[go: up one dir, main page]

US20050196601A1 - Microporous sheets with barrier coatings - Google Patents

Microporous sheets with barrier coatings Download PDF

Info

Publication number
US20050196601A1
US20050196601A1 US11/072,833 US7283305A US2005196601A1 US 20050196601 A1 US20050196601 A1 US 20050196601A1 US 7283305 A US7283305 A US 7283305A US 2005196601 A1 US2005196601 A1 US 2005196601A1
Authority
US
United States
Prior art keywords
microporous sheet
coating
coated
barrier coating
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/072,833
Other languages
English (en)
Inventor
Lawrence Fitzgerald
Brian Woodworth
Walter Kasper
John Zern
Ken Niederst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPG Industries Ohio Inc
Original Assignee
PPG Industries Ohio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPG Industries Ohio Inc filed Critical PPG Industries Ohio Inc
Priority to US11/072,833 priority Critical patent/US20050196601A1/en
Assigned to PPG INDUSTRIES OHIO, INC. reassignment PPG INDUSTRIES OHIO, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KASPER, WALTER F., FITZGERALD, LAWRENCE J., NIEDERST, KEN W., WOODWORTH, BRIAN E., ZERN, JOHN R.
Publication of US20050196601A1 publication Critical patent/US20050196601A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4222Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic polyhydroxy compounds and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • Y10T428/31583Nitrile monomer type [polyacrylonitrile, etc.]

Definitions

  • the present invention relates to microporous sheets having a barrier coating.
  • Microporous sheets can comprise a matrix of thermoplastic organic polymer with interconnecting pores and optional filler particles.
  • Examples of microporous sheets comprising polyethylene and silica filler particles are sold under the designation TESLIN by PPG Industries, Inc. Microporous sheets are useful in many applications such as cards, tags, labels, menus, in-mold graphics, commercial printing and specialty printing.
  • Microporous sheets are typically gas permeable. Microporous sheets with improved gas barrier properties are desired for various applications such as printed labels and packaging materials. Other barrier properties are also desired.
  • the present invention provides a coated microporous sheet comprising a microporous sheet and a barrier coating over at least a portion of the microporous sheet.
  • the coated microporous sheets are flexible and possess desirable barrier properties.
  • the present invention further provides a method of coating a microporous sheet, comprising applying a gas barrier coating composition to at least a portion of the microporous sheet.
  • FIG. 1 is a partially schematic side view of a microporous sheet coated with a barrier coating in accordance with an embodiment of the present invention.
  • FIG. 1 illustrates a coated microporous sheet 5 comprising a microporous sheet 10 coated with a barrier coating 20 in accordance with an embodiment of the present invention.
  • the barrier coating 20 is shown as a continuous layer or film on the surface of the sheet 10 in FIG. 1 , at least a portion of the barrier coating 20 may penetrate into the microporous sheet 10 .
  • the barrier coating 20 may be applied over only a portion of the microporous sheet. In certain nonlimiting embodiments, the barrier coating 20 may be applied directly to the microporous sheet 10 .
  • a primer or other undercoat may be used between the barrier coating 20 and the microporous sheet 10 .
  • any suitable coating(s) may be applied on top of the barrier coating 20 .
  • the barrier coating is over substantially all of the sheet; “substantially all” in this context means that 90 percent or greater, such as 95 percent or greater or 99 percent or greater, is covered with the coating.
  • carrier coating refers to a coating that imparts vapor barrier, gas barrier and/or chemical barrier to a substrate.
  • Vapor barrier refers to a barrier and/or low permeability to liquid and/or its vapor.
  • Gas barrier refers to a barrier and/or low permeability to oxygen, nitrogen, carbon dioxide and other gases.
  • Chemical barrier refers to a barrier and/or low permeability to the migration of a molecule from one substrate to another, and/or from within one substrate to its surface. Any resistance to permeation of vapor, gas and/or chemical(s) is sufficient to qualify the coating as a “barrier coating” according to the present invention.
  • the gas barrier properties of a substrate, and any coatings thereon, are typically described in terms of the oxygen permeability constant (“P(O 2 )”).
  • the “P(O 2 )” number quantifies the amount of oxygen that can pass through a substrate and/or coating under a specific set of circumstances and is generally expressed in units of cm 3 -mil/100 inches 2 /atmosphere/day. This is a standard unit of permeation measured as cubic centimeters of oxygen permeating through one mil (25.4 micron) thickness of a sample, 100 square inches (654 square centimeters) in an area, over a 24-hour period, under a partial pressure differential of one atmosphere at a specific temperature and relative humidity (R.H.) conditions.
  • the barrier coatings used according to the present invention may possess a permeability co-efficient P(O 2 ) of less than 2 or 3 cm 3 -mil/100 inches 2 /atmosphere/day. In certain nonlimiting embodiments, the barrier coatings have a P(O 2 ) of less than 1, or even less than 0.6, or less than 0.1 cm 3 -mil/100 inches 2 /atmosphere/day. In certain nonlimiting embodiments, the present barrier coatings, when applied to microporous sheets, reduce the permeance of the sheet by at least 10 times, by at least 100 times, or in some nonlimiting embodiments by at least 1,000 times, as compared with the permeance of the uncoated microporous sheet.
  • the barrier coating 20 when cured on the microporous sheet, may have a dry film thickness of from about 1 to about 50 microns, such as from about 5 or 10 microns to about 20 or 25 microns.
  • the barrier coating compositions may comprise resins such as polyurethanes, polyureas, polyamides, polyvinylidene chlorides epoxy amines, poly(meth)acrylates, polyvinyl ethers, polyvinyl alcohols, polyesters and the like, and combinations thereof. Any resin that forms a suitable polymeric barrier film can be used in accordance with the present invention, absent compatibility problems.
  • polyurethane resins may be used, including those prepared using polyester diol(s) and/or aromatic diol(s).
  • the barrier coating comprises a polyurethane comprising at least 30 weight percent of meta-substituted aromatic material. The weight percent is based on the total solid weight of the resin.
  • the meta-substituted aromatic material can be introduced through components of the polyurethane pre-polymer, or through chain extenders reacted with the polyurethane pre-polymer.
  • the polyurethane can comprise 50 weight percent or higher of meta-substituted aromatic material, such as 60 weight percent or higher.
  • Polyurethane refers to compounds having urethane linkages and/or urea linkages.
  • the polyurethane comprises a polyester polyol.
  • the polyester polyol has a Molar Permachor Number of at least 35, such as 39 or higher.
  • “Molar Permachor Number” and like terms refer to the number calculated from the chemical structure of the polymer; each atom or group of atoms in side chains or the backbone has a value from the Master Table of Segmental Permachor Values, which Table can be found, for example, in “Properties of Polymers” by D. W. Van Krevelan, 3 rd Ed., Elsevier, (1990). The values are then used to get the Permachor Number, according to methods known to those skilled in the art, which are also discussed in “The Use of Barrier Polymers in Packaging” by Morris Salame, Polysultants Co.
  • the polyester polyol Molar Permachor Number of at least 35 is achieved by preparing a polyester polyol from a polyol comprising an ether moiety and a carboxylic acid or anhydride.
  • Suitable ether polyols include, for example, diethylene glycol, ethylene glycol and lower oligomers of ethylene glycol including diethylene glycol, triethylene glycol and tetraethylene glycol; propylene glycol and lower oligomers of propylene glycol including dipropylene glycol, tripropylene glycol and tetrapropylene glycol; also poly(tetrahydrofuran).
  • Suitable dicarboxylic acids include but are not limited to glutaric acid, succinic acid, malonic acid, oxalic acid, phthalic acid, isophthalic acid, hexahydrophthalic acid, adipic acid, maleic acid, and mixtures thereof. Anhydrides of these and any other carboxylic acids can also be used.
  • the polyester polyol has greater than eight carbon atoms.
  • the polyester polyol can be prepared according to any method known in the art.
  • the polyol and carboxylic acid/anhydride can be heated together while removing the water generated by esterification until a desired acid number is achieved.
  • the polyester polyol can then be reacted with isocyanate to form a polyurethane.
  • the polyurethane can be formed according to any method known in the art, such as by heating the polyol with an isocyanate until a desired NCO equivalent weight is achieved.
  • Any isocyanate can be used according to the present invention; examples include, but are not limited to, isophorone diisocyanate (IPDI), dicyclohexylmethane 4,4′-diisocyanate (H 12 MDI), cyclohexyl diisocyanate (CHDI), m-tetramethylxylylene diisocyanate (m-TMXDI), p-tetramethylxylylene diisocyanate (p-TMXDI), ethylene diisocyanate, 1,2-diisocyanatopropane, 1,3-diisocyanatopropane, 1,6-diisocyanatohexane (hexamethylene diisocyanate or HDI), 1,4-butylene diisocyanate, lysine diisocyanate, 1,4-methylene bis-(cyclohexyl isocyanate), toluene diisocyanate (TDI), m-xylylened
  • the polyurethane can then be chain extended to build molecular weight using, for example, any chain extension agent having more than one reactive functional group.
  • chain extension agent having more than one reactive functional group.
  • examples include polyols, polyamines, polythiols, or other compounds having reactive functional groups, such as hydroxy groups, thiol groups, amine groups, carboxylic acids, and acetylacetonate protons.
  • Suitable polyol chain extenders include, but are not limited to: 1,6-hexanediol; cyclohexanedimethanol; 2-ethyl-1,6-hexanediol; 1,4-butanediol; ethylene glycol and lower oligomers of ethylene glycol including diethylene glycol, triethylene glycol and tetraethylene glycol; propylene glycol and lower oligomers of propylene glycol including dipropylene glycol, tripropylene glycol and tetrapropylene glycol; 1,3-propanediol; 1,4-butanediol; neopentyl glycol; dihydroxyalkylated aromatic compounds such as the bis (2-hydroxyethyl) ethers of hydroquinone and resorcinol (HER); p-xylene- ⁇ , ⁇ ′-diol; the bis (2-hydroxyethyl) ether of p-xylene- ⁇ ,
  • Suitable polyamine extenders include, but are not limited to, p-phenylenediamine, m-phenylenediamine, benzidine, 4,4′-methylenedianiline, 4,4′-methylenibis (2-chloroaniline), ethylene diamine, m-xylylenediamine (MXDA) and combinations of these.
  • Other typical chain extenders are amino alcohols such as ethanolamine, propanolamine, and butanolamine.
  • Acidic chain extenders include 2,2-bis(hydroxymethyl)propionic acid (DMPA), 2,2-bis(hydroxymethyl)butyric acid, and diphenolic acid.
  • DMPA 2,2-bis(hydroxymethyl)propionic acid
  • DMPA 2,2-bis(hydroxymethyl)butyric acid
  • diphenolic acid Other suitable chain extenders and combinations of chain extenders are also within the scope of the present invention.
  • Isocyanates can also be used, such as any of those listed above, to further chain extend the molecule and/or impart desired properties.
  • Chain extension can be accomplished by means standard in the art.
  • the chain extenders can be heated in a flask and the polyurethane added thereto.
  • it may be desired to neutralize a chain extended polyurethane having acidic functionality to increase stability of the polyurethane when it is dispersed in water.
  • Any amine or other neutralizing agent can be used; certain chain extenders may also provide neutralization. Examples include but are not limited to MXDA and dimethylethanol amine (DMEA); the neutralizing agent can also contribute to the barrier properties of the coating.
  • the polyurethane is in solvent, and neutralization of any acid in the polyurethane molecule is not desired.
  • the polyurethanes used in the coatings of the present invention comprise at least 30 weight percent of meta-substituted aromatic material. Weight percent is based on the total solid weight of the resin (i.e. polyurethane) itself.
  • the meta-substituted aromatic material can be introduced in the polyester polyol, the isocyanate reacted with the polyester polyol to form the urethane, and/or any of the various chain extenders.
  • the polyurethane prepolymer of the present invention will typically have a weight average molecular weight in THF of 5000 to 30,000, such as 7000 to 25,000 or 10,000 to 15,000.
  • the polyurethane when dispersed in water i.e. the “polyurethane dispersion” will typically have a weight average molecular weight (in DMF) of8000 to 200,000, such as 10,000 to 130,000 or 20,000 to 60,000.
  • the polyurethane will have a Molar Permachor Number of at least 50.
  • a meta-substituted aliphatic isocyanate such as TMXDI
  • TMXDI meta-substituted aliphatic isocyanate
  • the polyurethane dispersion is comprised of a blend of two or more different polyurethanes.
  • a first polyurethane dispersion having approximately 35 weight percent TDI and approximately 20 weight percent HER can be blended with a second polyurethane dispersion comprising approximately 20 weight percent TDI and zero percent HER.
  • the barrier coating composition applied on the microporous sheet may comprise from about 10 to about 50, such as 25 to 40, weight percent resin, such as those listed above, based on the total weight of the coating composition.
  • the coating composition may comprise a suitable solvent, such as water and/or organic solvents that will not cause embrittlement of the microporous sheet.
  • the barrier coating composition may be substantially solvent-free.
  • substantially solvent-free as used herein when referring to the barrier coating composition means that the gas barrier coating composition contains less than about 15 or 20 weight percent organic solvents, such as less than 5 or 10 weight percent, with weight percent being based on the total weight of the coating composition to be applied to the microporous sheet.
  • the barrier coating composition may contain from zero to 2 or 3 weight percent organic solvents.
  • the composition comprises less than 0.1 or 0.01 weight percent MEK, and less than 2 or 3 weight percent DMEA.
  • the barrier coating compositions may be water based, e.g., in the form of an aqueous dispersion.
  • water-based as used herein to describe the barrier coating 20 composition means compositions in which the carrier fluid of the composition is predominantly water on a weight percent basis, i.e., more than 50 weight percent of the carrier comprises water. The remainder of the carrier comprises less than 50 weight percent organic solvent, typically less than 25 weight percent, such as less than 15 weight percent. Based on the total weight of the barrier coating composition (including the carrier and solids), the water may comprise from up to about 90 weight percent, although the weight percent of water will typically be lower.
  • the barrier coating of the present invention further comprises one or more additional polymers.
  • the polymer(s) can be chosen to impart various properties and/or effects to the coating.
  • a polymer known to impart barrier can be used, such as polyvinylidene chloride (PVDC), copolymers of vinylidene chloride, EVOH, polyamides, and the like.
  • PVDC polyvinylidene chloride
  • EVOH vinylidene chloride
  • polyamides polyamides
  • Other polymers that function as adhesion promoters, flexibilizers, plasticizers and the like can also be used.
  • the present barrier coatings further comprise a pigment or other colorant.
  • colorant means any substance that imparts color and/or other opacity and/or other visual effect to the composition.
  • the colorant can be added to the coating in any suitable form, such as discrete particles, dispersions, solutions and/or flakes. A single colorant or a mixture of two or more colorants can be used in the coating of the present invention.
  • Example colorants include pigments, dyes and tints, such as those used in the paint industry and/or listed in the Dry Color Manufacturers Association (DCMA) as well as special effect compositions.
  • a colorant may include, for example a finely divided solid powder that is insoluble but wettable under the conditions of use.
  • a colorant can be organic or inorganic and can be agglomerated or non-agglomerated.
  • Nanoparticle dispersions can include one or more highly dispersed nanoparticle colorants or colorant particles that produce a desired visible color and/or opacity and/or visual effect. Nanoparticle dispersions can include colorants such as pigments or dyes having a particle size of less than about 150 nm, such as less than 70 nm, or less than 30 nm. Example nanoparticle dispersions and methods for making them are identified in U.S. Application Publication No. 2003/0125417, which is incorporated herein by reference.
  • Nanoparticle dispersions can also be produced by crystallization, precipitation, gas phase condensation, and chemical attrition (i.e., partial dissolution).
  • a dispersion of resin-coated nanoparticles can be used.
  • a “dispersion of resin-coated nanoparticles” refers to a continuous phase in which is dispersed discreet “composite microparticles” that comprise a nanoparticle and a resin coating on the nanoparticle.
  • Example dispersions of resin-coated nanoparticles and methods for making them are identified in U.S. application Ser. No. 10/876,315 filed Jun. 24, 2004, which is incorporated herein by reference, and U.S. Provisional Application Ser. No. 60/482,167 filed Jun. 24, 2003, which is also incorporated herein by reference.
  • Example special effect compositions that may be used in the coating of the present invention include pigments and/or compositions that produce one or more appearance effects such as reflectance, pearlescence, metallic sheen, phosphorescence fluorescence, photochromism, photosensitivity, thermochromism, goniochromism and/or color-change. Additional special effect compositions can provide other perceptible properties, such as opacity or texture. In a non-limiting embodiment, special effect compositions can produce a color shift, such that the color of the coating changes when the coating is viewed at different angles.
  • Example color effect compositions are identified: in U.S. Patent Application Publication No. 2003/0125416, incorporated herein by reference.
  • Additional color effect compositions can include transparent coated mica and/or synthetic mica, coated silica, coated alumina, a transparent liquid crystal pigment, a liquid crystal coating, and/or any composition wherein interference results from a refractive index differential within the material and not because of the refractive index differential between the surface of the material and the air.
  • a photosensitive composition and/or photochromic composition which reversibly alters its color when exposed to one or more light sources, can be used in the coating of the present invention.
  • Photochromic and/or photosensitive compositions can be activated by exposure to radiation of a specified wavelength. When the composition becomes excited, the molecular structure is changed and the altered structure exhibits a new color that is different from the original color of the composition. When the exposure to radiation is removed, the photochromic and/or photosensitive composition can return to a state of rest, in which the original color of the composition returns.
  • the photochromic and/or photosensitive composition can be colorless in a non-excited state and exhibit a color in an excited state. Full color-change can appear within milliseconds to several minutes, such as from 20 seconds to 60 seconds.
  • Example photochromic and/or photosensitive compositions include photochromic dyes.
  • the photosensitive composition and/or photochromic composition can be associated with and/or at least partially bound to, such as by covalent bonding, a polymer and/or polymeric materials of a polymerizable component.
  • the photosensitive composition and/or photochromic composition associated with and/or at least partially bound to a polymer and/or polymerizable component in accordance with a non-limiting embodiment of the present invention have minimal migration out of the coating.
  • Example photosensitive compositions and/or photochromic compositions and methods for making them are identified in U.S. application Ser. No. 10/892,919 filed Jul. 16, 2004 and incorporated herein by reference.
  • Composite polyester/nylon pigments for example, can be incorporated into the present coatings and provide, for example, a good appearance without affecting flexibility; such pigments can also contribute to barrier.
  • Suitable polyester/nylon pigments are commercially available from Teijin Fiber Limited, Osaka, Japan.
  • the pigment can be one having a high aspect ratio.
  • Suitable high aspect ratio pigments include, for example, vermiculite, mica, talc, metal flakes platy clays and platy silicas.
  • High aspect ratio platelets or pigments may be present in coatings in amounts from above 0.1 to 20 weight percent of the barrier coating, such as from 1 to 10 weight percent, with weight percent based on the total solid weight of the coating.
  • the high aspect ratio pigments may form a “fish-scale” arrangement within the coating, which provides a tortuous path for gases to pass through from one side of the coating to the other.
  • Such platelets typically have diameters of from about 1 to about 20 microns, such as about 2 to 5 or 10 microns.
  • the aspect ratio of the platelets is typically at least 5:1, such as at least 10:1 or 20:1.
  • mica flakes may have an aspect ratio of about 20:1, talc may have an aspect ratio of about 10:1 to about 20:1 and vermiculite may have an aspect ratio of from about 200:1 to about 10,000:1.
  • high aspect ratio pigments contribute to barrier properties, if used in quantities that are too great, flexibility and/or elasticity may be sacrificed. Accordingly, the user will need to determine the appropriate amount of high aspect ratio pigment to use to get the desired properties of barrier and flexibility/elasticity.
  • a high aspect pigment will be ground and added directly to the polyurethane.
  • the barrier coating composition of the present invention may optionally include other ingredients such as fillers, other than the pigments described above, extenders, UV absorbers, light stabilizers, plasticizers, surfactants and wetting agents. These optional ingredients, if used, may comprise up to 10 weight percent, with weight percent being based on the total solid weight of the barrier coating composition.
  • the barrier coating compositions may form a film by drying, as the coating may be cured at ambient or elevated temperature.
  • the coating compositions may comprise crosslinkers that render the coatings thermosetting.
  • Suitable crosslinkers include carbodiimides, aminoplasts, aziridines, zinc/zirconium ammonium carbonates and isocyanates.
  • Water-based carbodiimides and isocyanates may be particularly suitable in some applications because they do not add a significant amount of organic solvent to the barrier coating composition.
  • Aziridines might be particularly suitable in other applications.
  • a crosslinker When a crosslinker is used, it is typically present in an amount of up to about 10 weight percent, such as 1 weight percent, based on the total solid weight of the barrier coating.
  • a crosslinker can result in better barrier. It will be appreciated that when a crosslinker is used, the coating in the present invention may be thermoset, and when a crosslinker is not used, the coating of the present invention will be a thermoplast.
  • the barrier coating composition is applied to a microporous sheet.
  • the barrier coating 20 may be applied on the microporous sheet 10 by any suitable technique.
  • the barrier coating 20 may be applied directly on the microporous sheet 10 in liquid form by spraying, painting, rolling, dipping or the like.
  • microporous sheet means a sheet comprising a polymer matrix, an interconnecting network of pores and, optionally, filler particles.
  • the matrix of the microporous sheet may comprise substantially water-insoluble thermoplastic organic polymer. Many kinds of such polymers are suitable for use as the matrix. In general; any substantially water-insoluble thermoplastic organic polymer which can be extruded, calendered, pressed or rolled into film, sheet, strip or web may be used.
  • the polymer may be a single polymer or it may be a mixture of polymers.
  • the polymers may be homopolymers, copolymers, random copolymers, block copolymers graft copolymers, atactic polymers isotactic polymers, syndiotactic polymers, linear polymers or branched polymers.
  • the mixture may be homogeneous or it may comprise two or more polymeric phases.
  • thermoplastic polyolefins examples include the thermoplastic polyolefins, poly(halo-substituted olefins), polyesters polyamides, polyurethanes, polyureas, poly(vinyl halides); poly(vinylidene halides) polystyrenes poly(vinyl esters), polycarbonates, polyethers, polysulfides, polyimides, polysilanes, polysiloxanes, polycaprolactones, polyacrylates, and polymethacrylates.
  • thermoplastic poly(urethane-ureas), poly(ester-amides), poly(silane-siloxanes), and poly(ether-esters) are within contemplation.
  • specific substantially water-insoluble thermoplastic organic polymers include thermoplastic high density polyethylene, low density polyethylene, ultrahigh molecular weight polyethylene, polypropylene (atactic, isotactic, or syndiotactic), poly(vinyl chloride), polytetrafluoroethylene, copolymers of ethylene and acrylic acid, copolymers of ethylene and methacrylic acid, poly(vinylidene chloride), copolymers of vinylidene chloride and vinyl acetate, copolymers of vinylidene chloride and vinyl chloride, copolymers of ethylene and propylene, copolymers of ethylene and butene, poly(vinyl acetate), polystyrene, poly(omega-aminoundecanoic acid) poly
  • the microporous sheets also comprise a network of interconnecting pores that communicate substantially throughout the material.
  • the pores typically constitute from 30 to 95 volume percent of the microporous material.
  • the pores may constitute from 60 to 75 percent by volume of the microporous material.
  • the volume average diameter of the pores may be at least 0.02 micrometers, typically at least 0.04 micrometers.
  • the volume average diameter of the pores is also typically less than 0.5 micrometer.
  • the finely divided, substantially water-insoluble particulate fillers which may optionally be added to the microporous sheets of the present invention may comprise, for example, siliceous and/or non-siliceous particles.
  • the filler particles may comprise at least30 or 40 weight percent of the microporous material up to about 70 or 80 weight percent.
  • the filler particles are the predominant component of the sheet in comparison with the polymer matrix on a weight percent basis.
  • the filler particles may comprise greater than 50 weight percent of the combined total of the polymer matrix and filer particles.
  • the filler particles may comprise greater than 60 weight percent.
  • a suitable particulate filler is finely divided substantially water-insoluble siliceous particles.
  • suitable siliceous particles include particles of silica, mica, montmorillonite, kaolinite, asbestos, talc, diatomaceous earth, vermiculite, natural and synthetic zeolites, cement, calcium silicate, aluminum silicate, sodium aluminum silicate, aluminum polysilicate, alumina silica gels, and glass particles.
  • precipitated silica, silica gel or fumed silica may be particularly suitable.
  • non-siliceous filler particles include particles of titanium oxide, zinc oxide, antimony oxide, zirconia, magnesia, alumina, zinc sulfide, barium sulfate, strontium sulfate, calcium carbonate, magnesium carbonate, magnesium hydroxide, and finely divided substantially water-insoluble flame retardant filler particles such as particles of ethylenebis(tetra-bromophthalimide), octabromodiphenyl oxide, decabromodiphenyl oxide, and ethylenebisdibromonorbornane dicarboximide.
  • the filler particles typically have an average particle size of less than 40 micrometers.
  • the average ultimate particle size (irrespective of whether or not the ultimate particles are agglomerated) may be less than 0.1 micrometer.
  • Minor amounts, usually less than 5 percent by weight, of other materials used in processing such as lubricant, processing plasticizer, organic extraction liquid, water and the like may optionally also be present. Additional materials introduced for particular purposes may optionally be present in the microporous material in small amounts, usually less than 15 percent by weight. Examples of such materials include antioxidants, ultraviolet light absorbers, reinforcing fibers such as chopped glass fiber strand and the like.
  • microporous sheets are disclosed in U.S. Pat. Nos. 4,833,172; 4,861,644 and 6,114,023, which are incorporated herein by reference.
  • Commercially available microporous sheets are sold under the designation TESLIN by PPG Industries, Inc.
  • the microporous sheets of the present invention may be flexible and/or elastic “Flexible substrate”, “flexibility”, and like terms refer to a microporous sheet that can undergo mechanical stresses, such as bending, stretching and the like, without significant irreversible change. “Elastic” and like terms refer to a substrate that will become distorted when it undergoes mechanical stresses, such as bending, stretching and the like, and will substantially return to its original shape when the mechanical stress is removed. Thus, it will be appreciated that a flexible microporous sheet may or may not also be an elastic microporous sheet.
  • a primer or other intermediate layer may optionally be provided in certain nonlimiting embodiments between the microporous sheet and the gas barrier coating.
  • an acrylic primer such as a water-based styrenic/acrylic copolymer
  • a primer When a primer is used, it typically has a dry film thickness of from about 1 to about 25 microns. Some or all of the primer may pass into the pores of the microporous sheet upon application. Thus, the primer does not necessarily form a film on the surface of the sheet but may, in some cases, be absorbed into the pores of the sheet. It will be appreciated that the primer itself does not typically function as a barrier coating.
  • the primer coating in certain nonlimiting embodiments does not minimize the P(O 2 ) to a point at which P(O 2 ) can even be determined using a Mocon Octran 2/20. That is, P(O 2 ) of the microporous sheet cannot be determined because it is too permeable; even application of an acrylic primer does not allow such reading to be made.
  • one or more additional coatings may be applied on top of at least a portion of the one or more barrier coatings, which may or may not have one or more primer(s) or other intermediate layer(s) thereunder. It has been observed that the barrier coatings used herein impart greater barrier typically significantly greater barrier, to microporous sheets as compared with uncoated microporous sheets or microporous sheets having a coating that does not function as a barrier coating or does not offer significant barrier (i.e. coatings that do not allow permeance to even be measured).
  • the microporous sheet has good printability; that is, printing on the sheet is clear and of relatively high definition.
  • the present coated microporous sheets provide a substrate that has both printability and barrier.
  • a particular application is in the production of labels for plastic substrates, many of which are gas permeable.
  • the present microporous sheets therefore make suitable labels that offer barrier protection to, for example, polyester, polyolefin, polyamide, cellulosic, polystyrene, polyacrylics, polycarbonates, poly(ethylene terephthalate) and/or poly(ethylene naphthalate) substrates.
  • Packaging for food, beverages, medical supplies, and the like that are sensitive to, for example, oxidation, is a particular application of the present invention.
  • Hydroxyl-functional polyesters were prepared using the following procedure.
  • the ingredients listed in Table 1a were charged to a round-bottomed glass flask equipped with a mechanical stirrer, nitrogen inlet tube, thermometer, steam jacket column, fractionating column, and a distillation head connected to a condenser and a receiver.
  • the resultant mixture was heated to react in a nitrogen atmosphere.
  • water generated by the esterification process began to be collected.
  • the reaction was allowed to continue until the acid value was below 3.0 mg KOH/gram, at which time the reaction product was cooled and collected.
  • Table 1a lists the polyester prepared by the foregoing procedure (Polyester Sample No.
  • Polyurethane prepolymers were prepared in a similar manner.
  • the diols were combined (including HER and DMPA) and heated until dissolved. This mixture was then added to isocyanate in an appropriate solvent and held until a specific NCO equivalent weight was reached.
  • a polyurethane prepolymer in the form of an isocyanate-functional polymer was prepared in the following manner. Polyester diol Sample No.
  • the isocyanate-functional prepolymer of Example 2 was chain extended and dispersed in water in the following manner. To a round-bottomed glass flask equipped with a mechanical stirrer, nitrogen inlet, condenser and thermometer was added deionized water, 1533 g, MXDA (m-xylylenediamine), 23.0 g, and DMEA (dimethylethanol amine), 33.4 g. The contents of the flask were heating with stirring to 50° C. The polyurethane prepolymer of Example 2 was then dropped into the aqueous mixture over about 15 minutes followed by an MEK rinse, 60 g, resulting in a milky-white dispersion.
  • MXDA m-xylylenediamine
  • DMEA dimethylethanol amine
  • the dispersion was then put under vacuum to remove MEK to a level of less than 0.1% by weight.
  • the resultant dispersion had a non-volatile content of 35.8%, the pH was 8.9, meq acid was 0.195 and meq base was 0.197.
  • Table 2 lists the ingredients of the polyurethane dispersion prepared in the foregoing example (Dispersion Code No. 1), as well as ingredients of several other polyurethane dispersions prepared in a similar manner using polyester diols. The values listed in Table 2 represent grams of each listed ingredient.
  • MICROLITE 923 and 963 are supplied at 7.5% solids in water.
  • MICROLITE is a dispersion of vermiculite sold by W. R. Grace.
  • HEEU hydroxyethyl ethylene urea.
  • MEK methyl ethyl ketone.
  • Table 3 lists additional polyurethane dispersions prepared without polyester. These polyurethane prepolymers and dispersions were prepared in substantially the same way as described in Examples 2 and 3.
  • Coating materials having compositions listed below in Table 5 were spray-applied to TESLIN SP700. or TS1000 microporous sheets to form gas barrier coatings on the microporous sheets. Each of the coatings was subjected to oxygen barrier testing with Mocon's Oxtran 2/20 at 23° C. and 50% R.H. Oxygen permeability results are listed in Table 5. TABLE 5 Oxygen Barrier Properties of Coated Microporous Sheets Coating Thickness Permeance of the Coating Filler (2 coats substrate and coating Code Dispersion Microporous Composition were (cm 3 /100 inches 2 / No. Code No.
  • the oxygen permeability properties of the above-listed coated microporous sheets were compared With both un-coated microporous sheets and microporous sheets coated with primer materials using the following procedure: Spray applied (multiple passes)using a Binks 62 siphon spray gun, 60 p.s.i. and baked 8 minutes at 82° C. Primer is a waterborne styrene acrylic with no waxes 4-8 microns in thickness (0.16-0.31 mil).
  • Primer is a waterborne styrene acrylic with no waxes 4-8 microns in thickness (0.16-0.31 mil).
  • Primed TESLIN microporous sheets were masked to reduce the area from 50 in 2 to 5 in 2 on Mocon Company's Oxtran -1000. Temperature was 26.5° C. and R.H. was approximately 30 percent for primed TESLIN without the barrier coating the Oxtran 1000 over-ranged, which indicates that permeance is greater than 1289 cm 3 /100 inch 2 /day.
  • gas barrier coatings applied on the microporous sheets (such as those shown in Table 5) have permeance values well below those of un-coated and primer-coated microporous sheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Paints Or Removers (AREA)
  • Cosmetics (AREA)
US11/072,833 2004-03-05 2005-03-04 Microporous sheets with barrier coatings Abandoned US20050196601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/072,833 US20050196601A1 (en) 2004-03-05 2005-03-04 Microporous sheets with barrier coatings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55049104P 2004-03-05 2004-03-05
US11/072,833 US20050196601A1 (en) 2004-03-05 2005-03-04 Microporous sheets with barrier coatings

Publications (1)

Publication Number Publication Date
US20050196601A1 true US20050196601A1 (en) 2005-09-08

Family

ID=34963582

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/072,833 Abandoned US20050196601A1 (en) 2004-03-05 2005-03-04 Microporous sheets with barrier coatings
US11/072,832 Abandoned US20050197480A1 (en) 2004-03-05 2005-03-04 Barrier coating comprising a polyurethane dispersion and elastomeric material
US11/072,834 Abandoned US20050197481A1 (en) 2004-03-05 2005-03-04 Barrier coating comprising a polyurethane dispersion
US12/728,585 Expired - Lifetime US8716402B2 (en) 2004-03-05 2010-03-22 Barrier coating comprising a polyurethane dispersion and elastomeric material

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/072,832 Abandoned US20050197480A1 (en) 2004-03-05 2005-03-04 Barrier coating comprising a polyurethane dispersion and elastomeric material
US11/072,834 Abandoned US20050197481A1 (en) 2004-03-05 2005-03-04 Barrier coating comprising a polyurethane dispersion
US12/728,585 Expired - Lifetime US8716402B2 (en) 2004-03-05 2010-03-22 Barrier coating comprising a polyurethane dispersion and elastomeric material

Country Status (2)

Country Link
US (4) US20050196601A1 (fr)
WO (2) WO2005093001A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012047246A1 (fr) * 2010-10-06 2012-04-12 Toray Plastics (America) Inc. Composition de revêtement barrière avec des particules organiques
US20120231242A1 (en) * 2010-04-15 2012-09-13 Ppg Industries Ohio, Inc. Microporous material
US20130228519A1 (en) * 2011-11-04 2013-09-05 Ppg Industries Ohio, Inc. Microporous material having filtration and adsorption properties and their use in fluid purification processes
US20130228529A1 (en) * 2011-11-04 2013-09-05 Ppg Industries Ohio, Inc. Microporous material having filtration and adsorption properties and their use in fluid purification processes
US20140069862A1 (en) * 2011-11-04 2014-03-13 Ppg Industries Ohio, Inc. Coated microporous materials having filtration and adsorption properties and their use in fluid purification processes
US20140212661A1 (en) * 2011-03-29 2014-07-31 Sun Chemical Corporation Two-coast barrier system comprising polyurethane
KR101473074B1 (ko) * 2010-04-15 2014-12-15 피피지 인더스트리즈 오하이오 인코포레이티드 미세다공성 물질
WO2016110122A1 (fr) * 2015-01-08 2016-07-14 太仓力九和塑胶工业有限公司 Matériau d'absorption de choc, corps de coussin et procédé de préparation de corps de coussin
WO2016187274A1 (fr) 2015-05-18 2016-11-24 Ppg Industries Ohio, Inc. Dispositif d'administration par libération d'une substance volatile
US9861719B2 (en) 2010-04-15 2018-01-09 Ppg Industries Ohio, Inc. Microporous material
US10472293B2 (en) 2016-04-29 2019-11-12 Certainteed Gypsum, Inc. Building assembly containing a water barrier coating film and method of making the building assembly
US11345791B2 (en) * 2017-01-31 2022-05-31 Kimberly-Clark Worldwide, Inc. Polymeric material

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389113B2 (en) * 2002-09-17 2013-03-05 Ppg Industries Ohio, Inc. Substrates and articles of manufacture coated with a waterborne 2K coating composition
US7078453B1 (en) * 2003-08-29 2006-07-18 Inmat Inc. Barrier coating of a non-butyl elastomer and a dispersed layered filler in a liquid carrier and coated articles
GB0708692D0 (en) 2007-05-04 2007-06-13 Innovia Films Ltd Seelable, pealable film
ES2434174T3 (es) * 2007-05-24 2013-12-13 Innovia Films Limited Película de baja emisividad
GB0714418D0 (en) 2007-07-24 2007-09-05 Innovia Films Ltd UV barrier film
GB0714419D0 (en) * 2007-07-24 2007-09-05 Innovia Films Ltd Indicia means
US20090035350A1 (en) * 2007-08-03 2009-02-05 John Stankus Polymers for implantable devices exhibiting shape-memory effects
US7981470B1 (en) * 2007-10-02 2011-07-19 Butler Sean W Interior chemical treatments for inflatable balloons
EP2186839A1 (fr) 2008-11-13 2010-05-19 Bayer MaterialScience AG Dispersions de polyuréthane pour revêtements ayant des propriétés de barrière
ATE544362T1 (de) 2008-12-09 2012-02-15 Dainese Spa Für die zuordnung zu einer vorrichtung für den personenschutz eines benutzers geeignetes kleidungsstück
US9027170B2 (en) 2008-12-09 2015-05-12 Dainese S.P.A. Personal protection device and garment incorporating said device
GB0823072D0 (en) * 2008-12-18 2009-01-28 Innovia Films Ltd Naked collation package
KR101375414B1 (ko) 2009-03-27 2014-03-17 미쓰이 가가쿠 가부시키가이샤 폴리우레탄 디스퍼젼 및 그의 제조방법
ITTO20090964A1 (it) * 2009-12-09 2011-06-10 Bridgestone Corp Metodo per la realizzazione di porzioni colorate su di un pneumatico
WO2011112444A1 (fr) * 2010-03-10 2011-09-15 Nike International Ltd. Polyuréthane thermoplastique hydrophobe en tant qu'agent de compatibilité pour des mélanges de polymères pour balles de golf
US20110224018A1 (en) * 2010-03-10 2011-09-15 Nike, Inc. Golf Ball Having Moisture Resistant Layer
JP5662487B2 (ja) * 2010-03-10 2015-01-28 ナイキ イノベイト セー. フェー. 保護コーティングを有するゴルフボール
US20110224023A1 (en) * 2010-03-10 2011-09-15 Nike, Inc. Golf Ball Having Ionomer/Hydrophobic Thermoplastic Polyurethane Layers
US20110224021A1 (en) * 2010-03-10 2011-09-15 Nike, Inc. Golf Ball Having Moisture Resistant Adhesive Layer
IT1402988B1 (it) * 2010-10-20 2013-09-27 Bridgestone Corp Metodo per la realizzazione di porzioni colorate su di un pneumatico
US9034444B2 (en) * 2011-05-30 2015-05-19 Basf Se Paper and cardboard packaging with barrier coating of a polymer mixture
ITVR20110135A1 (it) * 2011-06-30 2012-12-31 Dainese Spa Dispositivo di protezione.
MX2016016927A (es) * 2014-06-18 2017-09-12 Ppg Ind Ohio Inc Composiciones de recubrimiento elastico de barrera de gas.
US10533082B2 (en) 2015-04-28 2020-01-14 O&M Halyard, Inc. Nitrile rubber glove with stretch modifier
CA3018169C (fr) 2016-03-18 2020-11-24 Ppg Industries Ohio, Inc. Revetements multicouche et procedes de preparation correspondants
US11718764B2 (en) 2016-03-18 2023-08-08 Ppg Industries Ohio, Inc. Coating compositions, elastic barrier coatings formed therefrom, and methods of applying such coatings
EP3541640B1 (fr) 2016-11-17 2022-08-24 Bridgestone Americas Tire Operations, LLC Pneu ayant un élément d'amortissement adhérant à une nappe barrière à l'air
EP3622032A4 (fr) 2017-05-11 2020-12-23 Dow Global Technologies LLC Compositions adhésives à base d'une dispersion aqueuse de polyuréthane
US10865326B2 (en) 2017-09-20 2020-12-15 Ppg Industries Ohio, Inc. Coating compositions, elastic barrier coatings formed therefrom, and methods of applying such coatings
US11015084B2 (en) * 2017-09-20 2021-05-25 Ppg Industries Ohio, Inc. Coating compositions and elastic barrier coatings formed therefrom
CN108727968B (zh) * 2018-04-25 2020-08-14 中山市大一涂料有限公司 一种绿色环保高效led光固化聚氨酯改性不饱和聚酯水性木器漆及其制备方法
US10836924B2 (en) 2019-03-15 2020-11-17 Ppg Industries Ohio, Inc. Coating compositions and elastic barrier coatings formed therefrom
US10829664B2 (en) 2019-03-15 2020-11-10 Ppg Industries Ohio, Inc. Coating compositions containing polythioethers and elastic barrier coatings formed therefrom
DE102020201585A1 (de) * 2020-02-10 2021-08-12 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen mit Geräuschabsorber und Verfahren zur Detektion eines Fahrzeugluftreifens mit Geräuschabsorber sowie zum Recycling eines Fahrzeugluftreifens mit Geräuschabsorber
CN116209707A (zh) 2020-09-23 2023-06-02 陶氏环球技术有限责任公司 水性粘合剂组合物
US12083387B1 (en) * 2022-02-24 2024-09-10 Topgolf Callaway Brands Corp. High elongation golf ball coating
JP7489625B1 (ja) * 2023-05-29 2024-05-24 artience株式会社 包装材及び包装材の製造方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879330A (en) * 1972-03-17 1975-04-22 Union Carbide Corp Food wrap having low oxygen permeability and desirable elastic properties
US4391857A (en) * 1979-08-16 1983-07-05 Kuraray Company, Limited Aqueous dispersion type coating compositions with an improved vibration-damping characteristic
US4441213A (en) * 1982-06-07 1984-04-10 Northern Telecom Limited Flexible tear resistant protective glove for use on high voltage systems
US4532316A (en) * 1984-05-29 1985-07-30 W. L. Gore & Assoc., Inc. Phase separating polyurethane prepolymers and elastomers prepared by reacting a polyol having a molecular weight of 600-3500 and isocyanate and a low molecular weight chain extender in which the ratios of reactants have a limited range
US4892779A (en) * 1988-03-18 1990-01-09 Ppg Industries, Inc. Multilayer article of microporous and substantially nonporous materials
US4961985A (en) * 1988-07-06 1990-10-09 W. L. Gore & Associates, Inc. Fabrics for protective clothing
US5032450A (en) * 1990-01-31 1991-07-16 Ppg Industries, Inc. Microporous material having a coating of hydrophobic polymer
US5036551A (en) * 1990-02-16 1991-08-06 W. L. Gore & Associates, Inc. Elastomeric composite fabric
US5204379A (en) * 1989-10-18 1993-04-20 Takeda Chemical Industries, Ltd. Photocurable adhesive and production of laminated articles using the same
US6013363A (en) * 1997-03-17 2000-01-11 Oji-Yuka Synthetic Paper Co., Ltd. Packaging material
US6013340A (en) * 1995-06-07 2000-01-11 Nike, Inc. Membranes of polyurethane based materials including polyester polyols
US6082025A (en) * 1998-09-11 2000-07-04 Nike, Inc. Flexible membranes
US6391405B1 (en) * 1995-06-07 2002-05-21 Nike, Inc. Fluid barrier membranes
US6569533B1 (en) * 1999-07-27 2003-05-27 Mitsui Takeda Chemicals Inc. Gas barrier polyurethane resin
US6582786B1 (en) * 1998-09-11 2003-06-24 Nike, Inc. Flexible membranes
US6599597B1 (en) * 1995-06-07 2003-07-29 Nike, Inc. Barrier membranes including a barrier layer employing aliphatic thermoplastic urethanes

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2093049B (en) * 1981-02-09 1985-01-23 Takeda Chemical Industries Ltd A method of curing compounds containing isocyanate groups
US4928741A (en) * 1986-11-14 1990-05-29 The Goodyear Tire & Rubber Company Rubber tire having polyvinylidene chloride/elastomer inner liner coating
US4780523A (en) * 1987-03-02 1988-10-25 The Goodyear Tire & Rubber Company Meta-tetramethyl xylene diamine polyurethane compositions and process of making the same
US4788269A (en) * 1987-12-04 1988-11-29 W. R. Grace & Co.-Conn. Polyurethane coatings for bridge deckings and the like
US5005625A (en) * 1989-04-24 1991-04-09 The Goodyear Tire & Rubber Company Pneumatic tire having air retention innerliner
US5229207A (en) * 1990-04-24 1993-07-20 Minnesota Mining And Manufacturing Company Film composite having repositionable adhesive by which it can become permanently bonded to a plasticized substrate
US5153061A (en) * 1991-01-29 1992-10-06 Westvaco Corporation Barrier coating to reduce migration of contaminants from paperboard
US5091467A (en) * 1991-03-29 1992-02-25 The Goodyear Tire & Rubber Company Controlled morphology barrier elastomers made from blends of syndiotactic 1,2-polybutadiene and ethylene-vinyl acetate-vinyl alcohol terpolymers
US5232754A (en) * 1991-11-06 1993-08-03 Allied Signal Inc. Barrier label for beverage bottle
US5912299A (en) * 1995-06-07 1999-06-15 The Sherwin-Williams Company Coating compositions from oil modified polyurethane dispersions
DE69629757D1 (de) 1995-06-07 2003-10-09 Nat Starch Chem Invest Modifizierte wässrige Polyurethandispersionen und Verfahren zu deren Herstellung
DE19604911A1 (de) * 1996-02-10 1997-08-14 Basf Lacke & Farben Bindemittel für Lacke auf Polyurethanbasis
JPH1076593A (ja) * 1996-09-03 1998-03-24 Daicel Chem Ind Ltd バリア性複合フィルムおよびその製造方法
WO1998056598A1 (fr) 1997-06-09 1998-12-17 Herberts Gmbh Revetement protecteur pour elastomere et charge dispersee stratifiee dans un support liquide, et compositions revetues, en particulier des pneus
US6106950A (en) * 1998-06-04 2000-08-22 H. B. Fuller Licesing & Financing Inc. Waterborne primer and oxygen barrier coating with improved adhesion
US6022925A (en) * 1998-06-23 2000-02-08 The Sherwin-Williams Company Partial interpenetrating networks of polymers
US6342280B1 (en) * 1998-06-23 2002-01-29 Nextec Applications, Inc. Products of and methods for improving adhesion between substrate and polymer layers
DE19855125A1 (de) * 1998-11-30 2000-05-31 Basf Coatings Ag Aus mindestens drei Komponenten bestehendes Beschichtungsmittel, Verfahren zu seiner Herstellung sowie seine Verwendung
US20040242763A1 (en) * 2001-11-28 2004-12-02 Michel Tielemans Radiation-curable polyurethane dispersion
JP2003206401A (ja) 2002-01-16 2003-07-22 Mitsubishi Gas Chem Co Inc ポリウレタン樹脂組成物
DE60312924T2 (de) * 2002-06-04 2007-09-06 Mitsubishi Gas Chemical Co., Inc. Polyurethan mit Gasbarriere Eigenschaften als Klebstoff für Laminate und daraus hergestellte Filme und Anstriche
JP4344673B2 (ja) * 2003-10-15 2009-10-14 フタムラ化学株式会社 ガスバリアフィルム

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879330A (en) * 1972-03-17 1975-04-22 Union Carbide Corp Food wrap having low oxygen permeability and desirable elastic properties
US4391857A (en) * 1979-08-16 1983-07-05 Kuraray Company, Limited Aqueous dispersion type coating compositions with an improved vibration-damping characteristic
US4441213A (en) * 1982-06-07 1984-04-10 Northern Telecom Limited Flexible tear resistant protective glove for use on high voltage systems
US4532316A (en) * 1984-05-29 1985-07-30 W. L. Gore & Assoc., Inc. Phase separating polyurethane prepolymers and elastomers prepared by reacting a polyol having a molecular weight of 600-3500 and isocyanate and a low molecular weight chain extender in which the ratios of reactants have a limited range
US4892779A (en) * 1988-03-18 1990-01-09 Ppg Industries, Inc. Multilayer article of microporous and substantially nonporous materials
US4961985A (en) * 1988-07-06 1990-10-09 W. L. Gore & Associates, Inc. Fabrics for protective clothing
US5204379A (en) * 1989-10-18 1993-04-20 Takeda Chemical Industries, Ltd. Photocurable adhesive and production of laminated articles using the same
US5032450A (en) * 1990-01-31 1991-07-16 Ppg Industries, Inc. Microporous material having a coating of hydrophobic polymer
US5036551A (en) * 1990-02-16 1991-08-06 W. L. Gore & Associates, Inc. Elastomeric composite fabric
US6013340A (en) * 1995-06-07 2000-01-11 Nike, Inc. Membranes of polyurethane based materials including polyester polyols
US6203868B1 (en) * 1995-06-07 2001-03-20 Nike, Inc. Barrier members including a barrier layer employing polyester polyols
US6391405B1 (en) * 1995-06-07 2002-05-21 Nike, Inc. Fluid barrier membranes
US6599597B1 (en) * 1995-06-07 2003-07-29 Nike, Inc. Barrier membranes including a barrier layer employing aliphatic thermoplastic urethanes
US6013363A (en) * 1997-03-17 2000-01-11 Oji-Yuka Synthetic Paper Co., Ltd. Packaging material
US6082025A (en) * 1998-09-11 2000-07-04 Nike, Inc. Flexible membranes
US6582786B1 (en) * 1998-09-11 2003-06-24 Nike, Inc. Flexible membranes
US6569533B1 (en) * 1999-07-27 2003-05-27 Mitsui Takeda Chemicals Inc. Gas barrier polyurethane resin

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447161B (zh) * 2010-04-15 2014-08-01 Ppg Ind Ohio Inc 微孔材料
US20120231242A1 (en) * 2010-04-15 2012-09-13 Ppg Industries Ohio, Inc. Microporous material
CN102933639A (zh) * 2010-04-15 2013-02-13 Ppg工业俄亥俄公司 微孔材料
US8435631B2 (en) 2010-04-15 2013-05-07 Ppg Industries Ohio, Inc. Microporous material
US10857252B2 (en) 2010-04-15 2020-12-08 Ppg Industries Ohio, Inc. Microporous material
US9861719B2 (en) 2010-04-15 2018-01-09 Ppg Industries Ohio, Inc. Microporous material
KR101557254B1 (ko) * 2010-04-15 2015-10-02 피피지 인더스트리즈 오하이오 인코포레이티드 미세다공성 물질
KR101473074B1 (ko) * 2010-04-15 2014-12-15 피피지 인더스트리즈 오하이오 인코포레이티드 미세다공성 물질
US8986827B2 (en) 2010-10-06 2015-03-24 Toray Plastics (America), Inc. Barrier coating composition with organic particles
WO2012047246A1 (fr) * 2010-10-06 2012-04-12 Toray Plastics (America) Inc. Composition de revêtement barrière avec des particules organiques
US9227381B2 (en) 2010-10-06 2016-01-05 Toray Plastics (America), Inc. Multilayer barrier film having coating composition with organic particles
US20140212661A1 (en) * 2011-03-29 2014-07-31 Sun Chemical Corporation Two-coast barrier system comprising polyurethane
US9902864B2 (en) * 2011-03-29 2018-02-27 Sun Chemical Corporation Two-coat barrier system comprising polyurethane
US20140069862A1 (en) * 2011-11-04 2014-03-13 Ppg Industries Ohio, Inc. Coated microporous materials having filtration and adsorption properties and their use in fluid purification processes
US20130228529A1 (en) * 2011-11-04 2013-09-05 Ppg Industries Ohio, Inc. Microporous material having filtration and adsorption properties and their use in fluid purification processes
US20130228519A1 (en) * 2011-11-04 2013-09-05 Ppg Industries Ohio, Inc. Microporous material having filtration and adsorption properties and their use in fluid purification processes
WO2016110122A1 (fr) * 2015-01-08 2016-07-14 太仓力九和塑胶工业有限公司 Matériau d'absorption de choc, corps de coussin et procédé de préparation de corps de coussin
WO2016187274A1 (fr) 2015-05-18 2016-11-24 Ppg Industries Ohio, Inc. Dispositif d'administration par libération d'une substance volatile
US10472293B2 (en) 2016-04-29 2019-11-12 Certainteed Gypsum, Inc. Building assembly containing a water barrier coating film and method of making the building assembly
US11345791B2 (en) * 2017-01-31 2022-05-31 Kimberly-Clark Worldwide, Inc. Polymeric material

Also Published As

Publication number Publication date
US20100174032A1 (en) 2010-07-08
US8716402B2 (en) 2014-05-06
WO2005093001A1 (fr) 2005-10-06
US20050197480A1 (en) 2005-09-08
WO2005093000A1 (fr) 2005-10-06
US20050197481A1 (en) 2005-09-08

Similar Documents

Publication Publication Date Title
US20050196601A1 (en) Microporous sheets with barrier coatings
CA2013677C (fr) Composes de peinture
EP3430095B1 (fr) Compositions de revêtement, revêtements de barrière élastique formés à partir de celles-ci et procédés d'application de ces revêtements
KR930009301B1 (ko) 도료 복합체
EP3684865B1 (fr) Compositions de revêtement et revêtements barrières élastiques formés à partir de celles-ci
CN100537628C (zh) 具有改进的粘合力的水性聚氨酯分散体
HK1062424A1 (en) Printable film and coating composition exhibiting stain resistance
RU2680400C1 (ru) Способ получения многослойного покрытия
US20040209063A1 (en) Microporous sheets including a colored base coating and a clear coating
KR930009300B1 (ko) 도료 복합체
US20040191496A1 (en) Coated microporous sheets
EP3802657A1 (fr) Revêtements multicouches et procédés de préparation correspondants
TW200817483A (en) Flexible polymer coating and coated flexible substrates
CN101218274B (zh) 柔性聚合物涂料和涂覆的柔性基材
JP4023199B2 (ja) 顔料分散油性インクによって画像が印刷された印刷物
US20070004892A1 (en) Flexible polymer coating and coated flexible substrates
JP7717037B2 (ja) 加飾シートおよび加飾樹脂成形品
JP2005081556A (ja) キャスティング皮膜
EP4587499A1 (fr) Compositions de revêtement à base de solvant comprenant un polyisocyanate dispersible dans l'eau
JPH01108269A (ja) 艶消し塗装剤
HK1119189B (en) Flexible polymer coating and coated flexible substrates
JP2004149550A (ja) 機能性ウレタン樹脂フィルム及びその製造方法
HK1062424B (en) Printable film and coating composition exhibiting stain resistance

Legal Events

Date Code Title Description
AS Assignment

Owner name: PPG INDUSTRIES OHIO, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FITZGERALD, LAWRENCE J.;WOODWORTH, BRIAN E.;KASPER, WALTER F.;AND OTHERS;REEL/FRAME:016359/0325;SIGNING DATES FROM 20050301 TO 20050302

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION