US20040220342A1 - Low-hygroscopicity low-birefringence resin compositions, molding material, sheet or film obtained therefrom, and optical part - Google Patents
Low-hygroscopicity low-birefringence resin compositions, molding material, sheet or film obtained therefrom, and optical part Download PDFInfo
- Publication number
- US20040220342A1 US20040220342A1 US10/847,195 US84719504A US2004220342A1 US 20040220342 A1 US20040220342 A1 US 20040220342A1 US 84719504 A US84719504 A US 84719504A US 2004220342 A1 US2004220342 A1 US 2004220342A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- resin composition
- styrene
- weight
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 175
- 239000012778 molding material Substances 0.000 title claims description 41
- 230000003287 optical effect Effects 0.000 title claims description 16
- 229920000642 polymer Polymers 0.000 claims abstract description 333
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 108
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000000178 monomer Substances 0.000 claims abstract description 57
- 150000003440 styrenes Chemical class 0.000 claims abstract description 28
- 239000002530 phenolic antioxidant Substances 0.000 claims abstract description 25
- 150000002469 indenes Chemical class 0.000 claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 61
- -1 aromatic styrenes Chemical class 0.000 claims description 57
- 238000010521 absorption reaction Methods 0.000 claims description 37
- 229920006395 saturated elastomer Polymers 0.000 claims description 20
- 125000004432 carbon atom Chemical group C* 0.000 claims description 13
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 8
- FXNDIJDIPNCZQJ-UHFFFAOYSA-N 2,4,4-trimethylpent-1-ene Chemical group CC(=C)CC(C)(C)C FXNDIJDIPNCZQJ-UHFFFAOYSA-N 0.000 claims description 6
- 125000005843 halogen group Chemical group 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims description 5
- 150000002430 hydrocarbons Chemical group 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 125000002252 acyl group Chemical group 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 125000002560 nitrile group Chemical group 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 60
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 abstract description 22
- 125000000623 heterocyclic group Chemical group 0.000 abstract description 22
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 22
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 abstract description 19
- 229920000578 graft copolymer Polymers 0.000 abstract description 17
- 239000004793 Polystyrene Substances 0.000 abstract description 14
- 229920002223 polystyrene Polymers 0.000 abstract description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 141
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 68
- 230000009102 absorption Effects 0.000 description 36
- 239000007788 liquid Substances 0.000 description 33
- 239000002244 precipitate Substances 0.000 description 31
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 30
- 239000012634 fragment Substances 0.000 description 30
- 238000000034 method Methods 0.000 description 29
- 238000011156 evaluation Methods 0.000 description 28
- 229920005989 resin Polymers 0.000 description 26
- 239000011347 resin Substances 0.000 description 26
- 239000003054 catalyst Substances 0.000 description 24
- 239000012456 homogeneous solution Substances 0.000 description 24
- 239000007787 solid Substances 0.000 description 24
- 239000011541 reaction mixture Substances 0.000 description 21
- 239000004342 Benzoyl peroxide Substances 0.000 description 19
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 19
- 235000019400 benzoyl peroxide Nutrition 0.000 description 19
- 238000006116 polymerization reaction Methods 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 239000001506 calcium phosphate Substances 0.000 description 15
- 229910000389 calcium phosphate Inorganic materials 0.000 description 15
- 235000011010 calcium phosphates Nutrition 0.000 description 15
- 230000008859 change Effects 0.000 description 15
- 239000012153 distilled water Substances 0.000 description 15
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- 238000001746 injection moulding Methods 0.000 description 11
- 229920005672 polyolefin resin Polymers 0.000 description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 10
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 8
- 238000005452 bending Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 8
- 239000004925 Acrylic resin Substances 0.000 description 7
- 229920000178 Acrylic resin Polymers 0.000 description 7
- 150000008065 acid anhydrides Chemical group 0.000 description 7
- 239000003963 antioxidant agent Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 230000003078 antioxidant effect Effects 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 6
- 238000000113 differential scanning calorimetry Methods 0.000 description 6
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000010526 radical polymerization reaction Methods 0.000 description 5
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 5
- UWKQJZCTQGMHKD-UHFFFAOYSA-N 2,6-di-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=N1 UWKQJZCTQGMHKD-UHFFFAOYSA-N 0.000 description 4
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 239000012986 chain transfer agent Substances 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- ZRZHXNCATOYMJH-UHFFFAOYSA-N 1-(chloromethyl)-4-ethenylbenzene Chemical compound ClCC1=CC=C(C=C)C=C1 ZRZHXNCATOYMJH-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 0 CC.CC.[1*]C1=C([2*])C([3*])([4*])C2=CC=CC=C21 Chemical compound CC.CC.[1*]C1=C([2*])C([3*])([4*])C2=CC=CC=C21 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 3
- 230000001476 alcoholic effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010538 cationic polymerization reaction Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 3
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 238000007142 ring opening reaction Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- SDHZHGBOITTYON-UHFFFAOYSA-N 1-(2-butoxyethenyl)-2-ethylbenzene Chemical compound CCCCOC=CC1=CC=CC=C1CC SDHZHGBOITTYON-UHFFFAOYSA-N 0.000 description 2
- AXYIPCDGUGLQON-UHFFFAOYSA-N 1-(2-butoxyethenyl)-3-ethylbenzene Chemical compound CCCCOC=CC1=CC=CC(CC)=C1 AXYIPCDGUGLQON-UHFFFAOYSA-N 0.000 description 2
- HVQOEAXUWASHDE-UHFFFAOYSA-N 1-(2-butoxyethenyl)-4-ethylbenzene Chemical compound CCCCOC=CC1=CC=C(CC)C=C1 HVQOEAXUWASHDE-UHFFFAOYSA-N 0.000 description 2
- UAJRSHJHFRVGMG-UHFFFAOYSA-N 1-ethenyl-4-methoxybenzene Chemical compound COC1=CC=C(C=C)C=C1 UAJRSHJHFRVGMG-UHFFFAOYSA-N 0.000 description 2
- 125000006218 1-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- LRTOHSLOFCWHRF-UHFFFAOYSA-N 1-methyl-1h-indene Chemical class C1=CC=C2C(C)C=CC2=C1 LRTOHSLOFCWHRF-UHFFFAOYSA-N 0.000 description 2
- JESXATFQYMPTNL-UHFFFAOYSA-N 2-ethenylphenol Chemical compound OC1=CC=CC=C1C=C JESXATFQYMPTNL-UHFFFAOYSA-N 0.000 description 2
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 2
- 125000005916 2-methylpentyl group Chemical group 0.000 description 2
- OJHQXSRIBZMCSR-UHFFFAOYSA-N 3,3-dimethylbut-1-en-2-ylbenzene Chemical compound CC(C)(C)C(=C)C1=CC=CC=C1 OJHQXSRIBZMCSR-UHFFFAOYSA-N 0.000 description 2
- 125000005917 3-methylpentyl group Chemical group 0.000 description 2
- LKIDMSJSJYRLBT-UHFFFAOYSA-N 4-ethylhex-1-enylbenzene Chemical compound CCC(CC)CC=CC1=CC=CC=C1 LKIDMSJSJYRLBT-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- NQMQWDDKUWBAAR-UHFFFAOYSA-N C(C)C1=C(C=CCCCC)C=CC=C1 Chemical compound C(C)C1=C(C=CCCCC)C=CC=C1 NQMQWDDKUWBAAR-UHFFFAOYSA-N 0.000 description 2
- XGEWDFRNSFAHIM-UHFFFAOYSA-N C(C)C1=CC=C(C=CCCCC)C=C1 Chemical compound C(C)C1=CC=C(C=CCCCC)C=C1 XGEWDFRNSFAHIM-UHFFFAOYSA-N 0.000 description 2
- DAUPVYJNQBNRQM-UHFFFAOYSA-N C(C)C=1C=C(C=CCCCC)C=CC1 Chemical compound C(C)C=1C=C(C=CCCCC)C=CC1 DAUPVYJNQBNRQM-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 2
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 2
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000002605 large molecules Chemical class 0.000 description 2
- 150000007517 lewis acids Chemical class 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- VIDOPANCAUPXNH-UHFFFAOYSA-N 1,2,3-triethylbenzene Chemical compound CCC1=CC=CC(CC)=C1CC VIDOPANCAUPXNH-UHFFFAOYSA-N 0.000 description 1
- WDCYWAQPCXBPJA-UHFFFAOYSA-N 1,3-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC([N+]([O-])=O)=C1 WDCYWAQPCXBPJA-UHFFFAOYSA-N 0.000 description 1
- RHPLIXXDJSEYDC-UHFFFAOYSA-N 1-bromo-1h-indene Chemical class C1=CC=C2C(Br)C=CC2=C1 RHPLIXXDJSEYDC-UHFFFAOYSA-N 0.000 description 1
- IZMOPNVIOUZWFK-UHFFFAOYSA-N 1-butoxy-2-ethenylbenzene Chemical compound CCCCOC1=CC=CC=C1C=C IZMOPNVIOUZWFK-UHFFFAOYSA-N 0.000 description 1
- OSCMAPTUPNVIAB-UHFFFAOYSA-N 1-butoxy-3-ethenylbenzene Chemical compound CCCCOC1=CC=CC(C=C)=C1 OSCMAPTUPNVIAB-UHFFFAOYSA-N 0.000 description 1
- FVLTXCPGQRZFBQ-UHFFFAOYSA-N 1-butoxy-4-ethenylbenzene Chemical compound CCCCOC1=CC=C(C=C)C=C1 FVLTXCPGQRZFBQ-UHFFFAOYSA-N 0.000 description 1
- MRNOGRFKOQUFBC-UHFFFAOYSA-N 1-butyl-1h-indene Chemical class C1=CC=C2C(CCCC)C=CC2=C1 MRNOGRFKOQUFBC-UHFFFAOYSA-N 0.000 description 1
- HUOBWFKCWUVATL-UHFFFAOYSA-N 1-butyl-2-ethenylbenzene Chemical compound CCCCC1=CC=CC=C1C=C HUOBWFKCWUVATL-UHFFFAOYSA-N 0.000 description 1
- MCVHEVPSMITDCZ-UHFFFAOYSA-N 1-butyl-3-ethenylbenzene Chemical compound CCCCC1=CC=CC(C=C)=C1 MCVHEVPSMITDCZ-UHFFFAOYSA-N 0.000 description 1
- QOVCUELHTLHMEN-UHFFFAOYSA-N 1-butyl-4-ethenylbenzene Chemical compound CCCCC1=CC=C(C=C)C=C1 QOVCUELHTLHMEN-UHFFFAOYSA-N 0.000 description 1
- JKRCFFQHGMPORJ-UHFFFAOYSA-N 1-chloro-1h-indene Chemical class C1=CC=C2C(Cl)C=CC2=C1 JKRCFFQHGMPORJ-UHFFFAOYSA-N 0.000 description 1
- CCMBAYLITRLUGP-UHFFFAOYSA-N 1-cyclohexyl-2-ethenylbenzene Chemical compound C=CC1=CC=CC=C1C1CCCCC1 CCMBAYLITRLUGP-UHFFFAOYSA-N 0.000 description 1
- BLLJJXHFQMICAY-UHFFFAOYSA-N 1-cyclohexyl-3-ethenylbenzene Chemical compound C=CC1=CC=CC(C2CCCCC2)=C1 BLLJJXHFQMICAY-UHFFFAOYSA-N 0.000 description 1
- VDNSZPNSUQRUMS-UHFFFAOYSA-N 1-cyclohexyl-4-ethenylbenzene Chemical compound C1=CC(C=C)=CC=C1C1CCCCC1 VDNSZPNSUQRUMS-UHFFFAOYSA-N 0.000 description 1
- MXLWBXNCIZQWNB-UHFFFAOYSA-N 1-cyclohexylethenylbenzene Chemical compound C=1C=CC=CC=1C(=C)C1CCCCC1 MXLWBXNCIZQWNB-UHFFFAOYSA-N 0.000 description 1
- HUIYATRVQOSZEU-UHFFFAOYSA-N 1-cyclohexyloxy-2-ethenylbenzene Chemical compound C=CC1=CC=CC=C1OC1CCCCC1 HUIYATRVQOSZEU-UHFFFAOYSA-N 0.000 description 1
- AAFWOAOJMIHFER-UHFFFAOYSA-N 1-cyclohexyloxy-3-ethenylbenzene Chemical compound C=CC1=CC=CC(OC2CCCCC2)=C1 AAFWOAOJMIHFER-UHFFFAOYSA-N 0.000 description 1
- LPUQAYZTGJZNKF-UHFFFAOYSA-N 1-cyclohexyloxy-4-ethenylbenzene Chemical compound C1=CC(C=C)=CC=C1OC1CCCCC1 LPUQAYZTGJZNKF-UHFFFAOYSA-N 0.000 description 1
- LGJCFVYMIJLQJO-UHFFFAOYSA-N 1-dodecylperoxydodecane Chemical compound CCCCCCCCCCCCOOCCCCCCCCCCCC LGJCFVYMIJLQJO-UHFFFAOYSA-N 0.000 description 1
- TZFBBVGKJLPUTD-UHFFFAOYSA-N 1-ethenyl-2-(2-methylbutan-2-yl)benzene Chemical compound CCC(C)(C)C1=CC=CC=C1C=C TZFBBVGKJLPUTD-UHFFFAOYSA-N 0.000 description 1
- XPRYAJZVFWNOSZ-UHFFFAOYSA-N 1-ethenyl-2-(2-methylbutan-2-yloxy)benzene Chemical compound CCC(C)(C)OC1=CC=CC=C1C=C XPRYAJZVFWNOSZ-UHFFFAOYSA-N 0.000 description 1
- RPTYPUDCRRQNRA-UHFFFAOYSA-N 1-ethenyl-2-(2-methylbutoxy)benzene Chemical compound CCC(C)COC1=CC=CC=C1C=C RPTYPUDCRRQNRA-UHFFFAOYSA-N 0.000 description 1
- NTRUBVWAFJMPIA-UHFFFAOYSA-N 1-ethenyl-2-(2-methylbutyl)benzene Chemical compound CCC(C)CC1=CC=CC=C1C=C NTRUBVWAFJMPIA-UHFFFAOYSA-N 0.000 description 1
- FVJKMSKWMUIVNO-UHFFFAOYSA-N 1-ethenyl-2-(2-methylpentoxy)benzene Chemical compound CCCC(C)COC1=CC=CC=C1C=C FVJKMSKWMUIVNO-UHFFFAOYSA-N 0.000 description 1
- MFZWUHQTIIJDGY-UHFFFAOYSA-N 1-ethenyl-2-(2-methylpentyl)benzene Chemical compound CCCC(C)CC1=CC=CC=C1C=C MFZWUHQTIIJDGY-UHFFFAOYSA-N 0.000 description 1
- NHVXQKYMTJOPMZ-UHFFFAOYSA-N 1-ethenyl-2-(2-methylpropoxy)benzene Chemical compound CC(C)COC1=CC=CC=C1C=C NHVXQKYMTJOPMZ-UHFFFAOYSA-N 0.000 description 1
- FJYUXQNYIFXPPK-UHFFFAOYSA-N 1-ethenyl-2-(2-methylpropyl)benzene Chemical compound CC(C)CC1=CC=CC=C1C=C FJYUXQNYIFXPPK-UHFFFAOYSA-N 0.000 description 1
- GRSFLBWXBFBGIP-UHFFFAOYSA-N 1-ethenyl-2-(3-methylbutoxy)benzene Chemical compound CC(C)CCOC1=CC=CC=C1C=C GRSFLBWXBFBGIP-UHFFFAOYSA-N 0.000 description 1
- HZWNXTLUFNQDOB-UHFFFAOYSA-N 1-ethenyl-2-(3-methylbutyl)benzene Chemical compound CC(C)CCC1=CC=CC=C1C=C HZWNXTLUFNQDOB-UHFFFAOYSA-N 0.000 description 1
- QRNKIQNXWUVESS-UHFFFAOYSA-N 1-ethenyl-2-(3-methylpentoxy)benzene Chemical compound CCC(C)CCOC1=CC=CC=C1C=C QRNKIQNXWUVESS-UHFFFAOYSA-N 0.000 description 1
- KLXGIIDNQBRRES-UHFFFAOYSA-N 1-ethenyl-2-(3-methylpentyl)benzene Chemical compound CCC(C)CCC1=CC=CC=C1C=C KLXGIIDNQBRRES-UHFFFAOYSA-N 0.000 description 1
- CCSZEZULHZMGHK-UHFFFAOYSA-N 1-ethenyl-2-[(2-methylpropan-2-yl)oxy]benzene Chemical compound CC(C)(C)OC1=CC=CC=C1C=C CCSZEZULHZMGHK-UHFFFAOYSA-N 0.000 description 1
- FIPBXQBXPNTQAA-UHFFFAOYSA-N 1-ethenyl-2-ethoxybenzene Chemical compound CCOC1=CC=CC=C1C=C FIPBXQBXPNTQAA-UHFFFAOYSA-N 0.000 description 1
- VTPNYMSKBPZSTF-UHFFFAOYSA-N 1-ethenyl-2-ethylbenzene Chemical compound CCC1=CC=CC=C1C=C VTPNYMSKBPZSTF-UHFFFAOYSA-N 0.000 description 1
- IJICXWRPALVMAI-UHFFFAOYSA-N 1-ethenyl-2-hexan-2-ylbenzene Chemical compound CCCCC(C)C1=CC=CC=C1C=C IJICXWRPALVMAI-UHFFFAOYSA-N 0.000 description 1
- AXYIXRIYAFQUHQ-UHFFFAOYSA-N 1-ethenyl-2-hexan-2-yloxybenzene Chemical compound CCCCC(C)OC1=CC=CC=C1C=C AXYIXRIYAFQUHQ-UHFFFAOYSA-N 0.000 description 1
- RFMCWCQLHUQQHW-UHFFFAOYSA-N 1-ethenyl-2-hexoxybenzene Chemical compound CCCCCCOC1=CC=CC=C1C=C RFMCWCQLHUQQHW-UHFFFAOYSA-N 0.000 description 1
- PRYICNKCFFXYSX-UHFFFAOYSA-N 1-ethenyl-2-hexylbenzene Chemical compound CCCCCCC1=CC=CC=C1C=C PRYICNKCFFXYSX-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- FCTGEMDIBOJIOF-UHFFFAOYSA-N 1-ethenyl-2-pentoxybenzene Chemical compound CCCCCOC1=CC=CC=C1C=C FCTGEMDIBOJIOF-UHFFFAOYSA-N 0.000 description 1
- ODOPUIHJBDFAFR-UHFFFAOYSA-N 1-ethenyl-2-pentylbenzene Chemical compound CCCCCC1=CC=CC=C1C=C ODOPUIHJBDFAFR-UHFFFAOYSA-N 0.000 description 1
- JGRGYZHMKFNQGZ-UHFFFAOYSA-N 1-ethenyl-2-phenoxybenzene Chemical compound C=CC1=CC=CC=C1OC1=CC=CC=C1 JGRGYZHMKFNQGZ-UHFFFAOYSA-N 0.000 description 1
- XIRPMPKSZHNMST-UHFFFAOYSA-N 1-ethenyl-2-phenylbenzene Chemical compound C=CC1=CC=CC=C1C1=CC=CC=C1 XIRPMPKSZHNMST-UHFFFAOYSA-N 0.000 description 1
- QYZIPGOBTXRFSV-UHFFFAOYSA-N 1-ethenyl-2-propoxybenzene Chemical compound CCCOC1=CC=CC=C1C=C QYZIPGOBTXRFSV-UHFFFAOYSA-N 0.000 description 1
- XIYATWBVQHWJPH-UHFFFAOYSA-N 1-ethenyl-2-propylbenzene Chemical compound CCCC1=CC=CC=C1C=C XIYATWBVQHWJPH-UHFFFAOYSA-N 0.000 description 1
- LJZLXWIIVIBRIY-UHFFFAOYSA-N 1-ethenyl-3-(2-methylbutan-2-yl)benzene Chemical compound CCC(C)(C)C1=CC=CC(C=C)=C1 LJZLXWIIVIBRIY-UHFFFAOYSA-N 0.000 description 1
- OHYILSNSSUKOIJ-UHFFFAOYSA-N 1-ethenyl-3-(2-methylbutan-2-yloxy)benzene Chemical compound CCC(C)(C)OC1=CC=CC(C=C)=C1 OHYILSNSSUKOIJ-UHFFFAOYSA-N 0.000 description 1
- MLBYPELWRLRYPP-UHFFFAOYSA-N 1-ethenyl-3-(2-methylbutoxy)benzene Chemical compound CCC(C)COC1=CC=CC(C=C)=C1 MLBYPELWRLRYPP-UHFFFAOYSA-N 0.000 description 1
- LATHWNVRMCQPHY-UHFFFAOYSA-N 1-ethenyl-3-(2-methylbutyl)benzene Chemical compound CCC(C)CC1=CC=CC(C=C)=C1 LATHWNVRMCQPHY-UHFFFAOYSA-N 0.000 description 1
- XHMZMHDCPWXTHP-UHFFFAOYSA-N 1-ethenyl-3-(2-methylpentoxy)benzene Chemical compound CCCC(C)COC1=CC=CC(C=C)=C1 XHMZMHDCPWXTHP-UHFFFAOYSA-N 0.000 description 1
- CQHKSMIWBFYWCK-UHFFFAOYSA-N 1-ethenyl-3-(2-methylpentyl)benzene Chemical compound CCCC(C)CC1=CC=CC(C=C)=C1 CQHKSMIWBFYWCK-UHFFFAOYSA-N 0.000 description 1
- BNKQWLUYZRSVOT-UHFFFAOYSA-N 1-ethenyl-3-(2-methylpropoxy)benzene Chemical compound CC(C)COC1=CC=CC(C=C)=C1 BNKQWLUYZRSVOT-UHFFFAOYSA-N 0.000 description 1
- JBESXSLBBVVMGI-UHFFFAOYSA-N 1-ethenyl-3-(2-methylpropyl)benzene Chemical compound CC(C)CC1=CC=CC(C=C)=C1 JBESXSLBBVVMGI-UHFFFAOYSA-N 0.000 description 1
- LTQLGDPZTOBYBA-UHFFFAOYSA-N 1-ethenyl-3-(3-methylbutoxy)benzene Chemical compound CC(C)CCOC1=CC=CC(C=C)=C1 LTQLGDPZTOBYBA-UHFFFAOYSA-N 0.000 description 1
- KFZBVVZZWNPPDW-UHFFFAOYSA-N 1-ethenyl-3-(3-methylbutyl)benzene Chemical compound CC(C)CCC1=CC=CC(C=C)=C1 KFZBVVZZWNPPDW-UHFFFAOYSA-N 0.000 description 1
- HPTGVNLEJBFKBJ-UHFFFAOYSA-N 1-ethenyl-3-(3-methylpentoxy)benzene Chemical compound CCC(C)CCOC1=CC=CC(C=C)=C1 HPTGVNLEJBFKBJ-UHFFFAOYSA-N 0.000 description 1
- TXRDSVJZCLOLAL-UHFFFAOYSA-N 1-ethenyl-3-(3-methylpentyl)benzene Chemical compound CCC(C)CCC1=CC=CC(C=C)=C1 TXRDSVJZCLOLAL-UHFFFAOYSA-N 0.000 description 1
- LTGJSMARDKHZOY-UHFFFAOYSA-N 1-ethenyl-3-[(2-methylpropan-2-yl)oxy]benzene Chemical compound CC(C)(C)OC1=CC=CC(C=C)=C1 LTGJSMARDKHZOY-UHFFFAOYSA-N 0.000 description 1
- LXOOIXRLEJSMKX-UHFFFAOYSA-N 1-ethenyl-3-ethoxybenzene Chemical compound CCOC1=CC=CC(C=C)=C1 LXOOIXRLEJSMKX-UHFFFAOYSA-N 0.000 description 1
- XHUZSRRCICJJCN-UHFFFAOYSA-N 1-ethenyl-3-ethylbenzene Chemical compound CCC1=CC=CC(C=C)=C1 XHUZSRRCICJJCN-UHFFFAOYSA-N 0.000 description 1
- QZSMLRLVYQMMGU-UHFFFAOYSA-N 1-ethenyl-3-hexan-2-ylbenzene Chemical compound CCCCC(C)C1=CC=CC(C=C)=C1 QZSMLRLVYQMMGU-UHFFFAOYSA-N 0.000 description 1
- VDUPCOBZGCZUOT-UHFFFAOYSA-N 1-ethenyl-3-hexan-2-yloxybenzene Chemical compound CCCCC(C)OC1=CC=CC(C=C)=C1 VDUPCOBZGCZUOT-UHFFFAOYSA-N 0.000 description 1
- OBHWUQKRVKZSKZ-UHFFFAOYSA-N 1-ethenyl-3-hexoxybenzene Chemical compound CCCCCCOC1=CC=CC(C=C)=C1 OBHWUQKRVKZSKZ-UHFFFAOYSA-N 0.000 description 1
- NTNWNMJBZYLXDJ-UHFFFAOYSA-N 1-ethenyl-3-hexylbenzene Chemical compound CCCCCCC1=CC=CC(C=C)=C1 NTNWNMJBZYLXDJ-UHFFFAOYSA-N 0.000 description 1
- PECUPOXPPBBFLU-UHFFFAOYSA-N 1-ethenyl-3-methoxybenzene Chemical compound COC1=CC=CC(C=C)=C1 PECUPOXPPBBFLU-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- QZBKYVAZODHTJD-UHFFFAOYSA-N 1-ethenyl-3-pentoxybenzene Chemical compound CCCCCOC1=CC=CC(C=C)=C1 QZBKYVAZODHTJD-UHFFFAOYSA-N 0.000 description 1
- LBAXFKFHOGAMDP-UHFFFAOYSA-N 1-ethenyl-3-pentylbenzene Chemical compound CCCCCC1=CC=CC(C=C)=C1 LBAXFKFHOGAMDP-UHFFFAOYSA-N 0.000 description 1
- QDCUAHOXDLTZCU-UHFFFAOYSA-N 1-ethenyl-3-phenoxybenzene Chemical compound C=CC1=CC=CC(OC=2C=CC=CC=2)=C1 QDCUAHOXDLTZCU-UHFFFAOYSA-N 0.000 description 1
- ZMXAHWXPRKVGCM-UHFFFAOYSA-N 1-ethenyl-3-phenylbenzene Chemical compound C=CC1=CC=CC(C=2C=CC=CC=2)=C1 ZMXAHWXPRKVGCM-UHFFFAOYSA-N 0.000 description 1
- OFCRXVIOIFVHFG-UHFFFAOYSA-N 1-ethenyl-3-propoxybenzene Chemical compound CCCOC1=CC=CC(C=C)=C1 OFCRXVIOIFVHFG-UHFFFAOYSA-N 0.000 description 1
- CYAOHDYNSBNYPZ-UHFFFAOYSA-N 1-ethenyl-3-propylbenzene Chemical compound CCCC1=CC=CC(C=C)=C1 CYAOHDYNSBNYPZ-UHFFFAOYSA-N 0.000 description 1
- FVBMPZMSKIEFJF-UHFFFAOYSA-N 1-ethenyl-4-(2-methylbutan-2-yl)benzene Chemical compound CCC(C)(C)C1=CC=C(C=C)C=C1 FVBMPZMSKIEFJF-UHFFFAOYSA-N 0.000 description 1
- KTCTUVAYZCVCDP-UHFFFAOYSA-N 1-ethenyl-4-(2-methylbutan-2-yloxy)benzene Chemical compound CCC(C)(C)OC1=CC=C(C=C)C=C1 KTCTUVAYZCVCDP-UHFFFAOYSA-N 0.000 description 1
- NULWAHMJXAPFKS-UHFFFAOYSA-N 1-ethenyl-4-(2-methylbutoxy)benzene Chemical compound CCC(C)COC1=CC=C(C=C)C=C1 NULWAHMJXAPFKS-UHFFFAOYSA-N 0.000 description 1
- VRGQOKDUJCYANC-UHFFFAOYSA-N 1-ethenyl-4-(2-methylbutyl)benzene Chemical compound CCC(C)CC1=CC=C(C=C)C=C1 VRGQOKDUJCYANC-UHFFFAOYSA-N 0.000 description 1
- FBUUWHQREZQUTJ-UHFFFAOYSA-N 1-ethenyl-4-(2-methylpentoxy)benzene Chemical compound CCCC(C)COC1=CC=C(C=C)C=C1 FBUUWHQREZQUTJ-UHFFFAOYSA-N 0.000 description 1
- AWBVZKQICPDAOC-UHFFFAOYSA-N 1-ethenyl-4-(2-methylpentyl)benzene Chemical compound CCCC(C)CC1=CC=C(C=C)C=C1 AWBVZKQICPDAOC-UHFFFAOYSA-N 0.000 description 1
- SOXFPOYICGTMQC-UHFFFAOYSA-N 1-ethenyl-4-(2-methylpropoxy)benzene Chemical compound CC(C)COC1=CC=C(C=C)C=C1 SOXFPOYICGTMQC-UHFFFAOYSA-N 0.000 description 1
- VTMSSJKVUVVWNJ-UHFFFAOYSA-N 1-ethenyl-4-(2-methylpropyl)benzene Chemical compound CC(C)CC1=CC=C(C=C)C=C1 VTMSSJKVUVVWNJ-UHFFFAOYSA-N 0.000 description 1
- NCOMFXGCBNGEFH-UHFFFAOYSA-N 1-ethenyl-4-(3-methylbutoxy)benzene Chemical compound CC(C)CCOC1=CC=C(C=C)C=C1 NCOMFXGCBNGEFH-UHFFFAOYSA-N 0.000 description 1
- KNRWHMRNGMKQKG-UHFFFAOYSA-N 1-ethenyl-4-(3-methylpentoxy)benzene Chemical compound CCC(C)CCOC1=CC=C(C=C)C=C1 KNRWHMRNGMKQKG-UHFFFAOYSA-N 0.000 description 1
- GWZOCZTVDNJYDA-UHFFFAOYSA-N 1-ethenyl-4-(3-methylpentyl)benzene Chemical compound CCC(C)CCC1=CC=C(C=C)C=C1 GWZOCZTVDNJYDA-UHFFFAOYSA-N 0.000 description 1
- GRFNSWBVXHLTCI-UHFFFAOYSA-N 1-ethenyl-4-[(2-methylpropan-2-yl)oxy]benzene Chemical compound CC(C)(C)OC1=CC=C(C=C)C=C1 GRFNSWBVXHLTCI-UHFFFAOYSA-N 0.000 description 1
- OBRYRJYZWVLVLF-UHFFFAOYSA-N 1-ethenyl-4-ethoxybenzene Chemical compound CCOC1=CC=C(C=C)C=C1 OBRYRJYZWVLVLF-UHFFFAOYSA-N 0.000 description 1
- WHFHDVDXYKOSKI-UHFFFAOYSA-N 1-ethenyl-4-ethylbenzene Chemical compound CCC1=CC=C(C=C)C=C1 WHFHDVDXYKOSKI-UHFFFAOYSA-N 0.000 description 1
- XETSOMIJTFKAGV-UHFFFAOYSA-N 1-ethenyl-4-hexan-2-ylbenzene Chemical compound CCCCC(C)C1=CC=C(C=C)C=C1 XETSOMIJTFKAGV-UHFFFAOYSA-N 0.000 description 1
- IHHCTJWTRGVIBU-UHFFFAOYSA-N 1-ethenyl-4-hexan-2-yloxybenzene Chemical compound CCCCC(C)OC1=CC=C(C=C)C=C1 IHHCTJWTRGVIBU-UHFFFAOYSA-N 0.000 description 1
- ZFZRUAKGDCSCEJ-UHFFFAOYSA-N 1-ethenyl-4-hexoxybenzene Chemical compound CCCCCCOC1=CC=C(C=C)C=C1 ZFZRUAKGDCSCEJ-UHFFFAOYSA-N 0.000 description 1
- LCNAQVGAHQVWIN-UHFFFAOYSA-N 1-ethenyl-4-hexylbenzene Chemical compound CCCCCCC1=CC=C(C=C)C=C1 LCNAQVGAHQVWIN-UHFFFAOYSA-N 0.000 description 1
- JLWPGRKEGIKOCV-UHFFFAOYSA-N 1-ethenyl-4-pentoxybenzene Chemical compound CCCCCOC1=CC=C(C=C)C=C1 JLWPGRKEGIKOCV-UHFFFAOYSA-N 0.000 description 1
- ADOYKPDOFQXKEF-UHFFFAOYSA-N 1-ethenyl-4-pentylbenzene Chemical compound CCCCCC1=CC=C(C=C)C=C1 ADOYKPDOFQXKEF-UHFFFAOYSA-N 0.000 description 1
- UULPGUKSBAXNJN-UHFFFAOYSA-N 1-ethenyl-4-phenoxybenzene Chemical compound C1=CC(C=C)=CC=C1OC1=CC=CC=C1 UULPGUKSBAXNJN-UHFFFAOYSA-N 0.000 description 1
- HYKOKFYURVJHKT-UHFFFAOYSA-N 1-ethenyl-4-propoxybenzene Chemical compound CCCOC1=CC=C(C=C)C=C1 HYKOKFYURVJHKT-UHFFFAOYSA-N 0.000 description 1
- VVTGQMLRTKFKAM-UHFFFAOYSA-N 1-ethenyl-4-propylbenzene Chemical compound CCCC1=CC=C(C=C)C=C1 VVTGQMLRTKFKAM-UHFFFAOYSA-N 0.000 description 1
- SPFZKMMPGXBEPX-UHFFFAOYSA-N 1-propyl-1h-indene Chemical class C1=CC=C2C(CCC)C=CC2=C1 SPFZKMMPGXBEPX-UHFFFAOYSA-N 0.000 description 1
- LUECERFWADIZPD-UHFFFAOYSA-N 1-tert-butyl-2-ethenylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1C=C LUECERFWADIZPD-UHFFFAOYSA-N 0.000 description 1
- SMSKIVCCLIQXFD-UHFFFAOYSA-N 1-tert-butyl-3-ethenylbenzene Chemical compound CC(C)(C)C1=CC=CC(C=C)=C1 SMSKIVCCLIQXFD-UHFFFAOYSA-N 0.000 description 1
- QEDJMOONZLUIMC-UHFFFAOYSA-N 1-tert-butyl-4-ethenylbenzene Chemical compound CC(C)(C)C1=CC=C(C=C)C=C1 QEDJMOONZLUIMC-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- SPSPIUSUWPLVKD-UHFFFAOYSA-N 2,3-dibutyl-6-methylphenol Chemical compound CCCCC1=CC=C(C)C(O)=C1CCCC SPSPIUSUWPLVKD-UHFFFAOYSA-N 0.000 description 1
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- MXALMAQOPWXPPY-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid Chemical compound CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O MXALMAQOPWXPPY-UHFFFAOYSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- MENUHMSZHZBYMK-UHFFFAOYSA-N 2-cyclohexylethenylbenzene Chemical compound C1CCCCC1C=CC1=CC=CC=C1 MENUHMSZHZBYMK-UHFFFAOYSA-N 0.000 description 1
- XUDBVJCTLZTSDC-UHFFFAOYSA-N 2-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C=C XUDBVJCTLZTSDC-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- HXIQYSLFEXIOAV-UHFFFAOYSA-N 2-tert-butyl-4-(5-tert-butyl-4-hydroxy-2-methylphenyl)sulfanyl-5-methylphenol Chemical class CC1=CC(O)=C(C(C)(C)C)C=C1SC1=CC(C(C)(C)C)=C(O)C=C1C HXIQYSLFEXIOAV-UHFFFAOYSA-N 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical class C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- LZHCVNIARUXHAL-UHFFFAOYSA-N 2-tert-butyl-4-ethylphenol Chemical compound CCC1=CC=C(O)C(C(C)(C)C)=C1 LZHCVNIARUXHAL-UHFFFAOYSA-N 0.000 description 1
- IKEHOXWJQXIQAG-UHFFFAOYSA-N 2-tert-butyl-4-methylphenol Chemical compound CC1=CC=C(O)C(C(C)(C)C)=C1 IKEHOXWJQXIQAG-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- WKGCBTHVNPAXGP-UHFFFAOYSA-N 3,3-dimethylpent-1-en-2-ylbenzene Chemical compound CCC(C)(C)C(=C)C1=CC=CC=C1 WKGCBTHVNPAXGP-UHFFFAOYSA-N 0.000 description 1
- AMRNFVJNQPVYCH-UHFFFAOYSA-N 3,3-dimethylpent-1-enylbenzene Chemical compound CCC(C)(C)C=CC1=CC=CC=C1 AMRNFVJNQPVYCH-UHFFFAOYSA-N 0.000 description 1
- HOEXDLJJDVILDV-UHFFFAOYSA-N 3-ethylhex-1-enylbenzene Chemical compound CCCC(CC)C=CC1=CC=CC=C1 HOEXDLJJDVILDV-UHFFFAOYSA-N 0.000 description 1
- HDTAJSNRTBAHNF-UHFFFAOYSA-N 3-methylhept-1-en-2-ylbenzene Chemical compound CCCCC(C)C(=C)C1=CC=CC=C1 HDTAJSNRTBAHNF-UHFFFAOYSA-N 0.000 description 1
- KLQXEMISEWZUOE-UHFFFAOYSA-N 3-methylhept-1-enylbenzene Chemical compound CCCCC(C)C=CC1=CC=CC=C1 KLQXEMISEWZUOE-UHFFFAOYSA-N 0.000 description 1
- RDVHENAQIWOJFR-UHFFFAOYSA-N 3-pyridin-2-ylpyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C=2N=CC=CC=2)=C1 RDVHENAQIWOJFR-UHFFFAOYSA-N 0.000 description 1
- IYIKMENJEGITMT-UHFFFAOYSA-N 4-methylhept-1-enylbenzene Chemical compound CCCC(C)CC=CC1=CC=CC=C1 IYIKMENJEGITMT-UHFFFAOYSA-N 0.000 description 1
- SVUSSERMVFNVJH-UHFFFAOYSA-N 4-methylhex-1-en-2-ylbenzene Chemical compound CCC(C)CC(=C)C1=CC=CC=C1 SVUSSERMVFNVJH-UHFFFAOYSA-N 0.000 description 1
- USMHHKFGWZDBDX-UHFFFAOYSA-N 4-methylhex-1-enylbenzene Chemical compound CCC(C)CC=CC1=CC=CC=C1 USMHHKFGWZDBDX-UHFFFAOYSA-N 0.000 description 1
- UITGPFDMCDXUSB-UHFFFAOYSA-N 4-methylpent-1-en-2-ylbenzene Chemical compound CC(C)CC(=C)C1=CC=CC=C1 UITGPFDMCDXUSB-UHFFFAOYSA-N 0.000 description 1
- GQEFPXSNRRKUHO-UHFFFAOYSA-N 4-methylpent-1-enylbenzene Chemical compound CC(C)CC=CC1=CC=CC=C1 GQEFPXSNRRKUHO-UHFFFAOYSA-N 0.000 description 1
- VKMBZPHJGJNWEM-UHFFFAOYSA-N 5-methylhept-1-en-2-ylbenzene Chemical compound CCC(C)CCC(=C)C1=CC=CC=C1 VKMBZPHJGJNWEM-UHFFFAOYSA-N 0.000 description 1
- SPWIXSDZNUYDQS-UHFFFAOYSA-N 5-methylhept-1-enylbenzene Chemical compound CCC(C)CCC=CC1=CC=CC=C1 SPWIXSDZNUYDQS-UHFFFAOYSA-N 0.000 description 1
- NLMBHMUOEJXGAC-UHFFFAOYSA-N 5-methylhex-1-en-2-ylbenzene Chemical compound CC(C)CCC(=C)C1=CC=CC=C1 NLMBHMUOEJXGAC-UHFFFAOYSA-N 0.000 description 1
- HTGFAAXYUUHEAX-UHFFFAOYSA-N 5-methylhex-1-enylbenzene Chemical compound CC(C)CCC=CC1=CC=CC=C1 HTGFAAXYUUHEAX-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 1
- GHKOFFNLGXMVNJ-UHFFFAOYSA-N Didodecyl thiobispropanoate Chemical compound CCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCC GHKOFFNLGXMVNJ-UHFFFAOYSA-N 0.000 description 1
- 239000003508 Dilauryl thiodipropionate Substances 0.000 description 1
- 239000002656 Distearyl thiodipropionate Substances 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical class OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- NTNWOCRCBQPEKQ-UHFFFAOYSA-N NG-mono-methyl-L-arginine Natural products CN=C(N)NCCCC(N)C(O)=O NTNWOCRCBQPEKQ-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 1
- UATJOMSPNYCXIX-UHFFFAOYSA-N Trinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 UATJOMSPNYCXIX-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 1
- QROGIFZRVHSFLM-QHHAFSJGSA-N [(e)-prop-1-enyl]benzene Chemical compound C\C=C\C1=CC=CC=C1 QROGIFZRVHSFLM-QHHAFSJGSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 150000003927 aminopyridines Chemical class 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- SQHOHKQMTHROSF-UHFFFAOYSA-N but-1-en-2-ylbenzene Chemical compound CCC(=C)C1=CC=CC=C1 SQHOHKQMTHROSF-UHFFFAOYSA-N 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229950005499 carbon tetrachloride Drugs 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 235000019304 dilauryl thiodipropionate Nutrition 0.000 description 1
- PWWSSIYVTQUJQQ-UHFFFAOYSA-N distearyl thiodipropionate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCCCCCCCC PWWSSIYVTQUJQQ-UHFFFAOYSA-N 0.000 description 1
- 235000019305 distearyl thiodipropionate Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- NHOGGUYTANYCGQ-UHFFFAOYSA-N ethenoxybenzene Chemical compound C=COC1=CC=CC=C1 NHOGGUYTANYCGQ-UHFFFAOYSA-N 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- SXZXMSIJGYCCOU-UHFFFAOYSA-N hept-1-en-2-ylbenzene Chemical compound CCCCCC(=C)C1=CC=CC=C1 SXZXMSIJGYCCOU-UHFFFAOYSA-N 0.000 description 1
- PNLSTDKQAPNMDU-UHFFFAOYSA-N hept-1-enylbenzene Chemical compound CCCCCC=CC1=CC=CC=C1 PNLSTDKQAPNMDU-UHFFFAOYSA-N 0.000 description 1
- YJSSCAJSFIGKSN-UHFFFAOYSA-N hex-1-en-2-ylbenzene Chemical compound CCCCC(=C)C1=CC=CC=C1 YJSSCAJSFIGKSN-UHFFFAOYSA-N 0.000 description 1
- KETWBQOXTBGBBN-UHFFFAOYSA-N hex-1-enylbenzene Chemical compound CCCCC=CC1=CC=CC=C1 KETWBQOXTBGBBN-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- HOBCFUWDNJPFHB-UHFFFAOYSA-N indolizine Chemical compound C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 239000011980 kaminsky catalyst Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- SFBTTWXNCQVIEC-UHFFFAOYSA-N o-Vinylanisole Chemical compound COC1=CC=CC=C1C=C SFBTTWXNCQVIEC-UHFFFAOYSA-N 0.000 description 1
- GFPVQVVHZYIGOF-UHFFFAOYSA-N oct-1-en-2-ylbenzene Chemical compound CCCCCCC(=C)C1=CC=CC=C1 GFPVQVVHZYIGOF-UHFFFAOYSA-N 0.000 description 1
- RCALDWJXTVCBAZ-UHFFFAOYSA-N oct-1-enylbenzene Chemical compound CCCCCCC=CC1=CC=CC=C1 RCALDWJXTVCBAZ-UHFFFAOYSA-N 0.000 description 1
- HDBWAWNLGGMZRQ-UHFFFAOYSA-N p-Vinylbiphenyl Chemical compound C1=CC(C=C)=CC=C1C1=CC=CC=C1 HDBWAWNLGGMZRQ-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- ANGVCCXFJKHNDS-UHFFFAOYSA-N pent-1-en-2-ylbenzene Chemical compound CCCC(=C)C1=CC=CC=C1 ANGVCCXFJKHNDS-UHFFFAOYSA-N 0.000 description 1
- KHMYONNPZWOTKW-UHFFFAOYSA-N pent-1-enylbenzene Chemical compound CCCC=CC1=CC=CC=C1 KHMYONNPZWOTKW-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- DVMZCYSFPFUKKE-UHFFFAOYSA-K scandium chloride Chemical compound Cl[Sc](Cl)Cl DVMZCYSFPFUKKE-UHFFFAOYSA-K 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 1
- LVEOKSIILWWVEO-UHFFFAOYSA-N tetradecyl 3-(3-oxo-3-tetradecoxypropyl)sulfanylpropanoate Chemical compound CCCCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCCCC LVEOKSIILWWVEO-UHFFFAOYSA-N 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L45/00—Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
- C08L2666/04—Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
Definitions
- the present invention relates to resin compositions having low hygroscopicity, low birefringence and low permittivity, being excellent in fluidity, causing little change in color in heating, and being excellent in mold release characteristics in injection molding, and to a molding material, a sheet, or a film obtained by molding these resin compositions and to an optical part.
- typical monomers include ethylene, substituted ethylenes, propylene, substituted propylenes, styrene, alkylstyrenes, alkoxystyrenes, norbornene, various acrylic esters, butadiene, cyclopentadiene, dicyclopentadiene, isoprene, maleic anhydride, maleimide, fumarate esters, allyl compounds, and the like.
- Various kinds of resins are synthesized from these monomers or various combinations thereof.
- a polymer comprising a hydrocarbon containing no polar groups.
- An example of such a polymer is a series of polymers called cyclic polyolefins. Specific examples include a polymer obtained by hydrogenating polynorbornene, or a polymer comprising polydicyclopentene and a derivative thereof.
- these polymers can exhibit extremely low permittivity, they have problems such as low heat resistance and very high permeability of water in spite of extremely low water absorption. In particular, the high permeability of water is a common characteristic of polyolefins, and it is considered to be extremely difficult to solve this problem.
- Another example is a syndiotactic polystyrene synthesized by using Ziegler-Natta catalyst or Kaminsky catalysts.
- This polymer has a structure that three-dimensional positions of the benzene rings to the backbone are located alternately in the opposite directions, so that it is possible to attain very high heat resistance and at the same time extremely low water absorption, extremely low permeability of water and very low level of permittivity.
- this polymer has such high crystallinity that it has a problem of considerably poor adhesion to a base material and also has another problem that methods of processing it are markedly limited because it is insoluble in any solvents. That is, at present, a polymer that can overcome the above-mentioned problems has not been developed yet.
- typical polymers for optical uses such as optical lenses, optical waveguide materials and the like include acrylic resins and polyolefin resins.
- Acrylic resins have characteristics of having excellent transparency and workability and extremely low birefringence. However, they have disadvantages that they have high hygroscopicity, relatively low heat resistance and low toughness.
- polyolefin resins have excellent heat resistance and extremely low hygroscopicity, but they are inferior to acrylic resins in transparency and low birefringence. That is, both of acrylic resins and polyolefin resins have both advantages and disadvantages, and thus it has strongly been desired to develop a resin compensating for the disadvantages of acrylic resins and polyolefin resins.
- Polyolefin resins have extremely great advantages of low hygroscopicity and high heat resistance as resins of optical use, but the high birefringence thereof has become a great disadvantage with the increasing sophistication of optical devices in recent years. Therefore, many attempts to lower the birefringence of polyolefin resins have been made particularly recently.
- a method to solve these problems is disclosed in, Japanese Patent Application No. Hei 8-199901.
- This method has some problems such as remaining a portion of a resin in a die when removing a product from the die in injection molding of the resin composition or breaking a product in mold releasing.
- it has a disadvantage in that the color of a product changes while the resin stays in a molding machine for a long time.
- the present invention provider resin compositions having low hygroscopicity, low birefringence and low permittivity, excelling in fluidity, causing little change in color upon heating, and being excellent in mold release characteristics in injection molding, a molding material, a sheet or a film obtained by molding these resin compositions, and an optical part.
- the present invention relates to the following items (1) to (22).
- a resin composition (a) comprising the following polymers (A), and (B) and/or (C):
- R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different, and each represents a hydrogen atom; a monovalent hydrocarbon group containing a nitrogen atom, an oxygen atom or a silicon atom; an alkyl group having 1 to 6 carbon atoms; or a monovalent aromatic hydrocarbon group.
- X represents a hydrogen atom, a halogen atom, an acyl group, an alkoxy group or a nitrile group.
- x represents 0 or an integer of 1 to 4
- a resin composition (b) comprising the following polymers (F), (G) and (H):
- a resin composition (c) comprising the following polymers (I) and (J), diphenylsilicone (D), and a phenolic antioxidant (E):
- a resin composition (a) of the present invention is a resin composition comprising the following polymers (A), and (B) and/or (C):
- the above polymer (A) is not particularly limited and any polymer may be employed as the polymer (A), as long as it may be any polymer containing one or more kinds of indene and indene derivatives represented by the above general formula (I).
- the indene derivatives for use in the above polymer (A) include those represented by the above general formula (I), wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different, and each represents a hydrogen atom; a monovalent hydrocarbon group containing a nitrogen atom, an oxygen atom or a silicon atom; an alkyl group having 1 to 6 carbon atoms; or a monovalent aromatic hydrocarbon group.
- Monovalent hydrocarbon groups containing a nitrogen atom, an oxygen atom or a silicon atom include, for example, dimethylaminoethyl group, diethylaminoethyl group, methoxy group, ethoxy group, propoxy group, butoxy group, pentoxy group, hexoxy group, trimethylsilyl group, triethylsilyl group, and the like.
- Alkyl groups having 1 to 6 carbon atoms include, for example, methyl group, ethyl group, propyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, 2-methylbutyl group, 3-methylbutyl group, t-pentyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 2,4-dimethylbutyl group, 3,3-dimethylbutyl group, 3,4-dimethylbutyl group, 4,4-dimethylbutyl group, 2-ethylbutyl group, 1-ethylbutyl group, cyclohexyl group, and the like.
- Monovalent aromatic hydrocarbon groups include phenyl group, naphthyl group, benzyl group, and the like. Those listed hereinbefore are simply examples, and monovolent aromatic hydrocarbon groups are not limited thereto.
- X represents a hydrogen atom, a halogen atom, an acyl group, an alkoxy group or a nitrile group.
- Halogen atoms in X include fluorine, chlorine, bromine, and iodine.
- Acyl groups in X include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, and the like.
- Alkoxy groups in X include methoxy group, ethoxy group, propoxy group, butoxy group, pentoxy group, hexoxy group, and the like.
- x 0 or an integer of 1 to 4
- indene or indene derivatives may be used singly or in combination with two or more as a monomer for use in the polymer (A).
- the above indene derivatives having a substituent include nucleus-substituted alkylindenes such as nucleus-substituted methylindene, nucleus-substituted ethylindehe, nucleus-substituted propylindene, nucleus-substituted butylindene and the like, nucleus-substituted chloroindene, nucleus-substituted bromoindene, and the like. More specifically, they preferably include methylindene, ⁇ -methylindene, ⁇ -methylindene, and the like.
- the polymer (B) for use in the resin composition (a) is a polymer comprising polystyrene or a polystyrene derivative.
- monomers for use in the production of the polymer (B) comprising polystyrene or a polystyrene derivative include, for example, styrene, nucleus-substituted alkylstyrenes, nucleus-substituted aromatic styrenes, ⁇ -substituted alkylstyrenes, ⁇ -substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, and the like.
- Nucleus-substituted alkylstyrenes that may be employed include, for example, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, o-propylstyrene, m-propylstyrene, p-propylstyrene, o-n-butylstyrene, m-n-butylstyrene, p-n-butylstyrene, o-isobutylstyrene, m-isobutylstyrene, p-isobutylstyrene, o-t-butylstyrene, m-t-butylstyrene, p-t-butyl
- Nucleus-substituted aromatic styrenes that may be employed include, for example, o-phenylstyrene, m-phenylstyrene, p-phenylstyrene, and the like. Those listed hereinbefore are simply examples, and nucleus-substituted aromatic styrenes are not limited thereto.
- ⁇ -substituted alkylstyrenes that may be employed include, for example, ⁇ -methylstyrene, ⁇ -ethylstyrene, ⁇ -propylstyrene, ⁇ -n-butylstyrene, ⁇ -isobutylstyrene, ⁇ -t-butylstyrene, ⁇ -n-pentylstyrene, ⁇ -2-methylbutylstyrene, ⁇ -3-methylbutylstyrene, ⁇ -t-butylstyrene, ⁇ -t-pentylstyrene, ⁇ -n-hexylstyrene, ⁇ -2-methylpentylotyrene, ⁇ -3-methylpentylstyrene, ⁇ -1-methylpentylstyrene, ⁇ -2,2-dimethylbutylstyrene, ⁇
- ⁇ -substituted alkylstyrenes that may be employed include, for example, ⁇ -methylstyrene, ⁇ -ethylstyrene, ⁇ -propylstyrene, ⁇ -n-butylstyrene, ⁇ -isobutylstyrene, ⁇ -t-butylstyrene, ⁇ -n-pentylstyrene, ⁇ -2-methylbutylstyrene, ⁇ -3-methylbutylstyrene, ⁇ -t-pentylstyrene, ⁇ -n-hexylstyrene, ⁇ -2-methylpentylstyrene, ⁇ -3-methylpentylstyrene, ⁇ -1-methylpentylstyrene, ⁇ -2,2-dimethylbutylstyreae, ⁇ -2,3-dimethylbutylst
- Nucleus-substituted alkoxystyrenes that may be employed include, for example, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, o-ethoxystyrene, m-ethoxystyrene, p-ethoxystyrene, o-propoxystyrene, m-propoxystyrene, p-propoxystyrene, o-n-butoxystyrene, m-n-butoxystyrene, p-n-butoxystyrene, o-isobutoxystyrene, m-isobutoxystyrene, p-isobutoxystyrene, o-t-butoxystyrene, m-t-butoxystyrene, p-t-butoxystyrene, o-o-but
- the polymer (C) for use in the resin composition (a) is a polymer comprising a monomer copolymerizable with styrene or a styrene derivative.
- Monomers copolymerizable with styrene or a styrene derivative for use in the polymer (C) include, for example, styrene, nucleu-stubstituted alkylstyrenes, nucleus-substituted aromatic styrenes, ⁇ -substituted alkylstyrenes, ⁇ -substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, isobutene, diisobutylene, (meth)acrylic esters having 1 to 8 carbon atoms, and the like. These may be used singly or in combination with two or more.
- Nucleus-substituted alkylstyrenes include the same as listed for the monomers for use in the polymer (B).
- Alkyl groups in alkyl vinyl ethers are not particularly limited, and any alyl group may be employed.
- Alkyl vinyl ethers include, for example, those having alkyl groups such as methyl, ethyl, propyl, n-butyl, isobutyl, t-butyl, n-pentyl, 2-methylbutyl, 3-methylbutyl, t-pentyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 2,4-dimethylbutyl, 3,3-dimethylbutyl, 3,4-dimethylbutyl, 4,4-dimethylbutyl, 2-ethylbutyl, 1-ethylbutyl, cyclohexyl, and the like. Those listed hereinbefore are simply examples, and alkyl vinyl ether
- Aromatic vinyl ethers include, for example, phenyl vinyl ether and the like. Those listed hereinbefore are simply examples, and aromatic vinyl ethers are not limited thereto.
- (Meth)acrylic esters having 1 to 8 carbon atoms include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and the like.
- Those listed hereinbefore are simply examples, and (meth)acrylic esters having 1 to 8 carbon atoms are not limited thereto. These may be used singly or in combination with two or more.
- the above styrene, nucleus-substituted alkylstyrenes, ⁇ -substituted alkylstyrenes, ⁇ -substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, isobutene, diisobutylene, (meth)acrylic esters having 1 to 8 carbon atoms, and the like for use in the polymer (C) may have a substituent such as an alkyl group, a phenyl group, a halogen atom and the like at an optional position.
- Methods of the production of the above polymers (A), (B) and (C) in the resin composition (a) of the present invention are not particularly limited, and the polymers can be produced by a conventional method.
- they can be produced by cationic polymerization, anionic polymerization, radical polymerization, living radical polymerization, or the like.
- the above polymerization methods can be selected depending on a catalyst employed.
- Catalysts for use in cationic polymerization are not particularly limited, and publicly known catalysts may be employed.
- catalysts that may be employed include, for example, Lewis acids such as aluminium chloride, iron chloride, tin chloride, zinc chloride, strontium chloride, scandium chloride and the like, proton acids such as sulfuric acid, para-toluenesulfonic acid, hydrochloric acid, nitric acid and the like, alkylaluminium chlorides, and the like.
- Lewis acids such as aluminium chloride, iron chloride, tin chloride, zinc chloride, strontium chloride, scandium chloride and the like
- proton acids such as sulfuric acid, para-toluenesulfonic acid, hydrochloric acid, nitric acid and the like, alkylaluminium chlorides, and the like.
- Those listed hereinbefore are simply examples, and the catalysts are not limited thereto. These may be used singly or in combination with two or more
- Catalysts for use in anionic polymerization are not particularly limited, and publicly known catalysts may be employed. Such catalysts that may be employed include, for example, butyl lithium and the like. Those listed hereinbefore are simply examples, and the catalysts are not limited thereto.
- Catalysts for use in radical polymerization are not particularly limited, and publicly known catalysts may be employed.
- Such catalysts include, for example, peroxides such as benzoyl peroxide, lauryl peroxide, methyl ethyl ketone peroxide and the like. Those listed hereinbefore are simply examples, and the catalysts are not limited thereto. These may be used singly or in combination with two or more.
- Catalysts for use in living radical polymerization are not particularly limited, and publicly known catalysts may be employed such catalysts include, for example, a combined system of benzoyl peroxide and a nitroxide compound, a combined system of a Ru complex/an alkoxyaluminum and the like. Those listed hereinbefore are simply examples, and the catalysts are not limited thereto. These may be used singly or in combination with two or more.
- the polymers can be synthesized by solution polymerization, suspension polymerization, bulk polymerization, or the like.
- the solution polymerization method is the most preferable.
- Solvents employed are not particularly limited, and publicly known solvents may be employed. Typical solvents include, for example, chloromethane, dichloromethane, trichloromethane, tetrachloromethane, chloroethane, dichloroethane, trichloroethane, tetrachloroethane, chloroethylene, dichloroethylene, nitrobenzene, dinitrobenzene, trinitrobenzene, alkylbenzenes such as methylbenzene, dimethylbenzene, trimethylbenzene, ethylbenzene, diethylbenzene, triethylbenzene and the like, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and the like, and esters such as MMA, ethyl acetate, butyl acetate and the like. Those listed hereinbefore are simply examples, and the solvents are not limited thereto
- the polymerization temperature is preferably in the range of ⁇ 100 to 180° C. If the polymerization reaction is carried out at a lower temperature than ⁇ 100° C., decrease in reactivity is caused, so that it is difficult to obtain a sufficiently high molecular weight compound. The temperatures exceeding 180° C. lead to too high reactivity of the propagation terminal, so that it sometimes becomes to be difficult to obtain a high molecular weight compound because a vast number of chain transfer reactions occur.
- the weight-average molecular weight of the polymer (A) is preferably lower than 80000, more preferably lower than 40000. If the weight-average molecular weight of the polymer (A) is lower than 80000, fluidity and transparency of the resin composition (a) tend to decrease.
- the molecular weight can be adjusted by selecting the kind or amount of the catalyst used in polymerization, using a polymerization inhibitor, using a chain transfer agent, controlling the polymerization temperature or the like.
- the weight-average molecular weight (s) of the polymer (B) and/or the polymer (C) are/is preferably 50000 or higher, more preferably 100000 or higher. If the weight-average molecular weight(s) of the polymer (3) and/or the polymer (C) are/is lower than 50000, strength of a molding material tends to decrease.
- the molecular weight(s) of the polymer (B) and/or the polymer (C) can be adjusted by selecting the kind or amount of the catalyst used in polymerization, using a polymerization inhibitor, using a chain transfer agent, controlling the polymerization temperature or the like.
- Weight-average molecular weights can be determined by GPC measurement with a tetrahydrofuran solution.
- the polymers (A), (B) and (C) obtained by the above method can be used for the resin composition (a) after isolating the polymers by a conventional method.
- the content of the polymer (A) is preferably 30 to 90% by weight of the total of the resin composition (a), more preferably 50 to 90% by weight, still more preferably 60 to 85% by weight. If the content of the polymer (A) is less than 30% by weight or more than 90% by weight of the total of the resin composition (a), the absolute value of birefringence tends to increase.
- Viscosity of the diphenylsilicone (D) for use in the resin composition (a) of the present invention is not particularly limited, and any diphenylsilicone (D) having any viscosity may be used.
- the addition amount of the diphenylsilicone (D) is preferably in the range of 0.01 to 1.0% by weight, more preferably 0.05 to 0.8% by weight of the total of the resin composition (a). If the addition amount is less than 0.01% by weight, the effect on mold release characteristics from a die in injection molding tends to decrease, while if the addition amount exceeds 1.0% by weight, heat resistance tends to decrease.
- Phenolic antioxidants (E) for use in the present invention include, for example, dibutylhydroxytoluene, alkylated phenols, 4,4′-thiobis(6-t-butyl-3-methylphenol), 4,4′-butylidenebis(6-t-butyl-3-methylphenol), 2,2′′-methylenebis(4-methyl-6-t-butylphenol), 2,2′′-methylenebis(4-ethyl-6-t-butylphenol), 2,6-di-t-butyl-4-ethylphenol, 1,1,-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane, n-octadecyl-3-(4-hydroxy-3,5-t-dibutylphenyl)propionate, tetrakis(methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, dilaurylthiodipropionat
- the addition amount of a phenolic antioxidant (E) is preferably in the range of 0.1 to 3.0% by weight, more preferably 0.5 to 2.0% by weight of the total of the resin composition (a). If the addition amount is less than 0.1% by weight, the effect to suppress changes in hue is a little, while if the addition amount exceeds 3.0% by weight, transparency and heat resistance of the resin tend to decrease.
- Methods of mixing the polymers (A), and (B) and/or (C), a diphenylsilicone (D), and a phenolic antioxidant (E) are not particularly limited, and a resin composition can be produced by weighing out prescribed amounts of each polymer and a diphenylsilicone and a phenolic antioxidant, and melt-kneading these, or also can be produced by dissolving each polymer, a diphenylsilicone and a phenolic antioxidant in a solvent such as toluene, THF, NMP and the like, and then removing the solvent.
- a solvent such as toluene, THF, NMP and the like
- the resin composition (a) of the present invention obtained as mentioned above preferably has a saturated water absorption of 0.4% or less, and preferably has a birefringence in stretching the resin composition by 200% in the range of ⁇ 2 ⁇ 10 ⁇ 6 to 2 ⁇ 10 ⁇ 6 . More preferable saturated water absorption is 0.2% or less, and more preferable birefringence in stretching the resin composition by 200% is in the range of ⁇ 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 6 .
- the saturated water absorption (%) in the present invention can be calculated by measuring the water absorption when the water absorption reaches saturation with a sample fragment soaked in hot water at 70° C. “When the water absorption reaches saturation” is the state in which there is no more change in the water absorption even if the sample fragment is allowed to be soaked in hot water at 70° C. for a longer time.
- the birefringence in stretching an obtained molding material by 200% at a temperature 5° C. lower than the glass transition point of the material can be measured by using, for example, Ellipsometer AEP-100 Type (produced by Shimadzu Corporation). Measurement conditions are as follows: temperature; 25° C.; and wavelength of the laser light: 632.8 nm.
- the glass transition point of a molding material can be measured as follows. The glass transition point can be measured by DSC (differential scanning calorimetry). A measurement by DSC is carried out under a condition of a temperature-elevating rate of 10° C./min.
- a resin composition (b) of the present invention is a resin composition comprising the following polymers (F), (G) and (H):
- the polymer (F) for use in the resin composition (b) can be produced in the same manner as the polymer (A) for use in the resin composition (a) by using the same indene monomers as in the polymer (A).
- the weight-average molecular weight of the polymer (F) is preferably 4000 or higher, more preferably 8000 or higher. If the weight-average molecular weight of the polymer (F) is lower than 4000, heat resistance tends to decrease.
- the molecular weight can be adjusted by selecting the kind or amount of the catalyst used in polymerization, using a polymerization inhibitor, using a chain transfer agent, controlling the polymerization temperature or the like.
- the polymer (G) for use in the resin composition (b) can be produced in the same manner as the polymer (B) for use in the resin composition (a) by using the same styrene monomers as in the polymer (B).
- the graft polymer (H) for use in the resin composition (b) has a structure where a polymer comprising one or more kinds of indene and indene derivatives represented by the general formula (I) bonds to a side chain of a polymer comprising styrene or a styrene derivative. That is, the graft polymer (H) has a backbone unit of the polymer comprising styrene or a styrene derivative and branch units of the polymer comprising one or more kinds of indene and indene derivatives represented by the general formula (I).
- Monomers copolymerizable with styrene or a styrene derivative for use in a constitutional monomer of the backbone unit of the graft polymer (H) include, for example, styrene, nucleus-substituted alkylstyrenes, nucleus-substituted aromatic styrenes, ⁇ -substituted alkylstyrenes, ⁇ -substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, isobutene, diisobutylene, (meth)acrylic esters having 1 to 8 carbon atoms, and the like.
- Nucleus-substituted alkylstyrenes, nucleus-substituted aromatic styrenes, ⁇ -substituted alkylstyrenes, ⁇ -substituted alkylstyrenes, and nucleus-substituted alkoxystyrenes include the same as listed for the monomers for use in the polymer (B) of the resin composition (a).
- alkyl vinyl ethers, aromatic vinyl ethers, and (meth)acrylic esters having 1 to 8 carbon atoms include the same as listed for the monomers for use in the polymer (C) of the resin composition (a)
- the above styrene, nucleus-substituted alkylstyrenes, ⁇ -substituted alkylstyrenes, ⁇ -substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, isobutene, diisobutylene, (meth)acrylic esters having 1 to 8 carbon atoms, and the like for use in the graft polymer (H) may have a substituent such as an alkyl group, a benzene ring, a halogen atom at an optional position.
- Indene or indene derivatives for use in a constitutional monomer of a branched unit of the graft polymer (H) include those represented by the general formula (I) as mentioned above.
- methods for the production of the above graft polymer (H) include conventional methods for the production of a graft polymer, and, for example, there is a method as follows.
- the method comprises dissolving a polymer which was produced beforehand by radical polymerization of a monomer copolymerizable with styrene or a styrene derivative, etc., in toluene, THF, NMP or the like, further dissolving indene or an indene derivative represented by the general formula (I), thereafter adding a Lewis acid such as tin chloride, aluminum chloride and the like as a catalyst and 2,6-bis(t-butyl)pyridine and the like as an assist catalyst, and conducting cationic polymerization.
- a Lewis acid such as tin chloride, aluminum chloride and the like as a catalyst and 2,6-bis(t-butyl)pyridine and the like as an assist catalyst
- the weight-average molecular weight of the backbone unit of the graft polymer (H) is preferably 10000 or higher.
- the weight-average molecular weights of the polymer (G) and the graft polymer (H) are preferably 50000 or higher, more preferably 100000 or higher. If the weight-average molecular weights of the polymer (G) and the graft polymer (H) are lower than 50000, strength of a molding material tends to decrease.
- the molecular weight can be adjusted by selecting the kind or amount of the catalyst used in polymerization, using a polymerization inhibitor, using a chain transfer agent, controlling the polymerization temperature or the like.
- viscosity of the diphenylsilicone (D) for use in the resin composition (b) of the present invention is not particularly limited, and any diphenylsilicone (D) having any viscosity may be used.
- the addition amount of the diphenylsilicone (D) is preferably in the range of 0.01 to 1.0% by weight, more preferably 0.05 to 0.8% by weight of the total of the resin composition (b). If the addition amount is less than 0.01% by weight, the effect on mold release characteristics from a die in injection molding tends to decrease, while if the addition amount exceeds 1.0% by weight, heat resistance tends to decrease.
- Phenolic antioxidants for use in the resin composition (b) of the present invention include phenolic antioxidants (E) for use in the resin composition (a).
- the addition amount of a phenolic antioxidant is not particularly limited, and is preferably in the range of 0.1 to 3.0% by weight, more preferably 0.5 to 2.0% by weight of the total of the resin composition (b). If the addition amount of a phenolic antioxidant (E) is less than 0.1% by weight, the effect to suppress changes in hue is a little, while if the addition amount exceeds 3.0% by weight, transparency and heat resistance of the resin tend to decrease.
- Methods of mixing the polymers (F), (G) and (H) obtained by the above methods, a diphenylsilicone (D), and a phenolic antioxidant (E) are not particularly limited, and the same methods as in the above resin composition (a) may be used.
- the content of the polymer (F) is preferably 30 to 90% by weight of the total of the resin composition (b), more preferably 50 to 90% by weight, still more preferably 60 to 85% by weight. If the content of the polymer (F) is less than 30% by weight or more than 90% by weight of the total of the resin composition (b), the absolute value of birefringence tends to increase.
- the resin composition (b) of the present invention obtained as, mentioned above preferably has a saturated water absorption of 0.4% or less, and preferably has a birefringence in stretching the resin composition by 200% in the range of ⁇ 2 ⁇ 10 ⁇ 6 to 2 ⁇ 10 ⁇ 6 . More preferable saturated water absorption is 0.2% or less, and more preferable birefringence in stretching the resin composition by 200% is in the range of ⁇ 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 6 .
- a resin composition (c) of the present invention is a resin composition comprising the following polymers (I) and (J), diphenylsilicone (D), and a phenolic antioxidant (E):
- indene monomers for use in the polymer (I) the same indene monomers as in the polymer (A) for use in the resin composition (a) may be used.
- Methods for introducing a heterocyclic structure into a side chain of the polymer (I) are not particularly limited, and the following method is an example.
- the polymer (I) having a heterocyclic structure in a side chain thereof is produced by reacting the above produced polymer with a compound having a heterocyclic structure.
- a copolymer having acid anhydride moieties as functional groups can be obtained by synthesizing a polymer of the above indene or an indene derivative and a vinyl monomer having an acid anhydride moiety, such as maleic anhydride. Then, a heterocyclic structure can be introduced into a side chain by ring-opening the acid anhydride moiety of maleic anhydride with an amino group of a compound having an amino group and a heterocyclic structure, such as aminopyridine.
- the polymer (I) having a heterocyclic structure in a side chain thereof is produced by copolymerizing a monomer having a heterocyclic structure with reaction activity with a monomer copolymerizable with indene or an indene derivative by a conventional method.
- Monomers having a heterocyclic structure with reaction activity for use in the above [2] include, for example, pyridine, imidazoline, pyrazine, pyrimidine, quinoline, indolizine, acridine, furan, thiophene, oxazole and the like, each of which has a polymerizable reactive group.
- pyridine imidazoline
- pyrazine pyrimidine
- quinoline indolizine
- acridine furan
- thiophene oxazole and the like
- vinylpyridine, pyridyl vinyl ether, pyridylmaleimide and the like may be used, and the monomers are not limited thereto. Furthermore, these may be used singly or in combination with two or more.
- the above polymer (J) comprises a monomer copolymerizable with styrene or a styrene derivative, and it has a carboxyl group and/or a phenolic hydroxyl group in a side chain thereof.
- Monomers copolymerizable with styrene or a styrene derivative for use in the polymer (J) include, for example, nucleus-substituted alkylstyrenes, nucleus-substituted aromatic styrenes, ⁇ -substituted alkylstyrenes, ⁇ -substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, and the like, and specifically include the same monomers as the styrene monomers for use in the polymer (B) of the resin composition (a).
- monomers copolymerizable with a styrene derivative for use in the polymer (J) include, for example, nucleus-substituted alkylstyrenes, nucleus-substituted aromatic styrenes, ⁇ -substituted alkylstyrenes, ⁇ -substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, isobutene, diisobutylene, (meth)acrylic esters having 1 to 8 carbon atoms, and the like, and specifically include the same monomers as the monomers for use in the polymer (C) of the resin composition (c).
- Methods for introducing a carboxyl group and/or a phenolic hydroxyl group into a side chain of the polymer (J) are not particularly limited, and the following method is an example.
- the polymer (J) having a carboxyl group and/or a phenolic hydroxyl group in a side chain thereof is produced by reacting the above produced polymer with a compound having a carboxyl group or a phenolic hydroxyl group.
- a copolymer having alcoholic hydroxyl groups as functional groups can be obtained by synthesizing a copolymer of the above styrene or styrene derivative and a vinyl monomer having an alcoholic hydroxyl group, such as 2-hydroxylethyl methacrylate (HEMA). Then, a carboxyl group can be introduced into a side chain by conducting a ring-opening addition of an acid anhydride such as trimellitic anhydride to an alcoholic hydroxyl group of HEMA.
- an acid anhydride such as trimellitic anhydride
- a polymer having acid anhydride moieties as functional groups can be obtained by synthesizing a polymer of the above styrene or styrene derivative and a vinyl monomer having an acid anhydride moiety, such as maleic anhydride. Then, a phenolic hydroxyl group can be introduced into a side chain by ring-opening the acid anhydride moiety of maleic anhydride with an amino group of a compound having an amino group and a phenolic hydroxyl group, such as aminophenol.
- the polymer (J) having a carboxyl group and/or a phenolic hydroxyl group in a side chain thereof is produced by copolymerizing a monomer having a carboxyl group or a phenolic hydroxyl group with reaction activity with the above styrene or styrene derivatives by a conventional method.
- Monomers having a carboxyl group or a phenolic hydroxyl group with reaction activity for use in the above [2] include, for example, methacrylic acid, acrylic acid, maleic acid, vinylphenol, vinylbenzoic acid and the like, and the monomers are not limited thereto. Furthermore, these may be used singly or in combination with two or more.
- the content of the heterocyclic structure in the polymer (I) is 0.01 to 5 mol % of the total of the resin composition (c), more preferably 0.02 to 2 mol %. If the content of the heterocyclic structure is less than 0.01 mol %, transparency of the resin composition (c) tends to decrease, while if the content exceeds 5 mol %, water absorption of the resin composition tends to increase.
- the content(s) of the carboxyl group and/or the phenolic hydroxyl group in the polymer (J) are/is 0.01 to 5 mol % of the total of the resin composition (c), more preferably 0.02 to 2 mol %. If the content(s) of the carboxyl group and/or the phenolic hydroxyl group in the polymer (J) are/is less than 0.01 mol %, transparency of the resin composition (c) tends to decrease, while if the content exceeds 5 mol %, water absorption of the resin composition (c) tends to increase.
- the molar ratio of the heterocyclic structure to the carboxyl group and/or the phenolic hydroxyl group is preferably 0.1 to 10.0. If this ratio is less than 0.1 or exceeds 10.0, transparency of the resin composition (c) tends to decrease.
- Methods of the production of the above polymers (I) and (J) are not particularly limited in the present invention, and the polymers can be produced by a conventional method using the above-mentioned monomers.
- viscosity of the diphenylsilicone (D) for use in the resin composition (C) of the present invention is not particularly limited, and any diphenylsilicone (D) having any viscosity may be used.
- the addition amount of the diphenylsilicone (D) is preferably in the range of 0.01 to 1.0% by weight, more preferably 0.05 to 0.8% by weight of the total of the resin composition (c). If the addition amount is less than 0.01% by weight, the effect on mold release characteristics from a die in injection molding tends to decrease, while if the addition amount exceeds 1.0% by weight, heat resistance tends to decrease.
- Phenolic antioxidants for use in the resin composition (c) of the present invention include phenolic antioxidants (E) for use in the resin composition (a).
- the addition amount of a phenolic antioxidant is not particularly limited, and is preferably in the range of 0.1 to 3.0% by weight, more preferably 0.5 to 2.0% by weight of the total of the resin composition (c). If the addition amount of a phenolic antioxidant (E) is less than 0.1% by weight, the effect to suppress changes in hue is a little, while if the addition amount exceeds 3.0% by weight, transparency and heat resistance of the resin tend to decrease.
- Methods of mixing the polymers (I) and (J) obtained by the above methods, a diphenylsilicone (D), and a phenolic antioxidant (E) are not particularly limited, and the same methods as in the above resin composition (a) may be used.
- the content of the polymer (I) is preferably 30 to 90% by weight of the total of the resin composition (c), more preferably 50 to 90% by weight, still more preferably 60 to 85% by weight. If the content of the polymer (I) is less than 30% by weight or more than 90% by weight of the total of the resin composition (c), the absolute value of birefringence tends to increase.
- the resin composition (c) of the present invention obtained as mentioned above preferably has a saturated water absorption of 0.4% or less, and preferably has a birefringence in stretching the resin composition by 200% in the range of ⁇ 2 ⁇ 10 ⁇ 6 to 2 ⁇ 10 ⁇ 6 . More preferable saturated water absorption is 0.2% or less, and more preferable birefringence in stretching the resin composition by 200% is in the range of ⁇ 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 6 .
- each of the content(s) of the carboxyl group and/or the phenolic hydroxyl group in the polymer (I) and the content(s) of the heterocyclic structure and/or the alkylamino group in the polymer (J) satisfies the range of 0.005 to 5 mol %.
- the above resin composition (a), resin composition (b) and resin composition (c) according to the present invention can be processed to obtain a molding material, a sheet or a film.
- optional components may be added when required in making these resin compositions into molding materials.
- the resin compositions of the present invention may be applied to semiconductor-related materials that can satisfy the characteristics such as low permittivity, low hygroscopicity and high heat resistance, or to optical parts, as well as paints, photosensitive materials, adhesives, sewage disposal agents, heavy metal collectors, ion-exchange resins, antistatic agents, antioxidants, anti-fog agents, anti-corrosive agents, reverse printing agents, anti-microbial agents, insecticides, medical materials, coagulants, surfactants, lubricants, binders for solid fuel, conductivity imparting agents, and the like.
- semiconductor-related materials that can satisfy the characteristics such as low permittivity, low hygroscopicity and high heat resistance, or to optical parts, as well as paints, photosensitive materials, adhesives, sewage disposal agents, heavy metal collectors, ion-exchange resins, antistatic agents, antioxidants, anti-fog agents, anti-corrosive agents, reverse printing agents, anti-microbial agents, insecticides, medical materials, coagul
- Optical parts using a molding material of the present invention include pickup lenses for CD, pickup lenses for DVD, lenses for facsimile, lenses for LBP, polygonmirrors, prisms, and the like.
- the weight-average molecular weight of a polymer synthesized was determined by GPC measurement with a tetrahydrofuran solution.
- the fluidity of a resin composition was determined by measuring a melt flow rate at 220° C. with a load of 5 kgf.
- the saturated water absorption of a sample was determined by measuring the water absorption when the water absorption reaches saturation with a sample soaked in hot water at 70° C. Water absorption in Table 1 shows the saturated water absorption.
- the heat resistance was evaluated by measuring the glass transition point by DSC (differential scanning calorimetry). The measurement of DSC was carried out under a condition of a rate of temperature rise of 10° C./min.
- the relative permittivity was measured by using precision LCR meter 4284A Type produced by Hewlett-Packard Company under conditions of 20 kV, 1 kHz and 25° C.
- the bending strength of a sample fragment was measured by using AGS-1000G produced by Shimadzu Corporation. The test was carried out at room temperature under conditions of a test speed of 0.5 mm/min., a span of 20 mm and the width of the sample fragment of 10 mm.
- Comparative Example 1 item unit Polymer A Polymer B Polymer A Polymer B Molecular weight g/mol 2200 200000 7500 200000 (Mw) Mixing ratio % by weight 40 60 95 5 Antioxidant E % by weight 0 0 Silicone amount D % by weight 0 0 Fluidity (MI) g/10 minutes 13 12 Water absorption % 0.10 0.08 Heat resistance ° C. 121 142 (Tg) Relative — 2.3 2.3 permittivity Bending strength Mpa 80 48 Transparency % 85 85 Birefringence — 5 ⁇ 10 ⁇ 5 could not be measured Change in hue — 0.28 0.29
- Example 9 item unit Polymer I Polymer J Polymer I Polymer J Molecular weight g/mol 97000 250000 50000 250000 (MW) Mixing ratio % by weight 60 40 60 40 Heterocycle mol % 0.55 0 0.55 0 amount Carboxyl group mol % 0 0.53 0 1.06 amount Heterocycle/carboxyl mol/mol 1.04 0.52 group ratio Antioxidant E % by weight 0.5 0.5 Silicone amount D % by weight 0.1 0.1 Fluidity (MI) g/10 minutes 15 12 Water absorption % 0.10 0.11 Heat resistance ° C.
- MI Fluidity
- the present invention can provide resin compositions having low hygroscopicity, low birefringence and low permittivity, being excellent in fluidity, causing little change in color upon heating, and excelling in mold release characteristics in injection molding. Furthermore, the use of a molding material, a sheet or a film obtained by molding these resin compositions can provide an optical part having low hygroscopicity, low birefringence and low permittivity.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Low-hygroscopicity low-birefringence resin compositions. One of the compositions is a resin composition (a) comprising the following polymers (A), and (B) and/or (C). Another is a resin composition (b) comprising the following polymers (A), (B) and (H). Still another is a polymer comprising the following polymers (I) and (J), diphenylsilicone (D), and a phenolic antioxidant (E). (A) A polymer comprising one or more kinds of indene and indene derivatives represented by the following general formula (I). (B) A polymer comprising polystyrene or a polystyrene derivative. (C) A polymer comprising a monomer copolymerizable with styrene or a styrene derivative. (H) A graft polymer having a structure wherein a polymer comprising at least one kind of indene and an indene derivative represented by the general formula (I) bonds to a side chain of a polymer comprising a monomer copolymerizable with styrene or a styrene derivative. (I) A polymer comprising one or more kinds of indene and indene derivatives represented by the general formula (I), wherein the polymer has a heterocyclic structure in a side chain thereof. (J) A polymer comprising styrene or a styrene derivative, and a monomer copolymerizable with styrene or a styrene derivative, wherein the polymer has a carboxyl group and/or a phenolic hydroxyl group in a side chain
Description
- The present invention relates to resin compositions having low hygroscopicity, low birefringence and low permittivity, being excellent in fluidity, causing little change in color in heating, and being excellent in mold release characteristics in injection molding, and to a molding material, a sheet, or a film obtained by molding these resin compositions and to an optical part.
- Many of the monomers having an unsaturated bond with reaction activity can yield a polymer by selecting a catalyst that can cause cleavage of the unsaturated bond to initiate a chain reaction and appropriate reaction conditions. In general, there are an extremely wide variety of kinds of the monomers having an unsaturated bond, so that kinds of the resins that can be obtained therefrom also come in a great many varieties. However,there are relatively few kinds of monomers that can yield a product having a high molecular weight of 10,000 or higher, which is generally called as a high molecular compound. For example, typical monomers include ethylene, substituted ethylenes, propylene, substituted propylenes, styrene, alkylstyrenes, alkoxystyrenes, norbornene, various acrylic esters, butadiene, cyclopentadiene, dicyclopentadiene, isoprene, maleic anhydride, maleimide, fumarate esters, allyl compounds, and the like. Various kinds of resins are synthesized from these monomers or various combinations thereof.
- The use of these resins is mainly limited to the field of relatively inexpensive commercial equipment, and there is little application to the field of high technology such as semiconductor-related materials and the like. This is because heat resistance, low hygroscopicity and permittivity have not been simultaneously achieved.
- For instance, in the field of semiconductor-related materials, on account of increased density in integration in recent years, it has been desired to further attain low permittivity in addition to heat resistance and low hygroscopicity that have already been achieved. In order to achieve low permittivity, it is indispensable in principle to decrease the number of polar groups in a resin. At present, polyimides are often employed as resins for semiconductors. However, a lot of hard work has been made to achieve low permittivity because polyimides contain many carbonyl groups in a resin skeleton. As measures to overcome the situation, researches using the monomers containing fluorine have been done extensively, but sufficiently low permittivity has not been achieved. Moreover, there are some problems such as the rising price of resins, complicated synthesis of resins, and the like.
- As another method, attempts to synthesize a polymer comprising a hydrocarbon containing no polar groups have been made. An example of such a polymer is a series of polymers called cyclic polyolefins. Specific examples include a polymer obtained by hydrogenating polynorbornene, or a polymer comprising polydicyclopentene and a derivative thereof. Although these polymers can exhibit extremely low permittivity, they have problems such as low heat resistance and very high permeability of water in spite of extremely low water absorption. In particular, the high permeability of water is a common characteristic of polyolefins, and it is considered to be extremely difficult to solve this problem.
- Another example is a syndiotactic polystyrene synthesized by using Ziegler-Natta catalyst or Kaminsky catalysts. This polymer has a structure that three-dimensional positions of the benzene rings to the backbone are located alternately in the opposite directions, so that it is possible to attain very high heat resistance and at the same time extremely low water absorption, extremely low permeability of water and very low level of permittivity. However, this polymer has such high crystallinity that it has a problem of considerably poor adhesion to a base material and also has another problem that methods of processing it are markedly limited because it is insoluble in any solvents. That is, at present, a polymer that can overcome the above-mentioned problems has not been developed yet.
- On the other hand, typical polymers for optical uses, such as optical lenses, optical waveguide materials and the like include acrylic resins and polyolefin resins. Acrylic resins have characteristics of having excellent transparency and workability and extremely low birefringence. However, they have disadvantages that they have high hygroscopicity, relatively low heat resistance and low toughness. By contrast, polyolefin resins have excellent heat resistance and extremely low hygroscopicity, but they are inferior to acrylic resins in transparency and low birefringence. That is, both of acrylic resins and polyolefin resins have both advantages and disadvantages, and thus it has strongly been desired to develop a resin compensating for the disadvantages of acrylic resins and polyolefin resins.
- Thus, in order to improve acrylic resins, that is, to overcome the disadvantages such as high hygroscopicity and low heat resistance, a lot of investigations have been carried out. For example, there is a method of improving hygroscopicity and heat resistance by using a monomer having a bulky substituent (disclosed in Japanese Patent No. 2678029). Although this invention is indeed effective to a certain extent, the improved acrylic resin is still interior to polyolefin resins in hygroscopicity. This invention poses still another problem that there is a drastic reduction in toughness and strength because a bulky substituent is present in a side chain, so that the resin becomes likely to be broken particularly in molding processing. Although there is a method of attempting to give toughness to the resin by copolymerizing a monomer that gives flexibility for the purpose of improving this, decrease in heat resistance is inevitable, and thus the effect of introducing a bulky substituent is weakened.
- Polyolefin resins have extremely great advantages of low hygroscopicity and high heat resistance as resins of optical use, but the high birefringence thereof has become a great disadvantage with the increasing sophistication of optical devices in recent years. Therefore, many attempts to lower the birefringence of polyolefin resins have been made particularly recently.
- Such an example is disclosed in Japanese Patent Application Laid-open No. Hei 8-110402. This invention is that a resin or a low molecular weight compound having birefringence with the opposite sign to the birefringence of a polyolefin resins mixed to the polyolefin resin to compensate the birefringence intrinsic to the resin, thereby reducing the birefringence of the resin mixture to zero. In this method, it is required that a resin to be mixed and a polyolefin resin be completely compatible. However, compatibility of a polyolefin resin and a resin that is claimed is insufficient in the above invention, so that satisfactory effect cannot be achieved.
- Thus, in order to realize as complete compatibility as possible, a method of adding a compatibility agent as the third component is carried out as a polymer alloying technique, and it is specifically described in U.S. Pat. No. 4,373,065. In order to mix both of the above highly homogeneously, both should be in a molten state or a solution state. However, it is considered that it is extremely difficult to obtain a practical polymer material that is highly homogeneous and has no birefringence as a whole by using any physical method.
- A method to solve these problems is disclosed in, Japanese Patent Application No. Hei 8-199901. This method has some problems such as remaining a portion of a resin in a die when removing a product from the die in injection molding of the resin composition or breaking a product in mold releasing. Moreover, it has a disadvantage in that the color of a product changes while the resin stays in a molding machine for a long time.
- The present invention provider resin compositions having low hygroscopicity, low birefringence and low permittivity, excelling in fluidity, causing little change in color upon heating, and being excellent in mold release characteristics in injection molding, a molding material, a sheet or a film obtained by molding these resin compositions, and an optical part.
- The present invention relates to the following items (1) to (22).
- (1) A resin composition (a) comprising the following polymers (A), and (B) and/or (C):
- (A) a polymer comprising one or more kinds of indene and indene derivatives represented by the following general formula (I);
- (B) a polymer comprising polystyrene or a polystyrene derivative; and
-
- (wherein R 1, R2, R3, R4, R5 and R6 may be the same or different, and each represents a hydrogen atom; a monovalent hydrocarbon group containing a nitrogen atom, an oxygen atom or a silicon atom; an alkyl group having 1 to 6 carbon atoms; or a monovalent aromatic hydrocarbon group. X represents a hydrogen atom, a halogen atom, an acyl group, an alkoxy group or a nitrile group. x represents 0 or an integer of 1 to 4, and y represents an integer of 1 to 4, where x+y=4.).
- (2) The resin composition (a) according to (1), wherein a diphenylsilicone (D) and/or a phenolic antioxidant (E) are/is added to the resin composition comprising the polymers (A), and (B) and/or (C).
- (3) The resin composition (a) according to (1) or (2), wherein the saturated water absorption is 0.4% or less, and the birefringence in stretching the resin composition by 200% is in the range of −2×10 −6 to 2×10−5.
- (4) The resin composition (a) according to any one of (1) to (3), wherein the weight-average molecular weight of the polymer (A) is lower than 80000.
- (5) The resin composition (a) according to any one of (1) to (4), wherein the weight-average molecular weight(s) of the polymer (B) and/or the polymer (c) are/is 50000 or higher.
- (6) The resin composition (a) according to any one of (1) to (5), wherein the content of the polymer (A) is 30 to 90% by weight of the total of the resin composition (a).
- (7) A resin composition (b) comprising the following polymers (F), (G) and (H):
- (F) a polymer comprising one or more kinds of indene and indene derivatives represented by the above general formula (I);
- (G) a polymer comprising polystyrene or a polystyrene derivative; and
- (H) a graft polymer having a structure where a polymer comprising at least one kind of indene and indene derivatives represented by the general formula (I) bonds to a side chain of a polymer comprising a monomer copolymerizable with styrene or a styrene derivative.
- (8) The resin composition (b) according to (7), wherein a diphenylsilicone (D) and/or a phenolic antioxidant (E) are/is added to the resin composition comprising the polymers (F), (G) and (H).
- (9) The resin composition (b) according to (7) or (8), wherein the saturated water absorption is 0.4% or less, and the birefringence in stretching the resin composition by 200% is in the range of −2×10 −6 to 2×10−6.
- (10) The resin composition (b) according to any one of (7) to (9), wherein the weight-average molecular weight of the polymer (F) is 4000 or higher.
- (11) The resin composition (b) according to any one of (7) to (10), wherein the weight-average molecular weights of the polymer (G) and the polymer (H) are 50000 or higher.
- (12) The resin composition (b) according to any one of (7) to (11), wherein the content of the polymer (F) is 30 to 90% by weight of the total of the resin composition (b).
- (13) A resin composition (c) comprising the following polymers (I) and (J), diphenylsilicone (D), and a phenolic antioxidant (E):
- (I) a polymer comprising one or more kinds of indene and indene derivatives represented by the above general formula (I), wherein the polymer has a heterocyclic structure in a side chain thereof; and
- (J) a polymer comprising styrene or a styrene derivative, and a monomer copolymerizable with styrene or a styrene derivative, wherein the polymer has a carboxyl group and/or a phenolic hydroxyl group in a side chain thereof.
- (14) The resin composition (c) according to (13), wherein the saturated water absorption is 0.4% or less, and the birefringence in stretching the resin composition by 200% is in the range of −2×10 −6 to 2×10−6.
- (15)The resin composition (c) according to (13) or (14), wherein the content of the heterocyclic structure in the polymer (I) is 0.01 to 5 mol % of the total of the resin composition (c), and the content of the carboxyl group and/or the phenolic hydroxyl group in the polymer (J) is 0.01 to 5 mol % of the total of the resin composition (c).
- (16) The resin composition (c) according to any one of (13) to (15), wherein the molar ratio of the heterocyclic structure to the carboxyl group and/or the phenolic hydroxyl group is 0.1 to 10.0.
- (17) The resin composition (c) according to any one of (13) to (16), wherein the content of the polymer (I) is 30 to 90% by weight of the total of the resin composition (c).
- (18) The resin composition (c) according to any one of (13) to (17), wherein the addition amount of the diphenylsilicone (D) is 0.01 to 1.0% by weight of the total of the resin composition (c), and the addition amount of the phenolic antioxidant (E) is 0.1 to 3.0% by weight of the total of the resin composition (c).
- (19) A molding material obtained by molding a resin composition selected from the resin composition (a) according to (1), the resin composition (b) according to (7) and the resin composition (c) according to (13).
- (20). A sheet obtained from a resin composition selected from the resin composition (a) according to (1), the resin composition (b) according to (7) and the resin composition (c) according to (13).
- (21) A film obtained from a resin composition selected from the resin composition (a) according to (1), the resin composition (b) according to (7) and the resin composition (c) according to (13).
- (22) An optical part using the molding material, the sheet or the film according to any one of (19) to (21).
- Hereinbelow, the present invention will be described in detail.
- <1> The Resin Composition (a) of the Present Invention
- A resin composition (a) of the present invention is a resin composition comprising the following polymers (A), and (B) and/or (C):
- (A) a polymer comprising one or more kinds of indene and indene derivatives represented by the general formula (I) described above;
- (B) a polymer comprising polystyrene or a polystyrene derivative; and
- (C) a polymer comprising a monomer copolymerizable with styrene or a styrene derivative.
- In the resin composition (a) of the present invention, the above polymer (A) is not particularly limited and any polymer may be employed as the polymer (A), as long as it may be any polymer containing one or more kinds of indene and indene derivatives represented by the above general formula (I).
- The indene derivatives for use in the above polymer (A) include those represented by the above general formula (I), wherein R 1, R2, R3, R4, R5 and R6 may be the same or different, and each represents a hydrogen atom; a monovalent hydrocarbon group containing a nitrogen atom, an oxygen atom or a silicon atom; an alkyl group having 1 to 6 carbon atoms; or a monovalent aromatic hydrocarbon group.
- Monovalent hydrocarbon groups containing a nitrogen atom, an oxygen atom or a silicon atom include, for example, dimethylaminoethyl group, diethylaminoethyl group, methoxy group, ethoxy group, propoxy group, butoxy group, pentoxy group, hexoxy group, trimethylsilyl group, triethylsilyl group, and the like.
- Alkyl groups having 1 to 6 carbon atoms include, for example, methyl group, ethyl group, propyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, 2-methylbutyl group, 3-methylbutyl group, t-pentyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 2,4-dimethylbutyl group, 3,3-dimethylbutyl group, 3,4-dimethylbutyl group, 4,4-dimethylbutyl group, 2-ethylbutyl group, 1-ethylbutyl group, cyclohexyl group, and the like.
- Monovalent aromatic hydrocarbon groups include phenyl group, naphthyl group, benzyl group, and the like. Those listed hereinbefore are simply examples, and monovolent aromatic hydrocarbon groups are not limited thereto.
- X represents a hydrogen atom, a halogen atom, an acyl group, an alkoxy group or a nitrile group. Halogen atoms in X include fluorine, chlorine, bromine, and iodine.
- Acyl groups in X include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, and the like.
- Alkoxy groups in X include methoxy group, ethoxy group, propoxy group, butoxy group, pentoxy group, hexoxy group, and the like.
- Furthermore, x represents 0 or an integer of 1 to 4, and y represents an integer of 1 to 4, where x+y=4.
- The above indene or indene derivatives may be used singly or in combination with two or more as a monomer for use in the polymer (A).
- The above indene derivatives having a substituent include nucleus-substituted alkylindenes such as nucleus-substituted methylindene, nucleus-substituted ethylindehe, nucleus-substituted propylindene, nucleus-substituted butylindene and the like, nucleus-substituted chloroindene, nucleus-substituted bromoindene, and the like. More specifically, they preferably include methylindene, α-methylindene, β-methylindene, and the like.
- The polymer (B) for use in the resin composition (a) is a polymer comprising polystyrene or a polystyrene derivative. In the present invention, monomers for use in the production of the polymer (B) comprising polystyrene or a polystyrene derivative include, for example, styrene, nucleus-substituted alkylstyrenes, nucleus-substituted aromatic styrenes, α-substituted alkylstyrenes, β-substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, and the like.
- Nucleus-substituted alkylstyrenes that may be employed include, for example, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, o-propylstyrene, m-propylstyrene, p-propylstyrene, o-n-butylstyrene, m-n-butylstyrene, p-n-butylstyrene, o-isobutylstyrene, m-isobutylstyrene, p-isobutylstyrene, o-t-butylstyrene, m-t-butylstyrene, p-t-butylstyrene, o-n-pentylstyrene, m-n-pentylstyrene, p-n-pentylstyrene, o-2-methylbutylstyrene, m-2-methylbutylstyrene, p-2-methylbutylstyrene, o-3-methylbutylstyrene, m-3-methylbutylstyrene, p-3-methylbutyletyrene, o-t-pentylstyrene, m-t-pentylstyrene, p-t-pentylstyrene, o-n-hexylstyrene, m-n-hexylstyrene, p-n-hexylstyrene, o-2-methylpentylstyrene, m-2-methylpentylstyrene, p-2-methylpentylstyrene, o-3-methylpentylstyrene, m-3-methylpentylstyrene, p-3-methylpentylstyrene, o-1-methylpentylstyrene, m-1-methylpentylstyrene, p-1-methylpentylstyrene, o-2,2-dimethylbutylstyrene, m-2,2-dimethylbutylstyrene, p-2,2-dimethylbutylstyrene, o-2,3-dimethylbutylstyrene, m-2,3-dimethylbutylstyrene, p-2,3-dimethylbutylstyrene, o-2,4-dimethylbutylstyrene, m-2,4-dimethylbutylstyrene, p-2,4-dimethylbutylstyrene, o-3,3-dimethylbutylstyrene, m-3,3-dimethylbutylstyrene, p-3,3-dimethylbutylstyrene, o-3,4-dimethylbutylstyrene, m-3,4-dimethylbutylstyrene, p-3,4-dimethylbutylstyrene, o-4,4-dimethylbutylstyrene, m-4,4-dimethylbutylstyrene, p-4,4-dimethylbutylstyrene, o-2-ethylbutylstyrene, m-2-ethylbutylstyrene, p-2-ethylbutylstyrene, o-1-ethylbutylstyrene, m-1-ethylbutylstyrene, p-1-ethylbutylstyrene, o-cyclohexylstyrene, m-cyclohexylstyrene, p-cyclohexylstyrene, and the like. Those listed hereinbefore are simply examples, and nucleus-substituted alkylstyrenes are not limited thereto. These may be used singly or in combination with two or more.
- Nucleus-substituted aromatic styrenes that may be employed include, for example, o-phenylstyrene, m-phenylstyrene, p-phenylstyrene, and the like. Those listed hereinbefore are simply examples, and nucleus-substituted aromatic styrenes are not limited thereto.
- α-substituted alkylstyrenes that may be employed include, for example, α-methylstyrene, α-ethylstyrene, α-propylstyrene, α-n-butylstyrene, α-isobutylstyrene, α-t-butylstyrene, α-n-pentylstyrene, α-2-methylbutylstyrene, α-3-methylbutylstyrene, α-t-butylstyrene, α-t-pentylstyrene, α-n-hexylstyrene, α-2-methylpentylotyrene, α-3-methylpentylstyrene, α-1-methylpentylstyrene, α-2,2-dimethylbutylstyrene, α-2,3-dimethylbutylstyrene, α-2,4-dimethylbutylstyrene, α-3,3-dimethylbutylstyrene, α-3,4-dimethylbutylstyrene, α-4,4-dimethylbutylstyrene, α-2-othylbutylstyrene, α-1-ethylbutylstyrene, α-cyclohexylstyrene, and the like. Those listed hereinbefore are simply examples, and α-substituted alkylstyrenes are not limited thereto. These may be used singly or in combination with two or more.
- β-substituted alkylstyrenes that may be employed include, for example, β-methylstyrene, β-ethylstyrene, β-propylstyrene, β-n-butylstyrene, β-isobutylstyrene, β-t-butylstyrene, β-n-pentylstyrene, β-2-methylbutylstyrene, β-3-methylbutylstyrene, β-t-pentylstyrene, β-n-hexylstyrene, β-2-methylpentylstyrene, β-3-methylpentylstyrene, β-1-methylpentylstyrene, β-2,2-dimethylbutylstyreae, β-2,3-dimethylbutylstyrene, β-2,4-dimethylbutylstyrene, β-3,3-dimethylbutylstyrene, β-3,4-dimethylbutylstyrene, β-4,4-dimethylbutylstyrene, β-2-ethylbutylstyrene, β-1-ethylbutylstyrene, β-cyclohexylstyrene, and the like. Those listed hereinbefore are simply examples, and β-substituted alkylstyrenes are not limited thereto. These may be used singly or in combination with two or more.
- Nucleus-substituted alkoxystyrenes that may be employed include, for example, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, o-ethoxystyrene, m-ethoxystyrene, p-ethoxystyrene, o-propoxystyrene, m-propoxystyrene, p-propoxystyrene, o-n-butoxystyrene, m-n-butoxystyrene, p-n-butoxystyrene, o-isobutoxystyrene, m-isobutoxystyrene, p-isobutoxystyrene, o-t-butoxystyrene, m-t-butoxystyrene, p-t-butoxystyrene, o-n-pentoxystyrene, m-n-pentoxystyrene, p-n-pentoxystyrene, o-2-methylbutoxystyrene, m-2-methylbutoxystyrene, p-2-methylbutoxystyrene, o-3-methylbutoxystyrene, m-3-methylbutoxystyrene, p-3-methylbutoxystyrene, o-t-pentoxystyrene, m-t-pentoxystyrene, p-t-pentoxystyrene, o-n-hexoxystyrene, m-n-hexoxystyrene, p-n-hexoxystyrene, o-2-methylpentoxystyrene, m-2-methylpentoxystyrene, p-2-methylpentoxystyrene, o-3-methylpentoxystyrene, m-3-methylpentoxystyrene, p-3-methylpentoxystyrene, o-1-methylpentoxystyrene, m-1-methylpentoxystyrene, p-1-methylpentoxystyrene, o-2,2-dimethylbutoxystyrene, m-2,2-dimethylbutoxystyrene, p-2,2-dimethylbutoxystyrene, o-2,3-dimethylbutoxystyrene, m-2,3-dimethylbutoxystyrene, p-2,3-dimethylbutoxystyrene, o-2,4-dimethylbutoxystyrene, m-2,4-dimethylbutoxystyrene, p-2,4-dimethylbutoxystyrene, o-3,3-dimethylbutoxystyrene, m-3,3-dimethylbutoxystyrene, p-3,3-dimethylbutoxystyrene, o-3,4-dimethylbutoxystyrene, m-3,4-dimethylbutoxystyrene, p-3,4-dimethylbutoxystyrene, o-4,4-dimethylbutoxystyrene, m-4,4-dimethylbutoxystyrene, p-4,4-dimethylbutoxystyrene, o-2-ethylbutoxystyrene, m-2-ethylbutoxystyrene, p-2-ethylbutoxystyrene, o-1-ethylbutoxystyrene, m-1-ethylbutoxystyrene, p-1-ethylbutoxystyrene, o-cyclohexoxystyrene, m-cyclohexoxystyrene, p-cyclohexoxystyrene, o-phenoxystyrene, m-phenoxystyrene, p-phenoxystyrene, and the like. Those listed hereinbefore are simply examples, and nucleus-substituted alkoxystyrenes are not limited thereto. These may be used singly or in combination with two or more.
- The polymer (C) for use in the resin composition (a) is a polymer comprising a monomer copolymerizable with styrene or a styrene derivative. Monomers copolymerizable with styrene or a styrene derivative for use in the polymer (C) include, for example, styrene, nucleu-stubstituted alkylstyrenes, nucleus-substituted aromatic styrenes, α-substituted alkylstyrenes, β-substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, isobutene, diisobutylene, (meth)acrylic esters having 1 to 8 carbon atoms, and the like. These may be used singly or in combination with two or more.
- Nucleus-substituted alkylstyrenes, nucleus-substituted aromatic styrenes, α-substituted alkylstyrenes, β-substituted alkylstyrenes, and nucleus-substituted alkoxystyrenes include the same as listed for the monomers for use in the polymer (B).
- Alkyl groups in alkyl vinyl ethers are not particularly limited, and any alyl group may be employed. Alkyl vinyl ethers include, for example, those having alkyl groups such as methyl, ethyl, propyl, n-butyl, isobutyl, t-butyl, n-pentyl, 2-methylbutyl, 3-methylbutyl, t-pentyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 2,4-dimethylbutyl, 3,3-dimethylbutyl, 3,4-dimethylbutyl, 4,4-dimethylbutyl, 2-ethylbutyl, 1-ethylbutyl, cyclohexyl, and the like. Those listed hereinbefore are simply examples, and alkyl vinyl ethers are not limited thereto. These may be used singly or in combination with two or more.
- Aromatic vinyl ethers include, for example, phenyl vinyl ether and the like. Those listed hereinbefore are simply examples, and aromatic vinyl ethers are not limited thereto.
- (Meth)acrylic esters having 1 to 8 carbon atoms include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and the like. Those listed hereinbefore are simply examples, and (meth)acrylic esters having 1 to 8 carbon atoms are not limited thereto. These may be used singly or in combination with two or more.
- The above styrene, nucleus-substituted alkylstyrenes, α-substituted alkylstyrenes, β-substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, isobutene, diisobutylene, (meth)acrylic esters having 1 to 8 carbon atoms, and the like for use in the polymer (C) may have a substituent such as an alkyl group, a phenyl group, a halogen atom and the like at an optional position.
- Methods of the production of the above polymers (A), (B) and (C) in the resin composition (a) of the present invention are not particularly limited, and the polymers can be produced by a conventional method. For example, they can be produced by cationic polymerization, anionic polymerization, radical polymerization, living radical polymerization, or the like. The above polymerization methods can be selected depending on a catalyst employed.
- Catalysts for use in cationic polymerization are not particularly limited, and publicly known catalysts may be employed. Such catalysts that may be employed include, for example, Lewis acids such as aluminium chloride, iron chloride, tin chloride, zinc chloride, strontium chloride, scandium chloride and the like, proton acids such as sulfuric acid, para-toluenesulfonic acid, hydrochloric acid, nitric acid and the like, alkylaluminium chlorides, and the like. Those listed hereinbefore are simply examples, and the catalysts are not limited thereto. These may be used singly or in combination with two or more.
- Catalysts for use in anionic polymerization are not particularly limited, and publicly known catalysts may be employed. Such catalysts that may be employed include, for example, butyl lithium and the like. Those listed hereinbefore are simply examples, and the catalysts are not limited thereto.
- Catalysts for use in radical polymerization are not particularly limited, and publicly known catalysts may be employed. Such catalysts include, for example, peroxides such as benzoyl peroxide, lauryl peroxide, methyl ethyl ketone peroxide and the like. Those listed hereinbefore are simply examples, and the catalysts are not limited thereto. These may be used singly or in combination with two or more.
- Catalysts for use in living radical polymerization are not particularly limited, and publicly known catalysts may be employed such catalysts include, for example, a combined system of benzoyl peroxide and a nitroxide compound, a combined system of a Ru complex/an alkoxyaluminum and the like. Those listed hereinbefore are simply examples, and the catalysts are not limited thereto. These may be used singly or in combination with two or more.
- With respect to polymerization methods, the polymers can be synthesized by solution polymerization, suspension polymerization, bulk polymerization, or the like. In particular, the solution polymerization method is the most preferable.
- Solvents employed are not particularly limited, and publicly known solvents may be employed. Typical solvents include, for example, chloromethane, dichloromethane, trichloromethane, tetrachloromethane, chloroethane, dichloroethane, trichloroethane, tetrachloroethane, chloroethylene, dichloroethylene, nitrobenzene, dinitrobenzene, trinitrobenzene, alkylbenzenes such as methylbenzene, dimethylbenzene, trimethylbenzene, ethylbenzene, diethylbenzene, triethylbenzene and the like, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and the like, and esters such as MMA, ethyl acetate, butyl acetate and the like. Those listed hereinbefore are simply examples, and the solvents are not limited thereto. These may be used singly or in combination with two or more.
- The polymerization temperature is preferably in the range of −100 to 180° C. If the polymerization reaction is carried out at a lower temperature than −100° C., decrease in reactivity is caused, so that it is difficult to obtain a sufficiently high molecular weight compound. The temperatures exceeding 180° C. lead to too high reactivity of the propagation terminal, so that it sometimes becomes to be difficult to obtain a high molecular weight compound because a vast number of chain transfer reactions occur.
- In the resin composition (a), the weight-average molecular weight of the polymer (A) is preferably lower than 80000, more preferably lower than 40000. If the weight-average molecular weight of the polymer (A) is lower than 80000, fluidity and transparency of the resin composition (a) tend to decrease.
- To make the weight-average molecular weight of the polymer (A) within the above range, the molecular weight can be adjusted by selecting the kind or amount of the catalyst used in polymerization, using a polymerization inhibitor, using a chain transfer agent, controlling the polymerization temperature or the like.
- Furthermore, the weight-average molecular weight (s) of the polymer (B) and/or the polymer (C) are/is preferably 50000 or higher, more preferably 100000 or higher. If the weight-average molecular weight(s) of the polymer (3) and/or the polymer (C) are/is lower than 50000, strength of a molding material tends to decrease.
- To make the weight-average molecular weight(s) of the polymer (B) and/or the polymer (C) within the above range, the molecular weight(s) can be adjusted by selecting the kind or amount of the catalyst used in polymerization, using a polymerization inhibitor, using a chain transfer agent, controlling the polymerization temperature or the like.
- Weight-average molecular weights can be determined by GPC measurement with a tetrahydrofuran solution.
- The polymers (A), (B) and (C) obtained by the above method can be used for the resin composition (a) after isolating the polymers by a conventional method.
- In the present invention, the content of the polymer (A) is preferably 30 to 90% by weight of the total of the resin composition (a), more preferably 50 to 90% by weight, still more preferably 60 to 85% by weight. If the content of the polymer (A) is less than 30% by weight or more than 90% by weight of the total of the resin composition (a), the absolute value of birefringence tends to increase.
- Moreover, it is preferred to add a diphenylsilicone (D) and/or a phenolic antioxidant (E) to the resin composition (a).
- Viscosity of the diphenylsilicone (D) for use in the resin composition (a) of the present invention is not particularly limited, and any diphenylsilicone (D) having any viscosity may be used. The addition amount of the diphenylsilicone (D) is preferably in the range of 0.01 to 1.0% by weight, more preferably 0.05 to 0.8% by weight of the total of the resin composition (a). If the addition amount is less than 0.01% by weight, the effect on mold release characteristics from a die in injection molding tends to decrease, while if the addition amount exceeds 1.0% by weight, heat resistance tends to decrease.
- Phenolic antioxidants (E) for use in the present invention include, for example, dibutylhydroxytoluene, alkylated phenols, 4,4′-thiobis(6-t-butyl-3-methylphenol), 4,4′-butylidenebis(6-t-butyl-3-methylphenol), 2,2″-methylenebis(4-methyl-6-t-butylphenol), 2,2″-methylenebis(4-ethyl-6-t-butylphenol), 2,6-di-t-butyl-4-ethylphenol, 1,1,-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane, n-octadecyl-3-(4-hydroxy-3,5-t-dibutylphenyl)propionate, tetrakis(methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, dilaurylthiodipropionate, distearylthiodipropionate, dimyristylthiodipropionate, and the like, and the phenolic antioxidants are not limited thereto. These may be used singly or in combination with two or more. The addition amount of a phenolic antioxidant (E) is preferably in the range of 0.1 to 3.0% by weight, more preferably 0.5 to 2.0% by weight of the total of the resin composition (a). If the addition amount is less than 0.1% by weight, the effect to suppress changes in hue is a little, while if the addition amount exceeds 3.0% by weight, transparency and heat resistance of the resin tend to decrease.
- Methods of mixing the polymers (A), and (B) and/or (C), a diphenylsilicone (D), and a phenolic antioxidant (E) are not particularly limited, and a resin composition can be produced by weighing out prescribed amounts of each polymer and a diphenylsilicone and a phenolic antioxidant, and melt-kneading these, or also can be produced by dissolving each polymer, a diphenylsilicone and a phenolic antioxidant in a solvent such as toluene, THF, NMP and the like, and then removing the solvent.
- The resin composition (a) of the present invention obtained as mentioned above preferably has a saturated water absorption of 0.4% or less, and preferably has a birefringence in stretching the resin composition by 200% in the range of −2×10 −6 to 2×10−6. More preferable saturated water absorption is 0.2% or less, and more preferable birefringence in stretching the resin composition by 200% is in the range of −1×10−6 to 1×10−6.
- Saturated water absorptions exceeding 0.4% lead to an increased change in refraction index in absorbing water, thus it is not preferable. Moreover, if the birefringence in stretching the resin composition by 200% is out of the range of −2×10 −6 to 2×10−6, it is not preferable because linearly polarized light sometimes greatly changes to elliptically polarized light.
- To make the saturated water absorption within the above range, it is satisfactory to make the content of the polymer (A) within the range of 30 to 90% by weight of the total of the resin composition (a).
- To make the birefringence in stretching the resin composition by 200% within the above range, it is satisfactory to make the content of the polymer (A) within the range of 30 to 90% by weight of the total of the resin composition (a).
- The saturated water absorption (%) in the present invention can be calculated by measuring the water absorption when the water absorption reaches saturation with a sample fragment soaked in hot water at 70° C. “When the water absorption reaches saturation” is the state in which there is no more change in the water absorption even if the sample fragment is allowed to be soaked in hot water at 70° C. for a longer time.
- Furthermore, concerning birefringence, the birefringence in stretching an obtained molding material by 200% at a temperature 5° C. lower than the glass transition point of the material can be measured by using, for example, Ellipsometer AEP-100 Type (produced by Shimadzu Corporation). Measurement conditions are as follows: temperature; 25° C.; and wavelength of the laser light: 632.8 nm. Moreover, the glass transition point of a molding material can be measured as follows. The glass transition point can be measured by DSC (differential scanning calorimetry). A measurement by DSC is carried out under a condition of a temperature-elevating rate of 10° C./min.
- <2> The Resin Composition (b) of the Present Invention
- A resin composition (b) of the present invention is a resin composition comprising the following polymers (F), (G) and (H):
- (F) a polymer comprising one or more kinds of indene and indene derivatives represented by the above general formula (I);
- (G) a polymer comprising polystyrene or a polystyrene derivative; and
- (H) a graft polymer having a structure where a polymer comprising at least one kind of indene and an indene derivative represented by the general formula (I) bonds to a side chain of a polymer comprising a monomer copolymerizable with styrene or a styrene derivative.
- The polymer (F) for use in the resin composition (b) can be produced in the same manner as the polymer (A) for use in the resin composition (a) by using the same indene monomers as in the polymer (A). The weight-average molecular weight of the polymer (F) is preferably 4000 or higher, more preferably 8000 or higher. If the weight-average molecular weight of the polymer (F) is lower than 4000, heat resistance tends to decrease.
- To make the weight-average molecular weight of the polymer (F) within the above range, the molecular weight can be adjusted by selecting the kind or amount of the catalyst used in polymerization, using a polymerization inhibitor, using a chain transfer agent, controlling the polymerization temperature or the like.
- Furthermore, the polymer (G) for use in the resin composition (b) can be produced in the same manner as the polymer (B) for use in the resin composition (a) by using the same styrene monomers as in the polymer (B).
- The graft polymer (H) for use in the resin composition (b) has a structure where a polymer comprising one or more kinds of indene and indene derivatives represented by the general formula (I) bonds to a side chain of a polymer comprising styrene or a styrene derivative. That is, the graft polymer (H) has a backbone unit of the polymer comprising styrene or a styrene derivative and branch units of the polymer comprising one or more kinds of indene and indene derivatives represented by the general formula (I).
- Monomers copolymerizable with styrene or a styrene derivative for use in a constitutional monomer of the backbone unit of the graft polymer (H) include, for example, styrene, nucleus-substituted alkylstyrenes, nucleus-substituted aromatic styrenes, α-substituted alkylstyrenes, β-substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, isobutene, diisobutylene, (meth)acrylic esters having 1 to 8 carbon atoms, and the like.
- Nucleus-substituted alkylstyrenes, nucleus-substituted aromatic styrenes, α-substituted alkylstyrenes, β-substituted alkylstyrenes, and nucleus-substituted alkoxystyrenes include the same as listed for the monomers for use in the polymer (B) of the resin composition (a). Furthermore, alkyl vinyl ethers, aromatic vinyl ethers, and (meth)acrylic esters having 1 to 8 carbon atoms include the same as listed for the monomers for use in the polymer (C) of the resin composition (a)
- The above styrene, nucleus-substituted alkylstyrenes, α-substituted alkylstyrenes, β-substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, isobutene, diisobutylene, (meth)acrylic esters having 1 to 8 carbon atoms, and the like for use in the graft polymer (H) may have a substituent such as an alkyl group, a benzene ring, a halogen atom at an optional position.
- Indene or indene derivatives for use in a constitutional monomer of a branched unit of the graft polymer (H) include those represented by the general formula (I) as mentioned above.
- In the resin composition (b) of the present invention, methods for the production of the above graft polymer (H) include conventional methods for the production of a graft polymer, and, for example, there is a method as follows.
- The method comprises dissolving a polymer which was produced beforehand by radical polymerization of a monomer copolymerizable with styrene or a styrene derivative, etc., in toluene, THF, NMP or the like, further dissolving indene or an indene derivative represented by the general formula (I), thereafter adding a Lewis acid such as tin chloride, aluminum chloride and the like as a catalyst and 2,6-bis(t-butyl)pyridine and the like as an assist catalyst, and conducting cationic polymerization.
- Furthermore, the weight-average molecular weight of the backbone unit of the graft polymer (H) is preferably 10000 or higher.
- Furthermore, the weight-average molecular weights of the polymer (G) and the graft polymer (H) are preferably 50000 or higher, more preferably 100000 or higher. If the weight-average molecular weights of the polymer (G) and the graft polymer (H) are lower than 50000, strength of a molding material tends to decrease.
- To make the weight-average molecular weights of the polymer (G) and the graft polymer (H) within the above range, the molecular weight can be adjusted by selecting the kind or amount of the catalyst used in polymerization, using a polymerization inhibitor, using a chain transfer agent, controlling the polymerization temperature or the like.
- Moreover, it is preferred to add a diphenylsilicone and/or a phenolic antioxidant to the resin composition (b).
- Similarly to the diphenylsilicone (D) for use in the resin composition (a), viscosity of the diphenylsilicone (D) for use in the resin composition (b) of the present invention is not particularly limited, and any diphenylsilicone (D) having any viscosity may be used. The addition amount of the diphenylsilicone (D) is preferably in the range of 0.01 to 1.0% by weight, more preferably 0.05 to 0.8% by weight of the total of the resin composition (b). If the addition amount is less than 0.01% by weight, the effect on mold release characteristics from a die in injection molding tends to decrease, while if the addition amount exceeds 1.0% by weight, heat resistance tends to decrease.
- Phenolic antioxidants for use in the resin composition (b) of the present invention include phenolic antioxidants (E) for use in the resin composition (a). The addition amount of a phenolic antioxidant is not particularly limited, and is preferably in the range of 0.1 to 3.0% by weight, more preferably 0.5 to 2.0% by weight of the total of the resin composition (b). If the addition amount of a phenolic antioxidant (E) is less than 0.1% by weight, the effect to suppress changes in hue is a little, while if the addition amount exceeds 3.0% by weight, transparency and heat resistance of the resin tend to decrease.
- Methods of mixing the polymers (F), (G) and (H) obtained by the above methods, a diphenylsilicone (D), and a phenolic antioxidant (E) are not particularly limited, and the same methods as in the above resin composition (a) may be used.
- In the resin composition (b) of the present invention, the content of the polymer (F) is preferably 30 to 90% by weight of the total of the resin composition (b), more preferably 50 to 90% by weight, still more preferably 60 to 85% by weight. If the content of the polymer (F) is less than 30% by weight or more than 90% by weight of the total of the resin composition (b), the absolute value of birefringence tends to increase.
- The resin composition (b) of the present invention obtained as, mentioned above preferably has a saturated water absorption of 0.4% or less, and preferably has a birefringence in stretching the resin composition by 200% in the range of −2×10 −6 to 2×10−6. More preferable saturated water absorption is 0.2% or less, and more preferable birefringence in stretching the resin composition by 200% is in the range of −1×10−5 to 1×10−6.
- Saturated water absorptions exceeding 0.4% lead to an increased change in refraction index in absorbing water, thus it is not preferable. Moreover, if the birefringence in stretching the resin composition by 200% is out of the range of −2×10 −6 to 2×10−6, it is not preferable because linearly polarized light sometimes greatly changes to elliptically polarized light.
- To make the saturated water absorption within the above range, it is satisfactory to make the content of the polymer (F) within the range of 30 to 90% by weight of the total of the resin composition.
- To make the birefringence in stretching the resin composition by 200% within the above range, it is satisfactory to make the content of the polymer (F) within the range of 30 to 90% by weight of the total of the resin composition.
- <3> The Resin Composition (c) of the Present Invention
- A resin composition (c) of the present invention is a resin composition comprising the following polymers (I) and (J), diphenylsilicone (D), and a phenolic antioxidant (E):
- (I) a polymer comprising one or more kinds of indene and indene derivatives represented by the above general formula (I), wherein the polymer has a heterocyclic structure in a side chain thereof; and
- (J) a polymer comprising styrene or a styrene derivative, and a monomer copolymerizable with styrene or a styrene derivative, wherein the polymer has a carboxyl group and/or a phenolic hydroxyl group in a side chain thereof.
- As indene monomers for use in the polymer (I), the same indene monomers as in the polymer (A) for use in the resin composition (a) may be used.
- Methods for introducing a heterocyclic structure into a side chain of the polymer (I) are not particularly limited, and the following method is an example.
- [1] After producing a polymer that comprises the above indene or an indene derivative and has functional groups, the polymer (I) having a heterocyclic structure in a side chain thereof is produced by reacting the above produced polymer with a compound having a heterocyclic structure.
- Specifically, in the case of introducing a heterocyclic structure into a side chain of the polymer (I), for example, a copolymer having acid anhydride moieties as functional groups can be obtained by synthesizing a polymer of the above indene or an indene derivative and a vinyl monomer having an acid anhydride moiety, such as maleic anhydride. Then, a heterocyclic structure can be introduced into a side chain by ring-opening the acid anhydride moiety of maleic anhydride with an amino group of a compound having an amino group and a heterocyclic structure, such as aminopyridine.
- [2] The polymer (I) having a heterocyclic structure in a side chain thereof is produced by copolymerizing a monomer having a heterocyclic structure with reaction activity with a monomer copolymerizable with indene or an indene derivative by a conventional method.
- Monomers having a heterocyclic structure with reaction activity for use in the above [2] include, for example, pyridine, imidazoline, pyrazine, pyrimidine, quinoline, indolizine, acridine, furan, thiophene, oxazole and the like, each of which has a polymerizable reactive group. Specifically, vinylpyridine, pyridyl vinyl ether, pyridylmaleimide and the like may be used, and the monomers are not limited thereto. Furthermore, these may be used singly or in combination with two or more.
- In the resin composition (c) of the present invention, the above polymer (J) comprises a monomer copolymerizable with styrene or a styrene derivative, and it has a carboxyl group and/or a phenolic hydroxyl group in a side chain thereof.
- Monomers copolymerizable with styrene or a styrene derivative for use in the polymer (J) include, for example, nucleus-substituted alkylstyrenes, nucleus-substituted aromatic styrenes, α-substituted alkylstyrenes, β-substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, and the like, and specifically include the same monomers as the styrene monomers for use in the polymer (B) of the resin composition (a).
- Furthermore, monomers copolymerizable with a styrene derivative for use in the polymer (J) include, for example, nucleus-substituted alkylstyrenes, nucleus-substituted aromatic styrenes, α-substituted alkylstyrenes, β-substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, isobutene, diisobutylene, (meth)acrylic esters having 1 to 8 carbon atoms, and the like, and specifically include the same monomers as the monomers for use in the polymer (C) of the resin composition (c).
- Methods for introducing a carboxyl group and/or a phenolic hydroxyl group into a side chain of the polymer (J) are not particularly limited, and the following method is an example.
- [1] After producing a polymer that comprises one or more kinds of the above styrene and styrene derivatives and has functional groups, the polymer (J) having a carboxyl group and/or a phenolic hydroxyl group in a side chain thereof is produced by reacting the above produced polymer with a compound having a carboxyl group or a phenolic hydroxyl group.
- Specifically, in the case of introducing a carboxyl group into a side chain of the polymer (J), for example, a copolymer having alcoholic hydroxyl groups as functional groups can be obtained by synthesizing a copolymer of the above styrene or styrene derivative and a vinyl monomer having an alcoholic hydroxyl group, such as 2-hydroxylethyl methacrylate (HEMA). Then, a carboxyl group can be introduced into a side chain by conducting a ring-opening addition of an acid anhydride such as trimellitic anhydride to an alcoholic hydroxyl group of HEMA.
- Furthermore, in the case of introducing a phenolic hydroxyl group into a side chain of the polymer (J), a polymer having acid anhydride moieties as functional groups can be obtained by synthesizing a polymer of the above styrene or styrene derivative and a vinyl monomer having an acid anhydride moiety, such as maleic anhydride. Then, a phenolic hydroxyl group can be introduced into a side chain by ring-opening the acid anhydride moiety of maleic anhydride with an amino group of a compound having an amino group and a phenolic hydroxyl group, such as aminophenol.
- [2] The polymer (J) having a carboxyl group and/or a phenolic hydroxyl group in a side chain thereof is produced by copolymerizing a monomer having a carboxyl group or a phenolic hydroxyl group with reaction activity with the above styrene or styrene derivatives by a conventional method.
- Monomers having a carboxyl group or a phenolic hydroxyl group with reaction activity for use in the above [2] include, for example, methacrylic acid, acrylic acid, maleic acid, vinylphenol, vinylbenzoic acid and the like, and the monomers are not limited thereto. Furthermore, these may be used singly or in combination with two or more.
- In the resin composition (c) of the present invention, the content of the heterocyclic structure in the polymer (I) is 0.01 to 5 mol % of the total of the resin composition (c), more preferably 0.02 to 2 mol %. If the content of the heterocyclic structure is less than 0.01 mol %, transparency of the resin composition (c) tends to decrease, while if the content exceeds 5 mol %, water absorption of the resin composition tends to increase.
- The content(s) of the carboxyl group and/or the phenolic hydroxyl group in the polymer (J) are/is 0.01 to 5 mol % of the total of the resin composition (c), more preferably 0.02 to 2 mol %. If the content(s) of the carboxyl group and/or the phenolic hydroxyl group in the polymer (J) are/is less than 0.01 mol %, transparency of the resin composition (c) tends to decrease, while if the content exceeds 5 mol %, water absorption of the resin composition (c) tends to increase.
- In the present invention, the molar ratio of the heterocyclic structure to the carboxyl group and/or the phenolic hydroxyl group is preferably 0.1 to 10.0. If this ratio is less than 0.1 or exceeds 10.0, transparency of the resin composition (c) tends to decrease.
- Methods of the production of the above polymers (I) and (J) are not particularly limited in the present invention, and the polymers can be produced by a conventional method using the above-mentioned monomers.
- Similarly to the diphenylsilicone (D) for use in the resin composition (a), viscosity of the diphenylsilicone (D) for use in the resin composition (C) of the present invention is not particularly limited, and any diphenylsilicone (D) having any viscosity may be used. The addition amount of the diphenylsilicone (D) is preferably in the range of 0.01 to 1.0% by weight, more preferably 0.05 to 0.8% by weight of the total of the resin composition (c). If the addition amount is less than 0.01% by weight, the effect on mold release characteristics from a die in injection molding tends to decrease, while if the addition amount exceeds 1.0% by weight, heat resistance tends to decrease.
- Phenolic antioxidants for use in the resin composition (c) of the present invention include phenolic antioxidants (E) for use in the resin composition (a). The addition amount of a phenolic antioxidant is not particularly limited, and is preferably in the range of 0.1 to 3.0% by weight, more preferably 0.5 to 2.0% by weight of the total of the resin composition (c). If the addition amount of a phenolic antioxidant (E) is less than 0.1% by weight, the effect to suppress changes in hue is a little, while if the addition amount exceeds 3.0% by weight, transparency and heat resistance of the resin tend to decrease.
- Methods of mixing the polymers (I) and (J) obtained by the above methods, a diphenylsilicone (D), and a phenolic antioxidant (E) are not particularly limited, and the same methods as in the above resin composition (a) may be used.
- In the resin composition (c) of the present invention, the content of the polymer (I) is preferably 30 to 90% by weight of the total of the resin composition (c), more preferably 50 to 90% by weight, still more preferably 60 to 85% by weight. If the content of the polymer (I) is less than 30% by weight or more than 90% by weight of the total of the resin composition (c), the absolute value of birefringence tends to increase.
- The resin composition (c) of the present invention obtained as mentioned above preferably has a saturated water absorption of 0.4% or less, and preferably has a birefringence in stretching the resin composition by 200% in the range of −2×10 −6 to 2×10−6. More preferable saturated water absorption is 0.2% or less, and more preferable birefringence in stretching the resin composition by 200% is in the range of −1×10−6 to 1×10−6.
- Saturated water absorptions exceeding 0.4% lead to an increased change in refraction index in absorbing water, thus it is not preferable. Moreover, if the birefringence in stretching the resin composition by 200% is out of the range of −2×10 −6 to 2×10−6, it is not preferable because linearly polarized light sometimes greatly changes to elliptically polarized light.
- To make the saturated water absorption within the above range, it is satisfactory that each of the content(s) of the carboxyl group and/or the phenolic hydroxyl group in the polymer (I) and the content(s) of the heterocyclic structure and/or the alkylamino group in the polymer (J) satisfies the range of 0.005 to 5 mol %.
- To make the birefringence in stretching the resin composition by 200% within the above range, it is satisfactory to make the content of the polymer (I) within the range of 30 to 90% by weight of the total of the resin composition (c)
- <4> The Molding Material of the Present Invention
- The above resin composition (a), resin composition (b) and resin composition (c) according to the present invention can be processed to obtain a molding material, a sheet or a film. In the present invention, optional components may be added when required in making these resin compositions into molding materials.
- The resin compositions of the present invention may be applied to semiconductor-related materials that can satisfy the characteristics such as low permittivity, low hygroscopicity and high heat resistance, or to optical parts, as well as paints, photosensitive materials, adhesives, sewage disposal agents, heavy metal collectors, ion-exchange resins, antistatic agents, antioxidants, anti-fog agents, anti-corrosive agents, reverse printing agents, anti-microbial agents, insecticides, medical materials, coagulants, surfactants, lubricants, binders for solid fuel, conductivity imparting agents, and the like.
- Optical parts using a molding material of the present invention include pickup lenses for CD, pickup lenses for DVD, lenses for facsimile, lenses for LBP, polygonmirrors, prisms, and the like.
- The present invention is described in further detail with reference to some examples. However, the present invention should not be construed as being limited to these examples.
- Evaluation methods used in the examples are as follows.
- (1) Weight-average Molecular Weight
- The weight-average molecular weight of a polymer synthesized was determined by GPC measurement with a tetrahydrofuran solution.
- (2) Fluidity (MI)
- The fluidity of a resin composition was determined by measuring a melt flow rate at 220° C. with a load of 5 kgf.
- (3) Saturated Water Absorption
- The saturated water absorption of a sample was determined by measuring the water absorption when the water absorption reaches saturation with a sample soaked in hot water at 70° C. Water absorption in Table 1 shows the saturated water absorption.
- (4) Heat Resistance (Tg)
- The heat resistance was evaluated by measuring the glass transition point by DSC (differential scanning calorimetry). The measurement of DSC was carried out under a condition of a rate of temperature rise of 10° C./min.
- (5) Relative Permittivity
- The relative permittivity was measured by using precision LCR meter 4284A Type produced by Hewlett-Packard Company under conditions of 20 kV, 1 kHz and 25° C.
- (6) Bending Strength
- The bending strength of a sample fragment was measured by using AGS-1000G produced by Shimadzu Corporation. The test was carried out at room temperature under conditions of a test speed of 0.5 mm/min., a span of 20 mm and the width of the sample fragment of 10 mm.
- (7) Transparency
- The transparency of a formed sample was measured by using V-570produced by JASCO Corporation at25° C. The transparency measured at measurement wavelengths in the range of 400 to 800 nm was assumed to be the total light ray transparency.
- (8) Birefringence
- The birefringence of an obtained molding material stretched by 150% at a temperature 5° C. lower than the glass transition temperature of the material was measured. The measurement was carried out by using Ellipsometer AEP-100 Type produced by Shimadzu Corporation at 25° C. The wavelength of the laser beam was 632.8 nm.
- (9) Change in Hue
- After a resin was allowed to abide in an injection molding machine at 250° C. for 30 minutes, injection molding was carried out, and then the change in hue of the molding product thus obtained was measured with a spectrocolormeter (produced by Sakata Ink Corporation, Macbeth color-eye 7000A).
- (10) Mold Release Characteristics
- With respect to the mold release characteristics in injection molding, injection molding of a resin was actually carried out, and the surface condition of the resin mold-released from a die and whether the resin was broken or not were visually confirmed.
- Placed in a 100-mL flask were 10.0 g of indene and 30.0 g of toluene, and 0.05 g of FeCl 3was added thereto at 25° C., thereby being allowed to react for 12 hours. Thereafter, 0.05 g of methanol was added to this reaction mixture liquid, and then the liquid was stirred to obtain a homogeneous solution. The homogeneous solution thus obtained was gradually added to 100 g of methanol to obtain 9.7 g of a white precipitate. This white precipitate was dried under reduced pressure to obtain a polymer (A). The weight-average molecular weight of this polymer was 2200.
- Placed in a 100-mL flask were 20.0 g of styrene and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added thereto, and the mixture was allowed to react at 70° C. for 12 hours with being stirred. A granular polymer thus obtained was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours to obtain a polymer (B). The weight-average molecular weight of the polymer obtained was 200000.
- Dissolved in 20 g of toluene were 6.0 g of the polymer (A) and 4.0 g of the polymer (B), and the mixture was added to about 300 g of methanol to precipitate a solid. This solid was dried at 40° C. for 6 hours to obtain a desired white precipitate. This resin composition was hot-pressed to produce a molding material having a thickness of 2 mm. This molding material was used as a sample fragment. The above-mentioned evaluations were carried out using this sample fragment. The evaluation results are shown in Table 1.
- Placed in a 100-mL flask were 8.0 g of indene, 2.0 g of 4-methylstyrene and 30.0 g of methylene chloride, and 0.05 g of FeCl 3 was added thereto at −40° C., thereby being allowed to react for 12 hours. Thereafter 0.05 g of methanol was added to this reaction mixture liquid, and then the liquid was stirred to obtain a homogeneous solution. The homogeneous solution thus obtained was gradually added to 100 g of methanol to obtain 9.8 g of a white precipitate. This white precipitate was dried under reduced pressure to obtain a polymer (A). The weight-average molecular weight of this polymer was 15000.
- Placed in a 100-mL flask were 20.0 g of styrene and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added thereto, and the mixture was allowed to react at 70° C. for 12 hours with being stirred. After reaction was allowed for a predetermined time, a granular polymer was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours to obtain a polymer (B). The weight-average molecular weight of the polymer obtained was 200000.
- Placed in a 100-mL flask were 14.0 g of styrene, 5.0 g of 4-methylstyrene, 1.0 g of butyl acrylate and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added thereto, and the mixture was allowed to react at 70° C. for 12 hours with being stirred. The reaction was allowed for a predetermined time. A granular polymer thus obtained was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours to obtain a polymer (C). The weight-average molecular weight of the polymer obtained was 240000.
- Dissolved in 20 g of toluene were 6.0 g of the polymer (A), 1.5 g of the polymer (B) and 2.5 g of the polymer (C), and the mixture was added to about 300 g of methanol to precipitate a solid. This solid was dried at 40° C. for 6 hours to obtain a desired white precipitate. This resin composition was hot-pressed to produce a molding material having a thickness of 2 mm. This molding material was used as a sample fragment. The evaluation results obtained by evaluating this sample fragment in the same manner as in Example 1 are shown in Table 1.
- Placed in a 100-mL flask were 10.0 g of indene and 30.0 g of toluene, and 0.05 g of FeCl 3was added thereto at 25° C., thereby being allowed to react for 12 hours. Thereafter 0.05 g of methanol was added to this reaction mixture liquid, and then the liquid was stirred to obtain a homogeneous solution. The homogeneous solution thus obtained was gradually added to 100 g of methanol to obtain 9.7 g of a white precipitate. This white precipitate was dried under reduced pressure to obtain a polymer (A). The weight-average molecular weight of this polymer was 2200.
- Placed in a 100-mL flask were 20.0 g of styrene and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added thereto, and the mixture was allowed to react at 70° C. for 12 hours with being stirred. A granular polymer thus obtained was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours to obtain a polymer (B). The weight-average molecular weight of the polymer obtained was 200000.
- Dissolved in 20 g of toluene were 6.0 g of the polymer (A) and 4.0 g of the polymer (B), 0.01 g of diphenylsilicone (produced by Shin-Etsu Chemical Co., Ltd.) having a viscosity of 500 CS and 0.05 g of n-octadecyl-3-(4-hydroxy-3,5-t-dibutylphenyl)propionate, and the mixture was added to about 300 g of methanol to precipitate a solid. This solid was dried at 40° C. for 6 hours to obtain a desired resin composition. This resin composition was hot-pressed to produce a molding material having a thickness of 2 mm. This molding material was used as a sample fragment. The above-mentioned evaluations were carried out using this sample fragment. The evaluation results are shown in Table 1.
- Placed in a 100-mL flask were 8.0 g of indene, 2.0 g of 4-methylstyrene and 30.0 g of methylene chloride, and 0.05 g of FeCl 3 was added thereto at −40° C., thereby being allowed to react for 12 hours. Thereafter, 0.05 g of methanol was added to this reaction mixture liquid, and then the liquid was stirred to obtain a homogeneous solution. The homogeneous solution thus obtained was gradually added to 100 g of methanol to obtain 9.8 g of a white precipitate. This white precipitate was dried under reduced pressure to obtain a polymer (A). The weight-average molecular weight of this polymer was 15000.
- Placed in a 100-mL flask were 20.0 g of styrene and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added thereto, and the mixture was allowed to react at 70° C. for 12 hours with being stirred. A granular polymer thus obtained was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours to obtain a polymer (B). The weight-average molecular weight of the polymer obtained was 200000.
- Placed in a 100-mL flask were 14.0 g of styrene, 5.0 g of 4-methylstyrene, 1.0 g of butyl acrylate and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added thereto, and the mixture was allowed to react at 70° C. for 12 hours with stirring. A granular polymer thus obtained was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours to obtain a polymer (B). The weight-average molecular weight of the polymer obtained was 240000.
- Dissolved in 20 g of toluene were 6.0 g of the polymer (A), 1.5 g of the polymer (B), 2.5 g of the polymer (C), 0. 01 g of diphenylsilicone having a viscosity of 500 CS and 0.05 g of n-octadecyl-3-(4-hydroxy-3,5-t-dibutylphenyl) propionate, and the mixture was added to about300 g of methanol to precipitate a solid. This solid was dried at 40° C. for 6 hours to obtain a desired resin composition. This resin composition was hot-pressed to produce a molding material having a thickness of 2 mm. This molding material was used as a sample fragment. The above-mentioned evaluations were carried out using this sample fragment. The evaluation results are shown in Table 1.
TABLE 1 Example 1 Example 2 Example 3 Example 4 Item unit Polymer A Polymer B Polymer A Polymer B Polymer C Polymer A Polymer B Polymer A Polymer B Polymer C Molecular g/mol 2200 200000 15000 200000 240000 2200 200000 15000 200000 240000 weight (Mw) Mixing ratio % by 60 40 60 15 25 60 40 60 15 25 weight Antioxidant E % by 0 0 0.5 0.5 weight Silicone % by 0 0 0.1 0.1 amount D weight Fluidity (MI) g/10 21 12 21 12 minutes Water % 0.09 0.08 0.09 0.08 absorption Heat ° C. 135 142 135 142 resistance (Tg) Relative — 2.3 2.2 2.3 2.2 permittivity Bending MPa 80 85 80 85 strength Transparency % 85 85 85 85 Birefringence — 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6 Change in hue — 0.28 0.29 0.12 0.15 - Placed in a 100-mL flask were 10.0 g of indene and 30.0 g of toluene, and 0.05 g of FeCl 3was added thereto at 25° C., thereby being allowed to react for 12 hours. Thereafter, 0.05 g of methanol was added to this reaction mixture liquid, and then the liquid was stirred to obtain a homogeneous solution. The homogeneous solution thus obtained was gradually added to 100 g of methanol to obtain 9.7 g of a white precipitate. This white precipitate was dried under reduced pressure to obtain a polymer (A). The weight-average molecular weight of this polymer was 2200.
- Next, placed in a 100-mL flask were 20.0 g of styrene and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added thereto, and the mixture was allowed to react at 70° C. for 12 hours with being stirred. A granular polymer thus obtained was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours to obtain a polymer(B). The weight-average molecular weight of the polymer obtained was 200000.
- Dissolved in 20 g of toluene were 4.0 g of the polymer (A) and 6.0 g of the polymer (B), and the mixture was added to about 300 g of methanol to precipitate a solid. This solid was dried at 40° C. for 6 hours to obtain a desired white precipitate. This resin composition was hot-pressed to produce a molding material having a thickness of 2 mm. This molding material was used as a sample fragment. The above-mentioned evaluations were carried out using this sample fragment. The evaluation results are shown in Table 2.
- Placed in a 100-mL flask were 10.0 g of indene and 30.0 g of nitrobenzene, and 0.05 g of FeCl 3 was added thereto at 0° C., thereby being allowed to react for 12 hours. Thereafter, 0.05 g of methanol was added to this reaction mixture liquid, and then the liquid was stirred to obtain a homogeneous solution. The homogeneous solution thus obtained was gradually added to 100 g of methanol to obtain 9.7 g of a white precipitate. This white precipitate was dried under reduced pressure to obtain a polymer (A). The weight-average molecular weight of this polymer was 7500.
- Next, placed in a 100-mL flask were 20.0 g of styrene and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added thereto, and the mixture was allowed to react at 70° C. for 12 hours with being stirred. A granular polymer thus obtained was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours to obtain a polymer (B). The weight-average molecular weight of the polymer obtained was 200000.
- Dissolved in 20 g of toluene were 9.5 g of the polymer (A) and 0.5 g of the polymer (B), and the mixture was added to about 300 g of methanol to precipitate a solid. This solid was dried at 40° C. for 6 hours to obtain a white precipitate of a desired resin composition. This resin composition was hot-pressed to produce a molding material having a thickness of 2 mm. This molding material was used as a sample fragment. The above-mentioned evaluations were carried out using this sample fragment. The evaluation results are shown in Table 2.
TABLE 2 Comparative Example 1 Comparative Example 2 item unit Polymer A Polymer B Polymer A Polymer B Molecular weight g/mol 2200 200000 7500 200000 (Mw) Mixing ratio % by weight 40 60 95 5 Antioxidant E % by weight 0 0 Silicone amount D % by weight 0 0 Fluidity (MI) g/10 minutes 13 12 Water absorption % 0.10 0.08 Heat resistance ° C. 121 142 (Tg) Relative — 2.3 2.3 permittivity Bending strength Mpa 80 48 Transparency % 85 85 Birefringence — 5 × 10−5 Could not be measured Change in hue — 0.28 0.29 - Placed in a 100-mL flask were 10.0 g of indene and 30.0 g of nitrobenzene, and 0.05 g of FeCl 3 was added thereto at 0° C., thereby being allowed to react for 12 hours. Thereafter, 0.05 g of methanol was added to this reaction mixture liquid, and then the liquid was stirred to obtain a homogeneous solution. The homogeneous solution thus obtained was gradually added to 100 g of methanol to obtain 9.7 g of a white precipitate. This white precipitate was dried under reduced pressure to obtain a polymer (F). The weight-average molecular weight of this polymer was 7500.
- Placed in a 100-mL flask were 20.0 g of styrene and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added thereto, and the mixture was allowed to react at 70° C. for 12 hours with being stirred. A granular polymer thus obtained was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours to obtain a polymer (G). The weight-average molecular weight of the polymer obtained was 200000.
- In advance, 18.0 g of styrene, 2.0 g of p-chloromethylstyrene and 0.1 g of benzoyl peroxide were placed in a 100-mL flask, the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.1 g of calcium phosphate were added thereto, and the mixture was allowed to react at 70° C. for 12 hours with stirring. Thereafter a granular polymer was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours. Dissolved in 30 g of toluene was 6.0 g of the granular polymer thus obtained, and 4.0 g of indene was further added thereto, and the mixture was stirred until the mixture became homogeneoue. After that, 0.003 g of 2,6-bis(t-butyl)pyridine was added at 25° C. and dissolved. Then, 0.03 g of tin chloride was added, and the mixture was allowed to stand for 24 hours to obtain a graft polymer (H). After 0.05 g of methanol was added to the reaction mixture liquid thus obtained, this reaction mixture liquid was poured in methanol in an amount about 10 times that of the reaction mixture liquid of methanol, and a polymer thus formed was isolated. This polymer was dried at 40° C. for 6 hours to obtain 9.8 g of a polymer (H). The weight-average molecular weight of this polymer was 210000.
- Dissolved in 20 g of toluene were 5.5 g of the polymer (F), 3.5 g of the polymer (G), and 1.0 g of the polymer (H), and the mixture was added to about 300 g of methanol to precipitate a solid. This solid was dried at 40° C. for 6 hours to obtain a white precipitate of a desired resin composition. This resin composition was hot-pressed to produce a molding material having a thickness of 2 mm. This molding material was used as a sample fragment. The above-mentioned evaluations were carried out using this sample fragment. The evaluation results are shown in Table 3.
- Placed in a 100-mL flask were 10.0 g of indene and 30.0 g of nitrobenzene, and 0.05 g of FeCl 3 was added thereto at 0° C., thereby being allowed to react for 12 hours. Thereafter, 0.05 g of methanol was added to this reaction mixture liquid, and then the liquid was stirred to obtain a homogeneous solution. The homogeneous solution thus obtained was gradually added to 100 g of methanol to obtain 9.7 g of a white precipitate. This white precipitate was dried under reduced pressure to obtain a polymer (F). The weight-average molecular weight of this polymer was 7500.
- Placed in a 100-mL flask were 20.0 g of styrene and 0.1 g of benzoyl peroxide and the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added thereto, and the mixture was allowed to react at 70° C. for 12 hours with being stirred. A granular polymer thus obtained was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours to obtain a polymer (G). The weight-average molecular weight of the polymer obtained was 200000.
- In advance, 18.0 g of styrene, 2.0 g of p-chloromethylstyrene and 0.1 g of benzoyl peroxide were placed in a 100-mL flask, the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.1 g of calcium phosphate were added thereto, and the mixture was allowed to react at 70° C. for 12 hours with being stirred. After the reaction was allowed for a predetermined time, the granular polymer was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours. Dissolved in 30 g of toluene was 6.0 g of the granular polymer thus obtained, and 4.0 g of indene was further added thereto, and the mixture was stirred until the mixture became homogeneous. After that, 0.003 g of 2,6-bis(t-butyl)pyridine was added at 25° C. and dissolved. Then, 0.03 g of tin chloride was added, and the mixture was allowed to stand for 24 hours to obtain a graft polymer. After 0.05 g of methanol was added to the reaction mixture liquid, this reaction mixture liquid was poured in methanol in about 10 times the amount of the reaction mixture liquid of methanol, and a polymer thus formed was isolated. This polymer was dried at 40° C. for 6 hours to obtain 9.8 g of a polymer (H). The weight-average molecular weight of this polymer was 210000.
- Dissolved in 20 g of toluene were 5.5 g of the polymer (F), 3.5 g of the polymer (G), 1.0 g of the polymer (H), 0.01 g of diphenylsilicone (produced by Shin-Etsu Chemical Co., Ltd.) having a viscosity of 500 CS and 0.05 g of n-octadecyl-3-(4-hydroxy-3,5-t-dibutylphenyl)propionate, and the mixture was added to about 300 g of methanol to precipitate a solid. This solid was dried at 40° C. for 6 hours to obtain a white precipitate of a desired resin composition. This resin composition was hot-pressed to produce a molding material having a thickness of 2 mm. This molding material was used as a sample fragment. The above-mentioned evaluations were carried out using this sample fragment. The evaluation results are shown in Table 3.
- Placed in a 100-ml flask were 10.0 g of indene and 30.0 g of toluene, and 0.01 g of AlCl 3 was added thereto at 25° C., thereby being allowed to react for 6 hours. Thereafter 0.01 g of methanol was added to this reaction mixture liquid, and then the liquid was stirred to obtain a homogeneous solution. The homogeneous solution thus obtained was gradually added to 100 g of methanol to obtain 9.8 g of a white precipitate. This white precipitate was dried under reduced pressure to obtain a polymer (F). The weight-average molecular weight of this polymer was 10000.
- Placed in a 100-mL flask were 20.0 g of styrene and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added to the monomer mixture, and the mixture was allowed to react at 70° C. for 12 hours with being stirred. A granular polymer thus obtained was isolated to obtain a polymer (G). The weight-average molecular weight of the polymer obtained was 200000.
- In advance, 18.0 g of styrene, 2.0 g of p-chloromethylstyrene and 0.1 g of benzoyl peroxide were placed in a 100-mL flask, the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added to the monomer mixture, and the mixture was allowed to react at 70° C. for 12 hours with bring stirred. The granular polymer thus obtained was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours. Dissolved in 30 g of toluene was 6.0 g of the granular polymer thus obtained, and 4.0 g of indene was further added thereto, and the mixture was stirred until the mixture became homogeneous. After that, 0.003 g of 2,6-bis(t-butyl)pyridine was added at 25° C. and dissolved. Then, 0.03 g of tin chloride was added, and the mixture was allowed to stand for 24 hours to obtain a graft polymer. After 0.05 g of methanol was added to the reaction mixture liquid thus obtained, this reaction mixture liquid was poured in methanol in about 10 times the amount of the reaction mixture liquid of methanol, and a polymer thus formed was isolated. This polymer was dried at 40° C. for 6 hours to obtain 9.8 g of a polymer (H). The weight-average molecular weight of this polymer was 200000.
- Dissolved in 20 g of toluene were 6.0 g of the polymer (F), 3.5 g of the polymer (G), 0.5 g of the polymer (H), 0.01 g of diphenylsilicone (produced by Shin-Etsu Chemical Co., Ltd.) having a viscosity of 500 CS and 0.05 g of n-octadecyl-3-(4-hydroxy-3,5-t-dibutylphenyl)propionate, and the mixture was added to about 300 g of methanol to precipitate a solid. This solid was dried at 40° C. for 6 hours to obtain a desired resin composition. This resin composition was hot-pressed to produce a molding material having a thickness of 2 mm. This molding material was used as a sample fragment. The above-mentioned evaluations were carried out using this sample fragment. The evaluation results are shown in Table 3.
TABLE 3 Example 5 Example 6 Example 7 item unit Polymer F Polymer G Polymer H Polymer F Polymer G Polymer H Polymer F Polymer G Polymer H Molecular g/mol 7500 200000 210000 7500 200000 210000 10000 200000 200000 weight (Mw) Mixing ratio % by 55 35 10 55 35 10 60 35 5 weight Antioxidant E % by 0 0.5 0.5 weight Silicone amount D % by 0 0.1. 0.1 weight Fluidity (MI) g/10 18 18 22 minutes Water % 0.09 0.09 0.08 absorption Heat resistance ° C. 147 147 152 (Tg) Relative — 2.3 2.3 2.2 permittivity Bending MPa 80 80 80 strength Transparency % 85 85 85 Birefringence — 1 × 10−6 1 × 10−6 1 × 10−6 Change in hue — 0.35 0.12 0.11 - Placed in a 100-mL flask were 10.0 g of indene and 30.0 g of nitrobenzene, and 0.05 g of FeCl 3was added thereto at 0° C., thereby being allowed to react for 12 hours. Thereafter, 0.05 g of methanol was added to this reaction mixture liquid, and then the liquid was stirred to obtain a homogeneous solution. The homogeneous solution thus obtained was gradually added to 100 g of methanol to obtain 9.7 g of a white precipitate. This white precipitate was dried under reduced pressure to obtain a polymer (F). The weight-average molecular weight of this polymer was 7500.
- Placed in a 100-mL flask were 20.0 g of styrene and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, 60 g of distilled water and 0.01 g of calcium phosphate were added to the monomer mixture, and the mixture was allowed to react at 70° C. for 12 hours with being stirred. A granular polymer thus obtained was isolated and washed with hydrochloric acid. Subsequently, the polymer was dried at 50° C. for about 2 hours to obtain a polymer (G). The weight-average molecular weight of the polymer obtained was 200000.
- Dissolved in 2.0 g of toluene were 6.0 g of the polymer (E) and 4.0 g of the polymer (G), and the mixture was added to about 300 g of methanol to precipitate a solid. This solid was dried at 40° C. for 6 hours to obtain a white precipitate of a resin composition. This resin composition was hot-pressed to produce a molding material having a thickness of 2 mm. This molding material was used as a sample fragment. The above-mentioned evaluations were carried out using this sample fragment. The evaluation results are shown in Table 4.
TABLE 4 Comparative Example 3 item unit Polymer F Polymer G Molecular weight g/mol 7500 200000 (Mw) Mixing ratio % by weight 60 40 Antioxidant E % by weight 0 Silicone amount D % by weight 0 Fluidity (MI) g/10 minutes 17 Water absorption % 0.10 Heat resistance (Tg) ° C. 142 Relative permittivity — 2.3 Bending strength MPa 75 Transparency % 55 Birefringence — Could not be measured Change in hue — 0.35 - Placed in a 100-mL flask were 9.95 g of indene, 0.05 g of vinylpyridine and 30.0 g of methylene chloride, and 0.01 g of FeCl 3 was added thereto at −40° C., thereby being allowed to react for 24 hours. Thereafter, 0.05 g of methanol was added at room temperature to this reaction mixture liquid, and then the liquid was stirred to obtain a homogeneous solution. The homogeneous solution thus obtained was gradually added to 100 g of methanol to obtain 9.8 g of a white precipitate. This white precipitate was dried under reduced pressure to obtain a polymer (I). The weight-average molecular weight of this polymer was 97000.
- Placed in a 100-mL flask were 19.9 g of styrene, 0.1 g of methacrylic acid and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, the mixture was sealed and allowed to react at 70° C. for 12 hours with reflux. The polymer thus obtained was granulated and then washed with methanol. Subsequently, the polymer was dried at 50° C. for about 8 hours to obtain a polymer (J). The weight-average molecular weight of the polymer obtained was 250000.
- Dissolved in 20 g of toluene were 6.0 g of the polymer (I), 4.0 g of the polymer (J), 0.01 g of diphenylsilicone having a viscosity of 500 CS and 0.05 g of n-octadecyl-3-(4-hydroxy-3,5-t-dibutylphenyl)propionate, and the mixture was added to about 300 g of methanol to precipitate a solid. This solid was dried at 40° C. for 6 hours to obtain a desired resin composition. This resin composition was hot-pressed to produce a molding material having a thickness of 2 mm. This molding material was used as a sample fragment. The above-mentioned evaluations were carried out using this sample fragment. The evaluation results are shown in Table 5.
- Placed in a 100-mL flask were 9.95 g of indene, 0.05 g of vinylpyridine and 30.0 g of toluene, and 0.01 g of AlCl 3 was added thereto at −4° C., thereby being allowed to react for 24 hours. Thereafter, 0.05 g of methanol was added at room temperature to this reaction mixture liquid, and then the liquid was stirred to obtain a homogeneous solution. The homogeneous solution thus obtained was gradually added to 100 g of methanol to obtain 9.7 g of a white precipitate. This white precipitate was dried under reduced pressure to obtain a polymer (I). The weight-average molecular weight of this polymer was 50000.
- Placed in a 100-mL flask were 19.8 g of styrene, 0.2 g of methacrylic acid and 0.1 g of benzoyl peroxide, and the mixture was stirred to dissolve. Then, the mixture was sealed and allowed to react at 70° C. for 12 hours with reflux. A polymer thus obtained was granulated and then washed with methanol. Subsequently, the polymer was dried at 50° C. for about 8 hours to obtain a polymer (J). The weight-average molecular weight of the polymer obtained was 250000.
- Dissolved in 20 g of toluene were 6.0 g of the polymer (I), 4.0 g of the polymer (J), 0.01 g of diphenylsilicone (produced by Shin-Etsu Chemical Co., Ltd.) having a viscosity of 500 CS and 0.05 g of n-octadecyl-3-(4-hydroxy-3,5-t-dibutylphenyl)propionate, and the mixture was added to about 300 g of methanol to precipitate a solid. This solid was dried at 40° C. for 6 hours to obtain a desired resin composition. This resin composition was hot-pressed to produce a molding material having a thickness of 2 mm. This molding material was used as a sample fragment. The above-mentioned evaluations were carried out using this sample fragment. The evaluation results are shown in Table 5.
TABLE 5 Example 8 Example 9 item unit Polymer I Polymer J Polymer I Polymer J Molecular weight g/mol 97000 250000 50000 250000 (MW) Mixing ratio % by weight 60 40 60 40 Heterocycle mol % 0.55 0 0.55 0 amount Carboxyl group mol % 0 0.53 0 1.06 amount Heterocycle/carboxyl mol/mol 1.04 0.52 group ratio Antioxidant E % by weight 0.5 0.5 Silicone amount D % by weight 0.1 0.1 Fluidity (MI) g/10 minutes 15 12 Water absorption % 0.10 0.11 Heat resistance ° C. 147 142 (Tg) Relative — 2.3 2.3 permittivity Bending strength Mpa 80 82 Transparency % 85 86 Birefringence — 1 × 10−6 1 × 10−6 Change in hue — 0.12 0.11 - An experiment was carried out in the same manner as in Example 7 except using only 10.0 g of indene and not using vinylpyridine and methylene chloride in the synthesis of the polymer (I), and using only 20.0 g of styrene and not using methacrylic acid in the synthesis of the polymer (H). The above-mentioned evaluations were conducted using this sample fragment. The evaluation results are shown in Table 6.
- An experiment was carried out in the same manner as in Example 7 except not using 0.01 g of diphenylsilicone having a viscosity of 500 CS (produced by Shin-Etsu Chemical Co., Ltd.) and 0.05 g of n-octadecyl-3-(4-hydroxy-3,5-t-dibutylphenyl)propionate. The above-mentioned evaluations were conducted using this sample fragment. The evaluation results are shown in Table 6.
TABLE 6 Comparative Example 4 Comparative Example 5 item unit Polymer I Polymer J Polymer I Polymer J Molecular weight g/mol 15000 250000 15000 250000 (Mw) Mixing ratio % by weight 60 40 60 40 Heterocycle mol % 0 0 0.55 0 amount Carboxyl group mol % 0 0 0 0.53 amount Heterocycle/carboxyl mol/mol — 1.04 group ratio Antioxidant E % by weight 0.5 0 Silicone amount D % by weight 0.1 0 Fluidity (MI) %/ 14 15 10 minutes Water absorption % 0.09 0.09 Heat resistance ° C. 142 143 (Tg) Relative — 2.2 2.2 permittivity Bending strength MPa 80 80 Transparency % 42 85 Birefringence — 1 × 10−6 1 × 10−6 Change in hue — 0.15 3.7 - The present invention can provide resin compositions having low hygroscopicity, low birefringence and low permittivity, being excellent in fluidity, causing little change in color upon heating, and excelling in mold release characteristics in injection molding. Furthermore, the use of a molding material, a sheet or a film obtained by molding these resin compositions can provide an optical part having low hygroscopicity, low birefringence and low permittivity.
Claims (11)
1. A resin composition (a) for use in optical parts, comprising the following polymers (A) and either or both of (B) and (C):
(A) a polymer comprising monomer units which are one or more kinds of indene and indene derivatives represented by the following general formula (I);
(B) a polymer consisting of monomer units which are styrene or styrene derivatives;
(C) a polymer comprising monomer units which are styrene or styrene derivatives, and a monomer unit copolymerizable with styrene or a styrene derivative selected from the group consisting of styrene, nucleus-substituted alkylstyrenes, nucleus-substituted aromatic styrenes, α-substituted alkylstyrenes, β-substituted alkylstyrenes, nucleus-substituted alkoxystyrenes, alkyl vinyl ethers, aromatic vinyl ethers, isobutene, diisobutylene, and (meth)acrylic esters having 1 to 8 carbon atoms:
wherein R1, R2, R3, R4, and R5 may be the same or different, and each represents a hydrogen atom; a monovalent hydrocarbon group containing a nitrogen atom, an oxygen atom or a silicon atom; an alkyl group having 1 to 6 carbon atoms; or a monovalent aromatic hydrocarbon group; X represents a hydrogen atom, a halogen atom, an acyl group, an alkoxy group or a nitrile group; x represents an integer of 0 to 4, and y represents an integer of 1 to 4, where x+y=4, wherein the saturated water absorption is 0.4% or less, and the birefringence in stretching the resin composition by 200% is in the range of −2×10−6 to 2×10−6.
2. The resin composition (a) according to claim 1 , wherein a diphenylsilicone (D) and/or a phenolic antioxidant (E) are/is added to the resin composition comprising the polymers (A) and either or both (B) and (C).
3. (Cancelled)
4. The resin composition (a) according to claim 1 , wherein the weight-average molecular weight of the polymer (A) is lower than 80000.
5. The resin composition (a) according to claim 1 , wherein the weight-average molecular weight(s) of the polymer (B) and/or the polymer (C) are/is 50000 or higher.
6. The resin composition (a) according to claim 1 , wherein the content of the polymer (A) is 30 to 90% by weight of the total of the resin composition (a).
7-18. (Canceled).
19. A molding material for use in optical parts, the molding material being obtained by molding a resin composition (a) according to claim 1 .
20. A sheet for use in optical parts, the sheet being obtained from a resin composition (a) according to claim 1 .
21. A film for use in optical parts, the film being obtained from a resin composition (a) according to claim 1 .
22. (Canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/847,195 US20040220342A1 (en) | 1999-06-28 | 2004-05-17 | Low-hygroscopicity low-birefringence resin compositions, molding material, sheet or film obtained therefrom, and optical part |
Applications Claiming Priority (12)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP18118199 | 1999-06-28 | ||
| JP11-181181 | 1999-06-28 | ||
| JP11-181182 | 1999-06-28 | ||
| JP18118299 | 1999-06-28 | ||
| JP2000024776 | 2000-01-28 | ||
| JP2000-24776 | 2000-01-28 | ||
| JP2000024774 | 2000-01-28 | ||
| JP2000024775 | 2000-01-28 | ||
| JP2000-24774 | 2000-01-28 | ||
| JP2000-24775 | 2000-01-28 | ||
| US10/019,753 US6900273B1 (en) | 1999-06-28 | 2000-06-27 | Low-hygroscopicity low-birefringence resin compositions, molding material obtained therefrom, sheet or film, and optical part |
| US10/847,195 US20040220342A1 (en) | 1999-06-28 | 2004-05-17 | Low-hygroscopicity low-birefringence resin compositions, molding material, sheet or film obtained therefrom, and optical part |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2000/004215 Continuation WO2001000728A1 (en) | 1999-06-28 | 2000-06-27 | Low-hygroscopicity low-birefringence resin compositions, molding material obtained therefrom, sheet or film, and optical part |
| US10/019,753 Continuation US6900273B1 (en) | 1999-06-28 | 2000-06-27 | Low-hygroscopicity low-birefringence resin compositions, molding material obtained therefrom, sheet or film, and optical part |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20040220342A1 true US20040220342A1 (en) | 2004-11-04 |
Family
ID=27528797
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/019,753 Expired - Fee Related US6900273B1 (en) | 1999-06-28 | 2000-06-27 | Low-hygroscopicity low-birefringence resin compositions, molding material obtained therefrom, sheet or film, and optical part |
| US10/847,195 Abandoned US20040220342A1 (en) | 1999-06-28 | 2004-05-17 | Low-hygroscopicity low-birefringence resin compositions, molding material, sheet or film obtained therefrom, and optical part |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/019,753 Expired - Fee Related US6900273B1 (en) | 1999-06-28 | 2000-06-27 | Low-hygroscopicity low-birefringence resin compositions, molding material obtained therefrom, sheet or film, and optical part |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US6900273B1 (en) |
| EP (1) | EP1205517A4 (en) |
| KR (1) | KR20020026474A (en) |
| WO (1) | WO2001000728A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100272971A1 (en) * | 2007-12-28 | 2010-10-28 | Nippon Shokubai Co., Ltd. | Optical film and image display apparatus having the same |
| US20190039359A1 (en) * | 2016-02-05 | 2019-02-07 | Mitsubishi Gas Chemical Company, Inc. | Stretched multilayer thermoplastic resin film |
Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3888941A (en) * | 1974-02-26 | 1975-06-10 | Uniroyal Inc | Modified abs polymers |
| US4066717A (en) * | 1975-12-24 | 1978-01-03 | The Standard Oil Company | Thermoplastic resin compositions comprising polyindene or coumarone-indene resin |
| US4082820A (en) * | 1977-06-15 | 1978-04-04 | The Standard Oil Company | High softening maleic anhydride copolymers |
| US4100226A (en) * | 1976-12-23 | 1978-07-11 | The Standard Oil Company | Indene-chlorobutyl rubber copolymers |
| US4105713A (en) * | 1974-11-18 | 1978-08-08 | Agence Nationale De Valorisation De La Recherche (Anvar) | Polymers and copolymers of indene |
| US4195135A (en) * | 1977-10-28 | 1980-03-25 | Standard Oil Company | Thermoplastic nitrile resin blends |
| US4267066A (en) * | 1979-10-17 | 1981-05-12 | International Flavors & Fragrances Inc. | Process for augmenting or enhancing the aroma of detergent using derivatives of cis-3-hexenol |
| US4326045A (en) * | 1975-12-24 | 1982-04-20 | The Standard Oil Company | Thermoplastic resins containing coumarone-indene resin or polyindene |
| US4432607A (en) * | 1981-10-27 | 1984-02-21 | Bell Telephone Laboratories, Incorporated | Hot melt coated optical fiber |
| US4492428A (en) * | 1981-10-27 | 1985-01-08 | At&T Bell Laboratories | Coated optical fiber |
| US4600747A (en) * | 1983-09-17 | 1986-07-15 | Bayer Aktiengesellschaft | ABS-moulding compositions with improved flame resistance |
| US4603186A (en) * | 1985-10-21 | 1986-07-29 | The Standard Oil Company | Tetrapolymers containing indene |
| US5124240A (en) * | 1989-04-11 | 1992-06-23 | Sibylle Brosius | Optical recording medium |
| US5229449A (en) * | 1988-06-30 | 1993-07-20 | Kawasaki Steel Corporation | Copolymer of polymerizable components in naphtha oil and maleic anhydride, process for producing said copolymer, and derivatives thereof |
| US5753775A (en) * | 1993-07-31 | 1998-05-19 | Basf Aktiengesellschaft | Sulfonated and oxidized indene polymers |
| US6228944B1 (en) * | 1999-06-24 | 2001-05-08 | The Goodyear Tire & Rubber Company | Polymeric resinous material derived from limonene, dimethyl-dicyclopentadiene, indene and vinyl toluene |
| US6265478B1 (en) * | 1999-08-18 | 2001-07-24 | The Goodyear Tire & Rubber Company | Polymeric resinous material derived from limonene dicyclopentadiene indene and alpha-methyl styrene |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4267086A (en) * | 1976-01-07 | 1981-05-12 | Ford Motor Company | Sacraficial binders for molding particulate solids |
| EP0393685A1 (en) * | 1989-04-20 | 1990-10-24 | Kawasaki Steel Corporation | Imidated copolymers and uses thereof |
| JPH04323246A (en) * | 1991-04-24 | 1992-11-12 | Mitsubishi Kasei Corp | Indene polymer composition |
| JPH10231403A (en) * | 1997-02-19 | 1998-09-02 | Arakawa Chem Ind Co Ltd | Aromatic vinyl resin composition |
| JPH11246733A (en) * | 1997-12-04 | 1999-09-14 | Kanegafuchi Chem Ind Co Ltd | Thermoplastic resin composition |
| JP2002003706A (en) * | 2000-06-26 | 2002-01-09 | Hitachi Chem Co Ltd | Low-hygroscopic and low-birefringence resin composition, molding material, sheet or film obtained therefrom, and part for optics |
-
2000
- 2000-06-27 EP EP00940857A patent/EP1205517A4/en not_active Withdrawn
- 2000-06-27 US US10/019,753 patent/US6900273B1/en not_active Expired - Fee Related
- 2000-06-27 WO PCT/JP2000/004215 patent/WO2001000728A1/en not_active Ceased
- 2000-06-27 KR KR1020017016691A patent/KR20020026474A/en not_active Withdrawn
-
2004
- 2004-05-17 US US10/847,195 patent/US20040220342A1/en not_active Abandoned
Patent Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3888941A (en) * | 1974-02-26 | 1975-06-10 | Uniroyal Inc | Modified abs polymers |
| US4105713A (en) * | 1974-11-18 | 1978-08-08 | Agence Nationale De Valorisation De La Recherche (Anvar) | Polymers and copolymers of indene |
| US4066717A (en) * | 1975-12-24 | 1978-01-03 | The Standard Oil Company | Thermoplastic resin compositions comprising polyindene or coumarone-indene resin |
| US4326045A (en) * | 1975-12-24 | 1982-04-20 | The Standard Oil Company | Thermoplastic resins containing coumarone-indene resin or polyindene |
| US4100226A (en) * | 1976-12-23 | 1978-07-11 | The Standard Oil Company | Indene-chlorobutyl rubber copolymers |
| US4082820A (en) * | 1977-06-15 | 1978-04-04 | The Standard Oil Company | High softening maleic anhydride copolymers |
| US4195135A (en) * | 1977-10-28 | 1980-03-25 | Standard Oil Company | Thermoplastic nitrile resin blends |
| US4267066A (en) * | 1979-10-17 | 1981-05-12 | International Flavors & Fragrances Inc. | Process for augmenting or enhancing the aroma of detergent using derivatives of cis-3-hexenol |
| US4432607A (en) * | 1981-10-27 | 1984-02-21 | Bell Telephone Laboratories, Incorporated | Hot melt coated optical fiber |
| US4492428A (en) * | 1981-10-27 | 1985-01-08 | At&T Bell Laboratories | Coated optical fiber |
| US4600747A (en) * | 1983-09-17 | 1986-07-15 | Bayer Aktiengesellschaft | ABS-moulding compositions with improved flame resistance |
| US4603186A (en) * | 1985-10-21 | 1986-07-29 | The Standard Oil Company | Tetrapolymers containing indene |
| US5229449A (en) * | 1988-06-30 | 1993-07-20 | Kawasaki Steel Corporation | Copolymer of polymerizable components in naphtha oil and maleic anhydride, process for producing said copolymer, and derivatives thereof |
| US5124240A (en) * | 1989-04-11 | 1992-06-23 | Sibylle Brosius | Optical recording medium |
| US5753775A (en) * | 1993-07-31 | 1998-05-19 | Basf Aktiengesellschaft | Sulfonated and oxidized indene polymers |
| US6228944B1 (en) * | 1999-06-24 | 2001-05-08 | The Goodyear Tire & Rubber Company | Polymeric resinous material derived from limonene, dimethyl-dicyclopentadiene, indene and vinyl toluene |
| US6265478B1 (en) * | 1999-08-18 | 2001-07-24 | The Goodyear Tire & Rubber Company | Polymeric resinous material derived from limonene dicyclopentadiene indene and alpha-methyl styrene |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100272971A1 (en) * | 2007-12-28 | 2010-10-28 | Nippon Shokubai Co., Ltd. | Optical film and image display apparatus having the same |
| EP2237086A4 (en) * | 2007-12-28 | 2010-12-15 | Nippon Catalytic Chem Ind | Optical film and image forming apparatus having the same |
| US20190039359A1 (en) * | 2016-02-05 | 2019-02-07 | Mitsubishi Gas Chemical Company, Inc. | Stretched multilayer thermoplastic resin film |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1205517A4 (en) | 2005-01-26 |
| EP1205517A1 (en) | 2002-05-15 |
| US6900273B1 (en) | 2005-05-31 |
| KR20020026474A (en) | 2002-04-10 |
| WO2001000728A1 (en) | 2001-01-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4338951B2 (en) | Soluble polyfunctional vinyl aromatic copolymer and polymerization method thereof | |
| US20020123586A1 (en) | Organic anti-reflective coating polymer, anti-reflective coating composition methods of preparation thereof | |
| KR20170012060A (en) | Colored photosensitive composition | |
| US6900273B1 (en) | Low-hygroscopicity low-birefringence resin compositions, molding material obtained therefrom, sheet or film, and optical part | |
| JP5216744B2 (en) | High heat-resistant acrylic copolymer and method for producing the same | |
| WO2004089996A1 (en) | Modified cycloolefin copolymer, process for producing the same, and use of the polymer | |
| JP5457160B2 (en) | Soluble polyfunctional (meth) acrylic acid ester copolymer having alicyclic structure and method for producing the same | |
| JP2002003706A (en) | Low-hygroscopic and low-birefringence resin composition, molding material, sheet or film obtained therefrom, and part for optics | |
| US6562925B2 (en) | Organic anti-reflective coating polymer, anti-reflective coating composition and methods of preparation thereof | |
| JPWO2001000728A1 (en) | Low moisture absorption and low birefringence resin composition, molding material, sheet or film obtained therefrom, and optical component | |
| JP5596390B2 (en) | Soluble polyfunctional (meth) acrylic acid ester copolymer having alcoholic hydroxyl group and method for producing the same | |
| US6582883B2 (en) | Organic anti-reflective coating polymer, anti-reflective coating composition and methods of preparation thereof | |
| JP2002003683A (en) | Resin composition low in both hygroscopic property and birefringence and forming material, sheet of film and optical parts obtained from the resin composition | |
| JP2001089537A (en) | Indene-containing polymer, molding material, sheet or film and optical part obtained from the same polymer | |
| JP2002003547A (en) | Acenaphthylene derivative-containing copolymer, and molding material, sheet or film and optical part obtained by using the same | |
| JP2002003684A (en) | Resin composition low in both hygroscopic property and birefringence and forming material, sheet or film and optical parts obtained from the resin composition | |
| JP2006124569A (en) | Maleimide copolymer, process for producing the same, and optical film obtained therefrom | |
| JP3284216B2 (en) | Method for producing copolymer | |
| JP2002003685A (en) | Resin composition low in both hygroscopic property and birefringence and forming material, sheet or film and optical parts obtained from the resin composition | |
| KR102693069B1 (en) | Polymer composition | |
| JP2002003556A (en) | Copolymer containing acenaphthylene derivertive and molding material, sheet or film, and optical part obtained form the same | |
| JP2002003544A (en) | Copolymer having acenaphthylene derivative,and molding material, sheet or film and optical part obtained from the same | |
| JP2002003682A (en) | Resin composition low in both hydroscopic property and birefringence and molding materials sheet or film and optical parts obtained from the resin composition | |
| JPH06220106A (en) | Method for producing copolymer | |
| KR100387311B1 (en) | Branched styrene-based thermoplastic resin and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |