US20050100598A1 - Quick disintegrating tablet in buccal cavity and production process thereof - Google Patents
Quick disintegrating tablet in buccal cavity and production process thereof Download PDFInfo
- Publication number
- US20050100598A1 US20050100598A1 US10/961,875 US96187504A US2005100598A1 US 20050100598 A1 US20050100598 A1 US 20050100598A1 US 96187504 A US96187504 A US 96187504A US 2005100598 A1 US2005100598 A1 US 2005100598A1
- Authority
- US
- United States
- Prior art keywords
- tablet
- sugar
- amorphous
- drug
- buccal cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 235000000346 sugar Nutrition 0.000 claims abstract description 121
- 229940079593 drug Drugs 0.000 claims abstract description 66
- 239000003814 drug Substances 0.000 claims abstract description 66
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 239000002904 solvent Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims description 44
- 238000001035 drying Methods 0.000 claims description 24
- 239000008187 granular material Substances 0.000 claims description 22
- 238000002360 preparation method Methods 0.000 claims description 12
- 238000004108 freeze drying Methods 0.000 claims description 8
- 238000001694 spray drying Methods 0.000 claims description 5
- 238000005469 granulation Methods 0.000 claims description 2
- 230000003179 granulation Effects 0.000 claims description 2
- 239000003826 tablet Substances 0.000 claims 18
- 150000001720 carbohydrates Chemical class 0.000 claims 2
- 239000007891 compressed tablet Substances 0.000 claims 1
- 239000000825 pharmaceutical preparation Substances 0.000 abstract description 3
- 238000013461 design Methods 0.000 abstract description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 22
- 239000000243 solution Substances 0.000 description 20
- 239000011230 binding agent Substances 0.000 description 17
- 238000007906 compression Methods 0.000 description 13
- 230000006835 compression Effects 0.000 description 13
- 235000019359 magnesium stearate Nutrition 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000007921 spray Substances 0.000 description 10
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 9
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 9
- 229930195725 Mannitol Natural products 0.000 description 9
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 9
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 239000008103 glucose Substances 0.000 description 9
- 239000000594 mannitol Substances 0.000 description 9
- 235000010355 mannitol Nutrition 0.000 description 9
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 8
- 239000008101 lactose Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 239000000832 lactitol Substances 0.000 description 7
- 235000010448 lactitol Nutrition 0.000 description 7
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 7
- 229960003451 lactitol Drugs 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 150000008163 sugars Chemical class 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000004386 Erythritol Substances 0.000 description 4
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 4
- 229930091371 Fructose Natural products 0.000 description 4
- 239000005715 Fructose Substances 0.000 description 4
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 4
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 4
- 235000019414 erythritol Nutrition 0.000 description 4
- 229940009714 erythritol Drugs 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000000954 anitussive effect Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000001961 anticonvulsive agent Substances 0.000 description 2
- 229940124584 antitussives Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical compound C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 2
- 239000003172 expectorant agent Substances 0.000 description 2
- 230000003419 expectorant effect Effects 0.000 description 2
- 229940066493 expectorants Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 208000031226 Hyperlipidaemia Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 208000008469 Peptic Ulcer Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 229940069428 antacid Drugs 0.000 description 1
- 239000003159 antacid agent Substances 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000001773 anti-convulsant effect Effects 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 230000003556 anti-epileptic effect Effects 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 229940035678 anti-parkinson drug Drugs 0.000 description 1
- 229940125713 antianxiety drug Drugs 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940125681 anticonvulsant agent Drugs 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 229960003965 antiepileptics Drugs 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 230000009876 antimalignant effect Effects 0.000 description 1
- 239000000939 antiparkinson agent Substances 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 210000003403 autonomic nervous system Anatomy 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 229940124630 bronchodilator Drugs 0.000 description 1
- 239000000168 bronchodilator agent Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 230000001989 choleretic effect Effects 0.000 description 1
- -1 choleretics Substances 0.000 description 1
- 229940124579 cold medicine Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 description 1
- 229960001596 famotidine Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 239000008141 laxative Substances 0.000 description 1
- 229940125722 laxative agent Drugs 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- 229940000041 nervous system drug Drugs 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 239000007967 peppermint flavor Substances 0.000 description 1
- 208000011906 peptic ulcer disease Diseases 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000003169 respiratory stimulant agent Substances 0.000 description 1
- 230000004799 sedative–hypnotic effect Effects 0.000 description 1
- 229940125706 skeletal muscle relaxant agent Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000001256 tonic effect Effects 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 239000005526 vasoconstrictor agent Substances 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/44—Star or tree networks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/0056—Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
- A61K9/2018—Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/55—Push-based network services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/40—Network security protocols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2095—Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/08—Protocols for interworking; Protocol conversion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
- H04L69/322—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
- H04L69/329—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
Definitions
- the present invention relates to a quick disintegrating tablet in buccal cavity and production process thereof.
- a tablet, a capsule, a granule, a powder and the like are mentioned.
- these dosage forms will have some issues if a patient takes them.
- a tablet or a capsule if the patient is a person of advanced age or a child, there are some cases that they dislike to take the pharmaceutical preparation because it is difficult for them to swallow it or the preparation will stick in the throat or the esophagus of them.
- a granule or a powder in some cases they dislike to take the preparation under the reason that it is difficult for them to swallow it with its remaining in buccal cavity or the reason that they will choke when taking the dosage. Since a compliance to take the pharmaceutical preparation is caused to fall in these cases, it is desired to take easily the pharmaceutical dosage forms, and as a result a disintegrating preparation in buccal cavity has been studied and developed.
- JP 6-218028-A (Corresponding to EP 590,963) discloses a quick disintegrating tablet in buccal cavity which is manufactured by compressing the moisturized powder being mixed with a drug, an excipient, a binder agent and the like using water or the like, afterwards by drying the compression molding.
- a special tableting machine spraying a fluidizer on the surface of a tablet before compression for the avoidance of the issues at the compression molding.
- JP 5-271054-A (corresponding to EP 553,777) discloses a quick disintegrating tablet in buccal cavity which is manufactured by compressing the mixture comprising a drug, a sugar and water which is added so much as to moisture said sugar at low compression pressure, and by drying said tablet.
- WO93/15724 (corresponding to EP 627,218) also discloses a quick disintegrating tablet, which is manufactured by compression with humidification and drying.
- a sticking at compressing with moisture for instance, a sticking at compressing with moisture.
- WO95/20380 (corresponding to U.S. Pat. No. 5,576,014) discloses a quick disintegrating tablet in buccal cavity in which the invention has been made by one of the present inventors.
- This tablet is manufactured by means that a small moldability sugar is granulated by a high moldability sugar and afterwards that these granules are compressed by an ordinal tableting machine. It is thought that there is little trouble in practice by this production method, however, it is necessary to utilize at least two kinds of sugars, if there is a case that there is a restriction to a kind of sugar added, for the counter action between a drug and said sugar (for example, degradation of drug). Therefore, a new quick disintegrating tablet in buccal cavity and production process thereof are desired even at this present, for instance, this tablet is manufactured and to obtain by using one kind of sugars.
- JP 9-48726-A discloses the method which a composition of the mixture consisting of a drug, a sugar and/or hydrophilic polymer is taken into a molding, and the mixture is compressed at low compression pressure, and the molding is under humidification and drying.
- this method is to improve the strength of tablet surface in particular by moisture of water-soluble polymer, it is possible to introduce the adhesion between tablets.
- a method that a mixture consisting of an amorphous sucrose which is obtained by lyophilization method utilizing a sucrose solution, a drug and mannitol is molded into a tablet by a rotally tableting machine, and the obtained tablet is preserved under the controlled circumstance (at 25° C., 34% RH) is proposed (abstract of the 13th Japan pharmacological pharmacy, p. 113, published Mar. 5, 1998).
- a sugar is an amorphous sugar that is manufactured in further detail by lyophilization method, but sugars outsides sucrose is not described in the article.
- An object of the present invention is to provide a quick disintegrating tablet in buccal cavity and production thereof in which tablets are manufactured with the normal granulator and tablet machine, with tablet strength being heightened to make a more stable formulation.
- the present inventors examined the physiological characterization of sugar in a result to find that a kind of sugars can be changed to an amorphous state when the sugar solution is spray-dried, or the sugar solution is used in granulation as a binding agent.
- the present inventors further investigated to find that when an amorphous sugar was treated under humidification and drying, the tablet strength was increased by changing the amorphous sugar to a crystal state and that a disintegrating preparation in buccal cavity with the desired tablet strength was obtained and have completed the present invention.
- the present invention relates to a quick disintegrating tablet in the buccal cavity, comprising: a drug, a sugar (A), and an amorphous sugar (B), in which, after forming the tablet, it is humidified and dried.
- the present invention relates to a quick disintegrating tablet in the buccal cavity, comprising: a mixture, comprising: a drug, a sugar (A), and an amorphous sugar (B) which is obtained by dissolving a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent and then removing the solvent from the solution and drying, in which after forming the tablet, it is humidified and then dried.
- the present invention relates to a quick disintegrating tablet in the buccal cavity, comprising: a mixture, comprising: a drug, a sugar (A), and an amorphous sugar (B) which is obtained by dissolving a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent, and the solution is then sprayed and dried, and after forming the tablets, it is humidified and then dried.
- a quick disintegrating tablet in buccal cavity comprising: a crystalline sugar capable of becoming amorphous is dissolved in a medicinally permitted solvent; the solution is sprayed on a drug and/or a sugar (A) to coat and/or granulate; and after forming a tablet, it is humidified and dried.
- drug to be used in the present invention there are no particular limitations as long as it is a substance which is used as a pharmaceutical active ingredient.
- pharmaceutical active ingredients include: sedative hypnotics, sleep inducers, anti-anxiety drugs, anti-epileptics, anti-depressants, anti-Parkinson drugs, psychoneural drugs, drugs acting on the central nervous system, local anesthetics, skeletal muscle relaxants, autonomic nervous system drugs, anti-fever analgesics anti-inflammatory drugs, anti-convulsants, anti-vertigenous drugs, cardiac drugs, drugs for arrhythmia, diuretics, blood pressure lowering drugs, vasoconstrictors, vasodilators, drugs for circulatory organs, hyperlipidemia drugs, respiratory stimulant, anti-tussive, expectorants, anti-tussive expectorants, bronchodilators, stegnotic, peptic ulcer drugs, stomach digestive drugs, antacids, laxatives, choleretics, drugs for
- the drug is preferred to be treated in a preferably taste masking method (for instance, WO92/09275).
- the drug is preferred to be treated in a preferably sustained-release method (for instance, CA2038400-0), to obtain a particle which is controlled a drug release in a known manner in itself.
- a sustained-release method for instance, CA2038400-0
- the preparation of the present invention can be also applied to a drug which is needed to be absorbed through a membrane of buccal cavity, since the preparation of the present invention is taken by a patient with disintegrating and dissolving in buccal cavity.
- sugar (A) which is to be used in the present invention as long as it is one which is normally medicinally permitted.
- Sugar (A) is preferably a sugar or sugar-alcohol which dissolves in the mouth. Examples include lactose, glucose, trehalose, mannitol, erythritol, and the like. Sugar (A) can be one type or two or more types combined.
- sugar (A) functions as an excipient which dissolves inside the buccal cavity
- the amount of sugar (A) to be added to the quick disintegrating tablet of the present invention is not particularly limited as long as it is an effective amount in order to achieve this function in the quick disintegrating tablet.
- the amount of sugar (A) to be added is dependent on the amount of drug and can be adjusted appropriately.
- the amount of sugar (A) to be added becomes large, and if the amount of drug is large, the amount of sugar (A) to be added becomes small.
- the amount of sugar (A) to be added is also dependent on the size of the tablet.
- the amount of sugar (A) can be adjusted as a ratio with the other excipients.
- the “amorphous sugar (B)” of the present invention signifies a sugar which is medicinally usually permitted and which is amorphous or which is capable of becoming amorphous.
- an amorphous sugar (B) can be obtained by dissolving a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent such as water and alcohol and the like, and then obtained by removing the solvent from this solution, and drying.
- a medicinally permitted solvent such as water and alcohol and the like
- There are no particular limitations for the method of removing the solvent as long as it is a method normally implemented in the pharmaceutical manufacturing process. For example, these methods include spray drying method, freeze-drying method, or various granulating methods such as fluidized-bed granulating method, vertical granulating method, tumbling granulating method.
- spray drying method or the various granulating methods are preferred.
- a method is preferred wherein: a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent such as water, alcohol, and the like; this is used as a binding agent; this becomes amorphous when it is sprayed by a twin fluid nozzle and coats and/or granulates the drug and/or the sugar.
- a crystalline sugar capable of becoming amorphous can be dissolved in a medicinally permitted solvent. This solution can be sprayed against the drug and/or the sugar (A), and they can be coated and granulated with an amorphous sugar (B).
- amorphous sugars (B) examples include glucose, lactose, maltose, sorbitol, trehalose, lactitol, fructose, and the like.
- This amorphous sugar (B) can be of one type or be a combination of two or more types.
- “amorphous sugar” signifies a sugar which is materially amorphous or which is capable of becoming amorphous. In the process of becoming amorphous, the present invention also includes states where a portion is not amorphous.
- the amount of amorphous sugar (B) to be added is 2-20 weight/weight % with respect to the previous sugar (A), or 2-20 weight/weight % of the entire tablet.
- the tablet can be treated at the low moisture level such that an amorphous sugar can adsorb.
- the moisture absorbed in a humidification process dissolve a part of surface of sugar particles around, afterwards in a drying process, the tablet strength can increase because of the re-attachment of between sugar particles.
- the production process has some difficulties, for instance, in case that the sugar consists of sugars in a crystalline state, since the sufficient moisture adsorption will not happen at a low humidification condition, the tablet strength will not increase, in case at a high humidification condition, the adhesion of between tablets will happen and it is easily predictable for actual manufacturing to have difficulty.
- a dried tablet has a high critical moisture point.
- said tablet can maintain a tablet strength against the moisture in the stored condition.
- one kind of sugar consisting of crystalline state and amorphous state can manufacture a quick disintegrating tablet in buccal cavity to avoid a restriction for choosing a sugar which do not happen the changes against a drug.
- forming signifies forming into a tablet or the like with a pressure equal to or greater than the pressure required to maintain the desired shape.
- a normal tablet machines can be used. Examples include a single tablet machine or rotary tablet machine.
- “humidifying”, when implemented in combination with the next step of drying, is for increasing the tablet strength, the humidifying conditions being determined by the apparent critical relative humidity of the mixture of a drug, a sugar (A), an amorphous sugar (B), and signifies increasing the humidity to greater than or equal to the critical relative humidity of this mixture.
- the humidity is 30-100 RH %, and is preferably 50-90 RH %.
- temperature is 15-50° C., and preferably 20-40° C.
- the point of the humidifying process of the present invention is to convert sugar in the amorphous state to a crystalline state, to heighten the tablet strength, and to make the tablet more stable.
- drying is implemented in order to remove the water absorbed by the humidifying the amorphous sugar.
- drying conditions There are no particular limitations for the drying conditions as long as they are the usual conditions for removing water content. For example, it should be 10-100° C. and is preferably 20-60° C.
- the quick disintegrating tablet in buccal cavity can contain various medicinally permitted excipients such as disintegrating agents, stabilization agents, binding agents, diluting agents, lubricating agents, and the like.
- a drug, a sugar (A), and an amorphous sugar (B) are mixed, and after forming the mixture into a tablet, it is humidified and dried.
- a mixture of the following is formed: a drug, a sugar (A), and an amorphous sugar (B) which is obtainable by dissolving a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent and removing the solvent from the solution and drying, and the tablet is humidified and dried.
- a mixture of the following is formed into a tablet: a drug, a sugar (A), and an amorphous sugar (B) which is obtainable by dissolving a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent and spraying and drying the solution, and the tablet is humidified and dried.
- the solution is sprayed with a twin fluid nozzle or the like against a drug and/or sugar (A), and after forming a coated product and/or granulated product by coating and/or granulating with an amorphous sugar (B), and after forming a tablet, it is humidified and dried.
- a method for removing the solvent in the present invention there are no particular limitations as long as it is a method implemented in the normal manufacturing process.
- examples include spray drying method, freeze-drying method, or various granulating methods such as fluidized-bed granulating method, vertical granulating method, tumbling granulating method, or the like. From the standpoint of production, the spray drying method or the various granulating methods are preferred.
- a method is preferred, wherein: a crystalline sugar capable of becoming amorphous and which is dissolved in a medicinally permitted solvent such as water or alcohol is used as a binding agent, and it becomes amorphous when spraying and coating or granulating with a twin fluid nozzle or the like against drug and/or sugar (A).
- crystalline sugar which is capable of becoming amorphous can be dissolved in a medicinally permitted silvent, and the solution can be sprayed, and the drug and/or sugar (A) can be coated and granulated with amorphous sugar (B).
- various medicinally permitted excipients such as disintegrating agents, stabilizing agents, binding agents, diluents, lubricants, or the like can be added to any of the production steps.
- FIG. 1 shows the stability of the tablet strength in the present invention.
- the horizontal axis represents to time and the vertical axis represents to tablet strength.
- the present invention will be explained further by citing examples.
- the present invention is not limited to these embodiments.
- the tablet of the present invention the tablet strength and time of disintegration in the buccal cavity have been evaluated. Because it is considered to have little influence on the evaluation categories, the drug is not always included.
- Mannitol 602 g and lactose 602 g were mixed. This was passed through a sieve (14 mesh). 433 g of glucose solution (15 w/v %) was used as a binding agent for this mixture, and the mixture was granulated in a fluidized-bed granulator. Up to 157 g of the solution was used to coat the above mixture at a spray pressure of 2.5 kg/cm 2 . Afterwards, it was granulated with spray pressure 1.5 kg/cm 2 . After drying the granule, peppermint flavor 10 g , stearic acid 12 g , magnesium stearate 10 g were combined.
- the tablet was stored under heated humidified conditions of 25° C./70% RH for 19 hours, using a thermo-hygrostat (Tabiespec Corp., PR-35C). Afterwards it was dried for 2 hours at 25° C. (humidity 50%).
- the tablet of the present invention was obtained.
- erythritol (Nikken Chemical Corp.) was passed through a sieve (20 mesh). Afterwards, this was granulated with a fluidized-bed granulator (Ohkawara Seisakusho) with 150 g of maltose (Product name Sanmalt-S, Hayashibara Shoji Corp.) aqueous solution ( 15 w/v %) as a binding agent. Up to 60 g of the previous solution was used to coat erythritol with a spray pressure of 3.0 kg/cm 2 . Afterwards, it was granulated with a spray pressure 1.4 kg/cm 2 . 0.5% magnesium stearate was mixed with the granule.
- a lactitol (Towa Chemical Industry Corp., Milhen) aqueous solution (15 w/v %) was a binding agent for 380 g of lactose (Domo milk Corp.). This was granulated with a fluidized-bed granulator (Ohkawara Seisakusho). With respect to this granule, it was confirmed by DSC that the absorption peak derived from lactitol crystals disappeared had the lactitol was amorphous. 0.5% magnesium stearate was mixed with the granule.
- the tablet was stored under heated humidified conditions of 25° C./70% RH for 12 hours, using a thermo-hygrostat (Tabaiespec Cor., PR-35C). Afterwards, it was dried for 2 hours at 40° C.
- the tablet of the present invention was obtained.
- the tablet was stored under heated humidified conditions of 25° C./80% RH for 12 hours, using a thermo-hygrostat (Tabaiespec Company, PR-35C). Afterwards, it was dried for 2 hours at 30° C. (humidity 40%).
- the tablet of the present invention was obtained.
- the tablet was stored under heated humidified conditions of 25° C./80% RH for 12 hours, using a thermo-hygrostat (Tabaiespec Companu, PR-35C). Afterwards, it was dried for 2 hours at 30° C. (humidity 40%).
- the tablet of the present invention was obtained.
- the tablet of the present invention was obtained.
- a sugar (B) is utilized xyritol which does not change into amorphous state in replacing trehalose in Example 11.
- a mannitol Towa Chemical Industry Corp.
- a sieve (20 mesh).
- this was granulated in a fluidized-bed granulator (Ohkawara Seisakusho) with 130 g of a xyritol (Towa Chemical Industry Corp.) aqueous solution (15 w/v %) as a binding agent.
- a fluidized-bed granulator Ohkawara Seisakusho
- a xyritol Towa Chemical Industry Corp.
- aqueous solution 15 w/v %
- 0.5% magnesium stearate was mixed with the granule. This was granulated with a fluidized-bed granulator (Ohkawara Seisakusho). 0.5% magnesium stearate was mixed with the granule.
- the tablet of the Comparative Example was obtained.
- a stability of the tablet strength at a stored condition in the present invention was under examination.
- the obtained tablet in Example 11 in the present invention was examined as the present invention tablet.
- the tablet was under a humidification and drying process to obtain a tablet (Example 1), or the tablet was before a humidification and drying process (Comparative Example 2).
- the condition for stored was at 25° C. (humidity 75%).
- FIG. 1 shows the result of the Experiment.
- FIG. 1 suggested that the preparation in the present invention has a stability of showing little changes in tablet strength under the stored at a moisture condition.
- the tablet strength in the Comparative Examples decreased down to the half of the initial strength by gradient from the time the experiment started. Therefore, the present invention is to provide a more stability against the moisture under the stored.
- the amorphous sugar irreversibly changes to crystalline state. It is stable with respect to the storage humidity.
- the tablet strength can be maintained in a stable manner.
- the production method of the present invention wherein: sugar which is capable of becoming amorphous is dissolved in a medicinally permitted solvent; the solution is sprayed against drug and/or sugar (A); this is coated and/or granulated, a freeze dryer is not necessary.
- the present invention uses the granulator and tablet machine which is a widely accepted part tablet forming process. As a result, this is a valuable method because of its high production effeciency.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Medical Informatics (AREA)
- Computer Security & Cryptography (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- The present invention relates to a quick disintegrating tablet in buccal cavity and production process thereof.
- As for the pharmaceutical dosage forms for oral use, a tablet, a capsule, a granule, a powder and the like are mentioned. However, these dosage forms will have some issues if a patient takes them. For instance, regarding a tablet or a capsule, if the patient is a person of advanced age or a child, there are some cases that they dislike to take the pharmaceutical preparation because it is difficult for them to swallow it or the preparation will stick in the throat or the esophagus of them. In addition, regarding a granule or a powder, in some cases they dislike to take the preparation under the reason that it is difficult for them to swallow it with its remaining in buccal cavity or the reason that they will choke when taking the dosage. Since a compliance to take the pharmaceutical preparation is caused to fall in these cases, it is desired to take easily the pharmaceutical dosage forms, and as a result a disintegrating preparation in buccal cavity has been studied and developed.
- For instance, “Zydis®” has been developed up to the product by R. P. Schere Corp. However, since this preparation is produced by means of lyophilization method, a special manufacturing equipment such as a lyophilization machine is needed. Additionally, this preparation cannot be taken over from the pocket of PTP, “Press Through Package”, under the reason that the tablet strength is small. Furthermore, it is so difficult for the aged to take out the preparation from package that it is not satisfied with the aged.
- Several quick disintegrating tablets in buccal cavity, which is manufactured by means not of lyophilization method but of tableting method, have been reported. For instance, JP 6-218028-A (Corresponding to EP 590,963) discloses a quick disintegrating tablet in buccal cavity which is manufactured by compressing the moisturized powder being mixed with a drug, an excipient, a binder agent and the like using water or the like, afterwards by drying the compression molding. However, it is necessary to have a special tableting machine spraying a fluidizer on the surface of a tablet before compression for the avoidance of the issues at the compression molding. JP 5-271054-A (corresponding to EP 553,777) discloses a quick disintegrating tablet in buccal cavity which is manufactured by compressing the mixture comprising a drug, a sugar and water which is added so much as to moisture said sugar at low compression pressure, and by drying said tablet. WO93/15724 (corresponding to EP 627,218) also discloses a quick disintegrating tablet, which is manufactured by compression with humidification and drying. However, there are some issues in these methods, for instance, a sticking at compressing with moisture.
- In addition, WO95/20380 (corresponding to U.S. Pat. No. 5,576,014) discloses a quick disintegrating tablet in buccal cavity in which the invention has been made by one of the present inventors. This tablet is manufactured by means that a small moldability sugar is granulated by a high moldability sugar and afterwards that these granules are compressed by an ordinal tableting machine. It is thought that there is little trouble in practice by this production method, however, it is necessary to utilize at least two kinds of sugars, if there is a case that there is a restriction to a kind of sugar added, for the counter action between a drug and said sugar (for example, degradation of drug). Therefore, a new quick disintegrating tablet in buccal cavity and production process thereof are desired even at this present, for instance, this tablet is manufactured and to obtain by using one kind of sugars.
- Furthermore, regarding a quick disintegrating tablet in buccal cavity, a patent application or an article discloses the following production process proposed.
- For instance, JP 9-48726-A discloses the method which a composition of the mixture consisting of a drug, a sugar and/or hydrophilic polymer is taken into a molding, and the mixture is compressed at low compression pressure, and the molding is under humidification and drying. However, this method is to improve the strength of tablet surface in particular by moisture of water-soluble polymer, it is possible to introduce the adhesion between tablets.
- A method that a mixture consisting of an amorphous sucrose which is obtained by lyophilization method utilizing a sucrose solution, a drug and mannitol is molded into a tablet by a rotally tableting machine, and the obtained tablet is preserved under the controlled circumstance (at 25° C., 34% RH) is proposed (abstract of the 13th Japan pharmacological pharmacy, p. 113, published Mar. 5, 1998). However, a sugar is an amorphous sugar that is manufactured in further detail by lyophilization method, but sugars outsides sucrose is not described in the article.
- An object of the present invention is to provide a quick disintegrating tablet in buccal cavity and production thereof in which tablets are manufactured with the normal granulator and tablet machine, with tablet strength being heightened to make a more stable formulation.
- The present inventors examined the physiological characterization of sugar in a result to find that a kind of sugars can be changed to an amorphous state when the sugar solution is spray-dried, or the sugar solution is used in granulation as a binding agent. The present inventors further investigated to find that when an amorphous sugar was treated under humidification and drying, the tablet strength was increased by changing the amorphous sugar to a crystal state and that a disintegrating preparation in buccal cavity with the desired tablet strength was obtained and have completed the present invention.
- That is, the present invention relates to a quick disintegrating tablet in the buccal cavity, comprising: a drug, a sugar (A), and an amorphous sugar (B), in which, after forming the tablet, it is humidified and dried. In more detail, the present invention relates to a quick disintegrating tablet in the buccal cavity, comprising: a mixture, comprising: a drug, a sugar (A), and an amorphous sugar (B) which is obtained by dissolving a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent and then removing the solvent from the solution and drying, in which after forming the tablet, it is humidified and then dried. Furthermore, the present invention relates to a quick disintegrating tablet in the buccal cavity, comprising: a mixture, comprising: a drug, a sugar (A), and an amorphous sugar (B) which is obtained by dissolving a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent, and the solution is then sprayed and dried, and after forming the tablets, it is humidified and then dried. In particular, the present invention relates to a quick disintegrating tablet in buccal cavity, comprising: a crystalline sugar capable of becoming amorphous is dissolved in a medicinally permitted solvent; the solution is sprayed on a drug and/or a sugar (A) to coat and/or granulate; and after forming a tablet, it is humidified and dried.
- For the drug to be used in the present invention, there are no particular limitations as long as it is a substance which is used as a pharmaceutical active ingredient. Examples of pharmaceutical active ingredients include: sedative hypnotics, sleep inducers, anti-anxiety drugs, anti-epileptics, anti-depressants, anti-Parkinson drugs, psychoneural drugs, drugs acting on the central nervous system, local anesthetics, skeletal muscle relaxants, autonomic nervous system drugs, anti-fever analgesics anti-inflammatory drugs, anti-convulsants, anti-vertigenous drugs, cardiac drugs, drugs for arrhythmia, diuretics, blood pressure lowering drugs, vasoconstrictors, vasodilators, drugs for circulatory organs, hyperlipidemia drugs, respiratory stimulant, anti-tussive, expectorants, anti-tussive expectorants, bronchodilators, stegnotic, peptic ulcer drugs, stomach digestive drugs, antacids, laxatives, choleretics, drugs for the digestive tract, adrenal hormone drugs, hormone drugs, urinary tract drugs, vitamins, hemostatic drugs, liver drugs, gout treatment drugs, drugs for diabetes, anti-histamines, antibiotics, antibacterial agents, anti-malignant tumor drugs, chemotherapy drugs, multi-purpose cold medicines, tonic medicines, osteoporosis drugs, and the like. There are no particular limitations on the amount of these drugs to be mixed as long as it is the usual effective treatment amount. It should be around 50 weight/weight % or below of the entire tablet, and is preferably 20 weight/weight % or below.
- In case that the present invention is applied to a drug having unpleasant taste, the drug is preferred to be treated in a preferably taste masking method (for instance, WO92/09275).
- In case of that the present invention is performed for a drug desired to be sustained, the drug is preferred to be treated in a preferably sustained-release method (for instance, CA2038400-0), to obtain a particle which is controlled a drug release in a known manner in itself.
- Furthermore, the preparation of the present invention can be also applied to a drug which is needed to be absorbed through a membrane of buccal cavity, since the preparation of the present invention is taken by a patient with disintegrating and dissolving in buccal cavity.
- There are no particular limitations on sugar (A) which is to be used in the present invention as long as it is one which is normally medicinally permitted. Sugar (A) is preferably a sugar or sugar-alcohol which dissolves in the mouth. Examples include lactose, glucose, trehalose, mannitol, erythritol, and the like. Sugar (A) can be one type or two or more types combined. Furthermore, since sugar (A) functions as an excipient which dissolves inside the buccal cavity, the amount of sugar (A) to be added to the quick disintegrating tablet of the present invention is not particularly limited as long as it is an effective amount in order to achieve this function in the quick disintegrating tablet. The amount of sugar (A) to be added is dependent on the amount of drug and can be adjusted appropriately. In other words, when the amount of drug is small, the amount of sugar (A) to be added becomes large, and if the amount of drug is large, the amount of sugar (A) to be added becomes small. The amount of sugar (A) to be added is also dependent on the size of the tablet. The amount of sugar (A) can be adjusted as a ratio with the other excipients.
- The “amorphous sugar (B)” of the present invention signifies a sugar which is medicinally usually permitted and which is amorphous or which is capable of becoming amorphous. For example, an amorphous sugar (B) can be obtained by dissolving a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent such as water and alcohol and the like, and then obtained by removing the solvent from this solution, and drying. There are no particular limitations for the method of removing the solvent as long as it is a method normally implemented in the pharmaceutical manufacturing process. For example, these methods include spray drying method, freeze-drying method, or various granulating methods such as fluidized-bed granulating method, vertical granulating method, tumbling granulating method. From a production standpoint, spray drying method or the various granulating methods are preferred. Among the various granulating methods, a method is preferred wherein: a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent such as water, alcohol, and the like; this is used as a binding agent; this becomes amorphous when it is sprayed by a twin fluid nozzle and coats and/or granulates the drug and/or the sugar. Here, a crystalline sugar capable of becoming amorphous can be dissolved in a medicinally permitted solvent. This solution can be sprayed against the drug and/or the sugar (A), and they can be coated and granulated with an amorphous sugar (B). Examples of amorphous sugars (B) include glucose, lactose, maltose, sorbitol, trehalose, lactitol, fructose, and the like. This amorphous sugar (B) can be of one type or be a combination of two or more types. In the present invention, “amorphous sugar” signifies a sugar which is materially amorphous or which is capable of becoming amorphous. In the process of becoming amorphous, the present invention also includes states where a portion is not amorphous. The amount of amorphous sugar (B) to be added is 2-20 weight/weight % with respect to the previous sugar (A), or 2-20 weight/weight % of the entire tablet.
- As for the advantage for utilizing an amorphous sugar in the present invention, it is easy to increase tablet strength by steps of humidification and drying. Since an amorphous sugar has a low critical moisture, the tablet can be treated at the low moisture level such that an amorphous sugar can adsorb. In addition, the moisture absorbed in a humidification process dissolve a part of surface of sugar particles around, afterwards in a drying process, the tablet strength can increase because of the re-attachment of between sugar particles. On the other hand, to the contrally to the present invention, it is easily to be predicted that the production process has some difficulties, for instance, in case that the sugar consists of sugars in a crystalline state, since the sufficient moisture adsorption will not happen at a low humidification condition, the tablet strength will not increase, in case at a high humidification condition, the adhesion of between tablets will happen and it is easily predictable for actual manufacturing to have difficulty.
- As for the other advantage for utilizing amorphous sugar in the present invention, since a sugar in amorphous state is changed to a crystalline state in a humidification and drying process unreversibly, a dried tablet has a high critical moisture point. As a result, said tablet can maintain a tablet strength against the moisture in the stored condition. Furthermore, since one kind of sugar consisting of crystalline state and amorphous state can manufacture a quick disintegrating tablet in buccal cavity to avoid a restriction for choosing a sugar which do not happen the changes against a drug.
- In the present invention, “forming” signifies forming into a tablet or the like with a pressure equal to or greater than the pressure required to maintain the desired shape. In the forming process, a normal tablet machines can be used. Examples include a single tablet machine or rotary tablet machine.
- In the present invention, “humidifying”, when implemented in combination with the next step of drying, is for increasing the tablet strength, the humidifying conditions being determined by the apparent critical relative humidity of the mixture of a drug, a sugar (A), an amorphous sugar (B), and signifies increasing the humidity to greater than or equal to the critical relative humidity of this mixture. For example, the humidity is 30-100 RH %, and is preferably 50-90 RH %. At this time, temperature is 15-50° C., and preferably 20-40° C. The point of the humidifying process of the present invention is to convert sugar in the amorphous state to a crystalline state, to heighten the tablet strength, and to make the tablet more stable.
- In the present invention, “drying” is implemented in order to remove the water absorbed by the humidifying the amorphous sugar. There are no particular limitations for the drying conditions as long as they are the usual conditions for removing water content. For example, it should be 10-100° C. and is preferably 20-60° C.
- The quick disintegrating tablet in buccal cavity can contain various medicinally permitted excipients such as disintegrating agents, stabilization agents, binding agents, diluting agents, lubricating agents, and the like.
- The production method of the quick disintegrating tablet in buccal cavity is described below.
- For the production method of the present invention, a drug, a sugar (A), and an amorphous sugar (B) are mixed, and after forming the mixture into a tablet, it is humidified and dried. In more detail, in the production method of the present invention, a mixture of the following is formed: a drug, a sugar (A), and an amorphous sugar (B) which is obtainable by dissolving a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent and removing the solvent from the solution and drying, and the tablet is humidified and dried. Furthermore, in the production method of the present invention, a mixture of the following is formed into a tablet: a drug, a sugar (A), and an amorphous sugar (B) which is obtainable by dissolving a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent and spraying and drying the solution, and the tablet is humidified and dried. In particular, in the production method of the present invention, after dissolving a crystalline sugar capable of becoming amorphous in a medicinally permitted solvent and by using a binding agent, the solution is sprayed with a twin fluid nozzle or the like against a drug and/or sugar (A), and after forming a coated product and/or granulated product by coating and/or granulating with an amorphous sugar (B), and after forming a tablet, it is humidified and dried.
- Here, the definitions and the preferred embodiments of the “drug”, “sugar (A), and “amorphous sugar (B)”, as well as the processing steps for the production of quick disintegrating tablet in buccal cavity including “forming”, “humidifying”, and “drying” are described previously.
- Furthermore, as a method for removing the solvent in the present invention, there are no particular limitations as long as it is a method implemented in the normal manufacturing process. For this method, examples include spray drying method, freeze-drying method, or various granulating methods such as fluidized-bed granulating method, vertical granulating method, tumbling granulating method, or the like. From the standpoint of production, the spray drying method or the various granulating methods are preferred. Among these, in the various granulating methods, a method is preferred, wherein: a crystalline sugar capable of becoming amorphous and which is dissolved in a medicinally permitted solvent such as water or alcohol is used as a binding agent, and it becomes amorphous when spraying and coating or granulating with a twin fluid nozzle or the like against drug and/or sugar (A). Here, crystalline sugar which is capable of becoming amorphous can be dissolved in a medicinally permitted silvent, and the solution can be sprayed, and the drug and/or sugar (A) can be coated and granulated with amorphous sugar (B).
- In the production method of the present invention, various medicinally permitted excipients such as disintegrating agents, stabilizing agents, binding agents, diluents, lubricants, or the like can be added to any of the production steps.
-
FIG. 1 shows the stability of the tablet strength in the present invention. In the figure, the horizontal axis represents to time and the vertical axis represents to tablet strength. - The present invention will be explained further by citing examples. The present invention is not limited to these embodiments. Furthermore, regarding the tablet of the present invention, the tablet strength and time of disintegration in the buccal cavity have been evaluated. Because it is considered to have little influence on the evaluation categories, the drug is not always included.
- Mannitol 602 g and lactose 602 g were mixed. This was passed through a sieve (14 mesh). 433 g of glucose solution (15 w/v %) was used as a binding agent for this mixture, and the mixture was granulated in a fluidized-bed granulator. Up to 157 g of the solution was used to coat the above mixture at a spray pressure of 2.5 kg/cm2. Afterwards, it was granulated with spray pressure 1.5 kg/cm2. After drying the granule, peppermint flavor 10 g, stearic acid 12 g, magnesium stearate 10 g were combined. Rotary tablet machine was used to manufacture tablets which were 540 mg per one tablet (tablet hardness 1.4 kp (n=5)). Next, this tablet was humidified and heated for 20 minutes in a thermo-hygrostat at 35° C., 85% RH. Afterwards, it was dried for 15 minutes at 50° C. (humidity 30%), and the tablet of the present invention was achieved. The obtained tablet had hardness of 9.1 kp, and buccal cavity disintegrating time of 17 seconds.
- 175 g of a lactose solution (10 w/v %) was a binding agent for 350 g of lactose (Domo milk Corp.). This was granulated in a fluidized-bed granulator (Ohkawara Seisakusho). Up to 70 g of the previous solution was used to coat the lactose with a spray pressure of 2.5 kg/cm2. Afterwards, it was granulated with a
spray pressure 1 kg/cm2. After drying the granule, 0.5% magnesium stearate was mixed with the granule. Tablets ((phi 10 mm, 10 mmR), tablet hardness 2.3 kp (n=5)) of 300 mg per tablet were produced using a rotary tablet machine. Next, the tablet was stored under heated humidified conditions of 25° C./70% RH for 19 hours, using a thermo-hygrostat (Tabiespec Corp., PR-35C). Afterwards it was dried for 2 hours at 25° C. (humidity 50%). The tablet of the present invention was obtained. The obtained tablet had a hardness of 4.1 kp (n=5) and a buccal cavity disintegration time of 20 seconds. - 378 g of mannitol (Towa Chemical Industry Corp.) was passed through a sieve (20 mesh). Afterwards, this was granulated in a fluidized bed granulator (Ohkawara Seisakusho) with 133 g of an aqueous solution of hydrated crystalline glucose (Nippon Shokuhin Kako Corp.) (15 w/v %) as a binding agent. Up to 50 g of the previous solution was used to coat the mannitol with a spray pressure of 2.5 kg/cm2. Afterwards, it was granulated with a spray pressure 1.5 kg/cm2. At this time, the disappearance of the absorption peak derived from glucose crystals (i.e. glucose is amorphous) was confirmed using a differential scanning calorimeter (DSC for short). 0.5% magnesium stearate was mixed with the granule. Tablets ((phi 8 mm, 9.6 mmR), tablet hardness 2.0 kp (n=5)) of 150 mg per tablet were produced using a rotary tablet machine with a compression pressure of approximately 0.18 ton/punch. Next, the tablet was stored under heated humidified conditions of 25° C./70% RH for 24 hours, using a thermo-hygrostat (Tabiespec Corp., PR-35C). Afterwards it was dried for 2 hours at 30° C. (humidity 40%). The tablet of the present invention was obtained. The obtained tablet had a hardness of 5.4 kp (n=5) and a buccal cavity disintegration time of 20 seconds. Furthermore, by measuring the obtained tablet with DSC, it was confirmed that an absorption peak derived from glucose crystals was present and glucose had crystallized.
- 425.25 g of erythritol (Nikken Chemical Corp.) was passed through a sieve (20 mesh). Afterwards, this was granulated with a fluidized-bed granulator (Ohkawara Seisakusho) with 150 g of maltose (Product name Sanmalt-S, Hayashibara Shoji Corp.) aqueous solution (15 w/v %) as a binding agent. Up to 60 g of the previous solution was used to coat erythritol with a spray pressure of 3.0 kg/cm2. Afterwards, it was granulated with a spray pressure 1.4 kg/cm2. 0.5% magnesium stearate was mixed with the granule. Tablets ((phi 8 mm, 9.6 mmR), tablet hardness 2.0 kp (n=5)) of 150 mg per tablet were produced using a rotary tablet machine with a compression pressure of approximately 0.3 ton/punch. Next, the tablet was stored under heated humidified conditions of 25° C./70% RH for 24 hours, using a thermo-hygrostat (Tabiespec Corp., PR-35C). Afterwards, it was dried for 2 hours at 30° C. (humidity 40%). The tablet of the present invention was obtained. The obtained tablet had a hardness of 7.6 kp (n=5) and a buccal cavity disintegration time of 20 seconds.
- 360 g of mannitol (Towa Chemical Industry) was passed through a sieve (20 mesh). Afterwards, this was granulated in a fluidized-bed granulator (Ohkawara Seisakusho) with 266 g of fructose (Hayashibara Shoji Company) aqueous solution (15 w/v %) as a binding agent. With respect to this granule, it was confirmed by DSC that the absorption peak derided from fructose crystals disappeared and the fructose was amorphous. 0.5% magnesium stearate was mixed with the granule. Tablets ((phi 8 mm, 9.6 mmR), tablet hardness 1.1 kp (n=5)) of 150 mg per tablet were produced using a rotary tablet machine with a compression pressure of approximately 0.06 ton/punch. Next, the tablet was stored under heated humidified conditions of 25° C./70% RH for 12 hours, using a thermo-hygrostat (Tabaiespec Corp., PR-35C). Afterwards, it was dried for 2 hours at 40° C. The tablet of the pressure invention was obtained. The obtained tablet had a hardness of 5.6 kp (n=5) and a buccal cavity disintegration time of 15 seconds.
- 133 g of a lactitol (Towa Chemical Industry Corp., Milhen) aqueous solution (15 w/v %) was a binding agent for 380 g of lactose (Domo milk Corp.). This was granulated with a fluidized-bed granulator (Ohkawara Seisakusho). With respect to this granule, it was confirmed by DSC that the absorption peak derived from lactitol crystals disappeared had the lactitol was amorphous. 0.5% magnesium stearate was mixed with the granule. Tablets ((phi 8 mm, 9.6 mmR), tablet hardness 1.0 kp (n=5)) of 150 mg per tablet were produced using a rotary tablet machine with a compression pressure of approximately 0.1 ton/punch. Next, the tablet was stored under heated humidified conditions of 25° C./70% RH for 12 hours, using a thermo-hygrostat (Tabaiespec Company, PR-35C). Afterwards it was dried for 2 hours at 40° C. The tablet of the present invention was obtained. The obtained tablet had a hardness of 3.7 kp (n=5) and a buccal cavity disintegration time of 15 seconds. Furthermore, by measuring the obtained tablet with DSC, it was confirmed that an absorption peak derived from lactitol crystals was present and lactitol had crystallized.
- 133 g of a trehalose (Hayashibara Shoji) aqueous solution (15 w/v %) was a binding agent for 380 g of hydrated crystalline glucose (Nippon Shokuhin). This was granulated with a fluidized-bed granulator (Ohkawara Seisakusho). 0.5% magnesium stearate was mixed with the granule. Tablets ((phi 8 mm, 9.6 mmR), tablet hardness 1.0 kp (n=5)) of 150 mg per tablet were produced using a rotary tablet machine with a compression pressure of approximately 0.1 ton/punch. Next, the tablet was stored under heated humidified conditions of 25° C./70% RH for 12 hours, using a thermo-hygrostat (Tabaiespec Cor., PR-35C). Afterwards, it was dried for 2 hours at 40° C. The tablet of the present invention was obtained. The obtained tablet had a hardness of 4.3 kp (n=5) and a buccal cavity disintegration time of 20 seconds.
- 40 g famotidine, 336.8 g of erythritol (Nikken Chemical Corp.) were passed through a sieve (20 mesh). Afterwards, this was granulated with a fluidized-bed granulator (Ohkawara Seisakusho) with 100 g of a lactitol (Towa Chemical Industry Corp.) aqueous solution (20 w/v %) as a binding agent. 0.8% calcium stearate was mixed with the granule. Tablets ((phi 8.5 mm, 10.2 mmR), tablet hardness 1.1 kp (n=5)) of 200 mg per tablet were produced using a rotary tablet machine with a compression pressure of approximately 0.14 ton/punch. Next, the tablet was stored under heated humidified conditions of 25° C./80% RH for 12 hours, using a thermo-hygrostat (Tabaiespec Company, PR-35C). Afterwards, it was dried for 2 hours at 30° C. (humidity 40%). The tablet of the present invention was obtained. The obtained tablet had a hardness of 6.2 kp (n=5) and a buccal cavity disintegration time of 20 seconds.
- 100 g acetaminophen, 227 g lactose (Domo milk Company) were passed through a sieve (20 mesh). Afterwards, this was granulated in a fluidized-bed granulator (Ohkawara Seisakusho) with 100 g of a trehalose (Hayashibara Shoji) solution (20 w/v %) as a biding agent. 0.5% magnesium stearate was mixed with the granule. Tablets ((phi 8.5 mm, 10.2 mmR), tablet hardness 1.4 kp (n=5)) of 200 mg per tablet were produced using a rotary tablet machine with a compression pressure of approximately 0.3 ton/punch. Next, the tablet was stored under heated humidified conditions of 25° C./80% RH for 12 hours, using a thermo-hygrostat (Tabaiespec Companu, PR-35C). Afterwards, it was dried for 2 hours at 30° C. (humidity 40%). The tablet of the present invention was obtained. The obtained tablet had a hardness of 3.1 kp (n=5) and a buccal cavity disintegration time of 25 seconds.
- An aqueous solution (25 w/v %) of trehalose (Hayashibara Shoji) was spray dried using a spray dryer (Daiwa Kagaku DL-41). An amorphous trehalose powder was obtained. 5 parts trehalose powder to 95 parts mannitol (Towa Chemical Industry Corp.) were mixed in a mortar. This mixture was made into tablets of one tablet 150 mg ((phi 8 mm, 9.6 mmR), tablet hardness 1.1 kp (n=5)) using an oil press device. Next, the tablet was stored under heated humidified conditions of 25° C./80% RH for 12 hours, using a thermo-hygrostat (Tabaiespec Corp., PR-35C). Afterwards, it was dried for 2 hours at 30° C. (humidity 40%). The tablet of the present invention was obtained. The obtained tablet had a hardness of 6.1 kp (n=5) and a buccal cabity disintegration time of 15 seconds.
- 380 g of mannitol (Towa Chemical Industry) was passed through a sieve (20 mesh). Afterwards, this was granulated in a fluidized-bed granulator (Ohkawara Seisakusho) with 133 g of trehalose (Hayashibara Shoji Company) aqueous solution (15 w/v %) as a binding agent. 0.5% magnesium stearate was mixed with the granule. Tablets ((phi 8 mm, 9.6 mmR), tablet hardness 2.8 kp (n=5)) of 150 mg per tablet were produced using a rotary tablet machine with a compression pressure of approximately 0.4 ton/punch. Next, the tablet was stored under heated humidified conditions of 25° C./70% RH for 12 hours, using a thermo-hygrostat (Tabaiespec Corp., PR-35C). Afterwards, it was dried for 2 hours at 30° C. (humidity 40%). The tablet of the pressure invention was obtained. The obtained tablet had a hardness of 3.9 kp (n=5).
- A sugar (B) is utilized xyritol which does not change into amorphous state in replacing trehalose in Example 11. In particularly, 380 g of a mannitol (Towa Chemical Industry Corp.) was passed through a sieve (20 mesh). Afterwards, this was granulated in a fluidized-bed granulator (Ohkawara Seisakusho) with 130 g of a xyritol (Towa Chemical Industry Corp.) aqueous solution (15 w/v %) as a binding agent. With respect to this granule, it was confirmed by DSC that the absorption peak derided from xyritol crystals remained and the xyritol was in crystalline state. 0.5% magnesium stearate was mixed with the granule. This was granulated with a fluidized-bed granulator (Ohkawara Seisakusho). 0.5% magnesium stearate was mixed with the granule. Tablets ((phi 8 mm, 9.6 mmR), tablet hardness 3.2 kp (n=5)) of 150 mg per tablet were produced using a rotary tablet machine with a compression pressure of approximately 0.8 ton/punch. Next, the tablet was stored under heated humidified conditions of 25° C./70% RH for 12 hours, using a thermo-hygrostat (Tabaiespec Cor., PR-35C). Afterwards, it was dried for 2 hours at 30° C. (humidity 40%). The tablet of the Comparative Example was obtained. The obtained tablet had a hardness of 3.5 kp (n=5). In case of utilizing a sugar which did not change to amorphous state, it was confirmed that a tablet strength did not show a large increasing by a humidification and drying process.
- [Experiment 1]
- A stability of the tablet strength at a stored condition in the present invention was under examination. In the present experiment, the obtained tablet in Example 11 in the present invention was examined as the present invention tablet. To the contrally, regarding the obtained tablet in Comparative Example 1, the tablet was under a humidification and drying process to obtain a tablet (Example 1), or the tablet was before a humidification and drying process (Comparative Example 2). The condition for stored was at 25° C. (
humidity 75%).FIG. 1 shows the result of the Experiment.FIG. 1 suggested that the preparation in the present invention has a stability of showing little changes in tablet strength under the stored at a moisture condition. To the contrally, it was found that the tablet strength in the Comparative Examples decreased down to the half of the initial strength by gradient from the time the experiment started. Therefore, the present invention is to provide a more stability against the moisture under the stored. - After the tablet of the present invention is processed by humidification and drying during the production process, the amorphous sugar irreversibly changes to crystalline state. It is stable with respect to the storage humidity. The tablet strength can be maintained in a stable manner. Furthermore, in the tablet of the present invention, it is possible to produce the sugar and the amorphous sugar of the present invention from one type of sugar. As a result, it is possible to design a tablet which takes into account the stability of the drug. Furthermore, in the tablet of the present invention, it is possible to provide a production method which uses the standard granulator and tablet machine.
- In particular, in the production method of the present invention, wherein: sugar which is capable of becoming amorphous is dissolved in a medicinally permitted solvent; the solution is sprayed against drug and/or sugar (A); this is coated and/or granulated, a freeze dryer is not necessary. The present invention uses the granulator and tablet machine which is a widely accepted part tablet forming process. As a result, this is a valuable method because of its high production effeciency.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/961,875 US20050100598A1 (en) | 1998-03-16 | 2004-10-07 | Quick disintegrating tablet in buccal cavity and production process thereof |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US7876198P | 1998-03-16 | 1998-03-16 | |
| PCT/JP1998/004592 WO1999047124A1 (en) | 1998-03-16 | 1998-10-13 | Tablets quickly disintegrating in the oral cavity and process for producing the same |
| US09/646,249 US6589554B1 (en) | 1998-03-16 | 1998-10-13 | Tablets quickly disintegrating in the oral cavity and process for producing the same |
| US10/453,422 US6803054B2 (en) | 1998-03-16 | 2003-06-02 | Technical field |
| US10/961,875 US20050100598A1 (en) | 1998-03-16 | 2004-10-07 | Quick disintegrating tablet in buccal cavity and production process thereof |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/453,422 Continuation US6803054B2 (en) | 1998-03-16 | 2003-06-02 | Technical field |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050100598A1 true US20050100598A1 (en) | 2005-05-12 |
Family
ID=22146068
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/646,249 Expired - Fee Related US6589554B1 (en) | 1998-03-16 | 1998-10-13 | Tablets quickly disintegrating in the oral cavity and process for producing the same |
| US10/453,422 Expired - Fee Related US6803054B2 (en) | 1998-03-16 | 2003-06-02 | Technical field |
| US10/961,875 Abandoned US20050100598A1 (en) | 1998-03-16 | 2004-10-07 | Quick disintegrating tablet in buccal cavity and production process thereof |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/646,249 Expired - Fee Related US6589554B1 (en) | 1998-03-16 | 1998-10-13 | Tablets quickly disintegrating in the oral cavity and process for producing the same |
| US10/453,422 Expired - Fee Related US6803054B2 (en) | 1998-03-16 | 2003-06-02 | Technical field |
Country Status (13)
| Country | Link |
|---|---|
| US (3) | US6589554B1 (en) |
| EP (1) | EP1072256A4 (en) |
| JP (1) | JP4396033B2 (en) |
| KR (1) | KR100655627B1 (en) |
| CN (1) | CN1196476C (en) |
| AU (1) | AU756488B2 (en) |
| CA (1) | CA2323734C (en) |
| HU (1) | HUP0101282A3 (en) |
| NO (1) | NO20004617D0 (en) |
| NZ (1) | NZ506903A (en) |
| PL (1) | PL207953B1 (en) |
| RU (1) | RU2204996C2 (en) |
| WO (1) | WO1999047124A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040013697A1 (en) * | 2000-05-30 | 2004-01-22 | Gunther Berndl | Self-emulsifying active substance formulation and use of this formulation |
| US20050100599A1 (en) * | 2001-05-10 | 2005-05-12 | Yamanouchi Pharmaceutical Co., Ltd. | Quick disintegrating tablet in buccal cavity and manufacturing method thereof |
| US20070116729A1 (en) * | 2005-11-18 | 2007-05-24 | Palepu Nageswara R | Lyophilization process and products obtained thereby |
| US20110015216A1 (en) * | 2003-08-28 | 2011-01-20 | Abbott Laboratories | Solid Pharmaceutical Dosage Form |
| US8377952B2 (en) | 2003-08-28 | 2013-02-19 | Abbott Laboratories | Solid pharmaceutical dosage formulation |
Families Citing this family (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6589554B1 (en) * | 1998-03-16 | 2003-07-08 | Yamanouchi Pharmaceutical Co., Ltd. | Tablets quickly disintegrating in the oral cavity and process for producing the same |
| GB2353933A (en) * | 1999-09-09 | 2001-03-14 | British Sugar Plc | Compositions comprising trehalose for forming tablets |
| AU7685200A (en) * | 1999-10-12 | 2001-04-23 | Kaken Pharmaceutical Co., Ltd. | Powdery inhalational preparations and process for producing the same |
| US6656492B2 (en) | 2000-06-30 | 2003-12-02 | Yamanouchi Pharmaceutical Co., Ltd. | Quick disintegrating tablet in buccal cavity and manufacturing method thereof |
| WO2002002083A1 (en) | 2000-06-30 | 2002-01-10 | Yamanouchi Pharmaceutical Co., Ltd. | Tablet rapidly disintegrating in mouth and process for producing the same |
| EP1301638B1 (en) * | 2000-07-20 | 2007-09-26 | Campina Nederland Holding B.V. | Method for producing a crystalline tableting additive, additive thus obtained and use thereof |
| WO2002030400A1 (en) * | 2000-10-06 | 2002-04-18 | Takeda Chemical Industries, Ltd. | Solid preparations |
| US6998139B2 (en) * | 2001-03-15 | 2006-02-14 | Astellas Pharma Inc. | Bitterness-reduced intrabuccally quick disintegrating tablets and method for reducing bitterness |
| BR0205509A (en) * | 2001-07-27 | 2003-06-24 | Yamanouchi Pharma Co Ltd | Composition comprising long-release fine particles for rapidly disintegrating oral cavity tablets and method of manufacture thereof |
| CN100337628C (en) * | 2002-08-07 | 2007-09-19 | 王登之 | Nimodipine oral disintegrant tablet for curing dementia and its preparation method |
| WO2004047810A1 (en) * | 2002-11-25 | 2004-06-10 | Purdue Research Foundation | Mannose-based fast dissolving tablets |
| US20080213363A1 (en) * | 2003-01-23 | 2008-09-04 | Singh Nikhilesh N | Methods and compositions for delivering 5-HT3 antagonists across the oral mucosa |
| AU2004238321B2 (en) * | 2003-05-07 | 2009-08-27 | Samyang Biopharmaceuticals Corporation | Highly plastic granules for making fast melting tablets |
| KR101170852B1 (en) * | 2003-09-30 | 2012-08-02 | 유키지루시 메그밀크 가부시키가이샤 | Agent for promoting osteogenesis and/or inhibiting bone resorption |
| KR20050118775A (en) * | 2004-06-15 | 2005-12-20 | 주식회사 태평양 | Orally disintegrating tablet utilizing crystallized solid bridge between sugars and drug particles |
| WO2008032726A1 (en) | 2006-09-15 | 2008-03-20 | Astellas Pharma Inc. | Solid pharmaceutical composition for oral administration comprising optically stable ramosetron |
| US20090060983A1 (en) * | 2007-08-30 | 2009-03-05 | Bunick Frank J | Method And Composition For Making An Orally Disintegrating Dosage Form |
| CA2704209C (en) * | 2007-10-31 | 2017-02-28 | Mcneil-Ppc, Inc. | Orally disintegrative dosage form |
| AU2009268640A1 (en) | 2008-07-08 | 2010-01-14 | Hyperbranch Medical Technology, Inc. | Self-contained medical applicators for multiple component formulations, and methods of use thereof |
| JP5515074B2 (en) * | 2008-12-08 | 2014-06-11 | 杏林製薬株式会社 | Orally rapidly disintegrating tablets |
| JP5549443B2 (en) * | 2009-07-15 | 2014-07-16 | ライオン株式会社 | Orally disintegrating tablet and method for producing the same |
| US8313768B2 (en) | 2009-09-24 | 2012-11-20 | Mcneil-Ppc, Inc. | Manufacture of tablet having immediate release region and sustained release region |
| WO2012039788A1 (en) | 2010-09-22 | 2012-03-29 | Mcneil-Ppc, Inc. | Multi-layered orally disintegrating tablet and the manufacture thereof |
| US20110070286A1 (en) * | 2009-09-24 | 2011-03-24 | Andreas Hugerth | Process for the manufacture of nicotine-comprising chewing gum and nicotine-comprising chewing gum manufactured according to said process |
| US20110318411A1 (en) | 2010-06-24 | 2011-12-29 | Luber Joseph R | Multi-layered orally disintegrating tablet and the manufacture thereof |
| US8343533B2 (en) * | 2009-09-24 | 2013-01-01 | Mcneil-Ppc, Inc. | Manufacture of lozenge product with radiofrequency |
| RU2013118252A (en) | 2010-09-22 | 2014-10-27 | МакНЕЙЛ-ППС, ИНК. | PRODUCTION OF TABLETS FROM POWDER MIXTURE PROCESSED BY RADIATION |
| FR2970400B1 (en) | 2011-01-19 | 2013-02-22 | Eurotab | PROCESS FOR MANUFACTURING MILK COMPACTS |
| KR20130076015A (en) | 2011-12-28 | 2013-07-08 | 주식회사 삼양바이오팜 | Highly robust fast disintegrating tablet and process for manufacturing the same |
| US9901648B2 (en) | 2012-01-27 | 2018-02-27 | The Regents Of The University Of California | Stabilization of biomolecules using sugar polymers |
| US9445971B2 (en) | 2012-05-01 | 2016-09-20 | Johnson & Johnson Consumer Inc. | Method of manufacturing solid dosage form |
| US9511028B2 (en) | 2012-05-01 | 2016-12-06 | Johnson & Johnson Consumer Inc. | Orally disintegrating tablet |
| US9233491B2 (en) | 2012-05-01 | 2016-01-12 | Johnson & Johnson Consumer Inc. | Machine for production of solid dosage forms |
| KR101352689B1 (en) * | 2012-12-31 | 2014-01-17 | (주) 에프엔지리서치 | Microgranule preparations comprising agglumerate units consisting of discontinuous phase and continuous phase |
| CN103721265A (en) * | 2013-12-16 | 2014-04-16 | 扬子江药业集团广州海瑞药业有限公司 | Orally disintegrating composition with desloratadine citrate disodium |
| EP3091966B1 (en) | 2014-01-10 | 2019-07-31 | Johnson & Johnson Consumer Inc. | Process for making tablet using radiofrequency and lossy coated particles |
| CN110225745A (en) | 2016-11-28 | 2019-09-10 | 强生消费者公司 | The method for being used to prepare coated dosage form |
| US10493026B2 (en) | 2017-03-20 | 2019-12-03 | Johnson & Johnson Consumer Inc. | Process for making tablet using radiofrequency and lossy coated particles |
| JP2023125300A (en) * | 2022-02-28 | 2023-09-07 | アルフレッサファーマ株式会社 | Molded tablets and methods for producing wet tablets |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5119017B2 (en) * | 1972-04-12 | 1976-06-14 | ||
| PH20837A (en) * | 1983-04-29 | 1987-05-08 | Pennwalt Corp | Rapid dissolving uniform drug compositon |
| DE3506276C1 (en) * | 1985-02-22 | 1986-04-24 | Meggle Milchindustrie Gmbh & Co Kg, 8094 Reitmehring | Direct tableting |
| JP2807346B2 (en) * | 1991-12-24 | 1998-10-08 | 山之内製薬株式会社 | Orally disintegrating preparation and production method thereof |
| PT745382E (en) * | 1994-01-31 | 2004-04-30 | Yamanouchi Pharma Co Ltd | COMPRESSION-FORMED FORM WITH INTRA-ORAL SOLUBILITY AND PROCESS FOR ITS PRODUCTION |
| US5576014A (en) * | 1994-01-31 | 1996-11-19 | Yamanouchi Pharmaceutical Co., Ltd | Intrabuccally dissolving compressed moldings and production process thereof |
| JPH0948726A (en) | 1995-08-07 | 1997-02-18 | Tanabe Seiyaku Co Ltd | Orally rapidly disintegrating preparation and method for producing the same |
| US6589554B1 (en) * | 1998-03-16 | 2003-07-08 | Yamanouchi Pharmaceutical Co., Ltd. | Tablets quickly disintegrating in the oral cavity and process for producing the same |
-
1998
- 1998-10-13 US US09/646,249 patent/US6589554B1/en not_active Expired - Fee Related
- 1998-10-13 HU HU0101282A patent/HUP0101282A3/en unknown
- 1998-10-13 CA CA002323734A patent/CA2323734C/en not_active Expired - Fee Related
- 1998-10-13 JP JP2000536364A patent/JP4396033B2/en not_active Expired - Fee Related
- 1998-10-13 WO PCT/JP1998/004592 patent/WO1999047124A1/en not_active Ceased
- 1998-10-13 EP EP98947827A patent/EP1072256A4/en not_active Withdrawn
- 1998-10-13 PL PL342928A patent/PL207953B1/en not_active IP Right Cessation
- 1998-10-13 KR KR1020007010196A patent/KR100655627B1/en not_active Expired - Fee Related
- 1998-10-13 NZ NZ506903A patent/NZ506903A/en not_active IP Right Cessation
- 1998-10-13 CN CNB988138980A patent/CN1196476C/en not_active Expired - Fee Related
- 1998-10-13 RU RU2000123778/14A patent/RU2204996C2/en not_active IP Right Cessation
- 1998-10-13 AU AU94596/98A patent/AU756488B2/en not_active Ceased
-
2000
- 2000-09-15 NO NO20004617A patent/NO20004617D0/en not_active Application Discontinuation
-
2003
- 2003-06-02 US US10/453,422 patent/US6803054B2/en not_active Expired - Fee Related
-
2004
- 2004-10-07 US US10/961,875 patent/US20050100598A1/en not_active Abandoned
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040013697A1 (en) * | 2000-05-30 | 2004-01-22 | Gunther Berndl | Self-emulsifying active substance formulation and use of this formulation |
| US8470347B2 (en) | 2000-05-30 | 2013-06-25 | AbbVie Deutschland GmbH and Co KG | Self-emulsifying active substance formulation and use of this formulation |
| US20050100599A1 (en) * | 2001-05-10 | 2005-05-12 | Yamanouchi Pharmaceutical Co., Ltd. | Quick disintegrating tablet in buccal cavity and manufacturing method thereof |
| US20110015216A1 (en) * | 2003-08-28 | 2011-01-20 | Abbott Laboratories | Solid Pharmaceutical Dosage Form |
| US8268349B2 (en) | 2003-08-28 | 2012-09-18 | Abbott Laboratories | Solid pharmaceutical dosage form |
| US8309613B2 (en) | 2003-08-28 | 2012-11-13 | Abbvie Inc. | Solid pharmaceutical dosage form |
| US8333990B2 (en) | 2003-08-28 | 2012-12-18 | Abbott Laboratories | Solid pharmaceutical dosage form |
| US8377952B2 (en) | 2003-08-28 | 2013-02-19 | Abbott Laboratories | Solid pharmaceutical dosage formulation |
| US8399015B2 (en) | 2003-08-28 | 2013-03-19 | Abbvie Inc. | Solid pharmaceutical dosage form |
| US8691878B2 (en) | 2003-08-28 | 2014-04-08 | Abbvie Inc. | Solid pharmaceutical dosage form |
| US20070116729A1 (en) * | 2005-11-18 | 2007-05-24 | Palepu Nageswara R | Lyophilization process and products obtained thereby |
| US8158152B2 (en) | 2005-11-18 | 2012-04-17 | Scidose Llc | Lyophilization process and products obtained thereby |
Also Published As
| Publication number | Publication date |
|---|---|
| US20030203022A1 (en) | 2003-10-30 |
| EP1072256A4 (en) | 2004-03-31 |
| KR20010041894A (en) | 2001-05-25 |
| PL207953B1 (en) | 2011-02-28 |
| PL342928A1 (en) | 2001-07-16 |
| KR100655627B1 (en) | 2006-12-12 |
| AU756488B2 (en) | 2003-01-16 |
| CN1196476C (en) | 2005-04-13 |
| HUP0101282A1 (en) | 2001-08-28 |
| RU2204996C2 (en) | 2003-05-27 |
| NZ506903A (en) | 2003-01-31 |
| CA2323734C (en) | 2007-04-17 |
| CA2323734A1 (en) | 1999-09-23 |
| CN1286631A (en) | 2001-03-07 |
| JP4396033B2 (en) | 2010-01-13 |
| EP1072256A1 (en) | 2001-01-31 |
| HUP0101282A3 (en) | 2005-03-29 |
| US6589554B1 (en) | 2003-07-08 |
| NO20004617L (en) | 2000-09-15 |
| NO20004617D0 (en) | 2000-09-15 |
| WO1999047124A1 (en) | 1999-09-23 |
| AU9459698A (en) | 1999-10-11 |
| US6803054B2 (en) | 2004-10-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6589554B1 (en) | Tablets quickly disintegrating in the oral cavity and process for producing the same | |
| JPWO1999047124A1 (en) | Orally rapidly disintegrating tablets and their manufacturing method | |
| EP1145711B1 (en) | Flash-melt oral dosage formulation | |
| EP0914818B1 (en) | Intraorally rapidly disintegrable tablet | |
| CA2490365A1 (en) | Quick dissolve compositions and tablets based thereon | |
| KR20060079257A (en) | Intraoral rapid disintegrating tablets and preparation method thereof | |
| US20070154549A1 (en) | Multiparticulate formulations for oral delivery | |
| US20040258748A1 (en) | Process for the preparation of fast dissolving dosage form | |
| JPWO2002002083A1 (en) | Orally rapidly disintegrating tablets and their manufacturing method | |
| US6413541B1 (en) | Disintegrating tablet in oral cavity and production thereof | |
| KR20040047588A (en) | Medicinal compositions | |
| MXPA00009104A (en) | Tablets quickly disintegrating in the oral cavity and process for producing the same | |
| JPH11349475A (en) | Orally disintegrating tablet and method for producing the same | |
| JPH1112162A (en) | Oral quick disintegrating tablet and method for producing the same | |
| HK1074009A (en) | Flash-melt oral dosage formulation | |
| KR20040046575A (en) | The formulation and preparation of the tablet, granule, powder for fast disintegration and dissolution | |
| GIRI et al. | International Journal of Pharmacy and Pharmaceutical Sciences |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ASTELLAS PHARMA TECHNOLOGIES, INC.,OKLAHOMA Free format text: CHANGE OF NAME;ASSIGNOR:YAMANOUCHI PHARMA TECHNOLOGIES, INC.;REEL/FRAME:019116/0039 Effective date: 20050401 Owner name: ASTELLAS PHARMA TECHNOLOGIES, INC., OKLAHOMA Free format text: CHANGE OF NAME;ASSIGNOR:YAMANOUCHI PHARMA TECHNOLOGIES, INC.;REEL/FRAME:019116/0039 Effective date: 20050401 |
|
| AS | Assignment |
Owner name: ASTELLAS PHARMA INC.,JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASTELLAS PHARMA TECHNOLOGIES, INC.;REEL/FRAME:019407/0775 Effective date: 20070427 Owner name: ASTELLAS PHARMA INC., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASTELLAS PHARMA TECHNOLOGIES, INC.;REEL/FRAME:019407/0775 Effective date: 20070427 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |