[go: up one dir, main page]

US20050098295A1 - Universal slide assembly for molding and casting systems - Google Patents

Universal slide assembly for molding and casting systems Download PDF

Info

Publication number
US20050098295A1
US20050098295A1 US10/646,094 US64609403A US2005098295A1 US 20050098295 A1 US20050098295 A1 US 20050098295A1 US 64609403 A US64609403 A US 64609403A US 2005098295 A1 US2005098295 A1 US 2005098295A1
Authority
US
United States
Prior art keywords
slide
base
cam lever
die block
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/646,094
Other languages
English (en)
Inventor
Richard Dubay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/646,094 priority Critical patent/US20050098295A1/en
Priority to PCT/US2003/030336 priority patent/WO2004028770A2/fr
Priority to AU2003276962A priority patent/AU2003276962A1/en
Publication of US20050098295A1 publication Critical patent/US20050098295A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/26Mechanisms or devices for locking or opening dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/24Accessories for locating and holding cores or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/33Moulds having transversely, e.g. radially, movable mould parts
    • B29C45/332Mountings or guides therefor; Drives therefor

Definitions

  • the present invention relates to injection molding and die casting processes.
  • the present invention relates to injection molding and die casting slide systems.
  • Injection molding and die casting are manufacturing processes for producing a multitude of shapes and designs for plastic and metal products. Such processes generally incorporate two-component systems.
  • the two components are the fixed-die half and the movable-die half.
  • the fixed-die half is secured to the apparatus and contains a portion of a core or core where plastic or molten metal is injected into for curing or solidification.
  • the movable-die half is capable of moving, and contains the other portion of the core where plastic or molten metal is injected into for curing or solidification.
  • the movable-die half moves towards and clamps to the fixed-die half so that the core is completely enclosed by the two halves. Once the core is sealed, the plastic or molten metal is injected to cure or solidify. After the cycle is completed, the movable-die half retracts away from the fixed-die half allowing removal of the molding or casting.
  • Such two-component systems may also incorporate slides mounted to the movable-die half to create key aspects of the moldings or castings that the movable-die half and the fixed-die half are incapable of producing.
  • a slide may contain a pin that extends into the core when the slide is positioned at the core. When the injected material cures or solidifies, the slide retracts, pulling the pin out of the molding or casting. This results in a hole within the molding or casting.
  • multiple slides can be incorporated.
  • the slides are positioned around a central core of the movable-die half.
  • the slides move forward and create a perimeter around the core.
  • the movable-die half also moves towards and clamps to the fixed-die half so that the core is completely enclosed by the two halves and the slides.
  • the plastic or molten metal is injected to cure or solidify.
  • the movable-die half and the slides retract away from the core allowing removal of the molding or casting.
  • slides for an injection molding or die casting apparatus have to be individually tailored to the fixed-die half or movable-die half where the slide is mounted.
  • the pertinent fixed-die half or movable-die half contains tracks that a particular slide must fit into.
  • Such individualization of the slides is expensive and time consuming. This can be especially troublesome if a particular slide is defective or damaged during molding or casting cycles.
  • Another identical slide must be obtained and installed before the process can continue.
  • slides must be carefully installed into the tracks of the pertinent fixed-die halves or movable-die halves in order to ensure proper alignment when positioned at the core. This is also very time consuming and tedious, taking up time that otherwise could be used for operating the system.
  • there remains a need in the industry for a slide system that is easy to install and replace, while also being accurate and reliable in use with molding or casting cycles.
  • the present invention is a universal slide assembly for a molding or casting systems used to introduce complex designs to moldings and castings.
  • the present invention comprises a base, a slide inserted onto the base such that the slide is mobile relative to the base, and a cam lever that is insertable through the slide and the base.
  • the base is directly insertable into a movable-die half or fixed-die half for immediate use without requiring the slide to be individually designed or adapted to a particular movable-die half or fixed-die half.
  • the cam lever also is capable of moving the slide relative to the base through a cam action.
  • the cam lever prevents the slide from moving relative to the base.
  • the cam lever moves the slide relative to the base through a cam action.
  • the cam lever is capable of moving the slide towards and away from a core without the use of hydraulic power. Therefore, the present invention is a universal design that is cost effective, easy to install, and easy to operate with injection molding or die casting processes.
  • FIG. 1 is an exploded perspective view of the present invention positioned above a die block.
  • FIG. 2 is a perspective view of the present invention mounted to a die block.
  • FIG. 3 is a perspective view of the present invention.
  • FIG. 4 is a side view of the present invention.
  • FIG. 5 is a front view of the present invention.
  • FIG. 6 is an exploded view of the present invention.
  • FIG. 7 a is a perspective view of a base of the present invention.
  • FIG. 7 b is a top view of the base of the present invention.
  • FIG. 8 is a perspective view of an alternative design for the base of the present invention.
  • FIG. 9 a is a perspective view of a slide of the present invention.
  • FIG. 9 b is a cross sectional view of the slide of the present invention along section 9 b - 9 b of FIG. 9 a.
  • FIG. 9 c is a bottom view of the slide of the present invention.
  • FIG. 10 a is a perspective view of a cam lever of the present invention.
  • FIG. 10 b is a top view of the cam lever of the present invention.
  • FIG. 10 c is a right side view of the cam lever of the present invention.
  • FIG. 10 d is a front view of the cam lever of the present invention.
  • FIG. 11 is a perspective view of an alternative embodiment of the present invention.
  • FIG. 12 is a side view of the alternative embodiment of the present invention.
  • FIG. 13 is a front view of the alternative embodiment of the present invention.
  • FIG. 14 is an exploded view of the alternative embodiment of the present invention.
  • FIG. 15 a is a perspective view of a base of the alternative embodiment of the present invention.
  • FIG. 15 b is a top view of the base of the alternative embodiment of the present invention.
  • FIG. 16 is a perspective view of the alternative design for the base of the alternative embodiment of the present invention.
  • FIG. 17 a is a perspective view of a cam lever of the alternative embodiment of the present invention.
  • FIG. 17 b is a top view of the cam lever of the alternative embodiment of the present invention.
  • FIG. 17 c is a right side view of the cam lever of the alternative embodiment of the present invention.
  • FIG. 17 d is a front view of the cam lever of the alternative embodiment of the present invention.
  • FIG. 18 a is a perspective view of an alternative design for the cam lever of the alternative embodiment of the present invention.
  • FIG. 18 b is a top view of an alternative design for the cam lever of the alternative embodiment of the present invention.
  • FIG. 18 c is a right side view of an alternative design for the cam lever of the alternative embodiment of the present invention.
  • FIG. 18 d is a front view of an alternative design for the cam lever of the alternative embodiment of the present invention.
  • FIG. 19 is a perspective view of a second alternative embodiment of the present invention.
  • FIG. 20 is a perspective view of a third alternative embodiment of the present invention.
  • FIGS. 1 and 2 are perspective views of universal slide assembly 22 and die block D, illustrating the ease of use and installation of universal slide assembly 22 .
  • FIG. 1 is an exploded view that illustrates universal slide assembly 22 positioned above die block D.
  • FIG. 2 illustrates universal slide assembly 22 mounted to die block D for use with injection molding or die casting processes.
  • Universal slide assembly 22 is a universal design that includes base 24 , slide 26 , cam lever 28 , and pin 30 .
  • Die block D in FIGS. 1 and 2 is a movable-die half and includes mounting slot M and core C.
  • Mounting slot M includes block slot B.
  • Core C is a portion of the core or cavity in die block D where plastic or molten metal is injected for curing or solidification.
  • FIGS. 1 and 2 also incorporate a fixed-die half (not shown), to which die block D is clamped, enclosing core C to create the complete molding or casting core.
  • die block D may be a fixed-die half and a movable-die half would clamp to die block D, enclosing core C to create the complete molding or casting core.
  • references to a movable-die half are only intended to be illustrative, and the slide assembly of the present invention is capable of being mounted to either a movable-die half and a fixed-die half.
  • Mounting location M is an opening in die block D to core C, and is the location where base 24 securely mounts, rendering base 24 immobile.
  • Slide 26 inserts into base 24 so that slide 26 is mobile along base 24 , for sliding towards, and retracting away from core C.
  • general references to slide 26 moving forward relate to slide 26 sliding relative to base 24 in a direction towards a core of a molding or casting apparatus.
  • general references to slide 26 retracting relate to slide 26 sliding relative to base 24 in a direction away from the core of the molding or casting apparatus.
  • cam lever 28 is insertable from above through slide 26 and base 24 , and into block slot B of die block D.
  • cam lever 28 securely locks slide 26 with base 24 , preventing slide 26 from retracting away from core C during a molding or casting cycle.
  • Pin 30 is connected to a front portion of slide 26 and extends into core C when slide 26 is positioned at core C. As slide 26 retracts, pin 30 is pulled completely out of the solidified molding or casting, resulting in a hole within the molding or casting.
  • Slide 26 may alternatively contain other conventional instruments and designs, as is known in the art.
  • base 24 precludes the need to individually design or adapt slide 26 to be compatible with die block D.
  • Slide 26 is completely entrained and mobile from within base 24 , allowing universal slide assembly 22 to be installed into many different movable-die halves without requiring slide 26 to be individually designed or adapted to a particular mounting location 102 . As such, universal slide assembly 22 may be installed, exchanged, and replaced with minimal time and expense.
  • FIGS. 3-5 are a perspective view, a side view, and a front view of universal slide assembly 22 and include base 24 , slide 26 , cam lever 28 , face plate 32 , coupling 34 , front lead bore 36 , rear leads bore 38 , leads 40 , and leads 42 .
  • Base 24 is mountable to a movable-die half of an injection molding or die casting apparatus, such as die block D. Slide 26 inserts into base 24 allowing slide 26 to move forward and retract along base 24 , precluding the need for slide 26 to be individually compatible with the movable-die half.
  • Face plate 32 is attached to the front end of slide 26 and is the portion of universal slide assembly 22 that is exposed to the molding core. Face plate 32 may contain mold patterns or instruments that affect the shaping of the molds. An example of this is pin 30 , as illustrated in FIGS. 1 and 2 . Pin 30 may be secured to face plate 32 through conventional means and allows universal slide assembly 22 to create a hole within the molding or casting. The use of different patterns and instruments accordingly increases the flexibility of universal slide assembly 22 .
  • Coupling 34 is attached to the rear end of slide 26 , the opposite end of face plate 32 , providing a connection between slide 26 and a hydraulic actuator (not shown).
  • slide 26 When an injection molding or die casting product is being created, slide 26 must be positioned so that face plate 32 is set forward against the injection molding or die casting core, such as core C.
  • coupling 34 allows hydraulic power from the hydraulic actuator move slide 26 forward against the injection molding or die casting core.
  • Coupling 34 also allows the hydraulic actuator to hold slide 26 in position while an injection molding or die casting product is being created by applying a constant pressure to slide 26 . This prevents face plate 32 from pulling away and opening the molding core while an injection molding or die casting product is being created.
  • the hydraulic actuator releases the hydraulic pressure to allow slide 26 to retract along base 24 .
  • coupling 34 provides a connection for a first system of moving slide 26 relative to base 24 for use with molding or casting operations.
  • Front lead bore 36 , rear leads bore 38 , leads 40 , and leads 42 provide a magnetic proximity switch monitoring circuit, defining the range of motion for slide 26 .
  • Leads 40 and 42 are each a pair of separate wires connected to front lead bore 36 and rear leads bore 38 , respectively, for monitoring and limiting the position of slide 26 along base 24 .
  • leads 40 provide a signal to the source of hydraulic pressure to prevent further forward progression of slide 26 along base 24 .
  • leads 42 provide a signal to the source of hydraulic pressure to prevent further retraction progression of slide 26 along base 24 .
  • Leads 40 and 42 may also provide alternative signals for other components of the molding or casting system.
  • leads 40 may signal the injector to inject plastic or molten metal into the core.
  • Leads 42 may signal the ejection pin to eject a finished molding or casting.
  • leads 40 and 42 may provide signals to instruct the movable-die half to open and close against the fixed-die half.
  • An additional advantage of incorporating leads 40 and 42 is that universal slide assembly 22 monitors the range of slide 26 via electrical means. This prevents problems associated with mechanical action, such as springs, which are affected by being coated and gummed up with excess plastics or metal.
  • Cam lever 28 is removably insertable into slide 26 and through base 24 from above, and includes head 44 and tail 46 .
  • head 44 of cam lever 28 extends vertically from the top of slide 12
  • tail 46 of cam lever 28 extends through slide 26 and base 24 , and into block slot B of die block D. This arrangement mechanically locks slide 26 to base 24 , preventing slide 26 from moving forward or retracting, and provides an additional locking system to the hydraulic locking from coupling 34 .
  • Cam lever 28 also provides a second means for moving slide 26 relative to base 24 via cam action.
  • base 24 is mounted to a movable-die half of the apparatus (not shown), and head 44 of cam lever 28 is directly attached to a fixed-die half of the apparatus (not shown).
  • head 44 is positioned at an angle to tail 46 .
  • cam lever 28 raises, the angle of tail 46 mechanically forces slide 26 to retract along base 24 . This in turn pulls face plate 32 away from the molding core allowing the mold to be released.
  • cam lever 28 is reinserted through slide 26 and base 24 .
  • the angle of tail 46 correspondingly forces slide 26 to move forward along base 24 , repositioning face plate 32 at the molding core.
  • cam lever 28 allows slide 26 to move forward or retract along base 24 without requiring hydraulic pressure from coupling 34 .
  • universal slide assembly 22 incorporates the capability of moving slide 26 relative to base 24 through either hydraulic pressure, cam action, or both. This illustrates the versatility of universal slide assembly 22 .
  • FIG. 6 is an exploded view of universal slide assembly 22 of FIGS. 3-5 , further including guide pins 48 , magnet 50 , magnet holder 52 , face plate bolts 54 , front lead holder 56 , rear leads holder 58 , and tracks 60 .
  • Tracks 60 are grooves within base 24 upon which slide 26 is inserted and moves along. As such, slide 26 is completely entrained and mobile from within base 24 .
  • Slide 26 includes pin bores 62 , front bores 64 , rear bores 66 , slide bore 68 , and slot 70 .
  • Guide pins 48 insert into slide 26 at pin bores 62 for aligning face plate 32 with the front portion of slide 26 .
  • Face plate 32 is secured to slide 26 via face plate bolts 54 , which are inserted from the rear of slide 26 , through rear bores 66 , and into front bores 64 and face plate 32 .
  • Cam lever 28 is removably insertable into slot 70 of slide 26 for mechanically locking slide 26 to base 24 . This prevents face plate 32 from retracting during a molding or casting cycle.
  • Coupler 74 , coupling bolt 72 , rod end 76 , and jam nut 78 are connected to form coupling 34 .
  • Coupling bolt 72 inserts through coupler 74 and into the rear end of slide 26 .
  • a first end of rod end 76 also inserts into coupler 74 for a secure connection.
  • jam nut 78 attaches to the other end of rod end 76 .
  • Coupling 34 provides a connection between slide 26 and a hydraulic actuator for allowing slide 26 to be hydraulically propelled and retracted along base 24 .
  • Leads 40 and 42 are each a pair of separate wires for monitoring and limiting the position of slide 26 along base 24 , as previously discussed. Leads 40 and 42 respectively end in switches 40 a and 42 a , which are magnetically actuated switches. Front lead holder 56 is inserted into base 24 at front lead bore 36 for connecting leads 40 and switch 40 a to base 12 . Similarly, rear leads holder 58 is inserted into base 24 at rear leads bore 38 for connecting leads 42 and switch 42 a to base 12 . Monitoring is performed through a magnetic proximity switch system, as is known in the art, where switches 40 a and 42 a are closed by the presence of magnet 50 , without physically contacting magnet 50 .
  • Magnet 50 is connected to slide 26 via holder magnet 27 , which is retained in slide bore 68 .
  • switch 40 a closes, signaling the source of hydraulic pressure to prevent further forward progression of slide 26 along base 24 .
  • switch 42 a closes, signaling the source of hydraulic pressure to prevent further retraction progression of slide 26 along base 24 .
  • leads 40 and leads 42 may provide signals for other components of the molding or casting system. As such, leads 40 and 42 allow for monitoring and limiting the position of slide 26 along base 24 .
  • universal slide assembly 22 is adaptable for use with many different molding and casting processes. This reduces time and costs in installing, exchanging and replacing universal slide assembly 22 .
  • FIG. 7 a is a perspective view of base 24 of universal slide assembly 22 , as described in FIGS. 3-6 .
  • FIG. 7 a further includes tail slot 80 through which tail 46 of cam lever 28 extends when inserted into slide 26 . This mechanically locks slide 26 to base 24 and prevents undesirable retractions of face plate 32 from the core of the molding or casting apparatus, which could otherwise ruin the molds and die casts.
  • FIG. 7 b is a top view of base 24 of universal slide assembly 22 , as described in FIGS. 3-6 , and 7 a , which further includes mounting bores 82 , illustrated by phantom lines, which are holes extending through the bottom surface of base 24 .
  • Base 24 is mountable to a movable-die half of an injection molding or die casting apparatus via bolts insertable through the movable-die half and into mounting bores 82 from underneath. While mounting bores 82 are illustrated in FIG. 7 b as four per side, the present invention is not intended to be limited to this number, and other numbers of mounting bores 82 may be used to secure base 24 to a movable-die half. With the use of mounting bores 82 , base 24 is capable of being securely attached to a movable-die half with minimal time and effort.
  • FIG. 8 is a perspective view of an alternative embodiment of base 24 of universal slide assembly 22 , as described in FIGS. 3-6 and 7 a .
  • Base 24 as illustrated in FIG. 8 , further includes top-mounting bores 84 , which provide an alternative mounting means for base 24 , from that described in FIG. 7 b .
  • Base 24 as illustrated in FIG. 8 , is mountable to a movable-die half of an injection molding or die casting apparatus via bolts insertable from above. The bolts are inserted through top-mounting bores 84 , which extend vertically through base 24 , and into the movable-die half. This is in contrast to mounting bores 82 , which require the bolts to be inserted from underneath. This further increases the versatility of universal slide assembly 22 by providing an alternative system for securely mounting base 24 to the movable-die half.
  • FIG. 9 a is a perspective view of slide 26 of universal slide assembly 22 of FIGS. 3-6 , which further includes rails 86 , which are extensions located at the lateral edges of slide 26 , and are the portions of slide 26 that insert into tracks 60 of base 24 .
  • rails 86 are extensions located at the lateral edges of slide 26 , and are the portions of slide 26 that insert into tracks 60 of base 24 .
  • slide 26 is capable of moving forward and retracting along base 24 .
  • base 24 is mountable to a movable-die half, slide 26 is not required to be individually designed or adapted to be compatible with the movable-die half. This allows universal slide assembly 22 the benefit of being installed into many different movable-die halves without requiring slide 26 to be individually designed or adapted to a particular movable-die half.
  • FIG. 9 b is a cross sectional view of slide 26 of universal slide assembly 22 along section 9 b - 9 b of FIG. 9 a , which further includes coupling bore 88 , the portion of slide 26 where coupling bolt 72 of coupling 34 inserts into slide 26 .
  • coupling 34 When attached to slide 26 , coupling 34 provides a connection between slide 26 and a hydraulic actuator (not shown) for allowing slide 26 to hydraulically move forward and retract along base 24 .
  • slot 70 is channeled at an angle within slide 26 . This angle corresponds to the angle of tail 46 of cam lever 28 .
  • tail 46 mechanically forces slide 26 to retract along base 24 , pulling face plate 32 away from the core of the movable-die half.
  • tail 46 mechanically forces slide 26 to move forward along base 24 , pushing face plate 32 towards the core of the movable-die half. This allows cam lever 28 to move slide 26 relative to base 24 through cam action.
  • FIG. 9 b further illustrates the locations of front bores 64 and rear bores 66 .
  • Rear bores 66 extend between the rear portion of slide 26 and slot 70
  • front bores 64 extend between slot 70 and the front portion of slide 26 .
  • face plate 32 is secured to slide 26 via face plate bolts 54 , which are inserted through rear bores 66 and into front bores 64 .
  • face plate bolts 54 are retained solely within front bores 64 , and extend out of the front of slide 26 for insertion into face plate 32 .
  • Rear bores 66 are access conduits for inserting face plate bolts 54 into front bores 64 .
  • the use of face plate bolts 54 allows slide 26 to connect with a multitude of different face plates 14 , which may include instruments and designs, such as pin 30 . This again illustrates the broad range of applications available with universal slide assembly 22 .
  • FIG. 9 c is a bottom view of slide 26 of universal slide assembly 22 , as described in FIGS. 3-6 , 9 a , and 9 b .
  • the portion of slot 70 at the bottom surface of slide 26 illustrated in FIG. 9 c , lines up with slot 48 of base 24 . This allows tail 46 of cam lever 28 to extend through both slot 70 of slide 26 and slot 34 of base 12 , preventing slide 26 from pulling away from the core.
  • FIGS. 10 a - 10 d are respectively a perspective view, a top view, a right side view, and a front view illustration of cam lever 28 of universal slide assembly 22 , and include head 44 , tail 46 , and fixed-die half bore 90 .
  • head 44 is positioned at an angle to tail 46 . This allows cam lever 28 to function as a lever to move slide 26 relative to base 24 via cam action.
  • universal slide assembly 22 is installed into a movable-die half, head 44 is directly attached to a fixed-die half of the apparatus via fixed-die half bore 90 .
  • a bolt is inserted through the fixed-die half and into fixed-die half bore 90 of head 44 , securely fastening cam lever 28 to the fixed-die half.
  • cam lever 28 When the movable-die half retracts from the fixed-die half, cam lever 28 is pulled out of base 24 and through slide 26 . As cam lever 28 raises, the angle of tail 46 mechanically forces slide 26 to retract along base 24 , pulling face plate 32 away from the molding core allowing the mold to be released. Cam lever 28 allows slide 26 to move forward or retract along base 24 without requiring hydraulic pressure from coupling 34 , providing a low-cost means of operating a slide assembly with an injection molding or die casting apparatus.
  • FIGS. 11-14 are a perspective view, a side view, and a front view, and an exploded view of universal slide assembly 122 , encompassing an alternative design of universal slide assembly 22 .
  • universal slide assembly 122 includes slide 26 , face plate 32 , coupling 34 , leads 40 , switch 40 a , leads 42 , switch 42 a , guide pins 48 , magnet 50 , magnet holder 52 , face plate bolts 54 , front lead holder 56 , rear leads holder 58 , and slide bore 68 , which connect and interact as described above in FIGS. 3-6 .
  • Universal slide assembly 122 further includes base 124 and cam lever 128 .
  • Base 124 includes front coupler bore 136 , rear coupler bore 138 , and tracks 160 , which are identical to front lead bore 36 , rear leads bore 38 , and tracks 60 .
  • cam lever 128 includes head 144 and tail 146 .
  • Head 144 of cam lever 128 is identical to head 44 of cam lever 28 .
  • tail 146 of cam lever 128 is considerably shorter than tail 46 of cam lever 28 , only extending down far enough to sit within slot 70 of slide 26 .
  • cam lever 128 does not provide a mechanical locking between slide 26 to base 124 .
  • cam lever 128 still provides a cam action means for moving slide 26 relative to base 124 for use with molding or casting operations.
  • base 124 is mounted to a movable-die half of the apparatus (not shown), and head 144 is directly attached to a fixed-die half of the apparatus (not shown).
  • cam lever 128 is pulled out through slide 26 .
  • the angle of tail 146 mechanically forces slide 26 to retract along base 124 . This in turn pulls face plate 32 away from the molding core allowing the mold to be released.
  • cam lever 128 is reinserted into slide 26 .
  • the angle of tail 146 correspondingly forces slide 26 to move forward along base 124 , repositioning face plate 32 at the molding core.
  • the cam action retains slide 26 in the forward position despite the fact that slide 26 and base 124 are not mechanically locked. Accordingly, the length of tail 146 of cam lever 128 defines the distance slide 26 is capable of moving along base 124 via cam action.
  • Cam lever 128 provides the capability of mounting universal slide assembly 122 to a movable-die half that would otherwise prevent the use of cam lever 28 . As illustrated in FIG. 4 , tail 46 of cam lever 28 extends considerably below base 24 . If base 24 is mounted on a movable-die half not allowing cam lever 28 to extend below base 24 (i.e., no block slot B), cam lever 28 is unusable. Cam lever 128 , however, having a shorter tail 146 , would be usable, and could move and retain slide 26 relative to base 24 via cam action.
  • FIGS. 15 a , 15 b , and 16 are a perspective view, a top view, and a perspective view of an alternative embodiment of base 124 , as described in FIGS. 11-14 , illustrating the second difference between universal slide assembly 122 and universal slide assembly 22 .
  • base 124 may include either mounting bores 182 or top-mounting bores 184 , which are identical to mounting bores 82 and top-mounting bores 84 .
  • base 124 does not incorporate a tail slot, such as tail slot 80 of base 24 . Because cam lever 128 does not extend into base 124 to lock slide 113 with base 124 , a tail slot is not required, which reduces costs in manufacturing base 124 .
  • a base such as base 24 with tail slot 80 may be used in place of base 124 without any hindrance of performance in universal slide assembly 122 .
  • base 124 may incorporate an assortment of features to accommodate a variety of molding and casting systems.
  • FIGS. 17 a - 17 d are respectively a perspective view, a top view, a right side view, and a front view illustration of cam lever 128 of universal slide assembly 122 .
  • head 144 is identical to head 44 of cam lever 28 , and is positioned at an angle to tail 146 for allowing cam lever 128 to provide a cam action to move slide 26 relative to base 124 .
  • head 144 is directly attached to a fixed-die half of the apparatus via fixed-die half bore 190 .
  • Fixed-die half bore 190 is identical to fixed-die half bore 90 of cam lever 28 .
  • a bolt is inserted through the fixed-die half and into fixed-die half bore 190 of head 144 , securely fastening cam lever 128 to the fixed-die half.
  • cam lever 128 When the movable-die half retracts from the fixed-die half, cam lever 128 is pulled out through slide 26 . As cam lever 128 raises, the angle of tail 146 mechanically forces slide 26 to retract along base 124 , pulling face plate 32 away from the molding core allowing the mold to be released. Cam lever 128 allows slide 26 to move forward or retract along base 124 without requiring hydraulic pressure from coupling 34 . Accordingly, the length of tail 146 of cam lever 128 defines the distance slide 26 is capable of moving along base 124 via cam action. As such, the present invention may include a number of levers with varying lengths for moving and retaining slide 26 relative to base 124 .
  • FIGS. 18 a - 18 d are respectively a perspective view, a top view, a right side view, and a front view illustrations of cam lever 228 of universal slide assembly 122 , where cam lever 228 includes head 244 , tail 246 , and fixed-die half bores 290 .
  • FIGS. 18 a - 18 d illustrate another length of the tail of the locking component.
  • head 244 is identical to head 44 of cam lever 28 and head 144 of cam lever 128 , and is positioned at an angle to tail 246 for allowing cam lever 228 to provide a cam action to move slide 26 relative to base 124 .
  • head 244 is directly attached to a fixed-die half of the apparatus via fixed-die half bores 290 .
  • Fixed-die half bores 290 are identical to fixed-die half bore 90 of cam lever 28 and fixed-die half bores 190 of cam lever 128 .
  • a bolt is inserted through the fixed-die half and into fixed-die half bore 290 of head 244 , securely fastening cam lever 228 to the fixed-die half.
  • Cam lever 228 incorporates the same benefit of cam lever 128 over cam lever 28 , in allowing universal slide assembly 122 to be used with an apparatus, where cam lever 28 would not be capable of extending below base 24 .
  • tail 246 includes extension 246 a , which extends from the bottom tip of tail 244 at the same angle from head 244 as tail 246 .
  • Extension 246 a provides a greater range that slide 26 is capable of moving along base 124 via cam action, compared to cam lever 128 .
  • extension 246 a is capable of inserting further into slot 70 of slide 26 for providing a better fit when inserting cam lever 228 into slide 26 . As such, FIGS.
  • FIG. 19 is a perspective view of universal slide assembly 322 , a second alternative design of universal slide assembly 22 incorporating an axially longer base.
  • Universal slide assembly 322 includes slide 26 , faceplate 32 , coupling 34 , leads 40 , leads 42 , and cam lever 128 , which connect and interact as described in FIGS. 3-6 and 11 - 14 .
  • Universal slide assembly 322 further includes base 324 , which includes front coupler bore 336 and rear coupler bore 338 , which are identical to front lead bore 36 and rear leads bore 38 .
  • base 324 is axially longer, providing a greater range for slide 26 to move forward and retract.
  • base 24 and base 124 provide a three-inch range of movement for slide 26 . That is, front coupler bores 36 , 136 and rear coupler bores 38 , 138 are preferably separated by a distance of three inches.
  • base 312 preferably provides a four-inch range of movement (i.e., four inches between front coupler bore 336 and rear coupler bore 338 ). This greater range allows for insertion and retraction of longer components attached to face plate 32 , which would not be possible with base 24 or base 124 , and adds to the versatility of the present invention.
  • Universal slide assembly 422 is a perspective view of universal slide assembly 422 , a third alternative design of universal slide assembly 22 incorporating an axially shorter base.
  • Universal slide assembly 422 includes slide 26 , face plate 32 , leads 40 , leads 42 , and cam lever 128 , which connect and interact as described in FIGS. 3-6 and 11 - 14 .
  • Universal slide assembly 422 further includes base 424 , which includes front coupler bore 436 and rear coupler bore 438 , which are identical to front lead bore 36 and rear leads bore 38 .
  • base 422 is axially shorter than base 24 , base 124 , and base 324 .
  • base 412 provides a one-half-inch range of movement (i.e., one-half inch between front coupler bore 436 and rear coupler bore 438 ). This limits the range of movement of slide 26 and is useful when small holes or designs are required and space is limited. Due to its smaller size, universal slide assembly 422 is capable of being used with a smaller injection molding or die casting apparatus, compared to universal slide assembly 22 , universal slide assembly 122 , and universal slide assembly 322 .
  • Universal slide assembly 422 does not include coupling 34 . Due to the short range of movement by slide 26 , cam lever 128 provides enough cam action movement to meet the limited need. However, universal slide assembly 422 may also include coupling 34 , connected to slide 26 as previously discussed, without hindrance in performance. Additionally, as illustrated, cam action is preferably provided by cam lever 128 . Due to the limited range of movement of slide 26 , a lever with a long tail, such as cam lever 28 is not required, as it would provide too much cam action movement. However, universal slide assembly 422 may alternatively incorporate a lever with a differing length, such as cam lever 28 or cam lever 228 , as individual processing may require.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
US10/646,094 2002-09-26 2003-08-22 Universal slide assembly for molding and casting systems Abandoned US20050098295A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/646,094 US20050098295A1 (en) 2002-09-26 2003-08-22 Universal slide assembly for molding and casting systems
PCT/US2003/030336 WO2004028770A2 (fr) 2002-09-26 2003-09-25 Ensemble coulisseau universel pour systemes de moulage et de coulage
AU2003276962A AU2003276962A1 (en) 2002-09-26 2003-09-25 Universal slide assembly for molding and casting systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41399202P 2002-09-26 2002-09-26
US10/646,094 US20050098295A1 (en) 2002-09-26 2003-08-22 Universal slide assembly for molding and casting systems

Publications (1)

Publication Number Publication Date
US20050098295A1 true US20050098295A1 (en) 2005-05-12

Family

ID=32045267

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/646,094 Abandoned US20050098295A1 (en) 2002-09-26 2003-08-22 Universal slide assembly for molding and casting systems

Country Status (3)

Country Link
US (1) US20050098295A1 (fr)
AU (1) AU2003276962A1 (fr)
WO (1) WO2004028770A2 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050121166A1 (en) * 2003-12-09 2005-06-09 Dubay Richard L. Universal slide assembly for molding and casting system
US20060207741A1 (en) * 2005-02-11 2006-09-21 Jim Purdy Engine block die-casting apparatus having mechanically actuated bank core slides
US20080060782A1 (en) * 2006-09-07 2008-03-13 Dubay Richard L Two-stage snap cam system for casting and molding
US20080241304A1 (en) * 2007-03-26 2008-10-02 Chih-Yu Chen Slide having a fixing mechanism of a slide insert
US20090104303A1 (en) * 2007-10-22 2009-04-23 Hon Hai Precision Industry Co., Ltd. Threaded core, injection molded apparatus method for making lens barrel
US20090304844A1 (en) * 2008-06-04 2009-12-10 Hon Hai Precision Industry Co., Ltd. Mold apparatus for forming screw threads
US20140106022A1 (en) * 2011-06-01 2014-04-17 Comercial De Utiles Moldes, S.A. Compact slide rail for injection molds
US20140217650A1 (en) * 2013-02-03 2014-08-07 Mann+Hummel Gmbh System for injection molding and related method
US10647042B2 (en) * 2016-11-15 2020-05-12 The Boeing Company Articulated molding insert
DE102022103975A1 (de) 2022-02-21 2023-08-24 Meusburger GmbH & Co. KG Schiebereinheit für ein Formwerkzeug
US12384080B2 (en) * 2022-02-16 2025-08-12 Comercial De Utiles Y Moldes, S.A. Slide assembly for injection molds

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1100578B1 (pt) * 2011-01-31 2020-12-29 Juan Carlos Calabrese Muzzi molde e processo de obtenção de quadro de bicicleta em polímero reciclável e dito quadro de bicicleta
CN104772868B (zh) * 2015-05-03 2017-07-07 佛山市三水三联塑胶原料制品有限公司 一种带自锁的油缸抽芯机构

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890488A (en) * 1958-06-04 1959-06-16 Richardson Co Injection molding machine
US3811645A (en) * 1973-01-05 1974-05-21 K Feist Slide retainer and positioner
US3932085A (en) * 1974-07-17 1976-01-13 Stephen Horbach Mold base
US4515342A (en) * 1984-04-06 1985-05-07 Borislav Boskovic Slide retainer
US4765585A (en) * 1987-02-27 1988-08-23 Superior Die Set Corporation Slide retainer for injection molds
US4768747A (en) * 1987-07-31 1988-09-06 Williams John B Slide clip
US4889480A (en) * 1988-11-22 1989-12-26 Sankyo Engineering Co., Ltd. Slide core mold and injection molding
US5111873A (en) * 1991-04-16 1992-05-12 General Motors Corporation Die casting frame
US5234329A (en) * 1992-10-02 1993-08-10 Vandenberg Leo A Angle pin assembly
US5397226A (en) * 1993-11-02 1995-03-14 D-M-E Company Slide retainer for injection molds
US5407344A (en) * 1993-07-12 1995-04-18 Lake Center Industries, Inc. Single direction cam for insert molding machine
US5533564A (en) * 1993-12-03 1996-07-09 Alu Livry Die casting foundry machine adapted in particular to the production of metal parts in small and medium series
US5595771A (en) * 1994-11-04 1997-01-21 Foltuz; Eugene L. Modular mold for injection molding and method of use thereof
US5690159A (en) * 1995-09-07 1997-11-25 Ryobi Ltd. Casting apparatus and casting method for producing cylinder block
US5701947A (en) * 1995-11-01 1997-12-30 Exco Technologies, Ltd. Die cast mould apparatus
US6093015A (en) * 1999-01-11 2000-07-25 D-M-E Company Mold core positioning device
US6116891A (en) * 1997-03-10 2000-09-12 Progressive Components International Corporation Mold having a side-action cam mechanism and molding method
US6240796B1 (en) * 1997-07-08 2001-06-05 Nippon Thompson Co., Ltd. Slide apparatus
US6326708B1 (en) * 1999-07-06 2001-12-04 Nippon Thompson Co., Ltd. Slider unit with built-in moving-coil linear motor
US6431254B2 (en) * 2000-02-03 2002-08-13 Fa. Karl Walter Formen Apparatus for casting a molded part
US6443723B1 (en) * 1999-11-04 2002-09-03 D-M-E Company Slide retainer for an injection mold
US6591893B1 (en) * 2002-02-08 2003-07-15 Water Gremlin Company Sinker casting mold
US6637498B1 (en) * 2001-11-15 2003-10-28 Hayes Lemmerz International Modularized permanent molding machine with multiple molds

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890488A (en) * 1958-06-04 1959-06-16 Richardson Co Injection molding machine
US3811645A (en) * 1973-01-05 1974-05-21 K Feist Slide retainer and positioner
US3932085A (en) * 1974-07-17 1976-01-13 Stephen Horbach Mold base
US4515342A (en) * 1984-04-06 1985-05-07 Borislav Boskovic Slide retainer
US4765585A (en) * 1987-02-27 1988-08-23 Superior Die Set Corporation Slide retainer for injection molds
US4768747A (en) * 1987-07-31 1988-09-06 Williams John B Slide clip
US4889480A (en) * 1988-11-22 1989-12-26 Sankyo Engineering Co., Ltd. Slide core mold and injection molding
US5111873A (en) * 1991-04-16 1992-05-12 General Motors Corporation Die casting frame
US5234329A (en) * 1992-10-02 1993-08-10 Vandenberg Leo A Angle pin assembly
US5407344A (en) * 1993-07-12 1995-04-18 Lake Center Industries, Inc. Single direction cam for insert molding machine
US5397226A (en) * 1993-11-02 1995-03-14 D-M-E Company Slide retainer for injection molds
US5533564A (en) * 1993-12-03 1996-07-09 Alu Livry Die casting foundry machine adapted in particular to the production of metal parts in small and medium series
US5595771A (en) * 1994-11-04 1997-01-21 Foltuz; Eugene L. Modular mold for injection molding and method of use thereof
US5690159A (en) * 1995-09-07 1997-11-25 Ryobi Ltd. Casting apparatus and casting method for producing cylinder block
US5701947A (en) * 1995-11-01 1997-12-30 Exco Technologies, Ltd. Die cast mould apparatus
US6116891A (en) * 1997-03-10 2000-09-12 Progressive Components International Corporation Mold having a side-action cam mechanism and molding method
US6240796B1 (en) * 1997-07-08 2001-06-05 Nippon Thompson Co., Ltd. Slide apparatus
US6093015A (en) * 1999-01-11 2000-07-25 D-M-E Company Mold core positioning device
US6326708B1 (en) * 1999-07-06 2001-12-04 Nippon Thompson Co., Ltd. Slider unit with built-in moving-coil linear motor
US6443723B1 (en) * 1999-11-04 2002-09-03 D-M-E Company Slide retainer for an injection mold
US6431254B2 (en) * 2000-02-03 2002-08-13 Fa. Karl Walter Formen Apparatus for casting a molded part
US6637498B1 (en) * 2001-11-15 2003-10-28 Hayes Lemmerz International Modularized permanent molding machine with multiple molds
US6591893B1 (en) * 2002-02-08 2003-07-15 Water Gremlin Company Sinker casting mold

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050121166A1 (en) * 2003-12-09 2005-06-09 Dubay Richard L. Universal slide assembly for molding and casting system
US7600445B2 (en) * 2003-12-09 2009-10-13 Dubay Richard L Universal slide assembly for molding and casting system
US20060207741A1 (en) * 2005-02-11 2006-09-21 Jim Purdy Engine block die-casting apparatus having mechanically actuated bank core slides
US7278462B2 (en) * 2005-02-11 2007-10-09 Aar-Kel Enterprises, Inc. Engine block die-casting apparatus having mechanically actuated bank core slides
US20080060782A1 (en) * 2006-09-07 2008-03-13 Dubay Richard L Two-stage snap cam system for casting and molding
US7637305B2 (en) * 2006-09-07 2009-12-29 Dubay Richard L Two-stage snap cam system for casting and molding
US7806163B2 (en) 2006-09-07 2010-10-05 Dubay Richard L Two-stage SNAP cam pin for casting and molding systems
US20080241304A1 (en) * 2007-03-26 2008-10-02 Chih-Yu Chen Slide having a fixing mechanism of a slide insert
US20090104303A1 (en) * 2007-10-22 2009-04-23 Hon Hai Precision Industry Co., Ltd. Threaded core, injection molded apparatus method for making lens barrel
US7846370B2 (en) * 2007-10-22 2010-12-07 Hon Hai Precision Industry Co., Ltd. Threaded core, injection molded apparatus method for making lens barrel
US7845926B2 (en) * 2008-06-04 2010-12-07 Hon Hai Precision Industry Co., Ltd. Mold apparatus for forming screw threads
US20090304844A1 (en) * 2008-06-04 2009-12-10 Hon Hai Precision Industry Co., Ltd. Mold apparatus for forming screw threads
US20140106022A1 (en) * 2011-06-01 2014-04-17 Comercial De Utiles Moldes, S.A. Compact slide rail for injection molds
US9017062B2 (en) * 2011-06-01 2015-04-28 Alberto Navarra Pruna Compact slide rail for injection molds
US20140217650A1 (en) * 2013-02-03 2014-08-07 Mann+Hummel Gmbh System for injection molding and related method
US9545747B2 (en) * 2013-02-03 2017-01-17 Mann+Hummel Gmbh System for injection molding and related method
US10647042B2 (en) * 2016-11-15 2020-05-12 The Boeing Company Articulated molding insert
US12384080B2 (en) * 2022-02-16 2025-08-12 Comercial De Utiles Y Moldes, S.A. Slide assembly for injection molds
DE102022103975A1 (de) 2022-02-21 2023-08-24 Meusburger GmbH & Co. KG Schiebereinheit für ein Formwerkzeug
EP4241959A1 (fr) * 2022-02-21 2023-09-13 Meusburger Georg GmbH & Co. KG Unité de tiroir pour un outil de moulage

Also Published As

Publication number Publication date
AU2003276962A1 (en) 2004-04-19
WO2004028770A2 (fr) 2004-04-08
AU2003276962A8 (en) 2004-04-19
WO2004028770A3 (fr) 2004-08-26

Similar Documents

Publication Publication Date Title
US20050098295A1 (en) Universal slide assembly for molding and casting systems
CA1161229A (fr) Agencement pour bloquer un moule sur le plateau d'une machine a mouler sous pression
CA2244581C (fr) Dispositif de fabrication d'objets moules par injection a partir d'au moins deux plastiques liquides
JPH07110506B2 (ja) 射出成形金型装置
US7600445B2 (en) Universal slide assembly for molding and casting system
CN1625462A (zh) 用于压注塑料成型体的装置
JPH01128811A (ja) 成形装置の型交換機構
JPH1085896A (ja) 射出成形用金型
US5964274A (en) Die assembly for a die casting machine
JP2003053794A (ja) 射出成形金型のロック機構
JP2870630B2 (ja) 成形装置
US5665405A (en) Self-contained molding apparatus and method for clamping the mold unit of an injection mold apparatus
KR200227970Y1 (ko) 사출금형의 제품취출장치
JP2998529B2 (ja) 樹脂成形装置
CN101132897A (zh) 用于容纳铸模的装置
JP2876961B2 (ja) 射出成形機の金型装置
JP2003053784A (ja) 射出成形方法および射出成形用金型装置
JPH0515534B2 (fr)
RU2015020C1 (ru) Литьевая форма для изготовления полимерных изделий
GB2263249A (en) Injection molding machines having removably mounted cavities
JP3802819B2 (ja) 多孔体の製造装置及び製造方法
JP2772335B2 (ja) 射出成形金型装置
JPH06155528A (ja) 成形用金型
JP2025169926A (ja) 射出成形金型用スライダーアセンブリ
JPH052927U (ja) インサート成形用金型

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION