[go: up one dir, main page]

US20050173029A1 - Magnesium-based alloy composition - Google Patents

Magnesium-based alloy composition Download PDF

Info

Publication number
US20050173029A1
US20050173029A1 US11/075,101 US7510105A US2005173029A1 US 20050173029 A1 US20050173029 A1 US 20050173029A1 US 7510105 A US7510105 A US 7510105A US 2005173029 A1 US2005173029 A1 US 2005173029A1
Authority
US
United States
Prior art keywords
alloy
magnesium
master alloy
manganese
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/075,101
Inventor
Tetyukhin Valentinovich
Agalakov Vladimirovich
Kornaukhova Fedorovna
Pusohkarev Yuryevich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVISMA Titanium-Magnesium Works JSC
VSMPO Avisma Corp PSC
Original Assignee
AVISMA Titanium-Magnesium Works JSC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVISMA Titanium-Magnesium Works JSC filed Critical AVISMA Titanium-Magnesium Works JSC
Priority to US11/075,101 priority Critical patent/US20050173029A1/en
Publication of US20050173029A1 publication Critical patent/US20050173029A1/en
Assigned to PUBLIC STOCK COMPANY VSMPO-AVISMA CORPORATION reassignment PUBLIC STOCK COMPANY VSMPO-AVISMA CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: OPEN JOINT STOCK COMPANY "AVISMA TITANIUM-MAGNESIUM WORKS"
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals

Definitions

  • This invention relates generally to magnesium-based alloys and more specifically to magnesium alloy compositions that are for use in the automotive industry.
  • magnesium-aluminium alloys can be designated as cost-effective and widely used for manufacture of automotive parts, e.g. AM50A alloy (where AM means aluminium and manganese are in the composition of the alloy) containing approx. 5 to 6 wt. % aluminium and manganese traces, and magnesium-aluminium-zinc alloys, e.g. AZ9D (where AZ means aluminium and zinc are in the composition of the alloy) containing approx. 9 wt. % aluminium and 1 wt. % zinc.
  • AM50A alloy where AM means aluminium and manganese are in the composition of the alloy
  • AZ9D magnesium-aluminium-zinc alloys
  • Magnesium alloys in Collected works of Baikov Institute for Metallurgy edited by Nauka Publishing House, 1978, p. 140-144 which comprises aluminium, zinc, manganese, and silicon as alloying components in the following amounts:
  • the drawback of this alloy is that the quantitative composition of the alloy selected provides poor mechanical properties, in particular, the alloy having a small solidification range is characterized with advanced susceptibility to cracking in case of hindered contraction and bad castability.
  • German standard EN 1753-1997 is taken as the closest prior art by its qualitative and quantitative composition and discloses the methods of manufacture of EN MB MgAl2Si and EN MB MgAl4Si alloys.
  • the qualitative analysis of the alloys is the following, in wt. %:
  • a disadvantage of this method is the need to pre-melt manganese and other alloying elements (at the melting temperature of 1250° C.) that complicates alloy production and process instrumentation.
  • the main shortcoming of the method is in considerable loss of alloying components, resulting in lower recovery of alloying components in magnesium and preventing from producing alloys with specified mechanical properties. Furthermore, this increases the cost of the alloy.
  • the invention makes it possible to reduce the production costs of the alloy and to improve the performance characteristics thereof in order to extend the use of said alloy for the automobile industry.
  • the claimed magnesium-based alloy comprises aluminium, zinc, manganese and silicon, wherein the constituents specified are in the following amounts, wt. %:
  • the alloy there is a method which consists of loading of alloying components, pouring of molten magnesium, introducing a titanium-containing fusion cake together with a flux agent and continuously agitating. The alloy is soaked and cast. The alloying components of aluminium, zinc, manganese, and silicon are added in the form of a ready-made solid master alloy of aluminium-zinc-manganese-silicon. After being poured in, the magnesium is heated, subjected to ageing and then stirred.
  • the proportion of the master alloy to magnesium is 1:(18-20).
  • magnesium is heated up to 720-740° C.
  • the ageing process lasts for 1-1.5 hrs.
  • the quantitative composition of the magnesium-based alloy produces better mechanical properties of the alloy.
  • Aluminium added into magnesium contributes to its tensile strength at ambient temperature and alloy castability. However, it is well-known that aluminium is detrimental to creep resistance and strength of magnesium alloys at elevated temperatures. This results from the case that aluminium, when in higher quantities, tends to combine with magnesium to form great amounts of intermetallic Mg 17 Al 12 having a low melting temperature (437° C.) which impairs high-temperature properties of aluminium-based alloys.
  • the aluminium content of 2.5-3.4 wt. % that was chosen for the proposed magnesium-based alloy provides better properties of magnesium-based alloys, such as creep resistance.
  • the properties of the alloy are further influenced by zinc content; however, added in large amounts, zinc can lead to cracking. Therefore, proposed zinc content is within 0.11-0.25 wt. % to be optimum for the magnesium-based alloy.
  • silicon added into the alloy as an active alloying additive to form a metallurgically stable phase of Mg 2 Si that is precipitated slightly at grain boundaries and, hence, to increase creep resistance of the alloy at high temperatures.
  • Silicon content of 0.8-1.1 wt. % claimed in accordance with the present invention promotes a decreasing creep level of the magnesium-based alloy.
  • the alloy is loaded with manganese in the amount of 0.24-0.34 wt. % in order to ensure corrosion resistance.
  • the alloying components are introduced in the form of the pre-prepared aluminium-zinc-manganese-silicon master alloy, which is added in a certain proportion to magnesium, i.e. 1:(18-20), and this, therefore, enhances recovery of the additives in magnesium, thus lowering losses of expensive chemicals.
  • the level of recovery of alloying elements in the magnesium-based alloy can be 98.8-100% in case of aluminium, 68.2-71.1% in case of manganese, 89.3-97.4 in case of silicon, 85.9-94.4% in case of zinc.
  • composition aluminium-matrix, manganese—6.0-9.0 wt. %, silicon—24.0-28.0 vet. %, zinc—2.0-3.0 wt. %, inclusions, in wt. %: iron—0.4, nickel—0.005, copper—0.1, titanium—0.1.
  • the master alloy is produced in ingots.
  • the master alloy is manufactured in an ‘AIAX’-type induction furnace.
  • A97 grade aluminium acc. to GOST 11069
  • the master alloy is melted under cryolite flux in the amount of 1-1.5% of the pre-weighted quantity required for the process.
  • Kpl (Krl) grade crystalline silicon is fed in portions in the form of crushed pieces, or wrapped in aluminium foil or wetted with zinc chloride solution to prevent them from oxidation. Silicon is dissolved in small portions and thoroughly stirred.
  • the composition obtained is thereafter added with manganese metal of MH95 grade (Mn95 acc. to GOST 6008) in the form of 100 mm pieces, stirred again and heated up to the temperature within 800-850° C.; finally added with LIl-grade zinc (Z1 acc., to GOST 3640). 16 kg ingots are cast in molds.
  • the solid master alloy of Al—Mn—Si—Zn in the form of ingots in the proportion of master alloy to magnesium 1:(18-20) are charged into a preheated crucible of furnace SMT-2.
  • raw magnesium MT90 MG-90 acc. to GOST 804-973
  • MG-90 acc. to GOST 804-93 is poured in the amount of 1.8 tons from a vacuum ladle and is afterwards heated.
  • a heated agitator is placed in the crucible.
  • the alloy is left undisturbed in the crucible for 1-1.5 hrs prior to mixing and then mixed for max.
  • the alloy composition was in wt. %: Al—2.5-3.4, Mn—min 0.23, Si—0.8-1.3, Be—0.0008-0.0012, Zn—min 0.18, Fe—min 0.003.
  • the magnesium-based alloy of said qualitative composition and the method to prepare it improve the mechanical properties of the alloy, particularly, to decrease creep ratio by 3-4 times and reduce production costs due to a better recovery of alloying components in magnesium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Magnesium-based alloy compositions that are used in the automotive industry. The invention makes it possible to reduce the production costs of the alloy and to improve the performance characteristics thereof in order to extend the use of said alloy for the automobile industry. The magnesium-based alloy comprises aluminium, zinc, manganese and silicon wherein the constituents specified are in the following components, wt. %: Aluminium—2.5-3.4; Zinc—0.11-0.25; Manganese—0.24-0.34; Silicon—0.8-1.1; and Magnesium—remainder.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 10/496,024, filed May 19, 2004, which, in turn, claims the benefit of PCT/RU02/00189, filed Apr. 22, 2002.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates generally to magnesium-based alloys and more specifically to magnesium alloy compositions that are for use in the automotive industry.
  • 2. Background Art
  • There are various alloys developed for special applications including, for example, die casting of automotive components. Among these alloys magnesium-aluminium alloys can be designated as cost-effective and widely used for manufacture of automotive parts, e.g. AM50A alloy (where AM means aluminium and manganese are in the composition of the alloy) containing approx. 5 to 6 wt. % aluminium and manganese traces, and magnesium-aluminium-zinc alloys, e.g. AZ9D (where AZ means aluminium and zinc are in the composition of the alloy) containing approx. 9 wt. % aluminium and 1 wt. % zinc.
  • The disadvantage of these alloys is their low strength and poor creep resistance at elevated operating temperatures. As a result, the above mentioned magnesium alloys are less suitable for motor engines where some components such as transmission cases are exposed to temperatures up to 150° C. Poor creep resistance of these components can lead to a decrease in fastener clamp load in bolted joints and, hence, to oil leakage.
  • Known in the present state of art is a magnesium-based alloy (Inventors' certificate No. 442225 issued in Invention Bulletin 33, 1974) containing aluminium, zinc, manganese, and silicon as alloying components in the following amounts:
      • Aluminium—6-15 wt. %
      • Zinc—0.3-3.0 wt. %
      • Manganese—0.1-0.5 wt. %
      • Silicon—0.6-2.5 wt. %
      • Magnesium—balance.
  • The disadvantages of this alloy are its low ductility, high hot shortness, and insufficient strength of the alloy which keeps this alloy from automotive applications.
  • Known presently is another magnesium die cast alloy (“Magnesium alloys” in Collected works of Baikov Institute for Metallurgy edited by Nauka Publishing House, 1978, p. 140-144) which comprises aluminium, zinc, manganese, and silicon as alloying components in the following amounts:
      • Aluminium—3.5-5.0 wt. %
      • Zinc—under 0.12 wt. %
      • Manganese—0.20-0.50 wt. %
      • Silicon—0.5-1.5 wt.%
      • Copper—under 0.06
      • Nickel—0.03 wt. %
  • The drawback of this alloy is that the quantitative composition of the alloy selected provides poor mechanical properties, in particular, the alloy having a small solidification range is characterized with advanced susceptibility to cracking in case of hindered contraction and bad castability.
  • A well-known German standard EN 1753-1997 is taken as the closest prior art by its qualitative and quantitative composition and discloses the methods of manufacture of EN MB MgAl2Si and EN MB MgAl4Si alloys. The qualitative analysis of the alloys is the following, in wt. %:
      • EN MB MgAl2Si:
      • Al—1.9-2.5
      • Mn—min 0.2
      • Zn—0.15-0.25
      • Si—0.7-1.2
      • EN MB MgAl4Si (AS41):
      • Al—3.7-4.8
      • Mn—0.35-0.6
      • Zn—max 0.10
      • Si—0.6-1.4
  • The alloys of the above quantitative and qualitative compositions demonstrate better mechanical properties. However, at 150-250° C. these alloys have high creep that keeps these alloys from machine-building applications. Presently known is the method (PCT Patent No. 94/09168) for making magnesium-based alloy that provides for alloying components in a molten state being introduced into molten magnesium. Primary magnesium and alloying components are therefor heated and melted in separate crucibles.
  • A disadvantage of this method is the need to pre-melt manganese and other alloying elements (at the melting temperature of 1250° C.) that complicates alloy production and process instrumentation.
  • There are some other methods known (B. I. Bondarev “Melting and Casting of Wrought Magnesium Alloys” edited by Metallurgy Publishing House, Moscow, Russia 1973, pp 119-122) to introduce alloying components using a master alloy, e.g. a magnesium-manganese master alloy (at the alloying temperature of 740-760° C.).
  • This method is disadvantageous because the alloying temperature should be kept high. This leads to extremely high electric power consumption for metal heating and significant melting loss.
  • Also known is another method of producing a magnesium-aluminium zinc-manganese alloy (I. P. Vyatkin, V. A. Kechin, S. V. Mushkov in “Primary magnesium refining and melting” edited by Metallurgy Publishing House, Moscow, Russia 1974, pp.54-56, pp.82-93) which is taken as an analogue prototype. This method stipulates various ways for feeding molten magnesium and alloying components such as aluminium, zinc, and manganese. One of these approaches includes simultaneous charging of solid aluminium and zinc into a crucible, then heating above 100° C., pouring in molten primary magnesium and again heating up to 700-710° C. and introducing titanium containing fusion cake together and manganese metal under continuous agitation.
  • The main shortcoming of the method is in considerable loss of alloying components, resulting in lower recovery of alloying components in magnesium and preventing from producing alloys with specified mechanical properties. Furthermore, this increases the cost of the alloy.
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the present invention to improve mechanical properties of the alloy and, in particular, to decrease its creep and loss of alloying constituents in manufacturing the alloy.
  • The invention makes it possible to reduce the production costs of the alloy and to improve the performance characteristics thereof in order to extend the use of said alloy for the automobile industry.
  • These objects are accomplished due to the fact that the claimed magnesium-based alloy comprises aluminium, zinc, manganese and silicon, wherein the constituents specified are in the following amounts, wt. %:
      • Aluminium—2.5-3.4
      • Zinc—0.11-0.25
      • Manganese—0.24-0.34
      • Silicon—0.8-1.1
      • Magnesium—balance.
  • To manufacture the alloy there is a method which consists of loading of alloying components, pouring of molten magnesium, introducing a titanium-containing fusion cake together with a flux agent and continuously agitating. The alloy is soaked and cast. The alloying components of aluminium, zinc, manganese, and silicon are added in the form of a ready-made solid master alloy of aluminium-zinc-manganese-silicon. After being poured in, the magnesium is heated, subjected to ageing and then stirred.
  • Further, the proportion of the master alloy to magnesium is 1:(18-20).
  • Further, magnesium is heated up to 720-740° C.
  • Further, the ageing process lasts for 1-1.5 hrs.
  • The quantitative composition of the magnesium-based alloy produces better mechanical properties of the alloy.
  • Aluminium added into magnesium contributes to its tensile strength at ambient temperature and alloy castability. However, it is well-known that aluminium is detrimental to creep resistance and strength of magnesium alloys at elevated temperatures. This results from the case that aluminium, when in higher quantities, tends to combine with magnesium to form great amounts of intermetallic Mg17Al12 having a low melting temperature (437° C.) which impairs high-temperature properties of aluminium-based alloys. The aluminium content of 2.5-3.4 wt. % that was chosen for the proposed magnesium-based alloy provides better properties of magnesium-based alloys, such as creep resistance.
  • The properties of the alloy, especially its castability, are further influenced by zinc content; however, added in large amounts, zinc can lead to cracking. Therefore, proposed zinc content is within 0.11-0.25 wt. % to be optimum for the magnesium-based alloy.
  • In order to enhance service performance and functionality and expand the scope of application at higher temperatures (up to 150-200° C.) silicon added into the alloy as an active alloying additive to form a metallurgically stable phase of Mg2Si that is precipitated slightly at grain boundaries and, hence, to increase creep resistance of the alloy at high temperatures. Silicon content of 0.8-1.1 wt. % claimed in accordance with the present invention promotes a decreasing creep level of the magnesium-based alloy.
  • The alloy is loaded with manganese in the amount of 0.24-0.34 wt. % in order to ensure corrosion resistance.
  • The alloying components are introduced in the form of the pre-prepared aluminium-zinc-manganese-silicon master alloy, which is added in a certain proportion to magnesium, i.e. 1:(18-20), and this, therefore, enhances recovery of the additives in magnesium, thus lowering losses of expensive chemicals.
  • It is another difficulty in making alloys with a silicon content that silicon and manganese as alloying components react to form heavy intermetallic phases Mn3Si and MnSi2, which deposit at the bottom of crucibles at the end of production process, and this hinders high level of recovery of these components. Thus, a better recovery of the alloying additives can be produced using the pre-prepared aluminium-based master alloy.
  • With process temperature maintained at 720-740° C. the level of recovery of alloying elements in the magnesium-based alloy can be 98.8-100% in case of aluminium, 68.2-71.1% in case of manganese, 89.3-97.4 in case of silicon, 85.9-94.4% in case of zinc.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Preparation of AI—Mn—Si—Zn Master Alloy
  • Composition: aluminium-matrix, manganese—6.0-9.0 wt. %, silicon—24.0-28.0 vet. %, zinc—2.0-3.0 wt. %, inclusions, in wt. %: iron—0.4, nickel—0.005, copper—0.1, titanium—0.1. The master alloy is produced in ingots.
  • The master alloy is manufactured in an ‘AIAX’-type induction furnace. A97 grade aluminium (acc. to GOST 11069) is charged in the furnace and heated to 910-950° C.; the master alloy is melted under cryolite flux in the amount of 1-1.5% of the pre-weighted quantity required for the process. Kpl (Krl), grade crystalline silicon is fed in portions in the form of crushed pieces, or wrapped in aluminium foil or wetted with zinc chloride solution to prevent them from oxidation. Silicon is dissolved in small portions and thoroughly stirred. The composition obtained is thereafter added with manganese metal of MH95 grade (Mn95 acc. to GOST 6008) in the form of 100 mm pieces, stirred again and heated up to the temperature within 800-850° C.; finally added with LIl-grade zinc (Z1 acc., to GOST 3640). 16 kg ingots are cast in molds.
  • EXAMPLE 1
  • The solid master alloy of Al—Mn—Si—Zn in the form of ingots in the proportion of master alloy to magnesium 1:(18-20) are charged into a preheated crucible of furnace SMT-2. In the same crucible raw magnesium MT90 (MG-90 acc. to GOST 804-93) is poured in the amount of 1.8 tons from a vacuum ladle and is afterwards heated. On reaching 730-740° C. of the metal temperature a heated agitator is placed in the crucible. The alloy is left undisturbed in the crucible for 1-1.5 hrs prior to mixing and then mixed for max. 40-50 min; a titanium-containing fusion cake (TU 39-008) being in the compound with barium flux in the proportion of 1:1 is added, and mixed again; the temperature of the alloy is then reduced to 710-720° C. The alloy produced was left in the crucible for 60 min and thereafter the alloy was sampled for chemical analysis to define Al, Mn, Zn, Si content and impurities. The alloy composition was in wt. %: Al—2.5-3.4, Mn—min 0.23, Si—0.8-1.3, Be—0.0008-0.0012, Zn—min 0.18, Fe—min 0.003.
  • INDUSTRIAL APPLICABILITY
  • TABLE 1
    Mechanical properties of the magnesium-based alloy at 150° C.
    Mechanical
    Creep test properties at
    Type of alloy σ, MPa Creep ratio σ, % 150° C., σBMPa
    AZ91 45.0 0.82 136
    EN MB MgAl2Si 45.0 0.490 128
    (AS 21)
    EN MB MgAl4Si 45.0 0.540 139
    AS 31 alloy claimed 45.0 0.143 128
  • TABLE 2
    Level of recovery of alloying elements in magnesium
    Constituents Recovery level, %
    Aluminium 100
    Manganese 73.5-96.3; at 720-740° C. and time of agitation 40-50 min
    recovery level of manganese is 80-96%
    Silicon 80.8-92.5
    Zinc  84.8

    Tables 1 and 2 illustrate the level of recovery of alloying elements in the magnesium-based alloy depending on the temperature and time of agitation.
  • Thus, the magnesium-based alloy of said qualitative composition and the method to prepare it improve the mechanical properties of the alloy, particularly, to decrease creep ratio by 3-4 times and reduce production costs due to a better recovery of alloying components in magnesium.
  • While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.

Claims (16)

1. A magnesium-based alloy containing aluminium, zinc, manganese and silicon, wherein the constituents specified are in the following amounts, wt. %:
Aluminium—2.5-3.4
Zinc—0.11-0.25
Manganese—0.24-0.34
Silicon—0.8-1.1
Magnesium—remainder.
2. The alloy of claim 1, comprising:
a. a master alloy including
i. Al
ii. Zn
iii. Si
iv. Mn;
b. molten Mg that is heated, aged, and stirred; and
c. a Ti-containing fusion cake with a fluxing agent that is continously agitated to form an intermediate composition before cooling, soaking and casting.
3. The alloy of claim 2, wherein the proportion of the master alloy content to magnesium is 1:(18-20).
4. The alloy of claim 2, wherein magnesium is heated up to 720-740° C.
5. The alloy of claim 2, wherein the ageing is carried out within 1-1.5 hrs.
6. The alloy of claim 2 wherein the master alloy is in the form of a ready-made solid master alloy.
7. The alloy of claim 2 wherein the Al in the master alloy is in the amount of 2.5-3.4 wt. %.
8. The alloy of claim 2 wherein the master alloy comprises Si in the amount of 0.8-1.1 wt. %, the Si forming a metallurgically stable phase of Mg2Si that is precipitated at grain boundaries, thereby improving the mechanical properties of the alloy.
9. The alloy of claim 2 wherein the master alloy comprises Zn in the amount of 0.11-0.25 wt. % for fluidity.
10. The alloy of claim 2 wherein the master alloy comprises Mn in the amount of 0.24-0.34 wt. % for corrosion resistance.
11. The alloy of claim 2 wherein the master alloy comprises a ready-made solid master alloy in a proportion to Mg of 1:(18-20) for the recovery of additives and reducing the loss of chemicals.
12. The alloy of claim 2 wherein respective constituents following heating to 720-740° C., are recovered at these levels: Al (98.8-100%); Mn (68.2-71.1%); Si (89.3-97.4%); and Zn (85.9-94.4%).
13. The alloy of claim 2 wherein the master alloy comprises the following components, wt. %:
Mn—6.0-9.0
Si—24.0-28.0
Zn—2.0-3.0
an inclusion selected from a group consisting of Fe 0.4; Ni 0.005; Cu 0.1;
Ti 0.1 and combinations thereof; and
Al—remainder.
14. A magnesium-based alloy comprising, in wt. %:
aluminum—2.5-3.4
zinc≧0.18
manganese ≧ to 0.23
silicon—0.8-1.3
beryllium—0.0008-0.0012
iron—≧0.003
magnesium—remainder
15. A master alloy comprising in wt. %:
Manganese—6.0 -9.0
Silicon—24.0-28.0
Zinc—2.0-3.0
an inclusion comprising:
Iron—0.4
Nickel—0.005
Copper—0.1 &
Titanium—0.1.
16. The master alloy composition of claim 15 wherein the wt. % ratio of master alloy to magnesium is about 1:(18-20).
US11/075,101 2001-12-26 2005-03-08 Magnesium-based alloy composition Abandoned US20050173029A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/075,101 US20050173029A1 (en) 2001-12-26 2005-03-08 Magnesium-based alloy composition

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
RU2001135786/02A RU2218438C2 (en) 2001-12-26 2001-12-26 Alloy based on magnesium and method of its production
RU2001135786 2001-12-26
US10/496,024 US7135079B2 (en) 2001-12-26 2002-04-22 Magnesium-based alloy and method for the production thereof
PCT/RU2002/000189 WO2003056050A1 (en) 2001-12-26 2002-04-22 Magnesium-based alloy and method for the production thereof
US11/075,101 US20050173029A1 (en) 2001-12-26 2005-03-08 Magnesium-based alloy composition

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/RU2002/000189 Division WO2003056050A1 (en) 2001-12-26 2002-04-22 Magnesium-based alloy and method for the production thereof
US10/496,024 Division US7135079B2 (en) 2001-12-26 2002-04-22 Magnesium-based alloy and method for the production thereof

Publications (1)

Publication Number Publication Date
US20050173029A1 true US20050173029A1 (en) 2005-08-11

Family

ID=20255001

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/496,024 Expired - Fee Related US7135079B2 (en) 2001-12-26 2002-04-22 Magnesium-based alloy and method for the production thereof
US11/075,101 Abandoned US20050173029A1 (en) 2001-12-26 2005-03-08 Magnesium-based alloy composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/496,024 Expired - Fee Related US7135079B2 (en) 2001-12-26 2002-04-22 Magnesium-based alloy and method for the production thereof

Country Status (8)

Country Link
US (2) US7135079B2 (en)
EP (1) EP1460142B1 (en)
AU (1) AU2002308806A1 (en)
BR (1) BR0213891A (en)
CA (1) CA2458363A1 (en)
DE (1) DE60239081D1 (en)
RU (1) RU2218438C2 (en)
WO (1) WO2003056050A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10230276B4 (en) * 2002-07-05 2005-05-19 Daimlerchrysler Ag AS die-cast alloy and method for producing an aggregate part from such an AS diecasting alloy
KR101127113B1 (en) * 2004-01-09 2012-03-26 켄지 히가시 Magnesium alloy for die cast and magnesium die cast products using the same
CN108543933B (en) * 2018-04-19 2023-11-03 重庆赛宝工业技术研究院有限公司 Method and system for dynamically and continuously producing magnesium alloy from irregular block materials
CN108950332A (en) * 2018-07-19 2018-12-07 徐海东 A kind of high-strength magnesium silicotitanium material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435213A (en) * 1982-09-13 1984-03-06 Aluminum Company Of America Method for producing aluminum powder alloy products having improved strength properties
US5248477A (en) * 1991-09-12 1993-09-28 The Dow Chemical Company Methods for producing high purity magnesium alloys

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR771023A (en) * 1933-06-20 1934-09-28 Manufacturing process of magnesium alloys and resulting alloys
GB533266A (en) * 1939-04-27 1941-02-10 Fritz Christen Improvements in and relating to magnesium alloys
GB974571A (en) * 1962-06-05 1964-11-04 Magnesium Elektron Ltd Improvements in or relating to magnesium base alloys
GB1239822A (en) * 1968-06-26 1971-07-21 Magnesium Elektron Ltd Magnesium base alloys
US3718460A (en) * 1970-06-05 1973-02-27 Dow Chemical Co Mg-Al-Si ALLOY
SU393343A1 (en) * 1971-06-01 1973-08-10 MAGNESIUM ALLOY
SU1565911A1 (en) * 1988-08-16 1990-05-23 Институт Металлургии Им.А.А.Байкова Magnesium-base alloy
AUPP246998A0 (en) * 1998-03-20 1998-04-09 Australian Magnesium Corporation Pty Ltd Magnesium alloying
NO312106B1 (en) * 1999-07-02 2002-03-18 Norsk Hydro As Method of improving the corrosion resistance of magnesium-aluminum-silicon alloys and magnesium alloy with improved corrosion resistance
RU2215056C2 (en) * 2001-12-26 2003-10-27 Открытое акционерное общество "АВИСМА титано-магниевый комбинат" Magnesium-based alloy and a method for preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435213A (en) * 1982-09-13 1984-03-06 Aluminum Company Of America Method for producing aluminum powder alloy products having improved strength properties
US5248477A (en) * 1991-09-12 1993-09-28 The Dow Chemical Company Methods for producing high purity magnesium alloys

Also Published As

Publication number Publication date
EP1460142B1 (en) 2011-01-26
EP1460142A1 (en) 2004-09-22
CA2458363A1 (en) 2003-07-10
EP1460142A4 (en) 2005-01-26
BR0213891A (en) 2004-08-31
US20050000605A1 (en) 2005-01-06
US7135079B2 (en) 2006-11-14
DE60239081D1 (en) 2011-03-10
WO2003056050A1 (en) 2003-07-10
AU2002308806A1 (en) 2003-07-15
RU2218438C2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
US9200348B2 (en) Aluminum alloy and manufacturing method thereof
WO2024021367A1 (en) Cast al-si alloy and preparation method thereof
CA2721761C (en) Aluminum alloy and manufacturing method thereof
WO2019034837A1 (en) Method of forming a cast aluminium alloy
CN112143945B (en) A kind of high-strength and toughness cast aluminum-silicon alloy with multiple rare earth elements and preparation method thereof
EP2369025B1 (en) Magnesium alloy and magnesium alloy casting
CN107829000B (en) Die-casting aluminum alloy material and preparation method thereof
KR20160011136A (en) Magnesium alloy having improved corrosion resistance and method for manufacturing magnesium alloy member using the same
AU2010322541A1 (en) Aluminum alloy and manufacturing method thereof
CN107937768B (en) Extrusion casting aluminum alloy material and preparation method thereof
CN112301259A (en) High-strength die-casting aluminum alloy, and preparation method and application thereof
JP3332885B2 (en) Aluminum-based alloy for semi-solid processing and method for manufacturing the processed member
CN111378878A (en) High-ductility non-heat-treatment die-casting aluminum alloy and preparation method thereof
US7156931B2 (en) Magnesium-base alloy and method for the production thereof
CN101191167B (en) Magnesium alloy containing rare earth element and preparation method thereof
US7169240B2 (en) Creep resistant magnesium alloys with improved castability
US20050173029A1 (en) Magnesium-based alloy composition
CN114990393B (en) Die-casting aluminum alloy material produced by fully reclaimed materials and preparation method thereof
CN112322920B (en) Aluminum alloy casting production method
KR101591629B1 (en) Method for manufacturing Al-Mg alloy under the melting point of magnesium
RU2220221C2 (en) Alloy based on magnesium
US20250283196A1 (en) AlSiMgX MASTER ALLOY AND USE OF THE MASTER ALLOY IN THE PRODUCTION OF AN ALUMINIUM ALLOY
JPH08157981A (en) Casting method for heat-resistant magnesium alloy
RU2009250C1 (en) Aluminium-base alloy
CN116065063A (en) High-strength high-pressure casting aluminum alloy for new energy vehicle shell

Legal Events

Date Code Title Description
AS Assignment

Owner name: PUBLIC STOCK COMPANY VSMPO-AVISMA CORPORATION, RUS

Free format text: CHANGE OF NAME;ASSIGNOR:OPEN JOINT STOCK COMPANY "AVISMA TITANIUM-MAGNESIUM WORKS";REEL/FRAME:018787/0254

Effective date: 20040921

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION