US20040120441A1 - Systems and methods for correcting gain error due to transition density variation in clock recovery systems - Google Patents
Systems and methods for correcting gain error due to transition density variation in clock recovery systems Download PDFInfo
- Publication number
- US20040120441A1 US20040120441A1 US10/328,298 US32829802A US2004120441A1 US 20040120441 A1 US20040120441 A1 US 20040120441A1 US 32829802 A US32829802 A US 32829802A US 2004120441 A1 US2004120441 A1 US 2004120441A1
- Authority
- US
- United States
- Prior art keywords
- signal
- filter
- reference signal
- filtered
- filters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/093—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
- H04L7/033—Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
Definitions
- the present invention is directed to processing a data stream that includes an embedded clock and, more particularly, to operating a phase locked loop (PLL) that exhibits predictable phase demodulation sensitivity in response to variation in symbol transition density.
- PLL phase locked loop
- Non-return-to-zero (NRZ) signaling refers to a binary encoding scheme in which there is no return to a reference voltage between encoded bits. Instead, the signaling remains at a “high” voltage for consecutive “ones” and remains at a “low” voltage for consecutive “zeros.”
- PLL phase locked loop
- VCO voltage controlled oscillator
- the phase error of the VCO may be determined.
- the VCO signal is adjusted thereto thereby locking the VCO to the embedded clock of the data.
- the phase error may be “servo'd” to zero utilizing closed-loop feedback via the PLL design.
- FIG. 1 depicts clock recovery loop 100 according to the prior art.
- Clock recovery loop 100 comprises continuous phase detector 104 , VCO 105 , and loop filter 106 .
- Data 101 to be measured is received by continuous phase detector 104 .
- VCO 105 generates a VCO signal (which is provided as recovered clock 102 ) that is controlled by tuning voltage 107 .
- tuning voltage 107 tuning voltage 107 .
- continuous phase detector 104 compares the timing of the data transmission to the phase of the VCO signal.
- Continuous phase detector 104 is referred to as “continuous,” because it produces phase error 103 that is proportional to the difference between the timing of the data transition and the phase of the VCO signal (as opposed to a quantized or binary output that merely indicates “early versus late” but not by how much).
- Phase error 103 is filtered by loop filter 106 to generate tuning voltage 107 to provide the closed-loop feedback.
- the example data stream has a run length of ten “zeros.” During the run length of symbols or bits, no transition occurs from “zero” to “one.” Since there is no transition during the period, there is no phase information available from the data to correct any phase error in the VCO. Furthermore, data may be communicated in a “run length limited” manner (e.g., for jitter measurements). Specifically, the permissible run length of applied data patterns must be less than some predetermined number. A typical run length limit applied to data for which the jitter is measured is 31 bits.
- phase detectors work by outputting phase information only when there is a transition.
- known phase detectors When there is no transition in the data (at least two consecutive symbols that are the same), known phase detectors output a zero (i.e., meaning there is no detected phase error).
- This characteristic has the effect of making the phase detector gain (e.g., radians/volt), a function of the transition density of the data pattern.
- the phase detector gain is high during the “010101” portion of the example data stream and the phase detector gain is low during the “00000000001” portion of the example data stream.
- Unpredictable phase detector gain has at least two important deleterious effects.
- the PLL bandwidth becomes unpredictable, because the PLL bandwidth is directly proportional to the phase detector gain. This degrades loop performance (e.g., tracking error), which makes the loop more difficult to design.
- the calibration factor is directly proportional to the phase detector gain.
- the accuracy of the jitter measurement is questionable, when the data being measured does not have a predictable transition density.
- a PLL is adapted such that the resulting phase error generated by the PLL is independent of the transition density of a data stream provided to the PLL.
- the data stream may be considered to be a stream of symbols or bits that transition from one state to another according to a random sequence. Symbols or bits of the data stream are communicated in discrete intervals of time (“unit intervals”). Also, the data stream is communicated according to a run length limit that places an upper limit upon the number of consecutive symbols or bits that occur without a transition to another symbol or bit.
- the PLL may be adapted by filtering the phase error from a continuous phase detector of the PLL utilizing a first filter.
- a reference signal that is indicative of whether data transition has just occurred may be filtered by a second filter.
- the first and second filters may be advantageously implemented as low-pass filters that have a bandwidth that approximately equals one half of the reciprocal of: the unit interval multiplied by the maximum run length.
- the output of the first and second filters may be provided to a divider circuit to produce a signal that is indicative of the phase error independent of the data transition density.
- FIG. 1 depicts a clock recovery circuit according to the prior art.
- FIG. 2 depicts a clock recovery circuit according to embodiments in accordance with the invention
- FIG. 3 depicts another clock recovery circuit according to embodiments in accordance with the invention.
- FIG. 4 depicts another clock recovery circuit according to embodiments in accordance with the invention.
- Nyquist's sampling theorem is related to the problem of reconstructing a continuous analog waveform utilizing only discrete samples of that waveform's voltage taken at uniform time intervals.
- an assumption is made that the continuous analog waveform is bandlimited, meaning that there are no frequencies contained in the waveform that exceed an upper bound frequency (which defines the Nyquist bandwidth). Utilizing this assumption, Nyquist was able to prove that the continuous analog waveform can be perfectly reconstructed from these samples, if and only if the sampling rate is at least twice the Nyquist bandwidth. This sampling rate is referred to as the Nyquist rate.
- aliasing requires the sampling rate to be slightly higher than Nyquist's theoretical minimum rate.
- a familiar example is the digital audio compact disc (CD) format.
- Analog audio is typically filtered by a low-pass filter such that the analog audio does not possess a frequency component that is greater than 20 kHz.
- the analog audio is then sampled at a rate of 44,100 samples per second. This sampling rate is slightly ( ⁇ 10%) greater than the Nyquist rate of 40,000 samples/per second.
- Nyquist's sampling theorem assumes a uniform sampling rate. Embodiments in accordance with the invention extend Nyquist's sampling theorem to non-uniform sampling.
- the term “pseudo-rate” shall be used to refer to the minimum sampling rate (as defined by the maximum time between consecutive samples) in a sampling set having a variable rate. It is submitted that perfect reconstruction of a continuous analog waveform is possible from samples taken at a variable rate, if the pseudo-rate is at least as high as the Nyquist rate (which is twice the highest frequency component of the continuous analog waveform).
- a specific example may illustrate the concept of the pseudo-rate.
- a data transmission system with a data rate of 40 gigabits/sec (40 Gb/s) is tested for jitter using a data pattern with a run length limit of 32 (chosen for mathematical simplicity).
- Each bit occupies 25 ps which is referred to as the “unit interval” (UI).
- UI unit interval
- the maximum time between samples of a phase error signal from a phase detector is 32 ⁇ 25 ps or 800 ps.
- a time interval of 800 ps corresponds to a pseudo-rate of 1.25 gigasamples/sec (which is the reciprocal of 800 ⁇ 10 ⁇ 12 sec).
- the pseudo-rate supports a bandwidth of 625 MHz according to the present extension of the Nyquist sampling theorem.
- the bandwidth supported by the pseudo-rate will be referred to as the pseudo-Nyquist bandwidth.
- FIG. 2 depicts system 200 that is adapted according to the pseudo-Nyquist bandwidth according to embodiments in accordance with the invention.
- System 200 comprises conventional clock recovery loop 210 .
- Conventional clock recovery loop 210 is almost the same as conventional clock recovery loop 100 except continuous phase detector 211 is modified.
- Continuous phase detector 211 comprises a first port to output phase error 103 and, additionally, a second port to output reference signal 201 that is indicative of a data transition.
- continuous phase detector 211 produces a pulse of one UI duration each time a data transition occurs on the second port.
- the functionality that produces the pulse during a data transition is implemented integrally with continuous phase detector 211 . However, this functionality may be implemented as a discrete circuit element if desired.
- Reference signal 201 is provided to filter 202 .
- Filter 202 filters reference signal 201 to produce signal 204 which is approximately proportional to the transition density associated with data 101 .
- Filter 202 may be implemented as a low-pass filter that integrates the pulses generated by phase detector 211 .
- filter 202 may be implemented as a low-pass filter that possesses a cut-off frequency that approximately (considering aliasing effects) equals the pseudo-Nyquist bandwidth.
- the pseudo-Nyquist bandwidth is defined by the maximum time between samples which, in turn, may be defined by the run length limit associated with data 101 .
- filter 202 may be advantageously implemented to possess well-behaved time domain characteristics (i.e., low under/overshoot). Suitable filters include Bessel filters and Gaussian filters. Similarly, phase error 203 from continuous phase detector 211 is provided to filter 203 . Filter 203 may be implemented in the same manner as filter 202 .
- the outputs (signal 204 and signal 205 ) from filters 202 and 203 are provided to divider 206 (which may be an analog or digital circuit element).
- Divider 206 divides the filtered phase error signal (signal 205 ) by the filtered reference signal 202 to produce corrected phase error 207 .
- This configuration has an advantage in terms of utilizing a PLL as a phase demodulator to recover and measure jitter.
- Corrected phase error 207 has ajitter sensitivity that is independent of data transition density or run length.
- raw phase error 103 has a sensitivity that is directly proportional to transition density.
- system 200 has been described as generating a VCO signal, the present invention is not so limited. Embodiments in accordance with the invention may be implemented in a system in which the VCO signal is independently available and the phase detector with gain correction is used in an open loop.
- D ma (t) (which corresponds to signal 204 ) be defined as a moving average consisting of the number of transitions occurring in a length of time equal to the pseudo-Nyquist period (the reciprocal of the pseudo-Nyquist rate). Then, it follows from the definition of the pseudo-Nyquist period, that D ma (t) has a minimum value of 1 and a maximum value equal to the run length limit.
- ⁇ ma (t) denote a similar moving average of the phase error, where the moving averages are over the same time interval. Then, the filtered phase error (phase error 203 ) is given by ⁇ ma (t) D ma (t).
- ⁇ ma (t) D ma (t) by D ma (t) gives ⁇ ma (t) which is the desired result (i.e., the phase error independent of transition density).
- System 200 does not strictly function utilizing moving averages, because the filtering may typically be performed using Bessel or Gaussian filters. However, the operational principle remains the same. Additionally, it is noted that embodiments in accordance with the invention may advantageously implement filters 202 and 203 as 3 rd order Bessel filters, because the resulting impulse response is positive for times of interest. This is advantageous, because other filter shapes typically have an impulse response with a significant negative region, from which it follows that the output must approach and cross through zero. Divider 206 will not function properly if its divisor is equal to or approximately equal to zero, because the required output voltage will exceed the dynamic range of divider 206 .
- FIG. 3 depicts system 300 which reduces the dynamic range according to embodiments in accordance with the invention.
- System 300 of FIG. 3 is similar to system 200 except that system 300 includes automatic gain control (AGC) block 305 .
- AGC block 305 is disposed after filters 202 and 203 which provide reference signal 201 and phase error signal 103 .
- Matched multipliers 301 and 302 are inserted after filters 202 and 203 and before divider 206 .
- the first input of multiplier 301 is the filtered reference signal from filter 301 and the first input of multiplier 302 is the filtered reference signal from filter 203 .
- the second input of each multiplier is driven by a servo-loop that uses the output (the multiplied filtered reference signal) from multiplier 302 as an error signal.
- the multiplied filtered reference signal may be advantageously provided to servoamplifier 303 and exponentiator 304 .
- the servo-loop may be linearized thereby making the loop gain independent of the incoming signal levels.
- exponentiator 304 is shown as a separate element, in practice, exponentiator 304 may be combined with each of multipliers 301 and 302 .
- a commonly available 2-quadrant multiplier circuit consists of a differential pair biased by a current mirror. Adding an exponentiation function involves replacing the current mirror with a single transistor thereby resulting in reduced complexity.
- FIG. 3 further depicts the output of multiplier 302 connected to provide feedback to the PLL of system 300 . This stabilizes the loop gain and the loop bandwidth of the PLL (which, otherwise, would be affected by the transition density associated with data 101 ). In another embodiment of the present invention, additional stabilization of the loop gain and loop bandwidth may be achieved by providing corrected phase error signal 207 to loop filter 106 as shown in system 400 of FIG. 4.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
- The present application is related to concurrently filed, co-pending, and commonly assigned U.S. patent application Ser. No. ______, Attorney Docket No. 10021026-1, entitled “SYSTEM AND METHOD FOR DESIGNING AND USING ANALOG CIRCUITS OPERATING IN THE MODULATION DOMAIN;” U.S. patent application Ser. No. ______, Attorney Docket No. 10021025-1, entitled “PHASE LOCKED LOOP DEMODULATOR AND DEMODULATION METHOD USING FEED-FORWARD TRACKING ERROR COMPENSATION;” and U.S. patent application Ser. No. ______, Attorney Docket No. 10021027-1, entitled “SYSTEMS AND METHODS FOR CORRECTING PHASE LOCKED LOOP TRACKING ERROR USING FEED-FORWARD PHASE MODULATION;” the disclosures of which are hereby incorporated herein by reference.
- The present invention is directed to processing a data stream that includes an embedded clock and, more particularly, to operating a phase locked loop (PLL) that exhibits predictable phase demodulation sensitivity in response to variation in symbol transition density.
- Non-return-to-zero (NRZ) signaling refers to a binary encoding scheme in which there is no return to a reference voltage between encoded bits. Instead, the signaling remains at a “high” voltage for consecutive “ones” and remains at a “low” voltage for consecutive “zeros.” In data transmission systems that utilize NRZ signaling, it is necessary to recover the clock based on the timing of the data transitions. In general, the clock associated with a data stream is recovered utilizing a phase locked loop (PLL). By comparing the timing of data transitions in the NRZ data stream to the phase of a voltage controlled oscillator (VCO) of the PLL, the phase error of the VCO may be determined. The VCO signal is adjusted thereto thereby locking the VCO to the embedded clock of the data. Specifically, the phase error may be “servo'd” to zero utilizing closed-loop feedback via the PLL design.
- FIG. 1 depicts
clock recovery loop 100 according to the prior art.Clock recovery loop 100 comprisescontinuous phase detector 104,VCO 105, andloop filter 106.Data 101 to be measured is received bycontinuous phase detector 104. VCO 105 generates a VCO signal (which is provided as recovered clock 102) that is controlled bytuning voltage 107. When a data transition occurs,continuous phase detector 104 compares the timing of the data transmission to the phase of the VCO signal.Continuous phase detector 104 is referred to as “continuous,” because it producesphase error 103 that is proportional to the difference between the timing of the data transition and the phase of the VCO signal (as opposed to a quantized or binary output that merely indicates “early versus late” but not by how much).Phase error 103 is filtered byloop filter 106 to generatetuning voltage 107 to provide the closed-loop feedback. - However, for random data, the transition from “one” to “zero,” or vice versa, is a random event. Thus, there is some uncertainty whether and when a transition will occur. For example, if the data is “01010100000000001,” for the first six bits, there will be a transition at every opportunity, because no two consecutive bits are the same. However, the next ten consecutive bits are all “zero.” A “run length” refers to the number of consecutive bits or symbols that occur without a transition. Accordingly, the example data stream has a run length of ten “zeros.” During the run length of symbols or bits, no transition occurs from “zero” to “one.” Since there is no transition during the period, there is no phase information available from the data to correct any phase error in the VCO. Furthermore, data may be communicated in a “run length limited” manner (e.g., for jitter measurements). Specifically, the permissible run length of applied data patterns must be less than some predetermined number. A typical run length limit applied to data for which the jitter is measured is 31 bits.
- In general, phase detectors work by outputting phase information only when there is a transition. When there is no transition in the data (at least two consecutive symbols that are the same), known phase detectors output a zero (i.e., meaning there is no detected phase error). This characteristic has the effect of making the phase detector gain (e.g., radians/volt), a function of the transition density of the data pattern. Thus, the phase detector gain is high during the “010101” portion of the example data stream and the phase detector gain is low during the “00000000001” portion of the example data stream.
- Unpredictable phase detector gain has at least two important deleterious effects. First, the PLL bandwidth becomes unpredictable, because the PLL bandwidth is directly proportional to the phase detector gain. This degrades loop performance (e.g., tracking error), which makes the loop more difficult to design. Secondly, in jitter measurements, the calibration factor is directly proportional to the phase detector gain. Thus, the accuracy of the jitter measurement is questionable, when the data being measured does not have a predictable transition density. However, it is typically advantageous to utilize a wide variety of data patterns with appreciable variation in transition density in jitter measurements.
- In embodiments in accordance with the invention, a PLL is adapted such that the resulting phase error generated by the PLL is independent of the transition density of a data stream provided to the PLL. Specifically, the data stream may be considered to be a stream of symbols or bits that transition from one state to another according to a random sequence. Symbols or bits of the data stream are communicated in discrete intervals of time (“unit intervals”). Also, the data stream is communicated according to a run length limit that places an upper limit upon the number of consecutive symbols or bits that occur without a transition to another symbol or bit. The PLL may be adapted by filtering the phase error from a continuous phase detector of the PLL utilizing a first filter. A reference signal that is indicative of whether data transition has just occurred may be filtered by a second filter. The first and second filters may be advantageously implemented as low-pass filters that have a bandwidth that approximately equals one half of the reciprocal of: the unit interval multiplied by the maximum run length. The output of the first and second filters may be provided to a divider circuit to produce a signal that is indicative of the phase error independent of the data transition density.
- The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
- For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
- FIG. 1 depicts a clock recovery circuit according to the prior art.
- FIG. 2 depicts a clock recovery circuit according to embodiments in accordance with the invention;
- FIG. 3 depicts another clock recovery circuit according to embodiments in accordance with the invention; and
- FIG. 4 depicts another clock recovery circuit according to embodiments in accordance with the invention.
- Before discussing embodiments in accordance with the invention in greater detail, a discussion of Nyquist's sampling theorem is presented for the convenience of the reader. The Nyquist sampling theorem is related to the problem of reconstructing a continuous analog waveform utilizing only discrete samples of that waveform's voltage taken at uniform time intervals. In Nyquist's sampling theorem, an assumption is made that the continuous analog waveform is bandlimited, meaning that there are no frequencies contained in the waveform that exceed an upper bound frequency (which defines the Nyquist bandwidth). Utilizing this assumption, Nyquist was able to prove that the continuous analog waveform can be perfectly reconstructed from these samples, if and only if the sampling rate is at least twice the Nyquist bandwidth. This sampling rate is referred to as the Nyquist rate. In practice, a phenomenon known as “aliasing” requires the sampling rate to be slightly higher than Nyquist's theoretical minimum rate.
- A familiar example is the digital audio compact disc (CD) format. Analog audio is typically filtered by a low-pass filter such that the analog audio does not possess a frequency component that is greater than 20 kHz. The analog audio is then sampled at a rate of 44,100 samples per second. This sampling rate is slightly (˜10%) greater than the Nyquist rate of 40,000 samples/per second.
- As previously noted, Nyquist's sampling theorem assumes a uniform sampling rate. Embodiments in accordance with the invention extend Nyquist's sampling theorem to non-uniform sampling. For the convenience of further discussion, the term “pseudo-rate” shall be used to refer to the minimum sampling rate (as defined by the maximum time between consecutive samples) in a sampling set having a variable rate. It is submitted that perfect reconstruction of a continuous analog waveform is possible from samples taken at a variable rate, if the pseudo-rate is at least as high as the Nyquist rate (which is twice the highest frequency component of the continuous analog waveform). In a sense, in a variable sampling application that satisfies this criterion, there are “surplus” samples (e.g., samples taken at a rate higher than the Nyquist rate) available to facilitate recovery of the continuous analog waveform. These surplus samples may average out any non-systematic errors made by the sampling functionality.
- A specific example may illustrate the concept of the pseudo-rate. Suppose a data transmission system with a data rate of 40 gigabits/sec (40 Gb/s) is tested for jitter using a data pattern with a run length limit of 32 (chosen for mathematical simplicity). Each bit occupies 25 ps which is referred to as the “unit interval” (UI). Since at least one data transition must occur every 32 symbols, the maximum time between samples of a phase error signal from a phase detector is 32×25 ps or 800 ps. A time interval of 800 ps corresponds to a pseudo-rate of 1.25 gigasamples/sec (which is the reciprocal of 800×10−12 sec). Thus, the pseudo-rate supports a bandwidth of 625 MHz according to the present extension of the Nyquist sampling theorem. The bandwidth supported by the pseudo-rate will be referred to as the pseudo-Nyquist bandwidth.
- FIG. 2 depicts
system 200 that is adapted according to the pseudo-Nyquist bandwidth according to embodiments in accordance with the invention.System 200 comprises conventionalclock recovery loop 210. Conventionalclock recovery loop 210 is almost the same as conventionalclock recovery loop 100 exceptcontinuous phase detector 211 is modified.Continuous phase detector 211 comprises a first port tooutput phase error 103 and, additionally, a second port tooutput reference signal 201 that is indicative of a data transition. In embodiments in accordance with the invention,continuous phase detector 211 produces a pulse of one UI duration each time a data transition occurs on the second port. As shown in FIG. 2, the functionality that produces the pulse during a data transition is implemented integrally withcontinuous phase detector 211. However, this functionality may be implemented as a discrete circuit element if desired. -
Reference signal 201 is provided to filter 202.Filter 202filters reference signal 201 to produce signal 204 which is approximately proportional to the transition density associated withdata 101.Filter 202 may be implemented as a low-pass filter that integrates the pulses generated byphase detector 211. In embodiments in accordance with the invention,filter 202 may be implemented as a low-pass filter that possesses a cut-off frequency that approximately (considering aliasing effects) equals the pseudo-Nyquist bandwidth. As previously noted, the pseudo-Nyquist bandwidth is defined by the maximum time between samples which, in turn, may be defined by the run length limit associated withdata 101. Also, in embodiments in accordance with the invention,filter 202 may be advantageously implemented to possess well-behaved time domain characteristics (i.e., low under/overshoot). Suitable filters include Bessel filters and Gaussian filters. Similarly,phase error 203 fromcontinuous phase detector 211 is provided to filter 203.Filter 203 may be implemented in the same manner asfilter 202. - The outputs (signal 204 and signal 205) from
202 and 203 are provided to divider 206 (which may be an analog or digital circuit element).filters Divider 206 divides the filtered phase error signal (signal 205) by the filteredreference signal 202 to produce correctedphase error 207. This configuration has an advantage in terms of utilizing a PLL as a phase demodulator to recover and measure jitter. Correctedphase error 207 has ajitter sensitivity that is independent of data transition density or run length. In contrast,raw phase error 103 has a sensitivity that is directly proportional to transition density. - Although
system 200 has been described as generating a VCO signal, the present invention is not so limited. Embodiments in accordance with the invention may be implemented in a system in which the VCO signal is independently available and the phase detector with gain correction is used in an open loop. - Also, for the convenience of the reader, a mathematical analysis of
system 200 is provided. Let Dma(t) (which corresponds to signal 204) be defined as a moving average consisting of the number of transitions occurring in a length of time equal to the pseudo-Nyquist period (the reciprocal of the pseudo-Nyquist rate). Then, it follows from the definition of the pseudo-Nyquist period, that Dma(t) has a minimum value of 1 and a maximum value equal to the run length limit. Let Φma(t) denote a similar moving average of the phase error, where the moving averages are over the same time interval. Then, the filtered phase error (phase error 203) is given by Φma(t) Dma(t). Thus, dividing Φma(t) Dma(t) by Dma(t) gives Φma(t) which is the desired result (i.e., the phase error independent of transition density).System 200 does not strictly function utilizing moving averages, because the filtering may typically be performed using Bessel or Gaussian filters. However, the operational principle remains the same. Additionally, it is noted that embodiments in accordance with the invention may advantageously implement 202 and 203 as 3rd order Bessel filters, because the resulting impulse response is positive for times of interest. This is advantageous, because other filter shapes typically have an impulse response with a significant negative region, from which it follows that the output must approach and cross through zero.filters Divider 206 will not function properly if its divisor is equal to or approximately equal to zero, because the required output voltage will exceed the dynamic range ofdivider 206. - It shall be appreciated that the implementation of a high speed divider (such as an analog divider) can be challenging, especially when the dynamic range of the divider is increased for a particular application. If an ideal moving average were utilized, the dynamic range would be equal to the run length limit. The dynamic range exhibited by an implementation that uses Bessel filters is somewhat less than the dynamic range of an ideal moving average, although the dynamic range is still relatively substantial. The difficulty associated with implementation of a divider may be mitigated if the dynamic range were reduced. FIG. 3 depicts
system 300 which reduces the dynamic range according to embodiments in accordance with the invention. -
System 300 of FIG. 3 is similar tosystem 200 except thatsystem 300 includes automatic gain control (AGC)block 305.AGC block 305 is disposed after 202 and 203 which providefilters reference signal 201 andphase error signal 103. Matched 301 and 302 are inserted aftermultipliers 202 and 203 and beforefilters divider 206. The first input ofmultiplier 301 is the filtered reference signal fromfilter 301 and the first input ofmultiplier 302 is the filtered reference signal fromfilter 203. The second input of each multiplier is driven by a servo-loop that uses the output (the multiplied filtered reference signal) frommultiplier 302 as an error signal. The multiplied filtered reference signal may be advantageously provided toservoamplifier 303 andexponentiator 304. By includingexponential circuit element 304, the servo-loop may be linearized thereby making the loop gain independent of the incoming signal levels. Althoughexponentiator 304 is shown as a separate element, in practice,exponentiator 304 may be combined with each of 301 and 302. A commonly available 2-quadrant multiplier circuit consists of a differential pair biased by a current mirror. Adding an exponentiation function involves replacing the current mirror with a single transistor thereby resulting in reduced complexity.multipliers - At first glance, it may appear that the modification shown in FIG. 3 has merely traded off the difficulty in implementing a divider for the equally difficult task of implementing the multipliers. However, there is actually a net decrease in difficulty. The total dynamic range may be partitioned between the
AGC block 305 anddivider 206. Accordingly, neither of these elements are required to handle the entire dynamic range. Additionally, the implementation of 301 and 302 need not causemultipliers 301 and 302 to be especially accurate. Servo-loop errors are common mode, and, hence do not affect the ratio of the multiplied signals. Specifically, ifmultipliers 301 and 302 are matched, then any multiplication errors drop out after the operation ofmultipliers divider 206. Furthermore, it is relatively straight-forward to obtain matching between 301 and 302 by monolithically integrating these elements on a single integrated circuit.multipliers - FIG. 3 further depicts the output of
multiplier 302 connected to provide feedback to the PLL ofsystem 300. This stabilizes the loop gain and the loop bandwidth of the PLL (which, otherwise, would be affected by the transition density associated with data 101). In another embodiment of the present invention, additional stabilization of the loop gain and loop bandwidth may be achieved by providing correctedphase error signal 207 toloop filter 106 as shown insystem 400 of FIG. 4. - Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Claims (27)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/328,298 US7173995B2 (en) | 2002-12-23 | 2002-12-23 | Systems and methods for correcting gain error due to transition density variation in clock recovery systems |
| DE60314085T DE60314085T2 (en) | 2002-12-23 | 2003-08-19 | System and method for eliminating the gain error of a phase detector in the clock recovery caused by a data-dependent varying number of edge changes |
| EP03018877A EP1434350B1 (en) | 2002-12-23 | 2003-08-19 | System and method for correcting the gain error of a phase detector due to transition density variation in clock recovery systems |
| CNB2003101017482A CN100421355C (en) | 2002-12-23 | 2003-10-22 | Correcting system and method for gain error generated by jump density variation |
| JP2003416490A JP2004208298A (en) | 2002-12-23 | 2003-12-15 | System and method for correcting gain errors due to transition density changes in a clock recovery system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/328,298 US7173995B2 (en) | 2002-12-23 | 2002-12-23 | Systems and methods for correcting gain error due to transition density variation in clock recovery systems |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20040120441A1 true US20040120441A1 (en) | 2004-06-24 |
| US7173995B2 US7173995B2 (en) | 2007-02-06 |
Family
ID=32469011
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/328,298 Expired - Fee Related US7173995B2 (en) | 2002-12-23 | 2002-12-23 | Systems and methods for correcting gain error due to transition density variation in clock recovery systems |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US7173995B2 (en) |
| EP (1) | EP1434350B1 (en) |
| JP (1) | JP2004208298A (en) |
| CN (1) | CN100421355C (en) |
| DE (1) | DE60314085T2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050111589A1 (en) * | 2003-04-30 | 2005-05-26 | Stmicroelectronics S.R.L. | Method and circuit for sensing the transition density of a signal and variable gain phase detecting method and device |
| US20080049884A1 (en) * | 2006-08-24 | 2008-02-28 | Samsung Electronics Co., Ltd. | Linear phase detector and clock/data recovery circuit thereof |
| US20140085438A1 (en) * | 2012-09-27 | 2014-03-27 | Seiko Epson Corporation | Stereoscopic spectacles control device, display device, and stereoscopic spectacles control method |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7376524B2 (en) * | 2004-04-16 | 2008-05-20 | Tektronix, Inc. | Transition-density based time measurement method |
| US8054924B2 (en) * | 2005-05-17 | 2011-11-08 | General Motors Llc | Data transmission method with phase shift error correction |
| US8194526B2 (en) * | 2005-10-24 | 2012-06-05 | General Motors Llc | Method for data communication via a voice channel of a wireless communication network |
| US8194779B2 (en) * | 2005-10-24 | 2012-06-05 | General Motors Llc | Method for data communication via a voice channel of a wireless communication network |
| US8259840B2 (en) * | 2005-10-24 | 2012-09-04 | General Motors Llc | Data communication via a voice channel of a wireless communication network using discontinuities |
| US20070190950A1 (en) * | 2006-02-15 | 2007-08-16 | General Motors Corporation | Method of configuring voice and data communication over a voice channel |
| US7864911B2 (en) * | 2006-09-13 | 2011-01-04 | Sony Corporation | System and method for implementing a phase detector to support a data transmission procedure |
| TWI346460B (en) * | 2006-10-31 | 2011-08-01 | Realtek Semiconductor Corp | A clock and data recovery circuit and a method for adjusting loop bandwidth used thereby |
| US9048784B2 (en) * | 2007-04-03 | 2015-06-02 | General Motors Llc | Method for data communication via a voice channel of a wireless communication network using continuous signal modulation |
| US7912149B2 (en) * | 2007-05-03 | 2011-03-22 | General Motors Llc | Synchronization and segment type detection method for data transmission via an audio communication system |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4787097A (en) * | 1987-02-11 | 1988-11-22 | International Business Machines Corporation | NRZ phase-locked loop circuit with associated monitor and recovery circuitry |
| US5430772A (en) * | 1992-03-18 | 1995-07-04 | Electronics And Telecommunications Research Institute | Bit synchronizer for NRZ data |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5315270A (en) | 1992-08-28 | 1994-05-24 | At&T Bell Laboratories | Phase-locked loop system with compensation for data-transition-dependent variations in loop gain |
| DE19704299C2 (en) | 1997-02-06 | 1999-04-01 | Deutsche Telekom Ag | Device for obtaining a clock signal from a data signal and bit rate detection device for determining a bit rate |
-
2002
- 2002-12-23 US US10/328,298 patent/US7173995B2/en not_active Expired - Fee Related
-
2003
- 2003-08-19 EP EP03018877A patent/EP1434350B1/en not_active Expired - Lifetime
- 2003-08-19 DE DE60314085T patent/DE60314085T2/en not_active Expired - Lifetime
- 2003-10-22 CN CNB2003101017482A patent/CN100421355C/en not_active Expired - Fee Related
- 2003-12-15 JP JP2003416490A patent/JP2004208298A/en not_active Withdrawn
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4787097A (en) * | 1987-02-11 | 1988-11-22 | International Business Machines Corporation | NRZ phase-locked loop circuit with associated monitor and recovery circuitry |
| US5430772A (en) * | 1992-03-18 | 1995-07-04 | Electronics And Telecommunications Research Institute | Bit synchronizer for NRZ data |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050111589A1 (en) * | 2003-04-30 | 2005-05-26 | Stmicroelectronics S.R.L. | Method and circuit for sensing the transition density of a signal and variable gain phase detecting method and device |
| US20080049884A1 (en) * | 2006-08-24 | 2008-02-28 | Samsung Electronics Co., Ltd. | Linear phase detector and clock/data recovery circuit thereof |
| US7974375B2 (en) | 2006-08-24 | 2011-07-05 | Samsung Electronics Co., Ltd. | Linear phase detector and clock/data recovery circuit thereof |
| US20110228887A1 (en) * | 2006-08-24 | 2011-09-22 | Samsung Electronics Co., Ltd. | Linear phase detector and clock/data recovery circuit thereof |
| US8442178B2 (en) | 2006-08-24 | 2013-05-14 | Samsung Electronics Co., Ltd. | Linear phase detector and clock/data recovery circuit thereof |
| US20140085438A1 (en) * | 2012-09-27 | 2014-03-27 | Seiko Epson Corporation | Stereoscopic spectacles control device, display device, and stereoscopic spectacles control method |
| US9456206B2 (en) * | 2012-09-27 | 2016-09-27 | Seiko Epson Corporation | Stereoscopic spectacles control device, display device, and stereoscopic spectacles control method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1510838A (en) | 2004-07-07 |
| EP1434350B1 (en) | 2007-05-30 |
| US7173995B2 (en) | 2007-02-06 |
| DE60314085D1 (en) | 2007-07-12 |
| CN100421355C (en) | 2008-09-24 |
| DE60314085T2 (en) | 2007-09-06 |
| JP2004208298A (en) | 2004-07-22 |
| EP1434350A1 (en) | 2004-06-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7609798B2 (en) | Calibrating a phase detector and analog-to-digital converter offset and gain | |
| CA2130871C (en) | Method and apparatus for a phase-locked loop circuit with holdover mode | |
| US7173995B2 (en) | Systems and methods for correcting gain error due to transition density variation in clock recovery systems | |
| US7135905B2 (en) | High speed clock and data recovery system | |
| US6856183B2 (en) | Scheme to improve performance of timing recovery systems for read channels in a disk drive | |
| JP2608609B2 (en) | Phase locked loop circuit | |
| JP3414052B2 (en) | Phase modulation signal demodulation method | |
| US6831491B2 (en) | Systems and methods for correcting phase locked loop tracking error using feed-forward phase modulation | |
| EP3577847B1 (en) | Clock data recovery with non-uniform clock tracking | |
| US7173462B1 (en) | Second order delay-locked loop for data recovery | |
| FR2498032A1 (en) | BIT SYNCHRONIZER FOR DIGITAL SIGNALS | |
| US10291389B1 (en) | Two-point modulator with matching gain calibration | |
| US6404363B1 (en) | Circuit for recovering digital clock signal and method thereof | |
| US8760201B1 (en) | Digitally programmed capacitance multiplication with one charge pump | |
| US6608875B1 (en) | Free-running-frequency adjustment circuit for a clock recovery system | |
| US6359949B1 (en) | Demodulation circuit, a decode circuit and a digital PLL circuit for an optical disc apparatus | |
| EP1005166B1 (en) | Method for detecting frequency of digital phase locked loop | |
| US11650618B2 (en) | Referenceless frequency acquisition | |
| US5969894A (en) | Method for detecting data encoded as state transitions in a read signal | |
| US7109806B2 (en) | Device and method for detecting phase difference and PLL using the same | |
| US20080218255A1 (en) | Filter Characteristic Adjusting Apparatus and Filter Characteristic Adjusting Method | |
| US20060203947A1 (en) | Method and apparatus for detecting linear phase error | |
| CN108055036A (en) | The loop bandwidth adjusting method and device of clock data recovery circuit | |
| US7643599B2 (en) | Method and apparatus for detecting linear phase error | |
| US7598816B2 (en) | Phase lock loop circuit with delaying phase frequency comparson output signals |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: AGILENT TECHNOLOGIES, INC., COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KARLQUIST, RICHARD R.;REEL/FRAME:013535/0650 Effective date: 20021220 |
|
| AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP PTE. LTD.,SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AGILENT TECHNOLOGIES, INC.;REEL/FRAME:017206/0666 Effective date: 20051201 Owner name: AVAGO TECHNOLOGIES GENERAL IP PTE. LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AGILENT TECHNOLOGIES, INC.;REEL/FRAME:017206/0666 Effective date: 20051201 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150206 |
|
| AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED AT REEL: 017206 FRAME: 0666. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:AGILENT TECHNOLOGIES, INC.;REEL/FRAME:038632/0662 Effective date: 20051201 Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED AT REEL: 017206 FRAME: 0666. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:AGILENT TECHNOLOGIES, INC.;REEL/FRAME:038632/0662 Effective date: 20051201 |