US20050178498A1 - Method for sealing electroluminescence display devices - Google Patents
Method for sealing electroluminescence display devices Download PDFInfo
- Publication number
- US20050178498A1 US20050178498A1 US10/782,259 US78225904A US2005178498A1 US 20050178498 A1 US20050178498 A1 US 20050178498A1 US 78225904 A US78225904 A US 78225904A US 2005178498 A1 US2005178498 A1 US 2005178498A1
- Authority
- US
- United States
- Prior art keywords
- sealant
- openings
- material layer
- substrate
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000007789 sealing Methods 0.000 title claims description 17
- 238000005401 electroluminescence Methods 0.000 title description 34
- 239000000565 sealant Substances 0.000 claims abstract description 105
- 239000000758 substrate Substances 0.000 claims abstract description 75
- 239000000463 material Substances 0.000 claims abstract description 36
- 229920000620 organic polymer Polymers 0.000 claims description 39
- 238000002161 passivation Methods 0.000 claims description 7
- 239000011368 organic material Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 45
- 238000005538 encapsulation Methods 0.000 description 14
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000001788 irregular Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000002861 polymer material Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012812 sealant material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/871—Self-supporting sealing arrangements
- H10K59/8722—Peripheral sealing arrangements, e.g. adhesives, sealants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/842—Containers
- H10K50/8426—Peripheral sealing arrangements, e.g. adhesives, sealants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/842—Containers
- H10K50/8428—Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2323/00—Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
- C09K2323/06—Substrate layer characterised by chemical composition
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2323/00—Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
- C09K2323/06—Substrate layer characterised by chemical composition
- C09K2323/061—Inorganic, e.g. ceramic, metallic or glass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/871—Self-supporting sealing arrangements
- H10K59/8723—Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S277/00—Seal for a joint or juncture
- Y10S277/904—Viscous seal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1052—Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
- Y10T156/1082—Partial cutting bonded sandwich [e.g., grooving or incising]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24322—Composite web or sheet
- Y10T428/24331—Composite web or sheet including nonapertured component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24322—Composite web or sheet
- Y10T428/24331—Composite web or sheet including nonapertured component
- Y10T428/24339—Keyed
Definitions
- the present disclosure relates generally to organic electroluminescence display elements, and more particularly to the sealing methods of the packages for encapsulating the display elements used in electro-optical display devices and the like.
- An electroluminescence (EL) element is a light emitting device which utilizes electric field light emission of solid fluorescent substance or phenomenon called electroluminescence.
- the luminous material layers of an EL device is commonly applied in the backlight of liquid crystal, flat panel, electro-optical displays which may be either transmissive, reflective and/or transflective.
- Certain advanced technology EL elements such as organic light emission diodes (OLEDs) has migrated from the use of inorganic, to the use of organic polymer material compound layers as the luminous material layers of the devices.
- OLEDs organic light emission diodes
- the use of the organic polymer layers offer improvements to the display devices' display performance, operational efficiencies, package sizing/portability, as well as reduction in power and voltage requirements.
- FIG. 1 is a cross-sectional view of a single, typical OLED pixel to briefly illustrate the basic structural components.
- the OLED pixel is fabricated on top of a transparent, translucent substrate material 102 .
- a transparent conductive anode layer 104 typically comprised of indium tin oxide (ITO), is formed on the substrate 102 .
- the first organic polymer layer 106 used as the electron hole transfer layer of the emitting pixel, is deposited upon the ITO 104 layer.
- the second organic polymer layer 108 used as the actual pixel luminous/emission layer is then deposited upon the first organic polymer layer 106 .
- ITO indium tin oxide
- a cathode layer 110 is then formed on top of the second organic polymer layer 108 to complete the basic OLED pixel.
- a protective dielectric material layer or structures 112 may also be deposited on top of the cathode layer 110 . It is understood that a plurality of the OLED pixels are arranged to provide a display panel. What is not shown in this FIG.
- this OLED pixel is a transistor that drives this OLED pixel integrated therewith, and there may be other materials such as dielectric materials or passivation materials (such as silicon nitride SiN x ) placed in various locations of the display panel for providing a fully functional display device.
- dielectric materials such as silicon nitride SiN x
- passivation materials such as silicon nitride SiN x
- Organic EL elements are much more sensitive to degradation issues related to ambient environment conditions such as water moisture, than inorganic EL elements. Such degradation may lead to performance loss, operational instability, poor color/emission accuracies, as well as shortened operational life. Specifically, water moisture may cause undesired crystallization and formation of organic solids, undesired electrochemical reactions at the electrode-organic layer interfaces, corrosion of metals and the undesired migration of ionic species. To minimize such degradation mechanisms, the organic EL elements must be well sealed, properly encapsulated to prevent moisture migration to the active EL display elements. Typical encapsulation methods utilize a shield substrate covering the entire organic polymer areas with an adhesive sealant used to seal the shield substrate to the device substrate layer 102 . For LCD as well as LED devices, depending on the technology, the shield substrate may contain various color filters to produce necessary red, yellow, or blue emission light.
- FIG. 2 is a top view of a typical organic EL device to illustrate the application of the shield substrate and adhesive sealant to encapsulate the display panel.
- the device substrate 102 is shown covered with the encapsulation shield substrate 202 .
- the shield substrate 202 may be a color filter, and covers the entire organic EL device with continuous lines of adhesive sealant 204 located on the device substrate 102 along the same directions as the length and width perimeters of the EL display device.
- the shield substrate 202 is attached directly to the device substrate 102 utilizing the adhesive sealant 204 to encapsulate the EL display device. As will be better shown in FIGS.
- the encapsulation seal is accomplished primarily using a sealant between the bottom surface of the shield substrate 202 and top surface of the device substrate 102 . It is further noted that since in areas where the device substrate and the shield substrate are sealed together, there are no cathode and anode material, but the top two layers of the device substrate may typically be the organic polymer layer and a passivation layer underneath.
- FIGS. 3 a and 3 b illustrate two additional views of the typical display device as described by FIGS. 1 and 2 .
- FIG. 3 a is a top view illustrating an openings for exposing a portion of the device substrate 302 , where the sealant is placed, and locations of various organic polymer areas 304 in the relative center portion of the display device.
- the organic polymer material on top of the passivation layer in the opening 302 is removed so that the substrate having the passivation layer 302 is exposed.
- sealant width or sealant gap is shown marked by the distance g confined by the two vertical dotted lines.
- the area with the sealant gap g may be referred to as the sealant region.
- the horizontal dotted line marked x shows the plane by which the cross-sectional view of this portion of the EL device is shown by FIG. 3 b.
- FIG. 3 b illustrates the cross sectional view showing the relative locations of the device substrate 302 , the organic polymer area 304 , the spacers 306 formed on top of the organic polymer area 304 , and the encapsulation shield substrate 308 .
- the gap area 310 enclosed by the top surface of the device substrate 302 , the sides of the organic polymer areas 304 , and the bottom surface of the shield substrate 308 represent the volume where the adhesive sealant is applied to complete the seal for the encapsulation of the EL display device.
- the spacers 306 are placed to maintain the gap between the organic polymer area 304 and the shield substrate 308 .
- the irregular gap volume 310 shown in FIG. 3 b and its relative long sealant gap of the applied adhesive sealant may induce certain issues with the encapsulation and the performance of the display device.
- the irregular volume 310 featuring irregular gaps between the top and bottom sealing surfaces may allow incidences and conditions for poor seals to occur. Voids may occur within the applied sealant such that sealant may be poor or degrade in time.
- the thickness of the sealant to cover the vertical distance from the device substrate 302 to the shield substrate 308 may be difficult to apply in a precise, controlled manner. More specifically, as shown, the sealant sits partially on both organic polymer material areas on both sides, thereby creating two “shoulders” 312 .
- the sealant must be well centered to avoid undesired “shoulder tilting,” which may cause undesired effects upon the performance of the display device.
- Such defects as mura, systematic deviations or blemishes that causes irregular luminosity variations, may manifest as striped/banded defects originating from the tilted gap seal regions.
- the large volume and thickness of the applied sealant may also lead to opportunities for sealant adhesion and peeling issues.
- Film stress properties and surface conditions of the sealant surfaces particularly, the device substrate 302 may be non-optimum or subsequently change during device operational life such that the adhesion to the sealant becomes degraded and the sealant begins to detach and peel from the surface. Such peeling will lead to the loss of the encapsulation integrity.
- a method for encapsulating at least one display device is disclosed.
- a plurality of parallel openings are formed in a first material layer on a first substrate to expose a second material layer underneath.
- a predetermined sealant is placed thereon to form a sealant region perpendicular to the openings for attaching a second substrate, wherein the sealant contacts the first material layer and the second material layer through the openings for encapsulating the display device between the first and second substrates.
- a sealant region having one or more openings having a predetermined pattern is formed by removing portions of a first material layer on a first substrate to expose a second material layer underneath.
- a predetermined sealant is placed in the openings for attaching a second substrate with the first substrate, wherein the sealant in the openings is balanced along an axis of the sealant region.
- FIG. 1 illustrates a cross-sectional view of a single conventional OLED pixel.
- FIG. 2 illustrates a top view of a typical organic EL display device with an encapsulation shield substrate sealed thereon.
- FIGS. 3 a and 3 b are top and cross-sectional views of a portion of the organic EL display device with an encapsulation shield substrate sealed via conventional method.
- FIGS. 4 a - 4 c are top and cross-sectional views of an organic EL display device with an encapsulation shield substrate sealed therewith according to one example of the present disclosure.
- FIG. 5 is a detailed top view of a sealant region of the organic EL display device according to another example of the present disclosure.
- FIGS. 6 a - 6 c are top views of several pattern variations of the sealant region of the organic EL display device according to examples of the present disclosure.
- the present disclosure describes an improved method for the effective sealing of an encapsulating shield substrate over the organic EL display panel.
- the disclosed method is less prone to the reliability and integrity issues experienced with the conventional sealing method. Irregular vertical gaps are avoided to help reduce the formation of voids in the sealant regions. The required width of the sealant in an opening between two organic polymer areas is reduced to help minimize tilt issues and mura defects from the sealed shield substrate.
- Such improved method would be easily implemented into existing fabrication operations and processes with minimal impact of additional costs and required processes. This disclosed more reliable encapsulation seal will lead to higher production yields for the organic EL display devices, as well as higher integrity and longer operational life of the said devices.
- FIGS. 4 a - 4 c illustrate an example of the shield substrate sealing method according to one example of the present disclosure.
- FIG. 4 a is a top view of the sealant region of an organic EL display device while FIGS. 4 b and 4 c are sectional views thereof.
- the organic polymer layer 404 instead of a continuous organic polymer layer, the organic polymer layer 404 has stripes of narrow openings 402 processed thereon, which may be referred to as a slit structure. This can be done by masking out certain areas from polymer formation, provided that this slit structure does not affect the need of the organic polymer for the active pixel regions.
- the sealant region 403 is located perpendicular to the openings 402 . As such, in selected locations of the openings 402 , the exposed substrate areas can receive sealant.
- the sealant is going to be placed in the aligned sealant region defined by the two vertical dotted lines having a width of g.
- the width of the two shown exposed device substrate areas 402 are marked on as L 1 and L 3 , respectively.
- the distance between two adjacent exposed device substrate regions 402 which is the organic polymer layer, is also marked, as L 2 . It is understood that L 1 and L 3 may not need to be of the same size. Since the function of these openings is to allow the sealant to rest on the substrate, they do not have to have uniform width. Optimum L 1 and L 3 widths of these two exposed regions for sealant application may be dependant upon the distance L 2 between the two regions.
- FIG. 4 b is the cross-sectional view of the portion of the organic EL display device corresponding to the one shown in FIG. 4 a along the plane defined by the horizontal dotted line marked as x.
- FIG. 4 b illustrates the device substrate 402 , the organic polymer layer 404 , the spacers 406 , and the shield substrate 408 .
- the volume 410 is the sealant deposited on top of the organic polymer layer 404 .
- FIG. 4 c is the cross-sectional view of another portion of the organic EL display device corresponding to the one shown in FIG. 4 a along the plane defined by the horizontal dash line marked as x′ in FIG. 4 a .
- FIG. 4 c illustrates the device substrate 402 and the shield substrate 408 without the organic polymer layer 404 in between.
- the sealant 410 is formed directly between the device substrate 402 and the shield substrate 408 . It is noted that although the sealant region 410 illustrated in this FIG. 4 c has clearly defined side walls 412 , it is understood that in practice, since there is nothing that confines the sealant, the side walls are naturally formed and may not have a flat surface.
- FIG. 5 illustrates a top view of a sealant region with a predetermined pattern for encapsulating the shield substrate over the organic EL display device in accordance with another example of the present disclosure.
- FIG. 5 shows that portions of the organic polymer region 502 is removed to have an opening 504 of a saw teeth pattern.
- the pattern is referred to as a saw teeth pattern here, as it is illustrated, the opening is formed by small segments that are either parallel or perpendicular to each other. Since semiconductor manufacturing deals largely with aligned lines of a perpendicular or parallel relation, forming an opening or openings like this is not troublesome. It is further noticed that the segments may have different widths as long as the sealant is distributed in a balanced manner.
- the outer borders of the region for placing the sealant is still roughly defined by the vertical dotted lines with a width of g.
- the predetermined pattern for the opening 504 is designed to reduce the gap between the organic polymer areas as indicated by the distance between pairs of arrows.
- the outer borders of the sealant region may be still as wide as the distance g, there actually does not exist in any particular location a gap that is as wide as the distance g.
- the sealant material is relatively evenly distributed over the two sides of the central axis 506 of the sealant region. The even distribution also avoids any sealant “tilting” problem. It is further noted that although FIG.
- the corner portions of the sealant region may still use the conventional direct removal of the organic polymer layer with no patterns at all, while the center portion of each side of the sealant region or sealant frame may use the predetermined patterns.
- FIGS. 6 a to 6 c there are additional top views of the sealant region according to different examples of the disclosure for the sealant region for the encapsulation of the organic EL display devices. These top views are of lower magnification than the example shown by FIG. 5 .
- These patterns for the sealant region illustrate how the sealant is placed along the perimeters of the EL display device 600 .
- the shapes or the patterns of the sealant may be different from each other, such as the multiple parallel lines in FIG. 6 a , the saw teeth shape in FIG. 6 b , or the modified curved saw teeth shape in FIG.
- the modified saw teeth pattern in FIG. 6 c is to avoid sharp angel formed by any two openings.
- the two short openings formed in the corner region is also for balancing the distribution of the sealant.
- some patterns may be asymmetric in a particular local area such as the saw teeth pattern in FIG. 6 b , but it is balanced as a whole along the center axis of either the horizontal or vertical sealant region. The balanced distribution of the sealant in the sealant region helps to reduce or eliminate problems caused by uneven cell gaps, thereby avoiding the so called around gap mura problem.
- the disclosed sealing method would be easily implemented into existing fabrication operations and processes with minimal impact to additional costs and required processes.
- the disclosed more reliable encapsulation seal will lead to higher production yields for the organic EL display devices, as well as higher integrity and longer operational life of the said devices.
- Such improvements will translate into significant cost improvements for a given production facility to maintain highly competitive cost and output advantages over other manufacturers of similar product devices.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
A method is disclosed for encapsulating at least one display device. A plurality of parallel openings are formed in a first material layer on a first substrate to expose a second material layer underneath. A predetermined sealant is placed thereon to form a sealant region perpendicular to the openings for attaching a second substrate, wherein the sealant contacts the first material layer and the second material layer through the openings for encapsulating the display device between the first and second substrates.
Description
- The present disclosure relates generally to organic electroluminescence display elements, and more particularly to the sealing methods of the packages for encapsulating the display elements used in electro-optical display devices and the like.
- An electroluminescence (EL) element is a light emitting device which utilizes electric field light emission of solid fluorescent substance or phenomenon called electroluminescence. The luminous material layers of an EL device is commonly applied in the backlight of liquid crystal, flat panel, electro-optical displays which may be either transmissive, reflective and/or transflective. Certain advanced technology EL elements such as organic light emission diodes (OLEDs) has migrated from the use of inorganic, to the use of organic polymer material compound layers as the luminous material layers of the devices. The use of the organic polymer layers offer improvements to the display devices' display performance, operational efficiencies, package sizing/portability, as well as reduction in power and voltage requirements.
-
FIG. 1 is a cross-sectional view of a single, typical OLED pixel to briefly illustrate the basic structural components. The OLED pixel is fabricated on top of a transparent,translucent substrate material 102. A transparentconductive anode layer 104, typically comprised of indium tin oxide (ITO), is formed on thesubstrate 102. The firstorganic polymer layer 106 used as the electron hole transfer layer of the emitting pixel, is deposited upon the ITO 104 layer. The secondorganic polymer layer 108 used as the actual pixel luminous/emission layer is then deposited upon the firstorganic polymer layer 106. It is noted that for further discussion within this disclosure, that all references to the EL organic polymer layer implies actual reference to the combination of the two organic polymer layers, 106 and 108. Acathode layer 110, usually comprised of an aluminum-based metal compound, is then formed on top of the secondorganic polymer layer 108 to complete the basic OLED pixel. In addition, a protective dielectric material layer orstructures 112 may also be deposited on top of thecathode layer 110. It is understood that a plurality of the OLED pixels are arranged to provide a display panel. What is not shown in thisFIG. 1 is a transistor that drives this OLED pixel integrated therewith, and there may be other materials such as dielectric materials or passivation materials (such as silicon nitride SiNx) placed in various locations of the display panel for providing a fully functional display device. - Organic EL elements are much more sensitive to degradation issues related to ambient environment conditions such as water moisture, than inorganic EL elements. Such degradation may lead to performance loss, operational instability, poor color/emission accuracies, as well as shortened operational life. Specifically, water moisture may cause undesired crystallization and formation of organic solids, undesired electrochemical reactions at the electrode-organic layer interfaces, corrosion of metals and the undesired migration of ionic species. To minimize such degradation mechanisms, the organic EL elements must be well sealed, properly encapsulated to prevent moisture migration to the active EL display elements. Typical encapsulation methods utilize a shield substrate covering the entire organic polymer areas with an adhesive sealant used to seal the shield substrate to the
device substrate layer 102. For LCD as well as LED devices, depending on the technology, the shield substrate may contain various color filters to produce necessary red, yellow, or blue emission light. -
FIG. 2 is a top view of a typical organic EL device to illustrate the application of the shield substrate and adhesive sealant to encapsulate the display panel. Thedevice substrate 102 is shown covered with theencapsulation shield substrate 202. Theshield substrate 202 may be a color filter, and covers the entire organic EL device with continuous lines ofadhesive sealant 204 located on thedevice substrate 102 along the same directions as the length and width perimeters of the EL display device. Theshield substrate 202 is attached directly to thedevice substrate 102 utilizing theadhesive sealant 204 to encapsulate the EL display device. As will be better shown inFIGS. 3 a and 3 b below, the encapsulation seal is accomplished primarily using a sealant between the bottom surface of theshield substrate 202 and top surface of thedevice substrate 102. It is further noted that since in areas where the device substrate and the shield substrate are sealed together, there are no cathode and anode material, but the top two layers of the device substrate may typically be the organic polymer layer and a passivation layer underneath. -
FIGS. 3 a and 3 b illustrate two additional views of the typical display device as described byFIGS. 1 and 2 .FIG. 3 a is a top view illustrating an openings for exposing a portion of thedevice substrate 302, where the sealant is placed, and locations of variousorganic polymer areas 304 in the relative center portion of the display device. In order to place a sealant between thedevice substrate 302 and the shield substrate, the organic polymer material on top of the passivation layer in theopening 302 is removed so that the substrate having thepassivation layer 302 is exposed. When the sealant is put in theopening 302, certain portion of the sealant will rest on the neighboring and unremovedorganic polymer material 304, and the sealant width or sealant gap is shown marked by the distance g confined by the two vertical dotted lines. The area with the sealant gap g may be referred to as the sealant region. The horizontal dotted line marked x shows the plane by which the cross-sectional view of this portion of the EL device is shown byFIG. 3 b. -
FIG. 3 b illustrates the cross sectional view showing the relative locations of thedevice substrate 302, theorganic polymer area 304, thespacers 306 formed on top of theorganic polymer area 304, and theencapsulation shield substrate 308. Thegap area 310 enclosed by the top surface of thedevice substrate 302, the sides of theorganic polymer areas 304, and the bottom surface of theshield substrate 308 represent the volume where the adhesive sealant is applied to complete the seal for the encapsulation of the EL display device. Thespacers 306 are placed to maintain the gap between theorganic polymer area 304 and theshield substrate 308. - The
irregular gap volume 310 shown inFIG. 3 b and its relative long sealant gap of the applied adhesive sealant may induce certain issues with the encapsulation and the performance of the display device. Theirregular volume 310 featuring irregular gaps between the top and bottom sealing surfaces may allow incidences and conditions for poor seals to occur. Voids may occur within the applied sealant such that sealant may be poor or degrade in time. The thickness of the sealant to cover the vertical distance from thedevice substrate 302 to theshield substrate 308 may be difficult to apply in a precise, controlled manner. More specifically, as shown, the sealant sits partially on both organic polymer material areas on both sides, thereby creating two “shoulders” 312. With these shoulders, the sealant must be well centered to avoid undesired “shoulder tilting,” which may cause undesired effects upon the performance of the display device. Such defects as mura, systematic deviations or blemishes that causes irregular luminosity variations, may manifest as striped/banded defects originating from the tilted gap seal regions. - The large volume and thickness of the applied sealant may also lead to opportunities for sealant adhesion and peeling issues. Film stress properties and surface conditions of the sealant surfaces particularly, the
device substrate 302, may be non-optimum or subsequently change during device operational life such that the adhesion to the sealant becomes degraded and the sealant begins to detach and peel from the surface. Such peeling will lead to the loss of the encapsulation integrity. - What is desirable is an improved method for the sealing of the encapsulating shield substrate onto the organic EL display devices.
- A method is disclosed for encapsulating at least one display device. According to one example, a plurality of parallel openings are formed in a first material layer on a first substrate to expose a second material layer underneath. A predetermined sealant is placed thereon to form a sealant region perpendicular to the openings for attaching a second substrate, wherein the sealant contacts the first material layer and the second material layer through the openings for encapsulating the display device between the first and second substrates.
- According to another example, a sealant region having one or more openings having a predetermined pattern is formed by removing portions of a first material layer on a first substrate to expose a second material layer underneath. A predetermined sealant is placed in the openings for attaching a second substrate with the first substrate, wherein the sealant in the openings is balanced along an axis of the sealant region.
- These and other aspects and advantages will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the disclosure.
-
FIG. 1 illustrates a cross-sectional view of a single conventional OLED pixel. -
FIG. 2 illustrates a top view of a typical organic EL display device with an encapsulation shield substrate sealed thereon. -
FIGS. 3 a and 3 b are top and cross-sectional views of a portion of the organic EL display device with an encapsulation shield substrate sealed via conventional method. -
FIGS. 4 a-4 c are top and cross-sectional views of an organic EL display device with an encapsulation shield substrate sealed therewith according to one example of the present disclosure. -
FIG. 5 is a detailed top view of a sealant region of the organic EL display device according to another example of the present disclosure. -
FIGS. 6 a-6 c are top views of several pattern variations of the sealant region of the organic EL display device according to examples of the present disclosure. - The present disclosure describes an improved method for the effective sealing of an encapsulating shield substrate over the organic EL display panel. The disclosed method is less prone to the reliability and integrity issues experienced with the conventional sealing method. Irregular vertical gaps are avoided to help reduce the formation of voids in the sealant regions. The required width of the sealant in an opening between two organic polymer areas is reduced to help minimize tilt issues and mura defects from the sealed shield substrate. Such improved method would be easily implemented into existing fabrication operations and processes with minimal impact of additional costs and required processes. This disclosed more reliable encapsulation seal will lead to higher production yields for the organic EL display devices, as well as higher integrity and longer operational life of the said devices.
-
FIGS. 4 a-4 c illustrate an example of the shield substrate sealing method according to one example of the present disclosure.FIG. 4 a is a top view of the sealant region of an organic EL display device whileFIGS. 4 b and 4 c are sectional views thereof. As shown, instead of a continuous organic polymer layer, theorganic polymer layer 404 has stripes ofnarrow openings 402 processed thereon, which may be referred to as a slit structure. This can be done by masking out certain areas from polymer formation, provided that this slit structure does not affect the need of the organic polymer for the active pixel regions. Thesealant region 403 is located perpendicular to theopenings 402. As such, in selected locations of theopenings 402, the exposed substrate areas can receive sealant. - In this example, the sealant is going to be placed in the aligned sealant region defined by the two vertical dotted lines having a width of g. The width of the two shown exposed
device substrate areas 402 are marked on as L1 and L3, respectively. The distance between two adjacent exposeddevice substrate regions 402, which is the organic polymer layer, is also marked, as L2. It is understood that L1 and L3 may not need to be of the same size. Since the function of these openings is to allow the sealant to rest on the substrate, they do not have to have uniform width. Optimum L1 and L3 widths of these two exposed regions for sealant application may be dependant upon the distance L2 between the two regions. -
FIG. 4 b is the cross-sectional view of the portion of the organic EL display device corresponding to the one shown inFIG. 4 a along the plane defined by the horizontal dotted line marked as x.FIG. 4 b illustrates thedevice substrate 402, theorganic polymer layer 404, thespacers 406, and theshield substrate 408. Thevolume 410 is the sealant deposited on top of theorganic polymer layer 404. -
FIG. 4 c is the cross-sectional view of another portion of the organic EL display device corresponding to the one shown inFIG. 4 a along the plane defined by the horizontal dash line marked as x′ inFIG. 4 a.FIG. 4 c illustrates thedevice substrate 402 and theshield substrate 408 without theorganic polymer layer 404 in between. Thesealant 410 is formed directly between thedevice substrate 402 and theshield substrate 408. It is noted that although thesealant region 410 illustrated in thisFIG. 4 c has clearly definedside walls 412, it is understood that in practice, since there is nothing that confines the sealant, the side walls are naturally formed and may not have a flat surface. This does not affect the function of the sealant as the sealant peeling issues has nothing to do with how smooth the side walls are. It is further noticed by comparingFIGS. 4 b and 4 c, the volume of the sealant used in the sealant region on top of the organic polymer layer is less than the sealant region on top of the device substrate since openings for receiving the sealant are deeper through the organic polymer layer inFIG. 4 c. - It is by this method of using narrow stripes of openings in the organic polymer layer that are perpendicular to the aligned sealant region, the sealant makes sufficient contact with the areas underneath. As shown in either
FIG. 4 b or 4 c, there is no “shoulders” for the sealant, as it is either completely on the organic polymer layer or on the substrate layer, therefore, it maintain relatively even contact surfaces with the organic polymer layer or the device substrate layer such that no “tilting” is likely to happen, thereby minimizing the opportunity for sealant peeling. -
FIG. 5 illustrates a top view of a sealant region with a predetermined pattern for encapsulating the shield substrate over the organic EL display device in accordance with another example of the present disclosure.FIG. 5 shows that portions of theorganic polymer region 502 is removed to have anopening 504 of a saw teeth pattern. Although the pattern is referred to as a saw teeth pattern here, as it is illustrated, the opening is formed by small segments that are either parallel or perpendicular to each other. Since semiconductor manufacturing deals largely with aligned lines of a perpendicular or parallel relation, forming an opening or openings like this is not troublesome. It is further noticed that the segments may have different widths as long as the sealant is distributed in a balanced manner. The outer borders of the region for placing the sealant is still roughly defined by the vertical dotted lines with a width of g. In order to avoid the cell gap problem, the predetermined pattern for theopening 504 is designed to reduce the gap between the organic polymer areas as indicated by the distance between pairs of arrows. As it is clearly illustrated, although the outer borders of the sealant region may be still as wide as the distance g, there actually does not exist in any particular location a gap that is as wide as the distance g. In addition, with this sealant pattern, the sealant material is relatively evenly distributed over the two sides of thecentral axis 506 of the sealant region. The even distribution also avoids any sealant “tilting” problem. It is further noted that althoughFIG. 5 illustrate a continuous opening with a saw teeth pattern, this pattern does have to be used for the entire sealant region for encapsulating the display devices. For example, the corner portions of the sealant region may still use the conventional direct removal of the organic polymer layer with no patterns at all, while the center portion of each side of the sealant region or sealant frame may use the predetermined patterns. - Referring now to
FIGS. 6 a to 6 c, there are additional top views of the sealant region according to different examples of the disclosure for the sealant region for the encapsulation of the organic EL display devices. These top views are of lower magnification than the example shown byFIG. 5 . These patterns for the sealant region illustrate how the sealant is placed along the perimeters of theEL display device 600. The shapes or the patterns of the sealant may be different from each other, such as the multiple parallel lines inFIG. 6 a, the saw teeth shape inFIG. 6 b, or the modified curved saw teeth shape inFIG. 6 c, they share a common feature that when the sealant is placed in these openings, they are substantially evenly distributed on both sides of the central axis of the sealant region and the width of these openings is much smaller than the total width of the sealant region. The modified saw teeth pattern inFIG. 6 c is to avoid sharp angel formed by any two openings. InFIG. 6 a, the two short openings formed in the corner region is also for balancing the distribution of the sealant. As shown, some patterns may be asymmetric in a particular local area such as the saw teeth pattern inFIG. 6 b, but it is balanced as a whole along the center axis of either the horizontal or vertical sealant region. The balanced distribution of the sealant in the sealant region helps to reduce or eliminate problems caused by uneven cell gaps, thereby avoiding the so called around gap mura problem. - The sealing and encapsulation of organic EL display devices using the methods disclosed above in accordance with the present disclosure will result with less problems and concerns associated with the conventional sealing method. The use of improved method for forming the sealant region featuring the use of narrow gaps between the organic polymer areas, and enhance the adhesion between the two substrates.
- The disclosed sealing method would be easily implemented into existing fabrication operations and processes with minimal impact to additional costs and required processes. The disclosed more reliable encapsulation seal will lead to higher production yields for the organic EL display devices, as well as higher integrity and longer operational life of the said devices. Such improvements will translate into significant cost improvements for a given production facility to maintain highly competitive cost and output advantages over other manufacturers of similar product devices.
- The above disclosure provides several examples for implementing the different features of the disclosure. Specific examples of components and processes are described to help clarify the disclosure. These are, of course, merely examples and are not intended to limit the scope of the disclosure from that described in the claims. For example, the organic polymer layer and passivation layer are specifically used as examples for illustration, it is understood that any variations of the material on the device substrate and the shield substrate may happen, and the disclosed sealing method can still be applied.
- While the invention has been particularly shown and described with reference to the preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention, as set forth in the following claims.
Claims (20)
1. A method for sealing at least one display device, the method comprising:
forming a plurality of parallel openings in a first material layer on a first substrate to expose a second material layer underneath; and
placing a predetermined sealant thereon to form a sealant region perpendicular to the openings for attaching a second substrate,
wherein the sealant contacts the first material layer and the second material layer through the openings for sealing the display device between the first and second substrates.
2. The method of claim 1 wherein the openings have a uniform width.
3. The method of claim 1 wherein the sealant has substantially flat contact surfaces with the first and second material layers.
4. The method of claim 1 wherein the first material layer is an organic polymer layer.
5. The method of claim 1 wherein the second material layer is a dielectric layer.
6. A sealant region for sealing at least one display device, the sealant region comprising:
a plurality of parallel openings in a first material layer on a first substrate to expose a second material layer underneath; and
a predetermined sealant placed thereon to form the sealant region perpendicular to the openings for attaching a second substrate,
wherein the sealant contacts the first material layer and the second material layer through the openings for sealing the display device between the first and second substrates, and
wherein the sealant has substantially flat contact surfaces with the first and second material layers.
7. The method of claim 6 wherein the openings have a uniform width.
8. The method of claim 6 wherein the first material layer is an organic polymer layer and the second material layer is a passivation layer.
9. A method for sealing at least one display device, the method comprising:
forming a sealant region having one or more openings having a predetermined pattern by removing portions of a first material layer on a first substrate to expose a second material layer underneath; and
placing a predetermined sealant in the openings for attaching a second substrate with the first substrate,
wherein the sealant in the openings is balanced along a center axis of the sealant region.
10. The method of claim 9 wherein the openings have a uniform width.
11. The method of claim 9 wherein a width of the openings is narrower than a total width of the sealant region.
12. The method of claim 9 wherein the first material layer is an organic polymer layer and the second material layer is a dielectric layer.
13. The method of claim 9 wherein the predetermined pattern is formed by a plurality of parallel openings.
14. The method of claim 9 wherein the predetermined pattern is formed by a plurality of openings arranged in a saw teeth form.
15. The method of claim 14 wherein the openings are arranged in a modified saw teeth form to avoid sharp angels formed by any two openings.
16. A method for sealing at least one display device, the method comprising:
forming a sealant region having at least one opening having a predetermined saw teeth pattern by removing portions of an organic material layer on a first substrate to expose a predetermined material layer underneath; and
placing a predetermined sealant in the openings for attaching a second substrate with the first substrate.
17. The method of claim 16 wherein the sealant in the opening is balanced along a center axis of the sealant region.
18. The method of claim 16 wherein the opening has a uniform width along a plurality of segments thereof.
19. The method of claim 16 wherein a width of the opening is narrower than a total width of the sealant region.
20. The method of claim 16 wherein the predetermined material layer is a passivation layer.
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/782,259 US20050178498A1 (en) | 2004-02-18 | 2004-02-18 | Method for sealing electroluminescence display devices |
| TW094103364A TWI313766B (en) | 2004-02-18 | 2005-02-03 | Sealant regions of display devices and method for sealing the same |
| CNB2005100093488A CN100388099C (en) | 2004-02-18 | 2005-02-17 | display device and packaging method thereof |
| JP2005042373A JP4510665B2 (en) | 2004-02-18 | 2005-02-18 | TFT liquid crystal display device and manufacturing method thereof |
| US11/268,843 US7884914B2 (en) | 2004-02-18 | 2005-11-08 | Structure for encapsulating a liquid crystal display device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/782,259 US20050178498A1 (en) | 2004-02-18 | 2004-02-18 | Method for sealing electroluminescence display devices |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/268,843 Continuation-In-Part US7884914B2 (en) | 2004-02-18 | 2005-11-08 | Structure for encapsulating a liquid crystal display device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050178498A1 true US20050178498A1 (en) | 2005-08-18 |
Family
ID=34838797
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/782,259 Abandoned US20050178498A1 (en) | 2004-02-18 | 2004-02-18 | Method for sealing electroluminescence display devices |
| US11/268,843 Active 2026-04-25 US7884914B2 (en) | 2004-02-18 | 2005-11-08 | Structure for encapsulating a liquid crystal display device |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/268,843 Active 2026-04-25 US7884914B2 (en) | 2004-02-18 | 2005-11-08 | Structure for encapsulating a liquid crystal display device |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US20050178498A1 (en) |
| JP (1) | JP4510665B2 (en) |
| CN (1) | CN100388099C (en) |
| TW (1) | TWI313766B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060109413A1 (en) * | 2004-11-22 | 2006-05-25 | Sun-Youl Lee | Sealant pattern for flat display panel |
| US20060160259A1 (en) * | 2005-01-14 | 2006-07-20 | Au Optronics Corp. | Sealant region pattern for liquid crystal display and method for fabricating the same |
| CN104950508A (en) * | 2015-06-17 | 2015-09-30 | 深圳市华星光电技术有限公司 | Liquid crystal display panel |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4596000B2 (en) | 2007-12-07 | 2010-12-08 | ソニー株式会社 | Liquid crystal display device and electronic device |
| TWI409732B (en) * | 2010-02-23 | 2013-09-21 | Anica Corp | Flexible display device |
| US8444152B2 (en) * | 2011-05-04 | 2013-05-21 | General Electric Company | Spring seal assembly and method of sealing a gap |
| CN102354070B (en) * | 2011-09-28 | 2014-08-27 | 深圳市华星光电技术有限公司 | Liquid crystal display device, liquid crystal panel and constructing method thereof |
| CN102650771B (en) * | 2011-11-08 | 2014-08-06 | 北京京东方光电科技有限公司 | Liquid crystal display panel and manufacturing method thereof and display |
| JP2015200738A (en) * | 2014-04-07 | 2015-11-12 | 株式会社ジャパンディスプレイ | display device |
| CN105097785A (en) * | 2014-05-09 | 2015-11-25 | 群创光电股份有限公司 | Multiple electrostatic discharge ring device for display panel |
| CN105446031B (en) * | 2014-09-30 | 2018-09-18 | 群创光电股份有限公司 | Display panel and display device |
| CN105206618B (en) * | 2015-08-26 | 2018-10-30 | 京东方科技集团股份有限公司 | A kind of array substrate, display panel, display device and production method |
| CN109427996A (en) | 2017-08-31 | 2019-03-05 | 昆山国显光电有限公司 | A kind of flexible display apparatus and preparation method |
| KR102392868B1 (en) * | 2017-09-29 | 2022-05-03 | 삼성디스플레이 주식회사 | Display device |
| CN112838179A (en) * | 2021-01-07 | 2021-05-25 | 深圳市华星光电半导体显示技术有限公司 | Display panel and preparation method thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5587589A (en) * | 1995-03-22 | 1996-12-24 | Motorola | Two dimensional organic light emitting diode array for high density information image manifestation apparatus |
| US6027958A (en) * | 1996-07-11 | 2000-02-22 | Kopin Corporation | Transferred flexible integrated circuit |
| US6720256B1 (en) * | 2002-12-04 | 2004-04-13 | Taiwan Semiconductor Manufacturing Company | Method of dual damascene patterning |
Family Cites Families (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1862297A (en) * | 1929-03-15 | 1932-06-07 | Gen Electric | Capacitor and method forming the same |
| US4390104A (en) * | 1981-08-19 | 1983-06-28 | U.S. Clinical Products, Inc. | Flexible plastic sterile closure system for containers |
| JPH07159795A (en) * | 1993-12-01 | 1995-06-23 | Fujitsu Ltd | Liquid crystal display panel manufacturing method |
| JP3037434B2 (en) * | 1994-08-17 | 2000-04-24 | エロネックス・アイピー・ホールディングス・リミテッド | Copied copy from printer or copier |
| JP3482043B2 (en) * | 1994-12-15 | 2003-12-22 | シャープ株式会社 | Liquid crystal display |
| JP3613294B2 (en) * | 1995-07-24 | 2005-01-26 | 富士通ディスプレイテクノロジーズ株式会社 | LCD panel |
| JP3498459B2 (en) * | 1995-12-25 | 2004-02-16 | 株式会社デンソー | Semiconductor device and manufacturing method thereof |
| GB2315900B (en) * | 1996-07-26 | 2000-10-04 | Sharp Kk | Liquid crystal device |
| JPH10301124A (en) * | 1997-04-25 | 1998-11-13 | Matsushita Electric Ind Co Ltd | Active matrix liquid crystal display |
| JPH11101984A (en) * | 1997-09-26 | 1999-04-13 | Kyocera Corp | Liquid crystal display |
| JPH11202320A (en) * | 1998-01-08 | 1999-07-30 | Hitachi Ltd | Liquid crystal display |
| JPH11264970A (en) * | 1998-03-17 | 1999-09-28 | Casio Comput Co Ltd | Liquid crystal display |
| US6317186B1 (en) * | 1998-12-28 | 2001-11-13 | International Business Machines Corporation | Method for sealing corner regions of a liquid crystal display |
| US6104466A (en) * | 1999-01-07 | 2000-08-15 | International Business Machines Corporation | Precision alignment of plates |
| JP2000269504A (en) * | 1999-03-16 | 2000-09-29 | Hitachi Ltd | Semiconductor device, manufacturing method thereof, and liquid crystal display device |
| US7889306B1 (en) * | 1999-05-21 | 2011-02-15 | Lg Display Co., Ltd. | Liquid crystal display and fabrication method thereof |
| GB9928353D0 (en) * | 1999-12-01 | 2000-01-26 | Koninkl Philips Electronics Nv | Liquid crystal display and method of manufacture |
| KR100347436B1 (en) * | 1999-12-16 | 2002-08-03 | 엘지.필립스 엘시디 주식회사 | Method of forming a seal pattern for liquid crystal display device |
| JP2001174831A (en) * | 1999-12-21 | 2001-06-29 | Sony Corp | Liquid crystal display device |
| JP3520976B2 (en) * | 2000-01-18 | 2004-04-19 | カシオマイクロニクス株式会社 | Bonding structure of semiconductor device |
| KR100586240B1 (en) * | 2000-05-18 | 2006-06-02 | 엘지.필립스 엘시디 주식회사 | Array substrate for liquid crystal display device and manufacturing method |
| JP2001330837A (en) * | 2000-05-19 | 2001-11-30 | Matsushita Electric Ind Co Ltd | Hermetic structure, method of manufacturing the same, liquid crystal display device using the same, and method of manufacturing the same |
| US6842211B2 (en) * | 2000-11-02 | 2005-01-11 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device, and method of manufacturing the same |
| JP2002158278A (en) * | 2000-11-20 | 2002-05-31 | Hitachi Ltd | Semiconductor device, method of manufacturing the same, and design method |
| KR100628259B1 (en) * | 2000-11-22 | 2006-09-27 | 엘지.필립스 엘시디 주식회사 | Liquid crystal display panel |
| JP2002333639A (en) | 2001-03-08 | 2002-11-22 | Sharp Corp | Liquid crystal display |
| KR100437831B1 (en) * | 2001-12-20 | 2004-06-30 | 엘지.필립스 엘시디 주식회사 | Liquid Crystal Display Device And Method For Fabricating The Same |
| KR20050049656A (en) * | 2003-11-22 | 2005-05-27 | 엘지.필립스 엘시디 주식회사 | Liquid crystal display panel and fabrication method thereof |
| TW200600934A (en) * | 2004-06-18 | 2006-01-01 | Innolux Display Corp | Liquid crystal display panel and process for producing it |
| TWI248684B (en) * | 2004-11-26 | 2006-02-01 | Innolux Display Corp | Liquid crystal display device |
| JP4455510B2 (en) * | 2006-02-08 | 2010-04-21 | 株式会社 日立ディスプレイズ | Liquid crystal display panel and manufacturing method thereof |
| JP4850612B2 (en) * | 2006-08-03 | 2012-01-11 | 株式会社 日立ディスプレイズ | Liquid crystal display |
-
2004
- 2004-02-18 US US10/782,259 patent/US20050178498A1/en not_active Abandoned
-
2005
- 2005-02-03 TW TW094103364A patent/TWI313766B/en not_active IP Right Cessation
- 2005-02-17 CN CNB2005100093488A patent/CN100388099C/en not_active Expired - Lifetime
- 2005-02-18 JP JP2005042373A patent/JP4510665B2/en not_active Expired - Lifetime
- 2005-11-08 US US11/268,843 patent/US7884914B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5587589A (en) * | 1995-03-22 | 1996-12-24 | Motorola | Two dimensional organic light emitting diode array for high density information image manifestation apparatus |
| US6027958A (en) * | 1996-07-11 | 2000-02-22 | Kopin Corporation | Transferred flexible integrated circuit |
| US6720256B1 (en) * | 2002-12-04 | 2004-04-13 | Taiwan Semiconductor Manufacturing Company | Method of dual damascene patterning |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060109413A1 (en) * | 2004-11-22 | 2006-05-25 | Sun-Youl Lee | Sealant pattern for flat display panel |
| US20060160259A1 (en) * | 2005-01-14 | 2006-07-20 | Au Optronics Corp. | Sealant region pattern for liquid crystal display and method for fabricating the same |
| US7226801B2 (en) * | 2005-01-14 | 2007-06-05 | Au Optronics Corp. | Sealant region pattern for liquid crystal display and method for fabricating the same |
| CN104950508A (en) * | 2015-06-17 | 2015-09-30 | 深圳市华星光电技术有限公司 | Liquid crystal display panel |
Also Published As
| Publication number | Publication date |
|---|---|
| US7884914B2 (en) | 2011-02-08 |
| CN1645221A (en) | 2005-07-27 |
| JP2005234582A (en) | 2005-09-02 |
| TW200528829A (en) | 2005-09-01 |
| JP4510665B2 (en) | 2010-07-28 |
| TWI313766B (en) | 2009-08-21 |
| CN100388099C (en) | 2008-05-14 |
| US20060057334A1 (en) | 2006-03-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240298462A1 (en) | Oled with a flattening layer between two barrier layers | |
| CN109585688B (en) | Display panel and display device | |
| US20050178498A1 (en) | Method for sealing electroluminescence display devices | |
| EP3316308B1 (en) | Flat panel display connecting front side to rear side of substrate using through hole | |
| US6664730B2 (en) | Electrode structure of el device | |
| US9439248B2 (en) | Electroluminescent display screen and method for preparing the same, and display device | |
| KR101611924B1 (en) | Organic light emitting diode display device | |
| US20230005962A1 (en) | Display device | |
| EP3642880B1 (en) | Display substrate, display apparatus, method of fabricating display substrate | |
| US20090066242A1 (en) | Display device | |
| US20050269944A1 (en) | Organic electroluminescent display and fabricating method thereof | |
| EP3276405B1 (en) | Display apparatus and method of manufacturing the same | |
| US7754521B2 (en) | Dual panel type organic electroluminescent device | |
| KR102066079B1 (en) | Organic light emitting diode display device and method of manufacturing the same | |
| US10783825B2 (en) | Driving substrates and display panels | |
| US20030071570A1 (en) | Display apparatus and method of manufacturing the same | |
| KR100703457B1 (en) | Organic electroluminescent display and manufacturing method thereof | |
| JP2017167477A (en) | Display device | |
| JP6486848B2 (en) | Display device and manufacturing method thereof | |
| KR102279497B1 (en) | High Luminance Large Area Organic Light Emitting Diode Display | |
| CN214313208U (en) | Spliced screen | |
| JP4542555B2 (en) | Organic EL display device | |
| CN110429201B (en) | OLED display panel and packaging method thereof | |
| CN108828871B (en) | Manufacturing method of flexible electronic paper and flexible electronic paper device thereof | |
| KR100518962B1 (en) | Organic Electroluminescent Device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: AU OPTRONICS CORPORATION, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, KUN-HONG;LO, CHANG-CHENG;HO, TZU-WEI;REEL/FRAME:015818/0603;SIGNING DATES FROM 20040727 TO 20040730 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |