US20040142809A1 - Glass ceramics based on ZnO - Google Patents
Glass ceramics based on ZnO Download PDFInfo
- Publication number
- US20040142809A1 US20040142809A1 US10/747,544 US74754403A US2004142809A1 US 20040142809 A1 US20040142809 A1 US 20040142809A1 US 74754403 A US74754403 A US 74754403A US 2004142809 A1 US2004142809 A1 US 2004142809A1
- Authority
- US
- United States
- Prior art keywords
- glass
- zno
- ceramic
- sio
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002241 glass-ceramic Substances 0.000 title claims abstract description 80
- 239000013078 crystal Substances 0.000 claims abstract description 67
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000000203 mixture Substances 0.000 claims abstract description 32
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims abstract description 30
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 claims abstract description 30
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 29
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract description 29
- 230000003287 optical effect Effects 0.000 claims abstract description 22
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 19
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 19
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 19
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 19
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 8
- 239000006096 absorbing agent Substances 0.000 claims abstract description 5
- 239000006112 glass ceramic composition Substances 0.000 claims abstract description 5
- 239000013307 optical fiber Substances 0.000 claims abstract description 5
- 239000011521 glass Substances 0.000 claims description 41
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 7
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 5
- 229910001428 transition metal ion Inorganic materials 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 239000002159 nanocrystal Substances 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 abstract description 7
- 230000001747 exhibiting effect Effects 0.000 abstract description 4
- 229910052596 spinel Inorganic materials 0.000 abstract 1
- 239000011029 spinel Substances 0.000 abstract 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 95
- 239000011787 zinc oxide Substances 0.000 description 47
- 239000012071 phase Substances 0.000 description 14
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 8
- YEAUATLBSVJFOY-UHFFFAOYSA-N tetraantimony hexaoxide Chemical compound O1[Sb](O2)O[Sb]3O[Sb]1O[Sb]2O3 YEAUATLBSVJFOY-UHFFFAOYSA-N 0.000 description 8
- 240000007817 Olea europaea Species 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052723 transition metal Inorganic materials 0.000 description 7
- 150000003624 transition metals Chemical class 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 229910000410 antimony oxide Inorganic materials 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 4
- 238000000851 scanning transmission electron micrograph Methods 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- BHHYHSUAOQUXJK-UHFFFAOYSA-L zinc fluoride Chemical compound F[Zn]F BHHYHSUAOQUXJK-UHFFFAOYSA-L 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002667 nucleating agent Substances 0.000 description 3
- 229910052844 willemite Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 229910052839 forsterite Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 229910052909 inorganic silicate Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000006064 precursor glass Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000006121 base glass Substances 0.000 description 1
- 239000006105 batch ingredient Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000003279 ceramming Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005090 crystal field Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000011022 opal Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000006132 parent glass Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- YTZVWGRNMGHDJE-UHFFFAOYSA-N tetralithium;silicate Chemical compound [Li+].[Li+].[Li+].[Li+].[O-][Si]([O-])([O-])[O-] YTZVWGRNMGHDJE-UHFFFAOYSA-N 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000010981 turquoise Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/12—Compositions for glass with special properties for luminescent glass; for fluorescent glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0036—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
Definitions
- the present invention relates generally to glass-ceramics, in particular to substantially transparent glass-ceramics containing a microstructure comprising nanocrystalline hexagonal ZnO crystals as the major crystalline phase.
- Glass-ceramics are polycrystalline materials formed by a controlled crystallization of a precursor glass.
- the method for producing such glass-ceramics customarily involves three fundamental steps: first, melting a glass-forming batch containing the selected metallic oxides; second, cooling the melt to a temperature at least below its transformation range, while simultaneously forming a glass body of a desired geometry; and third, heating the glass body to a temperature above the transformation range of the glass in a controlled manner to generate crystals in situ.
- the glass will be heated initially to a temperature within or somewhat above the transformation range for a period of time; although there are certain compositions that are known to be self-nucleating and thus do not require the development of nuclei.
- the temperature will be raised to temperatures where crystals can grow from the nuclei.
- the resulting crystals are typically uniformly distributed and fine-grained. Internal nucleation permits glass-ceramics to have favorable qualities such as a very narrow distribution of particle size and a highly uniform dispersion of crystals throughout the glass host.
- Transition metals have been used as optically active dopants in crystalline hosts because they fluoresce in the near infrared (700 nm to 2000 nm) region. Given the useful wavelength range and relatively wide bandwidth of many transition-metal dopants, much interest has arisen for their use in optical telecommunication applications, with the region from 1000 nm to 1500 nm being of particular interest.
- the current optical telecommunication medium is glass-based optical fiber. Inclusion of transition metal dopants into glasses, however, has unfortunately not produced fluorescence performances as good as in crystalline materials. The performance of transition metal ions tends to degrade in amorphous hosts, where the crystal field strength is much smaller than in even crystalline hosts.
- Pinckney discloses substantially and desirably totally transparent glass-ceramics, and which contain a willemite predominant crystal phase within the ternary Mg 2 SiO 4 —Zn 2 SiO 4 —Li 4 SiO 4 system.
- Transparent glass-ceramics which contain relatively small numbers of crystals can be of great use in cases where the parent glass provides an easy-to-melt or an-easy-to-form vehicle for a crystal.
- the single crystals may be difficult or expensive to synthesize, however they provide highly desirable features, such as optical activity.
- the crystals in the glass-ceramic are generally oriented randomly throughout the bulk of the glass contrary to a single crystal which has a specific orientation. Random orientation, and consequent isotropy, are advantageous for many applications.
- One example is that of optical amplifiers, where polarization-independent gain is imperative.
- ZnO is a wide band gap (3.3 eV) semiconductor material.
- ZnO varistors which are ceramic composites used as voltage stabilization and transient surge suppression in electric power systems.
- the key feature of ZnO varistors are their high nonlinearity of the current-voltage characteristics.
- transparent, electrically conductive polycrystalline films based on doped ZnO.
- Doped ZnO is an n-type semiconductor and is one of a family of transparent conducting oxides (TCOs) that are used in energy conserving windows, oven windows, “smart” windows and front-surface electrodes for solar cells and flat panel displays.
- one aspect of the invention disclosed is a substantially transparent glass-ceramic ceramic exhibiting a hexagonal ZnO crystal phase and having a glass-ceramic composition that lies within the SiO 2 —Al 2 O 3 —ZnO—K 2 O—Ga 2 O 3 —Na 2 O— system and particularly consisting essentially, in weight percent on an oxide basis, of 25-50% SiO 2, 0-26% Al 2 O 3 , 15-45% ZnO, 0-25% K 2 O, 0-10% Na 2 O,0-32% Ga 2 O 3 , K 2 O+Na a O>10%, and Al 2 O 3 +Ga 2 O 3 >10%.
- the glass ceramic microstructure exhibits a crystal phase comprising at least 15%, by weight, of hexagonal ZnO crystals.
- One additional aspect of the invention relates to an optical element selected from the group consisting of an optical fiber, a gain or laser medium, and an amplifier component, a saturable absorber the element comprising: a transparent glass-ceramic containing a crystallinity of at least about 15% by weight of hexagonal ZnO crystals, the glass-ceramic having a composition consisting essentially, in weight percent on an oxide basis, of 25-50% SiO 2, 0-26% Al 2 O 3 , 15-45% ZnO, 0-25% K 2 O, 0-10% Na 2 O, 0-32% Ga 2 O 3 , K 2 O+Na 2 O>10%, and Al 2 O 3 +Ga 2 O 3 >10%.
- the present invention relates to a method of making a substantially transparent glass-ceramic containing a hexagonal ZnO crystal phase and having a glass composition that lies within the SiO 2 —Al 2 O 3 —ZnO—K 2 O—Ga 2 O 3 —Na 2 O-system, the method comprising the steps of:
- FIG. 1 is a scanning transmission electron micrograph (STEM) of an ion milled thin section of the glass-ceramic of Example 2;
- FIG. 2 is a graph illustrating the representative diffraction pattern of the crystalline phases exhibited by the glass-ceramic of Example 2;
- FIG. 3 is a graph illustrating the absorption curve for the cobalt oxide-doped ZnO crystal-containing glass ceramic of the present invention.
- FIG. 4 is a graph illustrating the absorption curves for the inventive ZnO-crystal containing glass-ceramics doped with varying amounts of antimony oxide.
- the present invention is based on the discovery of a family of compositions that can produce glasses of excellent stability which can be cerammed to produce substantially transparent glass-ceramics containing hexagonal ZnO crystals as the predominant crystal phase.
- the present inventive substantially transparent, hexagonal ZnO crystal-containing glass-ceramics exhibits a base composition consisting essentially, in weight percent on the oxide basis, of the following constituents: SiO 2 25-50%; Al 2 O 3 7-33%; ZnO 15-45%; K 2 O, 0-20%; Na 2 O, 0-15%; Ga 2 O 3 9-50%; K 2 O + Na 2 O >10%; Al 2 O 3 + Ga 2 O 3 >10%.
- composition range for best transparency, is based on a composition consisting essentially, in weight percent on an oxide basis, of: SiO 2 35-45%; Al 2 O 3 15-25%; ZnO 20-40%; K 2 O 12-22%; Ga 2 O 3 0-30%; Al 2 O 3 + Ga 2 O 3 15-30%; Na 2 O 0-12%; K 2 O + Na 2 O 10-25%.
- Optional constituents listed in weight percent on the oxide basis, that can be included in the inventive glass-ceramic, are as follows: 0-3% Li 2 O, up to 5% CaO, BaO, B 2 O 3 , or SrO. Additionally up to 10%, by weight PbO and up to 20% GeO 2 , can also be incorporated into the glass-ceramic.
- zinc oxide also known as zincite
- the present inventive glass-ceramic exhibits a unique microstructure containing nanocrystalline ZnO crystals throughout a stable aluminosilicate or galliosilicate glass (5-20 nm); the presence of these very small crystal sizes provide the glass ceramic with high transparency, despite the presumed index mismatch between the crystals and the base glass.
- the ZnO crystals which are present in the inventive microstructure provide tetrahedral sites into which small transition metal elements partition strongly into; total crystallinity ranging from 15-35%.
- This feature renders the crystals potentially valuable hosts for optically active transition elements including, but not limited to Co 2+ , Cr3+, Cu 1+ , Sn 4+ , Mn 4+ , specifically up to about 2%, of the oxide by weight can be added to the precursor glass composition.
- Transition elements including, but not limited to Sb 3+ , Fe 3+ , In 3+ , Bi 3+ , Ni 2+ , V 3+ , Ta 5+ , can also added to the glass composition in amounts up to 5% of the oxide, by weight.
- the present inventive ZnO crystal-containing glass-ceramics are suitable for utilization in the optical or telecommunications industry; bulk, planar and fiber forms can be formed and are useful in the aforementioned applications.
- the transition metal doped ZnO-crystal containing glass-ceramics of the present invention exhibit unique optical and dielectric properties including very high absorption in the near infrared and high microwave susceptibilities.
- the inventive glass-ceramics can be used as optical components in a variety of elongated core applications.
- one useful application comprises an optical fiber in an optical amplifier or fiber laser.
- Other potential applications include waveguides and bulk gain media also for use in optical amplifiers and laser oscillators.
- the inventive transition metal doped ZnO crystal-containing glass ceramics could provide useful luminescent properties like that exhibited by the aforementioned doped ZnS nanoparticles.
- the invention will be further clarified by the following examples set forth in Table I. Disclosed therein are a number of glass compositions, expressed in terms of parts by weight on the oxide basis, illustrating the parameters of the present invention. The Table also presents the glass color, the beat-treatment schedule in ° C. and hours, the glass-ceramic color, as well as the degree of transparency of 0.5-1.0 cm examples, ranging from low to medium (med.) to high, exhibited by each resulting glass-ceramic.
- the batch ingredients for preparing glasses falling within the inventive composition ranges may comprise any materials, either the oxides or other compounds, which, upon being melted together, will be converted into the desired oxide in the proper proportions.
- the exemplary glasses were produced in the following manner.
- the batch materials were compounded, mixed together to assist in securing a homogeneous melt, and then placed into platinum crucibles.
- the crucibles were introduced into a furnace operating at temperatures of 1575-1650° C., and the batches were melted for periods ranging between 4-16 hours.
- the melt was poured as free “patties” exhibiting a thickness of about 5 mm and thereafter transferred to an annealer operating at about 550-650° C.
- inventive compositions are self-nucleating due to liquid-liquid phase separation and therefore require no added nucleating agents.
- nucleating agents such as TiO 2 (up to 5 wt. %), results in a finer crystal size and improved transparency.
