US20050180967A1 - Polyclonal antibody composition for treating allergy - Google Patents
Polyclonal antibody composition for treating allergy Download PDFInfo
- Publication number
- US20050180967A1 US20050180967A1 US11/046,159 US4615905A US2005180967A1 US 20050180967 A1 US20050180967 A1 US 20050180967A1 US 4615905 A US4615905 A US 4615905A US 2005180967 A1 US2005180967 A1 US 2005180967A1
- Authority
- US
- United States
- Prior art keywords
- polyclonal antibody
- allergen
- pharmaceutical composition
- antibody
- variable region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 56
- 206010020751 Hypersensitivity Diseases 0.000 title claims abstract description 34
- 208000026935 allergic disease Diseases 0.000 title claims abstract description 29
- 230000007815 allergy Effects 0.000 title claims abstract description 26
- 239000013566 allergen Substances 0.000 claims abstract description 124
- 230000027455 binding Effects 0.000 claims abstract description 29
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 29
- 239000000843 powder Substances 0.000 claims abstract description 11
- 239000000546 pharmaceutical excipient Substances 0.000 claims abstract description 10
- 239000006185 dispersion Substances 0.000 claims abstract description 9
- 239000000243 solution Substances 0.000 claims abstract description 9
- 239000004480 active ingredient Substances 0.000 claims abstract description 8
- 238000005516 engineering process Methods 0.000 claims abstract description 8
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 claims abstract description 7
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 claims abstract description 7
- 230000028993 immune response Effects 0.000 claims abstract description 6
- 239000004005 microsphere Substances 0.000 claims abstract description 6
- 238000012546 transfer Methods 0.000 claims abstract description 6
- 238000002823 phage display Methods 0.000 claims abstract description 4
- 108090000623 proteins and genes Proteins 0.000 claims description 29
- 239000013598 vector Substances 0.000 claims description 19
- 241001465754 Metazoa Species 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- 210000004877 mucosa Anatomy 0.000 claims description 15
- 210000002345 respiratory system Anatomy 0.000 claims description 12
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 6
- 241000282326 Felis catus Species 0.000 claims description 4
- 101000998953 Homo sapiens Immunoglobulin heavy variable 1-2 Proteins 0.000 claims description 4
- 101001008255 Homo sapiens Immunoglobulin kappa variable 1D-8 Proteins 0.000 claims description 4
- 101001047628 Homo sapiens Immunoglobulin kappa variable 2-29 Proteins 0.000 claims description 4
- 101001008321 Homo sapiens Immunoglobulin kappa variable 2D-26 Proteins 0.000 claims description 4
- 101001047619 Homo sapiens Immunoglobulin kappa variable 3-20 Proteins 0.000 claims description 4
- 101001008263 Homo sapiens Immunoglobulin kappa variable 3D-15 Proteins 0.000 claims description 4
- 102100036887 Immunoglobulin heavy variable 1-2 Human genes 0.000 claims description 4
- 208000030961 allergic reaction Diseases 0.000 claims description 4
- 230000001939 inductive effect Effects 0.000 claims description 4
- 210000003928 nasal cavity Anatomy 0.000 claims description 4
- 241000233866 Fungi Species 0.000 claims description 3
- 230000036576 dermal application Effects 0.000 claims description 3
- 239000002552 dosage form Substances 0.000 claims description 3
- 210000003300 oropharynx Anatomy 0.000 claims description 3
- 238000011200 topical administration Methods 0.000 claims description 3
- 229940046528 grass pollen Drugs 0.000 claims description 2
- 230000000699 topical effect Effects 0.000 claims description 2
- 210000001215 vagina Anatomy 0.000 claims description 2
- 239000000428 dust Substances 0.000 claims 1
- 229940046536 tree pollen allergenic extract Drugs 0.000 claims 1
- 239000013604 expression vector Substances 0.000 abstract description 4
- 238000004091 panning Methods 0.000 abstract description 2
- 229960004784 allergens Drugs 0.000 description 31
- 238000011282 treatment Methods 0.000 description 26
- 239000000427 antigen Substances 0.000 description 21
- 108091007433 antigens Proteins 0.000 description 20
- 102000036639 antigens Human genes 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 18
- 230000000694 effects Effects 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 15
- 241000699670 Mus sp. Species 0.000 description 14
- 230000000172 allergic effect Effects 0.000 description 14
- 208000010668 atopic eczema Diseases 0.000 description 13
- 210000004369 blood Anatomy 0.000 description 12
- 239000008280 blood Substances 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 12
- 102000004169 proteins and genes Human genes 0.000 description 12
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 10
- 210000002966 serum Anatomy 0.000 description 10
- 208000006673 asthma Diseases 0.000 description 9
- 210000003719 b-lymphocyte Anatomy 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 230000009260 cross reactivity Effects 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 239000012634 fragment Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 230000009257 reactivity Effects 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- 108060003951 Immunoglobulin Proteins 0.000 description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical class CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 7
- 239000000443 aerosol Substances 0.000 description 7
- 230000002009 allergenic effect Effects 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 102000018358 immunoglobulin Human genes 0.000 description 7
- 238000011534 incubation Methods 0.000 description 7
- 210000004072 lung Anatomy 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000002685 pulmonary effect Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 238000002965 ELISA Methods 0.000 description 6
- 241001529936 Murinae Species 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 108010058846 Ovalbumin Proteins 0.000 description 6
- 229940074608 allergen extract Drugs 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- 238000009169 immunotherapy Methods 0.000 description 6
- 229940092253 ovalbumin Drugs 0.000 description 6
- -1 phosphatidylcholine Chemical class 0.000 description 6
- 244000036975 Ambrosia artemisiifolia Species 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 5
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 5
- 108010046644 Polymeric Immunoglobulin Receptors Proteins 0.000 description 5
- 206010039085 Rhinitis allergic Diseases 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 201000010105 allergic rhinitis Diseases 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000008273 gelatin Substances 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 229960001340 histamine Drugs 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 238000011321 prophylaxis Methods 0.000 description 5
- 230000000241 respiratory effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 230000009261 transgenic effect Effects 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 235000003129 Ambrosia artemisiifolia var elatior Nutrition 0.000 description 4
- 206010010744 Conjunctivitis allergic Diseases 0.000 description 4
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 101000840258 Homo sapiens Immunoglobulin J chain Proteins 0.000 description 4
- 102100029571 Immunoglobulin J chain Human genes 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 4
- 210000001744 T-lymphocyte Anatomy 0.000 description 4
- 235000010489 acacia gum Nutrition 0.000 description 4
- 208000002205 allergic conjunctivitis Diseases 0.000 description 4
- 235000003484 annual ragweed Nutrition 0.000 description 4
- 210000000628 antibody-producing cell Anatomy 0.000 description 4
- 230000000890 antigenic effect Effects 0.000 description 4
- 208000024998 atopic conjunctivitis Diseases 0.000 description 4
- 235000006263 bur ragweed Nutrition 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 235000010980 cellulose Nutrition 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 235000003488 common ragweed Nutrition 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 210000002919 epithelial cell Anatomy 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 210000003630 histaminocyte Anatomy 0.000 description 4
- 230000002519 immonomodulatory effect Effects 0.000 description 4
- 238000002649 immunization Methods 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 210000003097 mucus Anatomy 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 239000003883 ointment base Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 229920000136 polysorbate Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 235000009736 ragweed Nutrition 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 3
- 208000035285 Allergic Seasonal Rhinitis Diseases 0.000 description 3
- 206010027654 Allergic conditions Diseases 0.000 description 3
- 206010002199 Anaphylactic shock Diseases 0.000 description 3
- 241000416162 Astragalus gummifer Species 0.000 description 3
- 238000011725 BALB/c mouse Methods 0.000 description 3
- 229920001661 Chitosan Polymers 0.000 description 3
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229920000084 Gum arabic Polymers 0.000 description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 3
- 108010073816 IgE Receptors Proteins 0.000 description 3
- 102000009438 IgE Receptors Human genes 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 102400001107 Secretory component Human genes 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- 229920001615 Tragacanth Polymers 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 208000003455 anaphylaxis Diseases 0.000 description 3
- 230000003302 anti-idiotype Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 3
- 238000000586 desensitisation Methods 0.000 description 3
- 235000013601 eggs Nutrition 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 210000003979 eosinophil Anatomy 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 210000003714 granulocyte Anatomy 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 3
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 210000004400 mucous membrane Anatomy 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 229940056211 paraffin Drugs 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 235000013772 propylene glycol Nutrition 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 210000003296 saliva Anatomy 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 2
- 240000004178 Anthoxanthum odoratum Species 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical compound CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 240000004585 Dactylis glomerata Species 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 2
- 208000004262 Food Hypersensitivity Diseases 0.000 description 2
- 206010016946 Food allergy Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 241000746983 Phleum pratense Species 0.000 description 2
- 102000015439 Phospholipases Human genes 0.000 description 2
- 108010064785 Phospholipases Proteins 0.000 description 2
- 241000238711 Pyroglyphidae Species 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 206010061603 Respiratory syncytial virus infection Diseases 0.000 description 2
- 206010057190 Respiratory tract infections Diseases 0.000 description 2
- 244000082988 Secale cereale Species 0.000 description 2
- 235000007238 Secale cereale Nutrition 0.000 description 2
- 241000194017 Streptococcus Species 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 201000009961 allergic asthma Diseases 0.000 description 2
- 230000009285 allergic inflammation Effects 0.000 description 2
- 229940037003 alum Drugs 0.000 description 2
- 230000005875 antibody response Effects 0.000 description 2
- 230000030741 antigen processing and presentation Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 210000003651 basophil Anatomy 0.000 description 2
- 239000003659 bee venom Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000011797 cavity material Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 2
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 210000001508 eye Anatomy 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 150000002191 fatty alcohols Chemical class 0.000 description 2
- 239000010685 fatty oil Substances 0.000 description 2
- 235000020932 food allergy Nutrition 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229940046533 house dust mites Drugs 0.000 description 2
- 239000003906 humectant Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 230000000521 hyperimmunizing effect Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 229940127121 immunoconjugate Drugs 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 229940057995 liquid paraffin Drugs 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000008823 permeabilization Effects 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 238000012383 pulmonary drug delivery Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000011277 treatment modality Methods 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- WCDDVEOXEIYWFB-VXORFPGASA-N (2s,3s,4r,5r,6r)-3-[(2s,3r,5s,6r)-3-acetamido-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@@H]1C[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O)[C@H](O)[C@H]1O WCDDVEOXEIYWFB-VXORFPGASA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical class FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- SIQZJFKTROUNPI-UHFFFAOYSA-N 1-(hydroxymethyl)-5,5-dimethylhydantoin Chemical compound CC1(C)N(CO)C(=O)NC1=O SIQZJFKTROUNPI-UHFFFAOYSA-N 0.000 description 1
- JLPULHDHAOZNQI-ZTIMHPMXSA-N 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC JLPULHDHAOZNQI-ZTIMHPMXSA-N 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical class CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 1
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- FLPJVCMIKUWSDR-UHFFFAOYSA-N 2-(4-formylphenoxy)acetamide Chemical compound NC(=O)COC1=CC=C(C=O)C=C1 FLPJVCMIKUWSDR-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- 229940099451 3-iodo-2-propynylbutylcarbamate Drugs 0.000 description 1
- WYVVKGNFXHOCQV-UHFFFAOYSA-N 3-iodoprop-2-yn-1-yl butylcarbamate Chemical compound CCCCNC(=O)OCC#CI WYVVKGNFXHOCQV-UHFFFAOYSA-N 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000223600 Alternaria Species 0.000 description 1
- 235000003133 Ambrosia artemisiifolia Nutrition 0.000 description 1
- 241000208841 Ambrosia trifida Species 0.000 description 1
- 240000002470 Amphicarpaea bracteata Species 0.000 description 1
- 208000033399 Anaphylactic responses Diseases 0.000 description 1
- 235000014251 Anthoxanthum odoratum Nutrition 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 235000002992 Betula pubescens Nutrition 0.000 description 1
- 241001520764 Betula pubescens Species 0.000 description 1
- 241000219495 Betulaceae Species 0.000 description 1
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000726768 Carpinus Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000222290 Cladosporium Species 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 235000001543 Corylus americana Nutrition 0.000 description 1
- 240000007582 Corylus avellana Species 0.000 description 1
- 235000007466 Corylus avellana Nutrition 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 206010011831 Cytomegalovirus infection Diseases 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 241000238713 Dermatophagoides farinae Species 0.000 description 1
- 108010061629 Dermatophagoides pteronyssinus antigen p 1 Proteins 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 244000165918 Eucalyptus papuana Species 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 101000609762 Gallus gallus Ovalbumin Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- XPJVKCRENWUEJH-UHFFFAOYSA-N Isobutylparaben Chemical compound CC(C)COC(=O)C1=CC=C(O)C=C1 XPJVKCRENWUEJH-UHFFFAOYSA-N 0.000 description 1
- CMHMMKSPYOOVGI-UHFFFAOYSA-N Isopropylparaben Chemical compound CC(C)OC(=O)C1=CC=C(O)C=C1 CMHMMKSPYOOVGI-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 241000209082 Lolium Species 0.000 description 1
- 240000004296 Lolium perenne Species 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000007990 PIPES buffer Substances 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- HDSBZMRLPLPFLQ-UHFFFAOYSA-N Propylene glycol alginate Chemical compound OC1C(O)C(OC)OC(C(O)=O)C1OC1C(O)C(O)C(C)C(C(=O)OCC(C)O)O1 HDSBZMRLPLPFLQ-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000124033 Salix Species 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 241000820133 Setaria sphacelata var. sphacelata Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 244000152045 Themeda triandra Species 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 235000005764 Theobroma cacao ssp. cacao Nutrition 0.000 description 1
- 235000005767 Theobroma cacao ssp. sphaerocarpum Nutrition 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- 241001106462 Ulmus Species 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000001785 acacia senegal l. willd gum Substances 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000003314 affinity selection Methods 0.000 description 1
- 239000013572 airborne allergen Substances 0.000 description 1
- 208000028004 allergic respiratory disease Diseases 0.000 description 1
- 230000037446 allergic sensitization Effects 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- MXKCYTKUIDTFLY-ZNNSSXPHSA-N alpha-L-Fucp-(1->2)-beta-D-Galp-(1->4)-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc-(1->3)-D-Galp Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@H]2[C@@H]([C@@H](NC(C)=O)[C@H](O[C@H]3[C@H]([C@@H](CO)OC(O)[C@@H]3O)O)O[C@@H]2CO)O[C@H]2[C@H]([C@H](O)[C@H](O)[C@H](C)O2)O)O[C@H](CO)[C@H](O)[C@@H]1O MXKCYTKUIDTFLY-ZNNSSXPHSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000003097 anti-respiratory effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 208000010216 atopic IgE responsiveness Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 239000003855 balanced salt solution Substances 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229940092738 beeswax Drugs 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- XVBRCOKDZVQYAY-UHFFFAOYSA-N bronidox Chemical compound [O-][N+](=O)C1(Br)COCOC1 XVBRCOKDZVQYAY-UHFFFAOYSA-N 0.000 description 1
- 229960003168 bronopol Drugs 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 229940067596 butylparaben Drugs 0.000 description 1
- 235000001046 cacaotero Nutrition 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000010495 camellia oil Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 229940074979 cetyl palmitate Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229940112822 chewing gum Drugs 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 230000007012 clinical effect Effects 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 210000000795 conjunctiva Anatomy 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 229940075234 cytogam Drugs 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 230000002327 eosinophilic effect Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 239000013568 food allergen Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 150000008131 glucosides Chemical class 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- PXDJXZJSCPSGGI-UHFFFAOYSA-N hexadecanoic acid hexadecyl ester Natural products CCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCC PXDJXZJSCPSGGI-UHFFFAOYSA-N 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 229940014041 hyaluronate Drugs 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 239000000416 hydrocolloid Substances 0.000 description 1
- 239000008311 hydrophilic ointment Substances 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229940071676 hydroxypropylcellulose Drugs 0.000 description 1
- 230000005965 immune activity Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008073 immune recognition Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940124589 immunosuppressive drug Drugs 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 229940113094 isopropylparaben Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 235000018977 lysine Nutrition 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 235000015778 magnesium gluconate Nutrition 0.000 description 1
- 239000001755 magnesium gluconate Substances 0.000 description 1
- 229960003035 magnesium gluconate Drugs 0.000 description 1
- IAKLPCRFBAZVRW-XRDLMGPZSA-L magnesium;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate;hydrate Chemical compound O.[Mg+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O IAKLPCRFBAZVRW-XRDLMGPZSA-L 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 210000003519 mature b lymphocyte Anatomy 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000010807 negative regulation of binding Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 235000015927 pasta Nutrition 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229960000292 pectin Drugs 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 239000013573 pollen allergen Substances 0.000 description 1
- 229920002851 polycationic polymer Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 239000010491 poppyseed oil Substances 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000010409 propane-1,2-diol alginate Nutrition 0.000 description 1
- 239000000770 propane-1,2-diol alginate Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 201000004335 respiratory allergy Diseases 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 206010040400 serum sickness Diseases 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007860 single-cell PCR Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000003009 skin protective agent Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229960001790 sodium citrate Drugs 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 239000000176 sodium gluconate Substances 0.000 description 1
- 235000012207 sodium gluconate Nutrition 0.000 description 1
- 229940005574 sodium gluconate Drugs 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 229940083466 soybean lecithin Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 235000011595 sweet vernalgrass Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000009258 tissue cross reactivity Effects 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 230000024664 tolerance induction Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- ODLHGICHYURWBS-LKONHMLTSA-N trappsol cyclo Chemical compound CC(O)COC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)COCC(O)C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1COCC(C)O ODLHGICHYURWBS-LKONHMLTSA-N 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229940073585 tromethamine hydrochloride Drugs 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 208000034280 venom allergy Diseases 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/14—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from fungi, algea or lichens
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/16—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from plants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/54—Medicinal preparations containing antigens or antibodies characterised by the route of administration
- A61K2039/541—Mucosal route
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
Definitions
- the present invention relates to a composition
- a composition comprising a recombinant polyclonal antibody or a mixture of different monoclonal antibodies or an isolated or purified polyclonal antibody capable of reacting with or binding to an allergen, as well as the use of a polyclonal antibody capable of reacting with or binding to an allergen for the treatment of allergy.
