[go: up one dir, main page]

US20040101681A1 - Filler potting cable termination system and process - Google Patents

Filler potting cable termination system and process Download PDF

Info

Publication number
US20040101681A1
US20040101681A1 US10/703,948 US70394803A US2004101681A1 US 20040101681 A1 US20040101681 A1 US 20040101681A1 US 70394803 A US70394803 A US 70394803A US 2004101681 A1 US2004101681 A1 US 2004101681A1
Authority
US
United States
Prior art keywords
strands
potting compound
length
anchor
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/703,948
Inventor
Richard Campbell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bright Technologies LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/703,948 priority Critical patent/US20040101681A1/en
Publication of US20040101681A1 publication Critical patent/US20040101681A1/en
Assigned to BRIGHT TECHNOLOGIES, LLC reassignment BRIGHT TECHNOLOGIES, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KWOLEK, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/84Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined
    • B29C70/845Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined by moulding material on a relative small portion of the preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/707Cables, i.e. two or more filaments combined together, e.g. ropes, cords, strings, yarns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber

Definitions

  • This invention relates to the field of ropes and cables. More specifically, the invention comprises a system for producing a potted cable termination having varying mechanical properties over the length of the termination.
  • anchor refers to the mechanical device which is affixed to the cable.
  • terminal refers to the anchor along with the attachment means and the portion of the cable subject to the attachment means. If, as an example, a short length of cable is glued inside an interior passage through an anchor, then the term “termination” would refer to the anchor, the short length of cable, and the solidified adhesive.
  • Another method is to place the anchor on the cable and slide it a short distance down the cable's length The strands on the end of the cable are then “painted” with the liquid potting compound. The anchor is then pulled around the wetted strands, roughly molding them into the shape of the internal passage through the fitting.
  • the present invention comprises a new type of process for creating a termination on cables and ropes, as well as a product made by this process.
  • the process can create a termination having a heterogenous composition. It has been found that the addition of certain solids to conventional liquid potting compounds can enhance the performance of terminations made using these compounds.
  • a new potting process is employed, whereby the strands are wetted with liquid potting compound (containing the solids) before the anchor is placed over them. The anchor is then moved into place in a controlled motion.
  • the geometry of the internal passage through the anchor (which contains the wetted strands) is shaped to take advantage of this controlled motion. The geometry causes the liquid potting compound to flow at one rate while the solids suspended therein flow at a different rate, resulting in a potted termination with a heterogeneous composition.
  • FIG. 1 is an isometric section view, showing a cable termination created using the novel potting compounds and process.
  • FIG. 2 is an isometric view, showing the first step in the process.
  • FIG. 3 is an isometric view, showing the second step in the process.
  • FIG. 3B is an isometric view, showing the potting compound being sprayed onto the exposed strands.
  • FIG. 4 is a section view, showing the anchor being moved into position.
  • FIG. 5 is a section view, showing the anchor being moved into position.
  • FIG. 6 is an isometric view, showing the exposed strands being dipped into a vat of potting compound.
  • FIG. 7 is an isometric view, showing the application of potting compound using a mold.
  • Potting compounds have been used to create potted terminations in metallic and non-metallic cables for many years. Typically these are polyester blends, some form of epoxy, thermoplastics, or molten metal. A wide variety of mechanical properties are available using such potting compounds. They are invariably added to the termination while in liquid form. They then harden in situ.
  • the present invention contemplates the addition of solid particles to the liquid potting compound.
  • the use of these solids can add strength and toughness to a potted termination. It can also enhance fatigue resistance with respect to cyclic tensile and flexural loads.
  • a termination on the end of a cable has a first end next to the freely-flexing portion of the cable itself, and a second end opposite this first end. It may be desirable to increase the elasticity of the potting compound near the first end, yet maintain a very stiff and rigid composition near the second end.
  • the present invention can create such a variance.
  • the selection of the particular solid material can significantly change the mechanical properties of the termination as a whole.
  • a soft material such as solid rubber particles can be added.
  • a hard material such as ceramic can be added.
  • Other materials, such as aluminum, can provide a mix of mechanical properties. The list of such materials is voluminous, and would include plastics, rubber, glass, carbon, ceramics, aluminum, and ferromagnetic materials.
  • a termination is typically made by pulling an anchor over exposed and unwetted strands (whether metal strands or strands made of other materials).
  • the liquid potting compound is then poured into the open end of the anchor.
  • the liquid potting compound must have a viscosity that is low enough to allow it to flow down through the unwetted strands and completely wet the length of strands lying within the anchor.
  • a potting liquid containing solid particles may not behave in the same fashion.
  • FIG. 1 shows a desired result in the creation of a termination using suspended solid particles in the potting compound.
  • Anchor 12 has expanding passage 18 through its middle, having a smaller diameter proximate the freely flexing portion of the cable and a large diameter proximate the opposite end.
  • the profile of this passage can assume many shapes. For this example, a simple linear taper is used.
  • Potting compound 16 fills expanding passage 18 and bonds the cable strands to anchor 12 (Those skilled in the art will know that the compound may not actually adhere to the walls of expanding passage 18 . In some cases, the tapered shape simply mechanically locks the solidified potting compound and strands within the passage to the anchor whenever the cable is placed in tension). Below anchor 12 , unwetted strands 14 within cable 10 are free to flex according to their own mechanical properties and the construction of the cable itself. A jacket 24 may or may not be included in cable 10 .
  • FIG. 1 shows the desired concentration of filler particles as dense filler region 20 .
  • the reader will observe that the concentration of particles gradually diminishes toward the open end of anchor 12 .
  • the upper region is denoted as sparse filler region 22 .
  • FIG. 2 shows the first step in this new approach.
  • Anchor 12 has been installed on cable 10 while exposed strands 26 are still in the unwetted state (Note that jacket 24 may or may not be present, depending on the type of cable to be terminated. If a jacket is present, it will have to be stripped away over a short length to reveal exposed strands 26 ).
  • the exposed strands are typically then splayed apart to form a conical shape.
  • the liquid potting compound with suspended filler particles is applied to the exposed strands.
  • This step can be accomplished through a variety of known techniques—such as “painting on” the compound, spraying on the compound, inverting the assembly and dipping the exposed strands into a vat of the compound, placing the exposed strands in a cavity mold and shooting the compound in under pressure, etc.
  • FIG. 3 shows the potting compound painted onto and into the splayed strands using a brush or similar implement.
  • FIG. 3B shows the potting compound, with included solids, being sprayed onto the strands (generally after a suitable solvent has been used to dilute the compound).
  • FIG. 6 shows the anchor and cable assembly inverted prior to dipping the exposed strands into a vat of liquid potting compound.
  • FIG. 7 shows the use of a cavity mold. Two mold halves 28 are split and the cable and exposed strands are placed into the cavity shown. The mold halves are then clamped back together prior to shooting the liquid potting compound in through injection port 30 .
  • FIG. 3 shows the result. Potting compound 16 , including the suspended solid particles, has wetted the exposed strands. The dispersion of solid particles within the mixture is, at this point, approximately uniform.
  • Anchor 12 is then moved upward toward its desired final position.
  • FIG. 4 shows anchor 12 being moved upward. Expanding passage 18 has surrounded the strands and potting compound 16 . Potting compound 16 is squeezed upward, flowing over and through the strands.
  • the upper portion of the wall of the expanding passage (“upper” being understood with respect to the view as shown) engage the splayed strands and slowly squeezes them together.
  • Potting compound 16 's liquid component is capable of flowing in and around the small strands comprising cable 10 .
  • the suspended particles are not so able to flow freely, however. Many of the suspended particles will lodge between the strands, especially since the wall of the expanding passage is squeezing the strands together at a position which is above most of the suspended particles. Their upward movement is therefore impeded.
  • FIG. 5 shows the state of dispersion when anchor 12 has been moved further upward.
  • Anchor 12 eventually comes to rest at the position shown in FIG. 1.
  • Excess potting compound 16 is extruded out the open top of anchor 12 , where it may be removed before hardening. Most of the solid particles, however, remain within expanding passage 18 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Ropes Or Cables (AREA)

Abstract

A new type of process for creating a termination on cables and ropes, as well as a product made by this process. The process can create a termination having a heterogenous composition. It has been found that the addition of certain solids to conventional liquid potting compounds can enhance the performance of terminations made using these compounds. In order to create a desired dispersion of the solids within the potted termination, a new potting process is employed, whereby the strands are wetted with liquid potting compound (containing the solids) before the anchor is placed over them. The anchor is then moved into place in a controlled motion. The geometry of the internal passage through the anchor (which contains the wetted strands) is shaped to take advantage of this controlled motion. The geometry causes the liquid potting compound to flow at one rate while the solids suspended therein flow at a different rate, resulting in a potted termination with a heterogeneous composition.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • Pursuant to the provisions of 37 CFR §1.53(c), this application claims the benefit of an earlier-filed provisional application. The provisional application was assigned Ser. No. 60/428,109. It was filed on Nov. 21, 2002.[0001]
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable. [0002]
  • MICROFICHE APPENDIX
  • Not Applicable [0003]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0004]
  • This invention relates to the field of ropes and cables. More specifically, the invention comprises a system for producing a potted cable termination having varying mechanical properties over the length of the termination. [0005]
  • 2. Description of the Related Art [0006]
  • Devices for mounting an anchor on the end of a wire, rope, or cable are disclosed in detail in copending U.S. application Ser. No. 60/404,973 to Campbell, which document is incorporated herein by reference. Generally, the strands proximate the end of a cable are wetted with a potting compound to affix them to an anchor. The term “potting” refers to applying a liquid “potting compound” to the cables strands in order to lock them to something else. The potting compound turns from a liquid to a solid after it has been applied. [0007]
  • The term “anchor” refers to the mechanical device which is affixed to the cable. The term “termination” refers to the anchor along with the attachment means and the portion of the cable subject to the attachment means. If, as an example, a short length of cable is glued inside an interior passage through an anchor, then the term “termination” would refer to the anchor, the short length of cable, and the solidified adhesive. [0008]
  • The most common method for potting an anchor having an internal passage is to slip the anchor down the cable, splay the strands on the end of the cable, then pull the anchor over the splayed strands so that they lie tightly within the anchor's internal passage (a sort of mold). The potting compound—in liquid form—is then poured into the open end of the fitting. It then flows in and around the strands, wetting them and locking them to the anchor. [0009]
  • Another method is to place the anchor on the cable and slide it a short distance down the cable's length The strands on the end of the cable are then “painted” with the liquid potting compound. The anchor is then pulled around the wetted strands, roughly molding them into the shape of the internal passage through the fitting. [0010]
  • BRIEF SUMMARY OF THE PRESENT INVENTION
  • The present invention comprises a new type of process for creating a termination on cables and ropes, as well as a product made by this process. The process can create a termination having a heterogenous composition. It has been found that the addition of certain solids to conventional liquid potting compounds can enhance the performance of terminations made using these compounds. In order to create a desired dispersion of the solids within the potted termination, a new potting process is employed, whereby the strands are wetted with liquid potting compound (containing the solids) before the anchor is placed over them. The anchor is then moved into place in a controlled motion. The geometry of the internal passage through the anchor (which contains the wetted strands) is shaped to take advantage of this controlled motion. The geometry causes the liquid potting compound to flow at one rate while the solids suspended therein flow at a different rate, resulting in a potted termination with a heterogeneous composition.[0011]
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 is an isometric section view, showing a cable termination created using the novel potting compounds and process. [0012]
  • FIG. 2 is an isometric view, showing the first step in the process. [0013]
  • FIG. 3 is an isometric view, showing the second step in the process. [0014]
  • FIG. 3B is an isometric view, showing the potting compound being sprayed onto the exposed strands. [0015]
  • FIG. 4 is a section view, showing the anchor being moved into position. [0016]
  • FIG. 5 is a section view, showing the anchor being moved into position. [0017]
  • FIG. 6 is an isometric view, showing the exposed strands being dipped into a vat of potting compound. [0018]
  • FIG. 7 is an isometric view, showing the application of potting compound using a mold.[0019]
  • REFERENCE NUMERALS IN THE DRAWINGS
  • [0020] 10 cable12 anchor
  • [0021] 14 unwetted strands16 potting compound
  • [0022] 18 expanding passage20 dense filler region
  • [0023] 22 sparse filler region24 jacket
  • [0024] 26 exposed strands28 mold
  • [0025] 30 injection port32 spray nozzle
  • DESCRIPTION OF THE INVENTION
  • Potting compounds have been used to create potted terminations in metallic and non-metallic cables for many years. Typically these are polyester blends, some form of epoxy, thermoplastics, or molten metal. A wide variety of mechanical properties are available using such potting compounds. They are invariably added to the termination while in liquid form. They then harden in situ. [0026]
  • The present invention contemplates the addition of solid particles to the liquid potting compound. The use of these solids can add strength and toughness to a potted termination. It can also enhance fatigue resistance with respect to cyclic tensile and flexural loads. [0027]
  • There are advantages to varying the properties of the solidified potting compound over the length of a termination. A termination on the end of a cable has a first end next to the freely-flexing portion of the cable itself, and a second end opposite this first end. It may be desirable to increase the elasticity of the potting compound near the first end, yet maintain a very stiff and rigid composition near the second end. The present invention can create such a variance. [0028]
  • The selection of the particular solid material can significantly change the mechanical properties of the termination as a whole. As a first example, where one set of mechanical properties is desired, a soft material such as solid rubber particles can be added. As a second example, where a second set of mechanical properties is desired a hard material such as ceramic can be added. Other materials, such as aluminum, can provide a mix of mechanical properties. The list of such materials is voluminous, and would include plastics, rubber, glass, carbon, ceramics, aluminum, and ferromagnetic materials. [0029]
  • The addition of the solid particles can cause problems with the traditional methods of forming a potted termination. As discussed previously, a termination is typically made by pulling an anchor over exposed and unwetted strands (whether metal strands or strands made of other materials). The liquid potting compound is then poured into the open end of the anchor. The liquid potting compound must have a viscosity that is low enough to allow it to flow down through the unwetted strands and completely wet the length of strands lying within the anchor. A potting liquid containing solid particles may not behave in the same fashion. [0030]
  • FIG. 1 shows a desired result in the creation of a termination using suspended solid particles in the potting compound. [0031] Anchor 12 has expanding passage 18 through its middle, having a smaller diameter proximate the freely flexing portion of the cable and a large diameter proximate the opposite end. The profile of this passage can assume many shapes. For this example, a simple linear taper is used.
  • [0032] Potting compound 16 fills expanding passage 18 and bonds the cable strands to anchor 12 (Those skilled in the art will know that the compound may not actually adhere to the walls of expanding passage 18. In some cases, the tapered shape simply mechanically locks the solidified potting compound and strands within the passage to the anchor whenever the cable is placed in tension). Below anchor 12, unwetted strands 14 within cable 10 are free to flex according to their own mechanical properties and the construction of the cable itself. A jacket 24 may or may not be included in cable 10.
  • The transition from the relatively freely flexing region of [0033] unwetted strands 14 to the rigidly locked strands within anchor 12 is critical to the ultimate strength, toughness, fatigue resistance, and other properties of the termination. FIG. 1 shows the desired concentration of filler particles as dense filler region 20. The reader will observe that the concentration of particles gradually diminishes toward the open end of anchor 12. The upper region is denoted as sparse filler region 22.
  • A new manufacturing method is needed to produce the result shown in FIG. 1. FIG. 2 shows the first step in this new approach. [0034] Anchor 12 has been installed on cable 10 while exposed strands 26 are still in the unwetted state (Note that jacket 24 may or may not be present, depending on the type of cable to be terminated. If a jacket is present, it will have to be stripped away over a short length to reveal exposed strands 26).
  • The exposed strands are typically then splayed apart to form a conical shape. When in this state, the liquid potting compound with suspended filler particles is applied to the exposed strands. This step can be accomplished through a variety of known techniques—such as “painting on” the compound, spraying on the compound, inverting the assembly and dipping the exposed strands into a vat of the compound, placing the exposed strands in a cavity mold and shooting the compound in under pressure, etc. [0035]
  • FIG. 3 shows the potting compound painted onto and into the splayed strands using a brush or similar implement. FIG. 3B shows the potting compound, with included solids, being sprayed onto the strands (generally after a suitable solvent has been used to dilute the compound). FIG. 6 shows the anchor and cable assembly inverted prior to dipping the exposed strands into a vat of liquid potting compound. FIG. 7 shows the use of a cavity mold. Two [0036] mold halves 28 are split and the cable and exposed strands are placed into the cavity shown. The mold halves are then clamped back together prior to shooting the liquid potting compound in through injection port 30.
  • However the potting compound is applied, FIG. 3 shows the result. Potting [0037] compound 16, including the suspended solid particles, has wetted the exposed strands. The dispersion of solid particles within the mixture is, at this point, approximately uniform.
  • [0038] Anchor 12 is then moved upward toward its desired final position. FIG. 4 shows anchor 12 being moved upward. Expanding passage 18 has surrounded the strands and potting compound 16. Potting compound 16 is squeezed upward, flowing over and through the strands.
  • As the anchor is moved upward, the upper portion of the wall of the expanding passage (“upper” being understood with respect to the view as shown) engage the splayed strands and slowly squeezes them together. Potting [0039] compound 16's liquid component is capable of flowing in and around the small strands comprising cable 10. The suspended particles are not so able to flow freely, however. Many of the suspended particles will lodge between the strands, especially since the wall of the expanding passage is squeezing the strands together at a position which is above most of the suspended particles. Their upward movement is therefore impeded.
  • The gaps between the strands—where many of the suspended particles reside—continue to shrink as [0040] anchor 12 is moved upward. The result is that the rate of upward flow of the suspended particles is slower than the rate of upward flow for the liquid. In FIG. 4, the reader will observe that this difference in the rates of flow has caused a change in the concentration of suspended particles within the mixture. The density of suspended particles tapers from the bottom of the mixture to the top of the mixture. The dispersion can be altered via changing the shape of expanded passage 18, the viscosity of the potting compound, the size, finish, or shape of the particles, and the size, pattern, and finish of the strands within the cable.
  • This phenomenon continues in FIG. 5, showing the state of dispersion when [0041] anchor 12 has been moved further upward. Anchor 12 eventually comes to rest at the position shown in FIG. 1. Excess potting compound 16 is extruded out the open top of anchor 12, where it may be removed before hardening. Most of the solid particles, however, remain within expanding passage 18.
  • Those skilled in the art will know that the order of some of the steps discussed can be varied without affecting the process. As an example, the description just presented contemplated slipping the anchor down the cable, then splaying the strands. If a cable has already been cut to length, the anchor can actually be introduced from the opposite end. In such a case, the strands could be splayed apart first, with the anchor then being slid down the cable from the opposite end. The strands could even be splayed apart and infused with resin before the anchor is ever added to the cable. [0042]
  • Although the preceding description contains significant detail, it should not be construed as limiting the scope of the invention but rather as providing illustrations of the preferred embodiments of the invention. [0043]

Claims (10)

Having described my invention, I claim:
1. A method for affixing an anchor to a cable using a liquid potting compound containing solid particles, so that a heterogenous dispersion of said solid particles within said potting compound results, comprising:
a. providing an anchor, including:
i. a first end;
ii. a second end;
iii. an expanding passage extending from said first end to said second end, wherein said expanding passage is larger proximate said second end than said first end;
b. placing said anchor on said cable so that said first end of said anchor faces away from said end of said cable, and said second end of said anchor faces toward said end of said cable, while being distal to said end of said cable.
c. providing a liquid potting compound containing solid particles;
d. splaying a length of strands proximate said end of said cable;
e. using said length of strands with said potting compound; and
f. moving said anchor along said cable toward said end of said cable, so that said expanding passage squeezes said splayed length of strands together, thereby forcing said liquid potting compound toward said second end of said expanding passage while trapping said solid particles within said strands.
2. A method as recited in claim 1, wherein said infusing said length of strands with said liquid potting compound is accomplished by dipping said length of strands into said liquid potting compound.
3. A method as recited in claim 1, wherein said infusing said length of strands with said liquid potting compound is accomplished by placing said length of strands into a mold and filling said mold with said liquid potting compound.
4. A method as recited in claim 1, wherein said infusing said length of strands with said liquid potting compound is accomplished by painting said liquid potting compound onto said length of strands.
5. A method as recited in claim 1, wherein said infusing said length of strands with said liquid potting compound is accomplished by spraying said liquid potting compound onto said length of strands.
6. An article of manufacture prepared by a process comprising:
a. providing an anchor, including,
i. a first end;
ii. a second end;
iii. an expanding passage extending from said first end to said second end, wherein said expanding passage is larger proximate said second end than said first end;
b. placing said anchor on said cable so that said first end of said anchor faces away from said end of said cable, and said second end of said anchor faces toward said end of said cable, while being distal to said end of said cable.
c. providing a liquid potting compound containing solid particles;
d. splaying a length of strands proximate said end of said cable;
e. infusing said length of strands with said potting compound; and
f. moving said anchor along said cable toward said end of said cable, so that said expanding passage squeezes said splayed length of strands together, thereby forcing said liquid potting compound toward said second end ofsaid expanding passage while trapping said solid particles within said strands.
7. An article of manufacture as recited in claim 6, wherein said step of infusing said length of strands with said liquid potting compound is accomplished by dipping said length of strands into said liquid potting compound.
8. An article of manufacture as recited in claim 6, wherein said step of infusing said length of strands with said liquid potting compound is accomplished by placing said length of strands into a mold and filling said mold with said liquid potting compound.
9. An article of manufacture as recited in claim 6, wherein said step of infusing said length of strands with said liquid potting compound is accomplished by painting said liquid potting compound onto said length of strands.
10. An article of manufacture as recited in claim 6, wherein said step of infusing said length of strands with said liquid potting compound is accomplished by spraying said liquid potting compound onto said length of strands.
US10/703,948 2002-11-21 2003-11-07 Filler potting cable termination system and process Abandoned US20040101681A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/703,948 US20040101681A1 (en) 2002-11-21 2003-11-07 Filler potting cable termination system and process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42810902P 2002-11-21 2002-11-21
US10/703,948 US20040101681A1 (en) 2002-11-21 2003-11-07 Filler potting cable termination system and process

Publications (1)

Publication Number Publication Date
US20040101681A1 true US20040101681A1 (en) 2004-05-27

Family

ID=32329212

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/703,948 Abandoned US20040101681A1 (en) 2002-11-21 2003-11-07 Filler potting cable termination system and process

Country Status (1)

Country Link
US (1) US20040101681A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090178244A1 (en) * 2004-09-21 2009-07-16 Campbell Richard V Flex accommodating cable terminations
WO2016133646A1 (en) * 2015-02-02 2016-08-25 Campbell Richard V Controlled translation method of affixing a termination to a tensile member
US9705302B1 (en) * 2015-12-28 2017-07-11 X Development Llc Combined electrical and mechanical potted termination for a center strength member cable
US20190346017A1 (en) * 2018-05-10 2019-11-14 Richard V. Campbell Potting Neck Enhancement
WO2020076740A1 (en) * 2018-10-08 2020-04-16 Campbell Richard V Controlled translation method of affixing a termination to a multi-stranded tensile member
EP3516262A4 (en) * 2016-09-23 2020-05-20 Richard V. Campbell INVERTED INJECTION PROCESS FOR ATTACHING A FINAL TO A TOWING ELEMENT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226805A (en) * 1964-04-16 1966-01-04 Columbia Products Co Method of making a strain insulator
US3570074A (en) * 1968-11-12 1971-03-16 Westinghouse Electric Corp Rope end fitting
US3660887A (en) * 1969-06-20 1972-05-09 Nupla Corp Method for connecting attachments to fiber glass rods
US4102862A (en) * 1976-03-31 1978-07-25 Kenrich Petrochemicals, Inc. Application of cumylphenol and derivatives thereof in plastic compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226805A (en) * 1964-04-16 1966-01-04 Columbia Products Co Method of making a strain insulator
US3570074A (en) * 1968-11-12 1971-03-16 Westinghouse Electric Corp Rope end fitting
US3660887A (en) * 1969-06-20 1972-05-09 Nupla Corp Method for connecting attachments to fiber glass rods
US4102862A (en) * 1976-03-31 1978-07-25 Kenrich Petrochemicals, Inc. Application of cumylphenol and derivatives thereof in plastic compositions

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090178244A1 (en) * 2004-09-21 2009-07-16 Campbell Richard V Flex accommodating cable terminations
US7669294B2 (en) * 2004-09-21 2010-03-02 Bright Technologies, Llc Flex accommodating cable terminations
WO2016133646A1 (en) * 2015-02-02 2016-08-25 Campbell Richard V Controlled translation method of affixing a termination to a tensile member
AU2016220514B2 (en) * 2015-02-02 2019-07-18 Richard V. Campbell Controlled translation method of affixing a termination to a tensile member
US9705302B1 (en) * 2015-12-28 2017-07-11 X Development Llc Combined electrical and mechanical potted termination for a center strength member cable
EP3516262A4 (en) * 2016-09-23 2020-05-20 Richard V. Campbell INVERTED INJECTION PROCESS FOR ATTACHING A FINAL TO A TOWING ELEMENT
US20190346017A1 (en) * 2018-05-10 2019-11-14 Richard V. Campbell Potting Neck Enhancement
US10962088B2 (en) * 2018-05-10 2021-03-30 Richard V. Campbell Potting neck enhancement
US20210215229A1 (en) * 2018-05-10 2021-07-15 Richard V. Campbell Potting Neck Enhancement
US11608873B2 (en) * 2018-05-10 2023-03-21 Richard V. Campbell Potting neck enhancement
WO2020076740A1 (en) * 2018-10-08 2020-04-16 Campbell Richard V Controlled translation method of affixing a termination to a multi-stranded tensile member

Similar Documents

Publication Publication Date Title
US5707231A (en) Orthodontic assembly with reinforcement structure
DE69719805T2 (en) METHOD FOR PRODUCING ELASTIC HUMBERS
US20080150193A1 (en) Method of manufacture of a molded hollow using tangential structures
US20040101681A1 (en) Filler potting cable termination system and process
EP1239266A3 (en) Process for manufacturing a sensorhousing, sensor and the use thereof
US8048357B2 (en) Resin infusion potting
DE50201227D1 (en) METHOD FOR PRODUCING A MULTI-COMPONENT INJECTION MOLDING, AT LEAST ONE OF THE COMPONENTS IS PROVIDED WITH A COATING
US4497849A (en) Process for polymer coating electrical conductors
US6957485B2 (en) Moldable cable termination system
DE2755216A1 (en) METHOD FOR MANUFACTURING PLASTIC PARTS IN COMPOSITE CONSTRUCTION
US4483904A (en) Connecting fibre reinforced pultrusions
CN102536980A (en) Method for connecting two objects and panel using said method
JPH02124049A (en) Fishing rod and production thereof
US20050082716A1 (en) Resin infusion potting
WO2011042005A2 (en) Cable lead-through in plug-in connector housings
CN106393391B (en) A kind of mold of foamed material
JP3237902B2 (en) Fiber reinforcement and structural material using the same
EP1624224B1 (en) A method for infusing a region of strands in a cable with liquid potting compound
EP1647393A3 (en) Clamping apparatus for an injection moulding machine
US11378159B2 (en) Wicking termination system
CN1154936A (en) rope handle
DE69407074D1 (en) Process for producing an elongated object and injection molding device for the production thereof
CN208867959U (en) A kind of novel clamp Button Block
JP2002187134A (en) Mold for plastic molding and its manufacturing method
SU1237460A1 (en) Method of manufacturing reinforced articles from thermosetting polymers

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRIGHT TECHNOLOGIES, LLC, FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:KWOLEK, LLC;REEL/FRAME:018160/0680

Effective date: 20030809

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: BRIGHT TECHNOLOGIES, LLC,FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:KWOLEK, LLC;REEL/FRAME:024079/0315

Effective date: 20030509

XAS Not any more in us assignment database

Free format text: CHANGE OF NAME;ASSIGNOR:KWOLEK, LLC;REEL/FRAME:024079/0315