- the crystalline phases of the resulting glass-ceramic were identified using X-ray powder diffraction and the results indicated that each of the inventive glass-ceramics exhibited a predominant hexagonal ZnO crystal phase.
- the glass-ceramic microstructures consisted of hexagonal ZnO nanocrystals, typically ranging between 5-20 nm in size, dispersed throughout a stable, continuous aluminosilicate or galliosilicate glass; the total crystallinity ranging between about 15%-35%.
- FIG. 2 illustrates the diffraction pattern for the same Example 2; an examination of the X-ray diffraction pattern for this material example indicated that the sample exhibited broad ZnO peaks. It should be noted that this X-ray diffraction pattern is similar to that X-ray pattern exhibited by each of the 31 previously described examples; as such this X-ray diffraction is representative of that expected to be generated by any hexagonal ZnO crystal-containing glass-ceramic.
- FIG. 3 is a graph that illustrates the absorbance spectra of this cobalt oxide doped ZnO crystal-containing glass-ceramic.
- the graph reveals that the inventive cobalt-doped ZnO crystal-containing glass-ceramic example exhibits strong absorption in the visible wavelength, as well as moderately strong and uniform absorbance across the entire telecommunications bandwidth; i.e., the absorbance curves are particularly flat between 1250 to 1650 nm.
- FIG. 4 illustrates the absorbance exhibited by 6 Sb 2 O 3 doped ZnO crystal-containing glass-ceramics; specifically, containing increasing levels of antimony oxide ranging from 0.1 to 2.0%.
- the example containing 2.0% Sb 2 O 3 is that example designated as Example 11 in Table I while the composition of the other 5, and the manner in which they were produced, were similar to that of Example 11, except for the varying amounts of Sb 2 O 3 .
- the graph reveals that the antimony oxide doped glass-ceramics exhibit increasing absorbance both as the wavelength is increased and the amount of the antimony oxide is increased.
- the graph illustrates that the absorption for all of the antimony doped ZnO crystal-containing glass-ceramic examples shown is quite strong across the entire telecommunications bandwidth, especially for those antimony doped glass ceramics containing 1% Sb 2 O 3 or greater.
- the aforementioned absorbance makes these antimony doped ZnO crystal-containing glass-ceramics particularly suitable for use as a saturable absorber.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Glass Compositions (AREA)
- Lasers (AREA)
Abstract
Description
- This application claims priority from U.S. Provisional Application Serial No. 60/437,294, entitled Transparent Gallate Glass-Ceramics, filed on Dec. 31, 2002.
- 1. Field of the Invention
- The present invention relates generally to glass-ceramics, in particular to substantially transparent glass-ceramics containing a microstructure comprising nanocrystalline hexagonal ZnO crystals as the major crystalline phase.
- 2. Technical Background
- Glass-ceramics are polycrystalline materials formed by a controlled crystallization of a precursor glass. In general, the method for producing such glass-ceramics customarily involves three fundamental steps: first, melting a glass-forming batch containing the selected metallic oxides; second, cooling the melt to a temperature at least below its transformation range, while simultaneously forming a glass body of a desired geometry; and third, heating the glass body to a temperature above the transformation range of the glass in a controlled manner to generate crystals in situ. To develop nuclei in the glass, the glass will be heated initially to a temperature within or somewhat above the transformation range for a period of time; although there are certain compositions that are known to be self-nucleating and thus do not require the development of nuclei. Thereafter, the temperature will be raised to temperatures where crystals can grow from the nuclei. The resulting crystals are typically uniformly distributed and fine-grained. Internal nucleation permits glass-ceramics to have favorable qualities such as a very narrow distribution of particle size and a highly uniform dispersion of crystals throughout the glass host.
- Transparent glass-ceramics are known in the art, with the classic study relating to transparency being authored by G. H. Beall and D. A. Duke in “Transparent Glass Ceramics,” Journal of Material Science, 4, pp. 340-352 (1969). Glass-ceramic bodies will display transparency to the human eye when the crystals present therein are considerably smaller than the wavelength of visible light. In other words, transparency typically results from crystals less than 50 nm—preferably as low as 10 nm—in size, if there is a major refractive index difference between crystal and glass. Transparency in glass-ceramics, alternatively, can also be produced with crystals larger than 50 nm if the crystal birefringence and the index of refraction mismatch between the crystal phase and the glassy phase are both low. Transparent glass-ceramics, doped with transition elements can combine the optical efficiency of crystals with the flexibility of the forming of glass. For example, both bulk (planar substrates) and fiber forms can be fabricated from these glass-ceramics.
- Recently, researchers have concentrated much effort to develop transparent glass-ceramics as hosts for transition metal ions. Transition metals have been used as optically active dopants in crystalline hosts because they fluoresce in the near infrared (700 nm to 2000 nm) region. Given the useful wavelength range and relatively wide bandwidth of many transition-metal dopants, much interest has arisen for their use in optical telecommunication applications, with the region from 1000 nm to 1500 nm being of particular interest. The current optical telecommunication medium is glass-based optical fiber. Inclusion of transition metal dopants into glasses, however, has unfortunately not produced fluorescence performances as good as in crystalline materials. The performance of transition metal ions tends to degrade in amorphous hosts, where the crystal field strength is much smaller than in even crystalline hosts.
- Suitable glass-ceramic hosts, therefore, must be tailored such that transition elements will preferentially partition into the crystal phase. Some of these glass-ceramics have come from compositions such as those discussed the following applications. Co-pending U.S. patent application, Pub. No. 2002/0028739, entitled FORSTERITE GLASS-CERAMICS OF HIGH CRYSTALLINITY AND CHROME CONTENT, by George H. Beall, et al., and co-pending U.S. Pat. No. 6,300,262, entitled TRANSPARENT FORSTERITE GLASS-CERAMICS, by George H. Beall both of which disclose a family of, and a method of making, glass compositions based in the K 2 O—MgO—Al2O3—SiO2 system. U.S. Pat. No. 6,297,179, entitled TRANSITION-METAL GLASS-CERAMIC GAIN MEDIA, by George H. Beall et al., discloses transition-metal-doped glass-ceramic materials used as gain media or pump laser fiber in optical amplifiers and lasing mechanisms. WO 01/28944 entitled TRANSPARENT LITHIUM ORTHOSILICATE GLASS-CERAMICS, by George Beall, et al., discloses a family of glass compositions within the ternary Mg2SiO4—Zn2SiO4—Li4SiO4 system and exhibiting a predominate orthosilicate crystal phase. Lastly, U.S. Pat. No. 6,303,527 entitled Transparent Glass-ceramics Based on Alpha- and Beta-Willemite, by L. R. Pinckney discloses substantially and desirably totally transparent glass-ceramics, and which contain a willemite predominant crystal phase within the ternary Mg2SiO4—Zn2SiO4—Li4SiO4 system. Each of these patents and applications are co-assigned to the present assignee and the entire contents of both of these applications are incorporated herein by reference.
- Transparent glass-ceramics which contain relatively small numbers of crystals can be of great use in cases where the parent glass provides an easy-to-melt or an-easy-to-form vehicle for a crystal. The single crystals may be difficult or expensive to synthesize, however they provide highly desirable features, such as optical activity. The crystals in the glass-ceramic are generally oriented randomly throughout the bulk of the glass contrary to a single crystal which has a specific orientation. Random orientation, and consequent isotropy, are advantageous for many applications. One example is that of optical amplifiers, where polarization-independent gain is imperative.
- Bulk and thin-film ZnO materials are well known in the art. In general, ZnO is a wide band gap (3.3 eV) semiconductor material. One application known in the art is ZnO varistors which are ceramic composites used as voltage stabilization and transient surge suppression in electric power systems. The key feature of ZnO varistors are their high nonlinearity of the current-voltage characteristics. Also known in the art are transparent, electrically conductive polycrystalline films based on doped ZnO. Doped ZnO is an n-type semiconductor and is one of a family of transparent conducting oxides (TCOs) that are used in energy conserving windows, oven windows, “smart” windows and front-surface electrodes for solar cells and flat panel displays. Recently, a planar waveguide device for 1.55 μm amplification based on erbium-doped nanocrystalline ZnO was demonstrated. Lastly, prior art reveals the preparation of ZnO as nanoparticles in numerous colloidal solutions by various methods, including sol-gel, laser vaporization-controlled condensation, reversed micelle techniques. These particles exhibit quantum size effects; their band gap absorption and emission are blue-shifted with respect to bulk ZnO and their visible emission, in the 500 nm region, shows wavelength and lifetime dependence on size.
- Although it is known in the art to utilize transparent ZnO, both in bulk form and as thin films, in optical applications, nothing has been found in the prior art to suggest the formation of transparent ZnO-crystal containing glass-ceramics capable of being utilized in both optical and dielectric applications.
- Accordingly, the primary object of the present invention is to provide nanocrystalline hexagonal ZnO glass-ceramics glass-ceramic material which are substantially and desirably totally transparent which are capable of being doped with ingredients which confer useful optical and dielectric properties including, high absorption in the near infrared and microwave wavelengths.
- Other objects and advantages of the present invention will be apparent from the following description.
- In accordance with the present invention, one aspect of the invention disclosed is a substantially transparent glass-ceramic ceramic exhibiting a hexagonal ZnO crystal phase and having a glass-ceramic composition that lies within the SiO 2—Al2O3—ZnO—K2O—Ga2O3—Na2O— system and particularly consisting essentially, in weight percent on an oxide basis, of 25-50% SiO2, 0-26% Al2O3, 15-45% ZnO, 0-25% K2O, 0-10% Na2O,0-32% Ga2O3, K2O+NaaO>10%, and Al2O3+Ga2O3>10%. The glass ceramic microstructure exhibits a crystal phase comprising at least 15%, by weight, of hexagonal ZnO crystals.
- One additional aspect of the invention relates to an optical element selected from the group consisting of an optical fiber, a gain or laser medium, and an amplifier component, a saturable absorber the element comprising: a transparent glass-ceramic containing a crystallinity of at least about 15% by weight of hexagonal ZnO crystals, the glass-ceramic having a composition consisting essentially, in weight percent on an oxide basis, of 25-50% SiO 2, 0-26% Al2O3, 15-45% ZnO, 0-25% K2O, 0-10% Na2O, 0-32% Ga2O3, K2O+Na2O>10%, and Al2O3+Ga2O3>10%.
- In another aspect, the present invention relates to a method of making a substantially transparent glass-ceramic containing a hexagonal ZnO crystal phase and having a glass composition that lies within the SiO 2—Al2O3—ZnO—K2O—Ga2O3—Na2O-system, the method comprising the steps of:
- a) melting a batch for a glass having a composition consisting essentially, in weight percent on an oxide basis, of 25-50% SiO 2, 0-26% Al2O3, 15-45% ZnO, 0-25% K2O, 0-10% Na2O, 0-32% Ga2O3, K2O+Na2O>10%, and Al2O3+Ga2O3>10%;
- b.) cooling the glass to a temperature at least below the transformation range of the glass;
- c.) exposing the glass to a temperature between about 550-950° C. for a period of time sufficient to cause the generation of a glass-ceramic which is substantially transparent and which contains a predominant, hexagonal ZnO crystal phase whose glass composition lies within the SiO 2—Al2O3—ZnO—K2O—Ga2O3—Na2O— system; and,
- d.) cooling the glass-ceramic to room temperature.
- Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
- It is to be understood that both the foregoing general description and the following detailed description present embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the description serve to explain the principles and operations of the invention.
- FIG. 1 is a scanning transmission electron micrograph (STEM) of an ion milled thin section of the glass-ceramic of Example 2;
- FIG. 2 is a graph illustrating the representative diffraction pattern of the crystalline phases exhibited by the glass-ceramic of Example 2;
- FIG. 3 is a graph illustrating the absorption curve for the cobalt oxide-doped ZnO crystal-containing glass ceramic of the present invention;
- FIG. 4 is a graph illustrating the absorption curves for the inventive ZnO-crystal containing glass-ceramics doped with varying amounts of antimony oxide.
- The present invention is based on the discovery of a family of compositions that can produce glasses of excellent stability which can be cerammed to produce substantially transparent glass-ceramics containing hexagonal ZnO crystals as the predominant crystal phase.
- The present inventive substantially transparent, hexagonal ZnO crystal-containing glass-ceramics exhibits a base composition consisting essentially, in weight percent on the oxide basis, of the following constituents:
SiO2 25-50%; Al2O3 7-33%; ZnO 15-45%; K2O, 0-20%; Na2O, 0-15%; Ga2O3 9-50%; K2O + Na2O >10%; Al2O3 + Ga2O3 >10%. - The most preferred composition range, for best transparency, is based on a composition consisting essentially, in weight percent on an oxide basis, of:
SiO2 35-45%; Al2O3 15-25%; ZnO 20-40%; K2O 12-22%; Ga2O3 0-30%; Al2O3 + Ga2O3 15-30%; Na2O 0-12%; K2O + Na2O 10-25%. - Optional constituents, listed in weight percent on the oxide basis, that can be included in the inventive glass-ceramic, are as follows: 0-3% Li 2O, up to 5% CaO, BaO, B2O3, or SrO. Additionally up to 10%, by weight PbO and up to 20% GeO2, can also be incorporated into the glass-ceramic.
- It should be noted that levels of SiO 2 greater than 50% and Na2O higher than 12% should be avoided as they tend to promote the crystallization of undesirable willemite (ZnSiO4) in the glass ceramic rather than the desirable ZnO crystals.
- In general, zinc oxide, also known as zincite, exhibits the hexagonal wurtzite structure with the zinc atoms in hexagonal closest packing and all zinc and oxygen atoms in tetrahedral coordination. ZnO crystals generally exhibit the following properties: (1) a space group of P63mc; (2) a Mohs hardness of 4 (equivalent to that of fluorite, CaF 2); (3) a density of 5.68 g/cm3; and, (4) indices of refraction ε=2.029 and ω=20013 (birefringence=0.016). The present inventive glass-ceramic exhibits a unique microstructure containing nanocrystalline ZnO crystals throughout a stable aluminosilicate or galliosilicate glass (5-20 nm); the presence of these very small crystal sizes provide the glass ceramic with high transparency, despite the presumed index mismatch between the crystals and the base glass.
- The ZnO crystals which are present in the inventive microstructure provide tetrahedral sites into which small transition metal elements partition strongly into; total crystallinity ranging from 15-35%. This feature renders the crystals potentially valuable hosts for optically active transition elements including, but not limited to Co 2+, Cr3+, Cu1+, Sn4+, Mn4+, specifically up to about 2%, of the oxide by weight can be added to the precursor glass composition. Transition elements including, but not limited to Sb3+, Fe3+, In3+, Bi3+, Ni2+, V3+, Ta5+, can also added to the glass composition in amounts up to 5% of the oxide, by weight.
- As such, the present inventive ZnO crystal-containing glass-ceramics are suitable for utilization in the optical or telecommunications industry; bulk, planar and fiber forms can be formed and are useful in the aforementioned applications. In particular, the transition metal doped ZnO-crystal containing glass-ceramics of the present invention exhibit unique optical and dielectric properties including very high absorption in the near infrared and high microwave susceptibilities. As such, the inventive glass-ceramics can be used as optical components in a variety of elongated core applications. For instance, one useful application comprises an optical fiber in an optical amplifier or fiber laser. Other potential applications include waveguides and bulk gain media also for use in optical amplifiers and laser oscillators. Still further applications for the present glass-ceramic include utilization as saturable absorber media in laser applications. Finally, it is envisioned that the inventive transition metal doped ZnO crystal-containing glass ceramics could provide useful luminescent properties like that exhibited by the aforementioned doped ZnS nanoparticles.
- The invention will be further clarified by the following examples set forth in Table I. Disclosed therein are a number of glass compositions, expressed in terms of parts by weight on the oxide basis, illustrating the parameters of the present invention. The Table also presents the glass color, the beat-treatment schedule in ° C. and hours, the glass-ceramic color, as well as the degree of transparency of 0.5-1.0 cm examples, ranging from low to medium (med.) to high, exhibited by each resulting glass-ceramic.
- In as much as the sum of the individual components in each recited glass approximates 100, for all practical purposes the tabulated values may be deemed to reflect weight percent. The batch ingredients for preparing glasses falling within the inventive composition ranges may comprise any materials, either the oxides or other compounds, which, upon being melted together, will be converted into the desired oxide in the proper proportions.
TABLE I 1 2 3 4 5 6 7 8 SiO2 37.2 32.5 44.0 38.5 35.8 38.7 38.7 34.2 Al2O3 22.2 19.5 18.7 16.4 15.2 16.7 16.7 19.9 ZnO 20.0 30.0 20.0 30.0 35.0 29.2 29.2 29.2 K2O 20.6 18.0 17.3 15.1 14.0 15.4 15.4 13.7 Li2O MnO2 0.3 Cu2O 0.2 Na2O 3.0 CaO B2O3 Ga2O3 NiO* Sb2O3* P2O5 In2O3 Glass Color pale pale pale pale pale pink- turquoise no yellow yellow yellow yellow yellow taupe color Heat 800°-2 750°-2 750°-2 750°-2 750°-2 750°-2 750°-2 700°-2 Treatment (° C./hr.) Glass- yellow yellow yellow yellow yellow olive reddish- yellow- ceramic transp. transp. transp. transp. transp. green brown green Color Degree of med. med. high high med. med. med. high Transparency 9 10 11 12 13 14 15 16 SiO2 33.0 38.7 38.7 38.7 38.7 38.7 38.7 36.0 Al2O3 14.0 16.7 16.7 16.7 16.7 16.7 16.7 16.4 ZnO 40.0 29.2 29.2 29.2 29.2 29.2 29.2 30.0 K2O 13.0 15.4 15.4 15.4 15.4 15.4 15.4 15.0 Li2O 1.0 1.0 1.0 2.1 MnO2 Cu2O Na2O CaO B2O3 1.0 Ga2O3 4.0 NiO* 0.2 Sb2O3* 2.0 P2O5 1.0 In2O3 3.0 Glass Color pale orange- yellow colorless colorless colorless colorless colorless yellow brown Heat 750°-2 700°-2 700°-2 700°-2 700°-2 700°-2 700°-2 725°-1 Treatment (° C./hr.) Glass- yellow olive dark pale pale pale pale yellow ceramic transp. transp. olive yellow yellow yellow yellow Color Degree of low low low med. high med. low low Transparency 17 18 19 20 21 22 23 24 SiO2 37.5 35.5 38.7 38.7 38.7 38.7 38.7 38.7 Al2O3 16.4 16.4 16.9 16.9 16.9 16.9 16.9 16.9 ZnO 30.0 30.0 29.2 29.2 29.2 29.2 29.2 29.2 K2O 15.0 15.0 15.4 15.4 15.4 15.4 15.4 15.4 Li2O 1.0 BaO 3.0 ZnF2* 2.0 Fe2O3* 1.0 Ga2O3* 8.0 SnO2* 0.5 Ta2O5* 2.0 Sb2O3* 2.0 Ga2O3 PbO* Glass colorless colorless yellow dark v. pale amber pink- amber Color olive yellow tuape Heat 700°-2 700°-2 700°-2 700°-2 700°-2 700°-2 700°-2 700°-1 Treatment (° C./hr.) Glass- pale yellow yellow dark pale olive yellow- dark ceramic yellow olive yellow green taupe olive Color Degree of low low low med. high low low low Transparency 25 26 27 28 29 30 31 SiO2 35.9 34.7 34.1 33.7 32.7 33.3 38.7 Al2O3 15.5 11.4 9.4 7.4 3.7 16.7 ZnO 27.0 26.2 25.7 25.4 24.7 25.2 29.2 K2O 14.2 13.8 13.6 13.4 13.0 13.3 15.4 Li2O BaO ZnF2* Fe2O3* Ga2O3* SnO2* Ta2O5* Sb2O3* Ga2O3 7.4 13.9 17.2 20.2 25.9 28.2 PbO* 2.0 Glass yellow yellow colorless colorless colorless colorless colorless Color Heat 700°-2 700°-2 700°-2 700°-2 700°-2 700°-2 700°-2 Treatment (° C./hr.) Glass- Dark dark pale pale pale tranluc. yellow ceramic yellow yellow yellow yellow yellow opal Color Degree of low low low low low tranluc. med. Transparency - The exemplary glasses were produced in the following manner. The batch materials were compounded, mixed together to assist in securing a homogeneous melt, and then placed into platinum crucibles. The crucibles were introduced into a furnace operating at temperatures of 1575-1650° C., and the batches were melted for periods ranging between 4-16 hours. The melt was poured as free “patties” exhibiting a thickness of about 5 mm and thereafter transferred to an annealer operating at about 550-650° C.
- Small coupons of each glass were subjected to a ceramming cycle by placing them into a furnace and heat treating according to the following schedule: heating the glass coupons at rate of 300° C./hr to temperature ranging between about 550° to 950° C., and thereafter holding the glass coupons at this temperature for a period ranging between about 1-2 hours, and thereafter cooling the glass coupons at furnace rate. This heat treatment was for a period of time sufficient to generate the development of nuclei therein, and thereafter sufficient to effect the growth of crystals on the nuclei.
- It should be noted that the inventive compositions are self-nucleating due to liquid-liquid phase separation and therefore require no added nucleating agents. However, even though nucleating agents are not required, in some cases the addition of nucleating agents, such as TiO 2 (up to 5 wt. %), results in a finer crystal size and improved transparency.
- The crystalline phases of the resulting glass-ceramic were identified using X-ray powder diffraction and the results indicated that each of the inventive glass-ceramics exhibited a predominant hexagonal ZnO crystal phase. Specifically, the glass-ceramic microstructures consisted of hexagonal ZnO nanocrystals, typically ranging between 5-20 nm in size, dispersed throughout a stable, continuous aluminosilicate or galliosilicate glass; the total crystallinity ranging between about 15%-35%.
- FIG. 1 is an scanning transmission electron micrograph (STEM) taken at a magnification of 2000× (JEOL 2000FX) illustrating the crystalline microstructure of an ion milled thin section of Example 2; Bar=100 nm. FIG. 2 illustrates the diffraction pattern for the same Example 2; an examination of the X-ray diffraction pattern for this material example indicated that the sample exhibited broad ZnO peaks. It should be noted that this X-ray diffraction pattern is similar to that X-ray pattern exhibited by each of the 31 previously described examples; as such this X-ray diffraction is representative of that expected to be generated by any hexagonal ZnO crystal-containing glass-ceramic.
- In the manner similar to that described above for forming Examples 1-31, an inventive cobalt oxide doped ZnO crystal-containing glass-ceramic, was formed of the following composition, in weight percent on the oxide basis: 38.7% SiO 2, 16.7% Al2O3, 29.2% ZnO, 15.4% K2O, 2% Co2O3. FIG. 3 is a graph that illustrates the absorbance spectra of this cobalt oxide doped ZnO crystal-containing glass-ceramic. The graph reveals that the inventive cobalt-doped ZnO crystal-containing glass-ceramic example exhibits strong absorption in the visible wavelength, as well as moderately strong and uniform absorbance across the entire telecommunications bandwidth; i.e., the absorbance curves are particularly flat between 1250 to 1650 nm.
- FIG. 4 illustrates the absorbance exhibited by 6 Sb 2O3 doped ZnO crystal-containing glass-ceramics; specifically, containing increasing levels of antimony oxide ranging from 0.1 to 2.0%. The example containing 2.0% Sb2O3 is that example designated as Example 11 in Table I while the composition of the other 5, and the manner in which they were produced, were similar to that of Example 11, except for the varying amounts of Sb2O3. The graph reveals that the antimony oxide doped glass-ceramics exhibit increasing absorbance both as the wavelength is increased and the amount of the antimony oxide is increased. Furthermore, the graph illustrates that the absorption for all of the antimony doped ZnO crystal-containing glass-ceramic examples shown is quite strong across the entire telecommunications bandwidth, especially for those antimony doped glass ceramics containing 1% Sb2O3 or greater. The aforementioned absorbance makes these antimony doped ZnO crystal-containing glass-ceramics particularly suitable for use as a saturable absorber.
- It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/747,544 US6936555B2 (en) | 2002-12-31 | 2003-12-29 | Glass ceramics based on ZnO |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US43729402P | 2002-12-31 | 2002-12-31 | |
| US10/747,544 US6936555B2 (en) | 2002-12-31 | 2003-12-29 | Glass ceramics based on ZnO |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20040142809A1 true US20040142809A1 (en) | 2004-07-22 |
| US6936555B2 US6936555B2 (en) | 2005-08-30 |
Family
ID=32713164
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/747,544 Expired - Fee Related US6936555B2 (en) | 2002-12-31 | 2003-12-29 | Glass ceramics based on ZnO |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US6936555B2 (en) |
| EP (1) | EP1590304A1 (en) |
| JP (1) | JP2006512274A (en) |
| AU (1) | AU2003297419A1 (en) |
| TW (1) | TWI240708B (en) |
| WO (1) | WO2004060825A1 (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040233514A1 (en) * | 2003-02-18 | 2004-11-25 | Masahiro Takagi | Fluorescent glass, optical amplification waveguide and optical amplification module |
| WO2009027160A1 (en) * | 2007-08-27 | 2009-03-05 | Nv Bekaert Sa | Electrochromic optical device showing reduced switching times |
| US20090116809A1 (en) * | 2005-09-22 | 2009-05-07 | Fiber Optics Research Center Of The Russian Academy Of Sciences | Amplifying Optical Fiber Operating At A Wavelength In The Range Of 1000-1700 nm, Methods of Fabricating The Same, And Fiber Laser |
| US20110143911A1 (en) * | 2009-11-20 | 2011-06-16 | Yvonne Menke | Spinel optoceramics |
| US20120067618A1 (en) * | 2010-01-27 | 2012-03-22 | Oliver Kappertz | Method for producing a coated item by means of texture etching |
| CN103265175A (en) * | 2013-05-06 | 2013-08-28 | 朱晓明 | Microcrystalline glass stone material and preparation technology thereof |
| CN103739202A (en) * | 2013-12-17 | 2014-04-23 | 朱晓明 | Microcrystalline glass and production method thereof |
| CN103755143A (en) * | 2013-12-17 | 2014-04-30 | 朱晓明 | Microcrystalline glass and preparation method thereof |
| CN104529165A (en) * | 2014-12-07 | 2015-04-22 | 中国科学院福建物质结构研究所 | Yellow afterglow microcrystalline glass for AC-LED and preparation technology thereof |
| CN106830921A (en) * | 2017-01-23 | 2017-06-13 | 九江学院 | A kind of ZnO transparent ceramics and preparation method thereof |
| CN111018354A (en) * | 2020-01-06 | 2020-04-17 | 武汉理工大学 | A kind of spinel transparent glass-ceramic with lower melting temperature and its preparation and performance enhancement method |
| CN114341068A (en) * | 2019-09-05 | 2022-04-12 | 株式会社小原 | Crystallized glass and reinforced crystallized glass |
| CN114716142A (en) * | 2022-04-12 | 2022-07-08 | 中国计量大学上虞高等研究院有限公司 | A kind of doped ZnS quantum dot luminescent glass and its preparation method and application |
| CN115057621A (en) * | 2022-03-29 | 2022-09-16 | 东华大学 | A kind of colorless transparent magnesium aluminum silicon glass-ceramic and preparation method thereof |
| US12308146B2 (en) * | 2021-12-23 | 2025-05-20 | Panasonic Intellectual Property Management Co., Ltd. | Multilayer varistor |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100383069C (en) * | 2006-02-24 | 2008-04-23 | 浙江大学 | Applied to glass with laser-induced internal coloring to form three-dimensional color pattern |
| EP2914558B1 (en) | 2012-11-02 | 2020-04-15 | Corning Incorporated | Methods to texture opaque, colored and translucent materials |
| FR3002530A1 (en) * | 2013-02-28 | 2014-08-29 | Centre Nat Rech Scient | GLASSES AND VITROCERAMICS TRANSPARENT NANOSTRUCTURES IN VISIBLE AND INFRARED |
| US10239782B2 (en) | 2015-02-26 | 2019-03-26 | Corning Incorporated | Method for controlling surface features on glass-ceramic articles and articles formed therefrom |
| WO2017000427A1 (en) | 2015-07-02 | 2017-01-05 | 中国科学院大连化学物理研究所 | Catalyst and method of preparing light olefin directly from synthesis gas by one-step process |
| RU2616645C1 (en) * | 2016-01-12 | 2017-04-18 | Акционерное общество "Научно-исследовательский и технологический институт оптического материаловедения Всероссийского научного центра "Государственный оптический институт им. С.И. Вавилова" (АО "НИТИОМ ВНЦ "ГОИ им. С.И. Вавилова") | ZnO CRYSTALS BASED TRANSPARENT GLASS CERAMIC AND METHOD FOR ITS PREPARATION |
| US10473829B2 (en) | 2016-01-18 | 2019-11-12 | Corning Incorporated | Enclosures having an improved tactile surface |
| JP7732739B2 (en) * | 2019-09-05 | 2025-09-02 | 株式会社オハラ | Glass-ceramics and tempered glass-ceramics |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6300262B1 (en) * | 1999-10-18 | 2001-10-09 | Corning Incorporated | Transparent forsterite glass-ceramics |
| US6303527B1 (en) * | 1999-10-18 | 2001-10-16 | Corning Incorporated | Transparent glass-ceramics based on alpha- and beta-willemite |
| US20020028739A1 (en) * | 1999-10-18 | 2002-03-07 | Beall George H. | Forsterite glass-ceramics of high crystallinity and chrome content |
| US6531420B1 (en) * | 1999-10-18 | 2003-03-11 | Corning Incorporated | Transparent lithium zinc magnesium orthosilicate glass-ceramics |
| US6632758B2 (en) * | 2001-05-03 | 2003-10-14 | Corning Incorporated | Transparent gallate glass-ceramics |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE67219C (en) | J. BURGHAUSER und J. HERRMANN in Regensburg | Valve screw for lager kegs | ||
| US28739A (en) | 1860-06-19 | cokbett | ||
| DD67219A3 (en) * | 1968-03-06 | 1969-06-05 | ||
| US6297179B1 (en) | 1999-10-18 | 2001-10-02 | Corning Incorporated | Transition-metal, glass-ceramic gain media |
| CA2387951A1 (en) * | 1999-10-18 | 2001-04-26 | Linda Pinckney | Transparent glass-ceramics based on alpha- and beta-willemite |
-
2003
- 2003-12-19 JP JP2004565613A patent/JP2006512274A/en not_active Withdrawn
- 2003-12-19 AU AU2003297419A patent/AU2003297419A1/en not_active Abandoned
- 2003-12-19 WO PCT/US2003/040754 patent/WO2004060825A1/en not_active Ceased
- 2003-12-19 EP EP03814895A patent/EP1590304A1/en not_active Withdrawn
- 2003-12-29 US US10/747,544 patent/US6936555B2/en not_active Expired - Fee Related
- 2003-12-29 TW TW092137555A patent/TWI240708B/en not_active IP Right Cessation
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6300262B1 (en) * | 1999-10-18 | 2001-10-09 | Corning Incorporated | Transparent forsterite glass-ceramics |
| US6303527B1 (en) * | 1999-10-18 | 2001-10-16 | Corning Incorporated | Transparent glass-ceramics based on alpha- and beta-willemite |
| US20020028739A1 (en) * | 1999-10-18 | 2002-03-07 | Beall George H. | Forsterite glass-ceramics of high crystallinity and chrome content |
| US6531420B1 (en) * | 1999-10-18 | 2003-03-11 | Corning Incorporated | Transparent lithium zinc magnesium orthosilicate glass-ceramics |
| US6632758B2 (en) * | 2001-05-03 | 2003-10-14 | Corning Incorporated | Transparent gallate glass-ceramics |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040233514A1 (en) * | 2003-02-18 | 2004-11-25 | Masahiro Takagi | Fluorescent glass, optical amplification waveguide and optical amplification module |
| US20090116809A1 (en) * | 2005-09-22 | 2009-05-07 | Fiber Optics Research Center Of The Russian Academy Of Sciences | Amplifying Optical Fiber Operating At A Wavelength In The Range Of 1000-1700 nm, Methods of Fabricating The Same, And Fiber Laser |
| US8509588B2 (en) * | 2005-09-22 | 2013-08-13 | Fiber Optics Research Center Of The Russian Academy Of Sciences | Amplifying optical fiber operating at a wavelength in the range of 1000-1700 nm, methods of fabricating the same, and fiber laser |
| WO2009027160A1 (en) * | 2007-08-27 | 2009-03-05 | Nv Bekaert Sa | Electrochromic optical device showing reduced switching times |
| US20110143911A1 (en) * | 2009-11-20 | 2011-06-16 | Yvonne Menke | Spinel optoceramics |
| US8679996B2 (en) * | 2009-11-20 | 2014-03-25 | Schott Ag | Spinel optoceramics |
| US9112072B2 (en) * | 2010-01-27 | 2015-08-18 | Interpane Entwicklungs-und, Beratungsgesellschaft mbH | Method for producing a coated item by means of texture etching |
| US20120067618A1 (en) * | 2010-01-27 | 2012-03-22 | Oliver Kappertz | Method for producing a coated item by means of texture etching |
| CN103265175A (en) * | 2013-05-06 | 2013-08-28 | 朱晓明 | Microcrystalline glass stone material and preparation technology thereof |
| CN103739202A (en) * | 2013-12-17 | 2014-04-23 | 朱晓明 | Microcrystalline glass and production method thereof |
| CN103755143A (en) * | 2013-12-17 | 2014-04-30 | 朱晓明 | Microcrystalline glass and preparation method thereof |
| CN104529165A (en) * | 2014-12-07 | 2015-04-22 | 中国科学院福建物质结构研究所 | Yellow afterglow microcrystalline glass for AC-LED and preparation technology thereof |
| CN104529165B (en) * | 2014-12-07 | 2021-12-14 | 中国科学院福建物质结构研究所 | A kind of yellow afterglow glass-ceramic for AC-LED and its preparation technology |
| CN106830921A (en) * | 2017-01-23 | 2017-06-13 | 九江学院 | A kind of ZnO transparent ceramics and preparation method thereof |
| CN114341068A (en) * | 2019-09-05 | 2022-04-12 | 株式会社小原 | Crystallized glass and reinforced crystallized glass |
| US20220324749A1 (en) * | 2019-09-05 | 2022-10-13 | Ohara Inc. | Crystallized glass and reinforced crystallized glass |
| CN111018354A (en) * | 2020-01-06 | 2020-04-17 | 武汉理工大学 | A kind of spinel transparent glass-ceramic with lower melting temperature and its preparation and performance enhancement method |
| US12308146B2 (en) * | 2021-12-23 | 2025-05-20 | Panasonic Intellectual Property Management Co., Ltd. | Multilayer varistor |
| CN115057621A (en) * | 2022-03-29 | 2022-09-16 | 东华大学 | A kind of colorless transparent magnesium aluminum silicon glass-ceramic and preparation method thereof |
| CN114716142A (en) * | 2022-04-12 | 2022-07-08 | 中国计量大学上虞高等研究院有限公司 | A kind of doped ZnS quantum dot luminescent glass and its preparation method and application |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2004060825A1 (en) | 2004-07-22 |
| US6936555B2 (en) | 2005-08-30 |
| EP1590304A1 (en) | 2005-11-02 |
| AU2003297419A1 (en) | 2004-07-29 |
| JP2006512274A (en) | 2006-04-13 |
| TW200424142A (en) | 2004-11-16 |
| TWI240708B (en) | 2005-10-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6936555B2 (en) | Glass ceramics based on ZnO | |
| US6632758B2 (en) | Transparent gallate glass-ceramics | |
| US6268303B1 (en) | Tantalum containing glasses and glass ceramics | |
| EP0716050B1 (en) | Transparent glass-ceramics | |
| US5537505A (en) | Transparent glass-ceramics | |
| US6204211B1 (en) | Luminous glass ceramics | |
| AU731393B2 (en) | Transparent oxyfluoride glass-ceramic composition and process for making | |
| EP0640571A1 (en) | A wavelength up-conversion glass ceramic and a process for the production thereof | |
| Marcondes et al. | Rare-earth ion doped niobium germanate glasses and glass-ceramics for optical device applications | |
| US6632757B2 (en) | Transparent forsterite glass-ceramics | |
| US6660669B2 (en) | Forsterite glass-ceramics of high crystallinity and chrome content | |
| US6531420B1 (en) | Transparent lithium zinc magnesium orthosilicate glass-ceramics | |
| WO2001028943A1 (en) | Transparent glass-ceramics based on alpha- and beta-willemite | |
| Chakrabarti et al. | Glass–ceramics: A Potential Material for Energy Storage and Photonic Applications | |
| US6813903B2 (en) | Method of making forsterite glass-ceramics | |
| WO2001028945A1 (en) | Transparent forsterite glass-ceramics | |
| CN1583621A (en) | Transparent anadate glass with high gain coefficient and preparing method thereof | |
| JPH04328725A (en) | Nonlinear optical material and production thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CORNING INCORPORATED, NEW YORK Free format text: TO CORRECT ASSIGNOR NAME ON REEL/FRAME 014855/0365;ASSIGNOR:PINCKNEY, LINDA R.;REEL/FRAME:015665/0365 Effective date: 20031201 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.) |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Expired due to failure to pay maintenance fee |
Effective date: 20170830 |