- Antibodies initiate their biological activity by binding to antigens. Antibody binding to antigens is generally specific for one antigen and the binding is usually of high affinity. Antibodies are produced by B-lymphocytes. Blood contains many different antibodies, each derived from a clone of B-cells and each having a distinct structure and specificity for antigen. Antibodies are present on the surface of B-lymphocytes, in the plasma, in interstitial fluid of the tissues and in secretory fluids such as saliva and mucus on mucosal surfaces.
- All antibodies are similar in their overall structure, accounting for certain similarities in physiochemical features such as charge and solubility. All antibodies have a common core structure of two identical light chains, each about 24 kilodaltons, and two identical heavy chains of about 55-70 kilodaltons each. One light chain is attached to each heavy chain, and the two heavy chains are attached to each other. Both the light and heavy chains contain a series of repeating homologous units, each of about 110 amino acid residues in length which fold independently in a common globular motif, called an immunoglobulin (Ig) domain. The region of an antibody molecule formed by the association of the two heavy chains is hydrophobic.
- Antibodies are known to cleave at the site where the light chain attaches to the heavy chain when they are subjected to adverse physical or chemical conditions. Because antibodies contain numerous cysteine residues, they have many cysteine-cysteine disulfide bonds. All Ig domains contain two layers of beta-pleated sheets with three or four strands of anti-parallel polypeptide chains.
- antibody molecules can be divided into distinct classes and subclasses based on physiochemical characteristics such as size, charge and solubility, and on their behavior in binding to antigens.
- the classes of antibody molecules are: IgA, IgD, IgE, IgG and IgM. Members of each class are said to be of the same isotype.
- IgA and IgG isotypes are further sub-divided into subtypes called IgA 1 , IgA 2 and IgG 1 , IgG 2 , IgG 3 and IgG 4 .
- the heavy chains of all antibody molecules in an isotype share extensive regions of amino acid sequence identity, but differ from antibodies belonging to other isotypes or subtypes.
- Heavy chains are designated by the letters of the Greek alphabet corresponding to the overall isotype of the antibody molecule, e.g., IgA contains ⁇ , IgD contains ⁇ , IgE contains ⁇ , IgG contains ⁇ , and IgM contains ⁇ heavy chains.
- IgG, IgE and IgD circulate as monomers.
- IgA molecules secreted through the epithelia into the mucosal lining of body cavities are homodimers whereas IgM molecules are pentamers. Circulating IgA exists mainly as a monomer. Multimeric forms of IgA and IgM are both stabilized by the so called J chain.
- S-IgA Secreted IgA
- pIgR poly-immunoglobulin receptor
- SC secretory component
- S-IgA is a complex consisting of IgA, the J chain, and the SC of which the two latter are covalently bound to the IgA molecule through disulphide bonds.
- S-IgA is very resistant to the proteolytic environment of the epithelial mucosa e.g. in the respiratory or the gastrointestinal tract, and as such make up the primary specific immune system in these sites. It has been demonstrated that S-IgA has an immunomodulating effect and may induce tolerance to the antigens they bind.
- Immunoglobulin E is responsible for so-called type 1 hypersensitivity which manifest itself as common diseases such as allergic rhinitis, allergic conjunctivitis, hay fever, allergic (extrinsic) asthma, bee venom allergy, and food allergy. Allergen-specific IgE is produced in excess in patients with IgE-mediated allergies. IgE circulate in the blood and bind to high-affinity Fc receptors for IgE on basophils and mast cells in blood, various tissues, or on mucosal surfaces. In most allergic responses, the allergens enter the body of a patient through inhalation, ingestion, or through the skin.
- the allergen molecules bind to preformed IgE already bound to the high-affinity receptor Fc ⁇ RI on the surfaces of mast cells and basophils, resulting in the crosslinking of several IgE molecules and triggering the release of histamine and other inflammatory mediators causing the various allergic symptoms.
- the tissues that are most susceptible to local IgE-mediated allergic reactions are the conjunctiva, the mucosa of the nasal cavity or the oropharynx (allergic rhinitis), the mucosal linings of the bronchial tract, and the gastrointestinal mucosa.
- allergens enter the respiratory tract through inhalation and get trapped on the mucosal surfaces of the nasal lining or the bronchial passages of the respiratory tract.
- Airborne allergens also get in contact with moist surfaces of eyes and ears and are retained on the mucosa.
- the mucosal tissues are densely populated with mast cells and allergens arriving at these sites may therefore bind IgE and activate mast cells.
- Immunosuppressive drugs such as steroids for suppressing immune activities and bronchial dilators for relieving asthma symptoms have long been the main treatment modality for patients with allergic asthma.
- Desensitization immunotherapy is the most important novel therapy for severely affected patients, but the medical advances have been limited to refining the classification of the allergenic substances, improving diagnostic methods, and providing a better controlled and broader library of allergen extracts for immunotherapy.
- MedImmune Inc. is studying the use of humanized anti-respiratory syncytial virus (RSV) monoclonal antibodies and markets a polyclonal anti-RSV human immunoglobulin product (RespiGam) isolated from human donor blood and used to treat RSV infection. MedImmune also markets CytoGam, an anti-CMV (cytomegalovirus) human immunoglobulin for the treatment of CMV infection.
- RSV humanized anti-respiratory syncytial virus
- IDEC and Genentech are jointly performing clinical trials of a chimeric mouse-human monoclonal antibody (Rituximab) aimed at the CD20 antigen found on mature B cells and most non-Hodgkin's lymphoma tumors for the treatment of relapsed or refractory low-grade non-Hodgkin's lymphoma.
- GalaGen is studying the use of bovine polyclonal immunoglobulin (Diffistat-G) for treatment of Clostridium difficile antibiotic associated diarrhea.
- SmithKline Beecham and Schering-Plough are developing an anti-IL-5 monoclonal antibody which has been shown in clinical trials to prevent eosinophilic inflammation and airway constriction.
- Rhu-Mab-E25 which is a humanized chimeric IgG 1 monoclonal antibody specific for a unique epitope on human high affinity IgE receptors (Fc ⁇ RI), has been shown to reduce free IgE levels after the first administration by injection. It attenuated both early and late phase responses to inhaled allergens after multiple injections.
- antibodies used therapeutically also include a nebulized IgG (Sandoz), which is used intranasally against RSV; HNK20 (Oravax), an anti-RSV IgA; and 4B9 (Bristol Myers-Squibb), an anti-group B Streptococcus IgM monoclonal antibody.
- Other therapeutically useful monoclonal antibodies include monoclonal anti-CD4 antibodies, anti-IL-2 antibodies and anti-IL-4 antibodies.
- Antibody liposomes i.e., immunoliposomes
- Coating liposomes with antibody leads to enhanced uptake of the liposome by the reticuloendothelial system.
- Human monoclonal antibodies are known to be useful as anti-tumor agents.
- a mouse/human monoclonal IgG antibody specific for the Lewis Y antigen found on the surface of tumor cells is disclosed by Paborji et al. (Pharmaceutical Research, Vol. 11, No. 5, pp. 764-771, 1994).
- immunoliposomes or immunomicrospheres have application in the lung as killers of cancer cells (immunoconjugates) or, in the case of immunoliposomes and microspheres, as stealth delivery particles of a variety of therapeutic agents.
- An IgM anti-group B Streptococcus monoclonal antibody is disclosed by Gombotz et al. (Pharmaceutical Research, Vol. 11, pp. 624-632, 1994).
- U.S. Pat. No. 5,670,626 proposes the use of monoclonal antibodies for the treatment of IgE-mediated allergic diseases such as allergic rhinitis, allergic asthma and allergic conjunctivitis by employing monoclonal antibodies to inhibit the entry of allergenic molecules into mucosal tissues.
- the binding of allergenic molecules by antibodies is assumed to inhibit the allergens from being taken up by mucosal epithelial cells.
- monoclonal antibodies are directed against single antigenic epitopes. Therefore, if the target is of a complex nature presenting many different epitopes then the functional avidity of the monoclonal antibody may be low or lowered below a critical threshold allowing the target to escape elimination through immune recognition.
- the density of the antibody targets on e.g. allergens may not be high enough to mediate elimination of the allergen.
- the efficient activation of complement similarly requires high target antibody densities which may not be achieved with single specificity monoclonal antibodies.
- monoclonal antibodies are sub-optimal as they are directed against single epitopes.
- the majority of allergens are complex proteins, consisting of many protein and peptide epitopes, and existing in many variants.
- a single monoclonal antibody preparation cannot be expected to exhaustively cover more than a minority of the possible epitopes on an allergen, e.g. a pollen particle or proteins from cat dander. This means that if the desired clinical effect of an antibody can be characterized as a complete blocking of the available antibody epitopes, then a single monoclonal antibody will not be sufficient.
- an antibody preparation should preferably be developed against several homologous allergens from closely related allergens, e.g. pollens, or against several proteins from one allergen source e.g. animal dander, then a single monoclonal antibody will not meet the required efficacy.
- monoclonal antibodies may display cross-reactivity to antigenic structures of host cell tissue resulting in potential unwanted side effects. When this occurs the cross-reactivity cannot be removed by adsorption. Therefore a large number of different monoclonal antibodies may need to be produced in order to generate the desired combination of antigen specificity and target selectivity, and even so there still remains a significant risk of cross-reactivity towards endogenous self-antigens in a proportion of patients.
- HAMA human anti-mouse antibody responses
- Conventional murine monoclonal antibodies are foreign proteins to the human recipient, and therefore a HAMA immune response is often elicited in the recipient, which may lead to unwanted side effects in addition to reduced treatment efficacy.
- chimeric monoclonal antibodies possessing human constant (C) regions and murine variable (V) regions have been developed.
- humanized monoclonal antibodies where only the hypervariable complementarity determining region (CDR) is derived from mouse monoclonal antibodies and finally, so-called fully human monoclonal antibodies produced in mice transgenic for human immunoglobulin genes have been developed to avoid these problems.
- CDR hypervariable complementarity determining region
- polyclonal antibodies For these reasons as outlined above, it may often be preferable to use polyclonal antibodies.
- phospholipase A 2 (PLA 2 ) is involved in the pathogenesis of many diseases acting as an inflammatory mediator promoting chronic inflammation.
- serum reactive with at least one phospholipase A 2 enzyme for the treatment of neoplasms in mammals.
- polyclonal antibodies for blocking the uptake of an allergen by topical administration of an antibody binding to the allergen.
- U.S. Pat. No. 4,740,371 describes a modification of allergen immunotherapy whereby an immune complex of the allergen and an antibody thereto is used for desensitization treatment, the antibody being present in molar excess with respect to the allergen to prevent an anaphylactic response.
- the purpose of the inclusion of the antibody in this treatment is to decrease the risk of allergic side effects such as anaphylactic shock to the desensitization treatment.
- the proportion of antibody to be added to the allergen is defined essentially by the neutralizing power of the antibody. Enough antibody must be used so that when the composition is administered, there is practically no allergic effect induced by the allergen.
- the adding of antibody to the allergen composition is solely a remedy to avoid side effects of the allergen exposure, the treatment still being an allergen immunotherapy.
- polyclonal antibodies in the form of IgG purified from hyperimmune human serum is available in limited supply and in amounts insufficient for the treatment of allergic diseases and other common conditions.
- gamma globulin preparations are expensive to produce, and display low efficacy due to their mixed nature containing an overwhelming majority of non-specific human serum immunoglobulin reactivities.
- infectious microorganisms hepatitis virus, HIV, prions, others
- mitogens cytokines and toxins.
- the variability between preparations remains a major problem.
- compositions may result in the generation of potent anti-xenoantibody responses, and carries a real risk of serious side effects such as anaphylactic shock or serum sickness, as well as the transmission of xenotropic infections.
- U.S. Pat. No. 5,789,208 describes the use of a recombinant polyclonal antibody for vaccine therapy and prophylaxis to treat or prevent neoplastic diseases.
- the antibodies are used for boosting a patient's immune system for the possible later recognition of the antigen to which the antibody binds and thereby initiate an elimination reaction. The vaccination will have to be repeated to be effective.
- polyclonal antibodies reacting with or binding to allergens in allergy treatment where the polyclonal antibodies should be administered completely differently before, during, or shortly after the patient has been exposed to an allergen.
- the present invention relates to a pharmaceutical composition
- a pharmaceutical composition comprising as an active ingredient a recombinant polyclonal antibody or a mixture of different monoclonal antibodies or an isolated or purified polyclonal antibody capable of reacting with or binding to an allergen together with one or more pharmaceutically acceptable excipients.
- the pharmaceutical composition according to the invention is free of the allergen to which the recombinant polyclonal antibody or the mixture of different monoclonal antibodies or the isolated or purified polyclonal antibody bind or is reactive with.
- the allergen-specific polyclonal antibody may be administered to the patient in conjunction with an allergen preparation, in order to enable or enhance the efficacy of the tolerance induction procedure.
- the invention relates to the use of a polyclonal antibody with desired specificities for the manufacture of a pharmaceutical composition for the prophylaxis or treatment of allergy or allergic conditions such as allergic rhinitis, allergic conjunctivitis, hay fever, asthma, etc.
- the invention relates to a method of preventing or treating allergy, which comprises administering to a patient in need thereof a sufficient amount of a polyclonal antibody capable of reacting with or binding to an allergen to which the patient has shown an allergic reaction.
- a polyclonal antibody has potential clinical advantages compared with the use of a monoclonal antibody due to the presence of multiple reactivities in a polyclonal antibody against the allergen-target in question.
- the polyclonal nature of the composition enables recognition of and blocking of epitopes on related, homologous allergen isotypes, due to broad reactivity with several epitopes shared in part between related allergens, something which is not enabled by a monoclonal antibody.
- a further aspect of the invention relates to the use of a pharmaceutical composition according to the invention for prophylactic treatment inducing tolerance to the allergen. This may even be used in patients where an allergic reaction has not yet been observed but which patients due to family history or genetic analysis are likely to develop allergy to an allergen.
- a polyclonal antibody preparation comprises a mixture of specificities, and therefore any single and individual, cross-reacting specificity idiotype will be delivered at a very low concentration, thus reducing significantly the potential for harmful side-effects, due to cross-reactivity.
- the potential for deleterious side-effects due to unwanted tissue cross-reactivity is diluted out in the polyclonal antibody reagent.
- any unwanted cross-reactivity of the polyclonal antibody preparation can be removed by adsorption. If a monoclonal antibody results in an unwanted cross-reactivity, it is inherent to the single antibody present and can of course not be removed without destroying the activity of the preparation.
- polyclonal antibodies will also be much less likely than monoclonal antibodies to induce a neutralizing anti-idiotype immune response, since each single epitope-specific idiotype of the administered polyclonal antibody preparation is present in a very low quantity or concentration, being below the threshold for generation of an anti-idiotype response.
- the immune complexes on the nasal linings will be cleared as the mucous excretion is swallowed.
- the immune complexes on the mucosal surfaces of the tracheal and bronchial airways will be expelled into the mouth, mixed with saliva, swallowed and digested in the gastrointestinal tract.
- the allergen-specific antibody can be conjugated to polymer backbones or microbeads forming microspheres.
- composition according to the invention may be formulated as a solution, dispersion, powder, or in form of microspheres.
- antibody molecule describes the single antibody protein molecule or fragments thereof containing one or more variable antigen binding domain(s) and constant regions.
- An antibody molecule is usually monospecific, but may also be described as idiospecific, heterospecific, polyspecific or of unwanted specificity. It cannot be non-specific except in the sense of non-immunochemical binding.
- Antibody molecules bind by means of specific binding sites to specific antigenic determinants or epitopes on antigens.
- antibodies may exist as a population of molecules where a fraction or all of the members are capable of reacting with a specific antigen determinant.
- antibody refers to compositions/mixtures/populations of antibody molecules, such as they are found as the functional component of anti-serum or immune serum derived from mammals, or as they are found in monoclonal or polyclonal antibody compositions with similar functionality prepared either from human or animal sources or by recombinant technologies, including transgenic animals and phage display or by conventional hybridoma technology.
- polyclonal antibody denotes a mixture of different antibody molecules which react with more than one immunogenic determinant of an antigen.
- polyclonal antibody encompasses a polyclonal antibody isolated or purified from mammalian blood, secretions, or other fluids, or from eggs, as well as a mixture of different monoclonal antibodies, and finally a polyclonal antibody may be produced as a recombinant polyclonal antibody.
- a symphobody refers to a polyclonal antibody generated by the use of recombinant technologies, and such polyclonal antibodies are hereafter named symphobodies.
- a symphobody contains a high concentration of different antibody molecules, all or a majority of which are displaying a desired binding activity towards an antigen composed of more than one epitope.
- Symphobodies can be generated by recombinant DNA techniques followed by expression in eukaryotic cells, including yeast, fungi, insect, plant, or mammalian cells, or in prokaryotic cells such as bacteria, or as expressed from virus vectors, or through gene therapy, or from expression of transgenes in animals.
- At least 85% of the antibody molecules in the symphobody preparation are target-specific, more preferably at least 90% are target-specific, even more preferably at least 95% are target-specific, and most preferably all antibody molecules in the symphobody preparation are target-specific.
- a mixture of different monoclonal antibodies is meant a mixture of two or more different monoclonal antibodies.
- the term “two or more” in the present context denotes from 2 to 100, preferably from 3 to 60, more preferably from 5 to 40, most preferably from 10 to 25 different monoclonal antibodies.
- an isolated or purified polyclonal antibody is meant a polyclonal antibody isolated or purified from mammalian blood, secretions, or other fluids, or from eggs.
- an antibody a polyclonal antibody, a recombinant antibody, a mixture of different monoclonal antibodies and an isolated or purified polyclonal antibody” all also encompasses functional fragments of the mentioned antibodies.
- a currently preferred method of preparing a recombinant polyclonal antibody is by making polyclonal antibody libraries (PCAL), for instance as disclosed in U.S. Pat. No. 255,789,208 (to J. Sharon) which is hereby incorporated by reference in its entirety.
- PCAL polyclonal antibody libraries
- the polyclonal antibody included in the pharmaceutical composition may be prepared by immunizing an animal, preferably a mammal, with an allergen of choice followed by the isolation of antibody-producing B-lymphocytes from blood, bone marrow, lymph nodes, or spleen.
- antibody-producing cells may be isolated from an animal and exposed to an allergen in vitro against which antibodies are to be raised. The antibody-producing cells may then be cultured to obtain a population of antibody-producing cells, optionally after fusion to an immortalized cell line such as a myeloma.
- B-lymphocytes may be isolated from the tissue of an allergic patient, in order to generate fully human polyclonal antibodies.
- the present composition may also be generated using suitable tissue from mice, rats, pigs (swine), sheep, bovine material, or other animals transgenic for the human immunoglobulin genes, as starting material in order to generate fully human polyclonal antibodies.
- the animals may be immunized to stimulate the in vivo generation of specific antibodies and antibody producing cells before preparation of the polyclonal antibody composition from the animal by extraction of B lymphocytes or purification of polyclonal serum.
- a combinatorial library may be prepared from immunized B lymphocytes by associating V L and V H randomly in a cloning vector.
- the recombinant polyclonal antibody is generated under such conditions that the immunoglobulin heavy chain variable region and light chain variable region gene segments are linked together randomly in order to allow for the bulk transfer of variable region light chain and heavy chain gene pairs from one vector to another, while allowing stable pairing of specific immunoglobulin variable region light chain and heavy chain gene segments as they are present upon selection from a parental library of immunoglobulin variable region light chain and heavy chain gene segment pairs encoding antibody molecules capable of reacting with or binding to an allergen.
- Single cell PCR may be used in an attempt to retain the native pairing of V L and V H in the single cell.
- antibody-producing B-lymphocytes which have been isolated from animals or humans may be fixed with a fixative solution or a solution containing a chemical such as formaldehyde, glutaraldehyde or the like.
- the cells are then permeabilized with a permeabilization solution comprising for example a detergent such as Brij, Tween, polysorbate, Triton X-100, or the like.
- a permeabilization solution comprising for example a detergent such as Brij, Tween, polysorbate, Triton X-100, or the like.
- the fixing and permeabilization process should provide sufficient porosity to allow entrance of enzymes, nucleotides and other reagents into the cells without undue destruction of cellular compartments or nucleic acids therein. Addition of enzymes and nucleotides may then enter the cells to reverse transcribe cellular V H and V L mRNA into the corresponding cDNA sequences.
- Reverse transcription may be performed in a single step or optionally together with a PCR procedure, using a reverse transcriptase, sufficient quantities of the four dNTPs and primers that bind to the mRNA providing a 3′ hydroxyl group for reverse transcriptase to initiate polymerization.
- Any primer complementary to the mRNA may be used, but it is preferred to use primers complementary to the 3′-terminal end of the V H and V L molecules so as to facilitate selection of variable region mRNA.
- the resulting cDNA sequences may be amplified by PCR using primers specific for immunoglobulin genes and, in particular, for the terminal regions of the V H and V L nucleic acids. PCR procedures may be followed as disclosed in, e.g., U.S. Pat. No. 4,683,195.
- the cDNAs are PCR amplified and linked in the same reaction, using, in addition to the cDNA primers, one primer for the 5′ end of the V H region gene and another for the 5′ end of the V L gene. These primers also contain complementary tails of extra sequence, to allow the self-assembly of the V H and V L genes.
- the chance of getting mixed products is minimal because the amplification and linking reactions were performed within each cell.
- the risk of mixing can be further decreased by utilizing bulky reagents such as digoxigenin labeled nucleotides to further ensure that V region cDNA pairs do not leave the cellular compartment and intermix, but remain within the cell for PCR amplification and linking.
- the amplified sequences are linked by hybridization of complementary terminal sequences. After linking, sequences may be recovered from cells. For example, after linking, cells can be washed in a solution of sodium dodecyl sulfate (SDS).
- SDS sodium dodecyl sulfate
- a reagent such as digoxigenin-linked nucleotides, DNA products synthesized will remain within the cell and be amplified. The linked product is recovered upon electrophoresis of the supernatant.
- the gel slice corresponding to the appropriate molecular weight of the linked product is removed and the DNA isolated on, for example, silica beads.
- the recovered DNA can be PCR amplified using terminal primers, if necessary, and cloned into vectors which may be plasmids, phages, cosmids, phagemids, viral vectors or combinations thereof. Convenient restriction enzyme sites may be incorporated into the hybridized sequences to facilitate cloning. These vectors may also be saved as a library of linked variable regions for later use.
- the linked V H and V L region genes may be PCR amplified a second time using terminal nested primers, yielding a population of DNA fragments which encode the linked V H and V L genetic regions.
- the grouping of V H and V L combinations is an advantage of this process and allows for the in mass or batch transfer of all clones and all DNA fragments during this and all cloning procedures.
- the recombinant polyclonal antibody may be generated under such conditions that the immunoglobulin heavy chain variable region and light chain variable region gene segments are linked together in a head-to head orientation, in order to allow for the bulk transfer of variable region light chain and heavy chain pairs from one vector to another, including from phage to vector, and including from the cell of origin to phage or vector, resulting in a stable pairing of specific immunoglobulin variable region light chain and heavy chains gene segments as they are found in the original polyclonal immune response of the animal or human individual.
- Mutating agents create point mutations, gaps, deletions or additions in the genetic sequence which may be general or specific, or random or site directed.
- Useful mutating agents include ultraviolet light, gamma irradiation, chemicals such as ethidium bromide, psoralen and nucleic acid analogs, or DNA modifying enzymes such as restriction enzymes, transferases, ligases and specific and nonspecific nucleases and polymerases.
- DNA modifying enzymes such as restriction enzymes, transferases, ligases and specific and nonspecific nucleases and polymerases.
- random mutations may be introduced in the CDRs of the V H and V L region genes by oligonucleotide directed mutagenesis.
- Mutations introduced into the gene sequence will ultimately increase library complexity and diversity as well as affinity for antigen which may further increase the library's usefulness in treatment. Furthermore, such mutagenesis may be used on a single V H and V L pair or on a defined group of such pairs to generate a library de novo.
- Cloning is performed, for example, by cleaving the cDNA and vector sequences with a restriction enzyme, if necessary isolating certain nucleic acid fragments, mixing the fragments together in the presence of ligase in a suitable balanced salt solution, and incubating the mixture under enzymatically acceptable conditions for a prescribed period of time. Using different enzyme recognition sites at each terminus of the cDNA, cloning orientation can be predetermined.
- Host cells for prokaryotic vectors may be a culture of bacteria such as Escherichia coli.
- Host cells for eukaryotic vectors may be a culture of eukaryotic cells such as any mammalian, insect or yeast cell lines adapted to tissue culture.
- Bacterial cells are transformed with vectors by calcium chloride-heat shock or electroporation, although many other transformation procedures would also be acceptable.
- Eukaryotic cells are transfected with calcium phosphate precipitation or electroporation, although many other transformation procedures would also be acceptable.
- the DNA fragments may be cloned into prokaryotic or eukaryotic expression vectors, chimeric vectors or dual vectors.
- the expression vector may be a plasmid, cosmid, phage, viral vector, phagemid and combinations thereof, but is preferably a phage display vector wherein the recombinant product is expressed on the phage surface to facilitate screening and selection.
- Useful transcriptional and translational sites may be placed on the expression vector including RNA polymerase recognition regions such as a TATA box site, a CAT site, an enhancer, appropriate splicing sites, if necessary, a AT rich terminal region and a transcription initiation site.
- Useful sites to facilitate translation include translational start and stop sites and ribosome binding sites.
- the resulting recombinant antibody may be of the murine class IgG 1 , IgG 2a , IgG 2b , IgM, IgA, IgD or IgE, the human classes IgG 1 , IgG 2 , IgG 3 , IgG 4 , IgA 1 , IgA 2 , IgA 2 , IgD or IgE, or combinations or fragments thereof.
- the chimeric antibody library is composed of primarily IgG antibodies or Fab antibody fragments.
- Selection of a recombinant polyclonal antibody with desired specificity can be performed e.g. by affinity selection (panning) using an allergen-coated surface for binding the phage particles exhibiting a relevant antibody specificity. The majority of phages in the phage library are eliminated by washing and the bound phage particles are retrieved by harsher conditions (elution). After the selection procedures, the V L and V H antibody gene pairs in the selected library of phage particles can be subcloned into a different vector designed for expression of the recombinant polyclonal antibody as a complete antibody molecule or a fragment thereof such as a Fab fragment.
- the pharmaceutical composition of the invention is one intended for topical administration/application to mucosa, such as the oropharynx, nasal cavity, respiratory tract, gastrointestinal tract, eye such as the conjunctival mucosa, vagina, urogenital mucosa, or for dermal application.
- mucosa such as the oropharynx, nasal cavity, respiratory tract, gastrointestinal tract, eye
- eye such as the conjunctival mucosa, vagina, urogenital mucosa, or for dermal application.
- a particularly interesting use of the pharmaceutical composition is for application to the nasal, bronchial or pulmonary mucosa.
- topical treatment of allergy using inhaled polyclonal antibodies would be a particularly useful application of such reagents, allowing the discovery and development of novel therapeutic or preventive modalities which are cheap to produce, harmless and of no toxicity, and aimed towards a disease afflicting a very large proportion of the human population.
- a surfactant such as a phosphoglyceride, e.g. phosphatidylcholine, and/or a hydrophilic or hydrophobic complex of a positively or negatively charged excipient and a charged antibody of the opposite charge.
- excipients suitable for pharmaceutical compositions intended for delivery of the polyclonal antibody to the respiratory tract mucosa may be from the group consisting of a) carbohydrates, e.g., monosaccharides such as fructose, galactose, glucose, D-mannose, sorbiose, and the like; disaccharides, such as lactose, trehalose, cellobiose, and the like; cyclodextrins, such as 2-hydroxypropyl- ⁇ -cyclodextrin; and polysaccharides, such as raffinose, maltodextrins, dextrans, and the like; b) amino acids, such as glycine, arginine, aspartic acid, glutamic acid, cysteine, lysine and the like; c) organic salts prepared from organic acids and bases, such as sodium citrate, sodium ascorbate, magnesium gluconate, sodium gluconate, tromethamine hydrochloride, and
- compositions suitable for forming a drug dispersion for oral inhalation to treat various conditions in humans.
- pulmonary drug delivery compositions are designed to be delivered by inhalation by the patient of the drug dispersion so that the active drug within the dispersion can reach the lung.
- Pulmonary drug delivery can itself be achieved by different approaches, including liquid nebulizers, aerosol-based metered-dose inhalers (MDI's) and dry powdered dispersion devices.
- MDI's aerosol-based metered-dose inhalers
- CFC chlorofluorocarbon
- Dry powder dispersion devices which do not rely on CFC aerosol technology, are promising for delivering drugs that may be readily formulated as dry powders.
- Many otherwise labile macromolecules may be stably stored as lyophilized or spray dried powders, either by themselves or in combination with suitable powder carriers.
- compositions include liquids, gels, ointments or other suitable formulations for ocular administration, sprays, aerosols, powders, or other compositions for the administration into the nasal cavity, chewing gum, pasta or other compositions for oral cavity, creams, ointments, lotions, gels or other compositions suitable for the application onto the skin, vagitories, gels or other compositions suitable for application onto the vaginal or urogenital mucosa or formulated as capsules or tablets for the administration into the digestive tract.
- the polyclonal antibody may suitably be formulated with one or more of the following excipients: solvents, buffering agents, preservatives, humectants, chelating agents, antioxidants, stabilizers, emulsifying agents, suspending agents, gel-forming agents, ointment bases, penetration enhancers, perfumes, and skin protective agents.
- solvents are e.g. water, alcohols, vegetable or marine oils (e.g. edible oils like almond oil, castor oil, cacao butter, coconut oil, corn oil, cottonseed oil, linseed oil, olive oil, palm oil, peanut oil, poppyseed oil, rapeseed oil, sesame oil, soybean oil, sunflower oil, and tea seed oil), mineral oils, fatty oils, liquid paraffin, polyethylene glycols, propylene glycols, glycerol, liquid polyalkylsiloxanes, and mixtures thereof.
- vegetable or marine oils e.g. edible oils like almond oil, castor oil, cacao butter, coconut oil, corn oil, cottonseed oil, linseed oil, olive oil, palm oil, peanut oil, poppyseed oil, rapeseed oil, sesame oil, soybean oil, sunflower oil, and tea seed oil
- mineral oils e.g. water, alcohols, vegetable or marine oils (e.g. edible oils like almond oil, castor oil, cacao butter, coconut oil
- buffering agents are e.g. citric acid, acetic acid, tartaric acid, lactic acid, hydrogenphosphoric acid, diethyl amine etc.
- Suitable examples of preservatives for use in compositions are parabenes, such as methyl, ethyl, propyl p-hydroxybenzoate, butylparaben, isobutylparaben, isopropylparaben, potassium sorbate, sorbic acid, benzoic acid, methyl benzoate, phenoxyethanol, bronopol, bronidox, MDM hydantoin, iodopropynyl butylcarbamate, EDTA, benzalconium chloride, and benzylalcohol, or mixtures of preservatives.
- humectants are glycerin, propylene glycol, sorbitol, lactic acid, urea, and mixtures thereof.
- antioxidants are butylated hydroxy anisole (BHA), ascorbic acid and derivatives thereof, tocopherol and derivatives thereof, cysteine, and mixtures thereof.
- emulsifying agents are naturally occurring gums, e.g. gum acacia or gum tragacanth; naturally occurring phosphatides, e.g. soybean lecithin; sorbitan monooleate derivatives; wool fats; wool alcohols; sorbitan esters; monoglycerides; fatty alcohols;, fatty acid esters (e.g. triglycerides of fatty acids); and mixtures thereof.
- suspending agents are e.g. celluloses and cellulose derivatives such as, e.g., carboxymethyl cellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, carraghenan, acacia gum, arabic gum, tragacanth, and mixtures thereof.
- gel bases examples include: liquid paraffin, polyethylene, fatty oils, colloidal silica or aluminum, zinc soaps, glycerol, propylene glycol, tragacanth, carboxyvinyl polymers, magnesium-aluminum silicates, Carbopol®, hydrophilic polymers such as, e.g. starch or cellulose derivatives such as, e.g., carboxymethylcellulose, hydroxyethylcellulose and other cellulose derivatives, water-swellable hydrocolloids, carragenans, hyaluronates (e.g. hyaluronate gel optionally containing sodium chloride), and alginates including propylene glycol alginate.
- liquid paraffin such as, e.g. starch or cellulose derivatives such as, e.g., carboxymethylcellulose, hydroxyethylcellulose and other cellulose derivatives, water-swellable hydrocolloids, carragenans, hyaluronates (e.g. hyal
- ointment bases are e.g. beeswax, paraffin, cetanol, cetyl palmitate, vegetable oils, sorbitan esters of fatty acids (Span), polyethylene glycols, and condensation products between sorbitan esters of fatty acids and ethylene oxide, e.g. polyoxyethylene sorbitan monooleate (Tween).
- hydrophobic or water-emulsifying ointment bases are paraffins, vegetable oils, animal fats, synthetic glycerides, waxes, lanolin, and liquid polyalkylsiloxanes.
- hydrophilic ointment bases are solid macrogols (polyethylene glycols).
- Other examples of ointment bases are triethanolamine soaps, sulphated fatty alcohol and polysorbates.
- excipients examples include polymers such as carmelose, sodium carmelose, hydroxypropylmethylcellulose, hydroxyethylcel lulose, hydroxypropylcellulose, pectin, xanthan gum, locust bean gum, acacia gum, gelatin, carbomer, emulsifiers like vitamin E, glyceryl stearates, cetanyl glucoside, collagen, carrageenan, hyaluronates and alginates and chitosans.
- polymers such as carmelose, sodium carmelose, hydroxypropylmethylcellulose, hydroxyethylcel lulose, hydroxypropylcellulose, pectin, xanthan gum, locust bean gum, acacia gum, gelatin, carbomer, emulsifiers like vitamin E, glyceryl stearates, cetanyl glucoside, collagen, carrageenan, hyaluronates and alginates and chitos
- the symphobody included in the present composition is one that reacts with/binds to an inhalant allergen including conjunctival and nasopharyngeal allergens, as well as allergens entering the respiratory tract, or otherwise enters into the body.
- an inhalant allergen including conjunctival and nasopharyngeal allergens, as well as allergens entering the respiratory tract, or otherwise enters into the body.
- the preventive or therapeutic inhalation of polyclonal antibodies, e.g. symphobodies, directed against common inhalant allergens is aimed directly at eliminating the cause of the allergy by aiding the blocking, neutralization, and clearance from the respiratory tract of the allergic causative agent before allergic sensitization ensues.
- the present embodiment of the invention concerns the possibility of neutralizing the effect of allergen inhalation via polyclonal antibody inhalations by blocking allergen epitopes otherwise available for the binding of IgE molecules.
- the binding of polyclonal antibodies is predicted to exert a clearance effect on allergens by mediating the phagocytosis and degradation of allergens without the induction of allergic responses, as well as facilitating the upwards clearance away from the respiratory tract into the pharynx of allergen entrapped in immune complexes with IgA or IgG together with mucosal mucous, and subsequent swallowing into the digestive tract.
- allergen-specific polyclonal antibody e.g. symphobody of the IgG or IgA isotype, which are blocking with respect to the binding of allergen-specific IgE
- the mucosal administration of allergen-specific polyclonal antibody, e.g. symphobody of the IgG or IgA isotype is hypothesized to inhibit the IgE-mediated antigen presentation for T lymphocytes which may induce the predominantly T H 2 type T lymphocyte response to allergens which in allergic individuals is believed to perpetuate the allergy.
- the presence of blocking allergen-specific polyclonal antibodies, e.g. symphobodies may result in IgG- or IgA-mediated antigen presentation for T cells, which in turn may preferentially promote a T H 1 type T lymphocyte response to allergens, thus interrupting the vicious cycle of the allergic inflammatory reaction.
- Allergen epitopes e.g. from pollen are derived from several proteins, and thus for a single inhalant antibody to be able to work, it will be required to contain several if not many individual idiotypic specificities/antigen reactivities. In this respect, polyclonal antibodies seem far superior to monoclonal antibodies.
- polyclonal antibody compositions may be used for the prophylaxis or treatment of all types of allergy, including allergic rhinitis, hay fever, allergic conjunctivitis, and allergic (extrinsic) asthma, as well as food allergy.
- the polyclonal antibody of the present invention is one that reacts with/binds to an allergen from: The house dust mites (e.g. Dermatophagoides farinae or D.
- pteronyssimus danders from cat, dog, or horse
- tree pollens from birch Betula alba
- alder hazel, oak, willow, plane, beech, elm, maple, ash, and hornbeam
- grass pollens from timothy grass Phleum pretense ), bluegrass ( Poa pratense ), rye grass ( Lolium perenne ), Orchard grass ( Dactylis glomerata ), ragweed (e.g. Ambrosia artemisiifolia ), sweet vernal grass ( anthoxanthum odoratum ), and rye ( Secale cereale ); or fungi (e.g.
- allergen-specific polyclonal antibodies e.g. symphobodies may be used to treat allergies against other agents such as food allergens (e.g. peanuts and other nuts, shell-fish, egg, milk, corn) or bee venom allergens. Many of these allergens may be purchased as well-characterized proteins from commercial suppliers.
- the dose of polyclonal antibody required in humans to be effective in the treatment or prevention of allergy differs with the type and severity of the allergic condition to be treated, the type of allergen, the age and condition of the patient, etc.
- Typical doses of polyclonal antibody to be administered are in the range of 1 ⁇ g to 1 g, preferably 1-1000 ⁇ g, more preferably 2-500, even more preferably 5-50, most preferably 10-20 ⁇ g per unit dosage form.
- mice are immunized subcutaneously (s.c.) or intraperitoneally (i.p.) with e.g. 1 mg of allergenic protein in Freunds complete adjuvant. Immunization is performed using recombinant allergen protein (e.g. Der p 1) or extracts from native allergens. Any subsequent immunizations are given at two to three week intervals and in incomplete Freunds adjuvant. Spleen and/or bone marrow are taken 3 days after the last immunization and used for the preparation of the symphobody library, as described in U.S. Pat. No. 5,789,208.
- allergen protein e.g. Der p 1
- Any subsequent immunizations are given at two to three week intervals and in incomplete Freunds adjuvant.
- Spleen and/or bone marrow are taken 3 days after the last immunization and used for the preparation of the symphobody library, as described in U.S. Pat. No. 5,789,208.
- Symphobody libraries are prepared from blood or bone marrow samples taken from allergic patients characterized by positive case history, skin prick testing, radioallergosorbent test (RAST), or reactivity of patient sera with allergen extracts by IgG or IgE immunoblotting or reactivity to purified recombinant allergens (e.g. pollen allergens or animal allergens).
- RAST radioallergosorbent test
- polyclonal antibody incubations are preceded by incubations with well-characterized monoclonal antibodies in a competitive ELISA.
- Patient-derived IgE binding to allergen extracts is studied either in competitive ELISA (similar to the protocol above with the following modifications) for IgE binding or by preparative SDS-PAGE and Western blotting.
- ELISA well coating or allergen electrophoresis using allergen, disintegrated allergen, or recombinant allergen the allergen-coated surface is blocked with gelatin or BSA, before incubation 3-4 hours at 4° C. with allergen-specific polyclonal antibodies.
- samples are incubated 3-4 hours at 4° C. with patient sera or BAL IgE diluted 1:5 and bound human IgE antibodies are detected with e.g. 125 I-labeled anti-human IgE antibodies (RAST; Pharmacia) and visualized by autoradiography. Binding of mouse IgG is detected as described above.
- Allergen extracts are separated by SDS-PAGE and immunoblotted onto nitrocellulose strips before incubation with the antibody preparation (patient sera, mouse sera, polyclonal antibodies, e.g. symphobodies, or control monoclonal antibodies).
- the cross-reactivity of polyclonal antibodies generated against one allergen is examined by testing in ELISA or Western blotting against a panel of homologous allergens.
- Heparinized blood samples are obtained from allergic patients and granulocytes isolated by dextran sedimentation.
- Recombinant allergens, disintegrated allergens or allergen extracts are preincubated with allergen-specific polyclonal antibodies, e.g. symphobodies, or control antibodies or buffer alone, for 1 h at room temperature before incubation at different concentrations (1, 0.1, 0.01, and 0.001 ⁇ g/ml) with granulocytes disintegrated in histamine release buffer (20 mM PIPES, pH 7.4, 110 mM NaCl, 5 mM KCl, 1 mM CaCl 2 , 1 g/L glucose, 0.3 mg/ml human serum albumin). Histamine release into the cell-free supernatant is determined by radioimmunoassay and expressed as a percentage of total histamine release after cell lysis.
- mice are sensitized to allergens (e.g. ragweed allergen) by two or more i.p. injections of allergen (e.g. 150 microgram) and alum on e.g. days 0 and 4. On e.g. day 11 and in a two to four week timespan, an intratracheal or intranasal allergen challenge is performed on anesthetized mice where after mice are analyzed as described below. In some experiments a mouse model based on ovalbumin (OVA)-sensitization is employed. Briefly, BALB/c mice are injected i.p. with e.g.
- allergens e.g. ragweed allergen
- OVA ovalbumin
- mice are subjected to an airway responsiveness test and killed on day 33. In the control group 8 mice are used.
- the left lung is tied of and BAL of the right lung is obtained by 5 repeated washings with 200 ⁇ L PBS.
- the left lung is fixed and embedded in paraffin for lung histology.
- a blood sample tail blood is also taken from each mouse and stored at ⁇ 80° C. until analysis is carried out.
- allergen-specific polyclonal antibodies e.g. symphobodies to inhibit allergic inflammation
- allergen-specific polyclonal antibody preparationin doses varying from 1 ⁇ g to 1 mg is administered before, during, or after the administration of the challenge dose of antigen.
- Polyclonal antibodies with different or unrelated specificities as well as PBS is used as a negative control, and the effect is in some experiments compared with a positive control allergen-specific monoclonal antibody.
- the allergic reaction is evaluated by performing bronchial lavage (BAL) on euthanized mice, and the BAL fluid is examined by differential counting for the content of eosinophils, neutrophils, lymphocytes, and macrophages.
- BAL bronchial lavage
- the lower and upper lobes of the left lung are collected and fixed in Carnoy's solution (6 ⁇ ethanol; 3 ⁇ acetic acid glacial; 1 ⁇ chloroform) at 20° C. for ⁇ 15 hours. After embedding in paraffin the tissues are cut into 4-5 ⁇ m sections. From each mouse 10 airway sections randomly distributed are assessed for severity of the cellular inflammation and mucus occlusion. The cellular infiltrate of the peribronchial and perivascular areas is evaluated semi-quantitatively for the presence of leukocytes (eosinophils, iymphocytes), quantified on a scale from 0-5 with an increment of 0.5.
- leukocytes eosinophils, iymphocytes
- Mucus occlusion of the bronchial lumen is assigned a score using the following measures 0, 0-10% occlusion; 1, 10-30% occlusion; 2, 30-60% occlusion; 3, 60-90% occlusion; 4, 90-100% occlusion. Damage to the airway epithelium is also estimated on an equivalent scale. All evaluations are performed by individuals blinded to the protocol design and the results are recorded photographically. The tissue sections are stained with hematoxylin and eosin for cellular staining or hematoxylin and periodic acid-Schiff for mucus staining.
- Total and OVA-specific IgE, IgG, IgG 1 , IgG 2a and IgG 3 levels in the blood of mice are determined by ELISA as described above.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Botany (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
A pharmaceutical composition for treating allergy is described. The composition comprises as an active ingredient a recombinant polyclonal antibody or a mixture of different monoclonal antibodies capable of reacting with or binding to an allergen together with one or more pharmaceutically acceptable excipients. The composition may be used topically as a solution, dispersion, powder, or in the form of microspheres. The polyclonal antibody is preferably a recombinant polyclonal antibody produced by phage display technology. The pairing of specific immunoglobulin variable region light chain and heavy chain maintained from the original polyclonal immune response or selected by panning using the allergen in question is preferably maintained by bulk transfer of the pairs into an expression vector.
Description
- The present invention relates to a composition comprising a recombinant polyclonal antibody or a mixture of different monoclonal antibodies or an isolated or purified polyclonal antibody capable of reacting with or binding to an allergen, as well as the use of a polyclonal antibody capable of reacting with or binding to an allergen for the treatment of allergy.
- The protective effects of humoral immunity are known to be mediated by a family of structurally related glycoproteins called antibodies. Antibodies initiate their biological activity by binding to antigens. Antibody binding to antigens is generally specific for one antigen and the binding is usually of high affinity. Antibodies are produced by B-lymphocytes. Blood contains many different antibodies, each derived from a clone of B-cells and each having a distinct structure and specificity for antigen. Antibodies are present on the surface of B-lymphocytes, in the plasma, in interstitial fluid of the tissues and in secretory fluids such as saliva and mucus on mucosal surfaces.
- All antibodies are similar in their overall structure, accounting for certain similarities in physiochemical features such as charge and solubility. All antibodies have a common core structure of two identical light chains, each about 24 kilodaltons, and two identical heavy chains of about 55-70 kilodaltons each. One light chain is attached to each heavy chain, and the two heavy chains are attached to each other. Both the light and heavy chains contain a series of repeating homologous units, each of about 110 amino acid residues in length which fold independently in a common globular motif, called an immunoglobulin (Ig) domain. The region of an antibody molecule formed by the association of the two heavy chains is hydrophobic. Antibodies are known to cleave at the site where the light chain attaches to the heavy chain when they are subjected to adverse physical or chemical conditions. Because antibodies contain numerous cysteine residues, they have many cysteine-cysteine disulfide bonds. All Ig domains contain two layers of beta-pleated sheets with three or four strands of anti-parallel polypeptide chains.
- Despite their overall similarity, antibody molecules can be divided into distinct classes and subclasses based on physiochemical characteristics such as size, charge and solubility, and on their behavior in binding to antigens. In humans, the classes of antibody molecules are: IgA, IgD, IgE, IgG and IgM. Members of each class are said to be of the same isotype. IgA and IgG isotypes are further sub-divided into subtypes called IgA1, IgA2 and IgG1, IgG2, IgG3 and IgG4. The heavy chains of all antibody molecules in an isotype share extensive regions of amino acid sequence identity, but differ from antibodies belonging to other isotypes or subtypes. Heavy chains are designated by the letters of the Greek alphabet corresponding to the overall isotype of the antibody molecule, e.g., IgA contains α, IgD contains δ, IgE contains ε, IgG contains γ, and IgM contains μ heavy chains. IgG, IgE and IgD circulate as monomers. IgA molecules secreted through the epithelia into the mucosal lining of body cavities are homodimers whereas IgM molecules are pentamers. Circulating IgA exists mainly as a monomer. Multimeric forms of IgA and IgM are both stabilized by the so called J chain. Secreted IgA (S-IgA) is produced by B cells residing in lamina propria and taken up by epithelial cells on the basolateral side through the poly-immunoglobulin receptor (pIgR), transported through the epithelial cell and secreted into the mucosa on the luminal side. When the IgA:J chain:pIgR complex is released, the pIgR is cleaved by a protease and a part of the pIgR molecule called the secretory component (SC) remains bound to the IgA:J chain complex. Thus, S-IgA is a complex consisting of IgA, the J chain, and the SC of which the two latter are covalently bound to the IgA molecule through disulphide bonds. S-IgA is very resistant to the proteolytic environment of the epithelial mucosa e.g. in the respiratory or the gastrointestinal tract, and as such make up the primary specific immune system in these sites. It has been demonstrated that S-IgA has an immunomodulating effect and may induce tolerance to the antigens they bind.
- There are between 108 and 1010 structurally different antibody molecules in every individual, each with a unique amino acid sequence in their antigen combining sites. Sequence diversity in antibodies is predominantly found in three short stretches within the amino terminal domains of the heavy and light chains called variable (V) regions, to distinguish them from the more conserved constant (C) regions.
- Immunoglobulin E (IgE) is responsible for so-called type 1 hypersensitivity which manifest itself as common diseases such as allergic rhinitis, allergic conjunctivitis, hay fever, allergic (extrinsic) asthma, bee venom allergy, and food allergy. Allergen-specific IgE is produced in excess in patients with IgE-mediated allergies. IgE circulate in the blood and bind to high-affinity Fc receptors for IgE on basophils and mast cells in blood, various tissues, or on mucosal surfaces. In most allergic responses, the allergens enter the body of a patient through inhalation, ingestion, or through the skin. The allergen molecules bind to preformed IgE already bound to the high-affinity receptor FcεRI on the surfaces of mast cells and basophils, resulting in the crosslinking of several IgE molecules and triggering the release of histamine and other inflammatory mediators causing the various allergic symptoms.
- Among the tissues that are most susceptible to local IgE-mediated allergic reactions are the conjunctiva, the mucosa of the nasal cavity or the oropharynx (allergic rhinitis), the mucosal linings of the bronchial tract, and the gastrointestinal mucosa. Thus, allergens enter the respiratory tract through inhalation and get trapped on the mucosal surfaces of the nasal lining or the bronchial passages of the respiratory tract. Airborne allergens also get in contact with moist surfaces of eyes and ears and are retained on the mucosa. The mucosal tissues are densely populated with mast cells and allergens arriving at these sites may therefore bind IgE and activate mast cells.
- The therapeutic principles and treatment modalities in the management of allergy have not changed substantially in recent years. Immunosuppressive drugs such as steroids for suppressing immune activities and bronchial dilators for relieving asthma symptoms have long been the main treatment modality for patients with allergic asthma. Desensitization immunotherapy is the most important novel therapy for severely affected patients, but the medical advances have been limited to refining the classification of the allergenic substances, improving diagnostic methods, and providing a better controlled and broader library of allergen extracts for immunotherapy. As for research, progress has been made in the identification and isolation of major allergenic components of allergenic substances. For example, the major allergic components of ragweed, house dust mites, and cat and dog dander and saliva have been identified. When the allergen particles, e.g. timothy grass pollen arrive to the airway mucosa they disintegrate into major and minor allergic components.
- Antibodies have been suggested for a number of clinical treatments: MedImmune Inc. is studying the use of humanized anti-respiratory syncytial virus (RSV) monoclonal antibodies and markets a polyclonal anti-RSV human immunoglobulin product (RespiGam) isolated from human donor blood and used to treat RSV infection. MedImmune also markets CytoGam, an anti-CMV (cytomegalovirus) human immunoglobulin for the treatment of CMV infection. IDEC and Genentech are jointly performing clinical trials of a chimeric mouse-human monoclonal antibody (Rituximab) aimed at the CD20 antigen found on mature B cells and most non-Hodgkin's lymphoma tumors for the treatment of relapsed or refractory low-grade non-Hodgkin's lymphoma. GalaGen is studying the use of bovine polyclonal immunoglobulin (Diffistat-G) for treatment of Clostridium difficile antibiotic associated diarrhea. SmithKline Beecham and Schering-Plough are developing an anti-IL-5 monoclonal antibody which has been shown in clinical trials to prevent eosinophilic inflammation and airway constriction. An anti-IgE monoclonal antibody is being developed by Genentech to “switch-off” allergies. The antibody Rhu-Mab-E25, which is a humanized chimeric IgG1 monoclonal antibody specific for a unique epitope on human high affinity IgE receptors (FcεRI), has been shown to reduce free IgE levels after the first administration by injection. It attenuated both early and late phase responses to inhaled allergens after multiple injections. Examples of antibodies used therapeutically also include a nebulized IgG (Sandoz), which is used intranasally against RSV; HNK20 (Oravax), an anti-RSV IgA; and 4B9 (Bristol Myers-Squibb), an anti-group B Streptococcus IgM monoclonal antibody. Other therapeutically useful monoclonal antibodies include monoclonal anti-CD4 antibodies, anti-IL-2 antibodies and anti-IL-4 antibodies.
- The immunotherapy of RSV infection using small particle aerosols of IgG has been disclosed by Piazza et al. (J. Infect. Dis., Vol. 166, pp. 1422-1424, 1992). In this study it was shown that a 15-minute exposure to an aerosolized 5% solution of IgG effected a 50-fold reduction in pulmonary virus. Brown (Aerosol Science and Technology, Vol. 24, pp. 45-56, 1996) discloses the use of antibodies as in hibitors or antagonists of cytokines to depress respiratory inflammatory diseases or allergen-induced asthmatic responses. Also mentioned is local respiratory delivery of pathogen-specific antibody for treatment of acute viral or bacterial respiratory infections.
- Antibody liposomes, i.e., immunoliposomes, are disclosed by Maruyama et al. (Biochim. Biophys. Acta, Vol. 1234, pp. 74-80, 1995). Coating liposomes with antibody leads to enhanced uptake of the liposome by the reticuloendothelial system. Human monoclonal antibodies are known to be useful as anti-tumor agents. A mouse/human monoclonal IgG antibody specific for the Lewis Y antigen found on the surface of tumor cells is disclosed by Paborji et al. (Pharmaceutical Research, Vol. 11, No. 5, pp. 764-771, 1994). The use of antibodies in metered-dose propellant driven aerosols for passive antibody aerosol therapy against respiratory infections is suggested in Brown et al. (Journal of Immunological Methods, Vol. 176, pp. 203-212, 1994). Immune responses in the respiratory tract are of great importance for protection against infections of the respiratory system and for their involvement in respiratory allergies and asthma. Effective targeting of immunomodulating reagents including monoclonal antibodies to the respiratory tract is shown to be of benefit in increasing local immunity to respiratory pathogens or decreasing immune-mediated respiratory pathology. Inhaled immunoconjugates, immunoliposomes or immunomicrospheres have application in the lung as killers of cancer cells (immunoconjugates) or, in the case of immunoliposomes and microspheres, as stealth delivery particles of a variety of therapeutic agents. An IgM anti-group B Streptococcus monoclonal antibody is disclosed by Gombotz et al. (Pharmaceutical Research, Vol. 11, pp. 624-632, 1994).
- U.S. Pat. No. 5,670,626 proposes the use of monoclonal antibodies for the treatment of IgE-mediated allergic diseases such as allergic rhinitis, allergic asthma and allergic conjunctivitis by employing monoclonal antibodies to inhibit the entry of allergenic molecules into mucosal tissues. The binding of allergenic molecules by antibodies is assumed to inhibit the allergens from being taken up by mucosal epithelial cells.
- In certain clinical situations, the use of monoclonal antibodies is associated with specific disadvantages. Thus, monoclonal antibodies are directed against single antigenic epitopes. Therefore, if the target is of a complex nature presenting many different epitopes then the functional avidity of the monoclonal antibody may be low or lowered below a critical threshold allowing the target to escape elimination through immune recognition.
- Also, because monoclonal antibodies are directed against single antigenic determinants, the density of the antibody targets on e.g. allergens may not be high enough to mediate elimination of the allergen. The efficient activation of complement similarly requires high target antibody densities which may not be achieved with single specificity monoclonal antibodies.
- Thus, in the case of allergens, monoclonal antibodies are sub-optimal as they are directed against single epitopes. The majority of allergens are complex proteins, consisting of many protein and peptide epitopes, and existing in many variants. Thus, a single monoclonal antibody preparation cannot be expected to exhaustively cover more than a minority of the possible epitopes on an allergen, e.g. a pollen particle or proteins from cat dander. This means that if the desired clinical effect of an antibody can be characterized as a complete blocking of the available antibody epitopes, then a single monoclonal antibody will not be sufficient. Further, if an antibody preparation should preferably be developed against several homologous allergens from closely related allergens, e.g. pollens, or against several proteins from one allergen source e.g. animal dander, then a single monoclonal antibody will not meet the required efficacy.
- Nevertheless, a paper by Schwarze and coworkers (Am. J. Resp. Crit. Care Med., Vol. 158, pp. 519-525, 1998) investigated the therapeutic efficacy of a monoclonal antibody directed against the major ragweed allergen Amb a/in a murine allergy model based on mice (Balb/c) sensitized and challenged with both Amb a/and whole ragweed extracts. It was demonstrated that administration of the monoclonal IgA antibody before allergen exposure decreased airway responsiveness to metacholine challenge, and decreased the number of pulmonary eosinophils and Amb a/-specific IgE levels in serum. Moreover, the study indicate that administration of IgA had an immunomodulatory effect implying that IgA treatment could have a long-term desensitizing effect on allergy. However, it must be stressed that this allergen model is based on the induction of allergy-like symptoms using a single allergen, Amb a I. Thus, the study does not take into account that the vast majority of allergies are caused by reactions towards a number of allergen proteins and epitopes derived from a single allergen particle, which emphasizes the need for a polyclonal antibody mixture in this regime of treatment. Furthermore, human allergy is profoundly more complex than the allergy-like symptoms induced in an inbred mouse strain (Inhal. Toxicol., Vol 12, pp. 829-622, 2000). Consequently, the potential usefulness of monoclonal antibodies as allergen blocking agents is limited. Finally, monoclonal antibodies may display cross-reactivity to antigenic structures of host cell tissue resulting in potential unwanted side effects. When this occurs the cross-reactivity cannot be removed by adsorption. Therefore a large number of different monoclonal antibodies may need to be produced in order to generate the desired combination of antigen specificity and target selectivity, and even so there still remains a significant risk of cross-reactivity towards endogenous self-antigens in a proportion of patients.
- A separate issue is the generation of human anti-mouse antibody responses (HAMA). Conventional murine monoclonal antibodies are foreign proteins to the human recipient, and therefore a HAMA immune response is often elicited in the recipient, which may lead to unwanted side effects in addition to reduced treatment efficacy. In order to circumvent this problem, chimeric monoclonal antibodies possessing human constant (C) regions and murine variable (V) regions have been developed. Furthermore humanized monoclonal antibodies, where only the hypervariable complementarity determining region (CDR) is derived from mouse monoclonal antibodies and finally, so-called fully human monoclonal antibodies produced in mice transgenic for human immunoglobulin genes have been developed to avoid these problems. However, a potential for the generation of anti-idiotype antibody responses specific for the V-region specificity determining CDR still exists when injecting large amounts of monoclonal antibodies with identical V-regions.
- For these reasons as outlined above, it may often be preferable to use polyclonal antibodies.
- In WO 98/10776 it is theorized that phospholipase A2 (PLA2) is involved in the pathogenesis of many diseases acting as an inflammatory mediator promoting chronic inflammation. Thus it is suggested to use serum reactive with at least one phospholipase A2 enzyme for the treatment of neoplasms in mammals. There is no suggestion to use polyclonal antibodies for blocking the uptake of an allergen by topical administration of an antibody binding to the allergen.
- U.S. Pat. No. 4,740,371 describes a modification of allergen immunotherapy whereby an immune complex of the allergen and an antibody thereto is used for desensitization treatment, the antibody being present in molar excess with respect to the allergen to prevent an anaphylactic response. The purpose of the inclusion of the antibody in this treatment is to decrease the risk of allergic side effects such as anaphylactic shock to the desensitization treatment. The proportion of antibody to be added to the allergen is defined essentially by the neutralizing power of the antibody. Enough antibody must be used so that when the composition is administered, there is practically no allergic effect induced by the allergen. The adding of antibody to the allergen composition is solely a remedy to avoid side effects of the allergen exposure, the treatment still being an allergen immunotherapy.
- There are several drawbacks of using conventional polyclonal antibodies in the treatment of allergy. First of all, polyclonal antibodies in the form of IgG purified from hyperimmune human serum is available in limited supply and in amounts insufficient for the treatment of allergic diseases and other common conditions. Also, gamma globulin preparations are expensive to produce, and display low efficacy due to their mixed nature containing an overwhelming majority of non-specific human serum immunoglobulin reactivities. Also, there exist a real risk of transmitting contaminating reagents, including infectious microorganisms (hepatitis virus, HIV, prions, others), or mitogens, cytokines and toxins. Finally, the variability between preparations remains a major problem. In order to solve the problem of supply, xenogeneic sources of polyclonal antibodies including serum from immunized non-human animals have been tested. However, such compositions may result in the generation of potent anti-xenoantibody responses, and carries a real risk of serious side effects such as anaphylactic shock or serum sickness, as well as the transmission of xenotropic infections.
- U.S. Pat. No. 5,789,208 describes the use of a recombinant polyclonal antibody for vaccine therapy and prophylaxis to treat or prevent neoplastic diseases. The antibodies are used for boosting a patient's immune system for the possible later recognition of the antigen to which the antibody binds and thereby initiate an elimination reaction. The vaccination will have to be repeated to be effective. There is no suggestion to use polyclonal antibodies reacting with or binding to allergens in allergy treatment where the polyclonal antibodies should be administered completely differently before, during, or shortly after the patient has been exposed to an allergen.
- Accordingly, the present invention relates to a pharmaceutical composition comprising as an active ingredient a recombinant polyclonal antibody or a mixture of different monoclonal antibodies or an isolated or purified polyclonal antibody capable of reacting with or binding to an allergen together with one or more pharmaceutically acceptable excipients.
- In most embodiments, the pharmaceutical composition according to the invention is free of the allergen to which the recombinant polyclonal antibody or the mixture of different monoclonal antibodies or the isolated or purified polyclonal antibody bind or is reactive with. However, in special cases during so-called specific allergen immunotherapy to induce allergen tolerance in a patient, the allergen-specific polyclonal antibody may be administered to the patient in conjunction with an allergen preparation, in order to enable or enhance the efficacy of the tolerance induction procedure.
- In another aspect, the invention relates to the use of a polyclonal antibody with desired specificities for the manufacture of a pharmaceutical composition for the prophylaxis or treatment of allergy or allergic conditions such as allergic rhinitis, allergic conjunctivitis, hay fever, asthma, etc.
- In a further aspect, the invention relates to a method of preventing or treating allergy, which comprises administering to a patient in need thereof a sufficient amount of a polyclonal antibody capable of reacting with or binding to an allergen to which the patient has shown an allergic reaction.
- The use of a polyclonal antibody has potential clinical advantages compared with the use of a monoclonal antibody due to the presence of multiple reactivities in a polyclonal antibody against the allergen-target in question. There may be generated a polyclonal antibody which has reactivities against all epitopes on a complex allergen target. Due to the polyclonal nature of the composition, containing many epitope specificities, the functional antibody density which can be achieved on complex allergen antigens when using a polyclonal antibody is significantly higher, than with a monoclonal antibody. This results in more efficient blocking or clearance of the target allergen. Further, the polyclonal nature of the composition enables recognition of and blocking of epitopes on related, homologous allergen isotypes, due to broad reactivity with several epitopes shared in part between related allergens, something which is not enabled by a monoclonal antibody.
- Further, it can be expected that treatment with allergen-specific polyclonal antibodies of the IgA or IgG isotype will have an immunomodulating effect by inducing tolerance to an allergen, and thus have a long term effect in curing the allergy or reducing the need for further treatment. Thus, a further aspect of the invention relates to the use of a pharmaceutical composition according to the invention for prophylactic treatment inducing tolerance to the allergen. This may even be used in patients where an allergic reaction has not yet been observed but which patients due to family history or genetic analysis are likely to develop allergy to an allergen.
- Furthermore, contrary to a monoclonal antibody, a polyclonal antibody preparation comprises a mixture of specificities, and therefore any single and individual, cross-reacting specificity idiotype will be delivered at a very low concentration, thus reducing significantly the potential for harmful side-effects, due to cross-reactivity. In other words, the potential for deleterious side-effects due to unwanted tissue cross-reactivity is diluted out in the polyclonal antibody reagent. Further, any unwanted cross-reactivity of the polyclonal antibody preparation can be removed by adsorption. If a monoclonal antibody results in an unwanted cross-reactivity, it is inherent to the single antibody present and can of course not be removed without destroying the activity of the preparation.
- Also, in analogy with the properties of polyclonal antibodies in terms of the diminished potential for cross-reactivity, polyclonal antibodies will also be much less likely than monoclonal antibodies to induce a neutralizing anti-idiotype immune response, since each single epitope-specific idiotype of the administered polyclonal antibody preparation is present in a very low quantity or concentration, being below the threshold for generation of an anti-idiotype response.
- Some of the drawbacks of using conventional polyclonal antibodies in the form of IgG purified from hyperimmune human (limited supply, expensive to produce) or serum from normal animals (anti-xeno-antibody responses, anaphylactic shock) is the use of serum or other biological material from animals transgenic for human immunoglobulin genes. Thus, such animals can be immunized with allergens, and used as a source to isolate allergen-specific polyclonal antibody products of fully human sequence.
- The immune complexes on the nasal linings will be cleared as the mucous excretion is swallowed. The immune complexes on the mucosal surfaces of the tracheal and bronchial airways will be expelled into the mouth, mixed with saliva, swallowed and digested in the gastrointestinal tract. In order to achieve betters effects in adsorbing and clearing allergenic molecules from the mucous fluids on the mucosal surfaces and preventing any uptake of the complexed allergen by the mucosal epithelial cells, the allergen-specific antibody can be conjugated to polymer backbones or microbeads forming microspheres.
- Thus the pharmaceutical composition according to the invention may be formulated as a solution, dispersion, powder, or in form of microspheres.
- The term “antibody molecule” describes the single antibody protein molecule or fragments thereof containing one or more variable antigen binding domain(s) and constant regions. An antibody molecule is usually monospecific, but may also be described as idiospecific, heterospecific, polyspecific or of unwanted specificity. It cannot be non-specific except in the sense of non-immunochemical binding. Antibody molecules bind by means of specific binding sites to specific antigenic determinants or epitopes on antigens.
- Collectively, antibodies may exist as a population of molecules where a fraction or all of the members are capable of reacting with a specific antigen determinant. Thus, in the present context, the term “antibody” refers to compositions/mixtures/populations of antibody molecules, such as they are found as the functional component of anti-serum or immune serum derived from mammals, or as they are found in monoclonal or polyclonal antibody compositions with similar functionality prepared either from human or animal sources or by recombinant technologies, including transgenic animals and phage display or by conventional hybridoma technology.
- The term “polyclonal antibody” denotes a mixture of different antibody molecules which react with more than one immunogenic determinant of an antigen.
- In the present context, the term “polyclonal antibody” encompasses a polyclonal antibody isolated or purified from mammalian blood, secretions, or other fluids, or from eggs, as well as a mixture of different monoclonal antibodies, and finally a polyclonal antibody may be produced as a recombinant polyclonal antibody.
- The term “recombinant polyclonal antibody” refers to a polyclonal antibody generated by the use of recombinant technologies, and such polyclonal antibodies are hereafter named symphobodies. Thus, a symphobody contains a high concentration of different antibody molecules, all or a majority of which are displaying a desired binding activity towards an antigen composed of more than one epitope.
- Symphobodies can be generated by recombinant DNA techniques followed by expression in eukaryotic cells, including yeast, fungi, insect, plant, or mammalian cells, or in prokaryotic cells such as bacteria, or as expressed from virus vectors, or through gene therapy, or from expression of transgenes in animals.
- Preferably at least 85% of the antibody molecules in the symphobody preparation are target-specific, more preferably at least 90% are target-specific, even more preferably at least 95% are target-specific, and most preferably all antibody molecules in the symphobody preparation are target-specific.
- By the term “a mixture of different monoclonal antibodies” is meant a mixture of two or more different monoclonal antibodies. The term “two or more” in the present context denotes from 2 to 100, preferably from 3 to 60, more preferably from 5 to 40, most preferably from 10 to 25 different monoclonal antibodies.
- By the term “an isolated or purified polyclonal antibody” is meant a polyclonal antibody isolated or purified from mammalian blood, secretions, or other fluids, or from eggs.
- It is to be understood that the expressions “an antibody, a polyclonal antibody, a recombinant antibody, a mixture of different monoclonal antibodies and an isolated or purified polyclonal antibody” all also encompasses functional fragments of the mentioned antibodies.
- A currently preferred method of preparing a recombinant polyclonal antibody is by making polyclonal antibody libraries (PCAL), for instance as disclosed in U.S. Pat. No. 255,789,208 (to J. Sharon) which is hereby incorporated by reference in its entirety.
- More specifically, the polyclonal antibody included in the pharmaceutical composition may be prepared by immunizing an animal, preferably a mammal, with an allergen of choice followed by the isolation of antibody-producing B-lymphocytes from blood, bone marrow, lymph nodes, or spleen. Alternatively, antibody-producing cells may be isolated from an animal and exposed to an allergen in vitro against which antibodies are to be raised. The antibody-producing cells may then be cultured to obtain a population of antibody-producing cells, optionally after fusion to an immortalized cell line such as a myeloma.
- More preferably, as a starting material B-lymphocytes may be isolated from the tissue of an allergic patient, in order to generate fully human polyclonal antibodies.
- The present composition may also be generated using suitable tissue from mice, rats, pigs (swine), sheep, bovine material, or other animals transgenic for the human immunoglobulin genes, as starting material in order to generate fully human polyclonal antibodies.
- Particularly, in the case of mice or other animals transgenic for the human immunoglobulin genes (e.g. as disclosed in U.S. Pat. No. 5,939,598), the animals may be immunized to stimulate the in vivo generation of specific antibodies and antibody producing cells before preparation of the polyclonal antibody composition from the animal by extraction of B lymphocytes or purification of polyclonal serum.
- A combinatorial library may be prepared from immunized B lymphocytes by associating VL and VH randomly in a cloning vector. Thus, the recombinant polyclonal antibody is generated under such conditions that the immunoglobulin heavy chain variable region and light chain variable region gene segments are linked together randomly in order to allow for the bulk transfer of variable region light chain and heavy chain gene pairs from one vector to another, while allowing stable pairing of specific immunoglobulin variable region light chain and heavy chain gene segments as they are present upon selection from a parental library of immunoglobulin variable region light chain and heavy chain gene segment pairs encoding antibody molecules capable of reacting with or binding to an allergen.
- Single cell PCR may be used in an attempt to retain the native pairing of VL and VH in the single cell. In this case antibody-producing B-lymphocytes which have been isolated from animals or humans may be fixed with a fixative solution or a solution containing a chemical such as formaldehyde, glutaraldehyde or the like.
- The cells are then permeabilized with a permeabilization solution comprising for example a detergent such as Brij, Tween, polysorbate, Triton X-100, or the like. The fixing and permeabilization process should provide sufficient porosity to allow entrance of enzymes, nucleotides and other reagents into the cells without undue destruction of cellular compartments or nucleic acids therein. Addition of enzymes and nucleotides may then enter the cells to reverse transcribe cellular VH and VL mRNA into the corresponding cDNA sequences.
- Reverse transcription may be performed in a single step or optionally together with a PCR procedure, using a reverse transcriptase, sufficient quantities of the four dNTPs and primers that bind to the mRNA providing a 3′ hydroxyl group for reverse transcriptase to initiate polymerization. Any primer complementary to the mRNA may be used, but it is preferred to use primers complementary to the 3′-terminal end of the VH and VL molecules so as to facilitate selection of variable region mRNA.
- Upon reverse transcription, the resulting cDNA sequences may be amplified by PCR using primers specific for immunoglobulin genes and, in particular, for the terminal regions of the VH and VL nucleic acids. PCR procedures may be followed as disclosed in, e.g., U.S. Pat. No. 4,683,195. Preferably, the cDNAs are PCR amplified and linked in the same reaction, using, in addition to the cDNA primers, one primer for the 5′ end of the VH region gene and another for the 5′ end of the VL gene. These primers also contain complementary tails of extra sequence, to allow the self-assembly of the VH and VL genes. After PCR amplification and linking, the chance of getting mixed products, in other words, mixed variable regions, is minimal because the amplification and linking reactions were performed within each cell. The risk of mixing can be further decreased by utilizing bulky reagents such as digoxigenin labeled nucleotides to further ensure that V region cDNA pairs do not leave the cellular compartment and intermix, but remain within the cell for PCR amplification and linking. The amplified sequences are linked by hybridization of complementary terminal sequences. After linking, sequences may be recovered from cells. For example, after linking, cells can be washed in a solution of sodium dodecyl sulfate (SDS). The SDS precipitates out of the cells after incubation on ice and the supernatant can be electrophoresed into an agarose or acrylamide gel. Alternatively, or in combination with the SDS process, using a reagent such as digoxigenin-linked nucleotides, DNA products synthesized will remain within the cell and be amplified. The linked product is recovered upon electrophoresis of the supernatant.
- After electrophoresis of the supernatant, the gel slice corresponding to the appropriate molecular weight of the linked product is removed and the DNA isolated on, for example, silica beads. The recovered DNA can be PCR amplified using terminal primers, if necessary, and cloned into vectors which may be plasmids, phages, cosmids, phagemids, viral vectors or combinations thereof. Convenient restriction enzyme sites may be incorporated into the hybridized sequences to facilitate cloning. These vectors may also be saved as a library of linked variable regions for later use.
- The linked VH and VL region genes may be PCR amplified a second time using terminal nested primers, yielding a population of DNA fragments which encode the linked VH and VL genetic regions. The grouping of VH and VL combinations is an advantage of this process and allows for the in mass or batch transfer of all clones and all DNA fragments during this and all cloning procedures.
- Preferably, the recombinant polyclonal antibody may be generated under such conditions that the immunoglobulin heavy chain variable region and light chain variable region gene segments are linked together in a head-to head orientation, in order to allow for the bulk transfer of variable region light chain and heavy chain pairs from one vector to another, including from phage to vector, and including from the cell of origin to phage or vector, resulting in a stable pairing of specific immunoglobulin variable region light chain and heavy chains gene segments as they are found in the original polyclonal immune response of the animal or human individual.
- It may sometimes be desirable to treat the variable region gene sequences with a mutating agent. Mutating agents create point mutations, gaps, deletions or additions in the genetic sequence which may be general or specific, or random or site directed. Useful mutating agents include ultraviolet light, gamma irradiation, chemicals such as ethidium bromide, psoralen and nucleic acid analogs, or DNA modifying enzymes such as restriction enzymes, transferases, ligases and specific and nonspecific nucleases and polymerases. Moreover it may be feasible to use mutator strains. In particular, random mutations may be introduced in the CDRs of the VH and VL region genes by oligonucleotide directed mutagenesis. Mutations introduced into the gene sequence will ultimately increase library complexity and diversity as well as affinity for antigen which may further increase the library's usefulness in treatment. Furthermore, such mutagenesis may be used on a single VH and VL pair or on a defined group of such pairs to generate a library de novo.
- Cloning is performed, for example, by cleaving the cDNA and vector sequences with a restriction enzyme, if necessary isolating certain nucleic acid fragments, mixing the fragments together in the presence of ligase in a suitable balanced salt solution, and incubating the mixture under enzymatically acceptable conditions for a prescribed period of time. Using different enzyme recognition sites at each terminus of the cDNA, cloning orientation can be predetermined.
- Vectors are transformed into suitable host cells and the cultures amplified to expand the different populations of vectors that comprise the library. Host cells for prokaryotic vectors may be a culture of bacteria such as Escherichia coli. Host cells for eukaryotic vectors may be a culture of eukaryotic cells such as any mammalian, insect or yeast cell lines adapted to tissue culture. Bacterial cells are transformed with vectors by calcium chloride-heat shock or electroporation, although many other transformation procedures would also be acceptable. Eukaryotic cells are transfected with calcium phosphate precipitation or electroporation, although many other transformation procedures would also be acceptable. The DNA fragments may be cloned into prokaryotic or eukaryotic expression vectors, chimeric vectors or dual vectors. The expression vector may be a plasmid, cosmid, phage, viral vector, phagemid and combinations thereof, but is preferably a phage display vector wherein the recombinant product is expressed on the phage surface to facilitate screening and selection. Useful transcriptional and translational sites may be placed on the expression vector including RNA polymerase recognition regions such as a TATA box site, a CAT site, an enhancer, appropriate splicing sites, if necessary, a AT rich terminal region and a transcription initiation site. Useful sites to facilitate translation include translational start and stop sites and ribosome binding sites. Typically, some of the more useful sites for efficient eukaryotic expression, such as the SV40, CMV, HSV or baculovirus promoter/enhancer region, are derived from viruses. The resulting recombinant antibody may be of the murine class IgG1, IgG2a, IgG2b, IgM, IgA, IgD or IgE, the human classes IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgA2, IgD or IgE, or combinations or fragments thereof. Preferably, the chimeric antibody library is composed of primarily IgG antibodies or Fab antibody fragments.
- Selection of a recombinant polyclonal antibody with desired specificity can be performed e.g. by affinity selection (panning) using an allergen-coated surface for binding the phage particles exhibiting a relevant antibody specificity. The majority of phages in the phage library are eliminated by washing and the bound phage particles are retrieved by harsher conditions (elution). After the selection procedures, the VL and VH antibody gene pairs in the selected library of phage particles can be subcloned into a different vector designed for expression of the recombinant polyclonal antibody as a complete antibody molecule or a fragment thereof such as a Fab fragment.
- The use of recombinant DNA technology for generating a recombinant polyclonal antibody is a cost-effective way of generating antibodies, and the production of well-characterized, polyclonal antibody preparations with desired specificities, would overcome the above problems with conventional polyclonal antibody sera and individual monoclonal antibodies and allow the use of such reagents for the prophylaxis or treatment of allergy or allergic conditions, e.g. asthma.
- Pharmaceutical Compositions
- In a preferred embodiment, the pharmaceutical composition of the invention is one intended for topical administration/application to mucosa, such as the oropharynx, nasal cavity, respiratory tract, gastrointestinal tract, eye such as the conjunctival mucosa, vagina, urogenital mucosa, or for dermal application.
- A particularly interesting use of the pharmaceutical composition is for application to the nasal, bronchial or pulmonary mucosa. Specifically, the topical treatment of allergy using inhaled polyclonal antibodies would be a particularly useful application of such reagents, allowing the discovery and development of novel therapeutic or preventive modalities which are cheap to produce, harmless and of no toxicity, and aimed towards a disease afflicting a very large proportion of the human population.
- In order to obtain optimal delivery of the polyclonal antibody to the pulmonary cavity in particular, it may be advantageous to add a surfactant such as a phosphoglyceride, e.g. phosphatidylcholine, and/or a hydrophilic or hydrophobic complex of a positively or negatively charged excipient and a charged antibody of the opposite charge.
- Other excipients suitable for pharmaceutical compositions intended for delivery of the polyclonal antibody to the respiratory tract mucosa may be from the group consisting of a) carbohydrates, e.g., monosaccharides such as fructose, galactose, glucose, D-mannose, sorbiose, and the like; disaccharides, such as lactose, trehalose, cellobiose, and the like; cyclodextrins, such as 2-hydroxypropyl-β-cyclodextrin; and polysaccharides, such as raffinose, maltodextrins, dextrans, and the like; b) amino acids, such as glycine, arginine, aspartic acid, glutamic acid, cysteine, lysine and the like; c) organic salts prepared from organic acids and bases, such as sodium citrate, sodium ascorbate, magnesium gluconate, sodium gluconate, tromethamine hydrochloride, and the like; d) peptides and proteins, such as aspartame, human serum albumin, gelatin, and the like; e) alditols, such as mannitol, xylitol, and the like, f) polycationic polymers, such as chitosan or a chitosan salt or derivative.
- Over the years certain drugs have been sold in compositions suitable for forming a drug dispersion for oral inhalation (pulmonary delivery) to treat various conditions in humans. Such pulmonary drug delivery compositions are designed to be delivered by inhalation by the patient of the drug dispersion so that the active drug within the dispersion can reach the lung.
- Pulmonary drug delivery can itself be achieved by different approaches, including liquid nebulizers, aerosol-based metered-dose inhalers (MDI's) and dry powdered dispersion devices. Chlorofluorocarbon (CFC) based MDI's are losing favor because of their adverse effect on the environment. Dry powder dispersion devices, which do not rely on CFC aerosol technology, are promising for delivering drugs that may be readily formulated as dry powders. Many otherwise labile macromolecules may be stably stored as lyophilized or spray dried powders, either by themselves or in combination with suitable powder carriers.
- Many pharmaceutical compositions, including antibodies, are quite expensive. Thus, the ability to efficiently formulate, process, package and deliver the dry powders with minimal loss of drug is critical.
- An important requirement for hand held and other powder delivery devices is efficiency. It is important that the delivered dose be relatively high to reduce the number of breaths required to achieve a total dosage. The ability to achieve both adequate dispersion and small dispersed volumes is a significant technical challenge that requires in part that each unit dosage of the powder composition be readily and reliably dispersible. Certain pulmonary delivery devices, such as those disclosed in U.S. Pat. No. 5,797,392, U.S. Pat. No. 5,458,135 and International Patent Publication WO96/09085 are useful for pulmonary delivery of dry powder drugs. Other administration forms of the present composition include liquids, gels, ointments or other suitable formulations for ocular administration, sprays, aerosols, powders, or other compositions for the administration into the nasal cavity, chewing gum, pasta or other compositions for oral cavity, creams, ointments, lotions, gels or other compositions suitable for the application onto the skin, vagitories, gels or other compositions suitable for application onto the vaginal or urogenital mucosa or formulated as capsules or tablets for the administration into the digestive tract. For dermal application, the polyclonal antibody may suitably be formulated with one or more of the following excipients: solvents, buffering agents, preservatives, humectants, chelating agents, antioxidants, stabilizers, emulsifying agents, suspending agents, gel-forming agents, ointment bases, penetration enhancers, perfumes, and skin protective agents.
- Examples of solvents are e.g. water, alcohols, vegetable or marine oils (e.g. edible oils like almond oil, castor oil, cacao butter, coconut oil, corn oil, cottonseed oil, linseed oil, olive oil, palm oil, peanut oil, poppyseed oil, rapeseed oil, sesame oil, soybean oil, sunflower oil, and tea seed oil), mineral oils, fatty oils, liquid paraffin, polyethylene glycols, propylene glycols, glycerol, liquid polyalkylsiloxanes, and mixtures thereof.
- Examples of buffering agents are e.g. citric acid, acetic acid, tartaric acid, lactic acid, hydrogenphosphoric acid, diethyl amine etc.
- Suitable examples of preservatives for use in compositions are parabenes, such as methyl, ethyl, propyl p-hydroxybenzoate, butylparaben, isobutylparaben, isopropylparaben, potassium sorbate, sorbic acid, benzoic acid, methyl benzoate, phenoxyethanol, bronopol, bronidox, MDM hydantoin, iodopropynyl butylcarbamate, EDTA, benzalconium chloride, and benzylalcohol, or mixtures of preservatives. Examples of humectants are glycerin, propylene glycol, sorbitol, lactic acid, urea, and mixtures thereof.
- Examples of antioxidants are butylated hydroxy anisole (BHA), ascorbic acid and derivatives thereof, tocopherol and derivatives thereof, cysteine, and mixtures thereof. Examples of emulsifying agents are naturally occurring gums, e.g. gum acacia or gum tragacanth; naturally occurring phosphatides, e.g. soybean lecithin; sorbitan monooleate derivatives; wool fats; wool alcohols; sorbitan esters; monoglycerides; fatty alcohols;, fatty acid esters (e.g. triglycerides of fatty acids); and mixtures thereof.
- Examples of suspending agents are e.g. celluloses and cellulose derivatives such as, e.g., carboxymethyl cellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, carraghenan, acacia gum, arabic gum, tragacanth, and mixtures thereof.
- Examples of gel bases, viscosity-increasing agents or components which are able to take up exudate from a wound are: liquid paraffin, polyethylene, fatty oils, colloidal silica or aluminum, zinc soaps, glycerol, propylene glycol, tragacanth, carboxyvinyl polymers, magnesium-aluminum silicates, Carbopol®, hydrophilic polymers such as, e.g. starch or cellulose derivatives such as, e.g., carboxymethylcellulose, hydroxyethylcellulose and other cellulose derivatives, water-swellable hydrocolloids, carragenans, hyaluronates (e.g. hyaluronate gel optionally containing sodium chloride), and alginates including propylene glycol alginate.
- Examples of ointment bases are e.g. beeswax, paraffin, cetanol, cetyl palmitate, vegetable oils, sorbitan esters of fatty acids (Span), polyethylene glycols, and condensation products between sorbitan esters of fatty acids and ethylene oxide, e.g. polyoxyethylene sorbitan monooleate (Tween).
- Examples of hydrophobic or water-emulsifying ointment bases are paraffins, vegetable oils, animal fats, synthetic glycerides, waxes, lanolin, and liquid polyalkylsiloxanes. Examples of hydrophilic ointment bases are solid macrogols (polyethylene glycols). Other examples of ointment bases are triethanolamine soaps, sulphated fatty alcohol and polysorbates.
- Examples of other excipients are polymers such as carmelose, sodium carmelose, hydroxypropylmethylcellulose, hydroxyethylcel lulose, hydroxypropylcellulose, pectin, xanthan gum, locust bean gum, acacia gum, gelatin, carbomer, emulsifiers like vitamin E, glyceryl stearates, cetanyl glucoside, collagen, carrageenan, hyaluronates and alginates and chitosans.
- It is normally preferred that a local effect is obtained for the polyclonal antibody, Clearance and thereby activity can be substantially controlled and prolonged by pharmaceutical compositions such as microspheres, liposomes, complexes of positively or negatively charged excipients with antibody molecules of opposite charge.
- Therapeutic Uses of Polyclonal Antibodies
- In a preferred embodiment, the symphobody included in the present composition is one that reacts with/binds to an inhalant allergen including conjunctival and nasopharyngeal allergens, as well as allergens entering the respiratory tract, or otherwise enters into the body. The preventive or therapeutic inhalation of polyclonal antibodies, e.g. symphobodies, directed against common inhalant allergens is aimed directly at eliminating the cause of the allergy by aiding the blocking, neutralization, and clearance from the respiratory tract of the allergic causative agent before allergic sensitization ensues.
- Thus, the present embodiment of the invention concerns the possibility of neutralizing the effect of allergen inhalation via polyclonal antibody inhalations by blocking allergen epitopes otherwise available for the binding of IgE molecules. Also, the binding of polyclonal antibodies is predicted to exert a clearance effect on allergens by mediating the phagocytosis and degradation of allergens without the induction of allergic responses, as well as facilitating the upwards clearance away from the respiratory tract into the pharynx of allergen entrapped in immune complexes with IgA or IgG together with mucosal mucous, and subsequent swallowing into the digestive tract.
- Finally, the mucosal administration of allergen-specific polyclonal antibody, e.g. symphobody of the IgG or IgA isotype, which are blocking with respect to the binding of allergen-specific IgE, is hypothesized to inhibit the IgE-mediated antigen presentation for T lymphocytes which may induce the predominantly TH2 type T lymphocyte response to allergens which in allergic individuals is believed to perpetuate the allergy. Instead, the presence of blocking allergen-specific polyclonal antibodies, e.g. symphobodies may result in IgG- or IgA-mediated antigen presentation for T cells, which in turn may preferentially promote a TH1 type T lymphocyte response to allergens, thus interrupting the vicious cycle of the allergic inflammatory reaction.
- Allergen epitopes e.g. from pollen are derived from several proteins, and thus for a single inhalant antibody to be able to work, it will be required to contain several if not many individual idiotypic specificities/antigen reactivities. In this respect, polyclonal antibodies seem far superior to monoclonal antibodies.
- Consequently, polyclonal antibody compositions may be used for the prophylaxis or treatment of all types of allergy, including allergic rhinitis, hay fever, allergic conjunctivitis, and allergic (extrinsic) asthma, as well as food allergy. In particular, but not limited to, the polyclonal antibody of the present invention is one that reacts with/binds to an allergen from: The house dust mites (e.g. Dermatophagoides farinae or D. pteronyssimus); danders from cat, dog, or horse; tree pollens from birch (Betula alba), alder, hazel, oak, willow, plane, beech, elm, maple, ash, and hornbeam; grass pollens from timothy grass (Phleum pretense), bluegrass (Poa pratense), rye grass (Lolium perenne), Orchard grass (Dactylis glomerata), ragweed (e.g. Ambrosia artemisiifolia), sweet vernal grass (anthoxanthum odoratum), and rye (Secale cereale); or fungi (e.g. Alternaria, Aspergillus, Cladosporium, and Penicillium). In addition, allergen-specific polyclonal antibodies, e.g. symphobodies may be used to treat allergies against other agents such as food allergens (e.g. peanuts and other nuts, shell-fish, egg, milk, corn) or bee venom allergens. Many of these allergens may be purchased as well-characterized proteins from commercial suppliers.
- The dose of polyclonal antibody required in humans to be effective in the treatment or prevention of allergy differs with the type and severity of the allergic condition to be treated, the type of allergen, the age and condition of the patient, etc. Typical doses of polyclonal antibody to be administered are in the range of 1 μg to 1 g, preferably 1-1000 μg, more preferably 2-500, even more preferably 5-50, most preferably 10-20 μg per unit dosage form.
- Experimental
- The present invention is described in detail in the following examples which are not in any way intended to limit the scope of the invention as claimed.
- Immunization of Mice for the Generation of Symphobody Libraries
- BALB/c mice are immunized subcutaneously (s.c.) or intraperitoneally (i.p.) with e.g. 1 mg of allergenic protein in Freunds complete adjuvant. Immunization is performed using recombinant allergen protein (e.g. Der p 1) or extracts from native allergens. Any subsequent immunizations are given at two to three week intervals and in incomplete Freunds adjuvant. Spleen and/or bone marrow are taken 3 days after the last immunization and used for the preparation of the symphobody library, as described in U.S. Pat. No. 5,789,208.
- Generation of Symphobody Libraries from Allergic Patient Material
- Symphobody libraries are prepared from blood or bone marrow samples taken from allergic patients characterized by positive case history, skin prick testing, radioallergosorbent test (RAST), or reactivity of patient sera with allergen extracts by IgG or IgE immunoblotting or reactivity to purified recombinant allergens (e.g. pollen allergens or animal allergens).
- Antibody Binding to Allergen is Detected By ELISA
- Between 50 and 1000 ng of allergen, disintegrated allergen, or recombinant allergen are coated pr well of Nunc Maxisorp 96-well microtiter plates, After washes in PBS containing gelatin or BSA as well as Tween-20 the wells are blocked 1 hour at 37° C. using gelatin or BSA. Subsequently the wells are washed and incubated with either polyclonal antibodies, e.g. symphobodies, murine or human IgE, IgG derived from either serum or bronchoalveolar lavages (BAL). After repeated rounds of washing, bound antibody is detected by successive incubations of secondary biotinylated anti-mouse or anti-human immunoglobulin as appropriate, followed by AP-avidin, and pNPP substrate. Previously characterized allergen-specific monoclonal antibodies are used as a positive control and monoclonal and polyclonal antibodies with different, unrelated specificities are used as negative controls.
- In some experiments polyclonal antibody incubations are preceded by incubations with well-characterized monoclonal antibodies in a competitive ELISA.
- Polyclonal Antibody Inhibition of Binding of Patient-Derived IgE to Allergens
- Patient-derived IgE binding to allergen extracts is studied either in competitive ELISA (similar to the protocol above with the following modifications) for IgE binding or by preparative SDS-PAGE and Western blotting. After ELISA well coating or allergen electrophoresis using allergen, disintegrated allergen, or recombinant allergen, the allergen-coated surface is blocked with gelatin or BSA, before incubation 3-4 hours at 4° C. with allergen-specific polyclonal antibodies. Subsequently, samples are incubated 3-4 hours at 4° C. with patient sera or BAL IgE diluted 1:5 and bound human IgE antibodies are detected with e.g. 125I-labeled anti-human IgE antibodies (RAST; Pharmacia) and visualized by autoradiography. Binding of mouse IgG is detected as described above.
- Characterization of Polyclonal Antibody Reactivity with Allergen Extracts By Electrophoresis and Western Blotting
- Allergen extracts are separated by SDS-PAGE and immunoblotted onto nitrocellulose strips before incubation with the antibody preparation (patient sera, mouse sera, polyclonal antibodies, e.g. symphobodies, or control monoclonal antibodies). In some experiments, the cross-reactivity of polyclonal antibodies generated against one allergen is examined by testing in ELISA or Western blotting against a panel of homologous allergens.
- Inhibition of Allergen-Induced Histamine Release from Human Basophile Granulocytes After Preincubation of Allergens with Polyclonal Antibodies
- Heparinized blood samples are obtained from allergic patients and granulocytes isolated by dextran sedimentation. Recombinant allergens, disintegrated allergens or allergen extracts are preincubated with allergen-specific polyclonal antibodies, e.g. symphobodies, or control antibodies or buffer alone, for 1 h at room temperature before incubation at different concentrations (1, 0.1, 0.01, and 0.001 μg/ml) with granulocytes disintegrated in histamine release buffer (20 mM PIPES, pH 7.4, 110 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 g/L glucose, 0.3 mg/ml human serum albumin). Histamine release into the cell-free supernatant is determined by radioimmunoassay and expressed as a percentage of total histamine release after cell lysis.
- Polyclonal Antibody Inhibition of Allergic Inflammation in a Mouse Model of Allergy
- Mice (e.g. BALB/c mice, are sensitized to allergens (e.g. ragweed allergen) by two or more i.p. injections of allergen (e.g. 150 microgram) and alum on e.g. days 0 and 4. On e.g. day 11 and in a two to four week timespan, an intratracheal or intranasal allergen challenge is performed on anesthetized mice where after mice are analyzed as described below. In some experiments a mouse model based on ovalbumin (OVA)-sensitization is employed. Briefly, BALB/c mice are injected i.p. with e.g. 5-100 μg OVA (chicken egg albumin grade V,Sigma) in 2 mg aluminum hydroxide adjuvant (alum, Pierce) on day 1 and day 14, before challenge on protocol days 28, 29 and 30 with either 1% aerosolized OVA in PBS for 20 minutes using a ultrasonic nebulizer (DeVilbiss Somerset, Pa, USA) or 5-100 μg OVA in 40 μL PBS injected intratracheally in anesthetized mice. Control mice receive the same amount of PBS.
- On day 32, 24 hours after antigen challenge, 12 mice are subjected to an airway responsiveness test and killed on day 33. In the control group 8 mice are used.
- The left lung is tied of and BAL of the right lung is obtained by 5 repeated washings with 200 μL PBS. The left lung is fixed and embedded in paraffin for lung histology. A blood sample (tail blood) is also taken from each mouse and stored at −80° C. until analysis is carried out.
- In experiments where the ability of allergen-specific polyclonal antibodies, e.g. symphobodies to inhibit allergic inflammation is examined, the allergen-specific polyclonal antibody preparationin doses varying from 1 μg to 1 mg is administered before, during, or after the administration of the challenge dose of antigen.
- Polyclonal antibodies with different or unrelated specificities as well as PBS is used as a negative control, and the effect is in some experiments compared with a positive control allergen-specific monoclonal antibody.
- Efficacy Evaluation of Polyclonal Antibodies in Blocking the Allergic Response in the Murine Allergy Model
- Upon completion of the allergen challenge, the allergic reaction is evaluated by performing bronchial lavage (BAL) on euthanized mice, and the BAL fluid is examined by differential counting for the content of eosinophils, neutrophils, lymphocytes, and macrophages.
- The lower and upper lobes of the left lung are collected and fixed in Carnoy's solution (6× ethanol; 3× acetic acid glacial; 1× chloroform) at 20° C. for ˜15 hours. After embedding in paraffin the tissues are cut into 4-5 μm sections. From each mouse 10 airway sections randomly distributed are assessed for severity of the cellular inflammation and mucus occlusion. The cellular infiltrate of the peribronchial and perivascular areas is evaluated semi-quantitatively for the presence of leukocytes (eosinophils, iymphocytes), quantified on a scale from 0-5 with an increment of 0.5. Mucus occlusion of the bronchial lumen is assigned a score using the following measures 0, 0-10% occlusion; 1, 10-30% occlusion; 2, 30-60% occlusion; 3, 60-90% occlusion; 4, 90-100% occlusion. Damage to the airway epithelium is also estimated on an equivalent scale. All evaluations are performed by individuals blinded to the protocol design and the results are recorded photographically. The tissue sections are stained with hematoxylin and eosin for cellular staining or hematoxylin and periodic acid-Schiff for mucus staining.
- Total and OVA-specific IgE, IgG, IgG1, IgG2a and IgG3 levels in the blood of mice are determined by ELISA as described above.
Claims (17)
1. A pharmaceutical composition comprising as an active ingredient a recombinant polyclonal antibody or a mixture of individual monoclonal antibodies or an isolated or purified polyclonal antibody capable of reacting with or binding to an allergen together with one or more pharmaceutically acceptable excipients.
2. The pharmaceutical composition of claim 1 , wherein the active ingredient is a recombinant polyclonal antibody.
3. The pharmaceutical composition of claim 1 , wherein the active ingredient is a mixture of individual monoclonal antibodies.
4. The pharmaceutical composition of claim 1 , wherein the active ingredient is an isolated or purified polyclonal antibody.
5. The pharmaceutical composition of claim 1 , where the composition is free of the allergen to which the antibody is reactive or binds.
6. The pharmaceutical composition of claim 1 , wherein the composition comprises at least one pharmaceutically acceptable excipient capable of effecting topical application of said recombinant polyclonal antibody or said mixture of individual monoclonal antibodies or said isolated or purified polyclonal antibody.
7. The pharmaceutical composition of claim 5 , wherein said composition is intended for topical administration to the oropharynx, nasal cavity, respiratory tract, gastrointestinal tract, conjunctival mucosa, vagina, urogenital mucosa, or for dermal application.
8. The pharmaceutical composition of claim 7 , wherein the respiratory tract comprises the nasal, oral, pharyngeal, bronchial or alveolar mucosa.
9. The pharmaceutical composition of claim 1 , wherein said composition is provided as a solution, dispersion, powder, or in the form of microspheres.
10. The pharmaceutical composition of claim 2 , wherein the recombinant polyclonal antibody is generated by phage display technology.
11. The pharmaceutical composition of claim 10 , wherein the recombinant polyclonal antibody is generated under such conditions that the immunoglobulin heavy chain variable region and light chain variable region gene segments are linked together in a parental library in order to allow for the bulk transfer of variable region light chain and heavy chain gene pairs from one vector to another, while allowing stable pairing of specific immunoglobulin variable region light chain and heavy chain gene segments as they are present upon selection from the parental library of immunoglobulin variable region light chain and heavy chain gene segment pairs encoding antibody molecules capable of reacting with or binding to an allergen.
12. The pharmaceutical composition of claim 10 , wherein the recombinant polyclonal antibody is generated under such conditions that the immunoglobulin heavy chain variable region and light chain variable region gene segments are linked together in order to allow for the bulk transfer of specific variable region light chain and heavy chain gene pairs from one vector to another, while allowing stable pairing of specific immunoglobulin variable region light chain and heavy chain gene segments as they are present in the original polyclonal immune response of an animal or human individual.
13. The pharmaceutical composition of claim 1 , wherein the allergen is an allergen of a house dust mite, dander from a cat, a dog, or a horse, tree pollen, grass pollen, or fungi.
14. The pharmaceutical composition of claim 1 , wherein the recombinant polyclonal antibody or the mixture of monoclonal antibodies or the isolated or purified polyclonal antibody is provided in an amount in the range of 1 μg to 1 g per unit dosage form.
15. The pharmaceutical composition of claim 14 , wherein the recombinant polyclonal antibody or the mixture of monoclonal antibodies or the isolated or purified polyclonal antibody is provided in an amount in the range of 1 μg to 1000 μg per unit dosage form.
16. A method of preventing or treating allergy, said method comprising administering to a patient in need thereof a pharmaceutical composition comprising as an active ingredient a recombinant polyclonal antibody or a mixture of individual monoclonal antibodies or an isolated or purified polyclonal antibody capable of reacting with or binding to an allergen to which the patient has shown or is predisposed to develop an allergic reactions together with one or more pharmaceutically acceptable excipients.
17. A method of inducing tolerance to an allergen, said method comprising administering to a patient, who if untreated would be likely to show allergic reaction to the allergen, a composition comprising as an active ingredient a recombinant polyclonal antibody or a mixture of individual monoclonal antibodies or an isolated or purified polyclonal antibody capable of reacting with or binding to an allergen and inducing tolerance to the allergen in the patient.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/046,159 US20050180967A1 (en) | 2000-06-16 | 2005-01-28 | Polyclonal antibody composition for treating allergy |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US21198100P | 2000-06-16 | 2000-06-16 | |
| US09/866,573 US6849259B2 (en) | 2000-06-16 | 2001-05-25 | Polyclonal antibody composition for treating allergy |
| US11/046,159 US20050180967A1 (en) | 2000-06-16 | 2005-01-28 | Polyclonal antibody composition for treating allergy |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/866,573 Continuation US6849259B2 (en) | 2000-06-16 | 2001-05-25 | Polyclonal antibody composition for treating allergy |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050180967A1 true US20050180967A1 (en) | 2005-08-18 |
Family
ID=26906647
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/866,573 Expired - Fee Related US6849259B2 (en) | 2000-06-16 | 2001-05-25 | Polyclonal antibody composition for treating allergy |
| US11/046,159 Abandoned US20050180967A1 (en) | 2000-06-16 | 2005-01-28 | Polyclonal antibody composition for treating allergy |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/866,573 Expired - Fee Related US6849259B2 (en) | 2000-06-16 | 2001-05-25 | Polyclonal antibody composition for treating allergy |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US6849259B2 (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060024379A1 (en) * | 2004-05-12 | 2006-02-02 | Larry Brown | Protein microspheres having injectable properties at high concentrations |
| US20060024240A1 (en) * | 2004-05-12 | 2006-02-02 | Brown Larry R | Delivery of as-oligonucleotide microspheres to induce dendritic cell tolerance for the treatment of autoimmune type 1 diabetes |
| US20080227660A1 (en) * | 2007-03-01 | 2008-09-18 | Jesper Kastrup | Method for cloning cognate antibodies |
| US20090017124A1 (en) * | 2007-04-17 | 2009-01-15 | Baxter International Inc. | Nucleic Acid Microparticles for Pulmonary Delivery |
| US20090117131A1 (en) * | 2006-03-20 | 2009-05-07 | Sook-Yeong Jeon | Pharmaceutical Composition for The Treatment or Prevention of Allergic Diseases, Use Thereof, and A Method for The Treatment or Prevention of Allergic Diseases |
| US20090136498A1 (en) * | 2003-01-07 | 2009-05-28 | Symphogen A/S | Method for Manufacturing Recombinant Polyclonal Proteins |
| US20100069262A1 (en) * | 2008-08-29 | 2010-03-18 | Symphogen A/S | Method for Cloning Avian-Derived Antibodies |
| US7815941B2 (en) | 2004-05-12 | 2010-10-19 | Baxter Healthcare S.A. | Nucleic acid microspheres, production and delivery thereof |
| US20110117605A1 (en) * | 2008-04-23 | 2011-05-19 | Symphogen A/S | Methods for Manufacturing a Polyclonal Protein |
| US7964574B2 (en) | 2006-08-04 | 2011-06-21 | Baxter International Inc. | Microsphere-based composition for preventing and/or reversing new-onset autoimmune diabetes |
| EP2604280A2 (en) | 2008-03-27 | 2013-06-19 | ZymoGenetics, Inc. | Compositions and methods for inhibiting PDGFRBETA and VEGF-A |
| US8728525B2 (en) | 2004-05-12 | 2014-05-20 | Baxter International Inc. | Protein microspheres retaining pharmacokinetic and pharmacodynamic properties |
| WO2014105006A1 (en) * | 2012-12-24 | 2014-07-03 | Sorrento Therapeutics, Inc. | Pharmaceutical composition of recombinant polyclonal immunoglobulins |
| WO2020159836A1 (en) | 2019-01-28 | 2020-08-06 | Maple Biotech Llc | Psmp antagonists for use in treatment of fibrotic disease of the lung, kidney or liver |
| WO2023059769A1 (en) * | 2021-10-07 | 2023-04-13 | The Regents Of The University Of Michigan | Compositions and methods for inducing immune tolerance |
Families Citing this family (57)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6849259B2 (en) * | 2000-06-16 | 2005-02-01 | Symphogen A/S | Polyclonal antibody composition for treating allergy |
| US20080026068A1 (en) * | 2001-08-16 | 2008-01-31 | Baxter Healthcare S.A. | Pulmonary delivery of spherical insulin microparticles |
| US20040076604A1 (en) * | 2002-02-22 | 2004-04-22 | Joan Stein-Streilein | Tolergenic antigen presenting cells and in treating immune-inflammatory conditions |
| US7794716B2 (en) | 2002-07-25 | 2010-09-14 | Glenveigh Pharmaceuticals, Llc | Antibody composition and passive immunization against pregnancy-induced hypertension |
| EP3299393A1 (en) * | 2002-11-08 | 2018-03-28 | Ablynx N.V. | Single domain antibodies directed against tumour necrosis factor-alpha and uses therefor |
| CN102584997A (en) * | 2002-11-08 | 2012-07-18 | 埃博灵克斯股份有限公司 | Single domain antibodies directed against tumour necrosis factor-alpha and uses therefor |
| US20100003253A1 (en) * | 2002-11-08 | 2010-01-07 | Ablynx N.V. | Single domain antibodies directed against epidermal growth factor receptor and uses therefor |
| US20060034845A1 (en) * | 2002-11-08 | 2006-02-16 | Karen Silence | Single domain antibodies directed against tumor necrosis factor alpha and uses therefor |
| US9320792B2 (en) | 2002-11-08 | 2016-04-26 | Ablynx N.V. | Pulmonary administration of immunoglobulin single variable domains and constructs thereof |
| TWI333977B (en) * | 2003-09-18 | 2010-12-01 | Symphogen As | Method for linking sequences of interest |
| WO2005028512A1 (en) * | 2003-09-19 | 2005-03-31 | Leukotech A/S | Pro-inflammatory and anti-inflammatory antibodies against the heparin-binding protein (hbp) |
| US8679484B2 (en) * | 2005-03-02 | 2014-03-25 | Polyrizon Ltd. | Method for removal of toxins from mucosal membranes |
| MX2007015758A (en) | 2005-06-13 | 2008-02-22 | Nabi Biopharmaceuticals | Use of panton-valentine leukocidin for treating and preventing staphylococcus infections. |
| WO2007011698A2 (en) * | 2005-07-15 | 2007-01-25 | Siemens Medical Solutions Diagnostics | Humanized antibody conjugates and related methods, assays, reagents, and kits |
| JP2007172129A (en) * | 2005-12-20 | 2007-07-05 | Sony Corp | Nonvolatile memory access control device and nonvolatile memory control system |
| AU2007259415B2 (en) | 2006-06-12 | 2013-09-26 | Glaxosmithkline Biologicals Sa | Use of alpha-toxin for treating and preventing Staphylococcus infections |
| WO2008005429A2 (en) | 2006-07-03 | 2008-01-10 | Charles David Adair | Composition for modulating the expression of cell adhesion molecules |
| PL2132229T3 (en) * | 2007-03-01 | 2016-12-30 | Recombinant anti-epidermal growth factor receptor antibody compositions | |
| NZ581316A (en) * | 2007-05-25 | 2012-02-24 | Symphogen As | Method for manufacturing a recombinant polyclonal protein |
| US9388236B2 (en) * | 2007-07-09 | 2016-07-12 | Nestec Sa | Methods for reducing allergies caused by environmental allergens |
| EP2331577B1 (en) | 2008-08-29 | 2017-06-07 | Symphogen A/S | Recombinant anti-epidermal growth factor receptor antibody compositions |
| EP2370092A1 (en) | 2008-12-03 | 2011-10-05 | Research Development Foundation | Modulation of olfml-3 mediated angiogenesis |
| EP2208787A1 (en) | 2009-01-19 | 2010-07-21 | Université de Liège | A recombinant alpha-hemolysin polypeptide of Staphylococcus aureus, having a deletion in the stem domain and heterologous sequences inserted |
| US8821879B2 (en) | 2009-09-04 | 2014-09-02 | Xoma Technology Ltd. | Anti-botulism antibody coformulations |
| EP2473191B1 (en) * | 2009-09-04 | 2017-08-23 | XOMA Technology Ltd. | Antibody coformulations |
| HUE058787T2 (en) | 2010-05-05 | 2022-09-28 | Univ New York | Staphylococcus aureus leukocidins, therapeutic preparations and their use |
| WO2013022599A1 (en) | 2011-08-05 | 2013-02-14 | Research Development Foundation | Improved methods and compositions for modulation of olfml3 mediated angiogenesis |
| JO3820B1 (en) | 2012-05-03 | 2021-01-31 | Regeneron Pharma | Human antibodies to FEL D1 and methods for their use |
| SI2892925T1 (en) | 2012-09-07 | 2020-11-30 | Universite De Liege | Combination treatment of cancer |
| US20140113317A1 (en) * | 2012-09-17 | 2014-04-24 | Vln Biotech Inc. | Polyclonal antibodies to cloned fungal polypeptide targets |
| US9803014B2 (en) | 2012-10-24 | 2017-10-31 | Research Development Foundation | JAM-C antibodies and methods for treatment of cancer |
| EP3036005A4 (en) | 2013-08-21 | 2017-04-26 | The Board Of Regents Of The University Of Texas System | Compositions and methods for targeting connexin hemichannels |
| WO2015027154A2 (en) | 2013-08-23 | 2015-02-26 | Regeneron Pharmaceuticals, Inc. | Diagnostic tests and methods for assessing safety, efficacy or outcome of allergen-specific immunotherapy (sit) |
| WO2016077620A1 (en) | 2014-11-12 | 2016-05-19 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Treatment of hormonal disorders of growth |
| MX2018006613A (en) | 2015-12-02 | 2019-01-30 | Stcube & Co Inc | Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof. |
| JP7227007B2 (en) | 2015-12-02 | 2023-02-21 | ストサイエンシス, インコーポレイテッド | Antibodies specific for glycosylated BTLA (B- and T-lymphocyte-attenuating factor) |
| CZ307314B6 (en) * | 2015-12-14 | 2018-05-30 | Západočeská Univerzita V Plzni | A murine lymphocyte hybridoma producing a monoclonal antibody against pollen surface antigens in the form of hazel pollen grains |
| WO2017147561A1 (en) | 2016-02-26 | 2017-08-31 | The Board Of Regents Of The University Of Texas System | CONNEXIN (Cx) 43 HEMICHANNEL-BINDING ANTIBODIES AND USES THEREOF |
| JP7241541B2 (en) | 2016-03-29 | 2023-03-17 | エスティーキューブ,インコーポレイテッド | Bifunctional antibodies specific for glycosylated PD-L1 and methods of use thereof |
| US11046782B2 (en) | 2016-03-30 | 2021-06-29 | Musc Foundation For Research Development | Methods for treatment and diagnosis of cancer by targeting glycoprotein A repetitions predominant (GARP) and for providing effective immunotherapy alone or in combination |
| CN109715666B (en) | 2016-07-20 | 2023-02-21 | 斯特库比股份有限公司 | Methods of cancer treatment and therapy using combinations of antibodies that bind glycosylated PD-L1 |
| EP3558347A1 (en) | 2016-12-22 | 2019-10-30 | Regeneron Pharmaceuticals, Inc. | Method of treating an allergy with allergen-specific monoclonal antibodies |
| CA3065301A1 (en) | 2017-05-31 | 2018-12-06 | Stcube & Co., Inc. | Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof |
| KR20250139417A (en) | 2017-05-31 | 2025-09-23 | 주식회사 에스티큐브앤컴퍼니 | Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1 |
| AU2018275657B2 (en) | 2017-06-01 | 2022-01-06 | Regeneron Pharmaceuticals, Inc. | Human antibodies to Bet v 1 and methods of use thereof |
| JP2020522562A (en) | 2017-06-06 | 2020-07-30 | ストキューブ アンド シーオー., インコーポレイテッド | Methods of treating cancer with antibodies and molecules that bind to BTN1A1 or BTN1A1 ligand |
| WO2019055825A1 (en) | 2017-09-15 | 2019-03-21 | The Regents Of The University Of California | Inhibition of aminoacylase 3 (aa3) in the treatment of cancer |
| JP2020536855A (en) | 2017-09-26 | 2020-12-17 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Compositions and Methods for Treating Cancer |
| AU2019270181B2 (en) * | 2018-05-18 | 2023-06-01 | Cz Biohub Sf, Llc | Methods of isolating allergen-specific antibodies from humans and uses thereof |
| CN110361242B (en) * | 2019-08-14 | 2022-01-18 | 武汉赛维尔生物科技有限公司 | Fixing liquid for eyeball tissue and pretreatment method for preparing eyeball tissue slices |
| EP4041767A1 (en) | 2019-09-26 | 2022-08-17 | StCube & Co. | Antibodies specific to glycosylated ctla-4 and methods of use thereof |
| JP2022552282A (en) | 2019-10-09 | 2022-12-15 | エスティーキューブ アンド カンパニー | Antibodies specific for glycosylated LAG3 and methods of use thereof |
| EP4107173A1 (en) | 2020-02-17 | 2022-12-28 | Board of Regents, The University of Texas System | Methods for expansion of tumor infiltrating lymphocytes and use thereof |
| EP4175986A1 (en) | 2020-07-01 | 2023-05-10 | Regeneron Pharmaceuticals, Inc. | Methods of treating allergy using anti-bet v 1 antibodies |
| WO2022046925A1 (en) | 2020-08-26 | 2022-03-03 | Regeneron Pharmaceuticals, Inc. | Method of treating an allergy with allergen-specific monoclonal antibodies |
| JP2024509971A (en) | 2021-03-11 | 2024-03-05 | アイジェニックス, インコーポレイテッド | Methods and systems for predicting allergic responses |
| WO2024200854A1 (en) | 2023-03-31 | 2024-10-03 | Alk-Abelló A/S | Allergen binding antibodies suitable for treating tree pollen allergies |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4740371A (en) * | 1984-09-17 | 1988-04-26 | International Institute Of Cellular And Molecular Pathology | Treatment of allergy |
| US5328991A (en) * | 1989-11-03 | 1994-07-12 | Immulogic Pharmaceutical Corp. | Preparation of alkali-modified cat dander allergen (Fel d I) for immunotherapeutic purposes |
| US5994149A (en) * | 1997-10-01 | 1999-11-30 | Leonard Bloom | Rapid test employing an adhesive slide |
| US6849259B2 (en) * | 2000-06-16 | 2005-02-01 | Symphogen A/S | Polyclonal antibody composition for treating allergy |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
| DE69133566T2 (en) | 1990-01-12 | 2007-12-06 | Amgen Fremont Inc. | Formation of xenogenic antibodies |
| CA2112674C (en) | 1991-07-02 | 2005-10-04 | John S. Patton | Method and device for delivering aerosolized medicaments |
| JPH08501799A (en) | 1992-12-21 | 1996-02-27 | タノックス バイオシステムズ インコーポレイテッド | Allergen-specific IgA monoclonal antibody and related substances for treating allergy |
| DK1231268T3 (en) | 1994-01-31 | 2005-11-21 | Univ Boston | Polyclonal antibody libraries |
| CZ289029B6 (en) | 1994-09-21 | 2001-10-17 | Inhale Therapeutic Systems | Method for aerosolizing powder, particularly a powdered medicament and apparatus for making the same |
| US5797392C1 (en) | 1996-01-22 | 2001-01-09 | Direct Haler As | Inhaler |
| WO1998010776A1 (en) | 1996-09-11 | 1998-03-19 | Shanahan Prendergast Elizabeth | Therapeutic formulations containing venom or venom anti-serum either alone or in combination for the therapeutic prophylaxis and therapy of neoplasms |
-
2001
- 2001-05-25 US US09/866,573 patent/US6849259B2/en not_active Expired - Fee Related
-
2005
- 2005-01-28 US US11/046,159 patent/US20050180967A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4740371A (en) * | 1984-09-17 | 1988-04-26 | International Institute Of Cellular And Molecular Pathology | Treatment of allergy |
| US5328991A (en) * | 1989-11-03 | 1994-07-12 | Immulogic Pharmaceutical Corp. | Preparation of alkali-modified cat dander allergen (Fel d I) for immunotherapeutic purposes |
| US5994149A (en) * | 1997-10-01 | 1999-11-30 | Leonard Bloom | Rapid test employing an adhesive slide |
| US6849259B2 (en) * | 2000-06-16 | 2005-02-01 | Symphogen A/S | Polyclonal antibody composition for treating allergy |
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9163232B2 (en) | 2003-01-07 | 2015-10-20 | Symphogen A/S | Method for manufacturing recombinant polyclonal proteins |
| US20090136498A1 (en) * | 2003-01-07 | 2009-05-28 | Symphogen A/S | Method for Manufacturing Recombinant Polyclonal Proteins |
| US9115357B2 (en) | 2004-05-12 | 2015-08-25 | Baxter International Inc. | Delivery of AS-oligonucleotide microspheres to induce dendritic cell tolerance for the treatment of autoimmune type 1 diabetes |
| US9339465B2 (en) | 2004-05-12 | 2016-05-17 | Baxter International, Inc. | Nucleic acid microspheres, production and delivery thereof |
| US20060024240A1 (en) * | 2004-05-12 | 2006-02-02 | Brown Larry R | Delivery of as-oligonucleotide microspheres to induce dendritic cell tolerance for the treatment of autoimmune type 1 diabetes |
| US8333995B2 (en) | 2004-05-12 | 2012-12-18 | Baxter International, Inc. | Protein microspheres having injectable properties at high concentrations |
| US20100260855A1 (en) * | 2004-05-12 | 2010-10-14 | Baxter International Inc. | Delivery of as-oligonucleotide microspheres to induce dendritic cell tolerance for the treatment of autoimmune type 1 diabetes |
| US7815941B2 (en) | 2004-05-12 | 2010-10-19 | Baxter Healthcare S.A. | Nucleic acid microspheres, production and delivery thereof |
| US7884085B2 (en) | 2004-05-12 | 2011-02-08 | Baxter International Inc. | Delivery of AS-oligonucleotide microspheres to induce dendritic cell tolerance for the treatment of autoimmune type 1 diabetes |
| US20110033551A1 (en) * | 2004-05-12 | 2011-02-10 | Baxter International Inc. | Nucleic acid microspheres, production and delivery thereof |
| US8728525B2 (en) | 2004-05-12 | 2014-05-20 | Baxter International Inc. | Protein microspheres retaining pharmacokinetic and pharmacodynamic properties |
| US20060024379A1 (en) * | 2004-05-12 | 2006-02-02 | Larry Brown | Protein microspheres having injectable properties at high concentrations |
| US20090117131A1 (en) * | 2006-03-20 | 2009-05-07 | Sook-Yeong Jeon | Pharmaceutical Composition for The Treatment or Prevention of Allergic Diseases, Use Thereof, and A Method for The Treatment or Prevention of Allergic Diseases |
| US7964574B2 (en) | 2006-08-04 | 2011-06-21 | Baxter International Inc. | Microsphere-based composition for preventing and/or reversing new-onset autoimmune diabetes |
| US8389493B2 (en) | 2006-08-04 | 2013-03-05 | Baxter International Inc. | Microsphere-based composition for preventing and/or reversing new-onset autoimmune diabetes |
| US8283294B2 (en) | 2007-03-01 | 2012-10-09 | Symphogen A/S | Method for cloning cognate antibodies |
| US20080227660A1 (en) * | 2007-03-01 | 2008-09-18 | Jesper Kastrup | Method for cloning cognate antibodies |
| US8808747B2 (en) | 2007-04-17 | 2014-08-19 | Baxter International Inc. | Nucleic acid microparticles for pulmonary delivery |
| US20090017124A1 (en) * | 2007-04-17 | 2009-01-15 | Baxter International Inc. | Nucleic Acid Microparticles for Pulmonary Delivery |
| EP2604280A2 (en) | 2008-03-27 | 2013-06-19 | ZymoGenetics, Inc. | Compositions and methods for inhibiting PDGFRBETA and VEGF-A |
| EP2604279A1 (en) | 2008-03-27 | 2013-06-19 | ZymoGenetics, Inc. | Compositions and methods for inhibiting PDGFRBETA and VEGF-A |
| US20110117605A1 (en) * | 2008-04-23 | 2011-05-19 | Symphogen A/S | Methods for Manufacturing a Polyclonal Protein |
| US20100069262A1 (en) * | 2008-08-29 | 2010-03-18 | Symphogen A/S | Method for Cloning Avian-Derived Antibodies |
| WO2014105006A1 (en) * | 2012-12-24 | 2014-07-03 | Sorrento Therapeutics, Inc. | Pharmaceutical composition of recombinant polyclonal immunoglobulins |
| WO2020159836A1 (en) | 2019-01-28 | 2020-08-06 | Maple Biotech Llc | Psmp antagonists for use in treatment of fibrotic disease of the lung, kidney or liver |
| WO2023059769A1 (en) * | 2021-10-07 | 2023-04-13 | The Regents Of The University Of Michigan | Compositions and methods for inducing immune tolerance |
Also Published As
| Publication number | Publication date |
|---|---|
| US20020009453A1 (en) | 2002-01-24 |
| US6849259B2 (en) | 2005-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6849259B2 (en) | Polyclonal antibody composition for treating allergy | |
| EP1283720B1 (en) | Recombinant or purified polyclonal antibodies for treating allergy | |
| AU2001262067A1 (en) | Recombinant or purified polyclonal antibodies for treating allergy | |
| AU2003270330B2 (en) | Method of treatment of asthma using antibodies to complement component C5 | |
| AU2008251943B2 (en) | Humaneered anti-factor B antibody | |
| US20170355759A1 (en) | Nebulization of Monoclonal Antibodies for Treating Pulmonary Diseases | |
| JP2003524602A (en) | Methods for treating IgE-related diseases and compositions used in the treatment | |
| JP2000510844A (en) | Methods of Treating Type I Hypersensitivity with Monophosphoryl Lipid A | |
| JP2002538170A (en) | Anti-TNFα antibodies in the treatment of asthma | |
| Griffiths et al. | Local and systemic responses against ricin toxin promoted by toxoid or peptide vaccines alone or in liposomal formulations | |
| US20030152581A1 (en) | Compound and method for the prevention and/or the treatment of allergy | |
| EP1854479A2 (en) | Recombinant or purified polyclonal antibodies for treating allergy | |
| US20090324723A1 (en) | Method of prophylaxis of infection | |
| US9546200B2 (en) | Peptide for protection of allergic respiratory disorders | |
| US20040141992A1 (en) | Desensitizers | |
| Sosic | Development and Evaluation of Novel Approaches in Allergen-Specific Immunotherapy | |
| AU2003225341B2 (en) | Method of prophylaxis of infection | |
| Nils et al. | Allergen-Specific Polyclonal Antibodies Reduce Allergic Disease in a Mouse Model | |
| de Weck | Mechanisms of IgE-mediated Immediate Reactions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |