US20040127961A1 - Therapeutic light source and method - Google Patents
Therapeutic light source and method Download PDFInfo
- Publication number
- US20040127961A1 US20040127961A1 US10/625,701 US62570103A US2004127961A1 US 20040127961 A1 US20040127961 A1 US 20040127961A1 US 62570103 A US62570103 A US 62570103A US 2004127961 A1 US2004127961 A1 US 2004127961A1
- Authority
- US
- United States
- Prior art keywords
- light
- array
- emitting diodes
- light source
- diodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000001225 therapeutic effect Effects 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims description 10
- 238000000295 emission spectrum Methods 0.000 claims abstract description 18
- 238000002560 therapeutic procedure Methods 0.000 claims abstract description 17
- 238000011282 treatment Methods 0.000 claims description 46
- 238000003745 diagnosis Methods 0.000 claims description 14
- 238000003491 array Methods 0.000 claims description 11
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 claims description 9
- 229910005540 GaP Inorganic materials 0.000 claims description 8
- 210000003128 head Anatomy 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 7
- 210000004761 scalp Anatomy 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 6
- 229910002601 GaN Inorganic materials 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 4
- 206010004146 Basal cell carcinoma Diseases 0.000 claims description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 4
- 201000001441 melanoma Diseases 0.000 claims description 4
- 206010041823 squamous cell carcinoma Diseases 0.000 claims description 4
- 208000006994 Precancerous Conditions Diseases 0.000 claims description 3
- 239000012141 concentrate Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 208000009621 actinic keratosis Diseases 0.000 claims description 2
- 210000000270 basal cell Anatomy 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims 6
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 claims 2
- 241000557769 Iodes Species 0.000 claims 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims 1
- 229910052785 arsenic Inorganic materials 0.000 claims 1
- 238000002428 photodynamic therapy Methods 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- KSFOVUSSGSKXFI-GAQDCDSVSA-N CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O Chemical compound CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O KSFOVUSSGSKXFI-GAQDCDSVSA-N 0.000 description 5
- 239000003504 photosensitizing agent Substances 0.000 description 5
- 229950003776 protoporphyrin Drugs 0.000 description 5
- 238000000862 absorption spectrum Methods 0.000 description 4
- 230000002165 photosensitisation Effects 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 210000003679 cervix uteri Anatomy 0.000 description 3
- 210000000245 forearm Anatomy 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 208000013165 Bowen disease Diseases 0.000 description 2
- 208000019337 Bowen disease of the skin Diseases 0.000 description 2
- 244000273618 Sphenoclea zeylanica Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 201000005962 mycosis fungoides Diseases 0.000 description 2
- 230000000771 oncological effect Effects 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- -1 peaks at 505 nm Chemical compound 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 201000010153 skin papilloma Diseases 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- MHIITNFQDPFSES-UHFFFAOYSA-N 25,26,27,28-tetrazahexacyclo[16.6.1.13,6.18,11.113,16.019,24]octacosa-1(25),2,4,6,8(27),9,11,13,15,17,19,21,23-tridecaene Chemical class N1C(C=C2C3=CC=CC=C3C(C=C3NC(=C4)C=C3)=N2)=CC=C1C=C1C=CC4=N1 MHIITNFQDPFSES-UHFFFAOYSA-N 0.000 description 1
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 description 1
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- 241000282461 Canis lupus Species 0.000 description 1
- 208000009458 Carcinoma in Situ Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 206010017943 Gastrointestinal conditions Diseases 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 206010020112 Hirsutism Diseases 0.000 description 1
- 208000001126 Keratosis Diseases 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 208000003445 Mouth Neoplasms Diseases 0.000 description 1
- 206010067193 Naevus flammeus Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 229920005439 Perspex® Polymers 0.000 description 1
- 208000006787 Port-Wine Stain Diseases 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 206010039785 Sebaceous naevus Diseases 0.000 description 1
- 206010039792 Seborrhoea Diseases 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 206010046788 Uterine haemorrhage Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 208000000260 Warts Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 208000004631 alopecia areata Diseases 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- SURLGNKAQXKNSP-DBLYXWCISA-N chlorin Chemical compound C\1=C/2\N/C(=C\C3=N/C(=C\C=4NC(/C=C\5/C=CC/1=N/5)=CC=4)/C=C3)/CC\2 SURLGNKAQXKNSP-DBLYXWCISA-N 0.000 description 1
- 150000004035 chlorins Chemical class 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 201000004196 common wart Diseases 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- ISVXIZFUEUVXPG-UHFFFAOYSA-N etiopurpurin Chemical compound CC1C2(CC)C(C(=O)OCC)=CC(C3=NC(C(=C3C)CC)=C3)=C2N=C1C=C(N1)C(CC)=C(C)C1=CC1=C(CC)C(C)=C3N1 ISVXIZFUEUVXPG-UHFFFAOYSA-N 0.000 description 1
- 208000002026 familial multiple nevi flammei Diseases 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 201000004933 in situ carcinoma Diseases 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 208000008588 molluscum contagiosum Diseases 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229940109328 photofrin Drugs 0.000 description 1
- 201000004303 plantar wart Diseases 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000000693 radiobiological effect Effects 0.000 description 1
- 230000003716 rejuvenation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 201000011138 superficial basal cell carcinoma Diseases 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/062—Photodynamic therapy, i.e. excitation of an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N2005/002—Cooling systems
- A61N2005/005—Cooling systems for cooling the radiator
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
- A61N5/0603—Apparatus for use inside the body for treatment of body cavities
- A61N2005/0611—Vagina
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0636—Irradiating the whole body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0642—Irradiating part of the body at a certain distance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
- A61N2005/0644—Handheld applicators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
- A61N2005/0645—Applicators worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
- A61N2005/0645—Applicators worn by the patient
- A61N2005/0647—Applicators worn by the patient the applicator adapted to be worn on the head
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/065—Light sources therefor
- A61N2005/0651—Diodes
- A61N2005/0652—Arrays of diodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0662—Visible light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0616—Skin treatment other than tanning
- A61N5/0617—Hair treatment
Definitions
- the present invention relates to a non-coherent light source for use in therapy such as photodynamic therapy (PDT), particularly using light emitting diodes (LED's).
- PDT photodynamic therapy
- LED's light emitting diodes
- Photodynamic therapy involves the administration of a photosensitising drug to an affected area, and its subsequent irradiation with light—see for example ‘The Physics of Photodynamic Therapy’ by B C Wilson and M S Patterson, Physics in Medicine & Biology 31 (1986) April No. 4, London GB.
- the document GB 2,212,010 discloses a therapeutic light source which uses an array of discrete LED's as an alternative to lasers or laser diodes. The output of the LED's is focussed so as to provide the necessary intensity.
- the document WO 94/15666 discloses a therapeutic light source specifically for PDT, with an integrated array of LED's mounted on the distal end of a hand piece. The LED's are overdriven to give the necessary intensity, and cooled by the flow of water around a closed loop passing along the hand piece.
- the document U.S. Pat. No. 5,728,090 discloses a somewhat similar device with various different types of head containing integrated LED matrices. These devices require complicated liquid cooling circuits which would add to the cost of the device and add to the bulk of the hand piece, which is disadvantageous for invasive use.
- a light source for therapy and/or diagnosis comprising a non-planar array of light-emitting diodes conforming with the shape of an external area to be treated or diagnosed.
- a light source for therapy and/or diagnosis comprising a first array of light-emitting diodes and a second array of light emitting diodes movably connected thereto.
- a light source for therapy and/or diagnosis comprising an array of light-emitting diodes mounted on the curved inner surface of a housing arranged to cover at least part of the length of a patient.
- a light source for therapy or diagnosis of a patient comprising an array of light-emitting diodes arranged within a housing, and an aperture allowing a part of the patient's body to be inserted into the housing, the array being arranged to direct light onto the part of the patient's body when inserted into the housing.
- a light source for therapy or diagnosis of a patient comprising an array of light-emitting diodes arranged within a sleeve so as to direct light onto part of an arm and/or hand of a patient when inserted into the sleeve.
- a light source for therapy or diagnosis of a patient comprising an intraluminal probe carrying on the surface thereof an array of discrete light-emitting diodes.
- a therapeutic light source comprising an air-cooled array of LED's, the air being vented in the vicinity of the array.
- the array is mounted at the distal end of a hand piece suitable for invasive therapy.
- a therapeutic light source comprising an array of LED's coupled to a light guide for delivering the light to the area to be treated.
- the LED's are directly coupled without intervening optical devices.
- a therapeutic light source comprising an array of LED's with emission spectra substantially limited to the range 550 to 660 nm, and preferably to one of the ranges 590 to 640 nm, 560 to 644 nm, 650 to 660 nm, and 550 to 570 nm.
- a therapeutic light source comprising an array of LED's with peak emission spectra of approximately 430 nm, 470 nm, 505 nm or 525 nm.
- FIG. 1 is a diagram of a parallel-series matrix of discrete LED's used in first and second embodiments of the present invention
- FIG. 2 is perspective diagram of the first embodiment
- FIG. 3 is a cross section of part of the first embodiment
- FIG. 4 is a graph showing the variation of intensity in a cross-section of the output of the first embodiment
- FIG. 5 is a cross-sectional diagram of a second embodiment
- FIG. 6 is a cross-sectional diagram of a third embodiment
- FIG. 7 is a cross-sectional diagram of a fourth embodiment
- FIG. 8 is a cross-sectional diagram of a fifth embodiment
- FIG. 9 is a graph showing the absorption spectrum of PpIX and the emission spectra of two examples of LED's suitable for use with the embodiments;
- FIGS. 10 a and 10 b are side and front views respectively of an LED array in a sixth embodiment for treatment of the face;
- FIGS. 11 a, 11 b and 11 c are a cross-section in the plane of the patient's arm, a top view and a vertical cross-section transverse to the patient's arm of an LED array in a seventh embodiment for treatment of the elbows of a patient;
- FIG. 12 is a side view of an LED array in an eighth embodiment used for treatment of the foot or feet;
- FIG. 13 is a side view of an LED array in a ninth embodiment used for treatment of the lower leg;
- FIGS. 14 and 15 show arrangements of an LED array in tenth and eleventh embodiments for treatment of respectively the face and a section of a patient lying on a bed;
- FIGS. 16 a and 16 b show respectively front and side views of a set of similar LED arrays in an twelfth embodiment for treatment of one side of a patient;
- FIGS. 17 a and 17 b show respectively front and side views of an LED array in a thirteenth embodiment for treatment of a section of one side of a patient;
- FIGS. 18 a and 18 b are respectively side and end views of a set of similar LED arrays in a fourteenth embodiment, for treatment of one side of a patient lying down;
- FIGS. 19 a and 19 b are respectively side and end views of an LED array in a fifteenth embodiment for treatment of a section of a patient lying down;
- FIGS. 20 a and 20 b are top and side views respectively of an arrangement of LED arrays in a sixteenth embodiment for treatment of the face and/or scalp;
- FIG. 21 shows a similar arrangement to that of FIGS. 20 a and 20 b, in a seventeenth embodiment for treatment of the face and/or scalp of a patient lying down;
- FIGS. 22 a, 22 b and 22 c show respectively a side view, a transverse cross-section and a longitudinal cross-section of an LED array arranged within a sleeve in a eighteenth embodiment, for treatment of the hand, forearm and/or elbow;
- FIGS. 23 a, 23 b and 23 c show respectively two different shapes of flexible LED array, and a flexible array applied as a patch onto the skin of a patient, in an nineteenth embodiment
- FIG. 24 shows an LED array arranged on the side of a cylindrical intraluminal probe in a twentieth embodiment
- FIG. 25 shows an LED array arranged on the surface of a spherical intraluminal probe in a twenty-first embodiment
- FIG. 26 shows a more specific example of the flexible LED array in the nineteenth embodiment.
- a therapeutic light source in the first embodiment as illustrated in FIGS. 1 to 5 , light is emitted from a parallel-series matrix of LED's L connected through a current-limiting resistor R to a source of a voltage +V.
- the LED matrix is mounted on a heatsink array H parallel to and spaced apart from a fan array F by support rods R. Air is blown by the fan array F onto the back of the heatsink array H.
- the heatsink array H comprises a plurality of individual heatsinks h mounted on the ends of the legs of the LED's, which pass through a support plate P. Each leg is soldered to an adjacent leg of another of the LED's in the same column.
- the support plate P is perforated to allow air to flow more freely around the heatsinks h and the LED's L.
- the LED's L are arranged so as to produce a substantially uniform illumination of. ⁇ 0.10% or less across a treatment field by selecting the beam divergence and spacing of the LED's L so that their individual beams overlap without causing substantial peaks or troughs in intensity. In the example shown in FIG. 4, uniformity of. ⁇ 0.6% is achieved. In this embodiment, no optical system is needed between the LED's and the patient; instead, the light is emitted directly from the LED's onto the patient.
- the LED's have individual power outputs of at least 5 mW and preferably at least 10 mW, to give the necessary fluence rates in the treatment field of at least 30 mW/cm.sup.2 in the red region of the spectrum and at least 10 mW/cm.sup.2 in the blue region.
- a 15 cm diameter array of 288 ‘Super flux’ LED's was used to produce a total light output of 8 W at 45 mW/cm.sup.2 in the treatment field.
- the LED's were driven at a higher current load than their specification while being cooled by forced air convection from the fans F.
- the current was limited to 90 mA per column of diodes, but may be increased to 120 mA or more if increased light output is needed.
- the number of diodes in series, in each column, is selected so that the total forward operating voltage is as close as possible to, but less than, the power supply output voltage, in this case 48 V. This arrangement avoids wasteful in-circuit heating and maximizes the operating efficiency of the electrical system.
- a method of treatment for oncological and non-oncological skin diseases such as cases of actinic/solar keratoses, Bowen's disease, superficial basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, mycosis fungoides, T-cell lymphoma, acne and seborrhoea, eczema, psoriasis, nevus sebaceous, gastrointestinal conditions (e.g. Barratt's oesophagus and colorectal carcinomas), gynaecological disorders (e.g. VIN, CIN and excessive uterine bleeding), oral cancers (e.g.
- a cream or solution containing a photosensitising drug such as 5-ALA is applied topically under medical supervision to the affected area of the skin of the patient, or administered intravenously or orally. In another method of application for large areas, the patient may be immersed in a bath of solution.
- a photosensitising drug such as 5-ALA
- the affected area may then be covered for a period of 3 to 6 hours, or up to 24 hours if the treatment is to be continued the next day, to prevent removal of the drug and carrier, or activation by sunlight.
- the area is then uncovered and exposed to light from the lamp according to the first embodiment for a period of 15 to 30 minutes.
- the treatment may then be repeated as necessary, for a total of 1 to 3 treatments. This method is particularly suitable for the treatment of patients with very large lesions or multiple lesions extending over a large area.
- the LED array is positioned approximately parallel to an external affected area of a patient to be treated, with a separation sufficient to achieve the uniform illumination as shown in FIG. 4, for example 2 to 5 cm.
- the device may also be used for cosmetic or partially cosmetic treatment with a photosensitizing drug for portwine stain removal and hair restoration/removal, and without a photosensitizing drug for skin rejuvenation, wrinkle removal or biostimulation (including wound healing).
- the lamp may also be used for fluorescence detection (photodiagnosis).
- the first embodiment may be modified in a second embodiment, as shown in FIG. 5, by the addition of a frusto-conical waveguide W, for example of acrylic (e.g. Perspex.TM.) or glass, supported by the support rods R, which are extended in this embodiment.
- the waveguide W is arranged to concentrate light emitted by the LED's onto a smaller area with higher intensity. This arrangement is suitable for treating smaller external surfaces.
- the second embodiment may be modified in a third embodiment, as shown in FIG. 6, to deliver the light from the waveguide W into a lightguide L for internal treatment.
- the lightguide L such as an optical fibre or fibre bundle, or liquid light guide
- the lightguide L is held in a lightguide receptacle or adapter A, that is compatible for example with Olympus, Storz, ACMI or Wolf light cable fittings, in abutment or immediately adjacent relation with the narrow end of the waveguide W.
- the lightguide L may be of 3, 5 or 8 mm diameter.
- the support rods R align the optical axes of the waveguide W and lightguide L, so that the light emitted by the waveguide W is launched into the lightguide L.
- the light is concentrated by the waveguide and emitted over a small area at the distal end of the lightguide L which may be inserted into body cavities for oral, gynaecological, gastrointestinal or intraluminal treatment.
- the third embodiment may be modified in a fourth embodiment, as shown in FIG. 7, in which the discrete LED array is replaced by an integrated multi-die LED matrix IM (for example part no. OD 6380, OD 6624 or OD 6680 available from AMS Optotech, Bristol, UK) mounted on the support plate/heatsink P, H.
- a Peltier effect thermoelectric cooler PC is mounted in thermal contact with the opposite side of the support plate P, the heated side of which is cooled by the fan F.
- the proximal end of the lightguide L is directly adjacent or abutting the integrated LED matrix IM, which are of similar cross-section so that the waveguide is not needed to launch the emitted light into the lightguide L.
- a fifth embodiment is designed specifically for treatment of the cervix, such as PDT treatment.
- the fifth embodiment has the form of a hand piece having a hollow stem S, for example of acrylic or polycarbonate, through which air is blown at low pressure by a fan F mounted at the proximal end.
- the distal end has a head portion HP comprising a housing within which is mounted a discrete LED array mounted on a support plate/heatsink P/H. Air passes through the hollow stem S onto the heatsink H so as to extract heat therefrom and is then vented through apertures AP on the proximal side of the housing.
- the distal end of the housing is concave and dimensioned so as to fit closely over the end of the cervix C.
- a transparent end window W for example of acrylic or glass, prevents infiltration of the LED's.
- Power is carried to the LED's through wires (not shown) mounted on the wall of the acrylic stem S.
- the hand piece is positioned so that the distal end fits over the cervix of the patient and is clamped in position for the duration of the treatment.
- a first suitable type of LED is based on aluminium indium gallium phosphide/gallium phosphide (AlInGaP/GaP) of transparent substrate (TS) or absorbing substrate (AS) type.
- the output wavelengths are in the range 590 to 640 nm with peak emission wavelengths of 590, 596, 605, 615, 626, 630 and 640 nm.
- Commercially available examples are the ‘SunPower’.TM. or ‘Precision Optical Power’.TM. series from Hewlett Packard Company, designed for use in the automotive industry, for commercial outdoor advertising and traffic management.
- Suitable LED's are those packaged as: SMT (surface mount technology) e.g.
- HPWA or HPWT series preferably HPWA (MH/DH/ML/DL) 00 00000, HPWT (RD/MD/DD/BD/RH/H/DH/BH/RL/ML/DL/BL) 00 00000, most preferably HPWT (DD/DH/DL/MH/ML/MD) 00 00000; SnapLED.TM.
- HPWT, HPWS, HPWL series preferably HPWT (SH/PH/SL/PL) 00, HPWT (TH/FH/TL/FL) 00 or HPWS (TH/FH/TL/FL) 00.
- Suitable products from other manufacturers include: of SMT type, Advanced Products Inc. (API) part no.
- HCL4205AO of T1 type, American Bright Optoelectronics (ABO) part no. BL BJ3331E or BL BJ2331E; of Superflux type, ABO part no.'s BL F2J23, BL F2J33 and BL F1F33.
- a second suitable type of LED is the aluminium indium gallium phosphide/gallium arsenic (AlInGaP/GaAs) type, with emission wavelengths in the range 560 to 644 mn and peak emission wavelengths of 562 mn, 574 nm, 590 nm, 612 nm, 620 nm, 623 nm and 644 nm.
- AlInGaP/GaAs aluminium indium gallium phosphide/gallium arsenic
- TLRH, TLRE, TLSH, TLOH or TLYH series examples commercially available from Toshiba in T1 package are the TLRH, TLRE, TLSH, TLOH or TLYH series, preferably TLRH 262, TLRH 160, TLRE 160, TLSH 1100, TLOH 1100, TLYH 1100 or S4F4 2Q1; or in T13/4 package are the TLRH or TLSH series, preferably TLRH 180P or TLSH 180P.
- Another example is Kingbright L934SURC-E.
- a third suitable type of LED is aluminium gallium arsenic type (AlGaAs), with emission wavelengths in the range 650 to 660 nm.
- AlGaAs aluminium gallium arsenic type
- T1 package examples include the Toshiba TLRA series, preferably TLRA 290P or TLRA 293P, and Kingbright L934 SRCG, L934 SRCH, and L934 SRCJ and in T13/4 package include Kingbright L53 SRCE.
- a fourth suitable type of LED is gallium phosphide (GaP) type, with emission wavelengths in the range 550 to 570 mn.
- GaP gallium phosphide
- a fifth suitable type of LED is indium gallium nitride (InGaN).
- InGaN indium gallium nitride
- commercially available examples include: in SMT package, API's HCL 1513AG; and in T1 package, Famell's #942 467, Radio Spare's #228 1879 and #249 8752, API's HB3h 443AG and Plus Opto's NSPG500S.
- examples are Famell's #142 773, Radio Spare's #235 9900 and American Bright Optoelectronics Inc.'s BL BH3PW1.
- a sixth suitable type of LED is gallium nitride/silicon (GaN/Si), with an emission wavelength of 430 nm.
- GaN/Si gallium nitride/silicon
- Siemens LB3336 also known as RS #284 1386.
- each of the above LED types is selected to have an emission spectrum substantially coincident with the absorption spectrum of one or more of the following common photosensitizers given below in Table 1, and therefore embodiments having such LED's are suitable for PDT.
- FIG. 9 shows the absorption spectrum of PpIX, including peaks at 505 nm, 545 nm, 580 nm and 633 nm. Inset are the emission spectra, in units of peak intensity and on the same wavelength axis, of LED part no. HPWA DL00 with a peak at 590 nm and LED part no.
- the discrete LED array may comprise more than one different type of LED, each with different emission spectra, selected to match different absorption bands of the selected photosensitizer. Each type of LED may be switched independently.
- the penetration depth i.e. the depth at which the intensity has been attenuated to e.sup.-1
- the penetration depth may also be varied by switching on only one type of LED in the array so as to select a suitable emission band, since the penetration depth is a function of the wavelength.
- the LED array may be composed of individually switchable spatially distinct segments of LED's. Selected segments may be switched on so as to treat a selected area of the patient within the overall area of the matrix array.
- the lamp may include an electro-optical detector arranged to monitor the light dose delivered and to switch off the light emission when a target dose is reached.
- the detector is arranged to monitor the instantaneous light intensity and to vary the electrical power supplied to the tubes so as to maintain the intensity within predetermined limits, and/or to switch off the light emission if a maximum limit is exceeded.
- LED array suitable for treatment of different areas of a patient will now be described.
- the LED's are discrete LED's as described above. Except where stated otherwise, the LED's may be fan-cooled using integrated fans.
- FIGS. 10 a and 10 b show an array of LED's L in a sixth embodiment, arranged on a support P shaped as a curved visor for treatment of the face of a patient.
- the array is supported in front of the patient's face by a head band HB or other head wear worn by the patient.
- FIGS. 11 a to 11 c show an array of LED's L in a seventh embodiment arranged within a cuboid housing HO which has two similar apertures AP on one face, to allow the elbows to be inserted into the housing HO.
- the edges of the apertures AP are cushioned to allow the arms to be rested comfortably.
- a surface SU which is curved both in the plane of the arms and perpendicular to that plane, as shown in FIG. 11 c.
- the LED's L are mounted on this surface SU so that light emitted therefrom is concentrated onto the elbows of the patient.
- FIG. 12 shows an LED array L in an eighth embodiment mounted on a support plate P, and covered by a transparent or translucent cover on which the foot or feet of the patient rest during treatment.
- FIG. 13 shows an LED array L in a ninth embodiment mounted on a support plate P and arranged for treatment of the lower leg of a patient.
- FIGS. 14 and 15 show an LED array L, mounted in a housing HO in the form of a trapezoid prism, the upper inner surface carrying the LED array and the lower surface being open to allow light to fall onto the patient.
- the side faces may be reflective, or carry additional LED arrays.
- the housing HO is mounted at one end of a bed so that its height above the bed is adjustable, for facial treatment of a patient lying on the bed.
- the housing HO is mounted on a stand ST and is adjustable in height, for treatment of a selected part of a patient lying on the bed.
- FIGS. 16 a and 16 b show a series of four coplanar LED arrays L in a twelfth embodiment arranged to treat one side of a patient. Each of the arrays is independently switchable so that selected sections of the patient can be treated.
- FIGS. 17 a and 17 b show a single LED array L in a thirteenth embodiment positioned to treat a section of the patient.
- FIGS. 18 a and 18 b show a series of three coplanar LED arrays L in a fourteenth embodiment arranged to treat one side of a patient lying down. Each of the arrays is independently switchable so that selected sections of the patient can be treated.
- FIGS. 19 a and 19 b show an array of LED's L in a fifteenth embodiment mounted on the inner surface of a curved housing HO for treatment of a patient lying on a further, planar array of LED's, for treatment of a section of the patient from all sides.
- the housing HO is slidable along the length of the patient so as to treat a selected area of the patient. Sections of the planar array of LED's are switchable so as to illuminate only the selected section.
- FIGS. 20 a and 20 b show a sixteenth embodiment comprising a front-facial LED array L F for directing light onto the face of the patient from the front, a scalp LED array L s and left and right side-facial LED arrays L L , L R moveably connected, for example by hinges, to the front-facial array L F , for directing light onto the scalp, left side of the face and right side of the face respectively.
- the front-facial array L F is slideably attached to a stand ST for vertical adjustment to the head height of the patient, preferably when sitting.
- FIG. 21 shows a seventeenth embodiment, similar to that of FIGS. 20 a and 20 b, except that it is arranged for facial and/or scalp treatment of a patient when lying down.
- the stand ST is mounted on a bed, instead of being free-standing, and the arrays are rotated by 90.degree. so as to correspond to the position of the patient's head when lying down.
- FIGS. 22 a, 22 b and 22 c show an eighteenth embodiment in which an LED array L is mounted on the inner surface of a sleeve SL so as to direct light onto the hand, forearm and/or elbow within the sleeve.
- FIGS. 23 a and 23 b show respectively a square and a rectangular LED array L in a nineteenth embodiment mounted on a flexible backing member FB which can be applied to an area of the patient to be treated, such as part of the forearm as shown in FIG. 23 c, with the LED's facing inwardly.
- the LED array thereby follows the contours of the area to be treated.
- the flexible backing member FB may be cooled by a fan which is either discrete or connected thereto by a flexible membrane which is fixed around the flexible backing member FB and directs air from a fan onto the backing member, through which the air is vented.
- FIG. 24 shows an LED array in a twentieth embodiment arranged on the surface of a cylindrical intraluminal probe
- FIG. 25 shows an LED array in a twenty-first embodiment arranged on the surface of a spherical head of an intraluminal probes.
- the probes are dimensioned for vulval, cervical, endometrial, bladder, gastrointestinal, oral, nasal, aural and/or bronchial treatment.
- FIG. 26 shows a more specific example of the nineteenth embodiment, consisting of rows of blue LED's L B interspersed with rows of red LED's L R so as to form a discrete LED array composed of different types of LED as described above.
- the blue LED's L B are switchable on and off together, independently of the red LED's L R which are also switchable on and off together. In this way, red or blue illumination may be chosen according to the type of treatment and penetration depth required.
- the blue LED's have an emission spectrum substantially (for example fill width half maximum bandwidth) in the range 370 to 450 nm, and preferably 400 to 430 nm. This range is particularly suitable for the treatment of pre-cancerous conditions, in particular actinic keratoses.
- the red LED's have an emission spectrum substantially (for example full width half maximum bandwidth) in the range 620 to 700 nm. This range is particularly suitable for the treatment of non-melanoma, such as basal cell or squamous cell carcinoma, or mycosis fungoides.
Landscapes
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Radiation-Therapy Devices (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Surgical Instruments (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
- Endoscopes (AREA)
Abstract
A therapeutic light source, for example for photodynamic therapy (PDT), comprises an air-cooled array of LED's (Lx,y), the air being vented in the vicinity of the array. The array may be mounted at the distal end of a hand piece suitable for invasive therapy. The LED's may be coupled to a light guide (W, L). The emission spectra of the LED's may be substantially limited to the range 550 to 660 nm, and preferably to one of the ranges 590 to 640 nm, 560 to 644 nm, 650 to 660 nm, and 550 to 570 nm. The therapeutic light source may comprise a non-planar array of light-emitting diodes L conforming with the shape of an external area to be treated or diagnosed. The therapeutic light source may comprise a non-planar array of independently switchable red and blue light-emitting diodes LR, LB, mounted on a flexible backing.
Description
- This application is a continuation of U.S. patent application Ser. No. 09/815,348, filed Mar. 23, 2001, incorporated herein by reference in its entirety.
- 1. Field of the Invention
- The present invention relates to a non-coherent light source for use in therapy such as photodynamic therapy (PDT), particularly using light emitting diodes (LED's).
- 2. Related Art
- Photodynamic therapy involves the administration of a photosensitising drug to an affected area, and its subsequent irradiation with light—see for example ‘The Physics of Photodynamic Therapy’ by B C Wilson and M S Patterson, Physics in Medicine & Biology 31 (1986) April No. 4, London GB.
- The document GB 2,212,010 discloses a therapeutic light source which uses an array of discrete LED's as an alternative to lasers or laser diodes. The output of the LED's is focussed so as to provide the necessary intensity.
- The document WO 94/15666 discloses a therapeutic light source specifically for PDT, with an integrated array of LED's mounted on the distal end of a hand piece. The LED's are overdriven to give the necessary intensity, and cooled by the flow of water around a closed loop passing along the hand piece. The document U.S. Pat. No. 5,728,090 discloses a somewhat similar device with various different types of head containing integrated LED matrices. These devices require complicated liquid cooling circuits which would add to the cost of the device and add to the bulk of the hand piece, which is disadvantageous for invasive use.
- The document U.S. Pat. No. 5,728,090 mentions that the wavelength of the LED's is between 300 nm and 1300 nm and is selected based upon the particular photosensitive dye used during PDT. However, the wavelengths of LED's capable of providing the necessary intensity for PDT cannot freely be chosen within that range.
- According to one aspect of the present invention, there is provided a light source for therapy and/or diagnosis, comprising a non-planar array of light-emitting diodes conforming with the shape of an external area to be treated or diagnosed.
- According to another aspect of the present invention, there is provided a light source for therapy and/or diagnosis, comprising a first array of light-emitting diodes and a second array of light emitting diodes movably connected thereto.
- According to another aspect of the present invention, there is provided a light source for therapy and/or diagnosis, comprising an array of light-emitting diodes mounted on the curved inner surface of a housing arranged to cover at least part of the length of a patient.
- According to another aspect of the present invention, there is provided a light source for therapy or diagnosis of a patient, comprising an array of light-emitting diodes arranged within a housing, and an aperture allowing a part of the patient's body to be inserted into the housing, the array being arranged to direct light onto the part of the patient's body when inserted into the housing.
- According to another aspect of the present invention, there is provided a light source for therapy or diagnosis of a patient, comprising an array of light-emitting diodes arranged within a sleeve so as to direct light onto part of an arm and/or hand of a patient when inserted into the sleeve.
- According to another aspect of the present invention, there is provided a light source for therapy or diagnosis of a patient, comprising an intraluminal probe carrying on the surface thereof an array of discrete light-emitting diodes.
- According to another aspect of the present invention, there is provided a therapeutic light source comprising an air-cooled array of LED's, the air being vented in the vicinity of the array. In one embodiment, the array is mounted at the distal end of a hand piece suitable for invasive therapy.
- According to another aspect of the present invention, there is provided a therapeutic light source comprising an array of LED's coupled to a light guide for delivering the light to the area to be treated. Preferably, the LED's are directly coupled without intervening optical devices.
- According to another aspect of the present invention, there is provided a therapeutic light source comprising an array of LED's with emission spectra substantially limited to the
range 550 to 660 nm, and preferably to one of theranges 590 to 640 nm, 560 to 644 nm, 650 to 660 nm, and 550 to 570 nm. - According to another aspect of the present invention, there is provided a therapeutic light source comprising an array of LED's with peak emission spectra of approximately 430 nm, 470 nm, 505 nm or 525 nm.
- Specific embodiments of the present invention will now be described with reference to the accompanying drawings, in which:
- FIG. 1 is a diagram of a parallel-series matrix of discrete LED's used in first and second embodiments of the present invention;
- FIG. 2 is perspective diagram of the first embodiment;
- FIG. 3 is a cross section of part of the first embodiment;
- FIG. 4 is a graph showing the variation of intensity in a cross-section of the output of the first embodiment;
- FIG. 5 is a cross-sectional diagram of a second embodiment;
- FIG. 6 is a cross-sectional diagram of a third embodiment;
- FIG. 7 is a cross-sectional diagram of a fourth embodiment;
- FIG. 8 is a cross-sectional diagram of a fifth embodiment;
- FIG. 9 is a graph showing the absorption spectrum of PpIX and the emission spectra of two examples of LED's suitable for use with the embodiments;
- FIGS. 10 a and 10 b are side and front views respectively of an LED array in a sixth embodiment for treatment of the face;
- FIGS. 11 a, 11 b and 11 c are a cross-section in the plane of the patient's arm, a top view and a vertical cross-section transverse to the patient's arm of an LED array in a seventh embodiment for treatment of the elbows of a patient;
- FIG. 12 is a side view of an LED array in an eighth embodiment used for treatment of the foot or feet;
- FIG. 13 is a side view of an LED array in a ninth embodiment used for treatment of the lower leg;
- FIGS. 14 and 15 show arrangements of an LED array in tenth and eleventh embodiments for treatment of respectively the face and a section of a patient lying on a bed;
- FIGS. 16 a and 16 b show respectively front and side views of a set of similar LED arrays in an twelfth embodiment for treatment of one side of a patient;
- FIGS. 17 a and 17 b show respectively front and side views of an LED array in a thirteenth embodiment for treatment of a section of one side of a patient;
- FIGS. 18 a and 18 b are respectively side and end views of a set of similar LED arrays in a fourteenth embodiment, for treatment of one side of a patient lying down;
- FIGS. 19 a and 19 b are respectively side and end views of an LED array in a fifteenth embodiment for treatment of a section of a patient lying down;
- FIGS. 20 a and 20 b are top and side views respectively of an arrangement of LED arrays in a sixteenth embodiment for treatment of the face and/or scalp;
- FIG. 21 shows a similar arrangement to that of FIGS. 20 a and 20 b, in a seventeenth embodiment for treatment of the face and/or scalp of a patient lying down;
- FIGS. 22 a, 22 b and 22 c show respectively a side view, a transverse cross-section and a longitudinal cross-section of an LED array arranged within a sleeve in a eighteenth embodiment, for treatment of the hand, forearm and/or elbow;
- FIGS. 23 a, 23 b and 23 c show respectively two different shapes of flexible LED array, and a flexible array applied as a patch onto the skin of a patient, in an nineteenth embodiment;
- FIG. 24 shows an LED array arranged on the side of a cylindrical intraluminal probe in a twentieth embodiment;
- FIG. 25 shows an LED array arranged on the surface of a spherical intraluminal probe in a twenty-first embodiment; and
- FIG. 26 shows a more specific example of the flexible LED array in the nineteenth embodiment.
- In a therapeutic light source in the first embodiment, as illustrated in FIGS. 1 to 5, light is emitted from a parallel-series matrix of LED's L connected through a current-limiting resistor R to a source of a voltage +V. The LED matrix is mounted on a heatsink array H parallel to and spaced apart from a fan array F by support rods R. Air is blown by the fan array F onto the back of the heatsink array H.
- As shown in more detail in FIG. 3, the heatsink array H comprises a plurality of individual heatsinks h mounted on the ends of the legs of the LED's, which pass through a support plate P. Each leg is soldered to an adjacent leg of another of the LED's in the same column. The support plate P is perforated to allow air to flow more freely around the heatsinks h and the LED's L.
- The LED's L are arranged so as to produce a substantially uniform illumination of.±0.10% or less across a treatment field by selecting the beam divergence and spacing of the LED's L so that their individual beams overlap without causing substantial peaks or troughs in intensity. In the example shown in FIG. 4, uniformity of.±0.6% is achieved. In this embodiment, no optical system is needed between the LED's and the patient; instead, the light is emitted directly from the LED's onto the patient. As the light is not concentrated by any optical system, the LED's have individual power outputs of at least 5 mW and preferably at least 10 mW, to give the necessary fluence rates in the treatment field of at least 30 mW/cm.sup.2 in the red region of the spectrum and at least 10 mW/cm.sup.2 in the blue region.
- In one specific example, a 15 cm diameter array of 288 ‘Super flux’ LED's was used to produce a total light output of 8 W at 45 mW/cm.sup.2 in the treatment field. The LED's were driven at a higher current load than their specification while being cooled by forced air convection from the fans F. In the specific example, the current was limited to 90 mA per column of diodes, but may be increased to 120 mA or more if increased light output is needed. The number of diodes in series, in each column, is selected so that the total forward operating voltage is as close as possible to, but less than, the power supply output voltage, in this case 48 V. This arrangement avoids wasteful in-circuit heating and maximizes the operating efficiency of the electrical system.
- A method of treatment for oncological and non-oncological skin diseases such as cases of actinic/solar keratoses, Bowen's disease, superficial basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, mycosis fungoides, T-cell lymphoma, acne and seborrhoea, eczema, psoriasis, nevus sebaceous, gastrointestinal conditions (e.g. Barratt's oesophagus and colorectal carcinomas), gynaecological disorders (e.g. VIN, CIN and excessive uterine bleeding), oral cancers (e.g. pre-malignant or dyplastic lesions and squamous cell carcinomas), viral infections such as herpes simplex, molluscum contagiosum, and warts (recalcitrant, verruca vulgaris or verruca plantaris), alopecia areata, or hirsutism, using the first embodiment, will now be described. A cream or solution containing a photosensitising drug such as 5-ALA is applied topically under medical supervision to the affected area of the skin of the patient, or administered intravenously or orally. In another method of application for large areas, the patient may be immersed in a bath of solution. The affected area may then be covered for a period of 3 to 6 hours, or up to 24 hours if the treatment is to be continued the next day, to prevent removal of the drug and carrier, or activation by sunlight. The area is then uncovered and exposed to light from the lamp according to the first embodiment for a period of 15 to 30 minutes. The treatment may then be repeated as necessary, for a total of 1 to 3 treatments. This method is particularly suitable for the treatment of patients with very large lesions or multiple lesions extending over a large area.
- In a method of treatment using the device of the first embodiment, the LED array is positioned approximately parallel to an external affected area of a patient to be treated, with a separation sufficient to achieve the uniform illumination as shown in FIG. 4, for example 2 to 5 cm. The device may also be used for cosmetic or partially cosmetic treatment with a photosensitizing drug for portwine stain removal and hair restoration/removal, and without a photosensitizing drug for skin rejuvenation, wrinkle removal or biostimulation (including wound healing).
- The lamp may also be used for fluorescence detection (photodiagnosis).
- The first embodiment may be modified in a second embodiment, as shown in FIG. 5, by the addition of a frusto-conical waveguide W, for example of acrylic (e.g. Perspex.TM.) or glass, supported by the support rods R, which are extended in this embodiment. The waveguide W is arranged to concentrate light emitted by the LED's onto a smaller area with higher intensity. This arrangement is suitable for treating smaller external surfaces.
- The second embodiment may be modified in a third embodiment, as shown in FIG. 6, to deliver the light from the waveguide W into a lightguide L for internal treatment. The lightguide L, such as an optical fibre or fibre bundle, or liquid light guide, is held in a lightguide receptacle or adapter A, that is compatible for example with Olympus, Storz, ACMI or Wolf light cable fittings, in abutment or immediately adjacent relation with the narrow end of the waveguide W. The lightguide L may be of 3, 5 or 8 mm diameter. The support rods R align the optical axes of the waveguide W and lightguide L, so that the light emitted by the waveguide W is launched into the lightguide L. In the third embodiment, the light is concentrated by the waveguide and emitted over a small area at the distal end of the lightguide L which may be inserted into body cavities for oral, gynaecological, gastrointestinal or intraluminal treatment.
- The third embodiment may be modified in a fourth embodiment, as shown in FIG. 7, in which the discrete LED array is replaced by an integrated multi-die LED matrix IM (for example part no. OD 6380, OD 6624 or OD 6680 available from AMS Optotech, Bristol, UK) mounted on the support plate/heatsink P, H. A Peltier effect thermoelectric cooler PC is mounted in thermal contact with the opposite side of the support plate P, the heated side of which is cooled by the fan F. The proximal end of the lightguide L is directly adjacent or abutting the integrated LED matrix IM, which are of similar cross-section so that the waveguide is not needed to launch the emitted light into the lightguide L.
- A fifth embodiment, as shown in FIG. 8, is designed specifically for treatment of the cervix, such as PDT treatment. The fifth embodiment has the form of a hand piece having a hollow stem S, for example of acrylic or polycarbonate, through which air is blown at low pressure by a fan F mounted at the proximal end. The distal end has a head portion HP comprising a housing within which is mounted a discrete LED array mounted on a support plate/heatsink P/H. Air passes through the hollow stem S onto the heatsink H so as to extract heat therefrom and is then vented through apertures AP on the proximal side of the housing. The distal end of the housing is concave and dimensioned so as to fit closely over the end of the cervix C. A transparent end window W, for example of acrylic or glass, prevents infiltration of the LED's. Power is carried to the LED's through wires (not shown) mounted on the wall of the acrylic stem S. In use, the hand piece is positioned so that the distal end fits over the cervix of the patient and is clamped in position for the duration of the treatment.
- The selection of appropriate discrete LED's for PDT using any of the first to fourth embodiments will now be described, grouped according to die material.
- A first suitable type of LED is based on aluminium indium gallium phosphide/gallium phosphide (AlInGaP/GaP) of transparent substrate (TS) or absorbing substrate (AS) type. The output wavelengths are in the
range 590 to 640 nm with peak emission wavelengths of 590, 596, 605, 615, 626, 630 and 640 nm. Commercially available examples are the ‘SunPower’.TM. or ‘Precision Optical Power’.TM. series from Hewlett Packard Company, designed for use in the automotive industry, for commercial outdoor advertising and traffic management. Suitable LED's are those packaged as: SMT (surface mount technology) e.g. HSMA, HSMB, HSMC, HSML series and preferably HSMB HR00 R1T20 or HSMB HA00R1T2H; Axial e.g. HLMA or HLMT series; T1 e.g. HLMP series, preferably HLMP NG05, HLMP NG07, HLMP J105; T13/4 e.g. HLMP series, preferably HLMP DG08, HLMP DG15, HLMP GG08, HLMP DD16; Superflux.TM. e.g. HPWA or HPWT series, preferably HPWA (MH/DH/ML/DL) 00 00000, HPWT (RD/MD/DD/BD/RH/H/DH/BH/RL/ML/DL/BL) 00 00000, most preferably HPWT (DD/DH/DL/MH/ML/MD) 00 00000; SnapLED.TM. e.g. HPWT, HPWS, HPWL series, preferably HPWT (SH/PH/SL/PL) 00, HPWT (TH/FH/TL/FL) 00 or HPWS (TH/FH/TL/FL) 00. Suitable products from other manufacturers include: of SMT type, Advanced Products Inc. (API) part no. HCL4205AO; of T1 type, American Bright Optoelectronics (ABO) part no. BL BJ3331E or BL BJ2331E; of Superflux type, ABO part no.'s BL F2J23, BL F2J33 and BL F1F33. - A second suitable type of LED is the aluminium indium gallium phosphide/gallium arsenic (AlInGaP/GaAs) type, with emission wavelengths in the range 560 to 644 mn and peak emission wavelengths of 562 mn, 574 nm, 590 nm, 612 nm, 620 nm, 623 nm and 644 nm. Examples commercially available from Toshiba in T1 package are the TLRH, TLRE, TLSH, TLOH or TLYH series, preferably TLRH 262, TLRH 160, TLRE 160, TLSH 1100, TLOH 1100, TLYH 1100 or S4F4 2Q1; or in T13/4 package are the TLRH or TLSH series, preferably TLRH 180P or TLSH 180P. Another example is Kingbright L934SURC-E.
- A third suitable type of LED is aluminium gallium arsenic type (AlGaAs), with emission wavelengths in the
range 650 to 660 nm. Examples in T1 package include the Toshiba TLRA series, preferably TLRA 290P or TLRA 293P, and Kingbright L934 SRCG, L934 SRCH, and L934 SRCJ and in T13/4 package include Kingbright L53 SRCE. - A fourth suitable type of LED is gallium phosphide (GaP) type, with emission wavelengths in the
range 550 to 570 mn. - A fifth suitable type of LED is indium gallium nitride (InGaN). In the type with an emission wavelength of 525 nm, commercially available examples include: in SMT package, API's HCL 1513AG; and in T1 package, Famell's #942 467, Radio Spare's #228 1879 and #249 8752, API's HB3h 443AG and Plus Opto's NSPG500S. In the type with emission wavelengths of 470 and 505 nm and T1 package type, examples are Famell's #142 773, Radio Spare's #235 9900 and American Bright Optoelectronics Inc.'s BL BH3PW1.
- A sixth suitable type of LED is gallium nitride/silicon (GaN/Si), with an emission wavelength of 430 nm. One commercial example is Siemens LB3336 (also known as RS #284 1386).
- Each of the above LED types is selected to have an emission spectrum substantially coincident with the absorption spectrum of one or more of the following common photosensitizers given below in Table 1, and therefore embodiments having such LED's are suitable for PDT. For example, FIG. 9 shows the absorption spectrum of PpIX, including peaks at 505 nm, 545 nm, 580 nm and 633 nm. Inset are the emission spectra, in units of peak intensity and on the same wavelength axis, of LED part no. HPWA DL00 with a peak at 590 nm and LED part no. HPWT DH00 with a peak at 630 nm, the peaks having sufficient breadth to give a substantial overlap with the 580 nm and 633 nm peaks respectively in the absorption spectrum of PpIX.
TABLE 1 Red absorption Red Peak Blue/Green Photosensitizer band (nm) (nm) Peak (nm) Naphthalocyanines 780-810 Chalcogenopyrilium dyes 780-820 Phthalocyanines (e.g. ZnII Pc) 670-720 690 Tin etiopurpurin (SnET2) 660-710 660-665 447 Chlorins (e.g. N-Aspartyl chlorin 660-700 664 e6 or NPe6) Benzoporphyrin derivative (BPD) 685/690 456 Lutetium texaphrin (Lu-Tex) 735 Al(S1/S2/S3/S4) Pc 660-710 670/685 410, 480 Photofrin 625/630 405 Protoporphyrin IX (PpIX) - from 635 410, 505, 5/δAminolaevulinic Acid (5ALA) 540, 580 Tetra m- hydroxyphenyl Chlorin 650 440, 525 (mTHPC) - The discrete LED array may comprise more than one different type of LED, each with different emission spectra, selected to match different absorption bands of the selected photosensitizer. Each type of LED may be switched independently. The penetration depth (i.e. the depth at which the intensity has been attenuated to e.sup.-1) may also be varied by switching on only one type of LED in the array so as to select a suitable emission band, since the penetration depth is a function of the wavelength.
- The LED array may be composed of individually switchable spatially distinct segments of LED's. Selected segments may be switched on so as to treat a selected area of the patient within the overall area of the matrix array.
- The lamp may include an electro-optical detector arranged to monitor the light dose delivered and to switch off the light emission when a target dose is reached. Alternatively, or additionally, the detector is arranged to monitor the instantaneous light intensity and to vary the electrical power supplied to the tubes so as to maintain the intensity within predetermined limits, and/or to switch off the light emission if a maximum limit is exceeded.
- Various different arrangements of LED array suitable for treatment of different areas of a patient will now be described. The LED's are discrete LED's as described above. Except where stated otherwise, the LED's may be fan-cooled using integrated fans.
- FIGS. 10 a and 10 b show an array of LED's L in a sixth embodiment, arranged on a support P shaped as a curved visor for treatment of the face of a patient. The array is supported in front of the patient's face by a head band HB or other head wear worn by the patient.
- FIGS. 11 a to 11 c show an array of LED's L in a seventh embodiment arranged within a cuboid housing HO which has two similar apertures AP on one face, to allow the elbows to be inserted into the housing HO. The edges of the apertures AP are cushioned to allow the arms to be rested comfortably. Within the housing HO is arranged a surface SU which is curved both in the plane of the arms and perpendicular to that plane, as shown in FIG. 11c. The LED's L are mounted on this surface SU so that light emitted therefrom is concentrated onto the elbows of the patient.
- FIG. 12 shows an LED array L in an eighth embodiment mounted on a support plate P, and covered by a transparent or translucent cover on which the foot or feet of the patient rest during treatment.
- FIG. 13 shows an LED array L in a ninth embodiment mounted on a support plate P and arranged for treatment of the lower leg of a patient.
- FIGS. 14 and 15 show an LED array L, mounted in a housing HO in the form of a trapezoid prism, the upper inner surface carrying the LED array and the lower surface being open to allow light to fall onto the patient. The side faces may be reflective, or carry additional LED arrays. In the tenth embodiment shown in FIG. 14, the housing HO is mounted at one end of a bed so that its height above the bed is adjustable, for facial treatment of a patient lying on the bed. In the eleventh embodiment shown in FIG. 15, the housing HO is mounted on a stand ST and is adjustable in height, for treatment of a selected part of a patient lying on the bed.
- FIGS. 16 a and 16b show a series of four coplanar LED arrays L in a twelfth embodiment arranged to treat one side of a patient. Each of the arrays is independently switchable so that selected sections of the patient can be treated.
- FIGS. 17 a and 17 b show a single LED array L in a thirteenth embodiment positioned to treat a section of the patient.
- FIGS. 18 a and 18 b show a series of three coplanar LED arrays L in a fourteenth embodiment arranged to treat one side of a patient lying down. Each of the arrays is independently switchable so that selected sections of the patient can be treated.
- FIGS. 19 a and 19 b show an array of LED's L in a fifteenth embodiment mounted on the inner surface of a curved housing HO for treatment of a patient lying on a further, planar array of LED's, for treatment of a section of the patient from all sides. The housing HO is slidable along the length of the patient so as to treat a selected area of the patient. Sections of the planar array of LED's are switchable so as to illuminate only the selected section.
- FIGS. 20 a and 20 b show a sixteenth embodiment comprising a front-facial LED array LF for directing light onto the face of the patient from the front, a scalp LED array Ls and left and right side-facial LED arrays LL, LR moveably connected, for example by hinges, to the front-facial array LF, for directing light onto the scalp, left side of the face and right side of the face respectively. The front-facial array LF is slideably attached to a stand ST for vertical adjustment to the head height of the patient, preferably when sitting.
- FIG. 21 shows a seventeenth embodiment, similar to that of FIGS. 20 a and 20 b, except that it is arranged for facial and/or scalp treatment of a patient when lying down. The stand ST is mounted on a bed, instead of being free-standing, and the arrays are rotated by 90.degree. so as to correspond to the position of the patient's head when lying down.
- FIGS. 22 a, 22 b and 22 c show an eighteenth embodiment in which an LED array L is mounted on the inner surface of a sleeve SL so as to direct light onto the hand, forearm and/or elbow within the sleeve.
- FIGS. 23 a and 23 b show respectively a square and a rectangular LED array L in a nineteenth embodiment mounted on a flexible backing member FB which can be applied to an area of the patient to be treated, such as part of the forearm as shown in FIG. 23c, with the LED's facing inwardly. The LED array thereby follows the contours of the area to be treated. The flexible backing member FB may be cooled by a fan which is either discrete or connected thereto by a flexible membrane which is fixed around the flexible backing member FB and directs air from a fan onto the backing member, through which the air is vented.
- FIG. 24 shows an LED array in a twentieth embodiment arranged on the surface of a cylindrical intraluminal probe, while FIG. 25 shows an LED array in a twenty-first embodiment arranged on the surface of a spherical head of an intraluminal probes. The probes are dimensioned for vulval, cervical, endometrial, bladder, gastrointestinal, oral, nasal, aural and/or bronchial treatment.
- In tests performed by the inventor, the efficacy of PDT using red (approximately 630 nm) emission from LED's was established in in-vivo comparative studies using a sub-cutaneous mammary tumour regrowth delay assay. Using radiobiological end-points, it was shown that the solid-state prototype efficacies were comparable to that of expensive conventional lasers for PDT (i.e. no significant difference, p=0.21). These results were confirmed in further clinical studies in the treatment of Bowen's disease and basal cell carcinomas where comparative complete response rates were achieved as compared to laser PDT.
- FIG. 26 shows a more specific example of the nineteenth embodiment, consisting of rows of blue LED's L B interspersed with rows of red LED's LR so as to form a discrete LED array composed of different types of LED as described above. The blue LED's LB are switchable on and off together, independently of the red LED's LR which are also switchable on and off together. In this way, red or blue illumination may be chosen according to the type of treatment and penetration depth required.
- The blue LED's have an emission spectrum substantially (for example fill width half maximum bandwidth) in the range 370 to 450 nm, and preferably 400 to 430 nm. This range is particularly suitable for the treatment of pre-cancerous conditions, in particular actinic keratoses.
- The red LED's have an emission spectrum substantially (for example full width half maximum bandwidth) in the range 620 to 700 nm. This range is particularly suitable for the treatment of non-melanoma, such as basal cell or squamous cell carcinoma, or mycosis fungoides.
Claims (43)
1. A light source for therapy and/or diagnosis, comprising an array of light-emitting diodes mounted on a flexible backing, the array including light-emitting diodes of a first type having a first emission spectrum substantially in the range 370 to 450 nm and light-emitting diodes of a second type having a second emission spectrum substantially in the range 620 to 700 nm.
2. A light source according to claim 1 , wherein said light-emitting diodes of the first type are independently switchable from said light-emitting diodes of the second type.
3. A light source according to claim 1 , wherein said first emission spectrum is substantially in the range 400 to 430 nm.
4. A method of treatment of a pre-cancerous condition, comprising irradiating an affected area with light from a light source comprising an array of light-emitting diodes mounted on a flexible backing, the array including light-emitting diodes of a first type having a first emission spectrum substantially in the range 370 to 450 nm and light-emitting diodes of a second type having a second emission spectrum substantially in the range 620 to 700 nm.
5. A method according to claim 4 , wherein said pre-cancerous condition is an actinic keratosis, said light-emitting diodes of the first type are independently switchable from said light-emitting diodes of the second type, and the step of irradiating the affected area comprises irradiating the affected area with light emitted by the light-emitting diodes of the first type.
6. A method of treatment of a non-melanoma, comprising irradiating the non-melanoma with light from a light source comprising an array of light-emitting iodes mounted on a flexible backing, the array including light-emitting diodes of a first type having a first emission spectrum substantially in the range 370 to 450 nm and light-emitting diodes of a second type having a second emission spectrum substantially in the range 620 to 700 nm, said light-emitting diodes of the first type being independently switchable from said light-emitting diodes of the second type, and the step of irradiating the affected area comprising irradiating the affected area with light emitted by the light-emitting diodes of the second type.
7. A method according to claim 6 , wherein said non-melanoma is a basal cell or squamous cell carcinoma.
8. A light source for therapy and/or diagnosis, comprising a non-planar array of discrete light-emitting diodes mounted on a head portion for attachment to the head of a patient such that light is emitted onto the face of the patient, and one or more fans for cooling the array of discrete light-emitting diodes.
9. A light source for therapy and/or diagnosis, comprising a first rigid array of light-emitting diodes, a second rigid array of light emitting diodes movably connected to an edge of the first array. a third rigid array of light-emitting diodes movably connected to another edge of the first array, and one or more fans for cooling the first, second and/or third rigid arrays.
10. A light source for therapy and/or diagnosis, comprising a first rigid array of light-emitting diodes, a second rigid array of light emitting diodes movably connected to a first edge of the first array, a third rigid array of light-emitting diodes movably connected to a second edge of the first array, and a fourth rigid array of light-emitting diodes movably connected to a third edge of the first array.
11. A method of treatment of the face and/or scalp, comprising illuminating respectively the face and/or scalp of a patient with light from a light source comprising a first rigid array of light-emitting diodes, a second rigid array of light emitting diodes movably connected to a first edge of the first array, and a third rigid array of light-emitting diodes movably connected to a second edge of the first array.
12. A light source for therapy and/or diagnosis, comprising a support for supporting the patient and an array of light-emitting diodes mounted on a curved inner surface of a rigid cover arranged to cover at least part of the length of a patient when supported by the support.
13. A light source as claimed in claim 12 , wherein said support includes a further array of light-emitting diodes.
14. A light source as claimed in claim 13 , wherein said further array comprises a plurality of sections which are independently switchable.
15. A light source as claimed in any one of claims 12 to 14 , wherein said further array is planar.
16. A light source for therapy or diagnosis of a patient, comprising an array of light-emitting diodes arranged within a housing, and an aperture allowing a part of the patient's body to be inserted into the housing, the array being curved in two dimensions so as to concentrate light onto the part of the patient's body when inserted into the housing.
17. A light source for therapy or diagnosis of a patient, comprising a housing, one or two apertures allowing respectively one or both elbows of a patient to be inserted into the housing, and an array of light-emitting diodes arranged within the housing to direct light onto the one or both elbows when inserted into the housing.
18. A light source for therapy or diagnosis, comprising an array of light emitting diodes coupled to a waveguide which tapers away from the diodes so as to concentrate light emitted by the diodes.
19. A light source according to claim 18 , including a parallel-sided light guide coupled to the waveguide so that the light emitted by the light-emitting diodes is concentrated into the parallel-sided light guide.
20. A light source according to claim 19 wherein the parallel-sided light guide comprises one or more optical fibres and/or liquid light guides.
21. A therapeutic light source as claimed in any one of claims 8, 16, and 17 wherein the or each array of light emitting diodes have emission wavelengths substantially within the range 550 to 660 nm.
22. A light source as claimed in claim 21 , wherein the emission wavelengths are substantially within the range 590 to 640 nm.
23. A light source as claimed in claim 22 , wherein the diodes are of aluminum indium gallium phosphide/gallium phosphide die material.
24. A light source as claimed in claim 23 , wherein the emission wavelengths are substantially within the range 560 to 644 nm.
25. A light source as claimed in claim 24 , wherein the diodes are of aluminum indium gallium phosphide/gallium arsenic die material
26. A light source as claimed in claim 23 , wherein the emission wavelengths are substantially within the range 650 to 660 nm.
27. A light source as claimed in claim 26 , wherein the diodes are of aluminum gallium arsenic die material.
28. A light source as claimed in claim 23 , wherein the mission wavelengths are substantially within the range 550 to 570 nm.
29. A light source as claimed in claim 28 , wherein the diodes are of gallium phosphide die material.
30. A therapeutic light source as claimed in any one of claims 8, 16, and 17 wherein the array of LED's has a peak emission spectrum of approximately 470 nm, 505 nm or 525 nm.
31. A light source as claimed in claim 30 , wherein the diodes are of indium gallium nitride die material.
32. A therapeutic light source as claimed in any one of claims 8, 16, and 17 wherein the array of LED's has a peak emission spectrum of approximately 430 nm.
33. A light source as claimed in claim 32 , wherein the diodes are of gallium nitride/silicon die material.
34. A light source according to claim 18 or 19, wherein the waveguide is frusto-conical.
35. A light source according to claim 34 , wherein the waveguide is of acrylic or glass.
36. A light source according to claim 18 or 19, including an array of individual heatsinks mounted on the light-emitting diodes.
37. A therapeutic light source, comprising an array of light-emitting diodes arranged so that light from the light-emitting diodes is incident directly in the treatment field with an output intensity of at least 10 mW/cm2 and a spatial intensity fluctuation of 6% or less, and means for cooling the diodes by forced air convection.
38. A therapeutic light source, comprising an array of discretely mounted light-emitting diodes arranged so that light from the light-emitting diodes is incident directly in the treatment field with an output intensity of at least 10 mW/cm2 and a spatial intensity fluctuation of 10% or less, and means for cooling the diodes by forced air convection.
39. A light source as claimed in claim 38 , wherein the light-emitting diodes are electrically connected in a parallel-series matrix.
40. A light source as claimed in claim 38 , wherein the diodes are thermally coupled to one or more heatsinks.
41. A light source as claimed in claim 38 , wherein the diodes are thermally coupled to an array of individual heatsinks.
42. A light source as claimed in claim 38 , wherein the light-emitting diodes and the heatsinks are mounted on opposite sides of a support plate.
43. A light source as claimed in claim 42 , wherein the support plate is perforated to allow air to flow around the heatsinks and light-emitting diodes.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/625,701 US20040127961A1 (en) | 2000-03-23 | 2003-07-24 | Therapeutic light source and method |
| US11/761,928 US20070233209A1 (en) | 2000-03-23 | 2007-06-12 | Therapeutic Light Source and Method |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB0007085A GB2360459B (en) | 2000-03-23 | 2000-03-23 | Therapeutic light source and method |
| GB0007085.4 | 2000-03-23 | ||
| GB0009491.2 | 2000-04-17 | ||
| GB0009491A GB2360460B (en) | 2000-03-23 | 2000-04-17 | Therapeutic light source with LED's coupled to tapered wave guide |
| GB0030974A GB2360461B (en) | 2000-03-23 | 2000-12-19 | Spherical Intraluminal probe with discrete LED array |
| GB0030974.0 | 2000-12-19 | ||
| US09/815,348 US6645230B2 (en) | 2000-03-23 | 2001-03-23 | Therapeutic light source and method |
| US10/625,701 US20040127961A1 (en) | 2000-03-23 | 2003-07-24 | Therapeutic light source and method |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/815,348 Continuation US6645230B2 (en) | 2000-03-23 | 2001-03-23 | Therapeutic light source and method |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/761,928 Division US20070233209A1 (en) | 2000-03-23 | 2007-06-12 | Therapeutic Light Source and Method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20040127961A1 true US20040127961A1 (en) | 2004-07-01 |
Family
ID=27255620
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/815,348 Expired - Lifetime US6645230B2 (en) | 2000-03-23 | 2001-03-23 | Therapeutic light source and method |
| US10/625,701 Abandoned US20040127961A1 (en) | 2000-03-23 | 2003-07-24 | Therapeutic light source and method |
| US11/761,928 Abandoned US20070233209A1 (en) | 2000-03-23 | 2007-06-12 | Therapeutic Light Source and Method |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/815,348 Expired - Lifetime US6645230B2 (en) | 2000-03-23 | 2001-03-23 | Therapeutic light source and method |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/761,928 Abandoned US20070233209A1 (en) | 2000-03-23 | 2007-06-12 | Therapeutic Light Source and Method |
Country Status (10)
| Country | Link |
|---|---|
| US (3) | US6645230B2 (en) |
| EP (2) | EP1138349B1 (en) |
| JP (2) | JP2002065875A (en) |
| AT (2) | ATE276014T1 (en) |
| AU (1) | AU781077B2 (en) |
| CA (2) | CA2672092A1 (en) |
| DE (2) | DE60141610D1 (en) |
| DK (1) | DK1138349T3 (en) |
| ES (1) | ES2228756T3 (en) |
| GB (4) | GB2360459B (en) |
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040199183A1 (en) * | 1997-06-27 | 2004-10-07 | Oz Mehmet C. | Method and apparatus for circulatory valve repair |
| US20060064144A1 (en) * | 2004-06-25 | 2006-03-23 | Chen Joshua Q | Programmable multifunction table lamp for light therapy |
| US20060100679A1 (en) * | 2004-08-27 | 2006-05-11 | Dimauro Thomas | Light-based implants for treating Alzheimer's disease |
| US20060161226A1 (en) * | 2005-01-18 | 2006-07-20 | Mcmickle George R | Apparatus and method for reducing follicular cell apoptosis |
| US20060167532A1 (en) * | 2005-01-26 | 2006-07-27 | Parker Jeffery R | Phototherapy treatment devices for applying area lighting to a wound |
| EP1693016A1 (en) * | 2005-02-16 | 2006-08-23 | Wavelight Laser Technologie AG | Medical and/or cosmetic radiation device |
| US20060200212A1 (en) * | 2005-02-17 | 2006-09-07 | Brawn Peter R | Light therapy device for treatment of bone disorders and biostimulation of bone and soft tissue |
| US20060287695A1 (en) * | 2005-06-16 | 2006-12-21 | Dimauro Thomas M | Intranasal red light probe for treating Alzheimer's disease |
| US20070098645A1 (en) * | 2005-10-31 | 2007-05-03 | Agbodoe Victor B | Intranasal delivery of compounds that reduce intrancranial pressure |
| US20070139930A1 (en) * | 2005-12-19 | 2007-06-21 | Paul Spivak | Method and system for led light therapy |
| US20070233209A1 (en) * | 2000-03-23 | 2007-10-04 | Colin Whitehurst | Therapeutic Light Source and Method |
| US20070239235A1 (en) * | 2005-03-14 | 2007-10-11 | Dimauro Thomas M | Red Light Implant For Treating Parkinson's Disease |
| US20070248930A1 (en) * | 2005-02-17 | 2007-10-25 | Biolux Research Ltd. | Light therapy apparatus and methods |
| EP1894516A1 (en) | 2006-08-30 | 2008-03-05 | Karl Storz GmbH & Co. KG | Illumination system for creating light and for injecting light into the proximal end of a light conducting cable of an observation device for endoscopy or microscopy |
| AT503079B1 (en) * | 2005-04-29 | 2008-03-15 | Paris Lodron Uni Salzburg | DEVICE FOR IMPLEMENTING PHOTODYNAMIC TREATMENTS |
| WO2007112427A3 (en) * | 2006-03-28 | 2008-05-08 | Stephen M Tobin | Convertible lamp array |
| US20090099499A1 (en) * | 2006-04-19 | 2009-04-16 | Antun Persin | Intelligent sequential illuminating device for photodynamic therapy |
| US20100063487A1 (en) * | 2005-09-30 | 2010-03-11 | Jason Van Straalen | Light therapy apparatus |
| US20100158462A1 (en) * | 2006-03-02 | 2010-06-24 | Bonitatibus Michael H | Sunlight Simulator Apparatus |
| US20100198316A1 (en) * | 2009-02-04 | 2010-08-05 | Richard Toselli | Intracranial Red Light Treatment Device For Chronic Pain |
| USD623308S1 (en) | 2009-05-08 | 2010-09-07 | Kramer Francis J | LED light therapy device |
| DE102005034971B4 (en) * | 2004-07-24 | 2011-02-24 | Martin Holzlehner | Medical-therapeutic or cosmetic surface laser device |
| US20110073159A1 (en) * | 2009-09-28 | 2011-03-31 | Yu-Nung Shen | Heat Dissipating Device and Module Using Same |
| US20110122579A1 (en) * | 2008-07-25 | 2011-05-26 | Koninklijke Phiips Electronics N.V. | Cooling device for cooling a semiconductor die |
| US20120155057A1 (en) * | 2009-07-07 | 2012-06-21 | Ambicare Limited | medical apparatus |
| US8858607B1 (en) | 2013-03-15 | 2014-10-14 | Gary W. Jones | Multispectral therapeutic light source |
| US9242118B2 (en) | 2010-12-08 | 2016-01-26 | Biolux Research Ltd. | Methods useful for remodeling maxillofacial bone using light therapy and a functional appliance |
| US9295855B2 (en) | 2013-03-15 | 2016-03-29 | Gary W. Jones | Ambient spectrum light conversion device |
| US9320914B2 (en) | 2008-03-03 | 2016-04-26 | DePuy Synthes Products, Inc. | Endoscopic delivery of red/NIR light to the subventricular zone |
| US9551468B2 (en) | 2013-12-10 | 2017-01-24 | Gary W. Jones | Inverse visible spectrum light and broad spectrum light source for enhanced vision |
| US9730780B2 (en) | 2013-10-22 | 2017-08-15 | Biolux Research Ltd. | Intra-oral light-therapy apparatuses and methods for their use |
| USRE47266E1 (en) | 2005-03-14 | 2019-03-05 | DePuy Synthes Products, Inc. | Light-based implants for treating Alzheimer's disease |
| US10288233B2 (en) | 2013-12-10 | 2019-05-14 | Gary W. Jones | Inverse visible spectrum light and broad spectrum light source for enhanced vision |
| US11141309B2 (en) | 2019-06-03 | 2021-10-12 | Cooler Heads Care, Inc. | Cooling cap assembly and cooling unit |
| WO2023193103A1 (en) * | 2022-04-05 | 2023-10-12 | Toefx Inc. | Combined photodisinfection and visualization device |
Families Citing this family (282)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7204832B2 (en) | 1996-12-02 | 2007-04-17 | Pálomar Medical Technologies, Inc. | Cooling system for a photo cosmetic device |
| US6517532B1 (en) | 1997-05-15 | 2003-02-11 | Palomar Medical Technologies, Inc. | Light energy delivery head |
| US8182473B2 (en) | 1999-01-08 | 2012-05-22 | Palomar Medical Technologies | Cooling system for a photocosmetic device |
| DE69825447T2 (en) | 1997-05-15 | 2005-09-15 | Palomar Medical Technologies, Inc., Burlington | DEVICE FOR DERMATOLOGICAL TREATMENT |
| GB2329756A (en) | 1997-09-25 | 1999-03-31 | Univ Bristol | Assemblies of light emitting diodes |
| US6200134B1 (en) | 1998-01-20 | 2001-03-13 | Kerr Corporation | Apparatus and method for curing materials with radiation |
| CA2323479A1 (en) | 1998-03-12 | 1999-09-16 | Palomar Medical Technologies, Inc. | System for electromagnetic radiation of the skin |
| US9119705B2 (en) | 1998-06-08 | 2015-09-01 | Thermotek, Inc. | Method and system for thermal and compression therapy relative to the prevention of deep vein thrombosis |
| US20050143797A1 (en) | 2003-07-18 | 2005-06-30 | Thermotek, Inc. | Compression sequenced thermal therapy system |
| US9192780B2 (en) | 1998-11-30 | 2015-11-24 | L'oreal | Low intensity light therapy for treatment of retinal, macular, and visual pathway disorders |
| US6283956B1 (en) | 1998-11-30 | 2001-09-04 | David H. McDaniels | Reduction, elimination, or stimulation of hair growth |
| US6936044B2 (en) * | 1998-11-30 | 2005-08-30 | Light Bioscience, Llc | Method and apparatus for the stimulation of hair growth |
| US20060212025A1 (en) * | 1998-11-30 | 2006-09-21 | Light Bioscience, Llc | Method and apparatus for acne treatment |
| US6887260B1 (en) | 1998-11-30 | 2005-05-03 | Light Bioscience, Llc | Method and apparatus for acne treatment |
| US20040122492A1 (en) * | 1999-07-07 | 2004-06-24 | Yoram Harth | Phototherapeutic treatment of skin conditions |
| US7201764B2 (en) * | 2000-02-17 | 2007-04-10 | Lexington Lasercomb Ip Ag | Apparatus and method for stimulating hair growth |
| GB2368020A (en) * | 2000-10-18 | 2002-04-24 | Icn Photonics Ltd | Treatment of acne vulgaris skin condition by irradiation with light of specific wavelengths to target specific chromophores & stimulate collagen production |
| GB2370229A (en) * | 2000-12-22 | 2002-06-26 | Icn Photonics Ltd | Light delivery system for improving the appearance of skin |
| US6888319B2 (en) | 2001-03-01 | 2005-05-03 | Palomar Medical Technologies, Inc. | Flashlamp drive circuit |
| SG115373A1 (en) * | 2001-05-14 | 2005-10-28 | Photo Therapeutics Ltd | Therapeutic light source and method |
| GB0113899D0 (en) * | 2001-06-07 | 2001-08-01 | Photocure Asa | Photodynamic therapy lamp |
| GB0114222D0 (en) * | 2001-06-12 | 2001-08-01 | Pulsar Light Of Cambridge Ltd | Lighting unit with improved cooling |
| WO2002103859A2 (en) * | 2001-06-15 | 2002-12-27 | Forskningscenter Risø | Laser system for treatment and diagnosis |
| DE10138071A1 (en) * | 2001-08-03 | 2003-02-27 | Georg Knott | irradiator |
| USD505207S1 (en) * | 2001-09-21 | 2005-05-17 | Herbert Waldmann Gmbh & Co. | Medical light assembly |
| US6833563B2 (en) * | 2001-09-25 | 2004-12-21 | Intel Corporation | Multi-stack surface mount light emitting diodes |
| DE10149462A1 (en) | 2001-10-08 | 2003-04-17 | Waldmann Gmbh & Co Herbert | Irradiation device especially for photodynamic therapy |
| US9993659B2 (en) | 2001-11-01 | 2018-06-12 | Pthera, Llc | Low level light therapy for enhancement of neurologic function by altering axonal transport rate |
| US10683494B2 (en) | 2001-11-01 | 2020-06-16 | Pthera LLC | Enhanced stem cell therapy and stem cell production through the administration of low level light energy |
| US7534255B1 (en) | 2003-01-24 | 2009-05-19 | Photothera, Inc | Low level light therapy for enhancement of neurologic function |
| US7303578B2 (en) * | 2001-11-01 | 2007-12-04 | Photothera, Inc. | Device and method for providing phototherapy to the brain |
| US8308784B2 (en) * | 2006-08-24 | 2012-11-13 | Jackson Streeter | Low level light therapy for enhancement of neurologic function of a patient affected by Parkinson's disease |
| US7264629B2 (en) | 2001-11-09 | 2007-09-04 | Qlt, Inc. | Photodynamic therapy for the treatment of hair loss |
| GB0127581D0 (en) * | 2001-11-17 | 2002-01-09 | Univ St Andrews | Therapeutic Light-emitting device |
| US7422598B2 (en) * | 2001-11-29 | 2008-09-09 | Palomar Medical Technologies, Inc. | Multi-wavelength oral phototherapy applicator |
| US10695577B2 (en) * | 2001-12-21 | 2020-06-30 | Photothera, Inc. | Device and method for providing phototherapy to the heart |
| WO2003057059A1 (en) | 2001-12-27 | 2003-07-17 | Palomar Medical Technologies, Inc. | Method and apparatus for improved vascular related treatment |
| US7316922B2 (en) * | 2002-01-09 | 2008-01-08 | Photothera Inc. | Method for preserving organs for transplant |
| GB0204525D0 (en) * | 2002-02-27 | 2002-04-10 | Whale Jon | Medical therapy apparatus |
| US6723750B2 (en) | 2002-03-15 | 2004-04-20 | Allergan, Inc. | Photodynamic therapy for pre-melanomas |
| US20060293727A1 (en) * | 2002-05-09 | 2006-12-28 | Greg Spooner | System and method for treating exposed tissue with light emitting diodes |
| US20040153130A1 (en) * | 2002-05-29 | 2004-08-05 | Amir Oron | Methods for treating muscular dystrophy |
| US20030233138A1 (en) * | 2002-06-12 | 2003-12-18 | Altus Medical, Inc. | Concentration of divergent light from light emitting diodes into therapeutic light energy |
| EP1539013A4 (en) | 2002-06-19 | 2005-09-21 | Palomar Medical Tech Inc | Method and apparatus for treatment of cutaneous and subcutaneous conditions |
| JP2006500972A (en) | 2002-06-19 | 2006-01-12 | パロマー・メディカル・テクノロジーズ・インコーポレイテッド | Method and apparatus for treating tissue at a depth by radiant heat |
| WO2004011848A2 (en) | 2002-07-25 | 2004-02-05 | Dahm Jonathan S | Method and apparatus for using light emitting diodes for curing |
| US7182597B2 (en) | 2002-08-08 | 2007-02-27 | Kerr Corporation | Curing light instrument |
| JP2005537861A (en) * | 2002-09-04 | 2005-12-15 | クオンタム ディヴァイスィズ,インコーポレイテッド | Electro-optical device and method for treatment of muscle or joint pain |
| DE10240716A1 (en) * | 2002-09-04 | 2004-03-18 | Bader, Dieter | Solarium has semiconductor light sources, e.g. LEDs, laser diodes or diodes arrays, so that the spectrum of irradiating light can be controlled without the need for filtering and with reduced heat generation |
| US20040219179A1 (en) * | 2002-09-20 | 2004-11-04 | Mcdaniel David H. | Skin abrasive agents |
| JP4790268B2 (en) | 2002-10-23 | 2011-10-12 | パロマー・メディカル・テクノロジーズ・インコーポレイテッド | Light processing equipment for use with coolants and topical materials |
| US6991644B2 (en) * | 2002-12-12 | 2006-01-31 | Cutera, Inc. | Method and system for controlled spatially-selective epidermal pigmentation phototherapy with UVA LEDs |
| EP1581305A2 (en) * | 2002-12-20 | 2005-10-05 | Palomar Medical Technologies, Inc. | Apparatus for light treatment of acne and other disorders of follicles |
| US20040230259A1 (en) * | 2003-02-26 | 2004-11-18 | Di Matteo Thierry Fabio | Apparatus and method for treatment of acne |
| KR100495815B1 (en) * | 2003-02-26 | 2005-06-16 | 황하욱 | Hair generator |
| US20040186536A1 (en) * | 2003-03-19 | 2004-09-23 | Osendowski Donald J. | Device with adjustable laser panels for stimulating hair growth |
| US7344555B2 (en) * | 2003-04-07 | 2008-03-18 | The United States Of America As Represented By The Department Of Health And Human Services | Light promotes regeneration and functional recovery after spinal cord injury |
| JP2006522660A (en) | 2003-04-10 | 2006-10-05 | ライト バイオサイエンス,エルエルシー | Photomodulation method and apparatus for regulating cell growth and gene expression |
| CA2521532A1 (en) * | 2003-04-23 | 2004-11-04 | Qlt Inc. | Hair growth |
| US6953341B2 (en) * | 2003-08-20 | 2005-10-11 | Oralum, Llc | Toothpick for light treatment of body structures |
| JP2006525838A (en) | 2003-05-09 | 2006-11-16 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Tanning equipment using semiconductor light-emitting diodes |
| GB0311950D0 (en) * | 2003-05-23 | 2003-06-25 | Denfotex Ltd | Photo-activated disinfection |
| US10252079B2 (en) * | 2003-06-06 | 2019-04-09 | Koninklijke Philips N.V. | Hand-held light therapy apparatus |
| US20050002178A1 (en) * | 2003-07-02 | 2005-01-06 | Jenny Wu | Apparatus for adjusting biological clock of a traveler |
| DE20311041U1 (en) * | 2003-07-17 | 2003-11-13 | Schmidt, Marco, 87700 Memmingen | Irradiation handset |
| US8778005B2 (en) | 2003-07-18 | 2014-07-15 | Thermotek, Inc. | Method and system for thermal and compression therapy relative to the prevention of deep vein thrombosis |
| US8128672B2 (en) | 2006-05-09 | 2012-03-06 | Thermotek, Inc. | Wound care method and system with one or both of vacuum-light therapy and thermally augmented oxygenation |
| US8574278B2 (en) | 2006-05-09 | 2013-11-05 | Thermotek, Inc. | Wound care method and system with one or both of vacuum-light therapy and thermally augmented oxygenation |
| US6974224B2 (en) * | 2003-07-30 | 2005-12-13 | Tru-Light Corporation | Modularized light processing of body components |
| CN101247768A (en) * | 2003-07-31 | 2008-08-20 | 莱特生物科学有限公司 | System and method for photodynamic treatment of burns, wounds and related skin conditions |
| BR8302354U (en) | 2003-09-17 | 2004-05-18 | Orlando Rossi Jr | Improvement introduced in phototherapeutic light source for treatment of hyperbilirubinemia |
| DE20315571U1 (en) * | 2003-09-24 | 2005-02-10 | Kiontke, Siegfried, Dr. | Medical therapeutic radiation unit has a multiplicity of LEDs arranged in different wavelength groups that can be individually controlled, with at least one group emitting narrow band infrared light |
| HRP20030818A2 (en) * | 2003-10-10 | 2006-04-30 | Institut "Ruđer Bošković" | Portable illuminator for photodynamic diagnostics description of invention |
| WO2005035060A1 (en) * | 2003-10-10 | 2005-04-21 | Rudjer Boskovic Institute | Portable illuminator for photodynamic therapy |
| US7261730B2 (en) * | 2003-11-14 | 2007-08-28 | Lumerx, Inc. | Phototherapy device and system |
| GB2408209A (en) * | 2003-11-18 | 2005-05-25 | Qinetiq Ltd | Flexible medical light source |
| US7309335B2 (en) | 2003-12-31 | 2007-12-18 | Palomar Medical Technologies, Inc. | Dermatological treatment with visualization |
| JP4475966B2 (en) * | 2004-01-29 | 2010-06-09 | Hoya株式会社 | Endoscope device |
| JP2007520285A (en) | 2004-02-06 | 2007-07-26 | バロレ,ダニエル | Method and apparatus for treating mammalian tissue |
| CA2457214A1 (en) * | 2004-02-06 | 2005-08-06 | Qlt Inc. | Photodynamic therapy for the treatment of acne |
| BRPI0509744A (en) * | 2004-04-09 | 2007-09-25 | Palomar Medical Tech Inc | methods and products for producing emr-treated islet lattices in fabrics and their uses |
| DK1755676T3 (en) | 2004-06-09 | 2013-02-18 | Quadra Logic Tech Inc | Photodynamic therapy for the treatment of hyperactive sebaceous glands using applied verteporfin and / or lemuteporfin |
| ATE553505T1 (en) | 2004-06-15 | 2012-04-15 | Data Cloak Llc | ELECTRO-OPTICAL HIGH POWER LED ARRANGEMENT |
| US10016583B2 (en) | 2013-03-11 | 2018-07-10 | Thermotek, Inc. | Wound care and infusion method and system utilizing a thermally-treated therapeutic agent |
| US10765785B2 (en) | 2004-07-19 | 2020-09-08 | Thermotek, Inc. | Wound care and infusion method and system utilizing a therapeutic agent |
| GB2416699B (en) * | 2004-08-05 | 2010-04-14 | Photo Therapeutics Ltd | Skin rejuvenation |
| CA2575133A1 (en) * | 2004-08-09 | 2006-02-23 | Lumiport, Llc | Skin treatment phototherapy device |
| EP1799303A1 (en) * | 2004-09-13 | 2007-06-27 | Photo Diagnostic Devices (PDD) Ltd | Apparatus for photodynamic therapy |
| RU2290972C2 (en) * | 2004-11-19 | 2007-01-10 | Федеральное государственное унитарное предприятие "Государственный научный центр "Научно-исследовательский институт органических полупродуктов и красителей" (ФГУП "ГНЦ "НИОПИК") | Method of photodynamic therapy of oncological diseases |
| US9070850B2 (en) | 2007-10-31 | 2015-06-30 | Cree, Inc. | Light emitting diode package and method for fabricating same |
| US7821023B2 (en) | 2005-01-10 | 2010-10-26 | Cree, Inc. | Solid state lighting component |
| US9793247B2 (en) * | 2005-01-10 | 2017-10-17 | Cree, Inc. | Solid state lighting component |
| US8109981B2 (en) * | 2005-01-25 | 2012-02-07 | Valam Corporation | Optical therapies and devices |
| US7722656B1 (en) * | 2005-02-25 | 2010-05-25 | Kim Robin Segal | Device and method for stimulating hair growth |
| JP4143114B2 (en) * | 2005-03-02 | 2008-09-03 | メリディアン カンパニー リミテッド | Lipolysis device using low power laser |
| US7856985B2 (en) | 2005-04-22 | 2010-12-28 | Cynosure, Inc. | Method of treatment body tissue using a non-uniform laser beam |
| TWM279352U (en) * | 2005-05-06 | 2005-11-01 | Lighthouse Technology Co Ltd | Photo power supply device capable of being controlled by programs |
| US7355188B2 (en) * | 2005-05-24 | 2008-04-08 | Varian Semiconductor Equipment Associates, Inc. | Technique for uniformity tuning in an ion implanter system |
| US20060282134A1 (en) * | 2005-06-10 | 2006-12-14 | Shapiro Ronald S | Photo-thermal therapeutic device |
| GB0512038D0 (en) | 2005-06-14 | 2005-07-20 | Dougal Gordon | Therapeutic and cosmetic uses of electromagnetic radiation |
| DE602005025034D1 (en) * | 2005-06-17 | 2011-01-05 | Marcello Rinaldo Baldacchini | DEVICE FOR TREATING THE HUMAN BODY WITH ELECTROMAGNETIC WAVES |
| US20070016173A1 (en) * | 2005-07-14 | 2007-01-18 | Michael Kreindel | Protective material, clothing item and method of protection |
| US8346484B2 (en) | 2005-07-21 | 2013-01-01 | The Invention Science Fund I, Llc | Selective resonance of chemical structures |
| US8195403B2 (en) * | 2005-07-21 | 2012-06-05 | The Invention Science Fund I, Llc | Selective resonance of bodily agents |
| US9427465B2 (en) | 2005-07-21 | 2016-08-30 | Deep Science, Llc | Selective resonance of chemical structures |
| US8364412B2 (en) * | 2005-07-21 | 2013-01-29 | The Invention Science Fund I, Llc | Selective resonance of chemical structures |
| US8386183B2 (en) * | 2005-07-21 | 2013-02-26 | The Invention Science Fund I, Llc | Selective resonant reconfiguration of chemical structures |
| US20070021924A1 (en) * | 2005-07-21 | 2007-01-25 | Ishikawa Muriel Y | Selective resonance of chemical structures |
| US8386186B2 (en) * | 2005-07-21 | 2013-02-26 | The Invention Science Fund I, Llc | Selective resonance of chemical structures |
| US9211332B2 (en) | 2005-07-21 | 2015-12-15 | The Invention Science Fund I, Llc | Selective resonance of bodily agents |
| US7979213B2 (en) * | 2005-07-21 | 2011-07-12 | The Invention Science Fund I, Llc | Selective resonance of chemical structures |
| US20070030662A1 (en) * | 2005-08-03 | 2007-02-08 | Fu-Yu Hsu | Light power irradiation treatment apparatus |
| CN101282692A (en) * | 2005-08-08 | 2008-10-08 | 帕洛玛医疗技术公司 | Eye-Safe Photocosmetic Devices |
| TWM281647U (en) * | 2005-08-19 | 2005-12-01 | Wen-Chin Lin | Hand-held photon irradiation device |
| JP2009509140A (en) | 2005-09-15 | 2009-03-05 | パロマー・メデイカル・テクノロジーズ・インコーポレーテツド | Skin optical determination device |
| US7176470B1 (en) | 2005-12-22 | 2007-02-13 | Varian Semiconductor Equipment Associates, Inc. | Technique for high-efficiency ion implantation |
| US7559945B2 (en) | 2006-01-13 | 2009-07-14 | Clarimedix Inc. | Multi-spectral photon therapy device and methods of use |
| US10357662B2 (en) | 2009-02-19 | 2019-07-23 | Pthera LLC | Apparatus and method for irradiating a surface with light |
| US7575589B2 (en) | 2006-01-30 | 2009-08-18 | Photothera, Inc. | Light-emitting device and method for providing phototherapy to the brain |
| US20090254154A1 (en) | 2008-03-18 | 2009-10-08 | Luis De Taboada | Method and apparatus for irradiating a surface with pulsed light |
| US20070179570A1 (en) * | 2006-01-30 | 2007-08-02 | Luis De Taboada | Wearable device and method for providing phototherapy to the brain |
| WO2007106856A2 (en) * | 2006-03-14 | 2007-09-20 | Allux Medical, Inc. | Phototherapy device and method of providing phototherapy to a body surface |
| US9335006B2 (en) | 2006-04-18 | 2016-05-10 | Cree, Inc. | Saturated yellow phosphor converted LED and blue converted red LED |
| US20070256212A1 (en) * | 2006-04-20 | 2007-11-08 | Transdermal Cap, Inc. | Device For Delivery Of Agents To And Through The Human Scalp |
| GB0608315D0 (en) | 2006-04-27 | 2006-06-07 | Univ St Andrews | Light emitting device for use in therapeutic and/or cosmetic treatment |
| CN101490735B (en) * | 2006-05-18 | 2012-08-29 | Eth苏黎世公司 | Display device |
| US20080033412A1 (en) * | 2006-08-01 | 2008-02-07 | Harry Thomas Whelan | System and method for convergent light therapy having controllable dosimetry |
| US7586957B2 (en) | 2006-08-02 | 2009-09-08 | Cynosure, Inc | Picosecond laser apparatus and methods for its operation and use |
| US8556950B2 (en) | 2006-08-24 | 2013-10-15 | Boston Scientific Scimed, Inc. | Sterilizable indwelling catheters |
| US8292935B2 (en) * | 2006-09-12 | 2012-10-23 | Bistitec Pharma Marketing Ltd | Photonic device and method for treating cervical dysplasia |
| US7850720B2 (en) * | 2006-09-23 | 2010-12-14 | Ron Shefi | Method and apparatus for applying light therapy |
| GB2442206A (en) * | 2006-09-30 | 2008-04-02 | Aqua Detox International Ltd | Therapeutic light apparatus |
| US10295147B2 (en) | 2006-11-09 | 2019-05-21 | Cree, Inc. | LED array and method for fabricating same |
| ITFI20060307A1 (en) * | 2006-12-05 | 2008-06-06 | Light 4 Tech Firenze S R L | DEVICE BASED ON LED TECHNOLOGY FOR THE BLOOD VASE OF HEMOSTASIS |
| EP1945007B1 (en) * | 2007-01-11 | 2012-09-19 | Schreder | Performance optimisation method of LED lighting devices |
| US20080221211A1 (en) * | 2007-02-02 | 2008-09-11 | Jackson Streeter | Method of treatment of neurological injury or cancer by administration of dichloroacetate |
| CN101795634A (en) * | 2007-04-23 | 2010-08-04 | 透皮帽公司 | Phototherapy light cap |
| US20080281307A1 (en) * | 2007-05-09 | 2008-11-13 | Nadine Donahue | Therapeutic device incorporating light and cold therapy modalities |
| FR2918876B1 (en) * | 2007-07-16 | 2012-10-05 | Oreal | USE OF GREEN LIGHT TO ACTIVATE L-AMINO ACID OXIDASE |
| US20090036800A1 (en) * | 2007-07-30 | 2009-02-05 | Michael Rabin | Hair Densitometer |
| US8146607B2 (en) * | 2007-08-01 | 2012-04-03 | Rabin Michael I | Ventilated device for delivery of agents to and through the human scalp |
| US20090036845A1 (en) * | 2007-08-01 | 2009-02-05 | Smith David A | Device For Delivery Of Agents To And Through The Human Scalp |
| US20090037280A1 (en) * | 2007-08-01 | 2009-02-05 | Rabin Michael I | Method of Diagnosing Hair Thinning and Business Method for Promoting Sales of Hair Treatment Products |
| US9079022B2 (en) * | 2007-09-27 | 2015-07-14 | Led Intellectual Properties, Llc | LED based phototherapy device for photo-rejuvenation of cells |
| US20090177253A1 (en) * | 2008-01-08 | 2009-07-09 | Oregon Aesthetic Technologies | Skin therapy system |
| US20090185264A1 (en) * | 2008-01-17 | 2009-07-23 | The University Of Toledo And To Performance Improvement Corporation | Coupling optics for light transmission system |
| US7802910B2 (en) | 2008-01-29 | 2010-09-28 | Dymax Corporation | Light guide exposure device |
| US8758419B1 (en) | 2008-01-31 | 2014-06-24 | Thermotek, Inc. | Contact cooler for skin cooling applications |
| US20090228080A1 (en) * | 2008-03-04 | 2009-09-10 | Tae-Young Kwon | Light irradiating device for immunopotentiation |
| WO2009125338A1 (en) * | 2008-04-10 | 2009-10-15 | Koninklijke Philips Electronics N.V. | Body illumination system using blue light |
| KR101046369B1 (en) | 2008-05-19 | 2011-07-04 | 정선경 | LED bed for treating skin diseases |
| EP2133622A1 (en) | 2008-06-12 | 2009-12-16 | Schreder | Street lighting apparatus with multiple LED-light sources |
| GB0812753D0 (en) | 2008-07-14 | 2008-08-20 | Dougal Gordon R P | Electromagnetic radiation and its therapeutic effect |
| US20100036260A1 (en) * | 2008-08-07 | 2010-02-11 | Remicalm Llc | Oral cancer screening device |
| US7848035B2 (en) | 2008-09-18 | 2010-12-07 | Photothera, Inc. | Single-use lens assembly |
| US9425172B2 (en) | 2008-10-24 | 2016-08-23 | Cree, Inc. | Light emitter array |
| KR101079208B1 (en) | 2008-12-02 | 2011-11-04 | 이상철 | Whole body sauna apparatus using light |
| GB0900461D0 (en) * | 2009-01-12 | 2009-02-11 | Photocure Asa | Photodynamic therapy device |
| US8399731B2 (en) * | 2009-03-19 | 2013-03-19 | Covidien Lp | Phototherapy wound treatment |
| US20100242155A1 (en) * | 2009-03-25 | 2010-09-30 | Carullo Jr John F | Headgear equipped with laser hair care apparatus |
| US9072572B2 (en) | 2009-04-02 | 2015-07-07 | Kerr Corporation | Dental light device |
| US9066777B2 (en) | 2009-04-02 | 2015-06-30 | Kerr Corporation | Curing light device |
| JP2010284399A (en) * | 2009-06-15 | 2010-12-24 | Yayoi:Kk | Photodynamic therapy device |
| EP2445586A1 (en) * | 2009-06-24 | 2012-05-02 | Koninklijke Philips Electronics N.V. | Treatment apparatus and use thereof for treating psoriasis |
| WO2011001342A1 (en) * | 2009-06-30 | 2011-01-06 | Koninklijke Philips Electronics N.V. | Body illumination system for controlling the biological clock of a mammal by radiation exposure of the skin |
| US9919168B2 (en) | 2009-07-23 | 2018-03-20 | Palomar Medical Technologies, Inc. | Method for improvement of cellulite appearance |
| US20110037844A1 (en) * | 2009-08-17 | 2011-02-17 | Scot Johnson | Energy emitting device |
| US8481982B2 (en) * | 2009-08-17 | 2013-07-09 | Scot L Johnson | Energy emitting treatment device |
| US8598809B2 (en) | 2009-08-19 | 2013-12-03 | Cree, Inc. | White light color changing solid state lighting and methods |
| JP5515015B2 (en) * | 2009-12-11 | 2014-06-11 | 有限会社ミニョンベル | Sleep-inducing device and method for inducing sleep |
| US8511851B2 (en) * | 2009-12-21 | 2013-08-20 | Cree, Inc. | High CRI adjustable color temperature lighting devices |
| US9539438B2 (en) | 2010-03-11 | 2017-01-10 | Merck Patent Gmbh | Fibers in therapy and cosmetics |
| KR101757016B1 (en) | 2010-03-11 | 2017-07-11 | 메르크 파텐트 게엠베하 | Radiative fibers |
| EP2547394A4 (en) * | 2010-03-16 | 2013-09-11 | Ronald L Moy | Light treatment of wounds to reduce scar formation |
| US8134132B2 (en) | 2010-04-28 | 2012-03-13 | Dymax Corporation | Exposure device having an array of light emitting diodes |
| EP2383017A1 (en) * | 2010-04-28 | 2011-11-02 | Koninklijke Philips Electronics N.V. | Phototherapy device |
| KR101020302B1 (en) * | 2010-05-03 | 2011-03-08 | 양승범 | Electrical stimulation system |
| BR112013000613A2 (en) * | 2010-07-09 | 2016-06-28 | Photocure Asa | dry compositions and devices containing such dry compositions |
| CN106887522B (en) | 2010-07-26 | 2018-09-18 | 默克专利有限公司 | Include the device of nanocrystal |
| US8492788B2 (en) * | 2010-10-08 | 2013-07-23 | Guardian Industries Corp. | Insulating glass (IG) or vacuum insulating glass (VIG) unit including light source, and/or methods of making the same |
| US20130225971A1 (en) * | 2010-11-05 | 2013-08-29 | Panasonic Corporation | Phototherapy apparatus |
| EP2646113A4 (en) * | 2010-12-03 | 2014-07-23 | Biolight Patent Holding Ab | .device for medical external treatment by light |
| US9786811B2 (en) | 2011-02-04 | 2017-10-10 | Cree, Inc. | Tilted emission LED array |
| US9492681B2 (en) | 2011-02-14 | 2016-11-15 | Merck Patent Gmbh | Device and method for treatment of cells and cell tissue |
| KR101225133B1 (en) * | 2011-05-16 | 2013-01-22 | 주식회사 칼라세븐 | Menstrual pain treatment device |
| KR102090617B1 (en) * | 2011-05-31 | 2020-03-19 | 포토파믹스 인코포레이티드 | Light emitting apparatuses for treating and/or diagnosing motor related neurological conditions |
| WO2012169673A1 (en) * | 2011-06-08 | 2012-12-13 | (주)지엘디테크 | Led light emitter using rgb and ir led |
| USD700584S1 (en) | 2011-07-06 | 2014-03-04 | Cree, Inc. | LED component |
| US10842016B2 (en) | 2011-07-06 | 2020-11-17 | Cree, Inc. | Compact optically efficient solid state light source with integrated thermal management |
| US10512587B2 (en) | 2011-07-27 | 2019-12-24 | Thermotek, Inc. | Method and apparatus for scalp thermal treatment |
| US8926119B2 (en) * | 2011-08-04 | 2015-01-06 | Universal Display Corporation | Extendable light source with variable light emitting area |
| RU2458670C1 (en) * | 2011-08-09 | 2012-08-20 | Борис Николаевич Анисимов | Method of resort rehabilitation of women suffering inflammatory pelvic diseases |
| DE102011117364A1 (en) | 2011-10-29 | 2013-05-02 | Merck Patent Gmbh | Skin whitening in phototherapy |
| US9687669B2 (en) | 2011-11-09 | 2017-06-27 | John Stephan | Wearable light therapy apparatus |
| JP2013252413A (en) * | 2011-12-13 | 2013-12-19 | Mignon Belle:Kk | Flat panel narrow band monochromatic light emitting device and shell type led narrow band monochromatic light emitting device |
| WO2013092505A1 (en) * | 2011-12-19 | 2013-06-27 | Photocure Asa | Irradiation apparatus |
| JP6271442B2 (en) | 2012-01-30 | 2018-01-31 | メルク パテント ゲーエムベーハー | Nanocrystals on fiber |
| US9623259B2 (en) * | 2012-03-27 | 2017-04-18 | Ronald K. DOWNS | Light based inflammation and pain management device |
| KR102183581B1 (en) | 2012-04-18 | 2020-11-27 | 싸이노슈어, 엘엘씨 | Picosecond laser apparatus and methods for treating target tissues with same |
| US20130281913A1 (en) | 2012-04-20 | 2013-10-24 | Klox Technologies Inc. | Biophotonic compositions and methods for providing biophotonic treatment |
| WO2013162728A1 (en) * | 2012-04-24 | 2013-10-31 | Thermotek, Inc. | Method and system for therapeutic use of ultra-violet light |
| US20130304164A1 (en) * | 2012-05-14 | 2013-11-14 | Eltech S.R.L. | Portable Apparatus for Laser Therapy |
| CN102755695B (en) * | 2012-07-13 | 2015-04-15 | 华南师范大学 | Method for realizing variable LED (Light-Emitting Diode) surface light source area and light intensity |
| BR112015001636A2 (en) * | 2012-07-26 | 2017-07-04 | J Brezinski Donna | portable phototherapy device |
| US9550072B2 (en) | 2012-08-03 | 2017-01-24 | Cerca Solutions, LLC | Diagnostic device, therapeutic device, and uses thereof |
| US9993658B2 (en) | 2012-08-16 | 2018-06-12 | Yolo Medical Inc. | Light applicators, systems and methods |
| US20140067024A1 (en) * | 2012-08-30 | 2014-03-06 | Photocure Asa | Dual panel photodynamic therapy lamp |
| GB201221123D0 (en) | 2012-11-23 | 2013-01-09 | Photocure As | Device for photodynamic treatment |
| US9295854B2 (en) * | 2012-11-28 | 2016-03-29 | Point Source, Inc. | Light and bioelectric therapy pad |
| US8784462B2 (en) * | 2012-11-30 | 2014-07-22 | Richard Ogden Deroberts | Flexible, wearable therapeutic laser array |
| BR102013000547A2 (en) * | 2013-01-09 | 2014-08-26 | Marcelo Victor Pires De Souza | MULTIFUNCTIONAL, PORTABLE AND FLEXIBLE LIGHT SOURCE FOR LIGHT TREATMENTS AND THERAPIES |
| AU2014223268A1 (en) * | 2013-03-01 | 2015-09-17 | Klox Technologies Inc. | Phototherapeutic device, method and use |
| US10300180B1 (en) | 2013-03-11 | 2019-05-28 | Thermotek, Inc. | Wound care and infusion method and system utilizing a therapeutic agent |
| EP2973894A2 (en) | 2013-03-15 | 2016-01-20 | Cynosure, Inc. | Picosecond optical radiation systems and methods of use |
| US9375586B2 (en) * | 2013-03-15 | 2016-06-28 | Pavel V. Efremkin | Apparatus and method for treatment of foot and nail diseases |
| GB201306369D0 (en) | 2013-04-09 | 2013-05-22 | Photocure As | Irradiation device |
| KR101324255B1 (en) * | 2013-04-22 | 2013-11-01 | 주식회사 비에스앤코 | Led light photo theraphy apparatus for face |
| GB201308039D0 (en) * | 2013-05-03 | 2013-06-12 | Ambicare Health Ltd | Photodynamic therapy |
| WO2015000058A1 (en) | 2013-07-03 | 2015-01-08 | Klox Technologies Inc. | Biophotonic compositions comprising a chromophore and a gelling agent for treating wounds |
| CN103411184A (en) * | 2013-08-16 | 2013-11-27 | 张家港市瑞腾科技有限公司 | LED (Light Emitting Diode) lamp panel |
| DE102013017586A1 (en) | 2013-10-17 | 2015-05-07 | Turbolite Vertriebs Gmbh | TREATMENT DEVICE for Magnetic Field Assisted Irradiation Therapy |
| EP3068481B1 (en) | 2013-11-11 | 2020-01-01 | Thermotek, Inc. | System for wound care |
| US10064940B2 (en) | 2013-12-11 | 2018-09-04 | Siva Therapeutics Inc. | Multifunctional radiation delivery apparatus and method |
| US10166321B2 (en) | 2014-01-09 | 2019-01-01 | Angiodynamics, Inc. | High-flow port and infusion needle systems |
| AU2015240385B2 (en) | 2014-04-01 | 2019-02-28 | Klox Technologies Inc. | Tissue filler compositions and methods of use |
| USD762870S1 (en) | 2014-07-30 | 2016-08-02 | Vijay Singh | LED light therapy tape |
| CN107588469A (en) * | 2015-02-06 | 2018-01-16 | 合肥龙息信息技术有限公司 | Air cleaner with solar energy sterilizing function |
| US10702702B2 (en) * | 2015-02-26 | 2020-07-07 | Sharp Kabushiki Kaisha | Light irradiation substrate and light irradiation device |
| WO2016146778A1 (en) * | 2015-03-17 | 2016-09-22 | Inderm | Methods of providing skin care using phototherapy |
| WO2016171639A1 (en) | 2015-04-24 | 2016-10-27 | Robin Kozmetik Guzellik Merkezi Medikal Ozel Egitim Ogretim Metal Urunleri Temizlik Urun Ve Gida Maddeleri Ithalat Ihracat Sanayi Ticaret Ltd. Sti. | A selective photothermolysis epilation device |
| US10806890B2 (en) * | 2015-06-19 | 2020-10-20 | Beth Israel Deaconess Medical Center, Inc. | Method and apparatus for managing photophobia and migraine photophobia |
| JP6516219B2 (en) * | 2015-06-24 | 2019-05-22 | 公立大学法人名古屋市立大学 | Photodynamic therapy light irradiator |
| US12109429B2 (en) | 2015-07-28 | 2024-10-08 | Know Bio, Llc | Phototherapeutic light for treatment of pathogens |
| EP3328491A4 (en) | 2015-07-28 | 2019-05-01 | PhotonMD, Inc. | SYSTEMS AND METHODS FOR PHOTOTHERAPEUTIC MODULATION OF NITRIC OXIDE |
| CN108136199B (en) | 2015-07-28 | 2022-03-01 | 诺欧生物有限责任公司 | Phototherapy equipment for dermatological treatment of the scalp |
| EP3851161A1 (en) | 2015-10-15 | 2021-07-21 | DUSA Pharmaceuticals, Inc. | Adjustable illuminator for photodynamic therapy and diagnosis |
| GB201522398D0 (en) | 2015-12-18 | 2016-02-03 | Photocure As | Device for photodynamic therapy |
| ES2893295T3 (en) * | 2016-02-02 | 2022-02-08 | Braun Gmbh | skin treatment device |
| US9913994B2 (en) * | 2016-02-26 | 2018-03-13 | Steve Marchese | LED therapy bed |
| SE540893C2 (en) * | 2016-04-19 | 2018-12-11 | Peanta Invent Ab | Light head for use in relining pipes |
| DE202016103362U1 (en) * | 2016-06-24 | 2017-10-30 | Schulze & Böhm GmbH | Irradiation device for performing photodynamic therapy (PDT) |
| US20190083809A1 (en) | 2016-07-27 | 2019-03-21 | Z2020, Llc | Componentry and devices for light therapy delivery and methods related thereto |
| JP6697194B2 (en) * | 2016-08-01 | 2020-05-20 | 日本エステサービス株式会社 | Hair growth promotion device |
| FR3055552B1 (en) * | 2016-09-02 | 2021-04-23 | Helight | LIGHT TREATMENT DEVICE FOR A PORTION OF A USER'S BODY |
| US10596388B2 (en) | 2016-09-21 | 2020-03-24 | Epistar Corporation | Therapeutic light-emitting module |
| WO2018090131A1 (en) * | 2016-11-16 | 2018-05-24 | Klox Technologies Limited | Devices, systems and methods for phototherapy of treatment sites |
| WO2018117787A1 (en) * | 2016-12-19 | 2018-06-28 | Castro Baldenebro Brayan Gamaniel | System for applying focused light for the treatment of skin conditions caused by acne |
| US11103724B2 (en) | 2017-01-04 | 2021-08-31 | Arbor Grace, Inc. | Photo-treatment device |
| JPWO2018154758A1 (en) * | 2017-02-27 | 2019-12-19 | 少輝 潘 | Skin care equipment |
| US11896823B2 (en) | 2017-04-04 | 2024-02-13 | Btl Healthcare Technologies A.S. | Method and device for pelvic floor tissue treatment |
| US11273320B2 (en) | 2017-05-30 | 2022-03-15 | Tcellerate Llc | Device for photo-therapy of Grover's disease and use thereof |
| US10155122B1 (en) * | 2017-05-30 | 2018-12-18 | William Woodburn | Device for photo-therapy of grover's disease and use thereof |
| US12233279B2 (en) | 2017-05-30 | 2025-02-25 | Icahn School Of Medicine At Mount Sinai | Device for photo-therapy and use thereof |
| US10357567B1 (en) | 2018-01-12 | 2019-07-23 | Dusa Pharmaceuticals, Inc. | Methods for photodynamic therapy |
| EP3759770A4 (en) | 2018-02-26 | 2021-12-08 | Cynosure, LLC | Q-switched cavity dumped sub-nanosecond laser |
| JP7168195B2 (en) * | 2018-06-11 | 2022-11-09 | 株式会社ベースメントファクトリーデザイン | Irradiation device |
| US11458328B2 (en) | 2018-10-22 | 2022-10-04 | Joovv, Inc. | Photobiomodulation therapy device accessories |
| US10478635B1 (en) | 2018-10-22 | 2019-11-19 | Joovv, Inc. | Photobiomodulation therapy systems and methods |
| JP2020099682A (en) | 2018-12-19 | 2020-07-02 | アヴァロン フォトニクス(ホンコン) リミテッド | Improved infant phototherapy device, and method of use and kit thereof |
| US12460830B2 (en) | 2019-01-23 | 2025-11-04 | Jk-Holding Gmbh | Dual heating or cooling system and its use |
| US12478760B2 (en) | 2019-07-23 | 2025-11-25 | Into Technologies Inc. | Systems and methods for user entrainment |
| RU196564U1 (en) * | 2019-12-09 | 2020-03-05 | Федеральное государственное бюджетное учреждение науки Научно-технологический центр микроэлектроники и субмикронных гетероструктур Российской академии наук (НТЦ микроэлектроники РАН) | SURGICAL POLYCHROME LIGHT |
| CN219332959U (en) * | 2019-12-12 | 2023-07-14 | 卡约·莫雷拉·吉马雷斯 | Wound treatment device |
| US11147984B2 (en) | 2020-03-19 | 2021-10-19 | Know Bio, Llc | Illumination devices for inducing biological effects |
| US12011611B2 (en) | 2020-03-19 | 2024-06-18 | Know Bio, Llc | Illumination devices for inducing biological effects |
| US11986666B2 (en) | 2020-03-19 | 2024-05-21 | Know Bio, Llc | Illumination devices for inducing biological effects |
| US12447354B2 (en) | 2020-03-19 | 2025-10-21 | Know Bio, Llc | Illumination devices for inducing biological effects |
| US20230149737A1 (en) * | 2020-05-05 | 2023-05-18 | KAST Allen George | Method and apparatus for treatment of pulmonary inflammation |
| JP2023527680A (en) * | 2020-05-05 | 2023-06-30 | ルメダ インコーポレイテッド | Time multiple dosimetry system and method |
| US11975215B2 (en) | 2020-05-26 | 2024-05-07 | Know Bio, Llc | Devices and related methods for phototherapeutic treatment of skin |
| US12005268B2 (en) | 2020-05-27 | 2024-06-11 | Norb Lighting, LLC | Ocular light therapy arrangement and method for treating neurological disorders |
| KR102447033B1 (en) * | 2020-06-23 | 2022-09-26 | 주식회사 아모스팜 | Locally targeted photodynamic therapy device and method for controlling the same in cancer treatment |
| CN114173893A (en) * | 2020-06-23 | 2022-03-11 | 阿莫斯制药株式会社 | Local targeting photodynamic therapy device for treating cancer and control method thereof |
| US12347337B2 (en) | 2020-12-10 | 2025-07-01 | Know Bio, Llc | Enhanced testing and characterization techniques for phototherapeutic light treatments |
| USD979779S1 (en) | 2021-03-04 | 2023-02-28 | Kiierr International, LLC | Light therapy cap |
| US11654294B2 (en) | 2021-03-15 | 2023-05-23 | Know Bio, Llc | Intranasal illumination devices |
| US12115384B2 (en) | 2021-03-15 | 2024-10-15 | Know Bio, Llc | Devices and methods for illuminating tissue to induce biological effects |
| KR20240011794A (en) * | 2021-08-17 | 2024-01-26 | 보스톤 싸이엔티픽 싸이메드 인코포레이티드 | Devices, systems and methods for activation of photoactivators |
| US11333336B1 (en) | 2021-08-20 | 2022-05-17 | Optical Tools Llc | Portable lamp assembly |
| KR102726719B1 (en) * | 2022-01-11 | 2024-11-06 | 전북대학교산학협력단 | Devices for treating dermatopathies caused by viruses |
| KR102574402B1 (en) * | 2022-06-28 | 2023-09-05 | 주식회사 스마트비전글로벌 | Light source for human body care, and human body care device |
| CN116584873A (en) * | 2023-06-16 | 2023-08-15 | 微创优通医疗科技(嘉兴)有限公司 | Lighting source module and endoscope |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5278432A (en) * | 1992-08-27 | 1994-01-11 | Quantam Devices, Inc. | Apparatus for providing radiant energy |
| US5445608A (en) * | 1993-08-16 | 1995-08-29 | James C. Chen | Method and apparatus for providing light-activated therapy |
| US5698866A (en) * | 1994-09-19 | 1997-12-16 | Pdt Systems, Inc. | Uniform illuminator for phototherapy |
| US5857767A (en) * | 1996-09-23 | 1999-01-12 | Relume Corporation | Thermal management system for L.E.D. arrays |
| US6290382B1 (en) * | 1998-08-17 | 2001-09-18 | Ppt Vision, Inc. | Fiber bundle combiner and led illumination system and method |
| US6450941B1 (en) * | 1994-01-21 | 2002-09-17 | Eric Larsen | Device for the stimulation of body cells through electromagnetic radiation |
| US20020143373A1 (en) * | 2001-01-25 | 2002-10-03 | Courtnage Peter A. | System and method for therapeutic application of energy |
| US20030076281A1 (en) * | 1997-08-26 | 2003-04-24 | Frederick Marshall Morgan | Diffuse illumination systems and methods |
| US6663659B2 (en) * | 2000-01-13 | 2003-12-16 | Mcdaniel David H. | Method and apparatus for the photomodulation of living cells |
Family Cites Families (90)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4335724A (en) * | 1977-01-26 | 1982-06-22 | Frei Hans Joachim | Solarium |
| DE8403549U1 (en) * | 1984-02-07 | 1986-01-23 | Avaris AG, Zürich | Device for skin irradiation as well as for hair drying |
| US4660561A (en) * | 1984-10-26 | 1987-04-28 | Solana, Inc. | Fixture for skin tanning by selective light source |
| JPS62161382A (en) * | 1986-01-13 | 1987-07-17 | 森 敬 | Light irradiating remedy cloth |
| US4740707A (en) * | 1986-10-27 | 1988-04-26 | Allan Thaw | Portable tanning unit |
| JPS63111886A (en) * | 1986-10-29 | 1988-05-17 | 呉羽化学工業株式会社 | Cancer remedy apparatus using optical diode |
| IL84367A (en) | 1987-11-04 | 1994-02-27 | Amcor Ltd | Apparatus for use in radiation therapy |
| US4930504A (en) * | 1987-11-13 | 1990-06-05 | Diamantopoulos Costas A | Device for biostimulation of tissue and method for treatment of tissue |
| US4907132A (en) * | 1988-03-22 | 1990-03-06 | Lumitex, Inc. | Light emitting panel assemblies and method of making same |
| DE8813852U1 (en) * | 1988-11-05 | 1988-12-29 | Normedica AG, Schaffhausen | Device for photodynamic stimulation of cells using infrared radiation |
| JPH0657267B2 (en) * | 1988-11-21 | 1994-08-03 | 敬 森 | Light bath |
| JPH0675122B2 (en) * | 1989-01-18 | 1994-09-21 | 敬 森 | Light radiator |
| GB2242307B (en) * | 1990-02-09 | 1994-09-07 | Omega Universal Tech Ltd | Laser probe for biomodulation of tissue nerve and immune systems |
| JPH03292959A (en) * | 1990-04-11 | 1991-12-24 | Aika:Kk | Acupuncture probe and acupuncture probing and stimulating apparatus |
| US5500009A (en) * | 1990-11-15 | 1996-03-19 | Amron, Ltd. | Method of treating herpes |
| US5549660A (en) | 1990-11-15 | 1996-08-27 | Amron, Ltd. | Method of treating acne |
| DE4113803A1 (en) * | 1991-04-24 | 1992-10-29 | Iwg Eastmed Medizintechnik Gmb | Therapeutic radiant heating device - has visible light and IR-A emitting diodes located in gratings |
| US5511563A (en) * | 1991-06-21 | 1996-04-30 | Diamond; Donald A. | Apparatus and method for treating rheumatoid and psoriatic arthritis |
| CH685148A5 (en) * | 1991-11-20 | 1995-04-13 | Erik Larsen | Apparatus for the photodynamic stimulation of cells. |
| JP2588833Y2 (en) * | 1992-01-17 | 1999-01-20 | 富士写真光機株式会社 | Optical system for endoscope illumination |
| US5304207A (en) | 1992-02-05 | 1994-04-19 | Merrill Stromer | Electrostimulator with light emitting device |
| WO1993021842A1 (en) * | 1992-04-30 | 1993-11-11 | Quadra Logic Technologies, Inc. | High-power light-emitting diodes for photodynamic therapy |
| EP0680361A4 (en) * | 1993-01-13 | 1999-05-26 | Pdt Systems Inc | LIGHT-EMITTING DIODE AS A LIGHT SOURCE FOR PHOTODYNAMIC THERAPY. |
| GB2276032B (en) * | 1993-03-08 | 1997-04-16 | Prp Optoelectronics Limited | High intensity light source |
| US5420768A (en) * | 1993-09-13 | 1995-05-30 | Kennedy; John | Portable led photocuring device |
| US5601619A (en) * | 1993-12-13 | 1997-02-11 | Drechsler; Howard J. | Phototherapeutic device and method |
| SE504298C2 (en) | 1994-01-20 | 1996-12-23 | Biolight Patent Holding Ab | Device for wound healing by light |
| US5358503A (en) * | 1994-01-25 | 1994-10-25 | Bertwell Dale E | Photo-thermal therapeutic device and method |
| IL108918A (en) * | 1994-03-10 | 1997-04-15 | Medic Lightech Ltd | Apparatus for efficient photodynamic treatment |
| US5616140A (en) * | 1994-03-21 | 1997-04-01 | Prescott; Marvin | Method and apparatus for therapeutic laser treatment |
| US5989245A (en) | 1994-03-21 | 1999-11-23 | Prescott; Marvin A. | Method and apparatus for therapeutic laser treatment |
| IT1285787B1 (en) * | 1994-03-29 | 1998-06-18 | Maef Srl | LED DIODE EQUIPMENT FOR CHROMOTHERAPY |
| IT1274170B (en) | 1994-05-04 | 1997-07-15 | Fabio Marchesi | EQUIPMENT FOR THE REDUCTION OF SPECIFIC ADIPOSE AREAS THROUGH THE CONCOMITANCE OF THE AMOUNT OF HEAT AND MUSCLE ACTIVITY. |
| US5645578A (en) * | 1994-11-16 | 1997-07-08 | Sybaritic, Inc. | Total therapy sauna bed system |
| AUPM956694A0 (en) * | 1994-11-18 | 1994-12-15 | University Of Sydney, The | Inducing or enhancing electro-optic properties in optically transmissive material |
| US5660461A (en) | 1994-12-08 | 1997-08-26 | Quantum Devices, Inc. | Arrays of optoelectronic devices and method of making same |
| AT401342B (en) | 1995-01-17 | 1996-08-26 | Myles Handels Gmbh | SOFTLASER WITH INTEGRATED POINT DETECTOR FOR ACUPUNCTURE POINTS |
| US5728090A (en) * | 1995-02-09 | 1998-03-17 | Quantum Devices, Inc. | Apparatus for irradiating living cells |
| US5891186A (en) * | 1995-11-15 | 1999-04-06 | Visibelle Derma Institute, Inc. | Physical therapy heated personal capsule |
| US5709645A (en) | 1996-01-30 | 1998-01-20 | Comptronic Devices Limited | Independent field photic stimulator |
| US6143287A (en) | 1996-02-27 | 2000-11-07 | New York Blood Center, Inc. | Method and composition for hair removal |
| US5800478A (en) * | 1996-03-07 | 1998-09-01 | Light Sciences Limited Partnership | Flexible microcircuits for internal light therapy |
| NZ331977A (en) | 1996-03-26 | 2000-07-28 | Pharmacyclics Inc | Texaphyrin in photodynamic therapy of pigment-related lesions |
| BR9612592A (en) | 1996-04-11 | 1999-07-20 | Nikolai Taimourasovich Bagrev | Process of treatment of pathological tissues by the non-coherent emission and device for the implementation of this process |
| SE509003C2 (en) | 1996-06-07 | 1998-11-23 | Biolight Patent Holding Ab | Device for medical external treatment by monochromatic light |
| SE509718C2 (en) | 1996-06-07 | 1999-03-01 | Biolight Patent Holding Ab | Device for medical external light therapy |
| AU3813897A (en) * | 1996-07-25 | 1998-02-20 | Light Medicine, Inc. | Photodynamic therapy apparatus and methods |
| US5814008A (en) * | 1996-07-29 | 1998-09-29 | Light Sciences Limited Partnership | Method and device for applying hyperthermia to enhance drug perfusion and efficacy of subsequent light therapy |
| US5913883A (en) * | 1996-08-06 | 1999-06-22 | Alexander; Dane | Therapeutic facial mask |
| NO963546D0 (en) * | 1996-08-23 | 1996-08-23 | Eric Larsen | Method of permanent hair removal using light |
| US5913884A (en) | 1996-09-19 | 1999-06-22 | The General Hospital Corporation | Inhibition of fibrosis by photodynamic therapy |
| DE19641216A1 (en) | 1996-09-26 | 1998-04-02 | Wilkens Heinrike Dr Med | Irradiation device, in particular for cosmetic, diagnostic and therapeutic use of light |
| JP3036232U (en) * | 1996-09-26 | 1997-04-15 | ヤーマン株式会社 | Optical hair removal device |
| US5702432A (en) | 1996-10-03 | 1997-12-30 | Light Sciences Limited Partnership | Intracorporeal light treatment of blood |
| GB9623627D0 (en) | 1996-11-13 | 1997-01-08 | Meditech International Inc | Method and apparatus for photon therapy |
| US6190376B1 (en) | 1996-12-10 | 2001-02-20 | Asah Medico A/S | Apparatus for tissue treatment |
| WO1998025667A1 (en) | 1996-12-11 | 1998-06-18 | The Electrogesic Corporation | Infared radiation therapy device |
| US6063108A (en) | 1997-01-06 | 2000-05-16 | Salansky; Norman | Method and apparatus for localized low energy photon therapy (LEPT) |
| US5782896A (en) * | 1997-01-29 | 1998-07-21 | Light Sciences Limited Partnership | Use of a shape memory alloy to modify the disposition of a device within an implantable medical probe |
| US5876427A (en) | 1997-01-29 | 1999-03-02 | Light Sciences Limited Partnership | Compact flexible circuit configuration |
| US5997569A (en) * | 1997-01-29 | 1999-12-07 | Light Sciences Limited Partnership | Flexible and adjustable grid for medical therapy |
| JPH10229990A (en) * | 1997-02-20 | 1998-09-02 | Olympus Optical Co Ltd | Laser probe |
| DE29703132U1 (en) | 1997-02-21 | 1997-08-07 | Schipke, Ulf, 93133 Burglengenfeld | contraption |
| US6099554A (en) * | 1997-04-02 | 2000-08-08 | Wound Healing Of Oklahoma | Laser light delivery method |
| US5957960A (en) | 1997-05-05 | 1999-09-28 | Light Sciences Limited Partnership | Internal two photon excitation device for delivery of PDT to diffuse abnormal cells |
| CA2206203A1 (en) * | 1997-05-27 | 1998-11-27 | University Of British Columbia | Photoactivation of endogenous porphyrins for treatment of psoriasis |
| CA2302044C (en) * | 1997-08-25 | 2011-07-05 | Advanced Photodynamic Technologies, Inc. | Treatment device for topical photodynamic therapy and method of making same |
| US6074382A (en) | 1997-08-29 | 2000-06-13 | Asah Medico A/S | Apparatus for tissue treatment |
| GB9721506D0 (en) * | 1997-10-10 | 1997-12-10 | Virulite Limited | Treatment of diseases |
| US5968033A (en) | 1997-11-03 | 1999-10-19 | Fuller Research Corporation | Optical delivery system and method for subsurface tissue irradiation |
| GB2331399B (en) * | 1997-11-14 | 1999-12-01 | Prp Optoelectronics Limited | High intensity light source |
| US6235046B1 (en) | 1998-01-21 | 2001-05-22 | David W. Gerdt | Passive photonic eye delivery system |
| US5957959A (en) * | 1998-04-06 | 1999-09-28 | Rissmaney; Pouran | Home tanning apparatus |
| JP2892642B1 (en) | 1998-05-22 | 1999-05-17 | 功之 高橋 | Beauty Equipment |
| US6110195A (en) * | 1998-06-01 | 2000-08-29 | Altralight, Inc. | Method and apparatus for surgical and dermatological treatment by multi-wavelength laser light |
| WO2000002491A1 (en) * | 1998-07-09 | 2000-01-20 | Curelight Ltd. | Apparatus and method for efficient high energy photodynamic therapy of acne vulgaris and seborrhea |
| EP1024327A1 (en) * | 1998-08-21 | 2000-08-02 | Matsushita Electric Industrial Co., Ltd. | Radiant energy irradiation device |
| US6096066A (en) * | 1998-09-11 | 2000-08-01 | Light Sciences Limited Partnership | Conformal patch for administering light therapy to subcutaneous tumors |
| US6183500B1 (en) * | 1998-12-03 | 2001-02-06 | Sli Lichtsysteme Gmbh | Process and apparatus for the cosmetic treatment of acne vulgaris |
| US6149283A (en) * | 1998-12-09 | 2000-11-21 | Rensselaer Polytechnic Institute (Rpi) | LED lamp with reflector and multicolor adjuster |
| US6187029B1 (en) | 1999-03-02 | 2001-02-13 | Physician's Technology, Llc | Photo-thermal treatment device |
| AU6084500A (en) * | 1999-07-09 | 2001-01-30 | Cornell Research Foundation Inc. | Rem sleep augmentation with extra-ocular light |
| US6238426B1 (en) | 1999-07-19 | 2001-05-29 | Light Sciences Corporation | Real-time monitoring of photodynamic therapy over an extended time |
| IT1313172B1 (en) * | 1999-08-06 | 2002-06-17 | Biophoenix Srl | METHOD AND EQUIPMENT FOR DYNAMIC EXPOSURE TO RAYS |
| US6290713B1 (en) | 1999-08-24 | 2001-09-18 | Thomas A. Russell | Flexible illuminators for phototherapy |
| GB2356570A (en) * | 1999-09-30 | 2001-05-30 | Oe Lys Ltd | Acne treating apparatus based on the emission of light in three different ranges of wavelength |
| JP2004159666A (en) | 1999-12-21 | 2004-06-10 | Ya Man Ltd | Laser epilation device |
| GB2360459B (en) * | 2000-03-23 | 2002-08-07 | Photo Therapeutics Ltd | Therapeutic light source and method |
| GB2368020A (en) | 2000-10-18 | 2002-04-24 | Icn Photonics Ltd | Treatment of acne vulgaris skin condition by irradiation with light of specific wavelengths to target specific chromophores & stimulate collagen production |
| GB2370229A (en) | 2000-12-22 | 2002-06-26 | Icn Photonics Ltd | Light delivery system for improving the appearance of skin |
-
2000
- 2000-03-23 GB GB0007085A patent/GB2360459B/en not_active Expired - Fee Related
- 2000-03-23 GB GB0206457A patent/GB2370992B/en not_active Expired - Fee Related
- 2000-04-17 GB GB0009491A patent/GB2360460B/en not_active Expired - Fee Related
- 2000-12-19 GB GB0030974A patent/GB2360461B/en not_active Expired - Lifetime
-
2001
- 2001-03-20 DE DE60141610T patent/DE60141610D1/en not_active Expired - Lifetime
- 2001-03-20 AT AT01302586T patent/ATE276014T1/en active
- 2001-03-20 DE DE60105473T patent/DE60105473T2/en not_active Expired - Lifetime
- 2001-03-20 EP EP01302586A patent/EP1138349B1/en not_active Expired - Lifetime
- 2001-03-20 ES ES01302586T patent/ES2228756T3/en not_active Expired - Lifetime
- 2001-03-20 DK DK01302586T patent/DK1138349T3/en active
- 2001-03-20 AT AT04011578T patent/ATE460959T1/en not_active IP Right Cessation
- 2001-03-20 EP EP04011578A patent/EP1457234B1/en not_active Expired - Lifetime
- 2001-03-22 AU AU29807/01A patent/AU781077B2/en not_active Ceased
- 2001-03-22 CA CA002672092A patent/CA2672092A1/en not_active Abandoned
- 2001-03-22 CA CA002341951A patent/CA2341951A1/en not_active Abandoned
- 2001-03-23 US US09/815,348 patent/US6645230B2/en not_active Expired - Lifetime
- 2001-03-23 JP JP2001084962A patent/JP2002065875A/en active Pending
-
2003
- 2003-07-24 US US10/625,701 patent/US20040127961A1/en not_active Abandoned
-
2005
- 2005-06-28 JP JP2005188857A patent/JP4889247B2/en not_active Expired - Lifetime
-
2007
- 2007-06-12 US US11/761,928 patent/US20070233209A1/en not_active Abandoned
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5278432A (en) * | 1992-08-27 | 1994-01-11 | Quantam Devices, Inc. | Apparatus for providing radiant energy |
| US5445608A (en) * | 1993-08-16 | 1995-08-29 | James C. Chen | Method and apparatus for providing light-activated therapy |
| US6450941B1 (en) * | 1994-01-21 | 2002-09-17 | Eric Larsen | Device for the stimulation of body cells through electromagnetic radiation |
| US5698866A (en) * | 1994-09-19 | 1997-12-16 | Pdt Systems, Inc. | Uniform illuminator for phototherapy |
| US5857767A (en) * | 1996-09-23 | 1999-01-12 | Relume Corporation | Thermal management system for L.E.D. arrays |
| US20030076281A1 (en) * | 1997-08-26 | 2003-04-24 | Frederick Marshall Morgan | Diffuse illumination systems and methods |
| US6290382B1 (en) * | 1998-08-17 | 2001-09-18 | Ppt Vision, Inc. | Fiber bundle combiner and led illumination system and method |
| US6663659B2 (en) * | 2000-01-13 | 2003-12-16 | Mcdaniel David H. | Method and apparatus for the photomodulation of living cells |
| US20020143373A1 (en) * | 2001-01-25 | 2002-10-03 | Courtnage Peter A. | System and method for therapeutic application of energy |
Cited By (57)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7464712B2 (en) | 1997-06-27 | 2008-12-16 | The Trustees Of Columbia University In The City Of New York | Method and apparatus for circulatory valve repair |
| US20040199183A1 (en) * | 1997-06-27 | 2004-10-07 | Oz Mehmet C. | Method and apparatus for circulatory valve repair |
| US20070233209A1 (en) * | 2000-03-23 | 2007-10-04 | Colin Whitehurst | Therapeutic Light Source and Method |
| US20060064144A1 (en) * | 2004-06-25 | 2006-03-23 | Chen Joshua Q | Programmable multifunction table lamp for light therapy |
| DE102005034971B4 (en) * | 2004-07-24 | 2011-02-24 | Martin Holzlehner | Medical-therapeutic or cosmetic surface laser device |
| US20060100679A1 (en) * | 2004-08-27 | 2006-05-11 | Dimauro Thomas | Light-based implants for treating Alzheimer's disease |
| US8821559B2 (en) | 2004-08-27 | 2014-09-02 | Codman & Shurtleff, Inc. | Light-based implants for treating Alzheimer's disease |
| WO2006078613A3 (en) * | 2005-01-18 | 2007-05-03 | George R Mcmickle | Apparatus and method for reducing follicular cell apoptosis |
| US20060161226A1 (en) * | 2005-01-18 | 2006-07-20 | Mcmickle George R | Apparatus and method for reducing follicular cell apoptosis |
| US20060167532A1 (en) * | 2005-01-26 | 2006-07-27 | Parker Jeffery R | Phototherapy treatment devices for applying area lighting to a wound |
| US7686839B2 (en) * | 2005-01-26 | 2010-03-30 | Lumitex, Inc. | Phototherapy treatment devices for applying area lighting to a wound |
| WO2006087122A1 (en) * | 2005-02-16 | 2006-08-24 | Wavelight Laser Technologie Ag | Medical and/ or cosmetic radiation device |
| EP1693016A1 (en) * | 2005-02-16 | 2006-08-23 | Wavelight Laser Technologie AG | Medical and/or cosmetic radiation device |
| US8900282B2 (en) | 2005-02-17 | 2014-12-02 | Biolux Research Ltd. | Light therapy apparatus and methods |
| US9308389B2 (en) | 2005-02-17 | 2016-04-12 | Biolux Research Ltd. | Light therapy apparatus and methods |
| US20060200212A1 (en) * | 2005-02-17 | 2006-09-07 | Brawn Peter R | Light therapy device for treatment of bone disorders and biostimulation of bone and soft tissue |
| US20070248930A1 (en) * | 2005-02-17 | 2007-10-25 | Biolux Research Ltd. | Light therapy apparatus and methods |
| US20100318161A1 (en) * | 2005-02-17 | 2010-12-16 | Biolux Research Ltd. | Light therapy methods |
| US20100305668A1 (en) * | 2005-02-17 | 2010-12-02 | Biolux Research Ltd. | Methods for treatment of bone disorders and biostimulation of bone and soft tissue |
| US20070239235A1 (en) * | 2005-03-14 | 2007-10-11 | Dimauro Thomas M | Red Light Implant For Treating Parkinson's Disease |
| USRE47266E1 (en) | 2005-03-14 | 2019-03-05 | DePuy Synthes Products, Inc. | Light-based implants for treating Alzheimer's disease |
| US8900284B2 (en) | 2005-03-14 | 2014-12-02 | DePuy Synthes Products, LLC | Red light implant for treating Parkinson's disease |
| AT503079B1 (en) * | 2005-04-29 | 2008-03-15 | Paris Lodron Uni Salzburg | DEVICE FOR IMPLEMENTING PHOTODYNAMIC TREATMENTS |
| US7351253B2 (en) * | 2005-06-16 | 2008-04-01 | Codman & Shurtleff, Inc. | Intranasal red light probe for treating Alzheimer's disease |
| US20110022130A1 (en) * | 2005-06-16 | 2011-01-27 | Dimauro Thomas M | Intranasal Red Light Probe For Treating Alzheimer's Disease |
| US8734498B2 (en) | 2005-06-16 | 2014-05-27 | DePuy Synthes Products, LLC | Intranasal red light probe for treating alzheimer's disease |
| US20060287695A1 (en) * | 2005-06-16 | 2006-12-21 | Dimauro Thomas M | Intranasal red light probe for treating Alzheimer's disease |
| US20100063487A1 (en) * | 2005-09-30 | 2010-03-11 | Jason Van Straalen | Light therapy apparatus |
| US20070098645A1 (en) * | 2005-10-31 | 2007-05-03 | Agbodoe Victor B | Intranasal delivery of compounds that reduce intrancranial pressure |
| US8167920B2 (en) | 2005-10-31 | 2012-05-01 | Codman & Shurtleff, Inc. | Intranasal delivery of compounds that reduce intrancranial pressure |
| US20070139930A1 (en) * | 2005-12-19 | 2007-06-21 | Paul Spivak | Method and system for led light therapy |
| US20100158462A1 (en) * | 2006-03-02 | 2010-06-24 | Bonitatibus Michael H | Sunlight Simulator Apparatus |
| WO2007112427A3 (en) * | 2006-03-28 | 2008-05-08 | Stephen M Tobin | Convertible lamp array |
| US20090099499A1 (en) * | 2006-04-19 | 2009-04-16 | Antun Persin | Intelligent sequential illuminating device for photodynamic therapy |
| US20080055924A1 (en) * | 2006-08-30 | 2008-03-06 | Andre Ehrhardt | Illumination System For Producing Light And For Launching The Light Into A Proximal End Of An Optical Cable Of An Observation Apparatus For Endoscopy Or Microscopy |
| US8613538B2 (en) | 2006-08-30 | 2013-12-24 | Karl Storz Gmbh & Co. Kg | Illumination system for endoscopy or microscopy |
| EP1894516A1 (en) | 2006-08-30 | 2008-03-05 | Karl Storz GmbH & Co. KG | Illumination system for creating light and for injecting light into the proximal end of a light conducting cable of an observation device for endoscopy or microscopy |
| US9320914B2 (en) | 2008-03-03 | 2016-04-26 | DePuy Synthes Products, Inc. | Endoscopic delivery of red/NIR light to the subventricular zone |
| US10561857B2 (en) | 2008-03-03 | 2020-02-18 | DePuy Synthes Products, Inc. | Method of treating traumatic brain injury with red/NIR light |
| US8559175B2 (en) | 2008-07-25 | 2013-10-15 | Koninlijke Philips N.V. | Cooling device for cooling a semiconductor die |
| US20110122579A1 (en) * | 2008-07-25 | 2011-05-26 | Koninklijke Phiips Electronics N.V. | Cooling device for cooling a semiconductor die |
| US20100198316A1 (en) * | 2009-02-04 | 2010-08-05 | Richard Toselli | Intracranial Red Light Treatment Device For Chronic Pain |
| USD623308S1 (en) | 2009-05-08 | 2010-09-07 | Kramer Francis J | LED light therapy device |
| US8801254B2 (en) * | 2009-07-07 | 2014-08-12 | Ambicare Limited | Medical apparatus |
| US20120155057A1 (en) * | 2009-07-07 | 2012-06-21 | Ambicare Limited | medical apparatus |
| US20110073159A1 (en) * | 2009-09-28 | 2011-03-31 | Yu-Nung Shen | Heat Dissipating Device and Module Using Same |
| US9242118B2 (en) | 2010-12-08 | 2016-01-26 | Biolux Research Ltd. | Methods useful for remodeling maxillofacial bone using light therapy and a functional appliance |
| US8858607B1 (en) | 2013-03-15 | 2014-10-14 | Gary W. Jones | Multispectral therapeutic light source |
| US9295855B2 (en) | 2013-03-15 | 2016-03-29 | Gary W. Jones | Ambient spectrum light conversion device |
| US10729524B2 (en) | 2013-10-22 | 2020-08-04 | Biolux Research Holdings, Inc. | Intra-oral light-therapy apparatuses and methods for their use |
| US12251283B2 (en) | 2013-10-22 | 2025-03-18 | Biolux Group Sa | Intra-oral light-therapy apparatuses and methods for their use |
| US9730780B2 (en) | 2013-10-22 | 2017-08-15 | Biolux Research Ltd. | Intra-oral light-therapy apparatuses and methods for their use |
| US10288233B2 (en) | 2013-12-10 | 2019-05-14 | Gary W. Jones | Inverse visible spectrum light and broad spectrum light source for enhanced vision |
| US9551468B2 (en) | 2013-12-10 | 2017-01-24 | Gary W. Jones | Inverse visible spectrum light and broad spectrum light source for enhanced vision |
| US11141309B2 (en) | 2019-06-03 | 2021-10-12 | Cooler Heads Care, Inc. | Cooling cap assembly and cooling unit |
| US11622881B2 (en) | 2019-06-03 | 2023-04-11 | Cooler Heads Care, Inc. | Cooling cap assembly and cooling unit |
| WO2023193103A1 (en) * | 2022-04-05 | 2023-10-12 | Toefx Inc. | Combined photodisinfection and visualization device |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6645230B2 (en) | Therapeutic light source and method | |
| US6626932B2 (en) | Therapeutic light source and method | |
| US6796994B2 (en) | Device for the treatment of mucositis | |
| US20040176823A1 (en) | Acne treatment device and method | |
| JP2010046518A (en) | Instrument and method for treating pimple | |
| US20080065003A1 (en) | Photonic device and method for treating cervical dysplasia | |
| KR20090055891A (en) | LED light irradiator for skin | |
| US20120123507A1 (en) | Phototherapeutic Apparatus and Method | |
| WO2018090840A1 (en) | Phototherapy device and method for use in metabolic disease | |
| CA2153337C (en) | Light emitting diode light source for photodynamic therapy | |
| CN100591394C (en) | A light-emitting diode phototherapy device | |
| KR100848391B1 (en) | Therapeutic light source and method of using the same | |
| KR20090119517A (en) | Phototherapy System |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |