[go: up one dir, main page]

US20050075343A1 - Benzimidazole derivatives as modulators of IgE - Google Patents

Benzimidazole derivatives as modulators of IgE Download PDF

Info

Publication number
US20050075343A1
US20050075343A1 US10/951,515 US95151504A US2005075343A1 US 20050075343 A1 US20050075343 A1 US 20050075343A1 US 95151504 A US95151504 A US 95151504A US 2005075343 A1 US2005075343 A1 US 2005075343A1
Authority
US
United States
Prior art keywords
substituted
group
ring
cycloalkyl
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/951,515
Inventor
Jagadish Sircar
Mark Richards
Michael Campbell
Michael Major
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27375413&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050075343(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/316,870 external-priority patent/US6271390B1/en
Priority claimed from US09/422,397 external-priority patent/US6303645B1/en
Application filed by Individual filed Critical Individual
Priority to US10/951,515 priority Critical patent/US20050075343A1/en
Publication of US20050075343A1 publication Critical patent/US20050075343A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca

Definitions

  • This invention relates to small molecule inhibitors of the IgE response to allergens that are useful in the treatment of allergy and/or asthma or any diseases where IgE is pathogenic.
  • asthma According to the National Ambulatory Medical Care Survey, asthma accounts for 1% of all ambulatory care visits, and the disease continues to be a significant cause of missed school days in children. Despite improved understanding of the disease process and better drugs, asthma morbidity and mortality continue to rise in this country and worldwide (U.S. Department of Health and Human Services; 1991, publication no. 91-3042). Thus, asthma constitutes a significant public health problem.
  • the pathophysiologic processes that attend the onset of an asthmatic episode can be broken down into essentially two phases, both marked by bronchoconstriction, that causes wheezing, chest tightness, and dyspnea.
  • the first, early phase asthmatic response is triggered by allergens, irritants, or exercise. Allergens cross-link immunoglobulin E (IgE) molecules bound to receptors on mast cells, causing them to release a number of pre-formed inflammatory mediators, including histamine. Additional triggers include the osmotic changes in airway tissues following exercise or the inhalation of cold, dry air.
  • IgE immunoglobulin E
  • the second, late phase response that follows is characterized by infiltration of activated eosinophils and other inflammatory cells into airway tissues, epithelial desquamonon, and by the presence of highly viscous mucus within the airways.
  • the damage caused by this inflammatory response leaves the airways “primed” or sensitized, such that smaller triggers are required to elicit subsequent asthma symptoms.
  • ⁇ 2 -adrenergic agonists terbutaline and albuterol
  • short-acting ⁇ 2 -adrenergic agonists long the mainstay of asthma treatment, act primarily during the early phase as bronchodilators.
  • the newer long-acting ⁇ 2 -agonists, salmeterol and formoterol, may reduce the bronchoconstrictive component of the late response.
  • the ⁇ 2 -agonists do not possess significant antiinflammatory activity, they have no effect on bronchial hyperreactivity.
  • antihistamines like loratadine, inhibit early histamine-mediated inflammatory responses.
  • Phosphodiesterase inhibitors like theophylline/xanthines, may attenuate late inflammatory responses, but there is no evidence that these compounds decrease bronchial hyperreactivity.
  • Anticholinergics like ipratopium bromide, which are used in cases of acute asthma to inhibit severe bronchoconstriction, have no effect on early or late phase inflammation, no effect on bronchial hyperreactivity, and therefore, essentially no role in chronic therapy.
  • corticosteroid drugs like budesonide
  • Inflammatory mediator release inhibitors like cromolyn and nedocromil, act by stabilizing mast cells and thereby inhibiting the late phase inflammatory response to allergen.
  • cromolyn and nedocromil as well as the corticosteroids, all reduce bronchial hyperreactivity by minimizing the sensitizing effect of inflammatory damage to the airways.
  • these antiinflammatory agents do not produce bronchodilation.
  • leukotriene receptor antagonists ICI-204, 219, accolate
  • the leukotrienes have been implicated in the production of both airway inflammation and bronchoconstriction.
  • Tanox has already successfully tested the anti-IgE antibody, CGP-51901, which reduced the severity and duration of nasal symptoms of allergic rhinitis in a 155-patient Phase II trial (Scrip #2080, Nov. 24, 1995, p.26).
  • Genentech recently disclosed positive results from a 536 patient phase-II/II trials of its recombinant humanized monoclonal antibody, rhuMAB-E25 (BioWorld® Today, Nov. 10, 1998, p. 1).
  • the antibody, rhuMAB-E25 administered by injection (highest dose 300 mg every 2 to 4 weeks as needed) provided a 50% reduction in the number of days a patient required additional “rescue” medicines (antihistimines and decongestants), compared to placebo.
  • An NDA filing for this product is projected to be in the year 2000.
  • the positive results from anti-IgE antibody trials suggest that therapeutic strategies aimed at IgE down-regulation may be effective.
  • the present invention discloses a family of related compounds for use in the treatment of a condition associated with an excess IgE level.
  • the benzimidazole inhibitors of IgE in accordance with the present invention are represented by the generic formula:
  • a composition for use in the treatment of an allergic condition comprising the benzimidazole inhibitor of IgE disclosed above and at least one additional active ingredient, combined in a pharmaceutically acceptable diluent.
  • the additional active ingredients may be selected from the group consisting of short-acting ⁇ 2 -adrenergic agonists, like terbutaline and albuterol, long-acting ⁇ 2 -adrenergic agonists, like salmeterol and formoterol, antihistamines, like loratadine, azelastine and ketotifen, phosphodiesterase inhibitors, anticholinergic agents, corticosteroids, inflammatory mediator release inhibitors and leukotriene receptor antagonists.
  • a family of symmetric and asymmetric diacyl and monoacyl benzimidazole compounds for use in the treatment of an allergic condition comprising the following species:
  • X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF 3 , OCF 3 , CONH 2 , CONHR and NHCOR 1 .
  • R is selected from the group consisting of H, CH 3 , C 2 H 5 , C 3 H 7 , C 4 H 9 , CH 2 Ph, and CH 2 C 6 H 4 —F(p-).
  • R 1 and R 2 are independently selected from the group consisting of H, aryl, heteroaryl, thiophene, pyridyl, thiazolyl, isoxazolyl, oxazolyl, pyrimidinyl, substituted aryl, substituted heteroaryl, substituted thiophene, substituted pyridyl, substituted thiazolyl, substituted isoxazolyl, substituted oxazolyl, cycloaryl, cycloheteroaryl, quinolinyl, isoquinolinyl, substituted cycloaryl, substituted cycloheteroaryl, substituted quinolinyl, substituted isoqunolinyl, multi-ring cycloaryl, multi-ring cycloheteroaryl, benzyl, heteroaryl-methyl, substituted benzyl, substituted heteroaryl-methyl alkyl, dialkyl, aminoalkyl, cycloalkyl, cyclo
  • R 1 and R 2 substitutions are independently selected from the group consisting of alkyl, aryl, CF 3 , CH 3 , OCH 3 , OH, CN, CONH 2 , CONHR, CONR1R2, COOR and COOH.
  • a method of treating a mammal having a condition associated with an excess IgE level comprises administering to the mammal an amount of a compound sufficient to reduced IgE levels in the mammal.
  • the compound has the formula:
  • At least one additional active ingredient may be administered in conjunction with the administration of the compound.
  • the additional active ingredient may be combined with said compound in a pharmaceutically acceptable diluent and co-administered to the mammal.
  • the additional active ingredient may be a short-acting ⁇ 2 -adrenergic agonist selected from the group consisting of terbutaline and albuterol.
  • the additional active ingredient may be a long-acting ⁇ 2 -adrenergic agonist selected from the group consisting of salmeterol and formoterol or an antihistamine selected from the group consisting of loratadine, azelastine and ketotifen.
  • the additional active ingredient may be a phosphodiesterase inhibitor, an anticholinergic agent, a corticosteroid, an inflammatory mediator release inhibitor or a leukotriene receptor antagonist.
  • the compound is preferably administered at a dose of about 0.01 mg to about 100 mg per kg body weight per day in divided doses of said compound for at least two consecutive days at regular periodic intervals.
  • the present invention is directed to small molecule inhibitors of IgE (synthesis and/or release) which are useful in the treatment of allergy and/or asthma or any diseases where IgE is pathogenic.
  • IgE synthesis and/or release
  • the particular compounds disclosed herein were identified by their ability to suppress IgE levels in both ex vivo and in vivo assays. Development and optimization of clinical treatment regimens can be monitored by those of skill in the art by reference to the ex vivo and in vivo assays described below.
  • This assay begins with in vivo antigen priming and measures secondary antibody responses in vitro.
  • the basic protocol was documented and optimized for a range of parameters including: antigen dose for priming and time span following priming, number of cells cultured in vitro, antigen concentrations for eliciting secondary IgE (and other Ig's) response in vitro, fetal bovine serum (FBS) batch that will permit optimal IgE response in vitro, the importance of primed CD4+ T cells and hapten-specific B cells, and specificity of the ELISA assay for IgE (Marcelletti and Katz, Cellular Immunology 135:471-489 (1991); incorporated herein by reference).
  • FBS fetal bovine serum
  • mice were immunized i.p. with 10 ⁇ g DNP-KLH adsorbed onto 4 mg alum and sacrificed after 15 days.
  • Spleens were excised and homogenized in a tissue grinder, washed twice, and maintained in DMEM supplemented with 10% FBS, 100 U/ml penicillin, 100 ⁇ g/ml streptomycin and 0.0005% 2-mercaptoethanol.
  • Spleen cell cultures were established (2-3 million cells/ml, 0.2 ml/well in quadruplicate, 96-well plates) in the presence or absence of DNP-KLH (10 ng/ml).
  • Test compounds (2 ⁇ g/ml and 50 ng/ml) were added to the spleen cell cultures containing antigen and incubated at 37° C. for 8 days in an atmosphere of 10% CO 2 .
  • ELISA plates were prepared by coating with DNP-KLH overnight. After blocking with bovine serum albumin (BSA), an aliquot of each culture supernatant was diluted (1:4 in phosphate buffered saline (PBS) with BSA, sodium azide and Tween 20), added to the ELISA plates, and incubated overnight in a humidified box at 40 C. IgE levels were quantitated following successive incubations with biotinylated-goat antimouse IgE (b-GAME), AP-streptavidin and substrate.
  • BSA bovine serum albumin
  • Antigen-specific IgG1 was measured similarly, except that culture supernatants were diluted 200-fold and biotinylated-goat antimouse IgG1 (b-GAMG1) was substituted for B-GAME.
  • IgG2a was measured in ELISA plates that were coated with DNP-KLH following a 1:20 dilution of culture supernatants and incubation with biotinylated-goat antimouse IgG2a (b-GAMG2a). Quantitation of each isotype was determined by comparison to a standard curve. The level of detectability of all antibody was about 200-400 ⁇ g/ml and there was less than 0.001% cross-reactivity with any other Ig isotype in the ELISA for IgE.
  • mice receiving low-dose radiation prior to immunization with a carrier exhibited an enhanced IgE response to sensitization with antigen 7 days later.
  • Administration of the test compounds immediately prior to and after antigen sensitization measured the ability of that drug to suppress the IgE response.
  • the levels of IgE, IgG1 and IgG2a in serum were compared.
  • mice Female BALB/cByj mice were irradiated with 250 rads 7 hours after initiation of the daily light cycle. Two hours later, the mice were immunized i.p. with 2 ⁇ g of KLH in 4 mg alum. Two to seven consecutive days of drug injections were initiated 6 days later on either a once or twice daily basis. Typically, i.p. injections and oral gavages were administered as suspensions (150 ⁇ l/injection) in saline with 10% ethanol and 0.25% methylcellulose. Each treatment group was composed of 5-6 mice. On the second day of drug administration, 2 ⁇ g of DNP-KLH was administered i.p. in 4 mg alum, immediately following the morning injection of drug. Mice were bled 7-21 days following DNP-KLH challenge.
  • Antigen-specific IgE, IgG1 and IgG2a antibodies were measured by ELISA. Periorbital bleeds were centrifuged at 14,000 rpm for 10 min, the supernatants were diluted 5-fold in saline, and centrifuged again. Antibody concentrations of each bleed were determined by ELISA of four dilutions (in triplicate) and compared to a standard curve: anti-DNP IgE (1:100 to 1:800), anti-DNP IgG2a (1:100 to 1:800), and anti-DNP IgG1 (1:1600 to 1:12800).
  • the diacyl benzimidazole compounds of the present invention were prepared using the following synthesis reactions, wherein the desired acid chlorides are selected from the R1 and R2 groups provided in the Table.
  • HPLC/MS data was obtained using a Gilson semi-prep HPLC with a Gilson 170 Diode Array UV detector and PE Sciex API 100LC MS based detector.
  • a Waters 600E with a Waters 490E UV detector was also used for recording HPLC data.
  • the compounds were eluted with a gradient of CH 3 CN (with 0.0035% TFA) and H 2 O (with 0.01% TFA).
  • Both HPLC instruments used Advantage C18 60A 5 ⁇ 50 mm ⁇ 4.6 mm columns from Thomson Instrument Company.
  • Mass spectra were obtained by direct injection and electrospray ionization on a PE Sciex API 100LC MS based detector.
  • Thin layer chromatography was performed using Merck 60F-254 aluminum backed precoated plates. Flash chromatography was carried out on Merck silica gel 60 (230-400 mesh) purchased from EM Scientific.
  • the symmetrical diacyl benzimidazole compounds of the present invention were generally prepared from 2-(4-aminophenyl)-5-aminobenzimidazole, which was obtained by reduction of 2-(4-nitrophenyl)-6-nitrobenzimidazole.
  • the dinitro benzimidazole was prepared as follows: a mixture of 4-nitrophenylenediamine (6.4 g, 41.83 mmol) and 4-nitrobenzoic acid (7.86 g, 47 mmol) was dissolved in POCl 3 (250 ml) and heated to reflux for 2 h. The reaction mixture was cooled, poured on to ice, and stirred for 30 min. The resulting solid was filtered and washed with methanol and sodium bicarbonate to remove unreacted acid and allowed to dry overnight to give the desired product as a brown solid (5.8 g). The product was characterized by electrospray mass spectroscopy (mp>300° C.).
  • 2-(4-Aminophenyl)-5-aminobenzimidazole was prepared by suspending the above solid (75 g) in THF (75 ml), to which was added Pd-C (10% Pd by weight). The flask was purged with hydrogen and stirred under a balloon of hydrogen over night. TLC and MS showed starting material was still present so the reaction was allowed to continue over the weekend. TLC indicated complete reaction, the reaction was filtered through celite and washed with methanol. The solvent was removed under reduced pressure to give a dark brown solid (0.37 g) that was used without further purification.
  • the 2-(4-aminophenyl)-5-aminobenzimidazole was prepared by the following reduction: 2-(4-nitrophenyl)-6-nitrobenzimidazole (8.9 g, 31 mmole) was suspended in concentrated HCl (100 ml) to which was added stannous chloride (42.3 g 180 mmole). The reaction mixture was heated to reflux for 5 hrs. The mixture was cooled to RT and the HCl salt of the desired product was precipitated by the addition of ethanol. The resulting solid was filtered, re-dissolved in water and the solution made basic by the addition of concentrated ammonium hydroxide.
  • 2-(4-Aminophenyl)-5-methoxy benzimidazole was synthesized from 2-(4-nitrophenyl)-5-methoxy benzimidazole, which was prepared as follows: 1,2-diamino-4-methoxybenzene (1.26 g, 10.0 mmole was mixed with 4-nitrobenzoic acid (1.67 g, 9.8 mmole) and dissolved in POCl 3 (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO 3 and used without further purification.
  • 2-(4-Aminophenyl)-5-methoxy benzimidazole was prepared by dissolving 1 g of the above nitrobenzimidazole in 30% Na 2 S9H 2 O (20 ml) with stirring at RT for 21 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.
  • 2-(4-Aminophenyl)-5,6-dichloro benzimidazole was synthesized from 2-(4-nitrophenyl)-5,6-dichloro benzimidazole, which was prepared as follows: 1,2-diamino-4,5-dichlorobenzene (1.68 g, 10.0 mmole) was mixed with 4-nitrobenzoic acid (1.58 g, 9.3 mmole), dissolved in POCl 3 (10 ml), and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO 3 and used without further purification.
  • 2-(4-Aminophenyl)-5,6-dichloro benzimidazole was prepared by dissolving 1 g of the above nitrobenzimidazole in 30% Na 2 S9H 2 O (20 ml) with stirring at RT for 21 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.
  • 2-(4-aminophenyl)-7-methyl benzimidazole was synthesized from 2-(4-nitrophenyl)-7-methyl benzimidazole, which was prepared by mixing 1,2-diamino-3-methylbenzene (1.24 g, 10.0 mmole) with 4-nitrobenzoic acid (1.69 g, 9.8 mmole), dissolved in POCl 3 (10 ml), and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO 3 and used without further purification.
  • 2-(4-Aminophenyl)-7-methyl benzimidazole was synthesized by dissolving 1 g of the above nitrobenzimidazole in 30% Na 2 S-9H 2 O (20 ml) with stirring at RT for 4.5 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.
  • 2-(4-Aminophenyl)-6-methyl benzimidazole was synthesized from 2-(4-nitrophenyl)-6-methyl benzimidazole, which was prepared by mixing 1,2-diamino-4-methylbenzene (1.24 g, 9.8 mmole) with 4-nitrobenzoic acid (1.6 g, 9.9 mmole) and dissolved in POCl 3 (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO 3 and used without further purification.
  • 2-(4-Aminophenyl)-6-methyl benzimidazole was synthesized by dissolving 1 g of the above nitrobenzimidazole in 30% Na2S.9H 2 O (20 ml) with stirring at RT for 4.5 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.
  • 2-(4-Aminophenyl)-5,6-dimethyl benzimidazole was synthesized from 2-(4-nitrophenyl)-5,6-dimethyl benzimidazole, which was prepared by mixing 1,2-diamino-4,5-dimethylbenzene (1.38 g, 10.1 mmole) with 4-nitrobenzoic acid (1.69 g, 9.9 mmole) and dissolved in POCl 3 (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO 3 and used without further purification.
  • 2-(4-Aminophenyl)-5,6-dimethyl benzimidazole was synthesized by dissolving 1 g of the above nitrobenzimidazole (31.1) in 30% Na 2 S-9H 2 O (20 ml) with stirring at RT for 4.5 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.
  • Method B 2-(4-Aminophenyl)-6-aminobenzimidazole (1 mmole) and DMAP (cat.) was dissolved in pyridine (5 ml). To the above solution was added the acid chloride (2.5 mmole) and the reaction stirred overnight at 600 C. The reaction was cooled to room temperature and water added to precipitate the product. The resulting solid was collected by filtration with the solid being washed by hexanes and water and NaHCO 3 (aq.). The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH 2 Cl 2 ) or reverse phase HPLC (CH 3 CN/H 2 O).
  • Method D The carboxylic acid (2.2 mmole), EDC (2.2 mmole) and DMAP (cat.) was dissolved in hot pyridine. To the above solution was added 2-(4-aminophenyl)-6-aminobenzimidazole (1 mmole) and heated to 60° C. overnight. The cooled reaction mixture was partitioned between water and EtOAc. The organic layer was washed with NaHCO 3 , dried over Na 2 SO 4 and concentrated under vacuum. The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH 2 Cl 2 ) or reverse phase HPLC (CH 3 CN/H 2 O).
  • the inhibitory activity of the small molecules of the present invention were assayed using both the ex vivo and in vivo assays as described above. All of the compounds presented above were active in suppressing the IgE response.
  • compounds in genuses I-XI produced 50% inhibition at concentrations ranging from 1 pM to 100 ⁇ M.
  • the compounds were effective at concentrations ranging from less than about 0.01 mg/kg/day to about 100 mg/kg/day, when administered in divided doses (e.g., two to four times daily) for at least two to seven consecutive days.
  • the small molecule inhibitors of the present invention are disclosed as being useful in lowering the antigen-induced increase in IgE concentration, and consequently, in the treatment of IgE-dependent processes such as allergies in general and allergic asthma in particular.
  • the amount of the IgE inhibitor compound which may be effective in treating a particular allergy or condition will depend on the nature of the disorder, and can be determined by standard clinical techniques. The precise dose to be employed in a given situation will also depend on the choice of compound and the seriousness of the condition, and should be decided according to the judgment of the practitioner and each patient's circumstances. Appropriate dosages can be determined and adjusted by the practitioner based on dose response relationships between the patient's IgE levels as well as standard indices of pulmonary and hemodynamic changes. Moreover, those skilled in the art will appreciate that dose ranges can be determined without undue experimentation by following the protocol(s) disclosed herein for ex vivo and in vivo screening (See for example Hasegawa et al., J. Med.
  • suitable dosages of the compounds will generally range from about 0.001 mg to about 300 mg per kg body weight per day in divided doses, more preferably, between about 0.01 mg and 100 mg per kg body weight per day in divided doses.
  • the compounds are preferably administered systemically as pharmaceutical formulations appropriate to such routes as oral, aerosol, intravenous, subcutaneously, or by any other route which may be effective in providing systemic dosing of the active compound.
  • the compositions of pharmaceutical formulations are well known in the art.
  • the treatment regimen preferably involves periodic administration. Moreover, long-term therapy may be indicated where allergic reactions appear to be triggered by continuous exposure to the allergen(s).
  • the compound is administered for at least two consecutive days at regular periodic intervals.
  • the treatment regimen including frequency of dosing and duration of treatment may be determined by the skilled practitioner, and modified as needed to provide optimal IgE down-regulation, depending on nature of the allergen, the dose, frequency, and duration of the allergen exposure, and the standard clinical indices.
  • an IgE-suppressing compound may be administered in conjunction with one or more of the other small molecule inhibitors disclosed, in order to produce optimal down-regulation of the patient's IgE response.
  • one or more of the compounds of the present invention may be administered in combination with other drugs already known or later discovered for treatment of the underlying cause as well as the acute symptoms of allergy or asthma.
  • combination therapies envisioned within the scope of the present invention include mixing of one or more of the small molecule IgE-inhibitors together with one or more additional ingredients, known to be effective in reducing at least one symptom of the disease condition.
  • the small molecule IgE-inhibitors herein disclosed may be administered separately from the additional drugs, but during the same course of the disease condition, wherein both the IgE-inhibitor(s) and the palliative compounds are administered in accordance with their independent effective treatment regimens.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

This invention relates to a family of benzimidazole analogs, which are inhibitors of the IgE response to allergens. These compounds are useful in the treatment of allergy, asthma, or any diseases where IgE is pathogenic.

Description

    RELATED APPLICATIONS
  • This application is a continuation application of U.S. application Ser. No. 09/983,054, filed Oct. 16, 2001, which is a continuation-in-part application of U.S. application Ser. No. 09/422,397, filed on Oct. 21, 1999, issued as U.S. Pat. No. 6,303,645 on Oct. 16, 2001, which is a continuation-in-part application of U.S. application Ser. No. 09/316,870, filed on May 21, 1999, issued as U.S. Pat. No. 6,271,390 on Aug. 7, 2001, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/086,494, filed on May 21, 1998.
  • BACKGROUND OF THE INVENTION
  • This invention relates to small molecule inhibitors of the IgE response to allergens that are useful in the treatment of allergy and/or asthma or any diseases where IgE is pathogenic.
  • An estimated 10 million persons in the United States have asthma, about 5% of the population. The estimated cost of asthma in the United States exceeds $6 billion. About 25% of patients with asthma who seek emergency care require hospitalization, and the largest single direct medical expenditure for asthma has been inpatient hospital services (emergency care), at a cost of greater than $1.6 billion. The cost for prescription medications, which increased 54% between 1985 and 1990, was close behind at $1.1 billion (Kelly, Pharmacotherapy 12:13S-21S (1997)).
  • According to the National Ambulatory Medical Care Survey, asthma accounts for 1% of all ambulatory care visits, and the disease continues to be a significant cause of missed school days in children. Despite improved understanding of the disease process and better drugs, asthma morbidity and mortality continue to rise in this country and worldwide (U.S. Department of Health and Human Services; 1991, publication no. 91-3042). Thus, asthma constitutes a significant public health problem.
  • The pathophysiologic processes that attend the onset of an asthmatic episode can be broken down into essentially two phases, both marked by bronchoconstriction, that causes wheezing, chest tightness, and dyspnea. The first, early phase asthmatic response is triggered by allergens, irritants, or exercise. Allergens cross-link immunoglobulin E (IgE) molecules bound to receptors on mast cells, causing them to release a number of pre-formed inflammatory mediators, including histamine. Additional triggers include the osmotic changes in airway tissues following exercise or the inhalation of cold, dry air. The second, late phase response that follows is characterized by infiltration of activated eosinophils and other inflammatory cells into airway tissues, epithelial desquamonon, and by the presence of highly viscous mucus within the airways. The damage caused by this inflammatory response leaves the airways “primed” or sensitized, such that smaller triggers are required to elicit subsequent asthma symptoms.
  • A number of drugs are available for the palliative treatment of asthma; however, their efficacies vary markedly. Short-acting β2-adrenergic agonists, terbutaline and albuterol, long the mainstay of asthma treatment, act primarily during the early phase as bronchodilators. The newer long-acting β2-agonists, salmeterol and formoterol, may reduce the bronchoconstrictive component of the late response. However, because the β2-agonists do not possess significant antiinflammatory activity, they have no effect on bronchial hyperreactivity.
  • Numerous other drugs target specific aspects of the early or late asthmatic responses. For example, antihistamines, like loratadine, inhibit early histamine-mediated inflammatory responses. Some of the newer antihistamines, such as azelastine and ketotifen, may have both antiinflammatory and weak bronchodilatory effects, but they currently do not have any established efficacy in asthma treatment. Phosphodiesterase inhibitors, like theophylline/xanthines, may attenuate late inflammatory responses, but there is no evidence that these compounds decrease bronchial hyperreactivity. Anticholinergics, like ipratopium bromide, which are used in cases of acute asthma to inhibit severe bronchoconstriction, have no effect on early or late phase inflammation, no effect on bronchial hyperreactivity, and therefore, essentially no role in chronic therapy.
  • The corticosteroid drugs, like budesonide, are the most potent antiinflammatory agents. Inflammatory mediator release inhibitors, like cromolyn and nedocromil, act by stabilizing mast cells and thereby inhibiting the late phase inflammatory response to allergen. Thus, cromolyn and nedocromil, as well as the corticosteroids, all reduce bronchial hyperreactivity by minimizing the sensitizing effect of inflammatory damage to the airways. Unfortunately, these antiinflammatory agents do not produce bronchodilation.
  • Several new agents are currently being developed that inhibit specific aspects of asthmatic inflammation. For instance, leukotriene receptor antagonists (ICI-204, 219, accolate), specifically inhibit leukotriene-mediated actions. The leukotrienes have been implicated in the production of both airway inflammation and bronchoconstriction.
  • Thus, while numerous drugs are currently available for the treatment of asthma, these compounds are primarily palliative and/or have significant side effects. Consequently, new therapeutic approaches which target the underlying cause rather than the cascade of symptoms would be highly desirable. Asthma and allergy share a common dependence on IgE-mediated events. Indeed, it is known that excess IgE production is the underlying cause of allergies in general and allergic asthma in particular (Duplantier and Cheng, Ann. Rep. Med. Chem. 29:73-81 (1994)). Thus, compounds that lower IgE levels may be effective in treating the underlying cause of asthma and allergy.
  • None of the current therapies eliminate the excess circulating IgE. The hypothesis that lowering plasma IgE may reduce the allergic response, was confirmed by recent clinical results with chimeric anti-IgE antibody, CGP-51901, and recombinant humanized monoclonal antibody, rhuMAB-E25. Indeed, three companies, Tanox Biosystems, Inc., Genentech Inc. and Novartis AG are collaborating in the development of a humanized anti-IgE antibody (BioWorld® Today, Feb. 26, 1997, p. 2) which will treat allergy and asthma by neutralizing excess IgE. Tanox has already successfully tested the anti-IgE antibody, CGP-51901, which reduced the severity and duration of nasal symptoms of allergic rhinitis in a 155-patient Phase II trial (Scrip #2080, Nov. 24, 1995, p.26). Genentech recently disclosed positive results from a 536 patient phase-II/II trials of its recombinant humanized monoclonal antibody, rhuMAB-E25 (BioWorld® Today, Nov. 10, 1998, p. 1). The antibody, rhuMAB-E25, administered by injection (highest dose 300 mg every 2 to 4 weeks as needed) provided a 50% reduction in the number of days a patient required additional “rescue” medicines (antihistimines and decongestants), compared to placebo. An NDA filing for this product is projected to be in the year 2000. The positive results from anti-IgE antibody trials suggest that therapeutic strategies aimed at IgE down-regulation may be effective.
  • SUMMARY OF THE INVENTION
  • The present invention discloses a family of related compounds for use in the treatment of a condition associated with an excess IgE level. The benzimidazole inhibitors of IgE in accordance with the present invention are represented by the generic formula:
    Figure US20050075343A1-20050407-C00001
      • wherein X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF3, OCF3, CONH2, CONHR and NHCOR1;
      • wherein R is selected from the group consisting of H, CH3, C2H5, C3H7, C4H9, CH2Ph, CH2C6H4—F(p-), COCH3, CO2CH2CH3, aminoalkyl and dialkylaminoalkyl; and
      • wherein R1 and R2 are independently selected from the group consisting of H, aryl, heteroaryl, thiophene, pyridyl, thiazolyl, isoxazolyl, oxazolyl, pyrimidinyl, substituted aryl, substituted heteroaryl, substituted thiophene, substituted pyridyl, substituted thiazolyl, substituted isoxazolyl, substituted oxazolyl, cycloaryl, cycloheteroaryl, quinolinyl, isoquinolinyl, substituted cycloaryl, substituted cycloheteroaryl, substituted quinolinyl, substituted isoqunolinyl, multi-ring cycloaryl, multi-ring cycloheteroaryl, benzyl, heteroaryl-methyl, substituted benzyl, substituted heteroaryl-methyl alkyl, dialkylaminoalkyl, cycloalkyl, cycloalkyl containing 1-3 heteroatoms, substituted cycloalkyl, substitute cycloalkyl containing 1-3 heteroatoms, multi-ring cycloalkyl, multiring cycloalkyl containing 1-3 heteroatoms, fused-ring aliphatic, fused-ring aliphatic containing 1-3 heteroatoms, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, cyclopentyl, pyrrole, piperidine, substituted cyclopentyl, cyclohexyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, substituted pyrrole, substituted piperidine, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, substituted adamantyl and the like, wherein at least one of R1 and R2 are aromatic groups or heteroaromatic groups.
  • The substituents on said substituted aryl, substituted heteroaryl, substituted thiophene, substituted pyridyl, substituted thiazolyl, substituted isoxazolyl, substituted oxazolyl, substituted cycloaryl, substituted cycloheteroaryl, substituted quinolinyl, substituted isoqunolinyl, substituted benzyl, substituted heteroaryl-methyl alkyl, substituted cycloalkyl, substitute cycloalkyl containing 1-3 heteroatoms, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, substituted cyclopentyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, substituted pyrrole, substituted piperidine, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, and substituted adamantyl are independently selected from the group consisting of alkyl, aryl, CF3, CH3, OCH3, OH, CN, CONH2, CONHR, CONR1R2, COOR and COOH.
  • In accordance with another aspect of the invention, there is disclosed a composition for use in the treatment of an allergic condition comprising the benzimidazole inhibitor of IgE disclosed above and at least one additional active ingredient, combined in a pharmaceutically acceptable diluent. The additional active ingredients may be selected from the group consisting of short-acting β2-adrenergic agonists, like terbutaline and albuterol, long-acting β2-adrenergic agonists, like salmeterol and formoterol, antihistamines, like loratadine, azelastine and ketotifen, phosphodiesterase inhibitors, anticholinergic agents, corticosteroids, inflammatory mediator release inhibitors and leukotriene receptor antagonists.
  • In accordance with another aspect of the invention, there is disclosed a family of symmetric and asymmetric diacyl and monoacyl benzimidazole compounds for use in the treatment of an allergic condition comprising the following species:
    Figure US20050075343A1-20050407-C00002
    Figure US20050075343A1-20050407-C00003
    Figure US20050075343A1-20050407-C00004
    Figure US20050075343A1-20050407-C00005
    Figure US20050075343A1-20050407-C00006
    Figure US20050075343A1-20050407-C00007
    Figure US20050075343A1-20050407-C00008
    Figure US20050075343A1-20050407-C00009
    Figure US20050075343A1-20050407-C00010
    Figure US20050075343A1-20050407-C00011
    Figure US20050075343A1-20050407-C00012
    Figure US20050075343A1-20050407-C00013
    Figure US20050075343A1-20050407-C00014
    Figure US20050075343A1-20050407-C00015
    Figure US20050075343A1-20050407-C00016
    Figure US20050075343A1-20050407-C00017
    Figure US20050075343A1-20050407-C00018
    Figure US20050075343A1-20050407-C00019
    Figure US20050075343A1-20050407-C00020
    Figure US20050075343A1-20050407-C00021
    Figure US20050075343A1-20050407-C00022
    Figure US20050075343A1-20050407-C00023
    Figure US20050075343A1-20050407-C00024
    Figure US20050075343A1-20050407-C00025
    Figure US20050075343A1-20050407-C00026
    Figure US20050075343A1-20050407-C00027
    Figure US20050075343A1-20050407-C00028
    Figure US20050075343A1-20050407-C00029
    Figure US20050075343A1-20050407-C00030
    Figure US20050075343A1-20050407-C00031
    Figure US20050075343A1-20050407-C00032
    Figure US20050075343A1-20050407-C00033
    Figure US20050075343A1-20050407-C00034
    Figure US20050075343A1-20050407-C00035
    Figure US20050075343A1-20050407-C00036
    Figure US20050075343A1-20050407-C00037
    Figure US20050075343A1-20050407-C00038
    Figure US20050075343A1-20050407-C00039
    Figure US20050075343A1-20050407-C00040
    Figure US20050075343A1-20050407-C00041
    Figure US20050075343A1-20050407-C00042
    Figure US20050075343A1-20050407-C00043
  • In accordance with another aspect of the present invention, there is disclosed a method for the preparation of a medicament for treatment of a condition associated with an excess IgE level. The compound has the formula:
    Figure US20050075343A1-20050407-C00044
  • X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF3, OCF3, CONH2, CONHR and NHCOR1. R is selected from the group consisting of H, CH3, C2H5, C3H7, C4H9, CH2Ph, and CH2C6H4—F(p-). R1 and R2 are independently selected from the group consisting of H, aryl, heteroaryl, thiophene, pyridyl, thiazolyl, isoxazolyl, oxazolyl, pyrimidinyl, substituted aryl, substituted heteroaryl, substituted thiophene, substituted pyridyl, substituted thiazolyl, substituted isoxazolyl, substituted oxazolyl, cycloaryl, cycloheteroaryl, quinolinyl, isoquinolinyl, substituted cycloaryl, substituted cycloheteroaryl, substituted quinolinyl, substituted isoqunolinyl, multi-ring cycloaryl, multi-ring cycloheteroaryl, benzyl, heteroaryl-methyl, substituted benzyl, substituted heteroaryl-methyl alkyl, dialkyl, aminoalkyl, cycloalkyl, cycloalkyl containing 1-3 heteroatoms, substituted cycloalkyl, substitute cycloalkyl containing 1-3 heteroatoms, multi-ring cycloalkyl, multiring cycloalkyl containing 1-3 heteroatoms, fused-ring aliphatic, fused-ring aliphatic containing 1-3 heteroatoms, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, cyclopentyl, pyrrole, piperidine, substituted cyclopentyl, cyclohexyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, substituted pyrrole, substituted piperidine, bicyclooctyl, bicyclononyl, substituted bicycloalknyl, adamantyl, substituted adamantyl and the like, and wherein at least one of R1 and R2 are aromatic groups or heteroaromatic groups. The R1 and R2 substitutions are independently selected from the group consisting of alkyl, aryl, CF3, CH3, OCH3, OH, CN, CONH2, CONHR, CONR1R2, COOR and COOH.
  • In accordance with another aspect of the present invention, there is disclosed a method of treating a mammal having a condition associated with an excess IgE level. The method comprises administering to the mammal an amount of a compound sufficient to reduced IgE levels in the mammal. The compound has the formula:
    Figure US20050075343A1-20050407-C00045
      • wherein X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF3, OCF3. CONH2, CONHR and NHCOR1;
      • wherein R is selected from the group consisting of H, CH3, C2H5, C3H7, C4H9, CH2Ph, CH2C6H4—F(p-), COCH3, CO2CH2CH3, aminoalkyl and dialkylaminoalkyl; and
      • wherein R1 and R2 are independently selected from the group consisting of H, aryl, heteroaryl, thiophene, pyridyl, thiazolyl, isoxazolyl, oxazolyl, pyrimidinyl, substituted aryl, substituted heteroaryl, substituted thiophene, substituted pyridyl, substituted thiazolyl, substituted isoxazolyl, substituted oxazolyl, cycloaryl, cycloheteroaryl, quinolinyl, isoquinolinyl, substituted cycloaryl, substituted cycloheteroaryl, substituted quinolinyl, substituted isoqunolinyl, multi-ring cycloaryl, multi-ring cycloheteroaryl, benzyl, heteroaryl-methyl, substituted benzyl, substituted heteroaryl-methyl alkyl, dialkylaminoalkyl, cycloalkyl, cycloalkyl containing 1-3 heteroatoms, substituted cycloalkyl, substitute cycloalkyl containing 1-3 heteroatoms, multi-ring cycloalkyl, multiring cycloalkyl containing 1-3 heteroatoms, fused-ring aliphatic, fused-ring aliphatic containing 1-3 heteroatoms, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, cyclopentyl, pyrrole, piperidine, substituted cyclopentyl, cyclohexyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, substituted pyrrole, substituted piperidine, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, substituted adamantyl and the like, wherein at least one of R1 and R2 are aromatic groups or heteroaromatic groups.
  • The substituents on said substituted aryl, substituted heteroaryl, substituted thiophene, substituted pyridyl, substituted thiazolyl, substituted isoxazolyl, substituted oxazolyl, substituted cycloaryl, substituted cycloheteroaryl, substituted quinolinyl, substituted isoqunolinyl, substituted benzyl, substituted heteroaryl-methyl alkyl, substituted cycloalkyl, substitute cycloalkyl containing 1-3 heteroatoms, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, substituted cyclopentyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, substituted pyrrole, substituted piperidine, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, and substituted adamantyl are independently selected from the group consisting of alkyl, aryl, CF3, CH3, OCH3, OH, CN, CONH2, CONHR, CONR1R2, COOR and COOH.
  • In a variation of the above-disclosed method, at least one additional active ingredient may be administered in conjunction with the administration of the compound. The additional active ingredient may be combined with said compound in a pharmaceutically acceptable diluent and co-administered to the mammal. The additional active ingredient may be a short-acting β2-adrenergic agonist selected from the group consisting of terbutaline and albuterol. In a variation, the additional active ingredient may be a long-acting β2-adrenergic agonist selected from the group consisting of salmeterol and formoterol or an antihistamine selected from the group consisting of loratadine, azelastine and ketotifen. In another variation, the additional active ingredient may be a phosphodiesterase inhibitor, an anticholinergic agent, a corticosteroid, an inflammatory mediator release inhibitor or a leukotriene receptor antagonist.
  • The compound is preferably administered at a dose of about 0.01 mg to about 100 mg per kg body weight per day in divided doses of said compound for at least two consecutive days at regular periodic intervals.
  • Other variations within the scope of the present invention may be more fully understood with reference to the following detailed description.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention is directed to small molecule inhibitors of IgE (synthesis and/or release) which are useful in the treatment of allergy and/or asthma or any diseases where IgE is pathogenic. The particular compounds disclosed herein were identified by their ability to suppress IgE levels in both ex vivo and in vivo assays. Development and optimization of clinical treatment regimens can be monitored by those of skill in the art by reference to the ex vivo and in vivo assays described below.
  • Ex Vivo Assay
  • This assay begins with in vivo antigen priming and measures secondary antibody responses in vitro. The basic protocol was documented and optimized for a range of parameters including: antigen dose for priming and time span following priming, number of cells cultured in vitro, antigen concentrations for eliciting secondary IgE (and other Ig's) response in vitro, fetal bovine serum (FBS) batch that will permit optimal IgE response in vitro, the importance of primed CD4+ T cells and hapten-specific B cells, and specificity of the ELISA assay for IgE (Marcelletti and Katz, Cellular Immunology 135:471-489 (1991); incorporated herein by reference).
  • The actual protocol utilized for this project was adapted for a more high throughput analyses. BALB/cByj mice were immunized i.p. with 10 μg DNP-KLH adsorbed onto 4 mg alum and sacrificed after 15 days. Spleens were excised and homogenized in a tissue grinder, washed twice, and maintained in DMEM supplemented with 10% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin and 0.0005% 2-mercaptoethanol. Spleen cell cultures were established (2-3 million cells/ml, 0.2 ml/well in quadruplicate, 96-well plates) in the presence or absence of DNP-KLH (10 ng/ml). Test compounds (2 μg/ml and 50 ng/ml) were added to the spleen cell cultures containing antigen and incubated at 37° C. for 8 days in an atmosphere of 10% CO2.
  • Culture supernatants were collected after 8 days and Ig's were measured by a modification of the specific isotype-selective ELISA assay described by Marcelletti and Katz (Supra). The assay was modified to facilitate high throughput. ELISA plates were prepared by coating with DNP-KLH overnight. After blocking with bovine serum albumin (BSA), an aliquot of each culture supernatant was diluted (1:4 in phosphate buffered saline (PBS) with BSA, sodium azide and Tween 20), added to the ELISA plates, and incubated overnight in a humidified box at 40 C. IgE levels were quantitated following successive incubations with biotinylated-goat antimouse IgE (b-GAME), AP-streptavidin and substrate.
  • Antigen-specific IgG1 was measured similarly, except that culture supernatants were diluted 200-fold and biotinylated-goat antimouse IgG1 (b-GAMG1) was substituted for B-GAME. IgG2a was measured in ELISA plates that were coated with DNP-KLH following a 1:20 dilution of culture supernatants and incubation with biotinylated-goat antimouse IgG2a (b-GAMG2a). Quantitation of each isotype was determined by comparison to a standard curve. The level of detectability of all antibody was about 200-400 μg/ml and there was less than 0.001% cross-reactivity with any other Ig isotype in the ELISA for IgE.
  • In Vivo Assay
  • Compounds found to be active in the ex vivo assay (above) were further tested for their activity in suppressing IgE responses in vivo. Mice receiving low-dose radiation prior to immunization with a carrier exhibited an enhanced IgE response to sensitization with antigen 7 days later. Administration of the test compounds immediately prior to and after antigen sensitization, measured the ability of that drug to suppress the IgE response. The levels of IgE, IgG1 and IgG2a in serum were compared.
  • Female BALB/cByj mice were irradiated with 250 rads 7 hours after initiation of the daily light cycle. Two hours later, the mice were immunized i.p. with 2 μg of KLH in 4 mg alum. Two to seven consecutive days of drug injections were initiated 6 days later on either a once or twice daily basis. Typically, i.p. injections and oral gavages were administered as suspensions (150 μl/injection) in saline with 10% ethanol and 0.25% methylcellulose. Each treatment group was composed of 5-6 mice. On the second day of drug administration, 2 μg of DNP-KLH was administered i.p. in 4 mg alum, immediately following the morning injection of drug. Mice were bled 7-21 days following DNP-KLH challenge.
  • Antigen-specific IgE, IgG1 and IgG2a antibodies were measured by ELISA. Periorbital bleeds were centrifuged at 14,000 rpm for 10 min, the supernatants were diluted 5-fold in saline, and centrifuged again. Antibody concentrations of each bleed were determined by ELISA of four dilutions (in triplicate) and compared to a standard curve: anti-DNP IgE (1:100 to 1:800), anti-DNP IgG2a (1:100 to 1:800), and anti-DNP IgG1 (1:1600 to 1:12800).
  • Benzimidazole Inhibitors of IgE
  • Several species embraced by the following generic formula were synthesized and evaluated for their effectiveness in down-regulating IgE in the ex vivo and in vivo assays.
    Figure US20050075343A1-20050407-C00046
      • wherein X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF3, OCF3. CONH2, CONHR and NHCOR1;
      • wherein R is selected from the group consisting of H, CH3, C2H5, C3H7, C4H9, CH2Ph, CH2C6H4—F(p-), COCH3, CO2CH2CH3, aminoalkyl and dialkylaminoalkyl; and
      • wherein R1 and R2 are independently selected from the group consisting of H, aryl, heteroaryl, thiophene, pyridyl, thiazolyl, isoxazolyl, oxazolyl, pyrimidinyl, substituted aryl, substituted heteroaryl, substituted thiophene, substituted pyridyl, substituted thiazolyl, substituted isoxazolyl, substituted oxazolyl, cycloaryl, cycloheteroaryl, quinolinyl, isoquinolinyl, substituted cycloaryl, substituted cycloheteroaryl, substituted quinolinyl, substituted isoqunolinyl, multi-ring cycloaryl, multi-ring cycloheteroaryl, benzyl, heteroaryl-methyl, substituted benzyl, substituted heteroaryl-methyl alkyl, dialkylaminoalkyl, cycloalkyl, cycloalkyl containing 1-3 heteroatoms, substituted cycloalkyl, substitute cycloalkyl containing 1-3 heteroatoms, multi-ring cycloalkyl, multiring cycloalkyl containing 1-3 heteroatoms, fused-ring aliphatic, fused-ring aliphatic containing 1-3 heteroatoms, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, cyclopentyl, pyrrole, piperidine, substituted cyclopentyl, cyclohexyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, substituted pyrrole, substituted piperidine, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, substituted adamantyl and the like, wherein at least one of R1 and R2 are aromatic groups or heteroaromatic groups.
  • The substituents on said substituted aryl, substituted heteroaryl, substituted thiophene, substituted pyridyl, substituted thiazolyl, substituted isoxazolyl, substituted oxazolyl, substituted cycloaryl, substituted cycloheteroaryl, substituted quinolinyl, substituted isoqunolinyl, substituted benzyl, substituted heteroaryl-methyl alkyl, substituted cycloalkyl, substitute cycloalkyl containing 1-3 heteroatoms, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, substituted cyclopentyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, substituted pyrrole, substituted piperidine, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, and substituted adamantyl are independently selected from the group consisting of alkyl, aryl, CF3, CH3, OCH3, OH, CN, CONH2, CONHR, CONR1R2, COOR and COOH.
  • Synthesis of the Combinatorial Library
  • The diacyl benzimidazole compounds of the present invention were prepared using the following synthesis reactions, wherein the desired acid chlorides are selected from the R1 and R2 groups provided in the Table.
    Figure US20050075343A1-20050407-C00047
  • Synthesis of 3: 4-Nitro-1,2-phenylenediamine (10 g, 65.3 mmol) and 4-aminobenzoic acid (8.95 g, 65.3 mmol) were taken in a round bottomed flask and phosphorus oxychloride (95 ml) was added slowly. The reaction mixture was allowed to stir under reflux conditions. After 18 h, the reaction was allowed to cool and then poured slowly into an ice water mixture in an Erlenmeyer flask with vigorous stirring. Greenish yellow precipitate fell out which was then filtered and washed with copious amounts of water. The residue was then dried to obtain 16.9 g of crude desired product. Mass spectrum analysis (positive ion) indicated presence of 3.
  • Synthesis of 4: Benzimidazole 3 (800 mg, 3.14 mmol) was dissolved in dry pyridine (5 ml) in a scintillation vial and the desired acid chlorides (1.1 eq) were added slowly. The reactions were carried out in an oven at 60C. After 16 h, the reaction was cooled to RT and DI water was added. Precipitation took place, which was filtered off, washed with water and air dried. The aqueous layer was extracted with EtOAc (6×50 ml), dried over anhydrous Na2SO4 and the solvent was removed in vacuo to result in a colored solid. By positive ion MS the desired monoacylated product was found to be present in the initial precipitate as well as in the organic layer. Hence the solid residues obtained were combined and used as such for the reduction step.
  • Reduction of 4: Crude monoacylated nitro benzimidazole 4 (1.22 g, 3.40 mmol) was dissolved in MeOH (20 ml) and minimum amount of THF was added for complete dissolution to occur. Catalytic amount of 10% Pd on C was added and the solution was degassed and allowed to stir at 3.4 atm pressure under H2 atmosphere for 4 h. Upon completion of reaction as observed via TLC, the reaction mixture was filtered through celite and the solvent was removed under reduced pressure to afford 979 mg of crude residue.
  • General Organic Analyses
  • HPLC/MS data was obtained using a Gilson semi-prep HPLC with a Gilson 170 Diode Array UV detector and PE Sciex API 100LC MS based detector. A Waters 600E with a Waters 490E UV detector was also used for recording HPLC data. The compounds were eluted with a gradient of CH3CN (with 0.0035% TFA) and H2O (with 0.01% TFA). Both HPLC instruments used Advantage C18 60A 5 μ50 mm×4.6 mm columns from Thomson Instrument Company. Mass spectra were obtained by direct injection and electrospray ionization on a PE Sciex API 100LC MS based detector. Thin layer chromatography was performed using Merck 60F-254 aluminum backed precoated plates. Flash chromatography was carried out on Merck silica gel 60 (230-400 mesh) purchased from EM Scientific.
  • Syntheses of Symmetrical Diamides
  • The symmetrical diacyl benzimidazole compounds of the present invention were generally prepared from 2-(4-aminophenyl)-5-aminobenzimidazole, which was obtained by reduction of 2-(4-nitrophenyl)-6-nitrobenzimidazole.
    Figure US20050075343A1-20050407-C00048
  • 2-(4-nitrophenyl)-6-nitrobenzimidazole
  • The dinitro benzimidazole was prepared as follows: a mixture of 4-nitrophenylenediamine (6.4 g, 41.83 mmol) and 4-nitrobenzoic acid (7.86 g, 47 mmol) was dissolved in POCl3 (250 ml) and heated to reflux for 2 h. The reaction mixture was cooled, poured on to ice, and stirred for 30 min. The resulting solid was filtered and washed with methanol and sodium bicarbonate to remove unreacted acid and allowed to dry overnight to give the desired product as a brown solid (5.8 g). The product was characterized by electrospray mass spectroscopy (mp>300° C.).
  • 2-(4-Aminophenyl)-5-aminobenzimidazole was prepared by suspending the above solid (75 g) in THF (75 ml), to which was added Pd-C (10% Pd by weight). The flask was purged with hydrogen and stirred under a balloon of hydrogen over night. TLC and MS showed starting material was still present so the reaction was allowed to continue over the weekend. TLC indicated complete reaction, the reaction was filtered through celite and washed with methanol. The solvent was removed under reduced pressure to give a dark brown solid (0.37 g) that was used without further purification.
    Figure US20050075343A1-20050407-C00049
  • 2-(4-aminophenyl)-5-aminobenzimidazole
  • Alternatively, the 2-(4-aminophenyl)-5-aminobenzimidazole was prepared by the following reduction: 2-(4-nitrophenyl)-6-nitrobenzimidazole (8.9 g, 31 mmole) was suspended in concentrated HCl (100 ml) to which was added stannous chloride (42.3 g 180 mmole). The reaction mixture was heated to reflux for 5 hrs. The mixture was cooled to RT and the HCl salt of the desired product was precipitated by the addition of ethanol. The resulting solid was filtered, re-dissolved in water and the solution made basic by the addition of concentrated ammonium hydroxide. The resulting precipitate was filtered and dried overnight under vacuum to yield the desired product as a gray solid (6.023 g, 26.9 mmole, 87%). The product characterized by electrospray mass spectroscopy and HPLC (mp. 222-227° C.).
  • 2-(4-Aminophenyl)-5-methoxy benzimidazole was synthesized from 2-(4-nitrophenyl)-5-methoxy benzimidazole, which was prepared as follows: 1,2-diamino-4-methoxybenzene (1.26 g, 10.0 mmole was mixed with 4-nitrobenzoic acid (1.67 g, 9.8 mmole) and dissolved in POCl3 (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO3 and used without further purification.
    Figure US20050075343A1-20050407-C00050
  • 2-(4-nitrophenyl)-5-methoxy benzimidazole
  • 2-(4-Aminophenyl)-5-methoxy benzimidazole was prepared by dissolving 1 g of the above nitrobenzimidazole in 30% Na2S9H2O (20 ml) with stirring at RT for 21 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.
    Figure US20050075343A1-20050407-C00051
  • 2-(4-aminophenyl)-5-methoxy benzimidazole
  • 2-(4-Aminophenyl)-5,6-dichloro benzimidazole was synthesized from 2-(4-nitrophenyl)-5,6-dichloro benzimidazole, which was prepared as follows: 1,2-diamino-4,5-dichlorobenzene (1.68 g, 10.0 mmole) was mixed with 4-nitrobenzoic acid (1.58 g, 9.3 mmole), dissolved in POCl3 (10 ml), and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO3 and used without further purification.
    Figure US20050075343A1-20050407-C00052
  • 2-(4-nitrophenyl)-5,6-dichloro benzimidazole
  • 2-(4-Aminophenyl)-5,6-dichloro benzimidazole was prepared by dissolving 1 g of the above nitrobenzimidazole in 30% Na2S9H2O (20 ml) with stirring at RT for 21 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.
    Figure US20050075343A1-20050407-C00053
  • 2-(4-Aminophenyl)-5,6-dichloro benzimidazole
  • 2-(4-aminophenyl)-7-methyl benzimidazole was synthesized from 2-(4-nitrophenyl)-7-methyl benzimidazole, which was prepared by mixing 1,2-diamino-3-methylbenzene (1.24 g, 10.0 mmole) with 4-nitrobenzoic acid (1.69 g, 9.8 mmole), dissolved in POCl3 (10 ml), and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO3 and used without further purification.
    Figure US20050075343A1-20050407-C00054
  • 2-(4-nitrophenyl)-7-methyl benzimidazole
  • 2-(4-Aminophenyl)-7-methyl benzimidazole was synthesized by dissolving 1 g of the above nitrobenzimidazole in 30% Na2S-9H2O (20 ml) with stirring at RT for 4.5 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.
    Figure US20050075343A1-20050407-C00055
  • 2-(4-aminophenyl)-7-methyl benzimidazole
  • 2-(4-Aminophenyl)-6-methyl benzimidazole was synthesized from 2-(4-nitrophenyl)-6-methyl benzimidazole, which was prepared by mixing 1,2-diamino-4-methylbenzene (1.24 g, 9.8 mmole) with 4-nitrobenzoic acid (1.6 g, 9.9 mmole) and dissolved in POCl3 (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO3 and used without further purification.
    Figure US20050075343A1-20050407-C00056
  • 2-(4-nitrophenyl)-6-methyl benzimidazole
  • 2-(4-Aminophenyl)-6-methyl benzimidazole was synthesized by dissolving 1 g of the above nitrobenzimidazole in 30% Na2S.9H2O (20 ml) with stirring at RT for 4.5 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.
    Figure US20050075343A1-20050407-C00057
  • 2-(4-aminophenyl)-6-methyl benzimidazole
  • 2-(4-Aminophenyl)-5,6-dimethyl benzimidazole was synthesized from 2-(4-nitrophenyl)-5,6-dimethyl benzimidazole, which was prepared by mixing 1,2-diamino-4,5-dimethylbenzene (1.38 g, 10.1 mmole) with 4-nitrobenzoic acid (1.69 g, 9.9 mmole) and dissolved in POCl3 (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO3 and used without further purification.
    Figure US20050075343A1-20050407-C00058
  • 2-(4-nitrophenyl)-5,6-dimethyl benzimidazole
  • 2-(4-Aminophenyl)-5,6-dimethyl benzimidazole was synthesized by dissolving 1 g of the above nitrobenzimidazole (31.1) in 30% Na2S-9H2O (20 ml) with stirring at RT for 4.5 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.
    Figure US20050075343A1-20050407-C00059
  • 2-(4-aminophenyl)-5,6-dimethyl benzimidazole
  • The subsequent preparation of symmetrical diamides was accomplished by one of the following methods:
  • Method A: 2-(4-Aminophenyl)-6-aminobenzimidazole (1 mmole) was suspended in THF (5 ml) to which was added DIEA (2.5 mmole) and mixture cooled to −78° C. To the above cooled mixture was added the acid chloride (2.5 mmole) and let warm to RT overnight. Water (2 ml) is added to the reaction and extracted with EtOAc. The combined organic extracts were combined washed with NaHCO3 (aq.) and concentrated under reduced pressure. The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH2Cl2) or reverse phase HPLC (CH3CN/H2O).
  • Method B: 2-(4-Aminophenyl)-6-aminobenzimidazole (1 mmole) and DMAP (cat.) was dissolved in pyridine (5 ml). To the above solution was added the acid chloride (2.5 mmole) and the reaction stirred overnight at 600 C. The reaction was cooled to room temperature and water added to precipitate the product. The resulting solid was collected by filtration with the solid being washed by hexanes and water and NaHCO3 (aq.). The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH2Cl2) or reverse phase HPLC (CH3CN/H2O).
  • Method C: 2-(4-Aminophenyl)-6-aminobenzimidazole (1 mmole) was suspended in THF (10 ml) to which was added K2CO3 (2.5 mmole) in water (0.5 ml). and mixture cooled to −78° C. To the above cooled mixture was added the acid chloride (2.5 mmole) and let warm to RT overnight. Water (10 ml) was added to the reaction and extracted with EtOAc. The combined organic extracts were combined washed with NaHCO3 (aq.) and concentrated under reduced pressure. The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH2Cl2) or reverse phase HPLC (CH3CN/H2O).
  • Method D: The carboxylic acid (2.2 mmole), EDC (2.2 mmole) and DMAP (cat.) was dissolved in hot pyridine. To the above solution was added 2-(4-aminophenyl)-6-aminobenzimidazole (1 mmole) and heated to 60° C. overnight. The cooled reaction mixture was partitioned between water and EtOAc. The organic layer was washed with NaHCO3, dried over Na2SO4 and concentrated under vacuum. The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH2Cl2) or reverse phase HPLC (CH3CN/H2O).
  • Benzimidazole Species
  • The following species encompassed within the disclosed generic formula were synthesized and tested for their ability to suppress IgE. The species are presented below.
    Figure US20050075343A1-20050407-C00060
    Figure US20050075343A1-20050407-C00061
    Figure US20050075343A1-20050407-C00062
    Figure US20050075343A1-20050407-C00063
    Figure US20050075343A1-20050407-C00064
    Figure US20050075343A1-20050407-C00065
    Figure US20050075343A1-20050407-C00066
    Figure US20050075343A1-20050407-C00067
    Figure US20050075343A1-20050407-C00068
    Figure US20050075343A1-20050407-C00069
    Figure US20050075343A1-20050407-C00070
    Figure US20050075343A1-20050407-C00071
    Figure US20050075343A1-20050407-C00072
    Figure US20050075343A1-20050407-C00073
    Figure US20050075343A1-20050407-C00074
    Figure US20050075343A1-20050407-C00075
    Figure US20050075343A1-20050407-C00076
    Figure US20050075343A1-20050407-C00077
    Figure US20050075343A1-20050407-C00078
    Figure US20050075343A1-20050407-C00079
    Figure US20050075343A1-20050407-C00080
    Figure US20050075343A1-20050407-C00081
    Figure US20050075343A1-20050407-C00082
    Figure US20050075343A1-20050407-C00083
    Figure US20050075343A1-20050407-C00084
    Figure US20050075343A1-20050407-C00085
    Figure US20050075343A1-20050407-C00086
    Figure US20050075343A1-20050407-C00087
    Figure US20050075343A1-20050407-C00088
    Figure US20050075343A1-20050407-C00089
    Figure US20050075343A1-20050407-C00090
    Figure US20050075343A1-20050407-C00091
    Figure US20050075343A1-20050407-C00092
    Figure US20050075343A1-20050407-C00093
    Figure US20050075343A1-20050407-C00094
    Figure US20050075343A1-20050407-C00095
    Figure US20050075343A1-20050407-C00096

    Suppression of IgE Response
  • The inhibitory activity of the small molecules of the present invention were assayed using both the ex vivo and in vivo assays as described above. All of the compounds presented above were active in suppressing the IgE response. In the ex vivo assay, compounds in genuses I-XI produced 50% inhibition at concentrations ranging from 1 pM to 100 μM. In the in vivo assay, the compounds were effective at concentrations ranging from less than about 0.01 mg/kg/day to about 100 mg/kg/day, when administered in divided doses (e.g., two to four times daily) for at least two to seven consecutive days. Thus, the small molecule inhibitors of the present invention are disclosed as being useful in lowering the antigen-induced increase in IgE concentration, and consequently, in the treatment of IgE-dependent processes such as allergies in general and allergic asthma in particular.
  • Treatment Regimens
  • The amount of the IgE inhibitor compound which may be effective in treating a particular allergy or condition will depend on the nature of the disorder, and can be determined by standard clinical techniques. The precise dose to be employed in a given situation will also depend on the choice of compound and the seriousness of the condition, and should be decided according to the judgment of the practitioner and each patient's circumstances. Appropriate dosages can be determined and adjusted by the practitioner based on dose response relationships between the patient's IgE levels as well as standard indices of pulmonary and hemodynamic changes. Moreover, those skilled in the art will appreciate that dose ranges can be determined without undue experimentation by following the protocol(s) disclosed herein for ex vivo and in vivo screening (See for example Hasegawa et al., J. Med. Chem. 40: 395-407 (1997) and Ohmori et al., Int. J. Immunopharmacol. 15:573-579 (1993); employing similar ex vivo and in vivo assays for determining dose-response relationships for IgE suppression by naphthalene derivatives; incorporated herein by reference).
  • Initially, suitable dosages of the compounds will generally range from about 0.001 mg to about 300 mg per kg body weight per day in divided doses, more preferably, between about 0.01 mg and 100 mg per kg body weight per day in divided doses. The compounds are preferably administered systemically as pharmaceutical formulations appropriate to such routes as oral, aerosol, intravenous, subcutaneously, or by any other route which may be effective in providing systemic dosing of the active compound. The compositions of pharmaceutical formulations are well known in the art. The treatment regimen preferably involves periodic administration. Moreover, long-term therapy may be indicated where allergic reactions appear to be triggered by continuous exposure to the allergen(s). Daily or twice daily administration has been effective in suppressing the IgE response to a single antigen challenge in animals when carried out continuously from a period of two to seven consecutive days. Thus, in a preferred embodiment, the compound is administered for at least two consecutive days at regular periodic intervals. However, the treatment regimen, including frequency of dosing and duration of treatment may be determined by the skilled practitioner, and modified as needed to provide optimal IgE down-regulation, depending on nature of the allergen, the dose, frequency, and duration of the allergen exposure, and the standard clinical indices.
  • In one embodiment of the present invention, an IgE-suppressing compound may be administered in conjunction with one or more of the other small molecule inhibitors disclosed, in order to produce optimal down-regulation of the patient's IgE response. Further, it is envisioned that one or more of the compounds of the present invention may be administered in combination with other drugs already known or later discovered for treatment of the underlying cause as well as the acute symptoms of allergy or asthma. Such combination therapies envisioned within the scope of the present invention include mixing of one or more of the small molecule IgE-inhibitors together with one or more additional ingredients, known to be effective in reducing at least one symptom of the disease condition. In a variation, the small molecule IgE-inhibitors herein disclosed may be administered separately from the additional drugs, but during the same course of the disease condition, wherein both the IgE-inhibitor(s) and the palliative compounds are administered in accordance with their independent effective treatment regimens.
  • While a number of preferred embodiments of the invention and variations thereof have been described in detail, other modifications and methods of use will be readily apparent to those of skill in the art. Accordingly, it should be understood that various applications, modifications and substitutions may be made of equivalents without departing from the spirit of the invention or the scope of the claims.

Claims (14)

1. A pharmaceutical composition for treating an allergic reaction associated with increased IgE levels in a mammal comprising the following compounds:
Figure US20050075343A1-20050407-C00097
wherein X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF3, OCF3. CONH2, CONHR and NHCOR1;
wherein R is selected from the group consisting of H, CH3, C2H5, C3H7, C4H9, CH2Ph, CH2C6H4—F(p-), COCH3, CO2CH2CH3, aminoalkyl and dialkylaminoalkyl; and
wherein R1 is a heterocyclic ring comprising a heteroatom or substituted heterocyclic ring comprising a heteroatom; and
wherein R2 is selected from the group consisting of aryl, heteroaryl, thiophene, pyridyl, thiazolyl, isoxazolyl, oxazolyl, pyrimidinyl, substituted aryl, substituted heteroaryl, substituted thiophene, substituted pyridyl, substituted thiazolyl, substituted isoxazolyl, substituted oxazolyl, cycloaryl, cycloheteroaryl, quinolinyl, isoquinolinyl, substituted cycloaryl, substituted cycloheteroaryl, substituted quinolinyl, substituted isoqunolinyl, multi-ring cycloaryl, multi-ring cycloheteroaryl, benzyl, heteroaryl-methyl, substituted benzyl, substituted heteroaryl-methyl alkyl, dialkylaminoalkyl, cycloalkyl, cycloalkyl containing 1-3 heteroatoms, substituted cycloalkyl, substitute cycloalkyl containing 1-3 heteroatoms, multi-ring cycloalkyl, multiring cycloalkyl containing 1-3 heteroatoms, fused-ring aliphatic, fused-ring aliphatic containing 1-3 heteroatoms, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, cyclopentyl, pyrrole, piperidine, substituted cyclopentyl, cyclohexyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, substituted pyrrole, substituted piperidine, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, and substituted adamantyl, heterocyclic ring, and substituted heterocyclic ring;
wherein at least one of R1 and R2 are aromatic groups or heteroaromatic groups; and
wherein R1 and R2 cannot both be phenyl groups.
2. The pharmaceutical composition of claim 1, wherein the substituent is selected from the group consisting of alkyl, aryl, CF3, CH3, OCH3, OH, CN, CONH2, CONHR, CONR1R2, COOR, and COOH.
3. The pharmaceutical composition of claim 1, further comprising at least one additional ingredient which is active in reducing at least one symptom associated with said allergic reaction.
4. The pharmaceutical composition of claim 3, wherein said at least one additional ingredient is selected from the group consisting of a short-acting β2-adrenergic agonist, a long-acting β2-adrenergic agonist, an antihistamine, a phosphodiesterase inhibitor, an anticholinergic agent, a corticosteroid, an inflammatory mediator release inhibitor and a leukotriene receptor antagonist.
5. The pharmaceutical composition of claim 1, wherein the compound is selected from the group consisting of:
Figure US20050075343A1-20050407-C00098
Figure US20050075343A1-20050407-C00099
6. A method for treating an allergic reaction in a mammal wherein said reaction is caused by an increase in IgE levels comprising administering an IgE-suppressing amount of at least one compound of claim 1.
7. The method of claim 6, further comprising administering in conjunction with at least one additional ingredient which is active in reducing at least one symptom associated with said allergic reaction.
8. The method of claim 7, wherein said additional ingredient is selected from the group consisting of a short-acting β2-adrenergic agonist, a long-acting β2-adrenergic agonist, an antihistamine, a phosphodiesterase inhibitor, an anticholinergic agent, a corticosteroid, an inflammatory mediator release inhibitor and a leukotriene receptor antagonist.
9. The method of claim 6, wherein the compound is selected from the group consisting of:
Figure US20050075343A1-20050407-C00100
Figure US20050075343A1-20050407-C00101
10. A method for treating asthma in a mammal comprising administering an IgE-suppressing amount of at least one compound of claim 1.
11. The method of claim 10 further comprising administering in conjunction with at least one additional ingredient which is active in reducing at least one symptom associated with said allergic reaction.
12. The method of claim 11, wherein said additional ingredient is selected from the group consisting of a short-acting β2-adrenergic agonist, a long-acting β2-adrenergic agonist, an antihistamine, a phosphodiesterase inhibitor, an anticholinergic agent, a corticosteroid, an inflammatory mediator release inhibitor and a leukotriene receptor antagonist.
13. The method of claim 10, wherein the compound is selected from the group consisting of:
Figure US20050075343A1-20050407-C00102
Figure US20050075343A1-20050407-C00103
14. A pharmaceutical composition for treating an allergic reaction associated with increased IgE levels in a mammal comprising the following compounds: Genus B,
Figure US20050075343A1-20050407-C00104
wherein X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF3, OCF3. CONH2, CONHR and NHCOR1;
wherein R is selected from the group consisting of H, CH3, C2H5, C3H7, C4H9, CH2Ph, CH2C6H4—F(p-), COCH3, CO2CH2CH3, aminoalkyl and dialkylaminoalkyl; and
wherein R1 is selected from the group consisting of aryl, heteroaryl, thiophene, pyridyl, thiazolyl, isoxazolyl, oxazolyl, pyrimidinyl, substituted aryl, substituted heteroaryl, substituted thiophene, substituted pyridyl, substituted thiazolyl, substituted isoxazolyl, substituted oxazolyl, cycloaryl, cycloheteroaryl, quinolinyl, isoquinolinyl, substituted cycloaryl, substituted cycloheteroaryl, substituted quinolinyl, substituted isoqunolinyl, multi-ring cycloaryl, multi-ring cycloheteroaryl, benzyl, heteroaryl-methyl, substituted benzyl, substituted heteroaryl-methyl alkyl, dialkylaminoalkyl, cycloalkyl, cycloalkyl containing 1-3 heteroatoms, substituted cycloalkyl, substitute cycloalkyl containing 1-3 heteroatoms, multi-ring cycloalkyl, multiring cycloalkyl containing 1-3 heteroatoms, fused-ring aliphatic, fused-ring aliphatic containing 1-3 heteroatoms, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, cyclopentyl, pyrrole, piperidine, substituted cyclopentyl, cyclohexyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, substituted pyrrole, substituted piperidine, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, and substituted adamantyl, heterocyclic ring, and substituted heterocyclic ring.
US10/951,515 1998-05-22 2004-09-28 Benzimidazole derivatives as modulators of IgE Abandoned US20050075343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/951,515 US20050075343A1 (en) 1998-05-22 2004-09-28 Benzimidazole derivatives as modulators of IgE

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US8649498P 1998-05-22 1998-05-22
US09/316,870 US6271390B1 (en) 1998-05-22 1999-05-21 Suppression of the IgE-dependent allergic response by benzimidazole analogs
US09/422,397 US6303645B1 (en) 1998-05-22 1999-10-21 Benzimidazole derivatives as modulators of IgE
US09/983,054 US6919366B2 (en) 1998-05-22 2001-10-16 Benzimidazole derivatives as modulators of IgE
US10/951,515 US20050075343A1 (en) 1998-05-22 2004-09-28 Benzimidazole derivatives as modulators of IgE

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/983,054 Continuation US6919366B2 (en) 1998-05-22 2001-10-16 Benzimidazole derivatives as modulators of IgE

Publications (1)

Publication Number Publication Date
US20050075343A1 true US20050075343A1 (en) 2005-04-07

Family

ID=27375413

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/983,054 Expired - Fee Related US6919366B2 (en) 1998-05-22 2001-10-16 Benzimidazole derivatives as modulators of IgE
US10/951,515 Abandoned US20050075343A1 (en) 1998-05-22 2004-09-28 Benzimidazole derivatives as modulators of IgE

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/983,054 Expired - Fee Related US6919366B2 (en) 1998-05-22 2001-10-16 Benzimidazole derivatives as modulators of IgE

Country Status (1)

Country Link
US (2) US6919366B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040116466A1 (en) * 2002-09-12 2004-06-17 Sircar Jagadish C. Phenyl-aza-benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US20040214821A1 (en) * 2001-03-12 2004-10-28 Sircar Jagadish C. Benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US20050197375A1 (en) * 2002-03-25 2005-09-08 Sircar Jagadish C. Use of benzimidazole analogs in the treatment of cell proliferation
US20050239844A1 (en) * 2002-11-02 2005-10-27 Kyung-Lim Lee Composition fo preventing secretion of immunoglobulin e-dependent histamine releasing factor
US20050256179A1 (en) * 2003-08-08 2005-11-17 Sircar Jagadish C Selective pharmacologic inhibition of protein trafficking and related methods of treating human diseases
US20050277686A1 (en) * 1998-05-22 2005-12-15 Sircar Jagadish C Benzimidazole compounds for regulating IgE
US7375118B2 (en) 2002-09-12 2008-05-20 Avanir Pharmaceuticals Phenyl-indole compounds for modulating IgE and Inhibiting cellular proliferation
US20100168138A1 (en) * 2008-12-23 2010-07-01 Abbott Laboratories Anti-Viral Compounds
US20100267634A1 (en) * 2009-04-15 2010-10-21 Abbott Labaoratories Anti-Viral Compounds
US20100317568A1 (en) * 2009-06-11 2010-12-16 Abbott Labaoratories Anti-Viral Compounds
US8546405B2 (en) 2008-12-23 2013-10-01 Abbott Laboratories Anti-viral compounds
US8686026B2 (en) 2010-06-10 2014-04-01 Abbvie Inc. Solid compositions
US8716454B2 (en) 2009-06-11 2014-05-06 Abbvie Inc. Solid compositions
US8937150B2 (en) 2009-06-11 2015-01-20 Abbvie Inc. Anti-viral compounds
US9034832B2 (en) 2011-12-29 2015-05-19 Abbvie Inc. Solid compositions
US9333204B2 (en) 2014-01-03 2016-05-10 Abbvie Inc. Solid antiviral dosage forms
US9394279B2 (en) 2009-06-11 2016-07-19 Abbvie Inc. Anti-viral compounds
US10201541B1 (en) 2011-05-17 2019-02-12 Abbvie Inc. Compositions and methods for treating HCV
US11484534B2 (en) 2013-03-14 2022-11-01 Abbvie Inc. Methods for treating HCV

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919366B2 (en) * 1998-05-22 2005-07-19 Avanir Pharmaceuticals Benzimidazole derivatives as modulators of IgE
EA007339B1 (en) 2001-07-27 2006-08-25 Кьюэрис, Инк. Mediators of hedgehog signaling pathways, compositions and uses related thereto
CA2518318A1 (en) * 2003-03-17 2004-09-30 Takeda San Diego, Inc. Histone deacetylase inhibitors
KR20070057965A (en) * 2004-09-21 2007-06-07 신타 파마슈티칼스 코프. Compounds for Inflammation and Immune Related Applications
WO2006124780A2 (en) * 2005-05-12 2006-11-23 Kalypsys, Inc. Ih-benzo [d] imidazole compounds as inhibitors of b-raf kinase
WO2008130368A2 (en) * 2006-06-23 2008-10-30 Paratek Pharmaceuticals, Inc. Transcription factor modulating compounds and methods of use thereof
KR101261230B1 (en) * 2010-11-29 2013-05-07 한림제약(주) Pharmaceutical composition for nasal administration comprising mometasone furoate and azelastine hydrochloride

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510158A (en) * 1984-03-05 1985-04-09 Sterling Drug Inc. 2-Phenylindole derivatives, their use as complement inhibitors
US4582837A (en) * 1982-07-01 1986-04-15 Dr. Karl Thomae Gmbh Imidazo[4,5-b] and [4,5-c]pyridine derivatives having cardiotonic activity
US5017467A (en) * 1987-08-24 1991-05-21 Konica Corporation Photographic material with imidazole cyan coupler
US5124336A (en) * 1990-02-16 1992-06-23 Laboratoires Upsa Azabenzimidazole derivatives which are thromboxane receptor antagonists
US5322847A (en) * 1992-11-05 1994-06-21 Pfizer Inc. Azabenzimidazoles in the treatment of asthma, arthritis and related diseases
US5380865A (en) * 1987-03-05 1995-01-10 May & Baker Limited 2-(substituted phenyl)imidazoles and pesticidal compositions comprising them
US5643893A (en) * 1994-06-22 1997-07-01 Macronex, Inc. N-substituted-(Dihydroxyboryl)alkyl purine, indole and pyrimidine derivatives, useful as inhibitors of inflammatory cytokines
US5712392A (en) * 1990-12-28 1998-01-27 Neurogen Corporation Certain 4-piperidine- and piperazinoalkyl-2-phenyl imidazole derivatives; dopamine receptor subtype specific ligands
US5821258A (en) * 1994-12-27 1998-10-13 Mitsui Chemicals, Inc. Phenylbenzimidazole derivatives
US5932983A (en) * 1998-08-14 1999-08-03 Ut Automotive Dearborn, Inc. Wiper motor control
US6093728A (en) * 1997-09-26 2000-07-25 Asta Medica Aktiengesellschaft Methods of modulating serine/threonine protein kinase function with azabenzimidazole-based compounds
US6100282A (en) * 1998-01-02 2000-08-08 Hoffman-La Roche Inc. Thiazole derivatives
US6100283A (en) * 1995-08-02 2000-08-08 Newcastle University Ventures Limited Benzimidazole compounds
US6153631A (en) * 1996-10-23 2000-11-28 Zymogenetics, Inc. Compositions and methods for treating bone deficit conditions
US6271249B1 (en) * 1996-07-31 2001-08-07 Bristol-Myers Squibb Company Diphenyl imidazoles as potassium channel modulators
US6271390B1 (en) * 1998-05-22 2001-08-07 Avanir Pharmaceuticals Suppression of the IgE-dependent allergic response by benzimidazole analogs
US6288101B1 (en) * 1997-03-20 2001-09-11 Virginia Commonwealth University Imidazoles with serotonin receptor binding activity
US6303645B1 (en) * 1998-05-22 2001-10-16 Avanir Pharmaceuticals Benzimidazole derivatives as modulators of IgE
US6369091B1 (en) * 1998-05-22 2002-04-09 Avanir Pharmaceuticals Benzimidazole analogs as down-regulators of IgE
US6387938B1 (en) * 1996-07-05 2002-05-14 Mochida Pharmaceutical Co., Ltd. Benzimidazole derivatives
US20020132808A1 (en) * 1999-10-21 2002-09-19 Sircar Jagadish C. Benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US6486153B1 (en) * 1997-09-04 2002-11-26 Merck Sharp & Dohme Ltd. Phenylindole derivatives as 5-HT2A receptor ligands
US20030004203A1 (en) * 1998-05-22 2003-01-02 Sircar Jagadish C. Benzimidazole derivatives as modulators of IgE
US6503938B1 (en) * 1994-07-27 2003-01-07 Schering Aktiengesellschaft 2-phenylindoles as antiestrogenic pharmaceutical agents
US6509365B1 (en) * 1998-11-17 2003-01-21 Basf Aktiengesellschaft 2-phenylbenzimidazoles and 2-phenylindoles, and production and use thereof
US6537994B2 (en) * 2000-07-17 2003-03-25 Wyeth Heterocyclic β3 adrenergic receptor agonists
US20030100582A1 (en) * 1998-05-22 2003-05-29 Sircar Jagadish C. Benzimidazole compounds for regulating IgE
US20040116466A1 (en) * 2002-09-12 2004-06-17 Sircar Jagadish C. Phenyl-aza-benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US20040214821A1 (en) * 2001-03-12 2004-10-28 Sircar Jagadish C. Benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US20040229927A1 (en) * 2003-04-10 2004-11-18 Sircar Jagadish C. Imidazole derivatives for treatment of allergic and hyperproliferative disorders
US20050197375A1 (en) * 2002-03-25 2005-09-08 Sircar Jagadish C. Use of benzimidazole analogs in the treatment of cell proliferation
US20050256179A1 (en) * 2003-08-08 2005-11-17 Sircar Jagadish C Selective pharmacologic inhibition of protein trafficking and related methods of treating human diseases

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU591495B2 (en) 1985-05-03 1989-12-07 Foxboro Company, The Distillation cut point control
US4939133A (en) 1985-10-01 1990-07-03 Warner-Lambert Company N-substituted-2-hydroxy-α-oxo-benzeneacetamides and pharmaceutical compositions having activity as modulators of the arachidonic acid cascade
LU86258A1 (en) 1986-01-21 1987-09-03 Rech Dermatologiques C I R D S BENZAMIDO AROMATIC COMPOUNDS, PROCESS FOR THEIR PREPARATION AND THEIR USE IN HUMAN OR VETERINARY MEDICINE AND IN COSMETICS
FI903827A0 (en) 1988-02-02 1990-08-01 Schering Biotech Corp FOERFARANDE FOER REDUCERING AV IMMUNOGLOBULIN E-RESPONSER.
IT1232252B (en) 1989-02-22 1992-01-28 Rotta Research Lab DERIVATIVES OF N N PHENYL BENZAMIDE WITH ANTI-ULTER AND ANTIALLERIC ACTIVITY AND PROCEDURE FOR THEIR PREPARATION
EP0469477B1 (en) 1990-08-02 1995-09-20 F. Hoffmann-La Roche Ag Antiallergic combination
IE71647B1 (en) 1991-01-28 1997-02-26 Rhone Poulenc Rorer Ltd Benzamide derivatives
ATE150447T1 (en) 1992-06-15 1997-04-15 Celltech Therapeutics Ltd TRIS-SUBSTITUTED PHENYL DERIVATIVES AS SELECTIVE PHOSPHODIESTERASE IV INHIBITORS
US5496826A (en) 1994-09-02 1996-03-05 Bristol-Myers Squibb Company Pharmaceutical methods of using heterocyclic derivatives of N-phenylamides
WO1998017267A1 (en) 1996-10-23 1998-04-30 Zymogenetics, Inc. Compositions and methods for treating bone deficit conditions
JP2000095767A (en) 1998-09-28 2000-04-04 Takeda Chem Ind Ltd Antagonist for gonadotrophic hormone-releasing hormone
CZ20011546A3 (en) 1998-11-03 2001-08-15 Basf Aktiengesellschaft Substituted 2-phenyl benzimidazole, process of its preparation and use thereof

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582837A (en) * 1982-07-01 1986-04-15 Dr. Karl Thomae Gmbh Imidazo[4,5-b] and [4,5-c]pyridine derivatives having cardiotonic activity
US4696931A (en) * 1982-07-01 1987-09-29 Dr. Karl Thomae Gmbh Imidazole derivatives and pharmaceutical compositions containing them
US4510158A (en) * 1984-03-05 1985-04-09 Sterling Drug Inc. 2-Phenylindole derivatives, their use as complement inhibitors
US5380865A (en) * 1987-03-05 1995-01-10 May & Baker Limited 2-(substituted phenyl)imidazoles and pesticidal compositions comprising them
US5017467A (en) * 1987-08-24 1991-05-21 Konica Corporation Photographic material with imidazole cyan coupler
US5124336A (en) * 1990-02-16 1992-06-23 Laboratoires Upsa Azabenzimidazole derivatives which are thromboxane receptor antagonists
US5712392A (en) * 1990-12-28 1998-01-27 Neurogen Corporation Certain 4-piperidine- and piperazinoalkyl-2-phenyl imidazole derivatives; dopamine receptor subtype specific ligands
US5322847A (en) * 1992-11-05 1994-06-21 Pfizer Inc. Azabenzimidazoles in the treatment of asthma, arthritis and related diseases
US5643893A (en) * 1994-06-22 1997-07-01 Macronex, Inc. N-substituted-(Dihydroxyboryl)alkyl purine, indole and pyrimidine derivatives, useful as inhibitors of inflammatory cytokines
US6503938B1 (en) * 1994-07-27 2003-01-07 Schering Aktiengesellschaft 2-phenylindoles as antiestrogenic pharmaceutical agents
US5821258A (en) * 1994-12-27 1998-10-13 Mitsui Chemicals, Inc. Phenylbenzimidazole derivatives
US6100283A (en) * 1995-08-02 2000-08-08 Newcastle University Ventures Limited Benzimidazole compounds
US6387938B1 (en) * 1996-07-05 2002-05-14 Mochida Pharmaceutical Co., Ltd. Benzimidazole derivatives
US6271249B1 (en) * 1996-07-31 2001-08-07 Bristol-Myers Squibb Company Diphenyl imidazoles as potassium channel modulators
US6153631A (en) * 1996-10-23 2000-11-28 Zymogenetics, Inc. Compositions and methods for treating bone deficit conditions
US6288101B1 (en) * 1997-03-20 2001-09-11 Virginia Commonwealth University Imidazoles with serotonin receptor binding activity
US6486153B1 (en) * 1997-09-04 2002-11-26 Merck Sharp & Dohme Ltd. Phenylindole derivatives as 5-HT2A receptor ligands
US6093728A (en) * 1997-09-26 2000-07-25 Asta Medica Aktiengesellschaft Methods of modulating serine/threonine protein kinase function with azabenzimidazole-based compounds
US6100282A (en) * 1998-01-02 2000-08-08 Hoffman-La Roche Inc. Thiazole derivatives
US6303645B1 (en) * 1998-05-22 2001-10-16 Avanir Pharmaceuticals Benzimidazole derivatives as modulators of IgE
US20030100582A1 (en) * 1998-05-22 2003-05-29 Sircar Jagadish C. Benzimidazole compounds for regulating IgE
US20020010343A1 (en) * 1998-05-22 2002-01-24 Sircar Jagadish C. Compounds having IgE affecting properties
US6451829B2 (en) * 1998-05-22 2002-09-17 Jagadish C. Sircar Coumarinic compounds having IgE affecting properties
US6919366B2 (en) * 1998-05-22 2005-07-19 Avanir Pharmaceuticals Benzimidazole derivatives as modulators of IgE
US6271390B1 (en) * 1998-05-22 2001-08-07 Avanir Pharmaceuticals Suppression of the IgE-dependent allergic response by benzimidazole analogs
US20030004203A1 (en) * 1998-05-22 2003-01-02 Sircar Jagadish C. Benzimidazole derivatives as modulators of IgE
US6911462B2 (en) * 1998-05-22 2005-06-28 Avanir Pharmaceuticals Benzimidazole compounds for regulating IgE
US20050277686A1 (en) * 1998-05-22 2005-12-15 Sircar Jagadish C Benzimidazole compounds for regulating IgE
US6369091B1 (en) * 1998-05-22 2002-04-09 Avanir Pharmaceuticals Benzimidazole analogs as down-regulators of IgE
US5932983A (en) * 1998-08-14 1999-08-03 Ut Automotive Dearborn, Inc. Wiper motor control
US6509365B1 (en) * 1998-11-17 2003-01-21 Basf Aktiengesellschaft 2-phenylbenzimidazoles and 2-phenylindoles, and production and use thereof
US6759425B2 (en) * 1999-10-21 2004-07-06 Avanir Pharmaceuticals Benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US20020132808A1 (en) * 1999-10-21 2002-09-19 Sircar Jagadish C. Benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US6537994B2 (en) * 2000-07-17 2003-03-25 Wyeth Heterocyclic β3 adrenergic receptor agonists
US20040214821A1 (en) * 2001-03-12 2004-10-28 Sircar Jagadish C. Benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US20050197375A1 (en) * 2002-03-25 2005-09-08 Sircar Jagadish C. Use of benzimidazole analogs in the treatment of cell proliferation
US20040116466A1 (en) * 2002-09-12 2004-06-17 Sircar Jagadish C. Phenyl-aza-benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US20040229927A1 (en) * 2003-04-10 2004-11-18 Sircar Jagadish C. Imidazole derivatives for treatment of allergic and hyperproliferative disorders
US20050256179A1 (en) * 2003-08-08 2005-11-17 Sircar Jagadish C Selective pharmacologic inhibition of protein trafficking and related methods of treating human diseases

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050277686A1 (en) * 1998-05-22 2005-12-15 Sircar Jagadish C Benzimidazole compounds for regulating IgE
US20070202133A1 (en) * 1999-10-21 2007-08-30 Sircar Jagadish C BENZIMIDAZOLE COMPOUNDS FOR MODULATING IgE AND INHIBITING CELLULAR PROLIFERATION
US20040214821A1 (en) * 2001-03-12 2004-10-28 Sircar Jagadish C. Benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US7282518B2 (en) 2001-03-12 2007-10-16 Avanir Pharmaceuticals Benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US20050197375A1 (en) * 2002-03-25 2005-09-08 Sircar Jagadish C. Use of benzimidazole analogs in the treatment of cell proliferation
US7375118B2 (en) 2002-09-12 2008-05-20 Avanir Pharmaceuticals Phenyl-indole compounds for modulating IgE and Inhibiting cellular proliferation
US20040116466A1 (en) * 2002-09-12 2004-06-17 Sircar Jagadish C. Phenyl-aza-benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US7256287B2 (en) 2002-09-12 2007-08-14 Avanir Pharmaceuticals Phenyl-aza-benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US20050239844A1 (en) * 2002-11-02 2005-10-27 Kyung-Lim Lee Composition fo preventing secretion of immunoglobulin e-dependent histamine releasing factor
US20050256179A1 (en) * 2003-08-08 2005-11-17 Sircar Jagadish C Selective pharmacologic inhibition of protein trafficking and related methods of treating human diseases
US20100168138A1 (en) * 2008-12-23 2010-07-01 Abbott Laboratories Anti-Viral Compounds
US9249138B2 (en) 2008-12-23 2016-02-02 Abbvie Inc. Anti-viral compounds
US9163017B2 (en) 2008-12-23 2015-10-20 Abbvie Inc. Anti-viral compounds
US8541424B2 (en) 2008-12-23 2013-09-24 Abbott Laboratories Anti-viral compounds
US8546405B2 (en) 2008-12-23 2013-10-01 Abbott Laboratories Anti-viral compounds
US20100267634A1 (en) * 2009-04-15 2010-10-21 Abbott Labaoratories Anti-Viral Compounds
US9278922B2 (en) 2009-04-15 2016-03-08 Abbvie Inc. Anti-viral compounds
US8691938B2 (en) 2009-06-11 2014-04-08 Abbvie Inc. Anti-viral compounds
US20110092415A1 (en) * 2009-06-11 2011-04-21 Abbott Labaoratories Anti-Viral Compounds
US8716454B2 (en) 2009-06-11 2014-05-06 Abbvie Inc. Solid compositions
US8921514B2 (en) 2009-06-11 2014-12-30 Abbvie Inc. Anti-viral compounds
US8937150B2 (en) 2009-06-11 2015-01-20 Abbvie Inc. Anti-viral compounds
US10028937B2 (en) 2009-06-11 2018-07-24 Abbvie Inc. Anti-viral compounds
US20110207699A1 (en) * 2009-06-11 2011-08-25 Abbott Labaoratories Anti-Viral Compounds
US10039754B2 (en) 2009-06-11 2018-08-07 Abbvie Inc. Anti-viral compounds
US20100317568A1 (en) * 2009-06-11 2010-12-16 Abbott Labaoratories Anti-Viral Compounds
US9586978B2 (en) 2009-06-11 2017-03-07 Abbvie Inc. Anti-viral compounds
US9394279B2 (en) 2009-06-11 2016-07-19 Abbvie Inc. Anti-viral compounds
US8686026B2 (en) 2010-06-10 2014-04-01 Abbvie Inc. Solid compositions
US10201584B1 (en) 2011-05-17 2019-02-12 Abbvie Inc. Compositions and methods for treating HCV
US10201541B1 (en) 2011-05-17 2019-02-12 Abbvie Inc. Compositions and methods for treating HCV
US9034832B2 (en) 2011-12-29 2015-05-19 Abbvie Inc. Solid compositions
US11484534B2 (en) 2013-03-14 2022-11-01 Abbvie Inc. Methods for treating HCV
US10105365B2 (en) 2014-01-03 2018-10-23 Abbvie Inc. Solid antiviral dosage forms
US9744170B2 (en) 2014-01-03 2017-08-29 Abbvie Inc. Solid antiviral dosage forms
US9333204B2 (en) 2014-01-03 2016-05-10 Abbvie Inc. Solid antiviral dosage forms

Also Published As

Publication number Publication date
US6919366B2 (en) 2005-07-19
US20030004203A1 (en) 2003-01-02

Similar Documents

Publication Publication Date Title
US6919366B2 (en) Benzimidazole derivatives as modulators of IgE
EP1077700B1 (en) BENZIMIDAZOLE DERIVATIVES AS MODULATORS OF IgE
US6911462B2 (en) Benzimidazole compounds for regulating IgE
KR100599906B1 (en) Benzimidazole derivatives as modulators of IgE
US6369091B1 (en) Benzimidazole analogs as down-regulators of IgE
US7256287B2 (en) Phenyl-aza-benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
US20070202133A1 (en) BENZIMIDAZOLE COMPOUNDS FOR MODULATING IgE AND INHIBITING CELLULAR PROLIFERATION
KR20010031341A (en) COMPOUNDS HAVING IgE AFFECTING PROPERTIES
US6303645B1 (en) Benzimidazole derivatives as modulators of IgE
EP1555020A2 (en) Benzimidazole derivatives as modulators IgE
HK1035326A1 (en) Benzimidazole derivatives as modulators of ige
HK1035326B (en) Benzimidazole derivatives as modulators of ige
AU2003201363B2 (en) Benzimidazole analogs as down-regulators of IgE

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION