[go: up one dir, main page]

US20050081944A1 - Display having addressable characters - Google Patents

Display having addressable characters Download PDF

Info

Publication number
US20050081944A1
US20050081944A1 US10/939,668 US93966804A US2005081944A1 US 20050081944 A1 US20050081944 A1 US 20050081944A1 US 93966804 A US93966804 A US 93966804A US 2005081944 A1 US2005081944 A1 US 2005081944A1
Authority
US
United States
Prior art keywords
addressable
functional yarn
woven
yarn
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/939,668
Inventor
Joseph Carpinelli
George Riddle
Ian Hill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sarnoff Corp
Original Assignee
Sarnoff Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sarnoff Corp filed Critical Sarnoff Corp
Priority to US10/939,668 priority Critical patent/US20050081944A1/en
Assigned to SARNOFF CORPORATION reassignment SARNOFF CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RIDDLE, GEORGE HERBERT NEEDHAM, CARPINELLI, JOSEPH M., HILL, IAN GREGORY
Publication of US20050081944A1 publication Critical patent/US20050081944A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/533Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads antistatic; electrically conductive
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0088Fabrics having an electronic function
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/25Metal
    • D03D15/258Noble metal
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/44Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific cross-section or surface shape
    • D03D15/46Flat yarns, e.g. tapes or films
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/147Digital output to display device ; Cooperation and interconnection of the display device with other functional units using display panels
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • A41D1/002Garments adapted to accommodate electronic equipment
    • A41D1/005Garments adapted to accommodate electronic equipment with embedded cable or connector
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/12Surgeons' or patients' gowns or dresses
    • A41D13/1236Patients' garments
    • A41D13/1281Patients' garments with incorporated means for medical monitoring
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/04Linen
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/02Wool
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/04Silk
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/18Physical properties including electronic components
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/06Bed linen
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/10Umbrellas
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/18Outdoor fabrics, e.g. tents, tarpaulins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2507/00Sport; Military
    • D10B2507/06Parachutes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/02Flexible displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0281Conductive fibers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/913Material designed to be responsive to temperature, light, moisture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3033Including a strip or ribbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/3195Three-dimensional weave [e.g., x-y-z planes, multi-planar warps and/or wefts, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3382Including a free metal or alloy constituent
    • Y10T442/339Metal or metal-coated strand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3976Including strand which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous composition, water solubility, heat shrinkability, etc.]

Definitions

  • the present invention relates to a display and, in particular, to an addressable display.
  • the electrical or electronic function is added after the fabric has been woven, e.g., by embroidery or by applique or by mechanical attachment, thereby adding additional steps and additional complexity to the manufacturing process.
  • the particular arrangement thereof appears to be suited to one specific application or usage with corresponding specific manufacturing, and does not appear to lend itself to an efficient, relatively general manufacturing wherein the function and operation of the resulting fabric need not be specified or determined until after the fabric is woven, i.e. manufactured.
  • a woven electronic display that provides for an addressable display.
  • a display suitable for being provided as a woven article or fabric is easily and conveniently addressed via electrically conductive yarn or conductors that are part thereof. It would also be desifable it such addressable electronic display were suitable for use as a sign or other message display.
  • an addressable display may comprise a woven article including functional yarn woven therein, each functional yarn having an addressable device for controlling display elements thereon. Addressing signals applied via conductive yarn of the woven article address the addressable devices of the functional yarn for selectively energizing the display elements.
  • FIGS. 1A and 1B are schematic diagrams of an example arrangement for a 59-segment character display
  • FIG. 2 is a schematic diagram of an example embodiment of the 59-segment display of FIG. 1 including light sources arranged in rows and columns;
  • FIG. 3 is a schematic diagram of a portion of an example woven article embodiment including at least a portion of a segment display including functional yarn having light sources arranged thereon to provide rows and columns of light sources;
  • FIG. 4 shown on two sheets designated as FIG. 4A and FIG. 4B , is a schematic diagram of an example circuit suitable for a functional yarn, such as that shown in FIG. 3 ;
  • FIG. 5 is a schematic diagram of an example display including plural woven articles providing character displays.
  • FIGS. 6A, 6B and 6 C are schematic diagrams of an example method for providing an addressing protocol suitable for use with the example displays of FIGS. 1-5 .
  • FIGS. 1A and 1B are schematic diagrams of an example arrangement for a 59-segment character display 10 wherein the 59 segments are numbered according to their position in a row and column arrangement.
  • the segmented character display 10 having fifty nine segments arranged in rows and columns comprises twenty eight segments defining a periphery RP of a generally rectangular character display 10 , the twenty eight segments including one segment disposed at each corner 111 , 171 , 179 , 119 of the generally rectangular periphery RP, and four groups of five or more additional segments each disposed to define a respective side TS, RS, BS, LS thereof.
  • Eleven additional segments are disposed to define intersecting dividers that divide the generally rectangular character display 10 to define four quadrants Q thereof, wherein one segment 145 of the eleven additional segments is disposed generally centrally within the generally rectangular character display 10 and the ten other segments of the eleven additional segments are arranged to extend from the one generally centrally disposed segment 145 of the eleven additional segments to the respective sides TS, RS, BS, LS of the generally rectangular character display 10 .
  • each quadrant including a generally centrally located segment 123 , 127 , 153 , 157 and four segments radiating diagonally from the central segment 123 , 127 , 153 , 157 toward each of the four corners 111 , 115 , 119 , 141 , 145 , 149 , 171 , 175 , 179 of each quadrant Q.
  • the segments of display 10 are arranged into seven rows designated RW 1 through RW 7 and nine columns designated CL 1 -CL 9 , with row RW 1 and column CL 1 intersecting at the lower left corner of display character 10 .
  • Each segment is identified by a numeric designator “1yx” wherein “y” is the row number and “x” is the column number corresponding to rows RW 1 through RW 7 and columns CL 1 through CL 9 , respectively.
  • a row of segments could be referred to by row number or be segment numbers, e.g., row 3 by RW 3 or by segments 13 x, and columns likewise, e.g., as column CL 5 or as segments 1 ⁇ 5 .
  • Twenty eight of the segments comprising rows RW 1 and RW 7 and columns CL 1 and CL 9 (segments 11 x, 17 x, 1 y 1 , 1 y 9 ) define a rectangular periphery RP of character display 10 .
  • One relatively short segment 111 , 171 , 119 , 179 is at each corner of the rectangle RP.
  • Seven additional segments define the “top” horizontal side TS (i.e.
  • Each of the four sides BS, RS, LS, TS of rectangle RP has a relatively short segment 115 , 141 , 149 , 175 in a central position, and each also has four relatively long segments (e.g., 121 , 131 , 151 and 161 ; 172 , 174 , 176 and 178 ; and so forth) with a pair of two long segments (e.g., 121 and 131 , 116 and 118 ; and so forth) disposed on opposing sides of the short central segment 115 , 141 , 149 , 175 .
  • four relatively long segments e.g., 121 , 131 , 151 and 161 ; 172 , 174 , 176 and 178 ; and so forth
  • two long segments e.g., 121 and 131 , 116 and 118 ; and so forth
  • Each of the top and bottom sides TS, RS also has a relatively short segment 113 , 117 , 173 , 177 disposed between each pair of relatively long segments (e.g., 112 and 114 , 116 and 118 , and so forth).
  • Eleven additional segments 142 , 143 , 144 , 145 , 146 , 147 , 148 , 125 , 135 , 155 , 165 divide the peripheral rectangle into four quadrants Q. Specifically, seven segments 142 , 143 , 144 , 145 , 146 , 147 , 148 , bisect peripheral rectangle RP in the horizontal direction between the relatively short central segment 141 , 149 of each vertical side RS, LS and five segments 125 , 135 , 145 , 155 , 165 bisect rectangle RP in the vertical direction between the relatively short central segments 115 , 175 of the top and bottom sides TS, BS. Segment 145 is located where the four quadrants Q meet and is relatively centrally located within peripheral rectangle RP.
  • each quadrant Q is a centrally located relatively short segment 123 , 153 , 127 , 157 and four relatively long segments (e.g., 122 , 132 , 124 , 134 ; 152 , 162 , 154 , 164 ; and so forth) radiating diagonally from the short central segment 123 , 153 , 127 , 157 toward each of the corners of the quadrant Q, i.e. at a short segment at each corner of each quadrant.
  • segments 156 , 166 , 158 , 168 radiate diagonally from the short central segment 157 toward each of the corners 145 , 175 , 179 and 149 .
  • center segments 123 and 127 are described as being in row RW 2 and center segments 153 and 157 are described as being in row RW 5 , they could be designated in rows RW 3 and RW 6 , respectively, as may be convenient or desired.
  • Each segment 111 - 179 includes one or more sources that produce light when electrically energized. By selectively energizing certain ones of the segments 111 - 179 , light produced by the energized segments 111 - 179 define desired characters.
  • This arrangement provides a unique display for each letter of the English-language alphabet, in both upper case and lower case letters, and the numerals zero through nine, as well as other symbols and characters, such as “?” or “$” or “%” or “+” or “ ⁇ ” or “ ⁇ ” or “ ⁇ ” or “*” or “ ⁇ ” or “>” or “&” or “ ⁇ ” or “ ⁇ ” or “ ⁇ ” or “ ⁇ ” or “ ⁇ ” or “ ⁇ ” or “ ⁇ ” or “ ⁇ ” or “ ⁇ ” and so forth.
  • the display may be addressed as a 9 ⁇ 7 matrix where four of the segments are missing, leaving 59 segments that may be selectively energized.
  • the capital letter “O” may be displayed by energizing the 28 segments around the peripheral rectangle RP and a lower-case “o” may be displayed by energizing the 14 segments defining the periphery of one of the lower quadrants Q.
  • a numeral zero “0” could be distinguished from a capital letter “O” by, for example, not energizing the corner segments 111 , 119 , 171 , 179 , or by energizing a central segment, e.g., segment 145 .
  • a capital “Z” may be displayed by energizing the 18 segments 111 - 119 and 171 - 179 along the top and bottom sides TS, BS of rectangle RP and the seven segments 122 , 123 , 134 , 145 , 156 , 157 , 168 along the diagonal between upper right corner 179 and lower left corner 111 thereof.
  • a lower-case “z” may be displayed by energizing the five segments (e.g., segments 115 - 119 and 145 - 149 ) along each of the top and bottom sides of a lower quadrant Q and the three segments (e.g., 126 , 127 , 138 along the diagonal between the upper right corner and the lower left corner thereof.
  • certain plural character combinations may be displayed by a single character dipslay 10 , such as displaying the numerals 11 - 19 by illuminating all of the segments 111 - 171 disposed along the left side LS to display the numeral “1” and illuminating selected ones of segments 115 - 179 disposed along the peripheries of the upper and lower right quadrants Q and disposed interior thereto to display the second numeral 1 - 9 .
  • 20 strips FY comprise display 10 , of which are two each of strips FY of type A and type F, and four each of strips FY of types B, C, D and E.
  • Each strip FY has 22 light source LS positions, not all of which may be utilized on every strip FY. If all positions were to have a light source LS, then a 20 ⁇ 22 light element display 10 is provided.
  • These 440 light sources e.g., LEDs
  • only 316 of the possible 440 LED positions have an LED thereat.
  • These 316 LEDs are connected in 59 addressable segments, i.e. with seven or fewer addressable segments (of one to four LEDs each) on each strip FY.
  • Other embodiments may be desired, e.g., for obtaining another 59-segment display or another display arrangement.
  • each column may include one, two or three strips FY.
  • Columns CL 1 and CL 9 each may comprise one type A strip FY-A and one type B strip FY-B.
  • Columns CL 2 , CL 4 , CL 6 and CL 8 each may comprise one type C strip FY-C, one type D strip FY-D and one type E strip FY-E.
  • Columns CL 3 and CL 7 each may comprise one type F strip FY-F, and column CL 5 may comprise two type B strips FY-B.
  • Strips FY in a given column may be addressed in the same manner so that only nine column groups need be addressed to energize any combination of the 59 segments.
  • Types A-F of strips FY are defined by the number and connection of light sources LS disposed thereon. As illustrated, up to 22 light sources LS may be disposed on each strip FY, however, except for strip FY type B, less than 22 light sources LS are provided. Light sources LS on each strip are grouped into seven or fewer groups thereby to define seven or fewer segments corresponding to rows RW 1 -RW 7 described above, and the seven rows or segments are designated in FIG. 2 by the small numeral within each circle representing a light source LS. As illustrated, strips FY of types A-E each have seven independently addressable segments, and strip FY of type F has five independently addressable segments, wherein each independently addressable segment corresponds to a defined row RW.
  • all the types of strips FY include seven segments (groups) of light sources LS except for the type F strip FY which may include only five segments (groups).
  • a display may comprise plural strips FY having the same number of groups of light sources LS (e.g., arranged in seven segments) or may have one or more strips FY comprising fewer than seven segments.
  • One factor affecting the number of segments may be manufacturing cost, e.g., considering the benefit of having all strips FY the same (and more complex) versus the cost savings from using fewer components on certain ones of the strips FY and manufacturing a plurality of (e.g., six) different types of strips FY.
  • the costs of different versus identical pick-and-place patterns, different versus identical substrates, one type versus six types to handle and inventory also may affect the overall manufacturing cost.
  • Each light source LS is typically provided by one or more light-emitting diodes (LEDs) mounted to strip FY and selectively energized by conductors and circuits thereon.
  • strip FY includes an electronic substrate on which are formed patterned conductors to which the LED light sources LS connect for selectively receiving electrical power.
  • strip FY also includes integrated circuits and/or transistors for selectively applying electrical power to the LEDs for selectively energizing the LEDs to cause them to selectively produce light.
  • Placement of LEDs D 1 -D 22 on each functional yarn FY in light source positions LS 1 -LS 22 may be selected to make the characters displayed appear more aesthetically pleasing.
  • the omission of light sources LS 1 and LS 22 from functional yarn FY-A leaves the four extreme corner positions vacant so that the shorter segments 111 , 119 , 171 , 179 , provided by three light sources at each corner when illuminated appear more rounded rather than rectangular.
  • certain ones of light sources LS may be assigned to selected segments to also avoid a squared appearance.
  • certain rows of light sources LS may be designated as “mixed rows” MR wherein the light sources LS (LEDs) therein comprise a mix of LEDs from two adjacent segments or rows, e.g., for providing an appearance of rounded ends for certain segments.
  • the “mixed row” MR including light sources LS connected in display rows RW 1 and RW 2 , light sources LS 3 of functional yarn FY-B of columns CL 1 , CL 5 and CL 9 are energized in the segment of row RW 1 and light sources LS 3 of functional yarn FY-A and FY-C of columns CL 1 , CL 2 , CL 6 , CL 8 and CL 9 are energized in the segment of row RW 2 .
  • these mixed rows MR serve to simplify the circuitry for energizing light sources LS and in certain cases may improve the aesthetics of particular characters of the font
  • certain of these mixed rows MR may be considered introduce a “defect” (e.g., undesired shape) into the font.
  • the light sources LS of any or all of these mixed rows MR could be energized independently rather than as part of an adjacent row RW, if desired.
  • rows LS 7 and LS 17 are not considered to introduce a defect whereas rows LS 3 , LS 10 , LS 13 and LS 20 are considered to introduce a defect into the font.
  • a physical embodiment of a display 10 as described above may be provided on one or more substrates.
  • FIG. 3 is a schematic diagram of a portion of an example woven article embodiment 200 including at least a portion of a segment display 10 including plural strips FY that are “functional yarn” having light sources LS arranged thereon to provide rows and columns of light sources.
  • Functional yarn FY are interwoven with insulating yarn 210 in one of the warp and the weft, and with insulating yarn 220 in the other of the warp and the weft.
  • Interwoven in article 200 are electrically conductive yarn 240 , 242 , 244 preferably in a direction transverse to the direction of functional yarn FY.
  • Functional yarn FY are arranged adjacent each other, i.e. in side-by-side arrangement, and may be woven in either the warp or the weft of article 200 , but are preferably woven in the weft.
  • “Functional yarn” FY is yarn including certain elements and/or devices for performing a function electrically or electronically.
  • functional yarn FY is yarn suitable for weaving and comprises a substrate that has electronic conductors and electronic devices thereon for performing a circuit function.
  • Electronic devices may include resistors, capacitors, inductors, diodes, transistors, hybrid circuits, integrated circuits, devices including combinations thereof, and other electronic devices.
  • one or more of the electrical conductors EC thereon provide one or more contact sites (contacts), e.g., contacts 230 , 232 , 234 , at which electrical connection can be made with the electrical circuit(s) of functional yarn FY, e.g., for applying electrical potential or current thereto and/or for communicating signals to or from functional yarn FY.
  • insulating yarn 220 In the article 200 illustrated, which may be part of a larger article, four functional yarn FY disposed adjacent each other are separated from each other by three insulating yarn 220 all lying in the same direction, i.e. side by side.
  • Insulating yarn 210 are interwoven transversely to functional yarn FY and insulating yarn 220 .
  • Electrically conductive yarn 240 , 242 , 244 are interwoven transversely to functional yarn FY and insulating yarn 220 in positions to overlie contact sites 230 , 232 , 234 , respectively, of each functional yarn FY, and are separated from each other, and are electrically isolated from each other, by one or more insulating yarn 210 .
  • the spacing between adjacent functional yarn FY may be defined by the number of insulating yarn 220 woven therebetween and/or the width or diameter thereof, as well as by the tightness of the weave.
  • the spacing between adjacent electrically conductive yarn 240 , 242 , 244 i.e. the “pitch” thereof
  • the spacing between adjacent electrically conductive yarn 240 , 242 , 244 may be defined by the number of insulating yarn 210 woven therebetween and/or the width or diameter thereof, as well as by the tightness of the weave.
  • the example functional yarn FY illustrated has three electrical contact sites (contacts) 230 , 232 , 234 , proximate one end thereof, however, electrical contacts may be provided at or near one or both ends of functional yarn FY and/or at one or more locations intermediate its ends.
  • Contacts 230 , 232 may be for receiving electrical potential, e.g., with relatively positive potential V+ applied at contact 230 via conductive yarn 240 and with relatively negative potential V ⁇ applied at contact 232 via conductive yarn 242 .
  • Either one thereof may be considered as a reference potential, e.g., “ground” potential.
  • Contact 234 may be for receiving an electrical signal via conductive yarn 244 , e.g., a signal or signals for actuating and/or otherwise controlling one or more functions that may be preformed by the electrical circuit of functional yarn FY.
  • contact 234 receives via conductive yarn 244 an addressing signal that identifies a particular one or ones of functional yarn FY and that provides instructions for controlling the illumination of selected light sources LS on the addressed functional yarn FY.
  • Examples of suitable electrically conductive and electrically insulating yarn are also described in U.S. patent Publication 2004/0009729.
  • Examples of preferred electrically conductive yarn, e.g., yarn 240 , 242 , 244 may include copper wire as well as braided or woven copper wire, such as a coaxial cable braided outer conductor or Litz wire where the current to be carried is of significant amperage.
  • Two or more electrically conductive yarn may be woven contiguously for obtaining higher current-carrying capacity.
  • An integrated circuit U 1 receives electrical potential and addressing signals via electrically conductive yarn 240 , 242 , 244 , electrical conductors EC, and contacts 230 , 232 , 234 , respectively.
  • Circuit U 1 decodes the addressing signals, and provides electrical signals responsive to the decoded addressing signals via various other electrical conductors EC for controlling the activation of various ones of light sources LS thereon.
  • Each light source LS is connected, e.g., to receive potential V+ via an electrical conductor EC from contact 230 and to selectively receive a less positive actuating potential via an electrical conductor EC from integrated circuit U 1 .
  • woven article 200 includes rows RW 1 -RW 4 and columns CL 3 -CL 6 of a row-column matrix display.
  • each functional yarn FY provides one column and includes four light sources LS identified to respective rows RW 1 -RW 4 of a display 10 , however, additional light sources, e.g., three light sources LS for rows RW 5 -RW 7 , of a display not shown.
  • each integrated circuit U 1 decodes the associated control signal for performing the function represented thereby.
  • that response includes turning on and turning off various ones of light sources LS on that functional yarn FY, either for a given time or until a subsequent addressing signal containing a different control signal is received.
  • Light sources LS may simply be turned on and off, thereby to provide the desired illuminated message.
  • integrated circuit U 1 is preferably an addressable latching seven-segment decoder, e.g., for operating a display 10 as illustrated in FIGS. 1A-1B and 2 .
  • each segment may be turned partially on in a controlled manner, e.g., as by applying a reduced potential or a pulse-width or other time modulated potential thereto, or by controlling the current flowing therethrough, so as to controllably provide light at a desired level, e.g, at a level between 0% and 100% of the fully-energized light output.
  • a display 200 can provide a gray-scale pattern so as to display images as well as characters.
  • each functional yarn preferably includes a full complement of light sources LS and further preferably, each light source LS is independently controllable via the action of an addressable latching decoder U 1 .
  • Such display would be suitable, e.g., to display a scrolling character message not possible on the particular display illustrated in FIG. 2 which has less than the full complement of light sources LS.
  • punctuation such as a period, comma, semi-colon, colon or hyphen, for example, may be provided in a fixed position by functional yarn FY woven in the weft in any one or more of the spacing regions between adjacent characters 10 , 200 , e.g., with insulating weft yarn to both sides thereof for a desired spacing of the punctuation mark from the adjacent characters 10 , 200 , in the desired position.
  • functional yarn FY woven in the weft in any one or more of the spacing regions between adjacent characters 10 , 200 , e.g., with insulating weft yarn to both sides thereof for a desired spacing of the punctuation mark from the adjacent characters 10 , 200 , in the desired position.
  • insulating weft yarn to both sides thereof for a desired spacing of the punctuation mark from the adjacent characters 10 , 200 , in the desired position.
  • only one or two adjacent functional yarn FY would be sufficient to provide a punctuation mark, and each would need to have only those light sources
  • FIG. 4 is a schematic circuit diagram of an example circuit suitable for an electrically functional yarn FY, such as that shown in FIG. 3 .
  • a functional yarn substrate providing an electrical conductor pattern for realizing this example circuit when all the illustrated electrical components are mounted thereon is also suitable for providing several different types of functional yarn FY, e.g., simply by omitting selected ones of the resistors and LEDs shown and by appropriately selecting the values of certain resistors, e.g., including to provide a short circuit (zero ohm value, as by providing a jumper wire).
  • circuit U 1 The addressing, latching and decoding functions of circuit U 1 described herein are provided by integrated circuits U 2 and U 3 .
  • Integrated circuit U 2 may be an addressable switch that receives addressing signals at data pin 2 and provides signals at output pins PIO-A and PIO-B responsive to the addressing signals.
  • Integrated circuit U 3 may be a latched shift register that provides outputs for driving the seven-segments of LEDs responsive to signals PIO-A and PIO-B from integrated circuit U 2 for selectively actuating ones of transistors Q 1 -Q 7 which correspond to the seven display segments. Segment transistors Q 1 -Q 7 when actuated selectively energize ones of LEDs D 1 -D 22 for producing light from selected ones of the seven segments LS 1 -LS 7 .
  • Resistance values may range between zero ohms, e.g., a wire jumper, and an open circuit provided by an omitted resistor, however, in a typical example circuit most resistance values are between zero and 200 ohms, while biasing resistors, e.g., R 8 , R 9 , are typically greater than about 1000 ohms, e.g., in the range of about 1000 to 10,000 ohms, to “pull up” the voltage at the input terminals of integrated circuit U 3 .
  • Resistors R 10 -R 54 in the collector circuits of Q 1 -Q 7 may be omitted (i.e. provide a relatively high resistance value (e.g., open circuit)) or may be a very low resistance value (e.g., wire jumper) for determining which of transistors Q 1 -Q 7 energize certain ones of LEDs D 1 -D 22 which are provided to provide the desired functionality (e.g., type A through F) of a yarn FY.
  • ones of LEDs D 1 -D 22 may be omitted or may be replaced by a low resistance value, e.g., a wire jumper, for selecting which of LEDs D 1 -D 22 are energized by which one of transistors Q 1 -Q 7 .
  • Resistors R 10 , R 12 , R 16 , R 20 , R 22 , R 26 , R 28 , R 30 , R 32 , R 37 , R 39 , R 42 , R 46 , R 48 , R 49 , R 51 and R 53 thereof are zero-arm resistors, and resistors R 11 , R 13 , R 14 , R 15 , R 17 , R 18 , R 19 , R 21 , R 23 , R 24 , R 25 , R 27 , R 29 , R 31 , R 33 , R 34 , R 35 , R 36 , R 38 , R 40 , R 41 , R 43 , R 44 , R 45 , R 47 , R 50 , R 52 and R 54 are omitted.
  • a type B functional yarn FY-B would include LEDs D 1 -D 22
  • a type C functional yarn FY-C would include LEDs D 1 -D 4 , D 9 -D 14 and D 19 -D 22 and would omit LEDs D 4 -D 8 and D 15 -D 18 , and so forth.
  • Suitable electronic devices include, for example, for device U 2 a type DS2406 dual addressable switch plus 1 K-bit memory integrated circuit available from Maxim Integrated Products, Sunnyvale, Calif. and Dallas Semiconductor, Dallas, Tex., and for device U 3 a type SN74LV595ARGYR latched shift register available from Texas Instruments, Dallas, Tex.
  • Transistors Q 1 -Q 7 may be any general purpose NPN transistor of which a type FMMT449SOT NPN transistor is an example.
  • Suitable LEDs are available from several commercial sources including, for example, types LTST-C 150KRKT, LTST-C150KYKT, and LTST-C150KGKT, which are red-light emitting, amber-light emitting and green-light emitting LEDs, respectively, available from Lite-On Technology Corp. located in Taipei, Taiwan.
  • One or more capacitors, e.g., C 1 may be provided for filtering the power source potential.
  • electrical power may be provided at a relatively higher voltage designated Vcc for operating LEDs D 1 -D 22 , e.g., at about +12 volts, and at a lower potential designated V+ for operating integrated circuits U 2 and U 3 , e.g., at about +3.3 volts DC with respect to ground potential designated as V ⁇ or GND.
  • Vcc voltage designated for operating LEDs D 1 -D 22
  • V+ potential designated V+
  • V ⁇ or GND ground potential
  • all of the LEDs D 1 -D 22 in any given segment are connected in series and are energized together, e.g., from potential Vcc, however, any suitable combination of series and parallel connected LEDs may be utilized.
  • each functional yarn FY preferably includes an addressable latched driver (ALD) integrated circuit U 1 (e.g., FIG. 3 ) that has a unique address or identifier by which it can be addressed and by which control signals for the elements on the functional yarn FY may be communicated to it.
  • Integrated circuit U 1 performs comparable functions to those described herein in relation to integrated circuits U 2 /U 3 .
  • integrated circuit U 1 includes circuitry for recognizing its address or identifier, and then responding to the signal or signals associated therewith for selectively energizing ones of the LEDs D 1 -D 22 .
  • integrated circuit U 1 also includes the transistors Q 1 -Q 7 and the resistors R 1 -R 7 , or the equivalents thereof, for providing a controllable current drive to LEDs D 1 -D 22 .
  • Each ALD circuit U 1 /U 2 /U 3 responds to a serially applied addressing signal data stream SIGNAL that contain its address or identifier to receive and decode the addressing signal for turning on and/or turning off (in whole or in part) the LEDs of the particular segments included thereon.
  • Each segment may include one or more light sources, e.g., LEDs D 1 -D 22 , arranged in a number of segmcnts, e.g., seven or less, that can be independently controlled by the ALD circuit U 1 /U 2 /U 3 , e.g., with each segment connected to a different output of the ALD circuit U 1 /U 2 /U 3 .
  • FIG. 5 is a schematic diagram of an example display 500 including plural woven articles 510 , 520 530 providing character displays 512 , 522 , 532 .
  • Each of woven articles 510 , 520 , 530 comprises a length of woven fabric including a plurality of woven character displays 512 , 522 , 532 , e.g., of the sort described in relation to FIGS. 1A-1B , 2 and 3 above.
  • Each has functional yarn FY woven therein as described above and is addressable via electrical conductors thereof, e.g., conductors 240 , 242 , 244 disposed proximate a bottom edge thereof.
  • Plural displays 510 a, 510 b, 510 c of like type may be of the same type of display 510 .
  • displays 510 a, 510 b and 510 c may be lengths of woven display cut from a longer length of woven display 510 .
  • Display 520 may be, e.g., a length of woven display 520 cut from a longer length of a relatively larger woven display 520 .
  • Display 530 may be, e.g., a length of woven display 510 cut from a longer length of a woven display 530 (or may be a length of woven display 510 cut from a longer length of woven display 510 if the desired characters 532 are the same size as characters 512 ).
  • any one or more of displays 510 , 520 , 530 may be woven with the length, width and number of character areas 512 , 522 , 532 appropriate for a given display 500 , or any one or more of characters 512 , 522 , 532 may be woven as individual characters.
  • lengths of displays 510 , 520 and 530 are cut from longer lengths of woven displays 510 , 520 , 530 and are assembled onto a backing substrate 550 , e.g., by being sewn and/or adhesively attached and/or thermally welded thereto.
  • a display 500 of relatively large size may be provided from a few standardized display components 510 , 520 that can be manufactured in greater quantity and at a relatively lower per unit cost.
  • Substrate 550 is preferably a fabric so as to have drape and ease as do the component displays 510 , 520 , 530 , e.g., for easy foldability and storage.
  • Display 500 may also include an optional frabis substrate 552 overlying substrate 550 and displays 510 , 520 , 530 and having openings through which the characters 512 , 522 , 532 thereof may be viewed.
  • overlying substrate 552 is typically a fabric covering that hides from view the electrical conductors 540 and the edges of displays 510 , 520 , 530 , e.g., for providing a more “finished” appearance or other aesthetic reasons.
  • fabric substrate 552 may be utilized in place of (without) substrate 550 , in which case whatever is described as being attached to substrate 550 would be similarly attached to cover substrate 552 .
  • Either backing substrate 550 or cover substrate 552 , or both, may be referred to as a common substrate because it may be common to each of a plurality of displays 510 , 520 , 530 , e.g., any one or more of a plurality of displays 510 , 510 a, 510 b, 510 c, 520 , 530 may be attached thereto or supported thereby.
  • Electrical conductors 540 receive and distribute electrical power V+ and V ⁇ to the various displays 510 , 520 , 530 and also communicate addressing signals SIGNAL thereto.
  • the electrical conductors 540 include a set of three parallel conductors having various branches for each of displays 510 , 520 , 530 .
  • V+, V ⁇ and SIGNAL are applied to a set of three parallel conductors 542 disposed proximate the lower edge of display 500 , from which they are applied to displays 510 a, 510 b, 510 c via sets of three parallel conductors 544 a, 544 b, 544 c, respectively, and to display 520 via a set of three parallel conductors 546 , and to display 530 via a set of three parallel conductors 548 .
  • Electrical conductors 540 and the branches 542 , 544 , 546 , 548 thereof may be woven in fabric substrate 550 or may be otherwise attached thereto, e.g., sewn and/or adhesively attached and/or thermally welded.
  • Electrical conductors 540 and the branches 542 , 544 , 546 , 548 thereof include three conductors that connect to the electrical conductors 240 , 242 , 244 , respectively, of each of the displays 510 , 520 , 530 , e.g., by solder and/or electrically conductive adhesive and/or by physical contact where electrically conductive yarn in the warp and weft cross each other, for applying electrical power V+, V ⁇ and addressing signals SIGNAL thereto.
  • Insulated crossovers of electrically conductive yarn may be provided by electrically insulating yarn interwoven to provide electrical isolation in the regions of such crossovers.
  • a display 10 , 200 , 500 as described herein is suitable for signage or other display application, and may be conformed to an irregularly-shaped support or object because the woven article or fabric is flexible and conformable, as is any textile i.e. it exhibits ease and drape. Further, such display may be folded, rolled up or otherwise reduced in size for convenient storage and/or shipping. Because the display 10 arrangement is suitable for fabrication on a loom, including a modem, high-speed, programmable loom, electronic signs and other displays may be made in relatively high volume and at relatively low cost.
  • the addressable features described herein provide for woven/fabric displays to be manufactured in relatively long lengths and then cut to a desired length and/or size, and either utilized as is or be sewn or otherwise assembled with other similar displays, as may be desired.
  • the described display is addressable and/or programmable, e.g., using a laptop computer, it is suitable for displaying a static or periodically changing message that a user might desire to display.
  • the addressing may be programmed after the display or elements thereof have been fabricated, the fabricated woven display elements may be interchangeable until they are committed to a particular display or usage, thereby to reduce the relative level of inventory desired to meet various levels of customer demand for such displays.
  • FIGS. 6A, 6B and 6 C are schematic diagrams of an example method 700 , 700 ′, 700 ′′ for providing an addressing protocol suitable for use with the example displays 10 , 200 , 500 of FIGS. 1-5 . and are described in general and specifically in the following paragraphs.
  • a serial addressing protocol includes at least address or identifier ID bits designated associated with particular ones of the functional yarn FY and/or characters 10 , 512 , 522 , 532 , and character data bits.
  • addressing is in the manner of Table 1 below, nine bits are sufficient to define character blocks for displays of up to about 500 characters, four bits are sufficient to specify each column grouping CG, CL of nine columns, and seven bits are sufficient to specify the character data. Thus, addressing in this manner requires 20 bits for each of nine columns, or 180 bits per character. Also typically, where addressing is in the manner of Table 2 below, nine bits are sufficient to define character blocks for displays of up to about 500 characters, and six bits are sufficient to specify the character data. Thus, addressing in this manner requires only 15 bits per character.
  • the foregoing character identifier and data bits may be preceded by synchronizing bits, and may be followed by parity or other error checking bits, and an end-of-data sequence series of bits, as may be necessary or desired in the case of a particular type of addressable electronic device selected.
  • the addressing protocol word preferably includes at least an address for an ALD circuit U 1 /U 2 /U 3 and character data defining the segment or segments, e.g., the LEDs, of a particular functional yarn FY and/or column that are to be turned on or turned off. Where the LEDs may be partially turned on, the addressing protocol word also includes data characters indication the level (e.g., percent on) for each LED segment. In addition, the addressing protocol word also preferably includes error checking and/or correcting bits, and may also include synchronization bits and/or beginning-of-word and/or end-of-word indicating bits. Addressing protocol words are typically transmitted serially on the addressing conductor SIGNAL at a rate compatible with the electrical characteristics thereof. Faster addressing may be provided by employing plural serial and/or parallel addressing conductors.
  • Each ALD U 1 /U 2 /U 3 compares the address data or identifier ID of each addressing protocol data word to its own address or identifier ID and, if a match is found, it then passes the accompanying character data stream to its internal current driving circuitry. If the serial addressing data word contains the address or ID of an ALD U 1 /U 2 /U 3 , then that ALD latches the character data in its storage registers and applies appropriate electrical signals to its current driving circuitry to apply an appropriate current to the LEDs in the segment that are to be energized in accordance with the character data word. This driving condition is maintained until a different current driving instruction is received via a subsequent addressing signal containing the ALD U 1 /U 2 /U 3 address or identifier ID. In the example embodiment described, the current driving signals are suitable for a seven-segrnent LED driver arrangement.
  • each ALD integrated circuit disposed on a functional yarn FY may be programmed or otherwise associated with the ALD integrated circuit prior to its being associated with and attached to a particular functional yarn FY, e.g., in its manufacture and/or testing. In such case, the address or identifier ID of each functional yarn FY would likely be determined after a functional yarn FY has electrical and electronic components thereon, e.g., for each completed functional yarn FY.
  • the addresses or identifiers ID of each functional yarn FY may be provided to or may be obtained by the display driver software that will control the message to be displayed by the display 10 , 200 , 500 , e.g. from a laptop or other computer.
  • the display driver software sorts and/or organizes the address associated with each functional yarn into the characters comprising the display and into the column groups thereof.
  • the address of each of the ALD circuits U 1 /U 2 /U 3 of each functional yarn FY is predetermined when the functional yarn FY is provided 702 for weaving, but the value thereof is unknown, e.g., at the time of weaving.
  • the functional yarn FY are woven 704 into a woven article in a correct sequence of types of functional yarn FY to provide the desired character display 10 , 200 , 500 arrangement as described.
  • the addresses of the functional yarn FY in the character(s) of the display remain unknown.
  • each functional yarn is determined 706 and the value thereof is stored 706 in association of the physical position of the functional yarn FY in the woven article.
  • determination 706 may be made by probing each functional yarn FY, e.g., by applying a sequence of possible addresses and observing or measuring which functional yarn FY responds to each particular address by illuminating one or more of its segments as commanded, until all possible addresses and/or all functional yarn FY have been tested.
  • a list or table of the addresses and the physical location or order of the functional yarn FY in each character of a display 10 , 200 , 500 , 510 , 520 , 530 is compiled and is stored 706 in a programming device, such as a laptop computer, that will be utilized to compose messages to be displayed. Characters may then be displayed by generating 708 appropriate addresses using the table of stored addresses to generate the appropriate FY addresses in response to the characters commanded to be displayed.
  • this aspect of method 700 substantially eases the complexity of the pre-weaving steps, it tends to require relatively difficult and/or complex post-weaving steps. Because the addressing of every display is likely to be substantially different from that of any other display, the software for generating addresses for operating any display will require the specific list or table that includes the addresses and positions or order of every functional yarn FY for that particular display.
  • the address of each of the ALD circuits U 1 /U 2 /U 3 of each functional yarn FY is predetermined and is known when the functional yarn FY is provided 702 for weaving.
  • the functional yarn FY are woven 704 into a woven article in a correct sequence of types of functional yarn FY to provide the desired character display 10 , 200 , 500 arrangement as described.
  • the address of each functional yarn is recorded 706 ′ as that functional yarn is woven 704 into the woven article.
  • the addresses of each functional yarn FY and its position or order in the character(s) of the display is known.
  • each functional yarn e.g., the functional yarn FY are provided in a sequence of known addresses (which may or may not be sequential or in any predetermined order), or by electrically probing each functional yarn FY before or as it is woven.
  • the address of each functional yarn and its position or order in the character and display is known and has been recorded 706 ′, e.g., in a list or table, e.g., in a programming device.
  • the recorded 706 ′ list or table of the addresses and the physical location of the functional yarn FY in each character of a display 10 , 200 , 500 , 510 , 520 , 530 recorded 706 ′ in a programming device, such as a laptop computer, may be utilized to compose messages to be displayed. Characters may then be displayed by generating 708 appropriate addresses using the table of recorded addresses to generate the appropriate FY addresses in response to the characters commanded to be displayed.
  • each ALD integrated circuit be programmable after the ALD U 1 /U 2 /U 3 is assembled into a functional yarn FY and the functional yarn FY has been woven into a fabric or woven article.
  • Such programmability may be provided by connectiong (shorting) or by opening a number of connections.
  • connectiong shorting
  • a number of ground connections and/or fusible links may be provided that can be severed or otherwise rendered an open circuit after the functional yarn FY has been woven into a woven article comprising a display.
  • Such connections may be severed by scribing or other mechanical means, by a laser, by an electrical current, or by another known method.
  • an advantage of this arrangement is that the functional yarn in a particular column grouping CL may be given the same address or identifier ID, because they will always be energized in the same manner.
  • the address of each of the ALD circuits U 1 /U 2 /U 3 of each functional yarn FY is not known when the functional yarn FY is provided 702 for weaving, but the value thereof is programmable, e.g., at any desired time.
  • the functional yarn FY are woven 704 into a woven article in a correct sequence of types of functional yarn FY to provide the desired character display 10 , 200 , 500 , 510 , 520 , 530 arrangement as described.
  • the addresses of the functional yarn FY in the character(s) of the display remain to be programmed.
  • each functional yarn is programmed 706 ′′ preferably in a standardized sequence or order, e.g., from a predetermined list or table of values thereof in known relation to the physical position or order of the functional yarn FY in the woven article 10 , 200 , 500 .
  • a programming device which may be a laptop computer that will also be utilized to compose messages to be displayed. Characters may then be displayed by generating 708 appropriate addresses using the predetermined list or table of addresses to generate the appropriate FY addresses in response to the characters commanded to be displayed.
  • An advantage of this aspect of the method 700 ′′ is that it substantially eases the complexity of the pre-weaving steps and is only moderately difficult in the post-weaving steps.
  • a further advantage is that because the list or table of addresses is standardized and is nrogrammed into each display; then every disnlay may be substantially the same and may be operated by any programming device having the standardized address list or table, thereby to standardize displays 10 , 200 , 500 and allow relatively easy interchangeability.
  • each functional yarn FY in woven article 10 , 200 , 510 , 520 , 530 is known in relation to its position or order in the woven article and so may be employed for generating addressing signals for addressing display 10 , 200 , 500 , 510 , 520 , 530 .
  • the addressing arrangement may take any one of several forms.
  • Table 1 which illustrates a typical set of character data commands for a single character display 10 , 512 , 522 , 532 , displaying the first character (“char 1”) by specifying each column group (“CG_”) into which functional yarn FY are defined and a data value (“data_”) associated therewith: TABLE 1 ALD Command without ROM Command Operation char 1, CG1, data 127 All segments on char 1, CG2, data 9 Segments 1 & 4 ON, all other segments OFF. char 1, CG3, data 9 Segments 1 & 4 ON, all other segments OFF. char 1, CG4, data 9 Segments 1 & 4 ON, all other segments OFF.
  • each functional yarn FY includes a memory element, e.g., a ROM, PROM, EEPROM, into which is stored transformation data for converting a character designation (e.g., designation “32” corresponding to a letter “A” or the data value corresponding to a numeral “5”) into segment designations including appropriate row RW and column CL data.
  • the memory element may be included in the ALD U 1 /U 2 /U 3 or may be physically separate therefrom. Because the number of data bits to be communicated to the functional yarn FY to define a character to be displayed is relatively lower, this arrangement may be suited to a relatively more quickly changing message, as well as to a static or slowly changing message, e.g., a scrolling message.
  • Table 2 which illustrates a typical set of character data commands for a single character display 10 , 512 , 522 , 532 , displaying the first character (“char 1”) by specifying the character (letter “A”) that the functional yarn FY of a character display are to display as defined by a data value (“data_”) associated therewith: TABLE 2 ALD Command with ROM Command Operation char 1, data 32 Display Letter “A”
  • the ROM decodes the data value (e.g., “data 32”) to define the column groups CG, CL, and the segments RW thereof, that are to be energized for displaying the letter “A” each letter or block is addressed independently, thereby reducing the number of commands by a factor related to the number of columns CL, CG. Additionally and advantageously, this arrangement allows for a single software interface for addressing any display 10 , 200 , 500 without the need to modify or customize the software for each application.
  • data value e.g., “data 32”
  • a type DS2406 addressable switch U 2 is disposed on functional yarn FY and a type DS9097 serial port adaptor is employed to apply addressing and control signals to the SIGNAL conductor.
  • These devices are available from Maxim Integrated Products, and may be utilized in combination with driver software also available from Maxim Integrated Products that provides the necessary digital signals and protocols needed for operating a display 10 from a Windows-based computer, e.g., a laptop computer, using the BASIC or the C programming language.
  • the address or identifier ID of each functional yarn FY may be known in sequence and a database thereof may be made as the display 10 , 200 , 512 , 522 , 532 , is woven. If the address or identifier ID is assigned in accordance with a predetermined sequence, e.g., during weaving, then the database thereof may be the same for each display 10 , 512 , 522 , 532 , and the need for a database peculiar to each display 10 , 512 , 522 , 532 , may be avoided.
  • the database thereof may made as the display 10 , 512 , 522 , 532 , is woven, however, the database for each display 10 , 512 , 522 , 532 will be peculiar to that display.
  • the address or identifier ID of the ALD may be determined after weaving by polling the functional yarn FY thereof and a database of the address or identifier ID may be made for the display 10 , 512 , 522 , 532 .
  • each present functional yarn FY is addressed so as to energize the elements thereon, and the elements that are energized are detected, e.g., either manually or automatically by a detector or sensor, and the position or ordering of each functional yarn FY in the woven article 10 , 200 , 512 , 522 , 532 , is noted in the database in relation to the address or identifier ID thereof.
  • the noting or detection of the positions or order may be performed contemporaneously with the polling or may be performed thereafter.
  • the foregoing addressing arrangement addresses a number of characters irrespective of the size and/or shape of each character, which may be the same or different. This is because every character display 10 , 512 , 522 , 532 may be the same electrically at its external electrical interface even though it may be very different in size and/or arrangement of segments.
  • an advantage accrues in that the addressing is the same for any display or sign 10 , 200 , 500 , of few or many characters of any combination of sizes and arrangements, thereby simplifying the programming of a message, the programming software and the addressing interface.
  • the various characters 10 , 200 512 , 522 , 532 may be electrically connected in parallel and may be independently addressed via a serial addressing arrangement SIGNAL, the present arrangement may accommodate widely different styles, sizes, lengths and other variations in the display 10 , 200 , 500 .
  • the described serial addressing arrangement is well suited to a static display of any size over a range of sizes, i.e. the display is “scalable” in that the serial addressing arrangement is the same independent of the size or number or position of the characters.
  • the same serial addressing arrangement is suitable irrespective of the size of each character and the number of characters.
  • the same addressing may be utilized whether the character display is relatively smaller (e.g., about 5 cm by 10 cm), or is relatively larger (e.g., about 50 cm by 100 cm), or includes characters of various sizes, and whether the display includes one character or many characters which may be of the same or of different sizes, or any combination thereof.
  • the described serial addressing arrangement is well suited to a static display and/or to a slowly changing display, such as a scrolling message display, where control signal data rate and current-carrying requirements are compatible with the number and size of conductors woven into the woven displays described and the electrical characteristics (e.g., resistance and capacitance) thereof.
  • Increased current-carrying capacity of the described arrangement may be provided by electrically conductive yarn of greater cross-sectional dimension and/or by weaving plural electrically conductive yarn in parallel.
  • communication data rates permitting video-rate refreshing would be needed for video image presentations, as might be provided by a passive matrix addressing architecture.
  • novel electronic display architecture and addressing arrangement described allows for full character-based programmability for a bistable, emissive, limited connection, fabric-based sign or other display, and in addition to the variations thereof described, other variations will be apparent to one of skill in the art.
  • the term “about” means that dimensions, sizes, formulations, parameters, shapes and other quantities and characteristics are not and need not be exact, but may be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art.
  • a dimension, size, formulation, parameter, shape or other quantity or characteristic is “about” or “approximate” whether or not expressly stated to be such.
  • display 10 is described in terms of strips or functional yarn FY woven in a fabric or textile 200 , 500 , display 10 need not employ strips or functional yarn FY and, even if strips or functional yarn FY are employed, the strips or functional yarn FY need not be woven into a fabric or textile. While the example display 10 is described as having 20 strips or functional yarn FY arranged in nine column groups, as few as nine strips or functional yarn may be employed, and further, a non-woven embodiment of the display may be provided on one or more substrates.
  • character display 10 is illustrated as rectangular and bisected relatively symmetrically to define relatively uniform size quadrants Q, display 10 may be slanted or tilted, may be asymmetrically divided, may have quadrants Q of different sizes and proportions, may have segments that are curved or straight or a combination thereof, and may otherwise be made regular or irregular. Further, the designations “top” and “bottom” and “left” and “right” as well as the terms “horizontal” and “vertical” are for convenience of description and are not intended as limiting of the orientation of any display 10 . Similarly, rows may be disposed horizontally and columns vertically, or in any desired orientation therebetween.
  • light-emitting diodes as light sources
  • other suitable light sources may be employed. Examples may include incandescent lights, neon lights, electroluminescent devices, optically reflective elements, optically transmissive elements, and the like.
  • character displays While certain examples and/or embodiments are referred to as character displays, it is noted that what may be displayed thereby is not necessarily limited to characters, unless expressly limited thereto.
  • any spacing be provided between “characters” so that a pleasing display of a scrolling message or image or moving image may be displayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Woven Fabrics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

An addressable display comprises a woven article including functional yarn woven therein, each functional yarn having an addressable device for controlling display elements thereon. Addressing signals applied via conductive yarn of the woven article address the addressable devices of the functional yarn for selectively energizing the display elements.

Description

  • This Application is a continuation-in-part of U.S. patent application Ser. No. 10/366,441 filed Feb. 13, 2003 which claims the priority of U.S. Provisional Applications Nos. 60/379,723 filed May 10, 2002 and 60/419,159 filed Oct. 17, 2002, and further claims the benefit of U.S. Provisional Application No. 60/503,331 filed Sep. 16, 2003, all of which are hereby incorporated herein by reference.
  • The present invention relates to a display and, in particular, to an addressable display.
  • In many fields of endeavor, from military to sport to apparel, a desire exists for electronic circuits to be incorporated into fabric and into articles that may be made of fabric. In some instances, such as electric blankets and electrically conductive fabric, electrically resistive and/or electrically conductive wires are been woven into fabric with insulating yarn to provide the desired resistance heating and/or conductivity characteristics. In these relatively simple arrangements, the characteristics of the resistive heating yarn determines the heating characteristics of the woven electric blanket and the conductivity of the electrically conductive yarn substantially determines the conductivity characteristic of the fabric. In other words, the number and size of electrically conductive yarn determine the conductivity of the fabric.
  • Apart from the aforementioned relatively simple arrangements, where electrical functionality of greater complexity has been desired, electrical circuits have been added to fabric after the fabric is woven. Among the approaches are the lamination of electrical circuit substrates to a fabric, e.g., as described in U.S. patent Publication No. US 2002/0076948 of B. Farrell et al entitled “Method of Manufacturing a Fabric Article to Include Electronic Circuitry and an Electrically Active Textile Article,” and the embroidering and/or applique of electrical conductors and circuits onto a fabric, e.g., as described in U.S. Pat. No. 6,210,771 to E. R. Post et al entitled “Electrically Active Textiles and Articles Made Therefrom” and in an article by E. R. Post et al entitled “E-Broidery: Design and Fabrication of Textile-Based Computing” published in the IBM Systems Journal, Volume 39, Numbers 3 & 4, pages 840-860, 2000. In addition, an arrangement attaching electrical components to woven fabric including conductive yarn, such as by connecting the components to the conductive yarn by soldering arid/or by electrically conductive adhesive, is described in U.S. Pat. No. 6,381,482 to Jayaraman et al entitled “Fabric or Garment With Integrated Flexible Information Infrastructure.”
  • In the aforementioned arrangements, the electrical or electronic function is added after the fabric has been woven, e.g., by embroidery or by applique or by mechanical attachment, thereby adding additional steps and additional complexity to the manufacturing process. In addition, the particular arrangement thereof appears to be suited to one specific application or usage with corresponding specific manufacturing, and does not appear to lend itself to an efficient, relatively general manufacturing wherein the function and operation of the resulting fabric need not be specified or determined until after the fabric is woven, i.e. manufactured.
  • There remains a need for a woven electronic display that provides for an addressable display. In addition, it would be particularly advantageous if a display suitable for being provided as a woven article or fabric is easily and conveniently addressed via electrically conductive yarn or conductors that are part thereof. It would also be desifable it such addressable electronic display were suitable for use as a sign or other message display.
  • To this end, an addressable display may comprise a woven article including functional yarn woven therein, each functional yarn having an addressable device for controlling display elements thereon. Addressing signals applied via conductive yarn of the woven article address the addressable devices of the functional yarn for selectively energizing the display elements.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The detailed description of the preferred embodiment(s) will be more easily and better understood when read in conjunction with the FIGURES of the Drawing which include:
  • FIGS. 1A and 1B are schematic diagrams of an example arrangement for a 59-segment character display;
  • FIG. 2 is a schematic diagram of an example embodiment of the 59-segment display of FIG. 1 including light sources arranged in rows and columns;
  • FIG. 3 is a schematic diagram of a portion of an example woven article embodiment including at least a portion of a segment display including functional yarn having light sources arranged thereon to provide rows and columns of light sources;
  • FIG. 4, shown on two sheets designated as FIG. 4A and FIG. 4B, is a schematic diagram of an example circuit suitable for a functional yarn, such as that shown in FIG. 3;
  • FIG. 5 is a schematic diagram of an example display including plural woven articles providing character displays; and
  • FIGS. 6A, 6B and 6C are schematic diagrams of an example method for providing an addressing protocol suitable for use with the example displays of FIGS. 1-5.
  • In the Drawing, where an element or feature is shown in more than one drawing figure, the same alphanumeric designation may be used to designate such element or feature in each figure, and where a closely related or modified element is shown in a figure, the same alphanumerical designation primed or designated “a” or “b” or the like may be used to designate the modified element or feature. Similary, similar elements or features may be designated by like alphanumeric designations in different figures of the Drawing and with similar nomenclature in the specification. It is noted that, according to common practice, the various features of the drawing are not to scale, and the dimensions of the various features are arbitrarily expanded or reduced for clarity.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • FIGS. 1A and 1B are schematic diagrams of an example arrangement for a 59-segment character display 10 wherein the 59 segments are numbered according to their position in a row and column arrangement.
  • The segmented character display 10 having fifty nine segments arranged in rows and columns comprises twenty eight segments defining a periphery RP of a generally rectangular character display 10, the twenty eight segments including one segment disposed at each corner 111, 171, 179, 119 of the generally rectangular periphery RP, and four groups of five or more additional segments each disposed to define a respective side TS, RS, BS, LS thereof.
  • Eleven additional segments are disposed to define intersecting dividers that divide the generally rectangular character display 10 to define four quadrants Q thereof, wherein one segment 145 of the eleven additional segments is disposed generally centrally within the generally rectangular character display 10 and the ten other segments of the eleven additional segments are arranged to extend from the one generally centrally disposed segment 145 of the eleven additional segments to the respective sides TS, RS, BS, LS of the generally rectangular character display 10.
  • Five segments are disposed within each of the four quadrants Q, each quadrant including a generally centrally located segment 123, 127, 153, 157 and four segments radiating diagonally from the central segment 123, 127, 153, 157 toward each of the four corners 111, 115, 119, 141, 145, 149, 171, 175, 179 of each quadrant Q.
  • More particularly, the segments of display 10 are arranged into seven rows designated RW1 through RW7 and nine columns designated CL1-CL9, with row RW1 and column CL1 intersecting at the lower left corner of display character 10. Each segment is identified by a numeric designator “1yx” wherein “y” is the row number and “x” is the column number corresponding to rows RW1 through RW7 and columns CL1 through CL9, respectively. Thus, a row of segments could be referred to by row number or be segment numbers, e.g., row 3 by RW3 or by segments 13 x, and columns likewise, e.g., as column CL5 or as segments 1×5.
  • Twenty eight of the segments comprising rows RW1 and RW7 and columns CL1 and CL9 (segments 11 x, 17 x, 1 y 1, 1 y 9) define a rectangular periphery RP of character display 10. One relatively short segment 111, 171, 119, 179, is at each corner of the rectangle RP. Seven additional segments define the “top” horizontal side TS ( i.e. segments 172, 173, 174, 175, 176, 177, 178) and the “bottom” horizontal side BS ( i.e segments 112, 113, 114, 115, 116, 117, 118) of peripheral rectangle RP and five additional segments ( i.e. segments 121, 131, 141, 151, 161 and segments 129. 139, 149, 159, 169, respectively) define each of the vertical sides LS, RS of rectangle RP. Each of the four sides BS, RS, LS, TS of rectangle RP has a relatively short segment 115, 141, 149, 175 in a central position, and each also has four relatively long segments (e.g., 121, 131, 151 and 161; 172, 174, 176 and 178; and so forth) with a pair of two long segments (e.g., 121 and 131, 116 and 118; and so forth) disposed on opposing sides of the short central segment 115, 141, 149, 175. Each of the top and bottom sides TS, RS also has a relatively short segment 113, 117, 173, 177 disposed between each pair of relatively long segments (e.g., 112 and 114, 116 and 118, and so forth).
  • Eleven additional segments 142, 143, 144, 145, 146, 147, 148, 125, 135, 155, 165 divide the peripheral rectangle into four quadrants Q. Specifically, seven segments 142, 143, 144, 145, 146, 147, 148, bisect peripheral rectangle RP in the horizontal direction between the relatively short central segment 141, 149 of each vertical side RS, LS and five segments 125, 135, 145, 155, 165 bisect rectangle RP in the vertical direction between the relatively short central segments 115, 175 of the top and bottom sides TS, BS. Segment 145 is located where the four quadrants Q meet and is relatively centrally located within peripheral rectangle RP.
  • Inside each quadrant Q is a centrally located relatively short segment 123, 153, 127, 157 and four relatively long segments (e.g., 122, 132, 124, 134; 152, 162, 154, 164; and so forth) radiating diagonally from the short central segment 123, 153, 127, 157 toward each of the corners of the quadrant Q, i.e. at a short segment at each corner of each quadrant. For example, in upper right quadrant Q, segments 156, 166, 158, 168 radiate diagonally from the short central segment 157 toward each of the corners 145, 175, 179 and 149.
  • It is noted that while center segments 123 and 127 are described as being in row RW2 and center segments 153 and 157 are described as being in row RW5, they could be designated in rows RW3 and RW6, respectively, as may be convenient or desired.
  • Each segment 111-179 includes one or more sources that produce light when electrically energized. By selectively energizing certain ones of the segments 111-179, light produced by the energized segments 111-179 define desired characters. This arrangement provides a unique display for each letter of the English-language alphabet, in both upper case and lower case letters, and the numerals zero through nine, as well as other symbols and characters, such as “?” or “$” or “%” or “+” or “−” or “×” or “÷” or “*” or “<” or “>” or “&” or “↑” or “↓” or “←” or “→” or “Δ” or “Σ” or “λ” and so forth. The display may be addressed as a 9×7 matrix where four of the segments are missing, leaving 59 segments that may be selectively energized.
  • For example, the capital letter “O” may be displayed by energizing the 28 segments around the peripheral rectangle RP and a lower-case “o” may be displayed by energizing the 14 segments defining the periphery of one of the lower quadrants Q. A numeral zero “0” could be distinguished from a capital letter “O” by, for example, not energizing the corner segments 111, 119, 171, 179, or by energizing a central segment, e.g., segment 145. Alternatively, for example, zero may be represented by energizing the 14 segments 115-175, 119-179 disposed along the central vertical bisector and along the right side RS of rectangle RP and also energizing the six additional segments 116-118 and 176-178 on the right portion of top and bottom sides TS, BS, thereof.
  • As a further example, a capital “Z” may be displayed by energizing the 18 segments 111-119 and 171-179 along the top and bottom sides TS, BS of rectangle RP and the seven segments 122, 123, 134, 145, 156, 157, 168 along the diagonal between upper right corner 179 and lower left corner 111 thereof. A lower-case “z” may be displayed by energizing the five segments (e.g., segments 115-119 and 145-149) along each of the top and bottom sides of a lower quadrant Q and the three segments (e.g., 126, 127, 138 along the diagonal between the upper right corner and the lower left corner thereof.
  • In addition, certain plural character combinations may be displayed by a single character dipslay 10, such as displaying the numerals 11-19 by illuminating all of the segments 111-171 disposed along the left side LS to display the numeral “1” and illuminating selected ones of segments 115-179 disposed along the peripheries of the upper and lower right quadrants Q and disposed interior thereto to display the second numeral 1-9.
  • FIG. 2 is a schematic diagram of an example embodiment of the 59-segment display 10 of FIG. 1 including plural light sources arranged in nine columns CL1-CL9. The light sources LS (illustrated by circles) are disposed on sets on strips FY arranged side-by-side from top to bottom in the FIGURE, wherein one or more of selected types of strips FY comprise each of nine columns CL1-CL9. Strips FY are of several “types” described below, and designated as types A, B, C, D, E and F along the lower portion of FIG. 2. Strips FY of types A, B, C, D, E and F are herein referred to as strips or functional yarn FY-A, FY-B, FY-C, FY-D, FY-E and FY-F, respectively.
  • As illustrated, 20 strips FY comprise display 10, of which are two each of strips FY of type A and type F, and four each of strips FY of types B, C, D and E. Each strip FY has 22 light source LS positions, not all of which may be utilized on every strip FY. If all positions were to have a light source LS, then a 20×22 light element display 10 is provided. These 440 light sources (e.g., LEDs) are connected in 63 addressable segments, i.e. with seven addressable segments (of one to four LEDs each) on each strip FY. In one preferred embodiment, only 316 of the possible 440 LED positions have an LED thereat. These 316 LEDs are connected in 59 addressable segments, i.e. with seven or fewer addressable segments (of one to four LEDs each) on each strip FY. Other embodiments may be desired, e.g., for obtaining another 59-segment display or another display arrangement.
  • The twenty strips FY are associated with nine columns CL wherein each column may include one, two or three strips FY. Columns CL1 and CL9 each may comprise one type A strip FY-A and one type B strip FY-B. Columns CL2, CL4, CL6 and CL8 each may comprise one type C strip FY-C, one type D strip FY-D and one type E strip FY-E. Columns CL3 and CL7 each may comprise one type F strip FY-F, and column CL5 may comprise two type B strips FY-B. Thus, only six different types of strip FY are employed to provide the 20 strips FY comprising the nine columns CL1-CL9 of 59-segment character display 10. Strips FY in a given column may be addressed in the same manner so that only nine column groups need be addressed to energize any combination of the 59 segments.
  • Types A-F of strips FY are defined by the number and connection of light sources LS disposed thereon. As illustrated, up to 22 light sources LS may be disposed on each strip FY, however, except for strip FY type B, less than 22 light sources LS are provided. Light sources LS on each strip are grouped into seven or fewer groups thereby to define seven or fewer segments corresponding to rows RW1-RW7 described above, and the seven rows or segments are designated in FIG. 2 by the small numeral within each circle representing a light source LS. As illustrated, strips FY of types A-E each have seven independently addressable segments, and strip FY of type F has five independently addressable segments, wherein each independently addressable segment corresponds to a defined row RW.
  • In the example embodiment illustrated, all the types of strips FY include seven segments (groups) of light sources LS except for the type F strip FY which may include only five segments (groups). In general, a display may comprise plural strips FY having the same number of groups of light sources LS (e.g., arranged in seven segments) or may have one or more strips FY comprising fewer than seven segments. One factor affecting the number of segments may be manufacturing cost, e.g., considering the benefit of having all strips FY the same (and more complex) versus the cost savings from using fewer components on certain ones of the strips FY and manufacturing a plurality of (e.g., six) different types of strips FY. In addition to the cost of components, the costs of different versus identical pick-and-place patterns, different versus identical substrates, one type versus six types to handle and inventory, also may affect the overall manufacturing cost.
  • Each light source LS is typically provided by one or more light-emitting diodes (LEDs) mounted to strip FY and selectively energized by conductors and circuits thereon. Preferably, strip FY includes an electronic substrate on which are formed patterned conductors to which the LED light sources LS connect for selectively receiving electrical power. Typically, as described below, strip FY also includes integrated circuits and/or transistors for selectively applying electrical power to the LEDs for selectively energizing the LEDs to cause them to selectively produce light.
  • Placement of LEDs D1-D22 on each functional yarn FY in light source positions LS1-LS22 may be selected to make the characters displayed appear more aesthetically pleasing. Thus, the omission of light sources LS1 and LS22 from functional yarn FY-A leaves the four extreme corner positions vacant so that the shorter segments 111, 119, 171, 179, provided by three light sources at each corner when illuminated appear more rounded rather than rectangular. Further, certain ones of light sources LS may be assigned to selected segments to also avoid a squared appearance.
  • For example, certain rows of light sources LS may be designated as “mixed rows” MR wherein the light sources LS (LEDs) therein comprise a mix of LEDs from two adjacent segments or rows, e.g., for providing an appearance of rounded ends for certain segments. For example, in the “mixed row” MR including light sources LS connected in display rows RW1 and RW2, light sources LS3 of functional yarn FY-B of columns CL1, CL5 and CL9 are energized in the segment of row RW1 and light sources LS3 of functional yarn FY-A and FY-C of columns CL1, CL2, CL6, CL8 and CL9 are energized in the segment of row RW2. Similarly, in the “mixed row” including rows RW3 and RW4, light sources LS7 of functional yarn FY-B of columns CL1, CL5 and CL9 are energized in the segment of row RW4 and light sources LS7 of functional yarn FY-A and FY-C of columns CL1, CL2, CL6, CL8 and CL9 are energized in the segment of row RW3.
  • While these mixed rows MR serve to simplify the circuitry for energizing light sources LS and in certain cases may improve the aesthetics of particular characters of the font, certain of these mixed rows MR may be considered introduce a “defect” (e.g., undesired shape) into the font. The light sources LS of any or all of these mixed rows MR could be energized independently rather than as part of an adjacent row RW, if desired. E.g., as shown, rows LS7 and LS17 are not considered to introduce a defect whereas rows LS3, LS10, LS13 and LS20 are considered to introduce a defect into the font.
  • It is noted that while a preferred example display 10 is described in terms of “strips” and/or “functional yarn,” a physical embodiment of a display 10 as described above may be provided on one or more substrates.
  • FIG. 3 is a schematic diagram of a portion of an example woven article embodiment 200 including at least a portion of a segment display 10 including plural strips FY that are “functional yarn” having light sources LS arranged thereon to provide rows and columns of light sources. Functional yarn FY are interwoven with insulating yarn 210 in one of the warp and the weft, and with insulating yarn 220 in the other of the warp and the weft. Interwoven in article 200 are electrically conductive yarn 240, 242, 244 preferably in a direction transverse to the direction of functional yarn FY. Functional yarn FY are arranged adjacent each other, i.e. in side-by-side arrangement, and may be woven in either the warp or the weft of article 200, but are preferably woven in the weft.
  • “Functional yarn” FY is yarn including certain elements and/or devices for performing a function electrically or electronically. Specifically, functional yarn FY is yarn suitable for weaving and comprises a substrate that has electronic conductors and electronic devices thereon for performing a circuit function. Electronic devices may include resistors, capacitors, inductors, diodes, transistors, hybrid circuits, integrated circuits, devices including combinations thereof, and other electronic devices. Typically, one or more of the electrical conductors EC thereon provide one or more contact sites (contacts), e.g., contacts 230, 232, 234, at which electrical connection can be made with the electrical circuit(s) of functional yarn FY, e.g., for applying electrical potential or current thereto and/or for communicating signals to or from functional yarn FY.
  • Examples of functional yarn, textiles, woven articles, and a method for weaving textiles and woven articles including functional yarn, and addressing thereof, are described in U.S. patent application Ser. No. 10/366,441, filed Feb. 13, 2003 by Ian G. Hill et al, entitled “WOVEN ELECTRONIC TEXTILE AND ARTICLE,” which is U.S. patent publication 2004/0009729 published Jan. 15, 2004, which are hereby incorporated herein by reference in their entirety.
  • In the article 200 illustrated, which may be part of a larger article, four functional yarn FY disposed adjacent each other are separated from each other by three insulating yarn 220 all lying in the same direction, i.e. side by side. Insulating yarn 210 are interwoven transversely to functional yarn FY and insulating yarn 220. Electrically conductive yarn 240, 242, 244 are interwoven transversely to functional yarn FY and insulating yarn 220 in positions to overlie contact sites 230, 232, 234, respectively, of each functional yarn FY, and are separated from each other, and are electrically isolated from each other, by one or more insulating yarn 210.
  • The spacing between adjacent functional yarn FY (i.e. the “pitch” thereof) may be defined by the number of insulating yarn 220 woven therebetween and/or the width or diameter thereof, as well as by the tightness of the weave. Simmilary, the spacing between adjacent electrically conductive yarn 240, 242, 244 (i.e. the “pitch” thereof) may be defined by the number of insulating yarn 210 woven therebetween and/or the width or diameter thereof, as well as by the tightness of the weave.
  • The example functional yarn FY illustrated has three electrical contact sites (contacts) 230, 232, 234, proximate one end thereof, however, electrical contacts may be provided at or near one or both ends of functional yarn FY and/or at one or more locations intermediate its ends. Contacts 230, 232 may be for receiving electrical potential, e.g., with relatively positive potential V+ applied at contact 230 via conductive yarn 240 and with relatively negative potential V− applied at contact 232 via conductive yarn 242. Either one thereof may be considered as a reference potential, e.g., “ground” potential. Contact 234 may be for receiving an electrical signal via conductive yarn 244, e.g., a signal or signals for actuating and/or otherwise controlling one or more functions that may be preformed by the electrical circuit of functional yarn FY. In the example embodiment described, contact 234 receives via conductive yarn 244 an addressing signal that identifies a particular one or ones of functional yarn FY and that provides instructions for controlling the illumination of selected light sources LS on the addressed functional yarn FY.
  • Examples of suitable electrically conductive and electrically insulating yarn are also described in U.S. patent Publication 2004/0009729. Examples of preferred electrically conductive yarn, e.g., yarn 240, 242, 244 may include copper wire as well as braided or woven copper wire, such as a coaxial cable braided outer conductor or Litz wire where the current to be carried is of significant amperage. Two or more electrically conductive yarn may be woven contiguously for obtaining higher current-carrying capacity.
  • An integrated circuit U1 receives electrical potential and addressing signals via electrically conductive yarn 240, 242, 244, electrical conductors EC, and contacts 230, 232, 234, respectively. Circuit U1 decodes the addressing signals, and provides electrical signals responsive to the decoded addressing signals via various other electrical conductors EC for controlling the activation of various ones of light sources LS thereon. Each light source LS is connected, e.g., to receive potential V+ via an electrical conductor EC from contact 230 and to selectively receive a less positive actuating potential via an electrical conductor EC from integrated circuit U1.
  • As illustrated, woven article 200 includes rows RW1-RW4 and columns CL3-CL6 of a row-column matrix display. As illustrated, each functional yarn FY provides one column and includes four light sources LS identified to respective rows RW1-RW4 of a display 10, however, additional light sources, e.g., three light sources LS for rows RW5-RW7, of a display not shown.
  • Addressing signals may be communicated serially via conductive yarn 244 and contacts 234 to integrated circuits U1 on each of the functional yarn FY. The addressing signals may include an address portion and a control portion, and may include a synchronization portion and a verification portion such as a parity check and the like. The integrated circuit U1 of each functional yarn FY may have a unique address or identifying number associated therewith, e.g., as by programming into a ROM, PROM, EEPROM, or other memory therein or associated therewith. If the addressing signal contains the unique address or unique identifying number of a particular integrated circuit U1, then that integrated circuit U1 responds to its own address or identifying number to store (latch) the control signal portion associated therewith, while ignoring addressing signals containing other addresses or identifying numbers. Such circuit is sometimes referred to as an addressable latching decoder or ALD.
  • In response to the stored control signal addressed to it, each integrated circuit U1 decodes the associated control signal for performing the function represented thereby. For illustrated functional yarn FY, that response includes turning on and turning off various ones of light sources LS on that functional yarn FY, either for a given time or until a subsequent addressing signal containing a different control signal is received. Light sources LS may simply be turned on and off, thereby to provide the desired illuminated message. In the illustrated embodiment, integrated circuit U1 is preferably an addressable latching seven-segment decoder, e.g., for operating a display 10 as illustrated in FIGS. 1A-1B and 2.
  • Alternatively, the light sources LS of each segment may be turned partially on in a controlled manner, e.g., as by applying a reduced potential or a pulse-width or other time modulated potential thereto, or by controlling the current flowing therethrough, so as to controllably provide light at a desired level, e.g, at a level between 0% and 100% of the fully-energized light output. As a result, a display 200 can provide a gray-scale pattern so as to display images as well as characters. Where a graphics display is desired, each functional yarn preferably includes a full complement of light sources LS and further preferably, each light source LS is independently controllable via the action of an addressable latching decoder U1. Such display would be suitable, e.g., to display a scrolling character message not possible on the particular display illustrated in FIG. 2 which has less than the full complement of light sources LS.
  • The woven article 200 of FIG. 3 illustrates a portion 200 of a character, e.g., of a character display 10 as illustrated in FIGS. 1A, 1B and 2. Character display 10 may be woven as individual characters that are later assembled into a display having plural characters, or may be woven in a long fabric including many characters 10. In such arrangement, which is presently preferred, functional yarn FY are woven into the weft and electrically conductive yarn 240, 242, 244 are woven into the warp, and so the length in the warp direction may be as long as the warp yarn permit, which could be hundreds of meters or more.
  • Spacing between adjacent characters 10, 200 may be provided by regions having a number of insulating weft yarn 220 woven therein, i.e. a number greater than the number of insulating weft yarn 220 between adjacent functional yarn FY of a character display 10. The number of insulating yarn 220 selected to provide a desired spacing given the diameter/width of the weft yarn and/or the tightness of the weave. Displays having any desired number of characters 10, 200 may then be provided by cutting a length of the woven display that includes the desired number of characters, typically cutting across the warp yarn in one of the spaces between adjacent character displays 10, 200.
  • Further, punctuation such as a period, comma, semi-colon, colon or hyphen, for example, may be provided in a fixed position by functional yarn FY woven in the weft in any one or more of the spacing regions between adjacent characters 10, 200, e.g., with insulating weft yarn to both sides thereof for a desired spacing of the punctuation mark from the adjacent characters 10, 200, in the desired position. Typically, only one or two adjacent functional yarn FY would be sufficient to provide a punctuation mark, and each would need to have only those light sources LS in one or a few rows RW operable, and so would only require a few of LEDs D1-D22.
  • While the foregoing arrangement may be preferred, other arrangements of woven character displays as described could be provided. For example, a set of five strips each having seven LED segments thereon could be employed to provide a 5×7 element matrix character display, or seven strips each having nine LED segments could provide a 7×9 element matrix display; or any other desired character display arrangement may be provided by selecting the number of strips and light source arrangement thereon. A 5×7 element matrix character display would require only 35 LEDs, i.e. seven on each of five independently addressed functional yarn FY. More aesthetically pleasing characters, e.g., characters appearing to have rounded corners, can be provided by additional LEDs in any of the described character displays, of which display 10 of FIG. 2 is an example.
  • FIG. 4 is a schematic circuit diagram of an example circuit suitable for an electrically functional yarn FY, such as that shown in FIG. 3. A functional yarn substrate providing an electrical conductor pattern for realizing this example circuit when all the illustrated electrical components are mounted thereon is also suitable for providing several different types of functional yarn FY, e.g., simply by omitting selected ones of the resistors and LEDs shown and by appropriately selecting the values of certain resistors, e.g., including to provide a short circuit (zero ohm value, as by providing a jumper wire).
  • The addressing, latching and decoding functions of circuit U1 described herein are provided by integrated circuits U2 and U3. Integrated circuit U2 may be an addressable switch that receives addressing signals at data pin 2 and provides signals at output pins PIO-A and PIO-B responsive to the addressing signals. Integrated circuit U3 may be a latched shift register that provides outputs for driving the seven-segments of LEDs responsive to signals PIO-A and PIO-B from integrated circuit U2 for selectively actuating ones of transistors Q1-Q7 which correspond to the seven display segments. Segment transistors Q1-Q7 when actuated selectively energize ones of LEDs D1-D22 for producing light from selected ones of the seven segments LS1-LS7.
  • Each of the seven segments is controlled by a respective drive transistor Q1-Q7 and may include one, two, three or four LED light sources including ones of LEDs D1-D22. Resistors R1-R54 have resistance values selected to provide the desired current flow in the present ones of LEDs D1-D22 and for biasing integrated circuit U2. Resistance values may range between zero ohms, e.g., a wire jumper, and an open circuit provided by an omitted resistor, however, in a typical example circuit most resistance values are between zero and 200 ohms, while biasing resistors, e.g., R8, R9, are typically greater than about 1000 ohms, e.g., in the range of about 1000 to 10,000 ohms, to “pull up” the voltage at the input terminals of integrated circuit U3. Typically, resistors R1-R7 connected to the emitters of transistors Q1-Q7 are about 200 ohms for setting a desired current level of about 20 ma for the ones of LEDs D1-D22 that are present given the typical output voltage of about 4.7 volts provided at the output terminals of integrated circuit U3.
  • Resistors R10-R54 in the collector circuits of Q1-Q7 may be omitted (i.e. provide a relatively high resistance value (e.g., open circuit)) or may be a very low resistance value (e.g., wire jumper) for determining which of transistors Q1-Q7 energize certain ones of LEDs D1-D22 which are provided to provide the desired functionality (e.g., type A through F) of a yarn FY. In addition, ones of LEDs D1-D22 may be omitted or may be replaced by a low resistance value, e.g., a wire jumper, for selecting which of LEDs D1-D22 are energized by which one of transistors Q1-Q7.
  • The circuit of FIG. 4 is suitable for use in any of the type A through type F types of functional yarn FY-A through FY-F described above, wherein the type (or functionality) of a functional yarn is defined by the ones of the LEDs D1-D22 that are included thereon. For purposes of description, consider the 22 light source positions in each of the 20 columns CL of display 10 of FIG. 2 as being numbered from number 1 at the bottom of the Figure to number 22 at the top of the Figure, corresponding to LEDs D1-D22, respectively. Then, e.g., a type A functional yarn FY-A would include LEDs D2-D21 and would include a zero-ohm resistor in the places of LEDs D1 and D22. Resistors R10, R12, R16, R20, R22, R26, R28, R30, R32, R37, R39, R42, R46, R48, R49, R51 and R53 thereof are zero-arm resistors, and resistors R11, R13, R14, R15, R17, R18, R19, R21, R23, R24, R25, R27, R29, R31, R33, R34, R35, R36, R38, R40, R41, R43, R44, R45, R47, R50, R52 and R54 are omitted. Further, a type B functional yarn FY-B would include LEDs D1-D22, a type C functional yarn FY-C would include LEDs D1-D4, D9-D14 and D19-D22 and would omit LEDs D4-D8 and D15-D18, and so forth. Thus the display 10 which has 20×22=440 possible light source positions may provide a versatile character display utilizing only 316 LEDs D1-D22 in 316 selected positions.
  • Suitable electronic devices include, for example, for device U2 a type DS2406 dual addressable switch plus 1 K-bit memory integrated circuit available from Maxim Integrated Products, Sunnyvale, Calif. and Dallas Semiconductor, Dallas, Tex., and for device U3 a type SN74LV595ARGYR latched shift register available from Texas Instruments, Dallas, Tex. Transistors Q1-Q7 may be any general purpose NPN transistor of which a type FMMT449SOT NPN transistor is an example. Suitable LEDs are available from several commercial sources including, for example, types LTST-C 150KRKT, LTST-C150KYKT, and LTST-C150KGKT, which are red-light emitting, amber-light emitting and green-light emitting LEDs, respectively, available from Lite-On Technology Corp. located in Taipei, Taiwan. One or more capacitors, e.g., C1, may be provided for filtering the power source potential.
  • While only a single source of electrical power is necessary to operate a functional yarn FY in a display as described, it may be desirable in certain instances to provide electrical power at more than one potential. In the illustrated circuit of FIG. 4, for example, electrical power may be provided at a relatively higher voltage designated Vcc for operating LEDs D1-D22, e.g., at about +12 volts, and at a lower potential designated V+ for operating integrated circuits U2 and U3, e.g., at about +3.3 volts DC with respect to ground potential designated as V− or GND. Typically, all of the LEDs D1-D22 in any given segment are connected in series and are energized together, e.g., from potential Vcc, however, any suitable combination of series and parallel connected LEDs may be utilized.
  • Thus, each functional yarn FY preferably includes an addressable latched driver (ALD) integrated circuit U1 (e.g., FIG. 3) that has a unique address or identifier by which it can be addressed and by which control signals for the elements on the functional yarn FY may be communicated to it. Integrated circuit U1 performs comparable functions to those described herein in relation to integrated circuits U2/U3. Preferably, integrated circuit U1 includes circuitry for recognizing its address or identifier, and then responding to the signal or signals associated therewith for selectively energizing ones of the LEDs D1-D22. Most preferably, integrated circuit U1 also includes the transistors Q1-Q7 and the resistors R1-R7, or the equivalents thereof, for providing a controllable current drive to LEDs D1-D22.
  • Each ALD circuit U1/U2/U3 responds to a serially applied addressing signal data stream SIGNAL that contain its address or identifier to receive and decode the addressing signal for turning on and/or turning off (in whole or in part) the LEDs of the particular segments included thereon. Each segment may include one or more light sources, e.g., LEDs D1-D22, arranged in a number of segmcnts, e.g., seven or less, that can be independently controlled by the ALD circuit U1/U2/U3, e.g., with each segment connected to a different output of the ALD circuit U1/U2/U3.
  • FIG. 5 is a schematic diagram of an example display 500 including plural woven articles 510, 520 530 providing character displays 512, 522, 532. Each of woven articles 510, 520, 530 comprises a length of woven fabric including a plurality of woven character displays 512, 522, 532, e.g., of the sort described in relation to FIGS. 1A-1B, 2 and 3 above. Each has functional yarn FY woven therein as described above and is addressable via electrical conductors thereof, e.g., conductors 240, 242, 244 disposed proximate a bottom edge thereof.
  • Plural displays 510 a, 510 b, 510 c of like type may be of the same type of display 510. E.g., displays 510 a, 510 b and 510 c may be lengths of woven display cut from a longer length of woven display 510. Display 520 may be, e.g., a length of woven display 520 cut from a longer length of a relatively larger woven display 520. Display 530 may be, e.g., a length of woven display 510 cut from a longer length of a woven display 530 (or may be a length of woven display 510 cut from a longer length of woven display 510 if the desired characters 532 are the same size as characters 512). Alternatively, any one or more of displays 510, 520, 530 may be woven with the length, width and number of character areas 512, 522, 532 appropriate for a given display 500, or any one or more of characters 512, 522, 532 may be woven as individual characters.
  • In a preferred arrangement, lengths of displays 510, 520 and 530 are cut from longer lengths of woven displays 510, 520, 530 and are assembled onto a backing substrate 550, e.g., by being sewn and/or adhesively attached and/or thermally welded thereto. As a result, a display 500 of relatively large size may be provided from a few standardized display components 510, 520 that can be manufactured in greater quantity and at a relatively lower per unit cost. This simplifies the weaving of the display elements 512, 522, 532 as compared to the direct weaving of a complete display 500, e.g., by reducing the number of types of functional yarn FY needed and needing to be handled and organized for weaving. Substrate 550 is preferably a fabric so as to have drape and ease as do the component displays 510, 520, 530, e.g., for easy foldability and storage.
  • Display 500 may also include an optional frabis substrate 552 overlying substrate 550 and displays 510, 520, 530 and having openings through which the characters 512, 522, 532 thereof may be viewed. Such overlying substrate 552 is typically a fabric covering that hides from view the electrical conductors 540 and the edges of displays 510, 520, 530, e.g., for providing a more “finished” appearance or other aesthetic reasons. Alternatively and optionally, fabric substrate 552 may be utilized in place of (without) substrate 550, in which case whatever is described as being attached to substrate 550 would be similarly attached to cover substrate 552.
  • Either backing substrate 550 or cover substrate 552, or both, may be referred to as a common substrate because it may be common to each of a plurality of displays 510, 520, 530, e.g., any one or more of a plurality of displays 510, 510 a, 510 b, 510 c, 520, 530 may be attached thereto or supported thereby.
  • Electrical conductors 540 receive and distribute electrical power V+ and V− to the various displays 510, 520, 530 and also communicate addressing signals SIGNAL thereto. The electrical conductors 540 include a set of three parallel conductors having various branches for each of displays 510, 520, 530. In an example arrangement, V+, V− and SIGNAL are applied to a set of three parallel conductors 542 disposed proximate the lower edge of display 500, from which they are applied to displays 510 a, 510 b, 510 c via sets of three parallel conductors 544 a, 544 b, 544 c, respectively, and to display 520 via a set of three parallel conductors 546, and to display 530 via a set of three parallel conductors 548.
  • Electrical conductors 540 and the branches 542, 544, 546, 548 thereof may be woven in fabric substrate 550 or may be otherwise attached thereto, e.g., sewn and/or adhesively attached and/or thermally welded. Electrical conductors 540 and the branches 542, 544, 546, 548 thereof include three conductors that connect to the electrical conductors 240, 242, 244, respectively, of each of the displays 510, 520, 530, e.g., by solder and/or electrically conductive adhesive and/or by physical contact where electrically conductive yarn in the warp and weft cross each other, for applying electrical power V+, V− and addressing signals SIGNAL thereto. Insulated crossovers of electrically conductive yarn, e.g., where branches 544 b connects to branch 544 and where branches 544, 544 c and 546 connect to conductors 542, may be provided by electrically insulating yarn interwoven to provide electrical isolation in the regions of such crossovers.
  • A display 10, 200, 500 as described herein is suitable for signage or other display application, and may be conformed to an irregularly-shaped support or object because the woven article or fabric is flexible and conformable, as is any textile i.e. it exhibits ease and drape. Further, such display may be folded, rolled up or otherwise reduced in size for convenient storage and/or shipping. Because the display 10 arrangement is suitable for fabrication on a loom, including a modem, high-speed, programmable loom, electronic signs and other displays may be made in relatively high volume and at relatively low cost.
  • Further, the addressable features described herein provide for woven/fabric displays to be manufactured in relatively long lengths and then cut to a desired length and/or size, and either utilized as is or be sewn or otherwise assembled with other similar displays, as may be desired. In addition, because the described display is addressable and/or programmable, e.g., using a laptop computer, it is suitable for displaying a static or periodically changing message that a user might desire to display. Further, because the addressing may be programmed after the display or elements thereof have been fabricated, the fabricated woven display elements may be interchangeable until they are committed to a particular display or usage, thereby to reduce the relative level of inventory desired to meet various levels of customer demand for such displays.
  • FIGS. 6A, 6B and 6C are schematic diagrams of an example method 700, 700′, 700″ for providing an addressing protocol suitable for use with the example displays 10, 200, 500 of FIGS. 1-5. and are described in general and specifically in the following paragraphs.
  • A serial addressing protocol includes at least address or identifier ID bits designated associated with particular ones of the functional yarn FY and/or characters 10, 512, 522, 532, and character data bits.
  • Typically, where addressing is in the manner of Table 1 below, nine bits are sufficient to define character blocks for displays of up to about 500 characters, four bits are sufficient to specify each column grouping CG, CL of nine columns, and seven bits are sufficient to specify the character data. Thus, addressing in this manner requires 20 bits for each of nine columns, or 180 bits per character. Also typically, where addressing is in the manner of Table 2 below, nine bits are sufficient to define character blocks for displays of up to about 500 characters, and six bits are sufficient to specify the character data. Thus, addressing in this manner requires only 15 bits per character.
  • In addition, the foregoing character identifier and data bits may be preceded by synchronizing bits, and may be followed by parity or other error checking bits, and an end-of-data sequence series of bits, as may be necessary or desired in the case of a particular type of addressable electronic device selected.
  • The addressing protocol word preferably includes at least an address for an ALD circuit U1/U2/U3 and character data defining the segment or segments, e.g., the LEDs, of a particular functional yarn FY and/or column that are to be turned on or turned off. Where the LEDs may be partially turned on, the addressing protocol word also includes data characters indication the level (e.g., percent on) for each LED segment. In addition, the addressing protocol word also preferably includes error checking and/or correcting bits, and may also include synchronization bits and/or beginning-of-word and/or end-of-word indicating bits. Addressing protocol words are typically transmitted serially on the addressing conductor SIGNAL at a rate compatible with the electrical characteristics thereof. Faster addressing may be provided by employing plural serial and/or parallel addressing conductors.
  • Each ALD U1/U2/U3 compares the address data or identifier ID of each addressing protocol data word to its own address or identifier ID and, if a match is found, it then passes the accompanying character data stream to its internal current driving circuitry. If the serial addressing data word contains the address or ID of an ALD U1/U2/U3, then that ALD latches the character data in its storage registers and applies appropriate electrical signals to its current driving circuitry to apply an appropriate current to the LEDs in the segment that are to be energized in accordance with the character data word. This driving condition is maintained until a different current driving instruction is received via a subsequent addressing signal containing the ALD U1/U2/U3 address or identifier ID. In the example embodiment described, the current driving signals are suitable for a seven-segrnent LED driver arrangement.
  • It is noted that the address or identifier ID of each ALD integrated circuit disposed on a functional yarn FY may be programmed or otherwise associated with the ALD integrated circuit prior to its being associated with and attached to a particular functional yarn FY, e.g., in its manufacture and/or testing. In such case, the address or identifier ID of each functional yarn FY would likely be determined after a functional yarn FY has electrical and electronic components thereon, e.g., for each completed functional yarn FY. When the functional yarn FY are incorporated into a display, e.g., are woven into a woven article comprising a display 10, 200, 500, the addresses or identifiers ID of each functional yarn FY may be provided to or may be obtained by the display driver software that will control the message to be displayed by the display 10, 200, 500, e.g. from a laptop or other computer. The display driver software then sorts and/or organizes the address associated with each functional yarn into the characters comprising the display and into the column groups thereof.
  • In the example of method 700 illustrated in FIG. 6A, the address of each of the ALD circuits U1/U2/U3 of each functional yarn FY is predetermined when the functional yarn FY is provided 702 for weaving, but the value thereof is unknown, e.g., at the time of weaving. The functional yarn FY are woven 704 into a woven article in a correct sequence of types of functional yarn FY to provide the desired character display 10, 200, 500 arrangement as described. At the completion of weaving, the addresses of the functional yarn FY in the character(s) of the display remain unknown.
  • After weaving, the address of each functional yarn is determined 706 and the value thereof is stored 706 in association of the physical position of the functional yarn FY in the woven article. Typically, such determination 706 may be made by probing each functional yarn FY, e.g., by applying a sequence of possible addresses and observing or measuring which functional yarn FY responds to each particular address by illuminating one or more of its segments as commanded, until all possible addresses and/or all functional yarn FY have been tested. A list or table of the addresses and the physical location or order of the functional yarn FY in each character of a display 10, 200, 500, 510, 520, 530 is compiled and is stored 706 in a programming device, such as a laptop computer, that will be utilized to compose messages to be displayed. Characters may then be displayed by generating 708 appropriate addresses using the table of stored addresses to generate the appropriate FY addresses in response to the characters commanded to be displayed.
  • Although this aspect of method 700 substantially eases the complexity of the pre-weaving steps, it tends to require relatively difficult and/or complex post-weaving steps. Because the addressing of every display is likely to be substantially different from that of any other display, the software for generating addresses for operating any display will require the specific list or table that includes the addresses and positions or order of every functional yarn FY for that particular display.
  • In the example of method 700′ illustrated in FIG. 6B, the address of each of the ALD circuits U1/U2/U3 of each functional yarn FY is predetermined and is known when the functional yarn FY is provided 702 for weaving. The functional yarn FY are woven 704 into a woven article in a correct sequence of types of functional yarn FY to provide the desired character display 10, 200, 500 arrangement as described. During weaving the address of each functional yarn is recorded 706′ as that functional yarn is woven 704 into the woven article. Thus, at the completion of weaving, the addresses of each functional yarn FY and its position or order in the character(s) of the display is known. This may be accomplished by computerized reading and keeping track of the address of each functional yarn, e.g., the functional yarn FY are provided in a sequence of known addresses (which may or may not be sequential or in any predetermined order), or by electrically probing each functional yarn FY before or as it is woven.
  • At completion of weaving, the address of each functional yarn and its position or order in the character and display is known and has been recorded 706′, e.g., in a list or table, e.g., in a programming device. The recorded 706′ list or table of the addresses and the physical location of the functional yarn FY in each character of a display 10, 200, 500, 510, 520, 530 recorded 706′ in a programming device, such as a laptop computer, may be utilized to compose messages to be displayed. Characters may then be displayed by generating 708 appropriate addresses using the table of recorded addresses to generate the appropriate FY addresses in response to the characters commanded to be displayed.
  • Although this aspect of method 700′ is substantially more complex in the pre-weaving steps, it tends to be relatively easy in the post-weaving steps. Because the addressing of every display is likely to be substantially different from any other display, the software for generating addresses for operating any display will require the specific list or table that includes the addresses and positions of every functional yarn FY for that particular display.
  • Alternatively, it may be desirable that the address or identifier ID of each ALD integrated circuit be programmable after the ALD U1/U2/U3 is assembled into a functional yarn FY and the functional yarn FY has been woven into a fabric or woven article. Such programmability may be provided by connectiong (shorting) or by opening a number of connections. E.g., a number of ground connections and/or fusible links may be provided that can be severed or otherwise rendered an open circuit after the functional yarn FY has been woven into a woven article comprising a display. Such connections may be severed by scribing or other mechanical means, by a laser, by an electrical current, or by another known method.
  • An advantage of this arrangement is that the functional yarn in a particular column grouping CL may be given the same address or identifier ID, because they will always be energized in the same manner. Where the number of characters in a display 10, 200, 500 is 500 or less, and the number of column groupings CL per character is nine or less, then the address or identifier will require fourteen or fewer bits. =p In the example of method 700″ illustrated in FIG. 6C, the address of each of the ALD circuits U1/U2/U3 of each functional yarn FY is not known when the functional yarn FY is provided 702 for weaving, but the value thereof is programmable, e.g., at any desired time. The functional yarn FY are woven 704 into a woven article in a correct sequence of types of functional yarn FY to provide the desired character display 10, 200, 500, 510, 520, 530 arrangement as described. At the completion of weaving, the addresses of the functional yarn FY in the character(s) of the display remain to be programmed.
  • After weaving, the address of each functional yarn is programmed 706″ preferably in a standardized sequence or order, e.g., from a predetermined list or table of values thereof in known relation to the physical position or order of the functional yarn FY in the woven article 10, 200, 500. Typically, such programming may be by means described herein. The list or table of the addresses and the physical location of the functional yarn FY in each character of a display 10, 200, 500, 510, 520, 530 is stored 706 in a programming device, which may be a laptop computer that will also be utilized to compose messages to be displayed. Characters may then be displayed by generating 708 appropriate addresses using the predetermined list or table of addresses to generate the appropriate FY addresses in response to the characters commanded to be displayed.
  • An advantage of this aspect of the method 700″ is that it substantially eases the complexity of the pre-weaving steps and is only moderately difficult in the post-weaving steps. A further advantage is that because the list or table of addresses is standardized and is nrogrammed into each display; then every disnlay may be substantially the same and may be operated by any programming device having the standardized address list or table, thereby to standardize displays 10, 200, 500 and allow relatively easy interchangeability.
  • As a result in each of the foregoing arrangements, the address of each functional yarn FY in woven article 10, 200, 510, 520, 530 is known in relation to its position or order in the woven article and so may be employed for generating addressing signals for addressing display 10, 200, 500, 510, 520, 530.
  • The addressing arrangement may take any one of several forms. Consider Table 1 which illustrates a typical set of character data commands for a single character display 10, 512, 522, 532, displaying the first character (“char 1”) by specifying each column group (“CG_”) into which functional yarn FY are defined and a data value (“data_”) associated therewith:
    TABLE 1
    ALD Command without ROM
    Command Operation
    char
    1, CG1, data 127 All segments on
    char 1, CG2, data 9 Segments 1 & 4 ON, all other segments OFF.
    char 1, CG3, data 9 Segments 1 & 4 ON, all other segments OFF.
    char 1, CG4, data 9 Segments 1 & 4 ON, all other segments OFF.
    char 1, CG5, data 9 Segments 1 & 4 ON, all other segments OFF.
    char 1, CG6, data 9 Segments 1 & 4 ON, all other segments OFF.
    char 1, CG7, data 9 Segments 1 & 4 ON, all other segments OFF.
    char 1, CG8, data 9 Segments 1 & 4 ON, all other segments OFF.
    char 1, CG9, data 127 All segments on
  • For a nine-column character format, as in the above example of Table 1, nine separate commands are required to specify the segments RW for each of the nine columns CG, CL that are to be energized for displaying the letter “A” or any other character, because each column CG, CL is addressed independently. This arrangement may add bits, e.g., 2 or 3 bits, to the address/identifier ID of the addressing word in order to specify the column group CG, CL. While this arrangement requires a relatively higher number of data bits be communicated to the various functional yarn for communicating control signals thereto, the data rate required therefor is typically attainable for a static or relatively slowly changing message, e.g., a scrolling message.
  • The addressing signal may be further simplified where each functional yarn FY includes a memory element, e.g., a ROM, PROM, EEPROM, into which is stored transformation data for converting a character designation (e.g., designation “32” corresponding to a letter “A” or the data value corresponding to a numeral “5”) into segment designations including appropriate row RW and column CL data. The memory element may be included in the ALD U1/U2/U3 or may be physically separate therefrom. Because the number of data bits to be communicated to the functional yarn FY to define a character to be displayed is relatively lower, this arrangement may be suited to a relatively more quickly changing message, as well as to a static or slowly changing message, e.g., a scrolling message.
  • Consider Table 2 which illustrates a typical set of character data commands for a single character display 10, 512, 522, 532, displaying the first character (“char 1”) by specifying the character (letter “A”) that the functional yarn FY of a character display are to display as defined by a data value (“data_”) associated therewith:
    TABLE 2
    ALD Command with ROM
    Command Operation
    char
    1, data 32 Display Letter “A”
  • Because the ROM decodes the data value (e.g., “data 32”) to define the column groups CG, CL, and the segments RW thereof, that are to be energized for displaying the letter “A” each letter or block is addressed independently, thereby reducing the number of commands by a factor related to the number of columns CL, CG. Additionally and advantageously, this arrangement allows for a single software interface for addressing any display 10, 200, 500 without the need to modify or customize the software for each application.
  • In one example addressing arrangement, a type DS2406 addressable switch U2 is disposed on functional yarn FY and a type DS9097 serial port adaptor is employed to apply addressing and control signals to the SIGNAL conductor. These devices are available from Maxim Integrated Products, and may be utilized in combination with driver software also available from Maxim Integrated Products that provides the necessary digital signals and protocols needed for operating a display 10 from a Windows-based computer, e.g., a laptop computer, using the BASIC or the C programming language.
  • Where the address or identifier ID of the ALD is stored in the ALD U1/U2 either prior to or during the weaving of a display 10, 200, 512, 522, 532, the address or identifier ID of each functional yarn FY may be known in sequence and a database thereof may be made as the display 10, 200, 512, 522, 532, is woven. If the address or identifier ID is assigned in accordance with a predetermined sequence, e.g., during weaving, then the database thereof may be the same for each display 10, 512, 522, 532, and the need for a database peculiar to each display 10, 512, 522, 532, may be avoided. If the address or identifier ID of the functional yarn FY are assigned before weaving, then the database thereof may made as the display 10, 512, 522, 532, is woven, however, the database for each display 10, 512, 522, 532 will be peculiar to that display.
  • Where the address or identifier ID of the ALD is stored in the ALD U1/U2 prior to the weaving of a display 10, 200, 512, 522, 532, but is not tracked or controlled during weaving, the address or identifier ID of each functional yarn FY may be determined after weaving by polling the functional yarn FY thereof and a database of the address or identifier ID may be made for the display 10, 512, 522, 532. Following the polling to determine the addresses or identifiers ID of the ALD devices U1/U2 of the functional yarn FY that are present in a woven display 10, 512, 522, 532, each present functional yarn FY is addressed so as to energize the elements thereon, and the elements that are energized are detected, e.g., either manually or automatically by a detector or sensor, and the position or ordering of each functional yarn FY in the woven article 10, 200, 512, 522, 532, is noted in the database in relation to the address or identifier ID thereof. The noting or detection of the positions or order may be performed contemporaneously with the polling or may be performed thereafter.
  • It is noted that the foregoing addressing arrangement addresses a number of characters irrespective of the size and/or shape of each character, which may be the same or different. This is because every character display 10, 512, 522, 532 may be the same electrically at its external electrical interface even though it may be very different in size and/or arrangement of segments. Thus, an advantage accrues in that the addressing is the same for any display or sign 10, 200, 500, of few or many characters of any combination of sizes and arrangements, thereby simplifying the programming of a message, the programming software and the addressing interface. Because the various characters 10, 200 512, 522, 532 may be electrically connected in parallel and may be independently addressed via a serial addressing arrangement SIGNAL, the present arrangement may accommodate widely different styles, sizes, lengths and other variations in the display 10, 200, 500.
  • It is noted that the described serial addressing arrangement is well suited to a static display of any size over a range of sizes, i.e. the display is “scalable” in that the serial addressing arrangement is the same independent of the size or number or position of the characters. Thus, the same serial addressing arrangement is suitable irrespective of the size of each character and the number of characters. The same addressing may be utilized whether the character display is relatively smaller (e.g., about 5 cm by 10 cm), or is relatively larger (e.g., about 50 cm by 100 cm), or includes characters of various sizes, and whether the display includes one character or many characters which may be of the same or of different sizes, or any combination thereof.
  • It is also noted that the described serial addressing arrangement is well suited to a static display and/or to a slowly changing display, such as a scrolling message display, where control signal data rate and current-carrying requirements are compatible with the number and size of conductors woven into the woven displays described and the electrical characteristics (e.g., resistance and capacitance) thereof. Increased current-carrying capacity of the described arrangement may be provided by electrically conductive yarn of greater cross-sectional dimension and/or by weaving plural electrically conductive yarn in parallel. However, communication data rates permitting video-rate refreshing would be needed for video image presentations, as might be provided by a passive matrix addressing architecture.
  • The novel electronic display architecture and addressing arrangement described allows for full character-based programmability for a bistable, emissive, limited connection, fabric-based sign or other display, and in addition to the variations thereof described, other variations will be apparent to one of skill in the art.
  • As used herein, the term “about” means that dimensions, sizes, formulations, parameters, shapes and other quantities and characteristics are not and need not be exact, but may be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art. In general, a dimension, size, formulation, parameter, shape or other quantity or characteristic is “about” or “approximate” whether or not expressly stated to be such.
  • While the present invention has been described in terms of the foregoing example embodiments, variations within the scope and spirit of the present invention as defined by the claims following will be apparent to those skilled in the art. For example, although display 10 is described in terms of strips or functional yarn FY woven in a fabric or textile 200, 500, display 10 need not employ strips or functional yarn FY and, even if strips or functional yarn FY are employed, the strips or functional yarn FY need not be woven into a fabric or textile. While the example display 10 is described as having 20 strips or functional yarn FY arranged in nine column groups, as few as nine strips or functional yarn may be employed, and further, a non-woven embodiment of the display may be provided on one or more substrates.
  • While character display 10 is illustrated as rectangular and bisected relatively symmetrically to define relatively uniform size quadrants Q, display 10 may be slanted or tilted, may be asymmetrically divided, may have quadrants Q of different sizes and proportions, may have segments that are curved or straight or a combination thereof, and may otherwise be made regular or irregular. Further, the designations “top” and “bottom” and “left” and “right” as well as the terms “horizontal” and “vertical” are for convenience of description and are not intended as limiting of the orientation of any display 10. Similarly, rows may be disposed horizontally and columns vertically, or in any desired orientation therebetween.
  • In addition, while the display is described as employing light-emitting diodes as light sources, other suitable light sources may be employed. Examples may include incandescent lights, neon lights, electroluminescent devices, optically reflective elements, optically transmissive elements, and the like.
  • While certain examples and/or embodiments are referred to as character displays, it is noted that what may be displayed thereby is not necessarily limited to characters, unless expressly limited thereto. For example, the character displays of FIGS. 2, 3 and 5 may employ “characters” in which all light source positions are operable and so such displays may be utilized to display any character and/or image that can be displayed by the number of independently actuable elements thereon, e.g., up to 20×22=440 elements in each “character” of the illustrated embodiments. Likewise, it is not necessary that any spacing be provided between “characters” so that a pleasing display of a scrolling message or image or moving image may be displayed.

Claims (24)

1. An addressable display embodied in a woven article comprising:
a plurality of yarn interwoven to define a woven article;
a plurality of electrically functional yarn woven into the woven article adjacent each other in one of the warp and the weft of the woven article, wherein groups of adjacent ones of said plurality of electrically functional yarn define plural adjacent characters;
each of said electrically functional yarn including:
an elongate electronic substrate having electrical conductors thereon and a plurality of electrical contact sites connecting to ones of said electrical conductors,
a plurality of display elements disposed along said electronic substrate, and
an addressable electronic device on said substrate connected to said electrical contact sites and to said plurality of display elements via said electrical conductors for controllably energizing said plurality of display elements responsive to electrical power and electrical control signals applied to said electrical contact sites;
a plurality of electrically conductive yarn woven into the woven article in a direction transverse to said plurality of electrically functional yarn, wherein ones of said plurality of electrically conductive yarn overlie and make respective electrical contact with at least two of the electrical contact sites of said plurality of electrically functional yarn;
insulating yarn woven into the woven article in a direction transverse to said plurality of said electrically functional yarn and between ones of said electrically conductive yarn, whereby the ones of said electrically conductive yarn are electrically insulated from each other;
a first of said plurality of electrically conductive yarn for receiving a source of electrical power connected thereto, whereby electrical power is applied to the addressable electronic devices of each of said plurality of electrically functional yarn via the first electrically conductive yarn; and
a second of said plurality of electrically conductive yarn for receiving electrical control signals for addressing said addressable electronic devices for controllably energizing selected ones of said plurality of display elements of said electrically functional yarn,
whereby electrical power and electrical control signals may be applied to said plurality of electrically functional yarn for controllably energizing ones of said plurality of display elements responsive to the electrical control signals applied to said addressable electronic devices.
2. The addressable display of claim 1 wherein the addressable electronic devices of the electrically functional yarn defining an addressable character have the same address, and wherein that address is different from the addresses of the electrically functional yarn defining any other addressable character, whereby each addressable character is addressed by one address.
3. The addressable display of claim 2 wherein the address of said addressable electronic device is determined either (a) prior to said addressable electronic device being on said substrate, or (b) after said addressable electronic device is on said substrate.
4. The addressable display of claim 2 wherein the address of said addressable electronic device determined after said addressable electronic device is on said substrate is determined either (a) prior to said electrically functional yarn being woven into said woven article or (b) after said electrically functional yarn is woven into said woven article.
5. The addressable display of claim 1 wherein each of the adjacent characters comprises a plurality of column groups of one or more adjacent functional yarn, and wherein the addressable electronic devices of said electrically functional yarn defining a column group has the same address, and wherein that address is different from the addresses of the electrically functional yarn defining any other column group, whereby each addressable character is addressed by a number of addresses of like number to the number of column groups thereof.
6. The addressable display of claim 5 wherein the address of said addressable electronic device is determined either (a) prior to said addressable electronic device being on said substrate, or (b) after said addressable electronic device is on said substrate.
7. The addressable display of claim 5 wherein the address of said addressable electronic device determined after said addressable electronic device is on said substrate is determined either (a) prior to said electrically functional yarn being woven into said woven article or (b) after said electrically functional yarn is woven into said woven article.
8. The addressable display of claim 1 further comprising:
a common substrate on which said woven article is disposed;
at least one additional woven article as set forth in claim 1 disposed on said common substrate;
a first electrical conductor of said common substrate coupled to the respective first electrically conductive yarn of each of said woven articles for coupling electrical power thereto; and
a second electrical conductor of said common substrate coupled to the respective second electrically conductive yarn of each of said woven articles for coupling electrical control signals thereto; and
whereby electrically power and electrical control signals are applied via the electrical conductors of said common substrate for addressing said addressable electronic devices for controllably energizing selected ones of said plurality of display elements of said electrically functional yarn of said woven article and of said additional woven article.
9. The addressable display of claim 8 wherein the characters defined by said woven article are of like shape and size to the characters defined by said at least one additional woven article, or wherein the characters defined by said woven article are of different shape or are of different size or are of different shape and size than the characters defined by said at least one additional woven article.
10. An addressable display comprising:
a woven article including electrically conductive yarn woven transversely to functional yarn woven therein for defining a display having one or more character regions;
each functional yarn having an addressable device and plural display elements thereon, wherein the addressable device is responsive to addressing signals received via said electrically conductive yarn for selectively controlling energization of the plural display elements;
wherein adjacent ones of said functional yarn define a character region of the display or define column groups defining a character region of the display; and
said electrically conductive yarn of the woven article conducting addressing signals to serially address said addressable devices of said functional yarn for selectively energizing said plural display elements thereof.
11. The addressable display of claim 10 wherein the addressable devices of the functional yarn defining a character region have the same address, and wherein that address is different from the addresses of the functional yarn defining any other character region, whereby each character region is addressed by one address.
12. The addressable display of claim 11 wherein the address of said addressable device is determined either (a) prior to said addressable device being on said functional yarn, or (b) after said addressable device is on said functional yarn.
13. The addressable display of claim 11 wherein the address of said addressable device determined after said addressable device is on said functional yarn is determined either (a) prior to said functional yarn being woven into said woven article or (b) after said functional yarn is woven into said woven article.
14. The addressable display of claim 10 wherein the addressable devices of the functional yarn defining a column group have the same address, and wherein that address is different from the addresses of the functional yarn defining any other column group, whereby each character region is addressed by a number of addresses of like number to the number of column groups thereof.
15. The addressable display of claim 14 wherein the address of said addressable device is determined either (a) prior to said addressable device being on said functional yarn, or (b) after said addressable device is on said functional yarn.
16. The addressable display of claim 14 wherein the address of said addressable device determined after said addressable device is on said functional yarn is determined either (a) prior to said functional yarn being woven into said woven article or (b) after said functional yarn is woven into said woven article.
17. The addressable display of claim 10 further comprising:
a common substrate on which said woven article is disposed;
at least one additional woven article as set forth in claim 10 disposed on said common substrate;
a first electrical conductor of said common substrate coupled to a respective first electrically conductive yarn of each of said woven articles for coupling electrical power thereto; and
a second electrical conductor of said common substrate coupled to a respective second electrically conductive yarn of each of said woven articles for coupling electrical control signals thereto,
whereby electrically power and electrical control signals are applied via the electrical conductors of said common substrate for addressing said addressable devices for controllably energizing selected ones of said plural display elements of said functional yarn of said woven article and of said additional woven article.
18. The addressable display of claim 17 wherein the characters defined by said woven article are of like shape and size to the characters defined by said at least one additional woven article, or wherein the characters defined by said woven article are of different shape or are of different size or are of different shape and size than the characters defined by said at least one additional woven article.
19. A method for providing an addressable display embodied in a woven article having a plurality of functional yarn woven therein, wherein each functional yarn includes an addressable device and plural display elements, wherein the addressable device has an address and is responsive to addressing signals including that address for selectively controlling energization of the plural display elements, said method comprising:
providing functional yarn including the addressable device and plural display elements;
weaving the functional yarn into the woven article in defined positions or order;
providing a list or table of the address of the addressable device of each functional yarn in relation to its position or order in the woven article from which addressing signals may be generated,
whereby the list or table of addresses may be employed for generating addressing signals including the address of the addressable device of a particular functional yarn for selectively controlling energization of the plural display elements thereon.
20. The method of claim 19 wherein the address of the addressable device of each functional yarn is unknown at said weaving the functional yarn into the woven article, the method after said weaving further comprising:
determining the address and position or order of each functional yarn in the woven article; and
storing the determined address and position or order in the list or table of addresses.
21. The method of claim 19 wherein the address of the addressable device of each functional yarn is known at said weaving the functional yarn into the woven article, and wherein said providing a list or table of the address of the addressable device of each functional yarn in relation to its position or order in the woven article comprises:
recording the address of the addressable device of each functional yarn in the list or table of addresses in the order in which the functional yarn are woven into the woven article.
22. The method of claim 21 wherein said providing functional yarn includes:
providing functional yarn in an order having a known sequence of addresses of the addressable devices thereon; or
determining the address of the addressable device of each functional yarn before or in conjunction with said weaving the functional yarn into the woven article.
23. The method of claim 19 wherein the address of the addressable device of each functional yarn is programmable but is not programmed at said weaving the functional yarn into the woven article, and
wherein said providing a list or table of the address of the addressable device of each functional yarn in relation to its position or order in the woven article includes providing a predetermined list or table of addresses in relation to position or order in the woven article;
the method after said weaving further comprising:
programming the address of the addressable device of each functional yarn in accordance with the predetermined list or table of addresses in relation to position or order in the woven article.
24. The method of claim 19 wherein said providing functional yarn includes providing functional yarn of different types; and wherein said weaving the functional yarn into the woven article in defined positions or order includes selecting functional yarn by particular type in a sequence of types for defining a character or for defining column groups of a character.
US10/939,668 2002-05-10 2004-09-13 Display having addressable characters Abandoned US20050081944A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/939,668 US20050081944A1 (en) 2002-05-10 2004-09-13 Display having addressable characters

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US37972302P 2002-05-10 2002-05-10
US41915902P 2002-10-17 2002-10-17
US10/366,441 US7592276B2 (en) 2002-05-10 2003-02-13 Woven electronic textile, yarn and article
US10/939,668 US20050081944A1 (en) 2002-05-10 2004-09-13 Display having addressable characters

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/366,441 Continuation-In-Part US7592276B2 (en) 2002-05-10 2003-02-13 Woven electronic textile, yarn and article

Publications (1)

Publication Number Publication Date
US20050081944A1 true US20050081944A1 (en) 2005-04-21

Family

ID=29424494

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/366,441 Expired - Fee Related US7592276B2 (en) 2002-05-10 2003-02-13 Woven electronic textile, yarn and article
US10/939,668 Abandoned US20050081944A1 (en) 2002-05-10 2004-09-13 Display having addressable characters

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/366,441 Expired - Fee Related US7592276B2 (en) 2002-05-10 2003-02-13 Woven electronic textile, yarn and article

Country Status (7)

Country Link
US (2) US7592276B2 (en)
EP (1) EP1503665A1 (en)
JP (1) JP2005524783A (en)
KR (1) KR20050008707A (en)
CN (1) CN1322837C (en)
AU (1) AU2003251292A1 (en)
WO (1) WO2003094719A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090174325A1 (en) * 2006-06-29 2009-07-09 Koninklijke Philips Electronics N.V. Pixelated electroluminescent textile
US20120274616A1 (en) * 2011-04-27 2012-11-01 Southwest Research Institute Electrophoretic Display Using Fibers Containing a Nanoparticle Suspension

Families Citing this family (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050257827A1 (en) * 2000-04-27 2005-11-24 Russell Gaudiana Rotational photovoltaic cells, systems and methods
US20060005876A1 (en) * 2000-04-27 2006-01-12 Russell Gaudiana Mobile photovoltaic communication facilities
US20060076048A1 (en) * 2000-04-27 2006-04-13 Russell Gaudiana Photo-sensing photovoltaic with positioning facility
US9607301B2 (en) * 2000-04-27 2017-03-28 Merck Patent Gmbh Photovoltaic sensor facilities in a home environment
US20050268962A1 (en) * 2000-04-27 2005-12-08 Russell Gaudiana Flexible Photovoltaic cells, systems and methods
AU2001295987B2 (en) * 2001-10-19 2005-10-20 Sphelar Power Corporation Light emitting or light receiving semiconductor module and method for manufacturing the same
DE10307505B4 (en) * 2003-02-21 2005-03-03 Infineon Technologies Ag A textile fabric structure, surface covering structure and method for determining a spacing of microelectronic elements of the textile fabric structure to at least one reference position
FR2854480A1 (en) * 2003-04-29 2004-11-05 France Telecom FLEXIBLE DISPLAY
CA2530952A1 (en) * 2003-06-23 2005-01-06 Atair Aerospace, Inc. Construction materials and methods for parafoils and parachutes
US7178762B2 (en) * 2003-06-23 2007-02-20 Atair Aerospace, Inc. Reinforcing material for parachutes and methods for reinforcing parachutes
JP3899111B2 (en) * 2003-10-24 2007-03-28 京セミ株式会社 Light receiving or light emitting module sheet manufacturing method
US20050209936A1 (en) * 2004-02-17 2005-09-22 Guy Stephen L Textile finishing temperature monitoring systems and method
DE102004016029A1 (en) 2004-03-30 2005-10-20 Ralf Trachte Flexible computer input
GB0407228D0 (en) * 2004-03-30 2004-05-05 Koninkl Philips Electronics Nv Fibre or filament with lateral electric fields
US7025596B2 (en) * 2004-06-14 2006-04-11 Motorola, Inc. Method and apparatus for solder-less attachment of an electronic device to a textile circuit
US20060130894A1 (en) * 2004-12-22 2006-06-22 Gui John Y Illumination devices and methods of making the same
CN1804860A (en) * 2005-01-13 2006-07-19 摩托罗拉公司 Identification of script signs on user interface
KR20070112152A (en) * 2005-03-08 2007-11-22 코닌클리케 필립스 일렉트로닉스 엔.브이. Clip-type electronic devices with contact points attachable to clothing
JP2006299457A (en) * 2005-04-20 2006-11-02 Hideo Hirose Light-emitting cloth or light-emitting band
ATE381250T1 (en) * 2005-05-13 2007-12-15 Sefar Ag CIRCUIT BOARD AND METHOD FOR THE PRODUCTION THEREOF
GB2426255B (en) * 2005-05-16 2009-09-23 Univ Manchester Operative devices
US20110128726A1 (en) * 2005-05-26 2011-06-02 Kinaptic, LLC Thin film energy fabric with light generation layer
US20110127248A1 (en) * 2005-05-26 2011-06-02 Kinaptic,LLC Thin film energy fabric for self-regulating heat generation layer
US20110128686A1 (en) * 2005-05-26 2011-06-02 Kinaptic, LLC Thin film energy fabric with energy transmission/reception layer
US20080109941A1 (en) * 2005-05-26 2008-05-15 Energy Integration Technologies, Inc. Thin film energy fabric integration, control and method of making
US20110130813A1 (en) * 2005-05-26 2011-06-02 Kinaptic, LLC Thin film energy fabric for self-regulating heated wound dressings
JP2007052953A (en) * 2005-08-16 2007-03-01 Sony Corp Display element and manufacturing method thereof, and electrode material for display element,
EP1958456A4 (en) * 2005-11-14 2011-04-13 Irina Kiryuschev Display module and tiled display manufacturing method
DE102006004946B4 (en) * 2005-12-08 2010-04-29 BLüCHER GMBH Functional item of clothing, in particular ABC protective clothing, with integrated measuring device
WO2007093947A1 (en) * 2006-02-15 2007-08-23 Koninklijke Philips Electronics N.V. A structure of fabric and electronic components
DE102006017540A1 (en) * 2006-04-13 2007-10-18 Drägerwerk AG Textile system with a variety of electronic functional elements
FR2899999B1 (en) * 2006-04-13 2008-06-27 Commissariat Energie Atomique THERMOELECTRIC STRUCTURE AND USE OF THE THERMOELECTRIC STRUCTURE FOR FORMING A TEXTILE STRUCTURE
JP2007314925A (en) * 2006-04-27 2007-12-06 Hideo Hirose Electronic fiber or electronic yarn and fiber product using the same
CA2654941C (en) * 2006-07-04 2013-01-08 Kyosemi Corporation Panel-shaped semiconductor module
US7789520B2 (en) * 2006-09-08 2010-09-07 Kristian Konig Electroluminescent communication system between articles of apparel and the like
US8807796B2 (en) * 2006-09-12 2014-08-19 Huizhou Light Engine Ltd. Integrally formed light emitting diode light wire and uses thereof
EP1903295A1 (en) * 2006-09-23 2008-03-26 Ssz Ag Device for camouflaging an object/ or persons
US7825325B2 (en) * 2006-09-27 2010-11-02 Kennedy & Violich Architecture Ltd. Portable lighting and power-generating system
EP2074872A2 (en) * 2006-10-10 2009-07-01 Koninklijke Philips Electronics N.V. Textile for connection of electronic devices
US20080104923A1 (en) * 2006-11-07 2008-05-08 Boxhorn George R Architectural composite panels and composite systems
WO2008080245A2 (en) * 2006-12-28 2008-07-10 Gerhard Staufert Filament
KR100834974B1 (en) * 2007-01-29 2008-06-03 한국생산기술연구원 Manufacturing method of digital yarn for high-speed information communication using hybrid metal and digital yarn manufactured thereby
CN101240475B (en) * 2007-02-08 2012-07-25 深圳市冠旭电子有限公司 Electronic textile
JP5587174B2 (en) 2007-04-17 2014-09-10 コーニンクレッカ フィリップス エヌ ヴェ Textile light emitting device
FI20070313A0 (en) * 2007-04-23 2007-04-23 Neule Apu Oy Lighting device in connection with a textile structure
WO2008148138A1 (en) * 2007-05-28 2008-12-04 Coetzee, Frederick, James Luminescent textiles
BE1017631A3 (en) * 2007-06-05 2009-02-03 Fabric used as e.g. sunshade, insect screen or shutter, has solar cells housed in mesh holes and connected to electrical conductors extending along warp and weft yarns
US20090029331A1 (en) * 2007-06-12 2009-01-29 Crawford Gregory P Active cutaneous technology
JP2009062639A (en) * 2007-09-05 2009-03-26 Nets 101 Kk Weaving and loom
JP5140368B2 (en) * 2007-10-01 2013-02-06 ローム株式会社 Lighting device
KR100938684B1 (en) * 2007-10-16 2010-01-25 코오롱글로텍주식회사 Electronic fabric and its manufacturing method
KR100982533B1 (en) * 2008-02-26 2010-09-16 한국생산기술연구원 Digital Garment Using Digital Band and Manufacturing Method Thereof
KR100966842B1 (en) * 2008-02-26 2010-06-29 한국생산기술연구원 Digital garment using embroidery technique and manufacturing method
CN101959444A (en) * 2008-02-28 2011-01-26 皇家飞利浦电子股份有限公司 Intelligent electronic blanket
US8341762B2 (en) * 2008-03-21 2013-01-01 Alfiero Balzano Safety vest assembly including a high reliability communication system
US8049292B2 (en) * 2008-03-27 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US20090282908A1 (en) * 2008-05-09 2009-11-19 Thermogear, Inc. Electrifiable fabric
US9741271B2 (en) * 2008-05-20 2017-08-22 Tait Towers Manufacturing, LLC Flexibly supported video display
US20090308380A1 (en) * 2008-06-16 2009-12-17 Konarka Technologies, Inc. Telescoping Devices
US7882688B2 (en) * 2008-07-02 2011-02-08 AG Technologies, Inc. Process for manufacturing yarn made from a blend of polyester fibers and silver fibers
US7886515B2 (en) * 2008-07-02 2011-02-15 AG Technologies, Inc. Process for manufacturing yarn made from a blend of fibers of cotton, nylon and silver
KR20110056420A (en) 2008-09-19 2011-05-27 코닌클리즈케 필립스 일렉트로닉스 엔.브이. How to determine the electronic fabric and functional areas of the electronic fabric
US9758907B2 (en) * 2008-09-22 2017-09-12 Intel Corporation Method and apparatus for attaching chip to a textile
US20100201610A1 (en) * 2009-02-09 2010-08-12 Paul Lo Light emitting diode light arrays on mesh platforms
KR101584973B1 (en) 2009-02-18 2016-01-13 정기삼 Wire Connecting pin and the conductivity fabrics therewith
JP5654567B2 (en) * 2009-04-06 2015-01-14 コーニンクレッカ フィリップス エヌ ヴェ Temperature sensor for body temperature measurement
TWM365363U (en) * 2009-04-08 2009-09-21 Fu-Biau Hsu Illuminating textile article
JP5444817B2 (en) * 2009-04-24 2014-03-19 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
WO2011001323A1 (en) * 2009-06-29 2011-01-06 Koninklijke Philips Electronics N.V. Fibers including electronic elements
WO2011022100A2 (en) * 2009-07-13 2011-02-24 Arizona Board Of Regents, For And On Behalf Of Arizona State University Flexible circuits and electronic textiles
US8892220B2 (en) * 2009-09-30 2014-11-18 Iluminate Llc Self-contained, wearable light controller with wireless communication interface
WO2011049859A1 (en) * 2009-10-20 2011-04-28 Kennedy & Violich Architecture Ltd. Portable lighting and power-generating system
WO2011096607A1 (en) * 2010-02-08 2011-08-11 Agency For Defense Development Frequency selective filter
RU2555621C2 (en) * 2010-03-09 2015-07-10 Конинклейке Филипс Электроникс Н.В. Light-emitting electronic fabric with light-diffusing element
US8752285B2 (en) * 2010-03-16 2014-06-17 Electronics And Telecommunications Research Institute Method for manufacturing a textile-type electronic component package
US20150164163A1 (en) * 2010-03-30 2015-06-18 Cheng Zhang Plant Simulation Decorative Cloth/Mesh
WO2011128825A1 (en) * 2010-04-16 2011-10-20 Koninklijke Philips Electronics N.V. Textile product having a lighting function and method for the production thereof
CN102232635B (en) * 2010-04-22 2013-09-11 中国人民解放军总后勤部军需装备研究所 Informationized battle dress adopting layered structure
KR101146439B1 (en) * 2010-06-18 2012-05-18 연세대학교 산학협력단 Energy harvesting device using the Human body-Environment relationship
JP5582531B2 (en) * 2010-07-27 2014-09-03 独立行政法人産業技術総合研究所 Contact structure for electronic textile and method for manufacturing the same
US8969703B2 (en) 2010-09-13 2015-03-03 Tempronics, Inc. Distributed thermoelectric string and insulating panel
WO2012038849A1 (en) * 2010-09-21 2012-03-29 Koninklijke Philips Electronics N.V. Electronic textile and method of manufacturing an electronic textile
CN102132964B (en) * 2010-12-08 2013-03-20 中原工学院 Detachable distributed type solar woolen knitted garment collar
TWI494639B (en) * 2010-12-08 2015-08-01 Ind Tech Res Inst Color changing camouflage display structure
US8646397B2 (en) 2010-12-17 2014-02-11 Midcon Cables Co., Inc. Method and apparatus for producing machine stitched flat wiring harness
US10932720B2 (en) 2011-03-08 2021-03-02 Nanowear Inc. Smart materials, dry textile sensors, and electronics integration in clothing, bed sheets, and pillow cases for neurological, cardiac and/or pulmonary monitoring
US20130211208A1 (en) * 2011-03-08 2013-08-15 Vijay K. Varadan Smart materials, dry textile sensors, and electronics integration in clothing, bed sheets, and pillow cases for neurological, cardiac and/or pulmonary monitoring
US20120255572A1 (en) * 2011-04-05 2012-10-11 Lorraine Ellen Dan Disposable Cosmetic Makeup Palette
WO2012145865A1 (en) 2011-04-29 2012-11-01 Yang Chang-Ming Method for electronizing cloth and its product
CN103635121B (en) 2011-07-06 2016-10-12 坦普罗尼克斯公司 Integration of Distributed Thermoelectric Heating and Cooling
RU2477343C1 (en) * 2011-07-27 2013-03-10 Государственное научное учреждение Государственный научно-исследовательский институт хлебопекарной промышленности Россельхозакадемии (ГНУ ГОСНИИХП Россельхозакадемии) Filtering element for air cleaning from flour dust in lines of flour supply to dough-preparation device
FR2978607A1 (en) * 2011-07-28 2013-02-01 Commissariat Energie Atomique METHOD FOR ASSEMBLING A MICROELECTRONIC CHIP DEVICE IN A FABRIC, A CHIP DEVICE, AND A FABRIC INCORPORATING A CHILLED CHIP DEVICE
US20140338721A1 (en) * 2011-09-13 2014-11-20 Donald G. Parent Photovoltaic textiles
JP5942298B2 (en) * 2011-11-21 2016-06-29 スフェラーパワー株式会社 Fiber structure with semiconductor functional element
JP5742683B2 (en) * 2011-11-21 2015-07-01 トヨタ紡織株式会社 Conductive woven material
TWI467070B (en) * 2011-12-16 2015-01-01 Kings Metal Fiber Technologies Woven electric connection structure
JP2013222073A (en) * 2012-04-17 2013-10-28 Takagi Kogyo Kk Light-emitting display sheet
US20150370320A1 (en) * 2014-06-20 2015-12-24 Medibotics Llc Smart Clothing with Human-to-Computer Textile Interface
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US9588582B2 (en) 2013-09-17 2017-03-07 Medibotics Llc Motion recognition clothing (TM) with two different sets of tubes spanning a body joint
DE102012011922A1 (en) * 2012-06-15 2013-12-19 Oechsler Aktiengesellschaft Fibrous composite material for manufacturing windows or mirrors, has matrix laminated fabric, where circuit structure of electrical, thermal or light-technical fiber cable coatings is applied between connection points located on fabric
KR101373623B1 (en) * 2012-07-19 2014-03-13 전자부품연구원 Fabrics with multi-layered circuit and manufacturing method thereof
US9638442B2 (en) 2012-08-07 2017-05-02 Tempronics, Inc. Medical, topper, pet wireless, and automated manufacturing of distributed thermoelectric heating and cooling
JP6209874B2 (en) 2012-08-31 2017-10-11 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
CN104736387B (en) 2012-09-25 2018-01-02 佛吉亚汽车座椅有限责任公司 Seat with thermal
US9043004B2 (en) 2012-12-13 2015-05-26 Nike, Inc. Apparel having sensor system
US10081887B2 (en) * 2012-12-14 2018-09-25 Intel Corporation Electrically functional fabric for flexible electronics
US20140180624A1 (en) * 2012-12-21 2014-06-26 Dmitri E. Nikonov Sensing and responsive fabric
EP2757183B1 (en) * 2013-01-21 2019-10-09 Autoliv Development AB Improvements in or relating to air-bags
US20170206756A1 (en) * 2013-04-23 2017-07-20 Monica BASTIDAS Safety drop cloth
KR101485589B1 (en) * 2013-05-01 2015-01-22 한국과학기술원 Foldable and stretchable cloth embedding multiple light emitting device and manufacturing method thereof
GB2516214B (en) * 2013-05-22 2018-01-17 Rosnes Ltd Smart wearables
US9119264B2 (en) * 2013-05-24 2015-08-25 Gabriel Pulido, JR. Lighting system
KR102066482B1 (en) * 2013-07-16 2020-01-15 삼성전자주식회사 Fiber reinforced plastic material and electronic device including the same
JP6541655B2 (en) * 2013-07-22 2019-07-10 シグニファイ ホールディング ビー ヴィ Method and apparatus for selective lighting of lighting fabrics based on physical situation
US9419236B2 (en) 2013-08-22 2016-08-16 Donald G. Parent Photovoltaic textiles
DE102013015015A1 (en) 2013-09-07 2015-03-26 Textilforschungsinstitut Thüringen-Vogtland e.V. Method and device on a ribbon loom for weaving and fixing strips of mixed materials
US11306881B2 (en) * 2013-09-13 2022-04-19 Willis Electric Co., Ltd. Tangle-resistant decorative lighting assembly
CN105848964B (en) 2013-11-04 2020-01-03 坦普罗尼克斯公司 Design of thermoelectric strings, plates and envelopes for function and durability
CN103653666A (en) * 2013-12-28 2014-03-26 苏州市峰之火数码科技有限公司 Electric bag convenient to check internal objects
CA2974149A1 (en) 2014-01-27 2015-07-30 Stronach Medical Group, Inc. Photoarray systems with local sensing
MX337677B (en) * 2014-03-10 2016-03-10 Paulino Vacas Jacques Wearable motherboard with exchangeable modular design for monitoring, information and control purposes.
KR101791592B1 (en) * 2014-03-19 2017-10-30 스페라 파워 가부시키가이샤 Semiconductor functional element-equipped functional yarn
JP2015198154A (en) * 2014-04-01 2015-11-09 帝人株式会社 piezoelectric element
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US9378641B2 (en) * 2014-06-18 2016-06-28 Justin Edward Beumler Detecting unsafe car seat passenger-conditions
US10032753B2 (en) * 2014-06-20 2018-07-24 Grote Industries, Llc Flexible lighting device having both visible and infrared light-emitting diodes
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
CN105326117A (en) * 2014-08-08 2016-02-17 范学樑 Batman battle clothes
US9588625B2 (en) 2014-08-15 2017-03-07 Google Inc. Interactive textiles
US10268321B2 (en) * 2014-08-15 2019-04-23 Google Llc Interactive textiles within hard objects
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
US11169988B2 (en) 2014-08-22 2021-11-09 Google Llc Radar recognition-aided search
GB2529900B (en) * 2014-09-08 2017-05-03 Univ Nottingham Trent Electronically functional yarns
US9600080B2 (en) 2014-10-02 2017-03-21 Google Inc. Non-line-of-sight radar-based gesture recognition
US10131993B2 (en) 2015-01-16 2018-11-20 Nanowear, Inc. Large scale manufacturing of hybrid nanostructured textile sensors
US11111593B2 (en) 2015-01-16 2021-09-07 Nanowear Inc. Large scale manufacturing of hybrid nanostructured textile sensors
GB201501297D0 (en) 2015-01-27 2015-03-11 Mas Active Trading Pvt Ltd Device
JP2016154722A (en) * 2015-02-25 2016-09-01 株式会社アシックス Shoes with solar cells
JP6582187B2 (en) * 2015-03-12 2019-10-02 松文産業株式会社 Fiber structure with semiconductor element
US10016162B1 (en) 2015-03-23 2018-07-10 Google Llc In-ear health monitoring
US9983747B2 (en) 2015-03-26 2018-05-29 Google Llc Two-layer interactive textiles
US10066829B2 (en) * 2015-04-28 2018-09-04 William S. Wong Electronic fabric
WO2016176606A1 (en) 2015-04-30 2016-11-03 Google Inc. Type-agnostic rf signal representations
CN107430444B (en) 2015-04-30 2020-03-03 谷歌有限责任公司 RF-based micro-motion tracking for gesture tracking and recognition
EP3289434A1 (en) 2015-04-30 2018-03-07 Google LLC Wide-field radar-based gesture recognition
TWI652385B (en) 2015-05-12 2019-03-01 財團法人紡織產業綜合研究所 Conductive textile
US9974170B1 (en) * 2015-05-19 2018-05-15 Apple Inc. Conductive strands for fabric-based items
US9693592B2 (en) 2015-05-27 2017-07-04 Google Inc. Attaching electronic components to interactive textiles
US10088908B1 (en) 2015-05-27 2018-10-02 Google Llc Gesture detection and interactions
CN107847132B (en) * 2015-06-09 2021-01-01 大陆纺织行业股份有限公司 Multifunctional textile sensor
CN104886789B (en) * 2015-06-29 2016-08-17 京东方科技集团股份有限公司 A kind of package structure
WO2017031153A1 (en) * 2015-08-20 2017-02-23 Oletquin Management Llc Fabric-based items with electrical component arrays
US10051898B2 (en) 2015-09-24 2018-08-21 Loomia Technologies, Inc. Smart soft good product, circuitry layer, and methods
US10817065B1 (en) 2015-10-06 2020-10-27 Google Llc Gesture recognition using multiple antenna
CN107851932A (en) 2015-11-04 2018-03-27 谷歌有限责任公司 Connectors for connecting electronics embedded in clothing to external devices
WO2017106760A1 (en) 2015-12-16 2017-06-22 Siren Care, Inc. System and method for detecting inflammation in a foot
CN106894143B (en) * 2015-12-18 2019-12-17 北京创新爱尚家科技有限公司 heating fabric, heating fabric system, and method for controlling heating based on physiological data
EP3185656A1 (en) * 2015-12-23 2017-06-28 Universiteit Gent Module for textile applications
US10001263B2 (en) 2015-12-29 2018-06-19 Revella, Llc Fabric with embedded light emitting diodes (LED)
US10386047B2 (en) 2015-12-29 2019-08-20 Revella, Inc. Fabric with embedded illumination device
GB201523093D0 (en) 2015-12-30 2016-02-10 Univ Nottingham Trent Electronic strip yarn
TWI602964B (en) * 2015-12-30 2017-10-21 蘇盟凱 Texture structure
US10231623B2 (en) 2016-02-04 2019-03-19 Nanowear Inc. Roll-to-roll printing process for manufacturing a wireless nanosensor
CN105609679A (en) * 2016-02-25 2016-05-25 福州领头虎软件有限公司 Battery pack capable of being packaged on garment and packaging method
US10577732B1 (en) * 2016-02-26 2020-03-03 Apple Inc. Knit fabric with electrical components
CN105671786B (en) * 2016-03-18 2018-11-16 苏州椒图电子有限公司 A kind of processing method of sensing circuit
US10993635B1 (en) 2016-03-22 2021-05-04 Flextronics Ap, Llc Integrating biosensor to compression shirt textile and interconnect method
WO2017175001A1 (en) * 2016-04-07 2017-10-12 Advanced E-Textiles Ltd Improvements relating to textiles incorporating electronic devices
CN105748049B (en) * 2016-04-21 2018-11-16 河北医科大学第二医院 A kind of medical system with the monitoring of blanket remote physiological
WO2017192167A1 (en) 2016-05-03 2017-11-09 Google Llc Connecting an electronic component to an interactive textile
US10448680B2 (en) 2016-05-13 2019-10-22 Warwick Mills, Inc. Method for forming interconnections between electronic devices embedded in textile fibers
WO2017200570A1 (en) 2016-05-16 2017-11-23 Google Llc Interactive object with multiple electronics modules
CN105942985B (en) * 2016-06-07 2020-10-09 北京航空航天大学 A non-slip and anti-off surface layer structure for medical and health wearable devices
KR101677929B1 (en) * 2016-06-20 2016-11-21 주식회사 동아티오엘 Camouflaging fabrics by jacquard loom and its weaving method
DE102016114319B4 (en) * 2016-08-03 2019-02-28 Inteca Gmbh Flat lighting device
JP6716701B2 (en) * 2016-08-04 2020-07-01 岡本株式会社 Electronic functional member, knitted product using the same, and method of manufacturing electronic functional member
US20180250549A1 (en) * 2016-08-17 2018-09-06 Kerry Roth Paton Anti-Slip Yoga Rugs
US10400364B1 (en) 2016-09-20 2019-09-03 Apple Inc. Fabrics with conductive paths
US10480104B2 (en) 2016-09-27 2019-11-19 Siren Care, Inc. Smart yarn and method for manufacturing a yarn containing an electronic device
US10842205B2 (en) 2016-10-20 2020-11-24 Nike, Inc. Apparel thermo-regulatory system
US10579150B2 (en) 2016-12-05 2020-03-03 Google Llc Concurrent detection of absolute distance and relative movement for sensing action gestures
DE102016224565A1 (en) * 2016-12-09 2018-06-14 Robert Bosch Gmbh Textile and / or clothing unit
CN108269825A (en) * 2016-12-30 2018-07-10 昆山工研院新型平板显示技术中心有限公司 Organic luminous fiber and its manufacturing method and organic light emitting display and its manufacturing method
US10281094B2 (en) * 2017-01-20 2019-05-07 Dong Guan Shi Photoelectric Technology Co., Ltd Flexible wire LED string lights for festivals, production method thereof, and apparatus made therefrom
CN106948065B (en) * 2017-02-21 2018-03-16 嘉兴学院 Fabric construction with generating function
DE102017105784A1 (en) 2017-03-17 2018-09-20 Osram Gmbh Luminescent fiber, luminescent tissue and method for producing a luminescent fiber
CN107022823A (en) * 2017-03-24 2017-08-08 东华大学 A kind of machine-knitted structure flexibility temperature sensor of integrated temperature sensitive fiber
DE102017108580A1 (en) * 2017-04-21 2018-10-25 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor device and tissue
US10959634B2 (en) 2017-05-02 2021-03-30 Nanowear Inc. Wearable congestive heart failure management system
US11035058B2 (en) 2017-08-16 2021-06-15 Inman Mills Yarn containing a core of functional components
US10236089B1 (en) 2017-09-11 2019-03-19 International Business Machines Corporation Reducing environmental radon
US11091855B2 (en) * 2017-09-18 2021-08-17 Microsoft Technology Licensing, Llc Electronically functional yarn and textile
TWI661807B (en) * 2017-11-27 2019-06-11 Southern Taiwan University Of Science And Technology Fabric article and method for determining pressure distribution over fabric article
DE102017129994A1 (en) 2017-12-14 2019-06-19 Osram Opto Semiconductors Gmbh TEXTILE COMPONENT AND METHOD FOR PRODUCING A TEXTILE COMPONENT
US10323840B1 (en) * 2018-02-13 2019-06-18 Terry Electronics Technology Company Limited Wearable article and intelligent wearable device
US11233012B2 (en) 2018-03-19 2022-01-25 Apple Inc. Fabric-based items having strands with embedded components
US10687421B1 (en) * 2018-04-04 2020-06-16 Flex Ltd. Fabric with woven wire braid
US10772197B2 (en) * 2018-04-24 2020-09-08 Microsoft Technology Licensing, Llc Electronically functional yarn
US11299827B2 (en) * 2018-05-17 2022-04-12 James Tolle Nanoconductor smart wearable technology and electronics
US10575381B1 (en) 2018-06-01 2020-02-25 Flex Ltd. Electroluminescent display on smart textile and interconnect methods
DE102018114465A1 (en) * 2018-06-15 2019-12-19 Osram Opto Semiconductors Gmbh OPTOELECTRONIC FIBER AND DEVICE AND METHOD FOR PRODUCING AN OPTOELECTRONIC FIBER
CN108712815B (en) * 2018-07-26 2024-08-13 西华大学 Circuit network capable of forming conductive path
WO2020033426A1 (en) * 2018-08-10 2020-02-13 Elizabeth Whelan Multi-layer woven fabric article
DE102018213911A1 (en) * 2018-08-17 2020-02-20 Robert Bosch Gmbh Cell contacting system for a modular battery
EP3850132A1 (en) * 2018-09-12 2021-07-21 Inman Mills Woven fabric with hollow channel for prevention of structural damage to functional yarn, monofilament yarn, or wire contained therein
US10639509B2 (en) 2018-09-22 2020-05-05 Fedex Corporate Services, Inc. Methods and systems for unresponsive ID node monitoring for an environmental anomaly
KR102074081B1 (en) * 2018-11-05 2020-02-05 한국생산기술연구원 Fabric yarn pressure sensor and manufactruing method thereof
WO2020118694A1 (en) 2018-12-14 2020-06-18 Siren Care, Inc. Temperature-sensing garment and method for making same
KR102178463B1 (en) * 2019-01-24 2020-11-13 국민대학교산학협력단 Fibrous light emitting device and manufacturing method of the same
WO2020163676A1 (en) * 2019-02-07 2020-08-13 Supreme Corporation Conductive yarn capable of data transmission with one or more devices in a smart fabric/garment
JP2022525878A (en) 2019-03-15 2022-05-20 エンバー テクノロジーズ, インコーポレイテッド Clothes or footwear that is actively heated or cooled, and hangers used with them.
US20200325603A1 (en) 2019-04-10 2020-10-15 Propel, LLC Knitted textiles with conductive traces of a hybrid yarn and methods of knitting the same
GB2583754B (en) * 2019-05-09 2022-10-26 Conductive Transfers Ltd Conductive transfer
CN110279412A (en) * 2019-06-20 2019-09-27 山东大学 A kind of paediatrics network hospital terminal device, system and method
CN110485028A (en) * 2019-07-31 2019-11-22 王一玫 A kind of fabric structural composite material and its preparation process and application
CN110634405A (en) * 2019-09-24 2019-12-31 北京翌光科技有限公司 Electronic device and application thereof
US12141680B2 (en) 2019-12-30 2024-11-12 Massachusetts Institute Of Technology Fiber and fabric computers
JP7429426B2 (en) * 2020-01-24 2024-02-08 国立研究開発法人産業技術総合研究所 Base material with electronic components and manufacturing method thereof
WO2021168425A1 (en) * 2020-02-20 2021-08-26 The Regents Of The University Of California Method and device for textile-based electricity generation and storage
CN113633035B (en) * 2020-04-24 2023-03-21 香港理工大学 Microelectronic yarn fabric and manufacturing method
US11337312B2 (en) * 2020-09-08 2022-05-17 Palo Alto Research Center Incorporated Systems and methods for bonding electronic components on substrates with rough surfaces
US11772760B2 (en) 2020-12-11 2023-10-03 William T. Myslinski Smart wetsuit, surfboard and backpack system
CN112853568A (en) * 2021-01-04 2021-05-28 顺德职业技术学院 Fabric with display effect
WO2022162514A1 (en) * 2021-02-01 2022-08-04 Mohammad Mohammadimasoudi System for detecting a target material in a sample using liquid crystals
JP7185240B2 (en) * 2021-03-17 2022-12-07 株式会社Zozo Smart textile and manufacturing method
CN118176827A (en) * 2021-11-02 2024-06-11 株式会社Zozo Textiles and textile-based equipment
CN114038321B (en) * 2021-11-22 2023-10-17 深圳市华星光电半导体显示技术有限公司 Display device
CN114360867A (en) * 2022-01-17 2022-04-15 泓织(上海)科技有限公司 Radio frequency energy collection system coil and manufacturing method thereof
KR20230149088A (en) * 2022-04-19 2023-10-26 한국전자기술연구원 Camouflage apparatus using reflective display
WO2023201585A1 (en) * 2022-04-20 2023-10-26 京东方科技集团股份有限公司 Display panel and display apparatus
US12239188B2 (en) 2022-07-08 2025-03-04 Puma SE Article of footwear having a textile display system
EP4565093A1 (en) 2022-08-01 2025-06-11 Puma Se Article of footwear having a display system
EP4414487A1 (en) * 2023-02-13 2024-08-14 Silicon Austria Labs GmbH Thread with a functional layered structure
US20240360600A1 (en) * 2023-04-28 2024-10-31 The United States Of America, As Represented By The Secretary Of The Navy Fabric and Lattice for Locating Damage
WO2024253363A1 (en) * 2023-06-09 2024-12-12 한국과학기술원 Fiber-woven display device and manufacturing method therefor
US20240417898A1 (en) * 2023-06-13 2024-12-19 Apple Inc. Warp Knit and Braided Fabrics with Electrical Components
US20240417895A1 (en) * 2023-06-13 2024-12-19 Apple Inc. Fabric with Electrical Components

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3631298A (en) * 1969-10-24 1971-12-28 Bunker Ramo Woven interconnection structure
US4158103A (en) * 1976-04-19 1979-06-12 Danilin Jurij Ivanovic Electric woven switching matrix
US4639545A (en) * 1984-02-07 1987-01-27 Raychem Limited Recoverable article for screening
US4668545A (en) * 1984-09-14 1987-05-26 Raychem Corp. Articles comprising shaped woven fabrics
US4700054A (en) * 1983-11-17 1987-10-13 Raychem Corporation Electrical devices comprising fabrics
US5054706A (en) * 1987-10-02 1991-10-08 Granger Maurice Device to adjust and dispense webs of rolled up material
US5102727A (en) * 1991-06-17 1992-04-07 Milliken Research Corporation Electrically conductive textile fabric having conductivity gradient
US5358758A (en) * 1989-12-06 1994-10-25 Albany International Corp. Structural member
US5381482A (en) * 1992-01-30 1995-01-10 Matsushita Electric Industrial Co., Ltd. Sound field controller
US5422462A (en) * 1993-04-12 1995-06-06 Matsushita Electric Industrial Co., Ltd. Electric heating sheet
US5501133A (en) * 1990-03-29 1996-03-26 Albany International Corp. Apparatus for making a braid structure
US5697969A (en) * 1991-03-25 1997-12-16 Meadox Medicals, Inc. Vascular prosthesis and method of implanting
US5767824A (en) * 1991-12-31 1998-06-16 Sarcos Group High-density, three-dimensional, intercoupled circuit structure
US5802607A (en) * 1995-10-20 1998-09-08 Triplette; Walter W. Fencing jackets made from electrically conductive threads
US5927060A (en) * 1997-10-20 1999-07-27 N.V. Bekaert S.A. Electrically conductive yarn
US5962967A (en) * 1998-03-19 1999-10-05 Kiryuschev; Irina Electroluminescent device and method of manufacturing same
US6032450A (en) * 1996-07-01 2000-03-07 Spoerry & Co. Ag Method for producing an electrically conductive yarn, the electrically conductive yarn and use of the electrically conductive yarn
US6045575A (en) * 1997-09-10 2000-04-04 Amt, Inc. Therapeutic method and internally illuminated garment for the management of disorders treatable by phototherapy
US6072619A (en) * 1999-03-22 2000-06-06 Visson Ip, Llc Electro-optical light modulating device
US6145551A (en) * 1997-09-22 2000-11-14 Georgia Tech Research Corp. Full-fashioned weaving process for production of a woven garment with intelligence capability
US6153124A (en) * 2000-03-23 2000-11-28 Hung; Chu-An Electrically-conductive fabric
US6210771B1 (en) * 1997-09-24 2001-04-03 Massachusetts Institute Of Technology Electrically active textiles and articles made therefrom
US20010036785A1 (en) * 2000-03-29 2001-11-01 Seiren Co., Ltd. Electrically conductive fabric
US6315009B1 (en) * 1998-05-13 2001-11-13 Georgia Tech Research Corp. Full-fashioned garment with sleeves having intelligence capability
US6326947B1 (en) * 1999-03-02 2001-12-04 Microsoft Corporation Tactile character input in computer-based devices
US6370019B1 (en) * 1998-02-17 2002-04-09 Sarnoff Corporation Sealing of large area display structures
US20020074937A1 (en) * 2000-12-18 2002-06-20 Felix Guberman Flexible material for electrooptic displays
US20020076948A1 (en) * 2000-10-16 2002-06-20 Brian Farrell Method of manufacturing a fabric article to include electronic circuitry and an electrically active textile article
US20020167483A1 (en) * 2001-05-10 2002-11-14 Metcalf Darrell J. Apparel with contiguous video-imaging surface and apparatus for controlling and formatting video imagery on such surfaces
US6490402B1 (en) * 2000-08-02 2002-12-03 Sony Corporation Flexible flat color display

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818122A (en) * 1973-05-29 1974-06-18 Schjeldahl Co G T Flexible printed circuit interconnecting cable
US4312913A (en) * 1980-05-12 1982-01-26 Textile Products Incorporated Heat conductive fabric
US4654748A (en) * 1985-11-04 1987-03-31 Coats & Clark, Inc. Conductive wrist band
JPH03143180A (en) * 1989-10-30 1991-06-18 Pioneer Electron Corp Organic fluorescent screen
US6381482B1 (en) * 1998-05-13 2002-04-30 Georgia Tech Research Corp. Fabric or garment with integrated flexible information infrastructure
CN1130682C (en) 1997-10-08 2003-12-10 周嵘 Plane display
US6897855B1 (en) 1998-02-17 2005-05-24 Sarnoff Corporation Tiled electronic display structure
US6432850B1 (en) * 1998-03-31 2002-08-13 Seiren Co., Ltd. Fabrics and rust proof clothes excellent in conductivity and antistatic property
US6970731B1 (en) 1998-09-21 2005-11-29 Georgia Tech Research Corp. Fabric-based sensor for monitoring vital signs
US6608438B2 (en) * 2001-11-09 2003-08-19 Visson Ip Llc 3-D flexible display structure

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3631298A (en) * 1969-10-24 1971-12-28 Bunker Ramo Woven interconnection structure
US4158103A (en) * 1976-04-19 1979-06-12 Danilin Jurij Ivanovic Electric woven switching matrix
US4700054A (en) * 1983-11-17 1987-10-13 Raychem Corporation Electrical devices comprising fabrics
US4639545A (en) * 1984-02-07 1987-01-27 Raychem Limited Recoverable article for screening
US4668545A (en) * 1984-09-14 1987-05-26 Raychem Corp. Articles comprising shaped woven fabrics
US5054706A (en) * 1987-10-02 1991-10-08 Granger Maurice Device to adjust and dispense webs of rolled up material
US5358758A (en) * 1989-12-06 1994-10-25 Albany International Corp. Structural member
US5501133A (en) * 1990-03-29 1996-03-26 Albany International Corp. Apparatus for making a braid structure
US5697969A (en) * 1991-03-25 1997-12-16 Meadox Medicals, Inc. Vascular prosthesis and method of implanting
US5102727A (en) * 1991-06-17 1992-04-07 Milliken Research Corporation Electrically conductive textile fabric having conductivity gradient
US5767824A (en) * 1991-12-31 1998-06-16 Sarcos Group High-density, three-dimensional, intercoupled circuit structure
US5381482A (en) * 1992-01-30 1995-01-10 Matsushita Electric Industrial Co., Ltd. Sound field controller
US5422462A (en) * 1993-04-12 1995-06-06 Matsushita Electric Industrial Co., Ltd. Electric heating sheet
US5802607A (en) * 1995-10-20 1998-09-08 Triplette; Walter W. Fencing jackets made from electrically conductive threads
US6032450A (en) * 1996-07-01 2000-03-07 Spoerry & Co. Ag Method for producing an electrically conductive yarn, the electrically conductive yarn and use of the electrically conductive yarn
US6045575A (en) * 1997-09-10 2000-04-04 Amt, Inc. Therapeutic method and internally illuminated garment for the management of disorders treatable by phototherapy
US6145551A (en) * 1997-09-22 2000-11-14 Georgia Tech Research Corp. Full-fashioned weaving process for production of a woven garment with intelligence capability
US6210771B1 (en) * 1997-09-24 2001-04-03 Massachusetts Institute Of Technology Electrically active textiles and articles made therefrom
US5927060A (en) * 1997-10-20 1999-07-27 N.V. Bekaert S.A. Electrically conductive yarn
US6370019B1 (en) * 1998-02-17 2002-04-09 Sarnoff Corporation Sealing of large area display structures
US5962967A (en) * 1998-03-19 1999-10-05 Kiryuschev; Irina Electroluminescent device and method of manufacturing same
US6315009B1 (en) * 1998-05-13 2001-11-13 Georgia Tech Research Corp. Full-fashioned garment with sleeves having intelligence capability
US6326947B1 (en) * 1999-03-02 2001-12-04 Microsoft Corporation Tactile character input in computer-based devices
US6072619A (en) * 1999-03-22 2000-06-06 Visson Ip, Llc Electro-optical light modulating device
US6153124A (en) * 2000-03-23 2000-11-28 Hung; Chu-An Electrically-conductive fabric
US20010036785A1 (en) * 2000-03-29 2001-11-01 Seiren Co., Ltd. Electrically conductive fabric
US6490402B1 (en) * 2000-08-02 2002-12-03 Sony Corporation Flexible flat color display
US20020076948A1 (en) * 2000-10-16 2002-06-20 Brian Farrell Method of manufacturing a fabric article to include electronic circuitry and an electrically active textile article
US20020074937A1 (en) * 2000-12-18 2002-06-20 Felix Guberman Flexible material for electrooptic displays
US20020167483A1 (en) * 2001-05-10 2002-11-14 Metcalf Darrell J. Apparel with contiguous video-imaging surface and apparatus for controlling and formatting video imagery on such surfaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090174325A1 (en) * 2006-06-29 2009-07-09 Koninklijke Philips Electronics N.V. Pixelated electroluminescent textile
US20120274616A1 (en) * 2011-04-27 2012-11-01 Southwest Research Institute Electrophoretic Display Using Fibers Containing a Nanoparticle Suspension

Also Published As

Publication number Publication date
AU2003251292A1 (en) 2003-11-11
CN1322837C (en) 2007-06-27
JP2005524783A (en) 2005-08-18
US20040009729A1 (en) 2004-01-15
US7592276B2 (en) 2009-09-22
EP1503665A1 (en) 2005-02-09
KR20050008707A (en) 2005-01-21
WO2003094719A1 (en) 2003-11-20
CN1649539A (en) 2005-08-03

Similar Documents

Publication Publication Date Title
US20050081944A1 (en) Display having addressable characters
US7324071B2 (en) Segmented character display
US5990802A (en) Modular LED messaging sign panel and display system
US7144830B2 (en) Plural layer woven electronic textile, article and method
EP0042122B1 (en) Led module for a flat panel display unit
US5836676A (en) Light emitting display apparatus
US8207541B2 (en) Light output device
US20020175882A1 (en) Display devices and driving method therefor
JP2010522895A (en) Cut-to-measure display device and control method thereof
US20020003526A1 (en) Display device and method for visualizing computer generated image information
CN114913808B (en) Driving chip, LED device and address writing method thereof
CA1175526A (en) Digital information transmission system
US7683384B2 (en) Ultra-thin alphanumeric display
US4394653A (en) Bi-directional drive multiplexed display system
TW531732B (en) Display panel and display method therefor
US5251393A (en) Luminous display device for electric equipments
JPH09106264A (en) Driving circuit for fluorescent display device
US3544990A (en) Planar electroluminescent plural character display
US20010011971A1 (en) Remote controllable multi planer display unit
JPH02280188A (en) Method and device for lighting light emitting diode
US3221169A (en) Electroluminescent graphical display device
CN211150067U (en) N-digit nixie tube PCB expansion board
KR100765079B1 (en) Advertising system and production method
JP2000089717A (en) Dot matrix display device
Andrews Contemporary displays-a review of optoelectronics technology

Legal Events

Date Code Title Description
AS Assignment

Owner name: SARNOFF CORPORATION, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARPINELLI, JOSEPH M.;RIDDLE, GEORGE HERBERT NEEDHAM;HILL, IAN GREGORY;REEL/FRAME:015985/0442;SIGNING DATES FROM 20041028 TO 20041104

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION