[go: up one dir, main page]

US20040173222A1 - Magnetic pellets and external electromagnetic device for assisting left ventricular contraction, method of pellet insertion, and method of ventricular electromagnetic assistance - Google Patents

Magnetic pellets and external electromagnetic device for assisting left ventricular contraction, method of pellet insertion, and method of ventricular electromagnetic assistance Download PDF

Info

Publication number
US20040173222A1
US20040173222A1 US10/475,563 US47556304A US2004173222A1 US 20040173222 A1 US20040173222 A1 US 20040173222A1 US 47556304 A US47556304 A US 47556304A US 2004173222 A1 US2004173222 A1 US 2004173222A1
Authority
US
United States
Prior art keywords
pellet
electromagnetic
pellets
wall
heart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/475,563
Other languages
English (en)
Inventor
Young Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Native Cardio Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/475,563 priority Critical patent/US20040173222A1/en
Publication of US20040173222A1 publication Critical patent/US20040173222A1/en
Assigned to NATIVE CARDIO, INC. reassignment NATIVE CARDIO, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, YOUNG D.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/06Magnetotherapy using magnetic fields produced by permanent magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/457Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being magnetic
    • A61M60/462Electromagnetic force
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3303Using a biosensor

Definitions

  • the present invention relates to the field of artificially stimulating contraction in the heart. More particularly, the invention relates to a device and a method for stimulating electromagnetically contraction of the left ventricle.
  • CHF congestive heart failure
  • heart transplantation is considered the most effective therapy for end-stage CHF.
  • heart transplantation presents multiple problems, including: (1) a shortage of donor hearts; (2) a significant perioperative morbidity/mortality rate; (3) the requirement of immune suppression; and (4) a less than ideal long-term survival rate. Accordingly, there is a crucial need for the development of alternatives to heart transplantation.
  • LVAD left ventricular assist device
  • wearable power supplies for this device has made the following possible: (1) a patient's rehabilitation; (2) unrestricted patient mobility; (3) patient discharge to the home; and (4) a patient's ability to return to work.
  • an LVAD may have some advantages over heart transplantation, an LVAD still presents many serious limitations for long-term use.
  • a virtual ventricular assist device herein disclosed, is designed to overcome many of the aforementioned limitations of an LVAD.
  • a VVAD for long-term use, a VVAD: (1) can be used for CHF patients without structural defects (i.e., congenital or acquired valvular diseases); (2) requires no major surgery to implant and, therefore, avoids the early complications mentioned above; (3) requires no foreign materials to interact with the surface of the ventricular cavity or conduit vessels and, therefore, avoids the late complications mentioned above; (4) can be used for the right as well as the left ventricle; and (5) eliminates the need for anticoagulants.
  • the VVAD consists of essentially two components: (a) implantable magnetic pellets implanted through a delivery catheter; and (b) an external electromagnetic device which, when cyclically charged, attracts or repels the pellets depending on their corresponding charge.
  • the term “pellet” is not to be limited to ball shaped materials; it is to be construed to include many other shapes including that of a plate or umbrella.
  • the pellets are “magnetic” in the sense that they react to magnetic fields in a manner similar to metals due to the presence of free electrons which orient themselves in response to a magnetic field; the pellets themselves are not charged.
  • the implantable pellets are spring-winged, contain materials which are responsive to magnetic fields, and are vacuum-sealed within a polyurethane membrane (or any other biologically inert, synthetic material).
  • the pellets have a myocardial wall contact portion to which a plurality of wings is hingedly connected.
  • the pellets are deployed percutaneously to the mid-layer of the targeted myocardial wall through a major artery using a delivery catheter. It is also possible to implant the pellets through the chest wall and into a mid-layer of the targeted myocardium; this transthoracic implantation requires a minimally invasive surgical procedure using a thoracic endoscope.
  • pellets made of diamagnetic metals are implanted in or on the posterior wall of the left ventricle (LV) whereas pellets made of ferromagnetic metals (e.g., iron or cobalt) are implanted in or on the anterior wall of the left ventricle.
  • the shape of the pellet will depend on the location in which they are fixed and by the method by which they are introduced into the ventricle.
  • the implantable magnetic pellets can be plate shaped or umbrella shaped like a shell so that they can be implanted on the surface of the targeted myocardium.
  • the external electromagnetic device (which is battery operated and light enough to be worn in the chest wall) generates an electromagnetic force which is synchronized with an EKG, at least one lead of which monitors the user's heart rate.
  • This electromagnetic device may be external or internal to the chest wall. Onset of the force corresponds to the EKG's R wave whereas offset of the force corresponds to the EKG's T wave. Due to the charge of the electromagnetic field, pellets implanted in the posterior wall of the left ventricle will be pulled toward the electromagnetic device while the pellets in the anterior wall of the left ventricle will be correspondingly pushed away from the electromagnetic device. Due to this opposite motion, a compression of the left ventricle occurs.
  • Pellets are implanted into the myocardium after being introduced into the body via a delivery catheter.
  • the delivery catheter contains a mobile electromagnetic rod which is approximately 7 mm in length.
  • the delivery catheter (preferably size 7 FOD, 120 cm) can be introduced into the body by means of a introducer catheter set which can be any commercially available percutaneous introducer set of size 8 F. If the delivery catheter can be introduced percutaneoulsy through a femoral artery, it is guided into the left ventricle by an external magnetic system working in conjunction with a fluorscope. In the alternative, the delivery catheter can be introduced through a transthoracic-epicardial route; this is a video-assisted method in which the pellets are implanted trans-epicardially into the targeted myocardium.
  • a spring-winged pellet is attached to the distal end of the electromagnetic rod.
  • a wire (within the catheter) connects the proximal end of rod to an electromagnetic power generator and thereby supplies current to the rod; the current charges the electromagnetic rod thereby creating an electromagnetic field around the rod.
  • the electromagnetic field causes the wings of the spring-winged pellet to overcome their otherwise extended orientation and thereby to collapse on the electromagnetic rod.
  • the pellet is maintained in this fashion until it is positioned within the myocardium.
  • the catheter tip is forcefully anchored against the endo-myocardial wall by an external magnet. An injection syringe then hydraulically forces the rod with the pellet into the myocardium.
  • the current supplied to the electromagnetic rod via the wire is discontinued causing the wings to open thereby preventing the pellet from travelling backwards (i.e., in the direction of the delivery catheter when the catheter is removed). After the wings have opened, the rod is hydraulically pulled back into the catheter which is then removed from the body.
  • pellets should be deployed one at a time.
  • 3 or 4 pellets (or as many as needed) should be positioned in each ventricular myocardial wall (i.e., anterior and posterior) and should be distributed to cover 6-15 square cm of myocardial area.
  • the present invention includes a novel magnetic spring-winged pellet, a method of inserting the pellet, and a method of treating congestive heart failure using spring-winged pellets implanted in or on the myocardial walls of a ventricle in conjunction with an external electromagnetic field generator.
  • One embodiment of the spring-winged pellet includes: (a) a contact portion; and (b) a plurality of wings.
  • each wing has a distal end portion hingedly connected to the contact portion and each wing has a proximal end portion which bends toward the proximal end portions of the other wings when an electromagnetic field is applied to the pellet.
  • One method of inserting a magnetic pellet into a myocardial wall of a heart includes: (a) supplying an electromagnetic field to the pellet which has a plurality of spring-wings and which is attached to a distal end of an electromagnetic rod which is positioned within a delivery catheter; (b) positioning the magnetic pellet at a target area on the myocardial wall; (c) using an injection syringe positioned at a proximal end of the catheter to force the pellet into the myocardial wall; and (d) removing the electromagnetic field previously supplied to the pellet and thereby causing the spring-wings to open.
  • the myocardial wall into which the pellets are inserted is in the heart's left ventricle.
  • the wall can be either a posterior wall or an anterior wall of the left ventricle.
  • the pellets may also be inserted into the myocardial wall of the right ventricle wall using a transthoracic insertion.
  • the electromagnetic field is preferably created by external electromagnetic generator which is electrically connected to a proximal end of the electromagnetic rod by a wire.
  • a preferred method of treating a patient's congestive heart failure includes: (a) positioning a first plurality of magnetic spring-winged pellets in a myocardium of posterior wall of a ventricle of a heart; (b) positioning a second plurality of magnetic spring-winged pellets in a myocardium of an anterior wall of a ventricle of a heart; (c) using an electromagnetic generator to cyclically generate an electromagnetic field which magnetically interacts with the first and the second plurality of pellets; (d) magnetically pulling, in response to the cyclical electromagnetic field, the first plurality of pellets toward the electromagnetic generator; and (e) magnetically pushing, in response to the cyclical electromagnetic field, the second plurality of pellets away from the electromagnetic generator.
  • this method also includes: (f) positioning an EKG monitor on the patient and generating a waveform of the heart's electrical activity; and (g) synchronizing the cyclical electromagnetic field to correspond to the heart's electrical activity.
  • FIG. 1 a is a longitudinal view of an electromagnetic rod to which a pellet is attached such that the spring-wings are collapsed on the sides of the rod;
  • FIG. 1 b is a longitudinal view of the electromagnetic rod of FIG. 1 a in which the electromagnetic field supplied to the pellet has been removed causing the spring-wings to open;
  • FIG. 2 a is an end view of a magnetic pellet showing the spring-wings in a collapsed orientation
  • FIG. 2 b is an end view of a discharged pellet showing the spring-wings in an open orientation
  • FIG. 3 is a longitudinal view of a delivery catheter containing an electromagnetic rod to which a pellet is attached;
  • FIG. 4 is a longitudinal view of the delivery catheter of FIG. 3 in which an injection syringe is positioned at a proximal end of the catheter;
  • FIG. 5 is a cross-sectional view of a left ventricle of a heart in which magnetic pellets have been placed in the anterior and posterior myocardial walls.
  • FIGS. 1A-2B detail an electromagnetic pellet 10 which is inserted into a left ventricle 20 (shown in FIG. 5) of a patient.
  • the pellets 10 react to magnetic fields in a manner similar to metals due to the presence of free electrons which orient themselves in response to a magnetic field; the pellets 10 themselves are not charged.
  • the structure of the two sets of pellets 10 will be described herein will be identical; the only difference is that one of the sets of pellets 10 are diamagnetic (e.g., bismuth or antimony) and the other set of pellets 10 is ferromagnetic (e.g., iron or cobalt).
  • the pellet 10 is formed of a plurality of wings 12 and a sharp pointed contact portion 14 .
  • the pellet 10 has two configurations: a closed configuration (FIG. 1A, 2A) in which the wings 12 approach each other; and an open configuration (FIGS. 1B, 2B) in which the wings 12 project away from each other.
  • the pellet 10 has at least two wings 12 , it is preferable to have at least four wings 12 .
  • Each of the wings 12 has a distal end 16 and a proximal 18 .
  • the distal ends 16 of the wings 12 are hingedly attached to the contact portion 14 of the pellet 10 .
  • the proximal 18 is preferably blunt so that the plurality of wings 12 may act as a barb when the pellet 10 is in the open configuration.
  • the wings 18 are biased toward the open configuration, such bias can be achieved according to a number of conventional mechanisms including a living hinge, being spring loaded, etc. However, it is preferable that the wings 12 be biased by a living hinge. This bias, however, can be overcome as later explained.
  • the pellet 10 When in the closed position, the pellet 10 has a height H of approximately 1.5 mm. In the open position, however, the pellet 10 has a height of approximately 4.0-5.0 mm.
  • the pellets 10 are introduced into a patient by being carried on an electromagnetic rod 30 which is about 7 mm long.
  • a conductive wire 34 is connected, on one end, to the electromagnetic rod 30 and at the other end, to an electromagnetic power source 50 .
  • a pellet 10 in the open position is placed on the end of the rod 30 .
  • current is sent via the wire 34 to the electromagnetic rod 30 thereby charging the rod 30 .
  • the rod 30 will be charged so that it emits an electromagnetic field that will attract the wings 12 of the ferromagnetic pellets 10 .
  • the ferromagnetic wings 12 are magnetically drawn onto the sides of the rod thereby placing the pellet 10 in the closed configuration.
  • the rod 30 with the 10 pellet attached thereto, is then journalled into a catheter 32 .
  • the catheter 32 with the rod 30 and pellet 10 therein, is then directed, via a femoral artery such as the aorta 22 , to a chamber of a heart 24 of a patient.
  • a femoral artery such as the aorta 22
  • the catheter is also possible to direct the catheter to the ventricles transthoracically, i.e., sending the catheter through the patient's chest wall 26 , rather than through a femoral artery.
  • the ferromagnetic pellet 10 When in the left ventricle 20 , the ferromagnetic pellet 10 is placed adjacent the anterior wall 25 of the left ventricle 20 . The pellet is firmly held in position against the endo-cardial wall 25 by an external magnet positioned outside of the patient's chest wall 26 . The sharp contact portion 14 of the pellet 10 is then forced into the myocardium of the anterior wall 25 by an injection syringe which hydraulically forces the rod 30 with the pellet 10 attached thereto into the myocardium of the wall 25 . The pellet 10 is inserted so that the contact portion 14 is about 10 mm into the wall 25 . As the pellet 10 , when in the open configuration has a length L of about 5 mm high, the pellet 10 will be completely submerged in the anterior wall 25 to a depth of approximately 5 mm.
  • the current sent to the electromagnetic rod 30 is then discontinued thereby removing the charge originally added to the rod 30 .
  • the wings 12 of the pellet 10 will return to their biased open configuration.
  • the proximal ends 18 of the wings 12 are blunt and will, therefore, not easily cut through the tissue of the anterior wall 25
  • the wings 12 of the pellet 10 will act as a barb maintaining the ferromagnetic pellet 10 in the anterior wall 25 .
  • This process is repeated until a sufficient number of ferromagnetic pellets 10 are implanted in the anterior wall 25 of the left ventricle 20 .
  • at least three or four ferromagnetic pellets 10 will be implanted in the anterior wall 25 and are distributed over an area of about 6-15 cm 2 .
  • the catheter 32 is removed from the patient.
  • an electromagnetic generator 40 can be placed on the patient's chest wall 26 .
  • the pellets 10 in the anterior wall 25 will be pushed away from the electromagnetic generator 40 while the pellets 10 in the posterior chest wall 27 will be pulled toward the electromagnetic generator 40 .
  • the result is an artificially assisted contraction of the left ventricle 20 .
  • the electrical activity in the heart 24 generated in response to the contraction of the left ventricle 20 , can be monitored with a conventional EKG monitor (not shown) having leads 46 attached to the patient's chest wall 26 . Further, the EKG can output a waveform representative of the electrical activity which a doctor can interpret to determine whether the heart 24 is functioning appropriately. Finally, the cyclical electromagnetic field generated by the electromagnetic generator 40 can be adjusted in response to the output of the EKG. The adjustment may be manual and/or automatic, if the EKG and the electromagnetic generator 40 are connected to a computer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electrotherapy Devices (AREA)
  • External Artificial Organs (AREA)
  • Prostheses (AREA)
US10/475,563 2001-04-24 2002-04-23 Magnetic pellets and external electromagnetic device for assisting left ventricular contraction, method of pellet insertion, and method of ventricular electromagnetic assistance Abandoned US20040173222A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/475,563 US20040173222A1 (en) 2001-04-24 2002-04-23 Magnetic pellets and external electromagnetic device for assisting left ventricular contraction, method of pellet insertion, and method of ventricular electromagnetic assistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28570701P 2001-04-24 2001-04-24
PCT/US2002/012703 WO2002085190A2 (fr) 2001-04-24 2002-04-23 Dispositifs magnetiques et dispositif electromagnetique exterieur d'aide a la contraction ventriculaire gauche, procede d'insertion de dispositifs, et procede d'assistance electomagnetique ventriculaire
US10/475,563 US20040173222A1 (en) 2001-04-24 2002-04-23 Magnetic pellets and external electromagnetic device for assisting left ventricular contraction, method of pellet insertion, and method of ventricular electromagnetic assistance

Publications (1)

Publication Number Publication Date
US20040173222A1 true US20040173222A1 (en) 2004-09-09

Family

ID=23095382

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/475,563 Abandoned US20040173222A1 (en) 2001-04-24 2002-04-23 Magnetic pellets and external electromagnetic device for assisting left ventricular contraction, method of pellet insertion, and method of ventricular electromagnetic assistance
US10/170,625 Expired - Lifetime US6604529B2 (en) 2001-04-24 2002-06-14 External electromagnetic system for assisting systolic and diastolic ventricular function, and method therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/170,625 Expired - Lifetime US6604529B2 (en) 2001-04-24 2002-06-14 External electromagnetic system for assisting systolic and diastolic ventricular function, and method therefor

Country Status (3)

Country Link
US (2) US20040173222A1 (fr)
AU (1) AU2002307477A1 (fr)
WO (1) WO2002085190A2 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090143748A1 (en) * 2007-08-09 2009-06-04 Boston Scientific Scimed, Inc Catheter Devices for Myocardial Injections or Other Uses
WO2016164604A1 (fr) * 2015-04-07 2016-10-13 Makey Ian Dispositif de pose d'un tube thoracique
US10349982B2 (en) 2011-11-01 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US11234849B2 (en) 2006-10-20 2022-02-01 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US11439449B2 (en) 2014-12-26 2022-09-13 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11612416B2 (en) 2015-02-19 2023-03-28 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020339A1 (fr) * 1997-10-17 1999-04-29 Respironics, Inc. Dispositif et procede de stimulation musculaire pour le diagnostic et le traitement de troubles respiratoires
US7445010B2 (en) * 2003-01-29 2008-11-04 Torax Medical, Inc. Use of magnetic implants to treat issue structures
US7695427B2 (en) 2002-04-26 2010-04-13 Torax Medical, Inc. Methods and apparatus for treating body tissue sphincters and the like
US7175589B2 (en) * 2002-07-02 2007-02-13 The Foundry Inc. Methods and devices for luminal and sphincter augmentation
WO2005018468A2 (fr) * 2003-08-11 2005-03-03 Wilson-Cook Medical Inc. Implant chirurgical
US20060009672A1 (en) * 2004-07-12 2006-01-12 Sumit Verma Atrial fibrillation treatment and method
JP4896014B2 (ja) * 2004-07-15 2012-03-14 ミカルディア・コーポレーション 心臓の解剖学的構造を再成形するための磁気装置および方法
US7285087B2 (en) * 2004-07-15 2007-10-23 Micardia Corporation Shape memory devices and methods for reshaping heart anatomy
US7402134B2 (en) * 2004-07-15 2008-07-22 Micardia Corporation Magnetic devices and methods for reshaping heart anatomy
US8235055B2 (en) * 2005-01-11 2012-08-07 Uti Limited Partnership Magnetic levitation of intraluminal microelectronic capsule
WO2006116354A1 (fr) * 2005-04-21 2006-11-02 Ksm, Inc. Dispositif de traitement electromagnetique
US8231518B2 (en) * 2005-12-31 2012-07-31 John W Royalty Cardiac diastolic augmentation improving cardiac output in electromagnetic biventricular assist device
US7877142B2 (en) * 2006-07-05 2011-01-25 Micardia Corporation Methods and systems for cardiac remodeling via resynchronization
JP2009082229A (ja) * 2007-09-27 2009-04-23 Terumo Corp 細胞移植機能を伴う心臓アシストシステム
US20090112263A1 (en) 2007-10-30 2009-04-30 Scott Pool Skeletal manipulation system
US20090248148A1 (en) 2008-03-25 2009-10-01 Ellipse Technologies, Inc. Systems and methods for adjusting an annuloplasty ring with an integrated magnetic drive
US8137260B2 (en) * 2008-05-22 2012-03-20 Edwards Lifesciences Corporation Electromagnetic cardiac assist device and method
US20090318873A1 (en) * 2008-06-24 2009-12-24 Cook Incorporated Medical malecot with magnets
US8197490B2 (en) 2009-02-23 2012-06-12 Ellipse Technologies, Inc. Non-invasive adjustable distraction system
US20110098731A1 (en) * 2009-10-26 2011-04-28 Eric Whitbrook Magnetically assisted clasps for prosthetic implants, and related methods
US9579434B2 (en) 2010-03-03 2017-02-28 The Secretary Of Atomic Energy, Govt. Of India Flexible magnetic membrane based actuation system and devices involving the same
WO2012021378A2 (fr) 2010-08-09 2012-02-16 Ellipse Technologies, Inc. Élément de maintenance dans un implant magnétique
WO2015102004A1 (fr) * 2014-01-05 2015-07-09 B.G. Negev Technologies & Applications Ltd. At Ben-Gurion University Procede et systeme pour la stimulation cardiaque
FR3159527A1 (fr) * 2024-02-22 2025-08-29 Assistance Publique Hopitaux De Paris Dispositif d’assistance circulatoire mécanique

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173715B1 (en) * 1999-03-01 2001-01-16 Lucent Medical Systems, Inc. Magnetic anatomical marker and method of use

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621617A (en) * 1981-06-29 1986-11-11 Sharma Devendra N Electro-magnetically controlled artificial heart device for compressing cardiac muscle
US4913164A (en) * 1988-09-27 1990-04-03 Intermedics, Inc. Extensible passive fixation mechanism for lead assembly of an implantable cardiac stimulator
US5498228A (en) * 1994-08-08 1996-03-12 John W. Royalty Electromagnetic bi-ventricular assist device
US6099460A (en) * 1998-04-28 2000-08-08 Denker; Stephen Electromagnetic heart assist technique and apparatus
US6123724A (en) * 1999-04-14 2000-09-26 Denker; Stephen Heart assist method and apparatus employing magnetic repulsion force

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173715B1 (en) * 1999-03-01 2001-01-16 Lucent Medical Systems, Inc. Magnetic anatomical marker and method of use

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US11672684B2 (en) 2006-10-20 2023-06-13 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11234849B2 (en) 2006-10-20 2022-02-01 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US20090143748A1 (en) * 2007-08-09 2009-06-04 Boston Scientific Scimed, Inc Catheter Devices for Myocardial Injections or Other Uses
US8292873B2 (en) 2007-08-09 2012-10-23 Boston Scientific Scimed, Inc. Catheter devices for myocardial injections or other uses
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US11123107B2 (en) 2011-11-01 2021-09-21 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US10349982B2 (en) 2011-11-01 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US11213330B2 (en) 2012-10-29 2022-01-04 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US11439449B2 (en) 2014-12-26 2022-09-13 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11612416B2 (en) 2015-02-19 2023-03-28 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US12076051B2 (en) 2015-02-19 2024-09-03 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
WO2016164604A1 (fr) * 2015-04-07 2016-10-13 Makey Ian Dispositif de pose d'un tube thoracique
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport

Also Published As

Publication number Publication date
AU2002307477A1 (en) 2002-11-05
WO2002085190A3 (fr) 2003-02-27
US20020156339A1 (en) 2002-10-24
US6604529B2 (en) 2003-08-12
WO2002085190A2 (fr) 2002-10-31

Similar Documents

Publication Publication Date Title
US6604529B2 (en) External electromagnetic system for assisting systolic and diastolic ventricular function, and method therefor
US11793629B2 (en) Device and a method for augmenting heart function
US10888423B2 (en) Left heart assist device and method
HK1181293B (en) A device and a method to controllably assist movement of a mitral valve
HK1180936B (en) A device and a method to controllably assist movement of a mitral valve

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NATIVE CARDIO, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, YOUNG D.;REEL/FRAME:045806/0169

Effective date: 20180510