a therapeutically effective amount of at least one effector of DP IV or DP IV-analogous enzyme activity according to the invention is administered to a mammalian organism.
- In an alternative illustrative embodiment, the invention relates to pharmaceutical compositions, that is to say medicaments, that comprise at least one compounds according to the invention or a salt thereof, optionally in combination with one or more pharmaceutically acceptable carriers and/or solvents.
- The pharmaceutical compositions may be, for example, in the form of parenteral or enteral formulations and may contain appropriate carriers or they may be in the form of oral formulations that may contain appropriate carriers suitable for oral administration. They are preferably in the form of oral formulations.
- In addition, the pharmaceutical compositions may contain one or more active ingredients having a hypoglycaemic action, which may be active ingredients known by those skilled in the art.
- The effectors of DP IV or DP IV-analogous enzyme activity according to the invention can be used for lowering the blood sugar level in the serum of a mammalian organism below the glucose concentration that is characteristic of hyperglycaemia or for the production of a corresponding medicament.
- The effectors of DP IV or DP IV-analogous enzymes administered according to the invention can be used in pharmaceutically acceptable formulations or formulation complexes as inhibitors, substrates, pseudosubstrates, inhibitors of DP IV expression, binding proteins or antibodies of those enzyme proteins or combinations of those different substances that reduce the DP IV or DP IV-analogous protein concentration in the mammalian organism. Effectors according to the invention are, for example, DP IV-inhibitors such as the dipeptide derivatives or dipeptide mimetics L-allo-isoleucyl thiazolidide and the effectors indicated in Table 1 and fumaric salts thereof. The effectors according to the invention enable the treatment of patients and diseases to be adjusted individually, it being possible especially to avoid intolerances, allergies and side effects occurring in individual cases.
- The compounds also exhibit different effectiveness behaviours over time. As a result, the physician carrying out the treatment has the opportunity to respond in various ways according to the individual situation of a patient: he is able, on the one hand, to set accurately the speed of onset of the action and, on the other hand, the duration of action and especially the strength of action.
- The method according to the invention represents a new kind of procedure for lowering raised blood glucose concentrations in the serum of mammals. It is simple, capable of commercial exploitation and suitable for use in therapy, especially of diseases that are based on above-average blood glucose values, in mammals and more especially in human medicine.
- The effectors are administered, for example, in the form of pharmaceutical preparations that comprise the active ingredient in combination with customary carrier materials known in the prior art. For example, they will be administered parenterally (e.g. i.v., in physiological saline) or enterally (e.g. orally, formulated with customary carrier materials, such as, for example, glucose).
- Depending upon their endogenous stability and their bioavailability, the effectors will need to be administered one or more times per day in order to achieve the desired normalisation of the blood glucose values. For example, such a dosage range in human beings may lie in the range of from 0.01 mg to 30.0 mg per day, preferably in the range of from 0.01 to 10 mg of effector substance per kilogram of body weight.
- It has been found that as a direct result of the administration of effectors of dipeptidyl peptidase IV or DP IV-analogous enzyme activities in the blood of a mammal, by virtue of the associated temporary reduction in the activity thereof, the endogenous (or additionally exogenously administered) insulinotropic peptides gastric inhibitory polypeptide 1-42 (GIP1-42) and glucagon-like peptide amide-1 7-36 (GLP-17-36) (or alternatively GLP-17-37) or analogues thereof) are broken down to a reduced extent by DP IV and DP IV-like enzymes and thus the decrease in the concentration of those peptide hormones or their analogues is reduced or delayed. The increase in the stability of the (endogenously present or exogenously introduced) incretins or their analogues brought about by the action of DP IV-effectors, with the result that the former are available in increased amounts for insulinotropic stimulation of the incretin receptors of the Langerhan's cells in the pancreas, alters inter alia the effectiveness of the body's own insulin, which results in a stimulation of the carbohydrate metabolism of the treated organism.
- As a result, the blood sugar level in the serum of the organism being treated falls below the glucose concentration that is characteristic of hyperglycaemia, thus making it possible to prevent or alleviate metabolic anomalies such as impaired glucose tolerance, glycosuria, hyperlipidaemia and possible severe metabolic acidoses and diabetes mellitus, which are clinical syndromes resulting from raised glucose concentrations in the blood over a prolonged period.
- Among the number of orally effective anti-diabetics known from the prior art, such an effective low molecular weight substance class has been unknown hitherto (with the exception of the biguanide metformin: molecular weight 130). The molecular weights of the aminoacyl thiazolidides vary between 146 (glycyl thiazolidide), 203 (isoleucyl thiazolidide) and 275 (tryptophanyl thiazolidide). In comparison, the molecular weights of the sulphonylureas (glibenclamide: 494), the saccharides (acarbose: 630) and the thiazolidinediones (pioglitazon: 586) vary in the range around 500 to 700 Da. In the body, aminoacyl thiazolidides are hydrolysed by aminopeptidases and by acidic hydrolysis to form endogenous substances, such as amino acids and cysteamine, so that the use of the compounds according to the invention as orally available anti-diabetics constitutes an enrichment of pharmacy.
- In rats and mice, experimentally induced hyperglycaemia can be treated to a better than average extent by oral administration of the compounds used according to the invention as shown in Tables 2 and 3. The administration of 500 to 1000 times the effective dose did not result in any demonstrable pathological change during three-week toxicological experiments on rats and mice.
- The advantageous action of compounds according to the invention on DP IV is shown by way of example in Table 1:
TABLE 1 Action of various effectors on the dipeptidyl-peptidase-IV-catalysed hydrolysis of 0.4 mM of the substrate H-Gly-Pro-pNA at 30° C., pH 7.6 and an ionic strength of 0.125 Effector affinity % Residual activity of to DP IV: DP IV in the presence of Effector Ki [nM] 10 μM effector metformin >>1,000,000 100 glibenclamide >>1,000,000 100 acarbose >>1,000,000 100 H-Asn-pyrrolidide 12,000 83.1 H-Asn-thiazolidide 3,500 47.2 H-Asp-pyrrolidide 14,000 81.6 H-Asp-thiazolidide 2,900 45.6 H-Asp(NHOH)-pyrrolidide 13,000 88.2 H-Asp(NHOH)-thiazolidide 8,800 54.5 H-Glu-pyrrolidide 2,200 38.5 H-Glu-thiazolidide 610 25.0 H-Glu(NHOH)-pyrrolidide 2,800 44.9 H-Glu(NHOH)-thiazolidide 1,700 36.5 H-His-pyrrolidide 3,500 49.7 H-His-thiazolidide 1,800 35.2 H-Pro-pyrrolidide 4,100 50.2 H-Pro-thiazolidide 1,200 27.2 H-Ile-azididide 3,100 43.8 H-Ile-pyrrolidide 210 12.3 H-L-allo-Ile-thiazolidide 190 10.0 H-Val-pyrrolidide 480 23.3 H-Val-thiazolidide 270 13.6 - It is known that aminoacyl pyrrolidides and aminoacyl thiazolidides can be broken down by the enzymes proline aminopeptidase and prolidase present in the mucosa cells of the small intestine, in serum and in liver cells and that the thiazolidine ring has a tendency to open in the presence of acids (for example in the stomach) with the formation of the corresponding cysteamine derivative. It was therefore surprising to find that the active ingredients have a dose-dependent effectiveness after peroral administration. The dose-dependency of the action of L-allo-Ile-thiazolidide on the serum-DP IV activity after oral administration of L-allo-isoleucyl thiazolidide to healthy Wistar rats is documented in the following Table:
TABLE 2 Residual activity of DP IV in serum towards 0.4 mM of the substrate H-Gly-Pro-pNA at 30° C., pH 7.6 and an ionic strength of 0.125, after oral administration and in dependence upon the dose of L-allo-isoleucyl thiazolidide, determined 30 min after administration of the inhibitor Dose per experimental animal Residual activity of DP IV in % 0 mg 100 2.5 mg 52 5.0 mg 40 10 mg 28 20 mg 29 - Extremely surprising and desirable is the glucose-reducing action of the active ingredient L-allo-isoleucyl thiazolidide according to the invention achieved in the diabetic animal model after oral administration with synchronous oral glucose stimulation as shown in Table 3.
- In order to intensify the blood-sugar-reducing action of various anti-diabetics, use is frequently made of combinations of different orally effective anti-diabetics. Since the anti-hyperglycaemic action of the effectors according to the invention is exhibited independently of other known oral anti-diabetics, the active ingredients according to the invention are analogously suitable for use in combination therapies, in a suitable galenical form, for achieving the desired normoglycaemic effect.
- Accordingly, the compounds used according to the invention can be made in a manner known by those skilled in the art into the customary formulations, such as, for example, tablets, capsules, dragees, pills, suppositories, granules, aerosols, syrups, liquid, solid and cream-type emulsions and suspensions and solutions using inert, non-toxic, pharmaceutically acceptable carriers and additives or solvents. In such formulations the therapeutically effective compounds are in each case preferably present in a concentration of approximately from 0.1 to 80% by weight, preferably from 1 to 50% by weight, of the total mixture, that is to say in amounts sufficient to achieve a dosage within the indicated range.
TABLE 3 Reduction in the circulating blood glucose within a period of 60 min after oral administration of 20 μM of L-allo-Ile thiazolidide to rats of various animal models with a synchronous glucose tolerance test (data in % based on normoglycaemic values). Glucose Glucose concentration concentration in % in % Animal model control L-allo-Ile-thiazolidide-treated Wistar rat, normal 100 82 Wistar rat 100 73 (diabetes 2b- model, obese) - The good absorption of the compounds used according to the invention by mucosae of the gastro-intestinal tract enables a large number of galenical preparations to be used:
- The substances can be administered as medicaments in the form of dragees, capsules, bitable capsules, tablets, drops and syrup, as well as in the form of pessaries and nasal sprays.
- The formulations are produced, for example, by extending the active ingredient with solvents and/or carriers, optionally using emulsifiers and/or dispersing agents, and optionally, for example where water is used as diluent, organic solvents may be used as auxiliary solvents.
- The following auxiliaries may be mentioned by way of example: water, non-toxic organic solvents, such as paraffins (e.g. mineral oil fractions), vegetable oils (e.g. rapeseed oil, groundnut oil, sesame oil), alcohols (e.g. ethyl alcohol, glycerol), glycols (e.g. propylene glycol, polyethylene glycol); solid carriers, such as, for example, ground natural minerals (e.g. highly dispersed silicic acid, silicates), sugars (e.g. unrefined sugar, lactose and dextrose); emulsifiers, such as non-ionic and anionic emulsifiers (e.g. polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, alkylsulphonates and arylsulphonates), dispersing agents (e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone) and glidants (e.g. magnesium stearate, talcum, stearic acid and sodium lauryl sulphate) and optionally flavourings.
- Administration is effected in customary manner, preferably enterally or parenterally, especially orally. In the case of enteral administration, in addition to containing the mentioned carriers, tablets may also comprise other additives, such as sodium citrate, calcium carbonate and calcium phosphate, together with various supplementary ingredients, such as starch, especially potato starch, gelatin and the like. It is also possible to use glidants, such as magnesium stearate, sodium lauryl sulphate and talcum, for tableting purposes. In the case of aqueous suspensions and/or elixirs intended for oral uses it is also possible for various taste correctors or colorings to be added to the active ingredients in addition to the auxiliaries mentioned above.
- For parenteral administration it is possible to use solutions of the active ingredients using suitable liquid carrier materials. In the case of intravenous administration it has generally proved advantageous to administer amounts of approximately from 0.01 to 2.0 mg/kg, preferably approximately from 0.01 to 1.0 mg/kg, body weight per day in order to achieve effective results, and in the case of enteral administration the dosage is approximately from 0.01 to 2 mg/kg, preferably approximately from 0.01 to 1 mg/kg, body weight per day.
- Nevertheless in some cases it may be necessary to depart from the amounts indicated, depending upon the body weight of the experimental animal or patient or the nature of the administration route, and also on the basis of the species of animal and its individual response to the medicament or the intervals at which the administration is made. In some cases, for example, it may be sufficient to use less than the above-mentioned minimum amount, whereas in other cases it will be necessary to exceed the above-mentioned upper limit. Where relatively large amounts are administered it may be advisable to divide the amount into several individual doses over the day. For use in human medicine the same range of dosage is provided, the comments made above also applying accordingly.
- Examples of Pharmaceutical Formulations
-
- 1. Capsules having 100 mg of L-allo-isoleucyl thiazolidide per capsule:
- For about 10,000 capsules, a solution of the following composition is prepared:
L-allo-isoleucyl thiazolidide hydrochloride 1.0 kg glycerol 0.5 kg polyethylene glycol 3.0 kg water 0.5 kg 5.0 kg - The solution is introduced into soft gelatin capsules in a manner known by those skilled in the art. The capsules are suitable for chewing or swallowing.
- 2. Tablets/coated tablets or dragees having 100 mg of L-allo-isoleucyl thiazolidide:
- The following amounts relate to the production of 100,000 tablets:
L-allo-isoleucyl thiazolidide hydrochloride, 10.0 kg finely ground glucose 4.35 kg lactose 4.35 kg starch 4.50 kg cellulose, finely ground 4.50 kg - The above constituents are mixed together and then combined with a solution, prepared from
polyvinylpyrrolidone 2.0 kg polysorbate 0.1 kg and water about 5.0 kg
and granulated in a manner known by those skilled in the art by grating the moist mass and, after the addition of 0.2 kg of magnesium stearate, drying. The finished tablet mixture of 30.0 kg is processed to form domed tablets each weighing 300 mg. The tablets can be coated or sugar-coated in a manner known by those skilled in the art. - The technical data of illustrative compounds are shown in Table 4.
TABLE 4 Tests on Ile-Thia*fumarate (isomer) and other salts Substance Ki Mp (° C.) CE (min) MS [α]H20 L-threo-IT*F 8*10−8 150DSC 160 203 −10.7 (405 nm) D-threo-IT*F no 147 158 203 not inhibition determined L-allo-IT* F 2 * 10−7 145-6 154 203 −4.58 (380 nm) D-allo-IT*F no 144-6 150 203 4.5 inhibition (380 nm)
IT*F = isoleucyl thiazolidide fumarate
- The NMR and HPLC data confirm the identity of the substances in question.
- Measurement Conditions for the Ki Determination of the Substances
-
- Enzyme: DP Ivporcine kidney, 0.75 mg/ml, 18 U/ml (GPpNA) in 25 mM Tris pH 7.6, 30% ammonium sulphate, 0.5 mM EDTA, 05 mM DTE
- Stock solution: 1:250 diluted in measuring buffer
- Buffer: 40 mM HEPES pH 7.6, I=0.125 (KCl)
- Substrate: GPpNA*HCl
- Stock solution: 2.1 mM
- Measuring
- apparatus: Perkin-Elmer Bio Assay Reader, HTS 7000 Plus,
- T=30° C.
- λ=405 nm
- Measurement
- batch: 100 μl buffer
- 100 μl substrate (3 different concentrations 0.8 mM-0.2 mM)
- 50 μl water/inhibitor (7 different concentrations 2.1 μM-32.8 nM)
- 10 μl enzyme
- Buffer, water/inhibitor and enzyme were preheated to 30° C. and the reaction was started by the addition of substrate which was likewise preheated. Determinations were carried out four times. The measuring time was 10 minutes.
- Melting Point Determination
- Melting points were determined on a Kofler heating platform microscope from Leica Aktiengesellschaft, the values are not corrected, or on a DSC apparatus (Heumann-Pharma).
- Optical Rotation
- The rotation values were recorded at different wavelengths on a “Polarimeter 341” or higher, from the Perkin-Elmer company.
- Measurement Conditions for the Mass Spectroscopy
- The mass spectra were recorded by means of electrospray ionisation (ESI) on an “API 165” or “API 365” from the PE Sciex Company. The operation is carried out using an appropriate concentration of c=10 μg/ml, the substance is taken up in MeOH/H2O 50:50, 0.1% HCO2H, the infusion is effected using a spray pump (20 μl/min). The measurements were made in positive mode [M+H]+, the ESI voltage is U=5600V.
- The salts have the following data which is shown in Table 5.:
TABLE 5 IT*salt Ki M (gmol-1) Mp (° C.) succinate 5.1e−8 522.73 116 tartrate 8.3e−8 352.41 122 fumarate 8.3e−8 520.71 156 hydrochloride 7.2e−8 238.77 169 phosphate 1.3e−7 300.32 105
Testing the Solubility of Salts of Ile-Thia
Ile-Thia*fum - Amount weighed in 10.55 mg
- corresponds to 0.02 mmol (520.72 g/mol)
- Addition of 100 μl H2Odist.
- 100 μl no solution, visually: no surface-wetting
- from 200 μl successive beginning of solubility
- at 400 μl complete dissolution is observed
- 2.63%
- It is therefore established that this salt is scarcely wettable and does not decompose.
- Ile-Thia*succ
-
- Amount weighed in 16.6 mg
- corresponds to 0.031 mmol (522.73 g/mol)
- Addition of 16 μl H2Odist.
- 16 μl no solution, visually: “sucking-up” of the moisture from 66 μl-1.5 ml no complete dissolution of the substance is observed
Ile-Thia*tartrate - Amount weighed in 17.3 mg
- corresponds to 0.049 mmol (352.41 g/mol)
- Addition of 100 μl H2Odist.
- 100 μl complete dissolution
- 17.3%
Ile-Thia*phos - Amount weighed in 15.5 mg
- corresponds to 0.051 mmol (300.32 g/mol)
- Addition of 100 μl H2Odist.
- 100 μl slight dissolution is observed
- successive addition of 100 μl H2O
- at 400 μl complete dissolution
- 3.87%
Ile-Thia*HCl - Amount weighed in 16.1 mg
- corresponds to 0.067 mmol 238.77 (g/mol)
- Addition of 100 μl H2Odist.
- at 100 μl complete dissolution
- 16.1%
General Synthesis of Ile-Thia*Salt - The Boc-protected amino acid Boc-Ile-OH is placed in ethyl acetate and the batch is cooled to about −5° C. N-Methylmorpholine is added dropwise, pivalic acid chloride (on a laboratory scale) or neohexanoyl chloride (on a pilot-plant scale) is added dropwise at constant temperature. The reaction is stirred for a few minutes for activation. N-Methylmorpholine (laboratory scale) an thiazolidine hydrochloride (laboratory scale) are added dropwise in succession, thiazolidine (pilot-plant scale) is added. Working-up in the laboratory is effected in conventional manner using salt solutions, on a pilot-plant scale the batch is purified with NaOH and CH3COOH solutions. The removal of the Boc protecting group is carried out using HCl/dioxane (laboratory scale) or H2SO4 (pilot-plant scale). In the laboratory the hydrochloride is crystallised from EtOH/ether. On a pilot-plant scale the free amine is prepared by the addition of NaOH/NH3. Fumaric acid is dissolved in hot ethanol, the free amine is added dropwise, and (Ile-Thia)2 fumarate (M=520.71 gmol-1) precipitates.
- The analysis of isomers and enantiomers is carried out by electrophoresis.
Claims (27)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/727,209 US20050203030A1 (en) | 1998-05-28 | 2003-12-02 | Novel effectors of dipeptidyl peptidase IV |
| US11/443,389 US20080182798A1 (en) | 1998-05-28 | 2006-05-30 | Novel effectors of dipeptidyl peptidase IV |
Applications Claiming Priority (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE198/23831.2 | 1998-05-28 | ||
| DE19823831A DE19823831A1 (en) | 1998-05-28 | 1998-05-28 | New pharmaceutical use of isoleucyl thiazolidide and its salts |
| WOPCT/EP99/03712 | 1999-05-28 | ||
| PCT/EP1999/003712 WO1999061431A1 (en) | 1998-05-28 | 1999-05-28 | New dipeptidyl peptidase iv effectors |
| US09/723,638 US6548481B1 (en) | 1998-05-28 | 2000-11-28 | Effectors of dipeptidyl peptidase IV |
| US10/361,956 US20030134802A1 (en) | 1998-05-28 | 2003-02-10 | Novel effectors of dipepetidyl peptidase IV |
| US10/727,209 US20050203030A1 (en) | 1998-05-28 | 2003-12-02 | Novel effectors of dipeptidyl peptidase IV |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/361,956 Continuation US20030134802A1 (en) | 1998-05-28 | 2003-02-10 | Novel effectors of dipepetidyl peptidase IV |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/443,389 Continuation US20080182798A1 (en) | 1998-05-28 | 2006-05-30 | Novel effectors of dipeptidyl peptidase IV |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050203030A1 true US20050203030A1 (en) | 2005-09-15 |
Family
ID=7869159
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/723,638 Expired - Lifetime US6548481B1 (en) | 1998-05-28 | 2000-11-28 | Effectors of dipeptidyl peptidase IV |
| US10/361,956 Abandoned US20030134802A1 (en) | 1998-05-28 | 2003-02-10 | Novel effectors of dipepetidyl peptidase IV |
| US10/727,209 Abandoned US20050203030A1 (en) | 1998-05-28 | 2003-12-02 | Novel effectors of dipeptidyl peptidase IV |
| US11/443,389 Abandoned US20080182798A1 (en) | 1998-05-28 | 2006-05-30 | Novel effectors of dipeptidyl peptidase IV |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/723,638 Expired - Lifetime US6548481B1 (en) | 1998-05-28 | 2000-11-28 | Effectors of dipeptidyl peptidase IV |
| US10/361,956 Abandoned US20030134802A1 (en) | 1998-05-28 | 2003-02-10 | Novel effectors of dipepetidyl peptidase IV |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/443,389 Abandoned US20080182798A1 (en) | 1998-05-28 | 2006-05-30 | Novel effectors of dipeptidyl peptidase IV |
Country Status (24)
| Country | Link |
|---|---|
| US (4) | US6548481B1 (en) |
| EP (6) | EP1082314B1 (en) |
| JP (1) | JP2002516318A (en) |
| KR (2) | KR100630258B1 (en) |
| CN (4) | CN1637018A (en) |
| AT (6) | ATE336248T1 (en) |
| AU (1) | AU764262B2 (en) |
| BR (1) | BR9910758A (en) |
| CA (1) | CA2333603C (en) |
| DE (10) | DE19823831A1 (en) |
| DK (2) | DK1214936T3 (en) |
| ES (5) | ES2271723T3 (en) |
| HK (2) | HK1047887B (en) |
| HU (1) | HUP0102001A3 (en) |
| IL (3) | IL139862A0 (en) |
| IS (3) | IS5728A (en) |
| NO (1) | NO317989B1 (en) |
| NZ (2) | NZ508260A (en) |
| PL (1) | PL344403A1 (en) |
| PT (2) | PT1214936E (en) |
| RU (3) | RU2309161C2 (en) |
| SI (2) | SI1082314T1 (en) |
| UA (1) | UA54599C2 (en) |
| WO (1) | WO1999061431A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070117786A1 (en) * | 2003-12-19 | 2007-05-24 | Altana Pharma Ag | Intermediates for the preparation of tricyclic dihydropyrano-imidazo-pyridines derivatives |
| US7504423B2 (en) | 2003-12-11 | 2009-03-17 | Mitsubishi Tanabe Pharma Corporation | α-amino acid derivatives and use thereof as medicines |
| US20090124626A1 (en) * | 2005-09-29 | 2009-05-14 | Daiichi Sankyo Company, Limited | Pharmaceutical agent comprising insulin resistance improving agent |
| US20110059912A1 (en) * | 2008-01-17 | 2011-03-10 | Kiichiro Ueta | Combination therapy comprising sglt inhibitors and dpp4 inhibitors |
| US8604198B2 (en) | 2005-02-18 | 2013-12-10 | Mitsubishi Tanabe Pharma Corporation | Salt of proline derivative, solvate thereof, and production method thereof |
Families Citing this family (241)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020006899A1 (en) * | 1998-10-06 | 2002-01-17 | Pospisilik Andrew J. | Use of dipeptidyl peptidase IV effectors for lowering blood pressure in mammals |
| IL135068A (en) | 1997-09-29 | 2004-03-28 | Point Therapeutics Inc | Stimulation of hematopoietic cells in vitro |
| DE19823831A1 (en) * | 1998-05-28 | 1999-12-02 | Probiodrug Ges Fuer Arzneim | New pharmaceutical use of isoleucyl thiazolidide and its salts |
| DE19828113A1 (en) | 1998-06-24 | 2000-01-05 | Probiodrug Ges Fuer Arzneim | Prodrugs of Dipeptidyl Peptidase IV Inhibitors |
| DE19834591A1 (en) * | 1998-07-31 | 2000-02-03 | Probiodrug Ges Fuer Arzneim | Use of substances that decrease the activity of dipeptidyl peptidase IV to increase blood sugar levels, e.g. for treating hypoglycemia |
| US6979697B1 (en) | 1998-08-21 | 2005-12-27 | Point Therapeutics, Inc. | Regulation of substrate activity |
| US20030176357A1 (en) * | 1998-10-06 | 2003-09-18 | Pospisilik Andrew J. | Dipeptidyl peptidase IV inhibitors and their uses for lowering blood pressure levels |
| AU3960400A (en) * | 1999-03-05 | 2000-09-28 | Molteni L. E C. Dei Fratelli Alitti Societa' Di Esercizio S.P.A. | Use of metformin in the preparation of pharmaceutical compositions capable of inhibiting the enzyme dipeptidyl peptidase iv |
| US6548529B1 (en) | 1999-04-05 | 2003-04-15 | Bristol-Myers Squibb Company | Heterocyclic containing biphenyl aP2 inhibitors and method |
| US6890904B1 (en) | 1999-05-25 | 2005-05-10 | Point Therapeutics, Inc. | Anti-tumor agents |
| DE19940130A1 (en) | 1999-08-24 | 2001-03-01 | Probiodrug Ges Fuer Arzneim | New effectors of Dipeptidyl Peptidase IV for topical use |
| CA2393825A1 (en) * | 1999-12-17 | 2001-06-21 | Versicor, Inc. | Novel succinate compounds, compositions and methods of use and preparation |
| US20080076811A1 (en) * | 2000-01-21 | 2008-03-27 | Bork Balkan | Combinations comprising depeptidypeptidase-iv inhibitors and antidiabetic agents |
| ES2487897T3 (en) * | 2000-01-21 | 2014-08-25 | Novartis Ag | Combinations consisting of dipeptidylpeptidase-IV inhibitors and antidiabetic agents |
| AU2001233622A1 (en) * | 2000-02-25 | 2001-09-03 | Novo-Nordisk A/S | Inhibition of beta cell degeneration |
| DK1283735T4 (en) * | 2000-03-31 | 2013-02-04 | Royalty Pharma Collection Trust | Method for improving islet cell signaling in diabetes mellitus and for its prevention |
| GB0010183D0 (en) * | 2000-04-26 | 2000-06-14 | Ferring Bv | Inhibitors of dipeptidyl peptidase IV |
| US7078397B2 (en) | 2000-06-19 | 2006-07-18 | Smithkline Beecham Corporation | Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus |
| GB0014969D0 (en) | 2000-06-19 | 2000-08-09 | Smithkline Beecham Plc | Novel method of treatment |
| DE60140708D1 (en) | 2000-08-10 | 2010-01-14 | Mitsubishi Tanabe Pharma Corp | Prolinderative and their use as medicines |
| EP1891948A1 (en) | 2000-10-27 | 2008-02-27 | Probiodrug AG | Treatment of neurological and neuropsychological disorders |
| US7132104B1 (en) | 2000-10-27 | 2006-11-07 | Probiodrug Ag | Modulation of central nervous system (CNS) dipeptidyl peptidase IV (DPIV) -like activity for the treatment of neurological and neuropsychological disorders |
| KR20030096227A (en) * | 2000-10-27 | 2003-12-24 | 프로비오드룩 아게 | Method for the treatment of neurological and neuropsychological disorders |
| US20040180925A1 (en) * | 2000-12-27 | 2004-09-16 | Kenji Matsuno | Dipeptidylpeptidase-IV inhibitor |
| SK286975B6 (en) * | 2001-02-24 | 2009-08-06 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Xanthine derivatives, processes for their preparation, pharmaceutical compositions containing them and their use |
| US20070293426A1 (en) * | 2001-04-02 | 2007-12-20 | Hans-Ulrich Demuth | Methods for improving islet signaling in diabetes mellitus and for its prevention |
| US6890905B2 (en) | 2001-04-02 | 2005-05-10 | Prosidion Limited | Methods for improving islet signaling in diabetes mellitus and for its prevention |
| GB0109146D0 (en) * | 2001-04-11 | 2001-05-30 | Ferring Bv | Treatment of type 2 diabetes |
| CA2444481A1 (en) | 2001-04-11 | 2002-10-24 | Bristol-Myers Squibb Company | Amino acid complexes of c-aryl glucosides for treatment of diabetes and method |
| US6944925B2 (en) * | 2001-06-13 | 2005-09-20 | Ttx Company | Articulated connector reconditioning process and apparatuses |
| DE10150203A1 (en) | 2001-10-12 | 2003-04-17 | Probiodrug Ag | Use of dipeptidyl peptidase IV inhibitor in treatment of cancer |
| CA2419888A1 (en) * | 2001-06-27 | 2003-01-09 | Probiodrug Ag | Peptide structures useful for competitive modulation of dipeptidyl peptidase iv catalysis |
| US7183290B2 (en) | 2001-06-27 | 2007-02-27 | Smithkline Beecham Corporation | Fluoropyrrolidines as dipeptidyl peptidase inhibitors |
| US20030130199A1 (en) | 2001-06-27 | 2003-07-10 | Von Hoersten Stephan | Dipeptidyl peptidase IV inhibitors and their uses as anti-cancer agents |
| DE60222667T2 (en) | 2001-06-27 | 2008-07-17 | Smithkline Beecham Corp. | FLUORPYRROLIDINES AS DIPEPTIDYLPEPTIDASE INHIBITORS |
| US7368421B2 (en) | 2001-06-27 | 2008-05-06 | Probiodrug Ag | Use of dipeptidyl peptidase IV inhibitors in the treatment of multiple sclerosis |
| US7196201B2 (en) | 2001-06-27 | 2007-03-27 | Smithkline Beecham Corporation | Pyrrolidines as dipeptidyl peptidase inhibitors |
| CA2424645A1 (en) * | 2001-06-27 | 2003-01-09 | Probiodrug Ag | New use of dipeptidyl peptidase iv inhibitors |
| UA74912C2 (en) | 2001-07-06 | 2006-02-15 | Merck & Co Inc | Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes |
| JP2005504766A (en) * | 2001-08-16 | 2005-02-17 | プロバイオドラッグ アーゲー | Use of a proline endopeptidase inhibitor to regulate intracellular signal cascade dependent inositol (1,4,5) triphosphate concentration. |
| US6844316B2 (en) | 2001-09-06 | 2005-01-18 | Probiodrug Ag | Inhibitors of dipeptidyl peptidase I |
| KR20040033048A (en) | 2001-09-14 | 2004-04-17 | 미츠비시 웰파마 가부시키가이샤 | Thiazolidine derivative and medicinal use thereof |
| US7238670B2 (en) | 2001-10-18 | 2007-07-03 | Bristol-Myers Squibb Company | Human glucagon-like-peptide-1 mimics and their use in the treatment of diabetes and related conditions |
| US7238671B2 (en) | 2001-10-18 | 2007-07-03 | Bristol-Myers Squibb Company | Human glucagon-like-peptide-1 mimics and their use in the treatment of diabetes and related conditions |
| GB0125446D0 (en) * | 2001-10-23 | 2001-12-12 | Ferring Bv | Novel anti-diabetic agents |
| US6984645B2 (en) | 2001-11-16 | 2006-01-10 | Bristol-Myers Squibb Company | Dual inhibitors of adipocyte fatty acid binding protein and keratinocyte fatty acid binding protein |
| US7074798B2 (en) | 2002-02-25 | 2006-07-11 | Eisai Co., Ltd | Xanthine derivative and DPPIV inhibitor |
| DK1480961T3 (en) | 2002-02-28 | 2007-05-07 | Prosidion Ltd | Glutaminyl-based DPIV inhibitors |
| EP1695970A1 (en) * | 2002-02-28 | 2006-08-30 | Prosidion Limited | Peptides useful for competitive modulation of dipeptidyl peptidase IV catalysis |
| US20030232761A1 (en) * | 2002-03-28 | 2003-12-18 | Hinke Simon A. | Novel analogues of glucose-dependent insulinotropic polypeptide |
| US7057046B2 (en) | 2002-05-20 | 2006-06-06 | Bristol-Myers Squibb Company | Lactam glycogen phosphorylase inhibitors and method of use |
| US6710040B1 (en) | 2002-06-04 | 2004-03-23 | Pfizer Inc. | Fluorinated cyclic amides as dipeptidyl peptidase IV inhibitors |
| RU2317101C2 (en) * | 2002-06-27 | 2008-02-20 | Пробиодруг Аг | Novel using dipeptidyl peptidase iv inhibitors |
| ATE394118T1 (en) * | 2002-08-09 | 2008-05-15 | Prosidion Ltd | DIPEPTIDYL PEPTIDASE IV INHIBITORS TO REDUCE CHRONIC WEIGHT GAIN |
| TW200404796A (en) * | 2002-08-19 | 2004-04-01 | Ono Pharmaceutical Co | Nitrogen-containing compound |
| US7407955B2 (en) | 2002-08-21 | 2008-08-05 | Boehringer Ingelheim Pharma Gmbh & Co., Kg | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
| US7569574B2 (en) | 2002-08-22 | 2009-08-04 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Purine derivatives, the preparation thereof and their use as pharmaceutical compositions |
| US7495005B2 (en) * | 2002-08-22 | 2009-02-24 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Xanthine derivatives, their preparation and their use in pharmaceutical compositions |
| US20050176622A1 (en) * | 2002-09-18 | 2005-08-11 | Kerstin Kuhn-Wache | Secondary binding site of dipeptidyl peptidase IV (DPIV) |
| US20040058876A1 (en) * | 2002-09-18 | 2004-03-25 | Torsten Hoffmann | Secondary binding site of dipeptidyl peptidase IV (DP IV) |
| ATE469645T1 (en) | 2002-10-23 | 2010-06-15 | Bristol Myers Squibb Co | GLYCINENITRIL BASED INHIBITORS OF DIPEPTIDYLPEPTIDASE IV |
| US7482337B2 (en) * | 2002-11-08 | 2009-01-27 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Xanthine derivatives, the preparation thereof and their use as pharmaceutical compositions |
| US7098235B2 (en) | 2002-11-14 | 2006-08-29 | Bristol-Myers Squibb Co. | Triglyceride and triglyceride-like prodrugs of glycogen phosphorylase inhibiting compounds |
| DE10254304A1 (en) * | 2002-11-21 | 2004-06-03 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New xanthine derivatives, their production and their use as medicines |
| TW200504021A (en) | 2003-01-24 | 2005-02-01 | Bristol Myers Squibb Co | Substituted anilide ligands for the thyroid receptor |
| DE10308352A1 (en) | 2003-02-27 | 2004-09-09 | Aventis Pharma Deutschland Gmbh | Branched side chain arylcycloalkyl derivatives, process for their preparation and their use as medicaments |
| DE10308351A1 (en) | 2003-02-27 | 2004-11-25 | Aventis Pharma Deutschland Gmbh | 1,3-substituted cycloalkyl derivatives having acidic, usually heterocyclic groups, processes for their preparation and their use as medicaments |
| DE10308353A1 (en) | 2003-02-27 | 2004-12-02 | Aventis Pharma Deutschland Gmbh | Diarylcycloalkyl derivatives, processes for their preparation and their use as medicines |
| DE10308355A1 (en) | 2003-02-27 | 2004-12-23 | Aventis Pharma Deutschland Gmbh | Aryl-cycloalkyl-substituted alkanoic acid derivatives, process for their preparation and their use as medicaments |
| US7148246B2 (en) | 2003-02-27 | 2006-12-12 | Sanofi-Aventis Deutschland Gmbh | Cycloalkyl derivatives having bioisosteric carboxylic acid groups, processes for their preparation and their use as pharmaceuticals |
| US20040242566A1 (en) * | 2003-03-25 | 2004-12-02 | Syrrx, Inc. | Dipeptidyl peptidase inhibitors |
| WO2005019819A1 (en) | 2003-08-20 | 2005-03-03 | Biosite, Inc. | Methods and compositions for measuring biologically active natriuretic peptides and for improving their therapeutic potential |
| NZ572274A (en) | 2003-05-05 | 2009-06-26 | Probiodrug Ag | Use of effectors of glutaminyl and glutamate cyclases |
| WO2004099134A2 (en) * | 2003-05-05 | 2004-11-18 | Prosidion Ltd. | Glutaminyl based dp iv-inhibitors |
| US7371871B2 (en) | 2003-05-05 | 2008-05-13 | Probiodrug Ag | Inhibitors of glutaminyl cyclase |
| MXPA05011861A (en) | 2003-05-05 | 2006-02-17 | Probiodrug Ag | Medical use of inhibitors of glutaminyl and glutamate cyclases. |
| JP2007511467A (en) | 2003-05-14 | 2007-05-10 | タケダ サン ディエゴ インコーポレイテッド | Dipeptidyl peptidase inhibitor |
| US7459474B2 (en) | 2003-06-11 | 2008-12-02 | Bristol-Myers Squibb Company | Modulators of the glucocorticoid receptor and method |
| US7566707B2 (en) | 2003-06-18 | 2009-07-28 | Boehringer Ingelheim International Gmbh | Imidazopyridazinone and imidazopyridone derivatives, the preparation thereof and their use as pharmaceutical compositions |
| US6995183B2 (en) | 2003-08-01 | 2006-02-07 | Bristol Myers Squibb Company | Adamantylglycine-based inhibitors of dipeptidyl peptidase IV and methods |
| US7169926B1 (en) | 2003-08-13 | 2007-01-30 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
| US7678909B1 (en) | 2003-08-13 | 2010-03-16 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
| MXPA06001601A (en) | 2003-08-13 | 2006-08-25 | Takeda Pharmaceutical | 4-pyrimidone derivatives and their use as peptidyl peptidase inhibitors. |
| MXPA06002127A (en) * | 2003-09-02 | 2006-05-31 | Prosidion Ltd | Combination therapy for glycaemic control. |
| WO2005026148A1 (en) | 2003-09-08 | 2005-03-24 | Takeda San Diego, Inc. | Dipeptidyl peptidase inhibitors |
| US7371759B2 (en) | 2003-09-25 | 2008-05-13 | Bristol-Myers Squibb Company | HMG-CoA reductase inhibitors and method |
| DE10348023A1 (en) * | 2003-10-15 | 2005-05-19 | Imtm Gmbh | New alanyl aminopeptidase inhibitors for the functional manipulation of different cells and for the treatment of immunological, inflammatory, neuronal and other diseases |
| EA010108B1 (en) | 2003-10-15 | 2008-06-30 | Пробиодруг Аг | Use of effectors of glutaminyl and glutamate cyclases |
| CA2544573A1 (en) | 2003-11-03 | 2005-06-02 | Probiodrug Ag | Combinations useful for the treatment of neuronal disorders |
| KR20120008093A (en) | 2003-11-17 | 2012-01-25 | 노파르티스 아게 | Use of dipeptidyl peptidase iv inhibitors |
| US7420059B2 (en) | 2003-11-20 | 2008-09-02 | Bristol-Myers Squibb Company | HMG-CoA reductase inhibitors and method |
| DE10355304A1 (en) * | 2003-11-27 | 2005-06-23 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel 8- (piperazin-1-yl) and 8 - ([1,4] diazepan-1-yl) xanthines, their preparation and their use as pharmaceuticals |
| ES2684325T5 (en) * | 2004-01-20 | 2024-06-10 | Novartis Ag | Formulation and direct compression process |
| CN101618216B (en) * | 2004-01-20 | 2012-01-04 | 诺瓦提斯公司 | Direct compression formulation and process |
| US7241787B2 (en) | 2004-01-25 | 2007-07-10 | Sanofi-Aventis Deutschland Gmbh | Substituted N-cycloexylimidazolinones, process for their preparation and their use as medicaments |
| KR101099206B1 (en) | 2004-02-05 | 2011-12-27 | 프로비오드룩 아게 | Novel Inhibitors of Glutaminyl Cyclase |
| US7501426B2 (en) * | 2004-02-18 | 2009-03-10 | Boehringer Ingelheim International Gmbh | 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions |
| DE102004009039A1 (en) * | 2004-02-23 | 2005-09-08 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 8- [3-Amino-piperidin-1-yl] xanthines, their preparation and use as pharmaceuticals |
| US7732446B1 (en) | 2004-03-11 | 2010-06-08 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
| US7393847B2 (en) | 2004-03-13 | 2008-07-01 | Boehringer Ingleheim International Gmbh | Imidazopyridazinediones, their preparation and their use as pharmaceutical compositions |
| CN102127057A (en) * | 2004-03-15 | 2011-07-20 | 武田药品工业株式会社 | Dipeptidyl peptidase inhibitors |
| EP1586573B1 (en) | 2004-04-01 | 2007-02-07 | Sanofi-Aventis Deutschland GmbH | Oxadiazolones, processes for their preparation and their use as pharmaceuticals |
| US7179809B2 (en) * | 2004-04-10 | 2007-02-20 | Boehringer Ingelheim International Gmbh | 2-Amino-imidazo[4,5-d]pyridazin-4-ones, their preparation and their use as pharmaceutical compositions |
| US7439370B2 (en) * | 2004-05-10 | 2008-10-21 | Boehringer Ingelheim International Gmbh | Imidazole derivatives, their preparation and their use as intermediates for the preparation of pharmaceutical compositions and pesticides |
| WO2005118555A1 (en) * | 2004-06-04 | 2005-12-15 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
| DE102004030502A1 (en) * | 2004-06-24 | 2006-01-12 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel imidazoles and triazoles, their preparation and use as medicines |
| TW200611704A (en) | 2004-07-02 | 2006-04-16 | Bristol Myers Squibb Co | Human glucagon-like-peptide-1 modulators and their use in the treatment of diabetes and related conditions |
| US7534763B2 (en) | 2004-07-02 | 2009-05-19 | Bristol-Myers Squibb Company | Sustained release GLP-1 receptor modulators |
| US7145040B2 (en) | 2004-07-02 | 2006-12-05 | Bristol-Myers Squibb Co. | Process for the preparation of amino acids useful in the preparation of peptide receptor modulators |
| WO2006019965A2 (en) | 2004-07-16 | 2006-02-23 | Takeda San Diego, Inc. | Dipeptidyl peptidase inhibitors |
| AU2005267093B2 (en) * | 2004-07-23 | 2009-10-01 | Nuada Llc | Peptidase inhibitors |
| EP1782832A4 (en) * | 2004-08-26 | 2009-08-26 | Takeda Pharmaceutical | REMEDY AGAINST DIABETES |
| AR050615A1 (en) | 2004-08-27 | 2006-11-08 | Novartis Ag | PHARMACEUTICAL COMPOSITIONS FOR ORAL ADMINISTRATION |
| DE102004043944A1 (en) * | 2004-09-11 | 2006-03-30 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel 8- (3-amino-piperidin-1-yl) -7- (but-2-ynyl) -xanthines, their preparation and their use as pharmaceuticals |
| DE102004044221A1 (en) * | 2004-09-14 | 2006-03-16 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New 3-methyl-7-butynyl xanthines, their preparation and their use as pharmaceuticals |
| US20060063719A1 (en) * | 2004-09-21 | 2006-03-23 | Point Therapeutics, Inc. | Methods for treating diabetes |
| AR051446A1 (en) | 2004-09-23 | 2007-01-17 | Bristol Myers Squibb Co | C-ARYL GLUCOSIDS AS SELECTIVE INHIBITORS OF GLUCOSE CONVEYORS (SGLT2) |
| DE102004054054A1 (en) * | 2004-11-05 | 2006-05-11 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Process for preparing chiral 8- (3-amino-piperidin-1-yl) -xanthines |
| EP1828192B1 (en) * | 2004-12-21 | 2014-12-03 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
| US7589088B2 (en) | 2004-12-29 | 2009-09-15 | Bristol-Myers Squibb Company | Pyrimidine-based inhibitors of dipeptidyl peptidase IV and methods |
| US7635699B2 (en) | 2004-12-29 | 2009-12-22 | Bristol-Myers Squibb Company | Azolopyrimidine-based inhibitors of dipeptidyl peptidase IV and methods |
| DOP2006000008A (en) | 2005-01-10 | 2006-08-31 | Arena Pharm Inc | COMBINED THERAPY FOR THE TREATMENT OF DIABETES AND RELATED AFFECTIONS AND FOR THE TREATMENT OF AFFECTIONS THAT IMPROVE THROUGH AN INCREASE IN THE BLOOD CONCENTRATION OF GLP-1 |
| US7317024B2 (en) | 2005-01-13 | 2008-01-08 | Bristol-Myers Squibb Co. | Heterocyclic modulators of the glucocorticoid receptor, AP-1, and/or NF-κB activity and use thereof |
| EP1879881A2 (en) | 2005-04-14 | 2008-01-23 | Bristol-Myers Squibb Company | Inhibitors of 11-beta hydroxysteroid dehydrogenase type i |
| US7521557B2 (en) | 2005-05-20 | 2009-04-21 | Bristol-Myers Squibb Company | Pyrrolopyridine-based inhibitors of dipeptidyl peptidase IV and methods |
| CA2610022A1 (en) | 2005-06-06 | 2006-12-14 | Georgetown University | Compositions and methods for lipo modeling |
| DE102005026762A1 (en) | 2005-06-09 | 2006-12-21 | Sanofi-Aventis Deutschland Gmbh | Azolopyridin-2-one derivatives as inhibitors of lipases and phospholipases |
| US7888381B2 (en) | 2005-06-14 | 2011-02-15 | Bristol-Myers Squibb Company | Modulators of glucocorticoid receptor, AP-1, and/or NF-κB activity, and use thereof |
| ES2426345T3 (en) | 2005-07-20 | 2013-10-22 | Eli Lilly And Company | Compound bound in 1-amino position |
| DE102005035891A1 (en) | 2005-07-30 | 2007-02-08 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 8- (3-amino-piperidin-1-yl) -xanthines, their preparation and their use as pharmaceuticals |
| MX2008001799A (en) * | 2005-08-11 | 2008-04-16 | Hoffmann La Roche | Pharmaceutical composition comprising a dpp-iv inhibitor. |
| SI1942898T2 (en) * | 2005-09-14 | 2014-08-29 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors for treating diabetes |
| TW200745080A (en) * | 2005-09-16 | 2007-12-16 | Takeda Pharmaceuticals Co | Polymorphs of tartrate salt of 2-[2-(3-(R)-amino-piperidin-1-yl)-5-fluoro-6-oxo-6H-pyrimidin-1-ylmethyl]-benzonitrile and methods of use therefor |
| EP1924567B1 (en) | 2005-09-16 | 2012-08-22 | Takeda Pharmaceutical Company Limited | Process for the preparation of pyrimidinedione derivatives |
| JOP20180109A1 (en) * | 2005-09-29 | 2019-01-30 | Novartis Ag | New Formulation |
| WO2007053819A2 (en) | 2005-10-31 | 2007-05-10 | Bristol-Myers Squibb Company | Pyrrolidinyl beta-amino amide-based inhibitors of dipeptidyl peptidase iv and methods |
| EP1971614A1 (en) | 2005-11-14 | 2008-09-24 | Probiodrug AG | Cyclopropyl-fused pyrrolidine derivatives as dipeptidyl peptidase iv inhibitors |
| US8414921B2 (en) | 2005-12-16 | 2013-04-09 | Merck Sharp & Dohme Corp. | Pharmaceutical compositions of combinations of dipeptidyl peptidase-4 inhibitors with metformin |
| US7592461B2 (en) | 2005-12-21 | 2009-09-22 | Bristol-Myers Squibb Company | Indane modulators of glucocorticoid receptor, AP-1, and/or NF-κB activity and use thereof |
| GB0526291D0 (en) | 2005-12-23 | 2006-02-01 | Prosidion Ltd | Therapeutic method |
| WO2007112347A1 (en) | 2006-03-28 | 2007-10-04 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
| PE20071221A1 (en) | 2006-04-11 | 2007-12-14 | Arena Pharm Inc | GPR119 RECEPTOR AGONISTS IN METHODS TO INCREASE BONE MASS AND TO TREAT OSTEOPOROSIS AND OTHER CONDITIONS CHARACTERIZED BY LOW BONE MASS, AND COMBINED THERAPY RELATED TO THESE AGONISTS |
| DE602007010420D1 (en) | 2006-04-11 | 2010-12-23 | Arena Pharm Inc | METHOD OF USE OF THE GPR119 RECEPTOR FOR IDENTIFYING COMPOUNDS FOR INCREASING THE BONE MASS IN ONE PERSON |
| AU2007235876A1 (en) | 2006-04-12 | 2007-10-18 | Probiodrug Ag | Enzyme inhibitors |
| JP5645360B2 (en) * | 2006-04-21 | 2014-12-24 | 株式会社明治 | Composition containing dipeptide as active ingredient |
| EP1852108A1 (en) * | 2006-05-04 | 2007-11-07 | Boehringer Ingelheim Pharma GmbH & Co.KG | DPP IV inhibitor formulations |
| BRPI0711558A2 (en) | 2006-05-04 | 2011-11-08 | Boeringer Ingelheim Internat Gmbh | polymorphs |
| PE20080251A1 (en) | 2006-05-04 | 2008-04-25 | Boehringer Ingelheim Int | USES OF DPP IV INHIBITORS |
| EP2021014A1 (en) | 2006-05-26 | 2009-02-11 | Brystol-Myers Squibb Company | Sustained release glp-1 receptor modulators |
| US7919598B2 (en) | 2006-06-28 | 2011-04-05 | Bristol-Myers Squibb Company | Crystal structures of SGLT2 inhibitors and processes for preparing same |
| US7910747B2 (en) | 2006-07-06 | 2011-03-22 | Bristol-Myers Squibb Company | Phosphonate and phosphinate pyrazolylamide glucokinase activators |
| US7795291B2 (en) | 2006-07-07 | 2010-09-14 | Bristol-Myers Squibb Company | Substituted acid derivatives useful as anti-atherosclerotic, anti-dyslipidemic, anti-diabetic and anti-obesity agents and method |
| WO2008017670A1 (en) * | 2006-08-08 | 2008-02-14 | Boehringer Ingelheim International Gmbh | Pyrrolo [3, 2 -d] pyrimidines as dpp-iv inhibitors for the treatment of diabetes mellitus |
| BRPI0716134A2 (en) | 2006-09-07 | 2013-09-17 | Nycomed Gmbh | combination treatment for diabetes mellitus |
| US8324383B2 (en) | 2006-09-13 | 2012-12-04 | Takeda Pharmaceutical Company Limited | Methods of making polymorphs of benzoate salt of 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-benzonitrile |
| RS51965B (en) * | 2006-09-13 | 2012-02-29 | Takeda Pharmaceutical Company Limited | USE 2-6- (3-AMINO-PIPERIDIN-1-IL) -3-METHYL-2,4-DIOXO-3,4-DIHYDRO-2H-PYRIMIDIN-1-ILMETHYL-4-FLUORO-BENZONITRIL FOR THE TREATMENT OF DIABETES, Cancers, autoimmune disorders and HIV infections |
| US7968577B2 (en) | 2006-11-01 | 2011-06-28 | Bristol-Myers Squibb Company | Modulators of glucocorticoid receptor, AP-1, and/or NF-κB activity and use thereof |
| EP2099767A1 (en) | 2006-11-01 | 2009-09-16 | Brystol-Myers Squibb Company | Modulators of glucocorticoid receptor, ap-1, and/or nf- b activity and use thereof |
| WO2008055945A1 (en) | 2006-11-09 | 2008-05-15 | Probiodrug Ag | 3-hydr0xy-1,5-dihydr0-pyrr0l-2-one derivatives as inhibitors of glutaminyl cyclase for the treatment of ulcer, cancer and other diseases |
| TW200838536A (en) | 2006-11-29 | 2008-10-01 | Takeda Pharmaceutical | Polymorphs of succinate salt of 2-[6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethy]-4-fluor-benzonitrile and methods of use therefor |
| EP2091948B1 (en) | 2006-11-30 | 2012-04-18 | Probiodrug AG | Novel inhibitors of glutaminyl cyclase |
| US9408816B2 (en) | 2006-12-26 | 2016-08-09 | Pharmacyclics Llc | Method of using histone deacetylase inhibitors and monitoring biomarkers in combination therapy |
| US8093236B2 (en) | 2007-03-13 | 2012-01-10 | Takeda Pharmaceuticals Company Limited | Weekly administration of dipeptidyl peptidase inhibitors |
| TW200904405A (en) | 2007-03-22 | 2009-02-01 | Bristol Myers Squibb Co | Pharmaceutical formulations containing an SGLT2 inhibitor |
| ES2529149T3 (en) | 2007-04-03 | 2015-02-17 | Mitsubishi Tanabe Pharma Corporation | A combination of dipeptidyl peptidase IV inhibitor and sweetener for use in the treatment of obesity |
| US9656991B2 (en) | 2007-04-18 | 2017-05-23 | Probiodrug Ag | Inhibitors of glutaminyl cyclase |
| PE20090696A1 (en) | 2007-04-20 | 2009-06-20 | Bristol Myers Squibb Co | CRYSTALLINE FORMS OF SAXAGLIPTIN AND PROCESSES FOR PREPARING THEM |
| US8969514B2 (en) | 2007-06-04 | 2015-03-03 | Synergy Pharmaceuticals, Inc. | Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases |
| US20100120694A1 (en) | 2008-06-04 | 2010-05-13 | Synergy Pharmaceuticals, Inc. | Agonists of Guanylate Cyclase Useful for the Treatment of Gastrointestinal Disorders, Inflammation, Cancer and Other Disorders |
| EA021544B1 (en) | 2007-06-04 | 2015-07-30 | Бен-Гурион Юниверсити Оф Дзе Негев Рисерч Энд Дивелопмент Оторити | TRIARY AREAS AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
| JP5546451B2 (en) | 2007-06-04 | 2014-07-09 | シナジー ファーマシューティカルズ インコーポレイテッド | Agonyl cyclase agonists useful in the treatment of gastrointestinal disorders, inflammation, cancer and other disorders |
| WO2009018065A2 (en) * | 2007-07-27 | 2009-02-05 | Bristol-Myers Squibb Company | Novel glucokinase activators and methods of using same |
| CA2696579C (en) * | 2007-08-17 | 2017-01-24 | Boehringer Ingelheim International Gmbh | Purine derivatives for use in the treatment of fab-related diseases |
| ES2448839T3 (en) | 2007-11-01 | 2014-03-17 | Bristol-Myers Squibb Company | Non-steroidal compounds useful as moderators of the activity of the glucocorticoid receptor AP-1 and / or NF-kappa b and their use |
| PE20091730A1 (en) | 2008-04-03 | 2009-12-10 | Boehringer Ingelheim Int | FORMULATIONS INVOLVING A DPP4 INHIBITOR |
| EP2146210A1 (en) | 2008-04-07 | 2010-01-20 | Arena Pharmaceuticals, Inc. | Methods of using A G protein-coupled receptor to identify peptide YY (PYY) secretagogues and compounds useful in the treatment of conditions modulated by PYY |
| PE20100156A1 (en) * | 2008-06-03 | 2010-02-23 | Boehringer Ingelheim Int | NAFLD TREATMENT |
| EP2334671A1 (en) | 2008-06-24 | 2011-06-22 | Bristol-Myers Squibb Company | Cyclopentathiophene modulators of the glucocorticoid receptor, ap-1, and/or nf-kappa b activity and use thereof |
| EP3241839B1 (en) | 2008-07-16 | 2019-09-04 | Bausch Health Ireland Limited | Agonists of guanylate cyclase useful for the treatment of gastrointestinal, inflammation, cancer and other disorders |
| UY32030A (en) | 2008-08-06 | 2010-03-26 | Boehringer Ingelheim Int | "TREATMENT FOR DIABETES IN INAPPROPRIATE PATIENTS FOR THERAPY WITH METFORMIN" |
| KR20190016601A (en) | 2008-08-06 | 2019-02-18 | 베링거 인겔하임 인터내셔날 게엠베하 | Treatment for diabetes in patients inappropriate for metformin therapy |
| NZ604091A (en) * | 2008-08-15 | 2014-08-29 | Boehringer Ingelheim Int | Purin derivatives for use in the treatment of fab-related diseases |
| BRPI0919288A2 (en) | 2008-09-10 | 2015-12-15 | Boehring Ingelheim Internat Gmbh | combination therapy for treatment of diabetes and related conditions. |
| US20200155558A1 (en) | 2018-11-20 | 2020-05-21 | Boehringer Ingelheim International Gmbh | Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral antidiabetic drug |
| KR101054911B1 (en) | 2008-10-17 | 2011-08-05 | 동아제약주식회사 | Pharmaceutical composition for the prevention and treatment of diabetes or obesity containing a compound that inhibits the activity of dipeptidyl peptidase-IV and other anti-diabetic or anti-obesity drugs as an active ingredient |
| AU2009331471B2 (en) | 2008-12-23 | 2015-09-03 | Boehringer Ingelheim International Gmbh | Salt forms of organic compound |
| AR074990A1 (en) | 2009-01-07 | 2011-03-02 | Boehringer Ingelheim Int | TREATMENT OF DIABETES IN PATIENTS WITH AN INAPPROPRIATE GLUCEMIC CONTROL THROUGH METFORMIN THERAPY |
| AR077642A1 (en) | 2009-07-09 | 2011-09-14 | Arena Pharm Inc | METABOLISM MODULATORS AND THE TREATMENT OF DISORDERS RELATED TO THE SAME |
| ES2548913T3 (en) | 2009-09-11 | 2015-10-21 | Probiodrug Ag | Heterocyclic derivatives such as glutaminyl cyclase inhibitors |
| ES2693686T3 (en) | 2009-11-13 | 2018-12-13 | Astrazeneca Ab | Immediate-release tablet formulations |
| AU2010319438B2 (en) | 2009-11-13 | 2015-05-21 | Astrazeneca Uk Limited | Reduced mass metformin formulations |
| JP5775522B2 (en) | 2009-11-13 | 2015-09-09 | アストラゼネカ・アクチエボラーグAstrazeneca Aktiebolag | Bilayer tablet formulation |
| PH12012501037A1 (en) | 2009-11-27 | 2013-01-14 | Boehringer Ingelheim Int | Treatment of genotyped diabetic patients with dpp-iv inhibitors such as linagliptin |
| TWI562775B (en) | 2010-03-02 | 2016-12-21 | Lexicon Pharmaceuticals Inc | Methods of using inhibitors of sodium-glucose cotransporters 1 and 2 |
| WO2011107530A2 (en) | 2010-03-03 | 2011-09-09 | Probiodrug Ag | Novel inhibitors |
| CA2789440C (en) | 2010-03-10 | 2020-03-24 | Probiodrug Ag | Heterocyclic inhibitors of glutaminyl cyclase (qc, ec 2.3.2.5) |
| WO2011127051A1 (en) | 2010-04-06 | 2011-10-13 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
| ES2559209T3 (en) | 2010-04-14 | 2016-02-11 | Bristol-Myers Squibb Company | New glucokinase activators and methods of use thereof |
| US8581001B2 (en) | 2010-04-16 | 2013-11-12 | Codman & Shurtleff | Metformin-cysteine prodrug |
| JP5945532B2 (en) | 2010-04-21 | 2016-07-05 | プロビオドルグ エージー | Benzimidazole derivatives as inhibitors of glutaminyl cyclase |
| CA2797310C (en) | 2010-05-05 | 2020-03-31 | Boehringer Ingelheim International Gmbh | Glp-1 receptor agonist and dpp-4 inhibitor combination therapy |
| KR20230051307A (en) | 2010-06-24 | 2023-04-17 | 베링거 인겔하임 인터내셔날 게엠베하 | Diabetes therapy |
| EP2611442B1 (en) | 2010-09-03 | 2018-07-04 | Bristol-Myers Squibb Company | Drug formulations using water soluble antioxidants |
| US9616097B2 (en) | 2010-09-15 | 2017-04-11 | Synergy Pharmaceuticals, Inc. | Formulations of guanylate cyclase C agonists and methods of use |
| MX2013003184A (en) | 2010-09-22 | 2013-06-07 | Arena Pharm Inc | Modulators of the gpr119 receptor and the treatment of disorders related thereto. |
| US9034883B2 (en) | 2010-11-15 | 2015-05-19 | Boehringer Ingelheim International Gmbh | Vasoprotective and cardioprotective antidiabetic therapy |
| TWI631963B (en) | 2011-01-05 | 2018-08-11 | 雷西肯製藥股份有限公司 | Compositions comprising and methods of using inhibitors of sodium-glucose cotransporters 1 and 2 |
| BR112013019026A2 (en) | 2011-02-01 | 2016-10-04 | Astrazeneca Uk Ltd | pharmaceutical formulations including an amine compound |
| CN108676076A (en) | 2011-03-01 | 2018-10-19 | 辛纳吉制药公司 | The method for preparing guanosine cyclic mono-phosphate agonist |
| US8530670B2 (en) | 2011-03-16 | 2013-09-10 | Probiodrug Ag | Inhibitors |
| WO2012135570A1 (en) | 2011-04-01 | 2012-10-04 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
| WO2012145361A1 (en) | 2011-04-19 | 2012-10-26 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
| WO2012145603A1 (en) | 2011-04-22 | 2012-10-26 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
| US20140051714A1 (en) | 2011-04-22 | 2014-02-20 | Arena Pharmaceuticals, Inc. | Modulators Of The GPR119 Receptor And The Treatment Of Disorders Related Thereto |
| EP2532506A1 (en) | 2011-06-06 | 2012-12-12 | Battenfeld-Cincinnati Germany GmbH | Haul-off device for an extruder |
| WO2012170702A1 (en) | 2011-06-08 | 2012-12-13 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
| ES2713566T3 (en) | 2011-07-15 | 2019-05-22 | Boehringer Ingelheim Int | Derivative of substituted dinamic quinazoline, its preparation and its use in pharmaceutical compositions for the treatment of type I and II diabetes |
| WO2013055910A1 (en) | 2011-10-12 | 2013-04-18 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
| US9555001B2 (en) | 2012-03-07 | 2017-01-31 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition and uses thereof |
| US20130303462A1 (en) | 2012-05-14 | 2013-11-14 | Boehringer Ingelheim International Gmbh | Use of a dpp-4 inhibitor in podocytes related disorders and/or nephrotic syndrome |
| EP4151218A1 (en) | 2012-05-14 | 2023-03-22 | Boehringer Ingelheim International GmbH | Linagliptin, a xanthine derivative as dpp-4 inhibitor, for use in the treatment of sirs and/or sepsis |
| WO2013174767A1 (en) | 2012-05-24 | 2013-11-28 | Boehringer Ingelheim International Gmbh | A xanthine derivative as dpp -4 inhibitor for use in modifying food intake and regulating food preference |
| WO2014074668A1 (en) | 2012-11-08 | 2014-05-15 | Arena Pharmaceuticals, Inc. | Modulators of gpr119 and the treatment of disorders related thereto |
| UA117574C2 (en) | 2012-11-20 | 2018-08-27 | Лексікон Фармасьютікалз, Інк. | Inhibitors of sodium glucose cotransporter 1 |
| HK1220696A1 (en) | 2013-03-15 | 2017-05-12 | Bausch Health Ireland Limited | Agonists of guanylate cyclase and their uses |
| AU2014235209B2 (en) | 2013-03-15 | 2018-06-14 | Bausch Health Ireland Limited | Guanylate cyclase receptor agonists combined with other drugs |
| EP4424697A3 (en) | 2013-06-05 | 2024-12-25 | Bausch Health Ireland Limited | Ultra-pure agonists of guanylate cyclase c, method of making and using same |
| WO2015027021A1 (en) | 2013-08-22 | 2015-02-26 | Bristol-Myers Squibb Company | Imide and acylurea derivatives as modulators of the glucocorticoid receptor |
| AU2014347668A1 (en) | 2013-11-05 | 2016-05-19 | Ben-Gurion University Of The Negev Research And Development Authority | Compounds for the treatment of diabetes and disease complications arising from same |
| EP3110449B1 (en) | 2014-02-28 | 2023-06-28 | Boehringer Ingelheim International GmbH | Medical use of a dpp-4 inhibitor |
| GB201415598D0 (en) | 2014-09-03 | 2014-10-15 | Univ Birmingham | Elavated Itercranial Pressure Treatment |
| CA2979033A1 (en) | 2015-03-09 | 2016-09-15 | Intekrin Therapeutics, Inc. | Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy |
| WO2017211979A1 (en) | 2016-06-10 | 2017-12-14 | Boehringer Ingelheim International Gmbh | Combinations of linagliptin and metformin |
| JP2018123065A (en) * | 2017-01-30 | 2018-08-09 | 株式会社明治 | Insulin secretion promoting composition |
| WO2018162722A1 (en) | 2017-03-09 | 2018-09-13 | Deutsches Institut Für Ernährungsforschung Potsdam-Rehbrücke | Dpp-4 inhibitors for use in treating bone fractures |
| CN110996951A (en) | 2017-04-03 | 2020-04-10 | 科赫罗斯生物科学股份有限公司 | PPARγ agonists for the treatment of progressive supranuclear palsy |
| EP3461819B1 (en) | 2017-09-29 | 2020-05-27 | Probiodrug AG | Inhibitors of glutaminyl cyclase |
| BR112021000139A2 (en) | 2018-07-19 | 2021-04-06 | Astrazeneca Ab | METHODS OF TREATMENT OF HFPEF USING DAPAGLIFLOZINE AND COMPOSITIONS UNDERSTANDING THE SAME |
| SG11202102498UA (en) | 2018-09-26 | 2021-04-29 | Lexicon Pharmaceuticals Inc | Crystalline forms of n-(1 -((2-(dimethylamino)ethyl)amino)-2-m ethyl-1 -oopropan-2-yl)-4-(4-(2-methyl-5- (2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(methylthio)tetrahydro-2h-pyran-2-yl)benzyl) phenl)butanamide and methods of their synthesis |
| US12409186B2 (en) | 2020-07-27 | 2025-09-09 | Astrazeneca Ab | Methods of treating chronic kidney disease with dapagliflozin |
| WO2023144722A1 (en) | 2022-01-26 | 2023-08-03 | Astrazeneca Ab | Dapagliflozin for use in the treatment of prediabetes or reducing the risk of developing type 2 diabetes |
Citations (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2961377A (en) * | 1957-08-05 | 1960-11-22 | Us Vitamin Pharm Corp | Oral anti-diabetic compositions and methods |
| US3174901A (en) * | 1963-01-31 | 1965-03-23 | Jan Marcel Didier Aron Samuel | Process for the oral treatment of diabetes |
| US3879541A (en) * | 1970-03-03 | 1975-04-22 | Bayer Ag | Antihyperglycemic methods and compositions |
| US3960949A (en) * | 1971-04-02 | 1976-06-01 | Schering Aktiengesellschaft | 1,2-Biguanides |
| US4028402A (en) * | 1974-10-11 | 1977-06-07 | Hoffmann-La Roche Inc. | Biguanide salts |
| US4935493A (en) * | 1987-10-06 | 1990-06-19 | E. I. Du Pont De Nemours And Company | Protease inhibitors |
| US5433955A (en) * | 1989-01-23 | 1995-07-18 | Akzo N.V. | Site specific in vivo activation of therapeutic drugs |
| US5462928A (en) * | 1990-04-14 | 1995-10-31 | New England Medical Center Hospitals, Inc. | Inhibitors of dipeptidyl-aminopeptidase type IV |
| US5512549A (en) * | 1994-10-18 | 1996-04-30 | Eli Lilly And Company | Glucagon-like insulinotropic peptide analogs, compositions, and methods of use |
| US5543396A (en) * | 1994-04-28 | 1996-08-06 | Georgia Tech Research Corp. | Proline phosphonate derivatives |
| US5614379A (en) * | 1995-04-26 | 1997-03-25 | Eli Lilly And Company | Process for preparing anti-obesity protein |
| US5624894A (en) * | 1992-09-17 | 1997-04-29 | University Of Florida | Brain-enhanced delivery of neuroactive peptides by sequential metabolism |
| US5705483A (en) * | 1993-12-09 | 1998-01-06 | Eli Lilly And Company | Glucagon-like insulinotropic peptides, compositions and methods |
| US5827898A (en) * | 1996-10-07 | 1998-10-27 | Shaman Pharmaceuticals, Inc. | Use of bisphenolic compounds to treat type II diabetes |
| US5939560A (en) * | 1993-12-03 | 1999-08-17 | Ferring B.V. | Inhibitors of DP-mediated processes, compositions and therapeutic methods thereof |
| US6006753A (en) * | 1996-08-30 | 1999-12-28 | Eli Lilly And Company | Use of GLP-1 or analogs to abolish catabolic changes after surgery |
| US6011155A (en) * | 1996-11-07 | 2000-01-04 | Novartis Ag | N-(substituted glycyl)-2-cyanopyrrolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV |
| US6107317A (en) * | 1999-06-24 | 2000-08-22 | Novartis Ag | N-(substituted glycyl)-thiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV |
| US6110949A (en) * | 1999-06-24 | 2000-08-29 | Novartis Ag | N-(substituted glycyl)-4-cyanothiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV |
| US6172081B1 (en) * | 1999-06-24 | 2001-01-09 | Novartis Ag | Tetrahydroisoquinoline 3-carboxamide derivatives |
| US20010025023A1 (en) * | 2000-02-25 | 2001-09-27 | Carr Richard David | Inhibition of beta cell degeneration |
| US6303661B1 (en) * | 1996-04-25 | 2001-10-16 | Probiodrug | Use of dipeptidyl peptidase IV effectors for lowering the blood glucose level in mammals |
| US6319893B1 (en) * | 1998-07-31 | 2001-11-20 | Probiodrug | Raising blood sugar level in hypoglycemic mammals by administering inhibitors of dipeptidyl peptidase IV |
| US6500804B2 (en) * | 2000-03-31 | 2002-12-31 | Probiodrug Ag | Method for the improvement of islet signaling in diabetes mellitus and for its prevention |
| US6548481B1 (en) * | 1998-05-28 | 2003-04-15 | Probiodrug Ag | Effectors of dipeptidyl peptidase IV |
Family Cites Families (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US25023A (en) * | 1859-08-09 | Improved device for making electro-magnetic currents, constant or intermittent | ||
| JPS4940442B2 (en) * | 1971-08-30 | 1974-11-02 | ||
| DD296075A5 (en) * | 1989-08-07 | 1991-11-21 | Martin-Luther-Universitaet Halle-Wittenberg,De | PROCESS FOR THE PREPARATION OF NEW INHIBITORS OF DIPEPTIDYL PEPTIDASE IV |
| US5258185A (en) * | 1989-08-23 | 1993-11-02 | Bauer Kurt H | Highly active, rapidly absorbable formulations of glibenclamide, processes for the production thereof and their use |
| WO1991011457A1 (en) | 1990-01-24 | 1991-08-08 | Buckley Douglas I | Glp-1 analogs useful for diabetes treatment |
| EP0528858B1 (en) | 1990-04-14 | 1997-01-22 | New England Medical Center Hospitals, Inc. | Inhibitors of dipeptidyl-aminopeptidase type iv |
| WO1991017767A1 (en) | 1990-05-21 | 1991-11-28 | New England Medical Center Hospitals, Inc. | Method of treating inhibition of dipeptidyl aminopeptidase type iv |
| JPH0819154B2 (en) | 1991-03-14 | 1996-02-28 | 江崎グリコ株式会社 | Peptides that inhibit dipeptidyl carboxypeptidase |
| JPH04334357A (en) * | 1991-05-02 | 1992-11-20 | Fujirebio Inc | Acyl derivatives with enzyme inhibitory action |
| ES2153831T3 (en) | 1991-10-22 | 2001-03-16 | New England Medical Center Inc | TYPE IV DIPEPTIDIL-AMINOPEPTIDASE INHIBITORS. |
| DE4140177C2 (en) * | 1991-12-05 | 1995-12-21 | Alfatec Pharma Gmbh | Nanosol acute form for glibenclamide |
| US5614219A (en) * | 1991-12-05 | 1997-03-25 | Alfatec-Pharma Gmbh | Oral administration form for peptide pharmaceutical substances, in particular insulin |
| WO1995011689A1 (en) | 1993-10-29 | 1995-05-04 | Trustees Of Tufts College | Use of inhibitors of dipeptidyl-aminopeptidase to block entry of hiv into cells |
| WO1995034538A2 (en) * | 1994-06-10 | 1995-12-21 | Universitaire Instelling Antwerpen | Purification of serine proteases and synthetic inhibitors thereof |
| DE4432757A1 (en) * | 1994-09-14 | 1996-03-21 | Boehringer Mannheim Gmbh | Pharmaceutical preparation containing metformin and process for its preparation |
| CZ389398A3 (en) | 1996-05-29 | 1999-07-14 | Prototek, Inc. | Thalidomide promedicaments and their use for modulation or t-cell function |
| WO1998005331A2 (en) * | 1996-08-02 | 1998-02-12 | Ligand Pharmaceuticals Incorporated | Prevention or treatment of type 2 diabetes or cardiovascular disease with ppar modulators |
| JPH10182687A (en) * | 1996-10-21 | 1998-07-07 | Bayer Yakuhin Kk | Stabilization of storage of acarbose |
| TW492957B (en) * | 1996-11-07 | 2002-07-01 | Novartis Ag | N-substituted 2-cyanopyrrolidnes |
| AR016751A1 (en) | 1996-11-22 | 2001-08-01 | Athena Neurosciences Inc | METHOD FOR INHIBITING THE RELEASE OF THE BETA-AMYLOID PEPTIDE IN A CELL, PHARMACEUTICAL COMPOSITION AND USEFUL COMPOUNDS IN THIS METHOD |
| AU4854999A (en) | 1998-07-02 | 2000-01-24 | Invitro Diagnostics, Inc. | Methods, compositions and apparatus for making nucleic acid molecules having a selected affinity to a target molecule |
| AU3960400A (en) | 1999-03-05 | 2000-09-28 | Molteni L. E C. Dei Fratelli Alitti Societa' Di Esercizio S.P.A. | Use of metformin in the preparation of pharmaceutical compositions capable of inhibiting the enzyme dipeptidyl peptidase iv |
| AU2001233622A1 (en) | 2000-02-25 | 2001-09-03 | Novo-Nordisk A/S | Inhibition of beta cell degeneration |
| DK1480961T3 (en) * | 2002-02-28 | 2007-05-07 | Prosidion Ltd | Glutaminyl-based DPIV inhibitors |
-
1998
- 1998-05-28 DE DE19823831A patent/DE19823831A1/en not_active Withdrawn
-
1999
- 1999-05-28 DE DE29909210U patent/DE29909210U1/en not_active Expired - Lifetime
- 1999-05-28 KR KR1020047008261A patent/KR100630258B1/en not_active Expired - Fee Related
- 1999-05-28 DE DE59913840T patent/DE59913840D1/en not_active Expired - Fee Related
- 1999-05-28 DE DE59910084T patent/DE59910084D1/en not_active Expired - Fee Related
- 1999-05-28 IL IL13986299A patent/IL139862A0/en active IP Right Grant
- 1999-05-28 NZ NZ508260A patent/NZ508260A/en unknown
- 1999-05-28 PL PL99344403A patent/PL344403A1/en not_active IP Right Cessation
- 1999-05-28 WO PCT/EP1999/003712 patent/WO1999061431A1/en not_active Ceased
- 1999-05-28 DE DE59913784T patent/DE59913784D1/en not_active Expired - Fee Related
- 1999-05-28 DE DE29909211U patent/DE29909211U1/en not_active Expired - Lifetime
- 1999-05-28 DE DE59910083T patent/DE59910083D1/en not_active Expired - Fee Related
- 1999-05-28 CA CA002333603A patent/CA2333603C/en not_active Expired - Fee Related
- 1999-05-28 RU RU2003121766/04A patent/RU2309161C2/en not_active IP Right Cessation
- 1999-05-28 UA UA2000116790A patent/UA54599C2/en unknown
- 1999-05-28 EP EP99926464A patent/EP1082314B1/en not_active Expired - Lifetime
- 1999-05-28 RU RU2000133251/04A patent/RU2227800C2/en not_active IP Right Cessation
- 1999-05-28 JP JP2000550837A patent/JP2002516318A/en active Pending
- 1999-05-28 CN CNA2004100833079A patent/CN1637018A/en active Pending
- 1999-05-28 AT AT04005976T patent/ATE336248T1/en not_active IP Right Cessation
- 1999-05-28 AT AT99926464T patent/ATE231497T1/en active
- 1999-05-28 AT AT03001324T patent/ATE289598T1/en not_active IP Right Cessation
- 1999-05-28 EP EP04005976A patent/EP1428533B1/en not_active Expired - Lifetime
- 1999-05-28 KR KR1020007013350A patent/KR100628668B1/en not_active Expired - Fee Related
- 1999-05-28 EP EP02005352A patent/EP1215207B1/en not_active Expired - Lifetime
- 1999-05-28 ES ES04005976T patent/ES2271723T3/en not_active Expired - Lifetime
- 1999-05-28 PT PT02005353T patent/PT1214936E/en unknown
- 1999-05-28 EP EP02005353A patent/EP1214936B1/en not_active Expired - Lifetime
- 1999-05-28 SI SI9930209T patent/SI1082314T1/en unknown
- 1999-05-28 NZ NZ525799A patent/NZ525799A/en unknown
- 1999-05-28 DE DE59904100T patent/DE59904100D1/en not_active Expired - Lifetime
- 1999-05-28 CN CNA2004100833064A patent/CN1636593A/en active Pending
- 1999-05-28 DK DK02005353T patent/DK1214936T3/en active
- 1999-05-28 AT AT03026947T patent/ATE338546T1/en not_active IP Right Cessation
- 1999-05-28 DE DE29909208U patent/DE29909208U1/en not_active Expired - Lifetime
- 1999-05-28 DE DE59911670T patent/DE59911670D1/en not_active Expired - Fee Related
- 1999-05-28 AT AT02005353T patent/ATE271869T1/en not_active IP Right Cessation
- 1999-05-28 AT AT02005352T patent/ATE272059T1/en not_active IP Right Cessation
- 1999-05-28 CN CNA2007101369808A patent/CN101095675A/en active Pending
- 1999-05-28 BR BR9910758-9A patent/BR9910758A/en not_active Application Discontinuation
- 1999-05-28 ES ES99926464T patent/ES2193709T3/en not_active Expired - Lifetime
- 1999-05-28 EP EP03001324A patent/EP1304327B1/en not_active Expired - Lifetime
- 1999-05-28 EP EP03026947A patent/EP1398030B1/en not_active Expired - Lifetime
- 1999-05-28 AU AU43709/99A patent/AU764262B2/en not_active Ceased
- 1999-05-28 CN CNB998067237A patent/CN1332954C/en not_active Expired - Fee Related
- 1999-05-28 ES ES03001324T patent/ES2238641T3/en not_active Expired - Lifetime
- 1999-05-28 HU HU0102001A patent/HUP0102001A3/en unknown
- 1999-05-28 ES ES02005353T patent/ES2223981T3/en not_active Expired - Lifetime
- 1999-05-28 DK DK03001324T patent/DK1304327T3/en active
- 1999-05-28 SI SI9930771T patent/SI1304327T1/xx unknown
- 1999-05-28 PT PT03001324T patent/PT1304327E/en unknown
- 1999-05-28 ES ES03026947T patent/ES2271458T3/en not_active Expired - Lifetime
-
2000
- 2000-11-23 IL IL139862A patent/IL139862A/en not_active IP Right Cessation
- 2000-11-24 IS IS5728A patent/IS5728A/en unknown
- 2000-11-27 NO NO20005994A patent/NO317989B1/en unknown
- 2000-11-28 US US09/723,638 patent/US6548481B1/en not_active Expired - Lifetime
-
2002
- 2002-12-06 HK HK02108901.9A patent/HK1047887B/en not_active IP Right Cessation
-
2003
- 2003-02-10 US US10/361,956 patent/US20030134802A1/en not_active Abandoned
- 2003-07-14 HK HK03105067.4A patent/HK1052708B/en not_active IP Right Cessation
- 2003-12-02 US US10/727,209 patent/US20050203030A1/en not_active Abandoned
-
2004
- 2004-01-15 RU RU2004101292/15A patent/RU2004101292A/en not_active Application Discontinuation
-
2005
- 2005-03-21 IS IS7764A patent/IS2130B/en unknown
- 2005-03-21 IS IS7763A patent/IS2089B/en unknown
-
2006
- 2006-05-04 IL IL175407A patent/IL175407A0/en unknown
- 2006-05-30 US US11/443,389 patent/US20080182798A1/en not_active Abandoned
Patent Citations (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2961377A (en) * | 1957-08-05 | 1960-11-22 | Us Vitamin Pharm Corp | Oral anti-diabetic compositions and methods |
| US3174901A (en) * | 1963-01-31 | 1965-03-23 | Jan Marcel Didier Aron Samuel | Process for the oral treatment of diabetes |
| US3879541A (en) * | 1970-03-03 | 1975-04-22 | Bayer Ag | Antihyperglycemic methods and compositions |
| US3960949A (en) * | 1971-04-02 | 1976-06-01 | Schering Aktiengesellschaft | 1,2-Biguanides |
| US4028402A (en) * | 1974-10-11 | 1977-06-07 | Hoffmann-La Roche Inc. | Biguanide salts |
| US4935493A (en) * | 1987-10-06 | 1990-06-19 | E. I. Du Pont De Nemours And Company | Protease inhibitors |
| US5433955A (en) * | 1989-01-23 | 1995-07-18 | Akzo N.V. | Site specific in vivo activation of therapeutic drugs |
| US5462928A (en) * | 1990-04-14 | 1995-10-31 | New England Medical Center Hospitals, Inc. | Inhibitors of dipeptidyl-aminopeptidase type IV |
| US5624894A (en) * | 1992-09-17 | 1997-04-29 | University Of Florida | Brain-enhanced delivery of neuroactive peptides by sequential metabolism |
| US6201132B1 (en) * | 1993-12-03 | 2001-03-13 | Ferring B.V. | Inhibitors of DP-mediated processes, compositions, and therapeutic methods thereof |
| US5939560A (en) * | 1993-12-03 | 1999-08-17 | Ferring B.V. | Inhibitors of DP-mediated processes, compositions and therapeutic methods thereof |
| US5705483A (en) * | 1993-12-09 | 1998-01-06 | Eli Lilly And Company | Glucagon-like insulinotropic peptides, compositions and methods |
| US5543396A (en) * | 1994-04-28 | 1996-08-06 | Georgia Tech Research Corp. | Proline phosphonate derivatives |
| US5512549A (en) * | 1994-10-18 | 1996-04-30 | Eli Lilly And Company | Glucagon-like insulinotropic peptide analogs, compositions, and methods of use |
| US5614379A (en) * | 1995-04-26 | 1997-03-25 | Eli Lilly And Company | Process for preparing anti-obesity protein |
| US6303661B1 (en) * | 1996-04-25 | 2001-10-16 | Probiodrug | Use of dipeptidyl peptidase IV effectors for lowering the blood glucose level in mammals |
| US6006753A (en) * | 1996-08-30 | 1999-12-28 | Eli Lilly And Company | Use of GLP-1 or analogs to abolish catabolic changes after surgery |
| US5827898A (en) * | 1996-10-07 | 1998-10-27 | Shaman Pharmaceuticals, Inc. | Use of bisphenolic compounds to treat type II diabetes |
| US6124305A (en) * | 1996-11-07 | 2000-09-26 | Novartis Ag | Use of N-(substituted glycyl)-2-cyanopyrrolidines in inhibiting dipeptidyl peptidase-IV |
| US6011155A (en) * | 1996-11-07 | 2000-01-04 | Novartis Ag | N-(substituted glycyl)-2-cyanopyrrolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV |
| US6548481B1 (en) * | 1998-05-28 | 2003-04-15 | Probiodrug Ag | Effectors of dipeptidyl peptidase IV |
| US6319893B1 (en) * | 1998-07-31 | 2001-11-20 | Probiodrug | Raising blood sugar level in hypoglycemic mammals by administering inhibitors of dipeptidyl peptidase IV |
| US6107317A (en) * | 1999-06-24 | 2000-08-22 | Novartis Ag | N-(substituted glycyl)-thiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV |
| US6110949A (en) * | 1999-06-24 | 2000-08-29 | Novartis Ag | N-(substituted glycyl)-4-cyanothiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV |
| US6172081B1 (en) * | 1999-06-24 | 2001-01-09 | Novartis Ag | Tetrahydroisoquinoline 3-carboxamide derivatives |
| US20010025023A1 (en) * | 2000-02-25 | 2001-09-27 | Carr Richard David | Inhibition of beta cell degeneration |
| US6500804B2 (en) * | 2000-03-31 | 2002-12-31 | Probiodrug Ag | Method for the improvement of islet signaling in diabetes mellitus and for its prevention |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7504423B2 (en) | 2003-12-11 | 2009-03-17 | Mitsubishi Tanabe Pharma Corporation | α-amino acid derivatives and use thereof as medicines |
| US20070117786A1 (en) * | 2003-12-19 | 2007-05-24 | Altana Pharma Ag | Intermediates for the preparation of tricyclic dihydropyrano-imidazo-pyridines derivatives |
| US8604198B2 (en) | 2005-02-18 | 2013-12-10 | Mitsubishi Tanabe Pharma Corporation | Salt of proline derivative, solvate thereof, and production method thereof |
| US20090124626A1 (en) * | 2005-09-29 | 2009-05-14 | Daiichi Sankyo Company, Limited | Pharmaceutical agent comprising insulin resistance improving agent |
| US20110059912A1 (en) * | 2008-01-17 | 2011-03-10 | Kiichiro Ueta | Combination therapy comprising sglt inhibitors and dpp4 inhibitors |
| US8853385B2 (en) | 2008-01-17 | 2014-10-07 | Mitsubishi Tanabe Pharma Corporation | Combination therapy comprising SGLT inhibitors and DPP4 inhibitors |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6548481B1 (en) | Effectors of dipeptidyl peptidase IV | |
| AU2003262286B2 (en) | Novel Effectors of Dipeptidyl Peptidase IV | |
| AU2006202684A1 (en) | Novel effectors of dipeptidyl peptidase IV | |
| MXPA00011600A (en) | New dipeptidyl peptidase iv effectors | |
| CZ20004427A3 (en) | New effectors of dipeptidyl peptidase IV | |
| HK1059397A (en) | Dipeptidyl peptidase iv effectors | |
| HK1033316B (en) | New dipeptidyl peptidase iv effectors | |
| HK1047930A (en) | Salts of isoleucyl-thiazolidine and -pyrrolidine and their use as dipeptidylpeptidase inhibitors | |
| DE29924609U1 (en) | Orally effective hypoglycemic compositions, useful e.g. for treating diabetes mellitus or hyperlipidemia, containing dipeptidyl peptidase IV effector and another antidiabetic agent |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: PROSIDION LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:016536/0107 Effective date: 20050321 |
|
| AS | Assignment |
Owner name: PROSIDION LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:016561/0783 Effective date: 20050321 Owner name: PROSIDION LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:017045/0252 Effective date: 20050321 Owner name: PROSIDION LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:016536/0621 Effective date: 20050321 Owner name: PROSIDION LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:016547/0581 Effective date: 20050321 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |