US20040045579A1 - Surface purification apparatus and surface purification method - Google Patents
Surface purification apparatus and surface purification method Download PDFInfo
- Publication number
- US20040045579A1 US20040045579A1 US10/656,190 US65619003A US2004045579A1 US 20040045579 A1 US20040045579 A1 US 20040045579A1 US 65619003 A US65619003 A US 65619003A US 2004045579 A1 US2004045579 A1 US 2004045579A1
- Authority
- US
- United States
- Prior art keywords
- steam
- purification
- processing
- processed
- spraying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000746 purification Methods 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 title claims abstract description 98
- 239000002245 particle Substances 0.000 claims abstract description 65
- 230000008569 process Effects 0.000 claims abstract description 61
- 238000005507 spraying Methods 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 238000012545 processing Methods 0.000 claims description 112
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 27
- 229910052710 silicon Inorganic materials 0.000 claims description 26
- 239000010703 silicon Substances 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 229920006395 saturated elastomer Polymers 0.000 claims description 24
- 239000004065 semiconductor Substances 0.000 claims description 20
- 239000012298 atmosphere Substances 0.000 claims description 16
- 239000004615 ingredient Substances 0.000 claims description 13
- 230000001678 irradiating effect Effects 0.000 claims description 12
- 239000004973 liquid crystal related substance Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 9
- 239000012498 ultrapure water Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 7
- 239000005416 organic matter Substances 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 239000007921 spray Substances 0.000 claims description 2
- 239000003595 mist Substances 0.000 abstract description 19
- 239000004793 Polystyrene Substances 0.000 abstract description 13
- 229920002223 polystyrene Polymers 0.000 abstract description 13
- 238000001514 detection method Methods 0.000 abstract description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 8
- 238000010276 construction Methods 0.000 abstract description 4
- 238000007689 inspection Methods 0.000 abstract description 2
- 238000007598 dipping method Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 32
- 235000012431 wafers Nutrition 0.000 description 26
- 238000004140 cleaning Methods 0.000 description 25
- 239000010410 layer Substances 0.000 description 23
- 230000009471 action Effects 0.000 description 14
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 13
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 11
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 11
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 11
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 11
- 239000005642 Oleic acid Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 11
- 238000005498 polishing Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000004094 surface-active agent Substances 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 239000000356 contaminant Substances 0.000 description 6
- 238000011109 contamination Methods 0.000 description 6
- 101100065885 Caenorhabditis elegans sec-15 gene Proteins 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 238000004380 ashing Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000004483 ATR-FTIR spectroscopy Methods 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910008051 Si-OH Inorganic materials 0.000 description 2
- 229910006358 Si—OH Inorganic materials 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 229960002050 hydrofluoric acid Drugs 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000002052 molecular layer Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000006552 photochemical reaction Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- KZMAWJRXKGLWGS-UHFFFAOYSA-N 2-chloro-n-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]-n-(3-methoxypropyl)acetamide Chemical compound S1C(N(C(=O)CCl)CCCOC)=NC(C=2C=CC(OC)=CC=2)=C1 KZMAWJRXKGLWGS-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000013020 steam cleaning Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
- H01L21/67051—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B7/00—Cleaning by methods not provided for in a single other subclass or a single group in this subclass
- B08B7/0035—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
- B08B7/0057—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by ultraviolet radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B2230/00—Other cleaning aspects applicable to all B08B range
- B08B2230/01—Cleaning with steam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S134/00—Cleaning and liquid contact with solids
- Y10S134/902—Semiconductor wafer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/906—Cleaning of wafer as interim step
Definitions
- the present invention relates to a purification technique for process surfaces from substrates to semiconductor devices, surfaces of process apparatus and process apparatus parts, and surfaces of apparatus and apparatus parts in relation to lithographic processes, in manufacturing processes of semiconductor devices and liquid crystal display devices, particularly to an innovative technique for surface purification by “precise cleaning action of steam and ultraviolet rays”, and breakaway from a resources/energy high-consumption type technique, that is, a development of an environment-symbiosis type technique which makes dependence upon chemical substances minimum.
- a very minute process surface cleaning technique in manufacturing a semiconductor device or a liquid crystal display device depends on a multi-stage process in which a large quantity of ultrapure water and various kinds of chemicals are used in a large-sized apparatus called wet cleaning system. As a technique for renovating this, a cleaning technique using a one-by-one cleaning system is also promoted.
- fluid jet method is a generally used method. Cleaning ⁇ surface-peeling ⁇ surface-polishing are possible by a particulate fluid (ice particulates/abrasive particulates) entrained on a jet flow of a high-pressure fluid. It is generally used in case of a large size such as aircraft/vehicles and requiring on-the-spot cleaning. Cleaning methods of spraying steam are also well known, and used for cleaning not only in industrial fields but also in medical/food fields and homes. But, as described later, there is a great difference between the cleaning level in these fields and a required level in a manufacturing field of semiconductor devices or liquid crystal display devices.
- Manufacturing process of semiconductor devices/liquid crystal display devices differs from other fields in the feature that it is consistently surface-processing process. It has the technical feature that a surface purification technique affects the performance of products. It is a special field wherein purification levels of all surfaces of not only process surfaces from substrates to semiconductor devices, but also surfaces of process apparatus and process apparatus parts as a matter of course, to surfaces of apparatus and apparatus parts in relation to lithographic processes, become severer with progress of technical generations.
- Surfaces to deal with in the present invention are as follows: such as surfaces of silicon substrates/glass substrates/chemical mechanical polishing (CMP) substrates/lithographic process substrates/wiring substrates as process surfaces from substrates to semiconductor devices; such as surfaces of ion-implantation apparatus/plasma apparatus/CVD apparatus and their apparatus parts as surfaces of process apparatus and process apparatus parts; and such as surfaces of stepper devices and mask reticles as surfaces of apparatus and apparatus parts in relation to lithographic processes.
- CMP chemical mechanical polishing
- the present inventors perceive the principle of surface purification by steam and ultraviolet rays. And, not “Cleaning” but “Purification” is intended. This is because the purification degree in a general cleaning technique and the purification required degree in a manufacturing field of a semiconductor device or a liquid crystal display device are quiet different in level. Table 1 shows the difference in surface purification degree level.
- cleaning is a technique from the level ⁇ circle over (1) ⁇ to the level ⁇ circle over (2) ⁇ .
- the roughness of the mechanical polishing surface is scores ⁇ m, and mechanical processing oil is adhering at a level of several mg/cm 2 .
- the surface roughness is decreased to about 10 ⁇ m by chemical polishing surface, it is adhering at a level of 1 mg/cm 2 .
- the cleaning object is attained when the contamination is removed by about three figures starting from this level ⁇ circle over (1) ⁇ to reach the level ⁇ circle over (2) ⁇ . In a general industrial field, this surface may be considered to be pure.
- the level ⁇ circle over (2) ⁇ is the starting point.
- Present of contaminant molecules in several molecular layers means that molecules/atoms of the substrate are not present in the surface. It defeats its own purpose of making the surface function.
- Purification is a technique in which the contamination is decreased from the level by about three figures to reach the level ⁇ circle over (3) ⁇ . Even in this case, a problem may yet remain in the surface operation mechanism in accordance with the kind of contaminant molecules.
- the level ⁇ circle over (4) ⁇ (10 ⁇ 6 to 10 ⁇ 7 molecular layers) is required which is lower by about four figures than the level ⁇ circle over (3) ⁇ .
- “Precise Cleaning” of a surface at the molecular/atomic level is expressed by the term of “Purification”.
- a surface purification apparatus of the present invention is an apparatus used in a manufacturing process of a semiconductor device or a liquid crystal display device, comprising means for bringing steam into contact with and means for spraying steam onto a surface having need of purification, wherein said surface is purified.
- said surface is one selected from among process surfaces from a substrate to a semiconductor device, surfaces of process apparatus and process apparatus parts, and surfaces of apparatus and apparatus parts in relation to lithographic processes.
- said surface is processed with saturated or superheated steam at a temperature of 70° C. to 200° C.
- An aspect of the surface purification apparatus of the present invention comprises a steam supply apparatus comprising a steam generation system, a steam-superheating system, a control system for supplied ultrapure-water quantity and heat amount, and a steam pressure control system, constructed with including a steam inlet and steam-spraying nozzle, and arbitrarily switching and supplying saturated or superheated steam at a temperature of 70° C. to 200° C.
- said steam supply apparatus further includes a switching system for a supply line for a solution containing a purification promotion ingredient and said ultrapure water supply line, and an injection pump, and comprises a system for switching steam containing said purification promotion ingredient and steam not containing it.
- An aspect of the surface purification apparatus of the present invention comprises irradiation means for irradiating with ultraviolet rays, wherein said surface is processed in combination with processing of irradiating said surface with ultraviolet rays in said steam processing.
- said irradiation means uses an ultraviolet lamp of a wavelength corresponding to a 50% transmissive distance of not less than 10 mm to steam.
- a system for introducing steam, and a drive system in which a spraying surface is swept by a steam-spraying nozzle moving relatively to a surface being processed are provided in a chamber including a substrate take in/out system and an atmosphere discharge system, and said steam-spraying nozzle sprays steam onto said surface.
- an ultraviolet reactor comprising an ultraviolet lamp of a wavelength corresponding to a 50% transmissive distance of not less than 10 mm to steam, is accompanied, said ultraviolet lamp is disposed in parallel with said surface, and said surface in steam processing is irradiated and processed.
- said atmosphere discharge system further comprises a suction system, and the surface being processed is dried by discharging the atmosphere in the chamber after superheated steam processing.
- a surface purification method of the present invention is a method used in a manufacturing process of a semiconductor device or a liquid crystal display device, wherein, by using a process for bringing steam into contact with a surface having need of purification, and a process for spraying steam onto the surface having need of purification, said surface is processed.
- said surface is one selected from among process surfaces from a substrate to a semiconductor device, surfaces of process apparatus and process apparatus parts, and surfaces of apparatus and apparatus parts in relation to lithographic processes.
- said surface is processed with saturated or superheated steam at a temperature of 70° C. to 200° C.
- said surface is processed in combination with processing of irradiating said surface with ultraviolet rays of a wavelength corresponding to a 50% transmissive distance of not less than 10 mm to steam, in said steam processing.
- an organic matter film formed on said surface is removed by said steam processing and said process of irradiating with ultraviolet rays.
- particles having adhered to said surface are removed by said steam processing and said process of irradiating with ultraviolet rays.
- generation of water marks is staved off by discharging the atmosphere in the chamber after superheated steam processing of said surface, and drying the surface being processed.
- said surface is a silicon substrate, and said silicon surface is made to be a hydrogen termination structure by steam-processing silicon exposed on said silicon substrate surface.
- FIG. 1 is a typical view showing the principal construction of a steam supply apparatus of an embodiment of the present invention.
- FIG. 2 is a typical view showing the principal construction of a surface purification apparatus of an embodiment of the present invention.
- the present invention uses new measures of “steam processing” and “ultraviolet processing” to the new issue that a surface is “purified” at the molecular/atomic level.
- a chemical action of high-temperature steam and a physical action of steam-spraying are used jointly.
- a characteristic of each of saturated steam and superheated steam is utilized.
- by superimposing ultraviolet irradiation a photochemical action at a high temperature is utilized. That is, used is a new measure for purification different in either of mechanism and level from a general steam cleaning.
- Table 2 shows purification test results of oleic acid adhering to silicon wafer surfaces. After saturated steam at 120° C. is sprayed for thirty seconds, oleic acid was purified to monomolecular layer or less.
- Oleic acid is an oily matter having the melting point of 14° C., the boiling point of 233° C., and the viscosity of about 2 centipoise. At 120° C., the vapor pressure of oleic acid rises, and the viscosity decreases to 1 ⁇ 5 or less. A steam-spraying power can easily blow away this liquid from a surface to purify. But, since a monomolecular adsorption layer has an adsorption energy, it is difficult to blow away by a steam-spraying power only.
- Ultraviolet rays of a wavelength near 200 nm have an effect of decomposing an organic matter by a photochemical reaction.
- the decomposition rate of oleic acid molecules is 0.05 ⁇ g/cm 2 ⁇ sec at the normal temperature (when the quantum efficiency is 100% in 10 mW/cm 2 ). At a high temperature of 100° C. or more, this effect is further amplified.
- Table 3 shows purification test results of particles adhering to silicon wafer surfaces. Silicon wafers (diameter of 4 inches) were dipped in solutions containing 10 5 particles/ml of alumina particles (particle diameter of 0.3 ⁇ m to 0.5 ⁇ m) or polystyrene particles (particle diameter of 0.6 ⁇ m). Steam processing and steam/ultraviolet rays superimposition processing were performed to their surfaces.
- Either the alumina particles/polystyrene particles were purified by 20-second processing to less than the detection limit of a wafer inspection device.
- saturated wafer steam ⁇ circle over (2) ⁇ steam polystyrene 7000 70 particles/ ⁇ 1 particle/ processing particles particles/ wafer wafer [120° C. saturated wafer steam] ⁇ circle over (3) ⁇ steam/ polystyrene 7000 5 particles/ ⁇ 1 particle/ ultraviolet particles particles/ wafer wafer rays wafer superimposition processing [120° C. saturated [120° C. steam] saturated steam] ⁇ circle over (4) ⁇ steam/ polystyrene 7000 ⁇ 1 particle/ ultraviolet particles particles/ wafer rays wafer superimposition processing [120° C. superheated steam] ⁇ circle over (5) ⁇ comparison: polystyrene 7000 2500 500 ultraviolet particles particles/ particles/ particles/ irradiation in wafer wafer wafer normal- temperature air
- the mist in steam collides against surface-adhering particles at the steam-spraying velocity.
- the size of mist is about 5 ⁇ m to 50 ⁇ m in diameter.
- the collision force by the spraying velocity of about 40 m/sec is sufficient to detach particles of 0.1 ⁇ m to several ⁇ m from a wafer.
- the number of mist colliding every second corresponds to 10 6 to 10 7 times the number of surface-adhering particles (about 50 to 100 particles/cm 2 ).
- mist quantity colliding surface 0.015 g/1.5 L ⁇ sec
- weight of one mist 2.08 ⁇ 10 ⁇ 11 g (as a sphere of the diameter of 5 ⁇ m)
- the number of mist colliding surface about 10 9 particles/sec
- a wafer surface has roughness. It has ups and downs in about 0.1 ⁇ m figure on a bare silicon surface/oxide film surface, and in several ⁇ m or more on a CMP surface or a device surface in accordance with the minute structure mode. A mist collides against these surface ups and downs, and scatters and reflects. The reflected mist collides against side surfaces or adhering points of adhering particles at various angles. This scattering force is effective to detach particles from a surface.
- lift-off that is, an action of dissolving a particle adhering point and lifting the particle off a surface is effective to detach the particle from the surface. It is called slide etching, and an infinitesimal amount of solution is enough. Water is said to be the greatest solvent because of its great polarity. In particular, the solvent action of hot water is great, and it produces a sufficient lift-off effect.
- solubility of SiO 2 to water at 100° C. is about 100 times that at the normal temperature (the solubility of SiO 2 to water: 0.013% (20° C.), 1.4% (100° C.)).
- a silicon wafer surface is a natural oxide film SiO 2 in general. Besides, various surface structures are constructed on thermal oxidation film SiO 2 base. Even in a metal structure surface, the metal surface is naturally oxidized to form an oxide film. On these surfaces, the solvency of hot water acts.
- polystyrene particle (0.6 ⁇ m) 7000 particles/4-inch wafer polystyrene molecule 1 ⁇ 10 ⁇ 5 /cm 2
- the particle contaminant sources in semiconductor/liquid crystal processes are organic high-molecule materials. This is because many organic high-molecule materials are used in containers, pipes, structural materials, and component parts. Cleaning process is also not exceptional. For this reason, particle contamination of unknown origin may be pretty sure to be considered organic high molecules. Ultraviolet processing is the most suitable for purification of such organic matter particles.
- lithographic process is so important that it should be considered a key process.
- lithographic process there is a process in which an organic high-molecule film called resist film is used, and the film is removed after performing light irradiation, development, and etching.
- oxygen plasma ashing process is used. A new technique has been looked for to replace this ashing process, which requires a long time and produces a large amount of contamination.
- a problem on the final finishing when a silicon surface is purified is to change terminal groups of silicon atoms arranged in the surface into hydrogen.
- a surface which has become bare silicon by hydrofluoric processing shows a peak of Si—OH alongside Si—H in an FTIR-ATR spectrum, for example.
- hydrogen annealing in a hydrogen atmosphere is being studied.
- the present inventors have found that steam processing is effective for hydrogen termination. This is supposed to be the effect of a chemical action of hot water as exemplified below.
- FIG. 1 exemplifies a fundamental view of a steam supply apparatus.
- An evaporator 1 and a heating block 2 for generating saturated steam, and a superheater 3 and a heating block 4 for generating superheated steam, are disposed between a constant flow pump 5 and a pressure control needle valve 6 .
- the internal pressure of this steam generation system is measured with a pressure gauge 7 .
- the temperatures of saturated and superheated steams are measured with thermometers 8 and 9 .
- the heating area in the evaporator 1 is so designed as to satisfy the burnout point condition of a boiling characteristic curve.
- a valve 10 for an ultrapure water line is opened.
- a valve 11 for an aqueous solution line is opened.
- the heating block 4 for superheating When saturated steam is supplied, the heating block 4 for superheating is not supplied with heat. At this time, the superheater 3 merely functions as a passage for steam. When superheated steam is supplied, the heating block 4 for superheating is supplied with heat to perform superheating by the superheater 3 .
- an introduction valve 12 When steam is introduced into a processing chamber 15 , an introduction valve 12 is opened. When steam is sprayed onto a surface to be processed, a steam-spraying valve 13 is opened and steam is sprayed onto the surface 16 to be processed, through a steam-spraying nozzle 14 .
- Table 4 exemplifies control conditions for steam supply.
- Table 5 exemplifies conditions of the water-spraying nozzle.
- the nozzle shape/steam quantity/spraying velocity are arbitrarily designed so as to meet the purpose.
- TABLE 4 Control Condition for Steam Supply saturated steam generation superheated steam generation water supply conditions conditions quantity and heat internal tempera- steam internal tempera- steam quantity pressure ture quantity pressure ture quantity ml/sec KWH Kg/cm 2 ° C. L/sec Kg/cm 2 ° C. L/sec 1.5 3.9 1.0 100 2.55 — — — 1.5 3.9 2.0 120 2.69 1.00 120 2.69 1.5 4.0 3.6 140 2.83 1.00 140 2.83 1.5 4.0 6.0 160 2.96 1.00 160 2.96
- the ultraviolet wavelength must be so selected as to satisfy the transmissivity.
- Table 6 shows relations between ultraviolet wavelengths and 50% transmissive distances to air, water, and steam. It is found that ultraviolet wavelengths whose 50% transmissive distances are 10 mm or more in steam atmosphere, are 185 nm or more.
- ⁇ light absorption sectional area (molecules/cm 2 ), O 2 . . . 0.259 ⁇ 10 ⁇ 19
- L 50 50% transmissive distance TABLE 6 Ultraviolet Wavelength and 50% Transmissive distances to Air/Water/Steam 50% transmissive distance excimer wavelength energy air water steam ultraviolet lamp nm eV mm mm mm Xe excimer lamp 172 7.21 3 ArCl excimer lamp 175 7.08 6 ⁇ 10 ⁇ 10 185 6.70 40 10 >1 ⁇ 10 4 KrI excimer lamp 191 6.49 100 28 ArF excimer lamp 193 6.42 >100 42 KrBr excimer lamp 207 5.99 >100 KrCl excimer lamp 222 5.58 low-pressure 185 ⁇ 254 mercury lamp i-line lamp 365 3.41
- An ultraviolet lamp is selected in accordance with which of a moment type and a constant type ultraviolet processing is performed in.
- An ultraviolet excimer lamp can be used in a moment-type process. It reaches its stationary state in several seconds after being lit.
- a low-pressure mercury lamp, an i-line lamp, or the like can be used in a constant-type process. Although they require scores minutes for reaching their stationary states after being lit, they are stable after then.
- a one-by-one surface purification apparatus has a drive system in which a spraying surface is swept by a substrate surface and a steam-spraying nozzle moving relatively, in a chamber comprising a substrate take-in/out system/an atmosphere purge system/a liquid discharge system, and constructed by disposing a point nozzle or a line slit nozzle.
- FIG. 2 exemplifies a one-by-one surface purification apparatus having a spin rotation system.
- This surface purification apparatus comprises a steam-processing chamber 23 provided with a spin rotation system 22 for rotating a substrate 21 , and a lamp chamber 26 including an ultraviolet lamp 24 and having a quartz window board 25 .
- a gas inlet 27 to the chamber and a discharge duct 28 are accompanied.
- the steam introduction valve 12 When steam is introduced into the processing chamber from the steam supply apparatus apparatus shown in FIG. 1, the steam introduction valve 12 is opened. When steam is sprayed onto a surface to be processed, the steam-spraying valve 13 is opened and steam is sprayed onto the surface of the substrate 21 through the steam-spraying nozzle 14 .
- the spraying angle and spraying distance of the nozzle and the linear velocity of sprayed steam are optimized in various respects, such as the object of processing/the surface structure of the substrate/protection for damage.
- the steam-processing chamber 23 is kept in temperature. Steam is condensed little by little on the inner wall of the chamber. It serves to clean the inner wall. In this manner, the interior of the chamber is always kept clean.
- the gas inlet 27 to the chamber is used for changing the atmosphere when a substrate is taken in/out. It is used also for adding an effective ingredient for processing to the atmosphere.
- the discharge duct 28 preferably has a cooling structure.
- Silicon substrate purification was performed using a one-by-one surface purification apparatus and an ultraviolet processing apparatus.
- purification of organic matter/particle was performed by fluoric acid/hydrogen peroxide-containing steam processing under KrI excimer ultraviolet irradiation.
- fluoric acid-containing steam processing was performed under KrI excimer ultraviolet irradiation.
- drying was performed by superheated steam processing.
- Table 7 shows the purification results. Organic matters, metal, particles, and water marks were purified to less than their detection limits.
- step 1 alkali and a surface active agent were used as purification promotion ingredients. Lift-off effect of particles by slide etching of glass surfaces and slide etching promotion effect by alkali were superimposed, and all the alien substances on the glass surfaces were purified. Organic matters were purified by hot steam.
- step 2 surface active agent adsorption layers at monomolecular layer level on surfaces were purified.
- step 3 pure dried surfaces were obtained by superheating.
- chromic oxide forming a surface layer of a chromic oxide film has a non-stoichiometric composition, it is etched by hot steam. Accordingly, step 1 was omitted, and surfaces were slide-etched by pure-water steam-spraying by step 2, and all the contamination in sputtering process could be purified.
- step 2 By purification by step 2 only, adhering of etching liquid components(e.g., ceric salt solution) in wet-etching process could be purified. By superimposition of ultraviolet processing, resist residue in resist-peeling step could be purified. TABLE 8 Photomask Purification Result processing processed surface condition glass processing steam substrate blanks mask [detail of temperature processing processing processing steam] ° C.
- step 1 steam processing 100 30 sec — — [steam containing promotion ingredient] step 2 steam/ 100 15 sec 15 to 30 15 to 30 ultraviolet rays sec sec superimposition processing [saturated steam] step 3 drying 120 15 to 30 15 to 30 15 to 30 [superheated sec sec sec steam] processing organic matter not not not result detected detected detected metal impurity not not not detected detected detected particles 1 or less 1 or less 1 or less
- the mist-containing steam generation apparatus is a switching type between purification promotion ingredient-containing mist generation and pure-water mist generation, like example 1.
- the line slit nozzle and mist-containing steam-spraying conditions shown in Table 5 were used.
- Table 9 shows the processing steps, processing details, and processing times.
- step 1 After alkaline silica slurry polishing, steam processing of step 1 was directly performed not through scrubber processing using brush. For purification promotion, an HF-surface active agent was used.
- step 1 slurry particles are not measured on surfaces. After step 2, surface active agents are not detected on surfaces.
- step 1 Performed was the same processing as the oxide film CMP surface processing except using an alkaline-surface active agent as a purification promotion solution. It is direct processing not through scrubber processing. After step 1, alumina slurry particles do not remain on surfaces. This is by the spraying power of steam, the effect of the promotion agent, that is, slide-etching effect on the oxide film surface, and the zeta-potential effect of oxide film/alumina slurry particle of the surface active agent. After step 2, surface active agents are not detected on surfaces.
- Ion-implantation conditions acceleration energy of 80 keV, dose amount of phosphorus of 6 ⁇ 10 15 /cm 2 .
- Ultraviolet lamp KrI excimer lamp, wavelength; 191 nm.
- Table 10 shows the peeling-off results.
- the resist film After saturated steam processing at 100° C. and ultraviolet irradiation processing for two minutes of the condition 1, the resist film could be removed by spraying process for one minute.
- the resist film could be removed by spraying process for thirty seconds.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
By a simple apparatus construction and process, it is made possible to “clean precisely” a surface at the molecular/atomic level, and the purification degree of the surface processed minutely is made into 1012 molecules/cm2 or less. A steam-spraying nozzle is disposed such that a line slit nozzle is in a diameter direction, and mist-containing steam is sprayed onto the surface of a substrate. Thereby, particles in the steam-spraying surface (the particles were made to adhere by dipping the substrate in a solution containing polystyrene (particle diameter of 0.6 μm) or alumina (particle diameter of 0.3 μm to 0.5 μm) particles at 105 particles/ml.) are removed by about 90% to 95% after ten-seconds spraying, and by 99% or more, that is, to less than the detection limit of a wafer inspection device, after twenty-seconds spraying.
Description
- 1. Field of the Invention
- The present invention relates to a purification technique for process surfaces from substrates to semiconductor devices, surfaces of process apparatus and process apparatus parts, and surfaces of apparatus and apparatus parts in relation to lithographic processes, in manufacturing processes of semiconductor devices and liquid crystal display devices, particularly to an innovative technique for surface purification by “precise cleaning action of steam and ultraviolet rays”, and breakaway from a resources/energy high-consumption type technique, that is, a development of an environment-symbiosis type technique which makes dependence upon chemical substances minimum.
- 2. Description of the Related Art
- A very minute process surface cleaning technique in manufacturing a semiconductor device or a liquid crystal display device, depends on a multi-stage process in which a large quantity of ultrapure water and various kinds of chemicals are used in a large-sized apparatus called wet cleaning system. As a technique for renovating this, a cleaning technique using a one-by-one cleaning system is also promoted.
- But, these cleaning techniques have not entirely reached the satisfactory level in breakaway from a load of cleaning process and burdens of ultrapure water and chemicals, and following to performance development demand.
- In a cleaning technique in a general industrial field, “fluid jet method” is a generally used method. Cleaning˜surface-peeling˜surface-polishing are possible by a particulate fluid (ice particulates/abrasive particulates) entrained on a jet flow of a high-pressure fluid. It is generally used in case of a large size such as aircraft/vehicles and requiring on-the-spot cleaning. Cleaning methods of spraying steam are also well known, and used for cleaning not only in industrial fields but also in medical/food fields and homes. But, as described later, there is a great difference between the cleaning level in these fields and a required level in a manufacturing field of semiconductor devices or liquid crystal display devices.
- Manufacturing process of semiconductor devices/liquid crystal display devices differs from other fields in the feature that it is consistently surface-processing process. It has the technical feature that a surface purification technique affects the performance of products. It is a special field wherein purification levels of all surfaces of not only process surfaces from substrates to semiconductor devices, but also surfaces of process apparatus and process apparatus parts as a matter of course, to surfaces of apparatus and apparatus parts in relation to lithographic processes, become severer with progress of technical generations.
- Surfaces to deal with in the present invention are as follows: such as surfaces of silicon substrates/glass substrates/chemical mechanical polishing (CMP) substrates/lithographic process substrates/wiring substrates as process surfaces from substrates to semiconductor devices; such as surfaces of ion-implantation apparatus/plasma apparatus/CVD apparatus and their apparatus parts as surfaces of process apparatus and process apparatus parts; and such as surfaces of stepper devices and mask reticles as surfaces of apparatus and apparatus parts in relation to lithographic processes.
- The present inventors perceive the principle of surface purification by steam and ultraviolet rays. And, not “Cleaning” but “Purification” is intended. This is because the purification degree in a general cleaning technique and the purification required degree in a manufacturing field of a semiconductor device or a liquid crystal display device are quiet different in level. Table 1 shows the difference in surface purification degree level.
TABLE 1 Difference in Surface Purification Degree Level cleaning level {circle over (1)} 1 to 10 mg/cm2 :contaminant-molecular layers level (1018 to 1019 on surface of surface roughness molecules/cm2) of several μm to scores μm level {circle over (2)} 1 to 10 μg/cm2 :monomolecular layer to 10 (1015 to 1016 molecular layers of contaminant molecules/cm2) molecules cleaning level {circle over (3)} 1 to 10 ng/cm2 :10−2 to 10−3 molecular layers of level (1012 to 1013 contaminant molecules molecules/cm2) level {circle over (4)} 0.1 to 1 pg/cm2 :10−6 to 10−7 molecular layers of (108 to 109 contaminant molecules molecules/cm2) - In general, cleaning is a technique from the level {circle over (1)} to the level {circle over (2)}. For example, in a metal material surface, the roughness of the mechanical polishing surface is scores μm, and mechanical processing oil is adhering at a level of several mg/cm 2. Even in case that the surface roughness is decreased to about 10 μm by chemical polishing surface, it is adhering at a level of 1 mg/cm2. The cleaning object is attained when the contamination is removed by about three figures starting from this level {circle over (1)} to reach the level {circle over (2)}. In a general industrial field, this surface may be considered to be pure.
- On the other hand, in semiconductor/liquid crystal industries, the level {circle over (2)} is the starting point. Present of contaminant molecules in several molecular layers means that molecules/atoms of the substrate are not present in the surface. It defeats its own purpose of making the surface function. Purification is a technique in which the contamination is decreased from the level by about three figures to reach the level {circle over (3)}. Even in this case, a problem may yet remain in the surface operation mechanism in accordance with the kind of contaminant molecules. In the future ultra-LSI generation, the level {circle over (4)} (10 −6 to 10−7 molecular layers) is required which is lower by about four figures than the level {circle over (3)}.
- It is an object of the present invention to provide a surface purification apparatus and a surface purification method capable of “precisely cleaning” a surface into the molecular/atomic level and making the purification degree of the
surface 1012 molecules/cm2 or less, by a new principle and apparatus. In this specification, “Precise Cleaning” of a surface at the molecular/atomic level is expressed by the term of “Purification”. - In order to attain the above object, a surface purification apparatus of the present invention is an apparatus used in a manufacturing process of a semiconductor device or a liquid crystal display device, comprising means for bringing steam into contact with and means for spraying steam onto a surface having need of purification, wherein said surface is purified.
- In an aspect of the surface purification apparatus of the present invention, said surface is one selected from among process surfaces from a substrate to a semiconductor device, surfaces of process apparatus and process apparatus parts, and surfaces of apparatus and apparatus parts in relation to lithographic processes.
- In an aspect of the surface purification apparatus of the present invention, said surface is processed with saturated or superheated steam at a temperature of 70° C. to 200° C.
- An aspect of the surface purification apparatus of the present invention, comprises a steam supply apparatus comprising a steam generation system, a steam-superheating system, a control system for supplied ultrapure-water quantity and heat amount, and a steam pressure control system, constructed with including a steam inlet and steam-spraying nozzle, and arbitrarily switching and supplying saturated or superheated steam at a temperature of 70° C. to 200° C.
- In an aspect of the surface purification apparatus of the present invention, said steam supply apparatus further includes a switching system for a supply line for a solution containing a purification promotion ingredient and said ultrapure water supply line, and an injection pump, and comprises a system for switching steam containing said purification promotion ingredient and steam not containing it.
- An aspect of the surface purification apparatus of the present invention, comprises irradiation means for irradiating with ultraviolet rays, wherein said surface is processed in combination with processing of irradiating said surface with ultraviolet rays in said steam processing.
- In an aspect of the surface purification apparatus of the present invention, said irradiation means uses an ultraviolet lamp of a wavelength corresponding to a 50% transmissive distance of not less than 10 mm to steam.
- In a surface purification apparatus of the present invention, a system for introducing steam, and a drive system in which a spraying surface is swept by a steam-spraying nozzle moving relatively to a surface being processed, are provided in a chamber including a substrate take in/out system and an atmosphere discharge system, and said steam-spraying nozzle sprays steam onto said surface.
- In an aspect of the surface purification apparatus of the present invention, an ultraviolet reactor comprising an ultraviolet lamp of a wavelength corresponding to a 50% transmissive distance of not less than 10 mm to steam, is accompanied, said ultraviolet lamp is disposed in parallel with said surface, and said surface in steam processing is irradiated and processed.
- In an aspect of the surface purification apparatus of the present invention, said atmosphere discharge system further comprises a suction system, and the surface being processed is dried by discharging the atmosphere in the chamber after superheated steam processing.
- A surface purification method of the present invention is a method used in a manufacturing process of a semiconductor device or a liquid crystal display device, wherein, by using a process for bringing steam into contact with a surface having need of purification, and a process for spraying steam onto the surface having need of purification, said surface is processed.
- In an aspect of the surface purification method of the present invention, said surface is one selected from among process surfaces from a substrate to a semiconductor device, surfaces of process apparatus and process apparatus parts, and surfaces of apparatus and apparatus parts in relation to lithographic processes.
- In an aspect of the surface purification method of the present invention, said surface is processed with saturated or superheated steam at a temperature of 70° C. to 200° C.
- In an aspect of the surface purification method of the present invention, said surface is processed in combination with processing of irradiating said surface with ultraviolet rays of a wavelength corresponding to a 50% transmissive distance of not less than 10 mm to steam, in said steam processing.
- In an aspect of the surface purification method of the present invention, organic matters having adhered to said surface are removed by said steam processing and said process of irradiating with ultraviolet rays.
- In an aspect of the surface purification method of the present invention, an organic matter film formed on said surface is removed by said steam processing and said process of irradiating with ultraviolet rays.
- In an aspect of the surface purification method of the present invention, particles having adhered to said surface are removed by said steam processing and said process of irradiating with ultraviolet rays.
- In an aspect of the surface purification method of the present invention, generation of water marks is staved off by discharging the atmosphere in the chamber after superheated steam processing of said surface, and drying the surface being processed.
- In an aspect of the surface purification method of the present invention, said surface is a silicon substrate, and said silicon surface is made to be a hydrogen termination structure by steam-processing silicon exposed on said silicon substrate surface.
- FIG. 1 is a typical view showing the principal construction of a steam supply apparatus of an embodiment of the present invention; and
- FIG. 2 is a typical view showing the principal construction of a surface purification apparatus of an embodiment of the present invention.
- The present invention uses new measures of “steam processing” and “ultraviolet processing” to the new issue that a surface is “purified” at the molecular/atomic level.
- A chemical action of high-temperature steam and a physical action of steam-spraying are used jointly. A characteristic of each of saturated steam and superheated steam is utilized. Further, by superimposing ultraviolet irradiation, a photochemical action at a high temperature is utilized. That is, used is a new measure for purification different in either of mechanism and level from a general steam cleaning.
- The present inventors have found the fact that “cleaning at molecular/atomic level” can easily be realized by a physicochemical action of steam at a high temperature and a photochemical action of ultraviolet rays. Hereinafter, the actions of steam and ultraviolet rays will be described in detail.
- Besides, a purification apparatus for realizing this new effect and details of a steam supply apparatus and an ultraviolet irradiation apparatus used in this apparatus will be described.
- 1. Purification Action and Purification Effect of Steam and Ultraviolet Rays
- Using an example of purification of a silicon substrate surface, the mechanisms of the actions of steam and ultraviolet rays and the discovery of the new effect will be described.
- (1) Purification of Organic Matters
- Table 2 shows purification test results of oleic acid adhering to silicon wafer surfaces. After saturated steam at 120° C. is sprayed for thirty seconds, oleic acid was purified to monomolecular layer or less.
- Here, in case of superimposing ultraviolet irradiation on 120° C. saturated steam processing, it was removed to monomolecular layer ten seconds after, and to less than the detection limit of FTIR measurement twenty seconds after.
TABLE 2 Steam Processing and Steam/Ultraviolet Rays Superimposition Processing of Silicon Wafer Surface-Adhering Oleic Acid steam processing [120° C. saturated steam] before processing 10 sec processing 30 sec processing oleic acid- 0.2 mg/cm2 0.5 μg/cm2 0.05 μg/cm2 adhering quantity ( oleic acid 4 × 1017/cm2 1 × 1015/cm2 1 × 1014/cm2 molecules) thickness of about 2700 about 7 molecular monomolecular molecular layer molecular layers layers on average layer or less on average steam/ultraviolet before processing 10 sec processing 30 sec processing rays superimposition processing [120° C. saturated steam] oleic acid- 0.2 mg/cm2 0.1 μg/cm2 <0.005 ng/cm2 adhering quantity ( oleic acid 4 × 1017/ cm 22 × 1014/cm2 <1 × 1010/cm2 molecules) thickness of about 2700 almost less than molecular layer molecular layers monomolecular detection limit on average layer on average - This purification effect is mainly by the following two actions.
- Effect of Steam:
- Oleic acid is an oily matter having the melting point of 14° C., the boiling point of 233° C., and the viscosity of about 2 centipoise. At 120° C., the vapor pressure of oleic acid rises, and the viscosity decreases to ⅕ or less. A steam-spraying power can easily blow away this liquid from a surface to purify. But, since a monomolecular adsorption layer has an adsorption energy, it is difficult to blow away by a steam-spraying power only.
- Although water is known to hydrate in a hydrophobic manner with hydrocarbon to form a cluster, the hydration power of water at a high temperature of 100° C. or more is remarkably great. This hydration power increases the solvent ability remarkably. The mist quantity brought into contact with a monomolecular adsorption layer is about 10 5 times the oleic acid monomolecular layer every second. It is a sufficient layer for dissolving and removing the oleic acid monomolecular adsorption layer from a surface.
- Effect of Ultraviolet Rays:
- Ultraviolet rays of a wavelength near 200 nm have an effect of decomposing an organic matter by a photochemical reaction. For example, the decomposition rate of oleic acid molecules is 0.05 μg/cm 2·sec at the normal temperature (when the quantum efficiency is 100% in 10 mW/cm2). At a high temperature of 100° C. or more, this effect is further amplified.
- The effect of steam/ultraviolet rays superimposition processing as shown in Table 2 is by this photochemical reaction.
- (2) Purification of Particles
- Table 3 shows purification test results of particles adhering to silicon wafer surfaces. Silicon wafers (diameter of 4 inches) were dipped in solutions containing 10 5 particles/ml of alumina particles (particle diameter of 0.3 μm to 0.5 μm) or polystyrene particles (particle diameter of 0.6 μm). Steam processing and steam/ultraviolet rays superimposition processing were performed to their surfaces.
- Either the alumina particles/polystyrene particles were purified by 20-second processing to less than the detection limit of a wafer inspection device.
- In case of polystyrene particles, purification was remarkably shortened by steam/ultraviolet rays superimposition processing. Besides, it was found that superheated steam has a greater purification effect.
- As shown in Table 3 and a comparative example, in case of ultraviolet irradiation in air at the normal temperature, the purification effect of polystyrene particles is low. This is because the transmittance of ultraviolet rays of the wavelength of 191 nm in air is not sufficiently great. The 191 nm ultraviolet rays well permeate steam. Here, an advantage of steam atmosphere appears.
TABLE 3 Steam Processing and Steam/Ultraviolet Rays Superimposition Processing of Silicon Wafer Surface-Adhering particles surface- adhering before 10 sec 20 sec particles processing processing processing {circle over (1)} steam alumina 4200 50 particles/ <1 particle/ processing particles particles/ wafer wafer [120° C. saturated wafer steam] {circle over (2)} steam polystyrene 7000 70 particles/ <1 particle/ processing particles particles/ wafer wafer [120° C. saturated wafer steam] {circle over (3)} steam/ polystyrene 7000 5 particles/ <1 particle/ ultraviolet particles particles/ wafer wafer rays wafer superimposition processing [120° C. saturated [120° C. steam] saturated steam] {circle over (4)} steam/ polystyrene 7000 <1 particle/ ultraviolet particles particles/ wafer rays wafer superimposition processing [120° C. superheated steam] {circle over (5)} comparison: polystyrene 7000 2500 500 ultraviolet particles particles/ particles/ particles/ irradiation in wafer wafer wafer normal- temperature air - Effect of Steam:
- The effect by using steam is by the following three actions.
- 1) Collision Force of Mist:
- The mist in steam collides against surface-adhering particles at the steam-spraying velocity. The size of mist is about 5 μm to 50 μm in diameter. The collision force by the spraying velocity of about 40 m/sec is sufficient to detach particles of 0.1 μm to several μm from a wafer. Besides, the number of mist colliding every second corresponds to 10 6 to 107 times the number of surface-adhering particles (about 50 to 100 particles/cm2).
- mist quantity colliding surface: 0.015 g/1.5 L·sec
- weight of one mist: 2.08×10 −11 g (as a sphere of the diameter of 5 μm)
- the number of mist colliding surface: about 10 9 particles/sec
- 2) Scattering Force of Mist:
- A wafer surface has roughness. It has ups and downs in about 0.1 μm figure on a bare silicon surface/oxide film surface, and in several μm or more on a CMP surface or a device surface in accordance with the minute structure mode. A mist collides against these surface ups and downs, and scatters and reflects. The reflected mist collides against side surfaces or adhering points of adhering particles at various angles. This scattering force is effective to detach particles from a surface.
- 3) Lift-Off Effect of High-temperature Mist:
- It is well known that lift-off, that is, an action of dissolving a particle adhering point and lifting the particle off a surface is effective to detach the particle from the surface. It is called slide etching, and an infinitesimal amount of solution is enough. Water is said to be the greatest solvent because of its great polarity. In particular, the solvent action of hot water is great, and it produces a sufficient lift-off effect. For example, the solubility of SiO 2 to water at 100° C. is about 100 times that at the normal temperature (the solubility of SiO2 to water: 0.013% (20° C.), 1.4% (100° C.)).
- A silicon wafer surface is a natural oxide film SiO 2 in general. Besides, various surface structures are constructed on thermal oxidation film SiO2 base. Even in a metal structure surface, the metal surface is naturally oxidized to form an oxide film. On these surfaces, the solvency of hot water acts.
- For the above reasons, the solvency of high-temperature mist becomes a strong lift-off effect.
- Effect of Ultraviolet Rays:
- The effect of ultraviolet rays is by the following action.
- Ultraviolet Decomposition of Organic Polymer Particle:
- It was described before that ultraviolet rays decompose oleic acid molecules at a rate of 0.05 μg/cm 2 ·sec at the normal temperature (when the quantum efficiency is 100% in 10 mW/cm2). Also in relation to polystyrene particles, the photochemical equivalent is almost the same. Since the used ultraviolet light quantity (10 mW/cm2) is about 106 times the polystyrene molecule reaction equivalent every second, it is a light quantity enough for purification.
- polystyrene particle (0.6 μm) 7000 particles/4-inch wafer=polystyrene molecule 1×10 −5/cm2
- In many cases, the particle contaminant sources in semiconductor/liquid crystal processes are organic high-molecule materials. This is because many organic high-molecule materials are used in containers, pipes, structural materials, and component parts. Cleaning process is also not exceptional. For this reason, particle contamination of unknown origin may be pretty sure to be considered organic high molecules. Ultraviolet processing is the most suitable for purification of such organic matter particles.
- (3) Removal of Organic film
- In semiconductor/liquid crystal-manufacturing, lithographic process is so important that it should be considered a key process. In lithographic process, there is a process in which an organic high-molecule film called resist film is used, and the film is removed after performing light irradiation, development, and etching. In general, oxygen plasma ashing process is used. A new technique has been looked for to replace this ashing process, which requires a long time and produces a large amount of contamination.
- Steam/ultraviolet processing can easily remove this organic high-molecule film. It is by the principle that an organic high-molecule film is changed by steam, and the boundary layer between the film and a surface is changed by ultraviolet rays. Since it is not decomposed but peeled off, short-time processing is possible. There is no problem of contamination attendant upon the ashing process.
- Details of this technique will be described in the below examples.
- 2. Surface Effect of Steam
- Some characteristic surface effects have been found.
- (1) Water Mark Effect
- As a problem on the final finishing when a substrate surface is purified, the solution of water mark is a difficult problem. Even if cleaning is finished with ultrapure water, a waterdrop remaining on the surface generates a water mark to be obstacle to a minute circuit construction. It is considered that a process of drying with the waterdrop dissolving a very small amount of the surface is the cause of the generation. Superheated steam processing completely settles this problem. Since superheated steam contains no mist, there is no water mark generation source. It is the most suitable processing for final finishing˜drying.
- (2) Hydrogen Termination Effect
- A problem on the final finishing when a silicon surface is purified, is to change terminal groups of silicon atoms arranged in the surface into hydrogen. A surface which has become bare silicon by hydrofluoric processing, shows a peak of Si—OH alongside Si—H in an FTIR-ATR spectrum, for example. For making complete hydrogen terminal groups, hydrogen annealing in a hydrogen atmosphere is being studied. The present inventors have found that steam processing is effective for hydrogen termination. This is supposed to be the effect of a chemical action of hot water as exemplified below.
- reaction of water at 100° C. and sulfur:
- 2H2O+3S=SO2+2H2S
- 3. Steam supply Apparatus
- FIG. 1 exemplifies a fundamental view of a steam supply apparatus. An evaporator 1 and a
heating block 2 for generating saturated steam, and asuperheater 3 and aheating block 4 for generating superheated steam, are disposed between a constant flow pump 5 and a pressure control needle valve 6. The internal pressure of this steam generation system is measured with a pressure gauge 7. The temperatures of saturated and superheated steams are measured withthermometers 8 and 9. The heating area in the evaporator 1 is so designed as to satisfy the burnout point condition of a boiling characteristic curve. - Switching Steam of Pure Water and Steam Containing Promotion Ingredient:
- When steam of ultrapure water is generated, a
valve 10 for an ultrapure water line is opened. When steam containing a promotion ingredient is generated, avalve 11 for an aqueous solution line is opened. - Switching Saturated and Superheated Steams:
- When saturated steam is supplied, the
heating block 4 for superheating is not supplied with heat. At this time, thesuperheater 3 merely functions as a passage for steam. When superheated steam is supplied, theheating block 4 for superheating is supplied with heat to perform superheating by thesuperheater 3. - Switching Steam-contact and Steam-spraying:
- When steam is introduced into a
processing chamber 15, anintroduction valve 12 is opened. When steam is sprayed onto a surface to be processed, a steam-sprayingvalve 13 is opened and steam is sprayed onto thesurface 16 to be processed, through a steam-sprayingnozzle 14. - Table 4 exemplifies control conditions for steam supply. Table 5 exemplifies conditions of the water-spraying nozzle. The nozzle shape/steam quantity/spraying velocity are arbitrarily designed so as to meet the purpose.
TABLE 4 Control Condition for Steam Supply saturated steam generation superheated steam generation water supply conditions conditions quantity and heat internal tempera- steam internal tempera- steam quantity pressure ture quantity pressure ture quantity ml/sec KWH Kg/cm2 ° C. L/sec Kg/cm2 ° C. L/sec 1.5 3.9 1.0 100 2.55 — — — 1.5 3.9 2.0 120 2.69 1.00 120 2.69 1.5 4.0 3.6 140 2.83 1.00 140 2.83 1.5 4.0 6.0 160 2.96 1.00 160 2.96 -
TABLE 5 Condition Example of Steam-spraying Nozzle point nozzle line slit nozzle steam-spraying steam-spraying linear linear steam quantity velocity velocity L/sec nozzle shape m/sec nozzle shape m/sec 2.55 inside 120 200 mm × 0.5 mm 52 diameter of 5 mm 2.55 inside 32 200 mm × 1.0 mm 13 diameter of 10 mm 2.55 50 mm × 1.0 mm 52 - 4. Ultraviolet Reactor
- Selections of the ultraviolet wavelength and time characteristics of a lamp used in an ultraviolet reactor are important technical factors.
- Selection of Ultraviolet Wavelength:
- The shorter the ultraviolet wavelength is, the greater the energy is and the lower the transmissivity to the irradiation atmosphere is. The ultraviolet wavelength must be so selected as to satisfy the transmissivity.
- Table 6 shows relations between ultraviolet wavelengths and 50% transmissive distances to air, water, and steam. It is found that ultraviolet wavelengths whose 50% transmissive distances are 10 mm or more in steam atmosphere, are 185 nm or more.
- A relation between the light absorption sectional area of molecules present in the atmosphere and the light transmissivity, is given by expression (1). Logarithms of the transmissivity become proportional to distances. The present inventors use 50% transmissive distance as an index. This 50% transmissive distance is given by expression (2). Table 1 shows relations between ultraviolet wavelengths and 50% transmissive distances to air, water, and steam obtained by expression (2) or actual measurements. For example, the 50% transmissive distance of ultraviolet rays of the wavelength of 172 nm to air is obtained as 3.1 mm from the light absorption sectional area of oxygen (0.259×10 −19 molecules/cm2) while the actual measurement of 2.2 mm is obtained. Both are almost equal.
- δCL=1n (I°/I) (1)
- δ: light absorption sectional area (molecules/cm 2), O2 . . . 0.259×10−19
- C: molecule concentration (partial pressure of molecule)
- L: transmissive distance (cm)
- I°/I: light transmissivity=incident light intensity/transmitted light intensity (2)
- δCL 50=1n (100/50)
- L 50: 50% transmissive distance
TABLE 6 Ultraviolet Wavelength and 50% Transmissive distances to Air/Water/Steam 50% transmissive distance excimer wavelength energy air water steam ultraviolet lamp nm eV mm mm mm Xe excimer lamp 172 7.21 3 ArCl excimer lamp 175 7.08 6 <10 <10 185 6.70 40 10 >1 × 104 KrI excimer lamp 191 6.49 100 28 ArF excimer lamp 193 6.42 >100 42 KrBr excimer lamp 207 5.99 >100 KrCl excimer lamp 222 5.58 low-pressure 185 · 254 mercury lamp i-line lamp 365 3.41 - Selection of Time Response:
- An ultraviolet lamp is selected in accordance with which of a moment type and a constant type ultraviolet processing is performed in.
- An ultraviolet excimer lamp can be used in a moment-type process. It reaches its stationary state in several seconds after being lit.
- It is suitable for a sequential process by unit time of second in one-by-one ultraviolet processing. A low-pressure mercury lamp, an i-line lamp, or the like can be used in a constant-type process. Although they require scores minutes for reaching their stationary states after being lit, they are stable after then.
- 5. One-By-One Surface Purification Apparatus
- A one-by-one surface purification apparatus has a drive system in which a spraying surface is swept by a substrate surface and a steam-spraying nozzle moving relatively, in a chamber comprising a substrate take-in/out system/an atmosphere purge system/a liquid discharge system, and constructed by disposing a point nozzle or a line slit nozzle.
- FIG. 2 exemplifies a one-by-one surface purification apparatus having a spin rotation system.
- This surface purification apparatus comprises a steam-
processing chamber 23 provided with aspin rotation system 22 for rotating asubstrate 21, and alamp chamber 26 including anultraviolet lamp 24 and having aquartz window board 25. Agas inlet 27 to the chamber and adischarge duct 28 are accompanied. - When steam is introduced into the processing chamber from the steam supply apparatus apparatus shown in FIG. 1, the
steam introduction valve 12 is opened. When steam is sprayed onto a surface to be processed, the steam-sprayingvalve 13 is opened and steam is sprayed onto the surface of thesubstrate 21 through the steam-sprayingnozzle 14. - Shown is an example of the steam-spraying
nozzle 14 in which a line slit nozzle is disposed in a diameter direction. It may be a system in which a spot nozzle is driven radially, or several nozzles are moved in a proper distance or fixed. The spraying angle and spraying distance of the nozzle and the linear velocity of sprayed steam are optimized in various respects, such as the object of processing/the surface structure of the substrate/protection for damage. - The steam-
processing chamber 23 is kept in temperature. Steam is condensed little by little on the inner wall of the chamber. It serves to clean the inner wall. In this manner, the interior of the chamber is always kept clean. - The
gas inlet 27 to the chamber is used for changing the atmosphere when a substrate is taken in/out. It is used also for adding an effective ingredient for processing to the atmosphere. Thedischarge duct 28 preferably has a cooling structure. - Hereinafter, effects of a new purification process in which a steam processing apparatus and an ultraviolet processing apparatus are combined, will be described in detail with reference to examples.
- Silicon substrate purification was performed using a one-by-one surface purification apparatus and an ultraviolet processing apparatus.
- In purification step 1, purification of organic matter/particle was performed by fluoric acid/hydrogen peroxide-containing steam processing under KrI excimer ultraviolet irradiation. In
purification step 2, fluoric acid-containing steam processing was performed under KrI excimer ultraviolet irradiation. Inpurification step 3, drying was performed by superheated steam processing. - Table 7 shows the purification results. Organic matters, metal, particles, and water marks were purified to less than their detection limits.
- Besides, as for silicon substrate surfaces, the peak ratios of Si—O/Si—H, which appear in FTIR-ATR spectrum, were 0.05 or less. In case of a conventional wet cleaning, the peak ratio of Si—OH/Si—H is 0.1 to 0.5, and the hydrogen termination effect of steam processing is confirmed.
TABLE 7 Silicon Substrate Purification Result processed surface silicon thermal processing condition silicon oxidation film steam processing processing processing temperature time time [detail of steam] ° C. sec sec step 1 steam/ 100 15 15 ultraviolet rays superimposition processing [steam containing promotion ingredient A] step 2steam/ 100 15 15 ultraviolet rays superimposition processing [steam containing promotion ingredient B] step 3drying 120 15 15 [superheated steam] processing organic matter molecules/cm2 less than less than result concentration detection detection limit limit metal impurity atoms/cm2 less than less than concentration detection detection limit limit number of particles/ 5 or less 5 or less particles wafer water marks marks/wafer 1 or less 1 or less - Purification of surfaces of masks for semiconductor/liquid crystal manufacturing (for lithography) was performed.
- Glass Substrate Purification:
- In step 1, alkali and a surface active agent were used as purification promotion ingredients. Lift-off effect of particles by slide etching of glass surfaces and slide etching promotion effect by alkali were superimposed, and all the alien substances on the glass surfaces were purified. Organic matters were purified by hot steam.
- In
step 2, surface active agent adsorption layers at monomolecular layer level on surfaces were purified. - In
step 3, pure dried surfaces were obtained by superheating. - Blanks Purification:
- Because chromic oxide forming a surface layer of a chromic oxide film has a non-stoichiometric composition, it is etched by hot steam. Accordingly, step 1 was omitted, and surfaces were slide-etched by pure-water steam-spraying by
step 2, and all the contamination in sputtering process could be purified. - Mask Purification:
- By purification by
step 2 only, adhering of etching liquid components(e.g., ceric salt solution) in wet-etching process could be purified. By superimposition of ultraviolet processing, resist residue in resist-peeling step could be purified.TABLE 8 Photomask Purification Result processing processed surface condition glass processing steam substrate blanks mask [detail of temperature processing processing processing steam] ° C. time time time step 1 steam processing 100 30 sec — — [steam containing promotion ingredient] step 2steam/ 100 15 sec 15 to 30 15 to 30 ultraviolet rays sec sec superimposition processing [saturated steam] step 3drying 120 15 to 30 15 to 30 15 to 30 [superheated sec sec sec steam] processing organic matter not not not result detected detected detected metal impurity not not not detected detected detected particles 1 or less 1 or less 1 or less - Purification of chemical mechanical polishing (CMP) surfaces was performed.
- Used was the one-by-one minute processing surface purification apparatus having the spin rotation system shown in FIG. 1. The mist-containing steam generation apparatus is a switching type between purification promotion ingredient-containing mist generation and pure-water mist generation, like example 1. The line slit nozzle and mist-containing steam-spraying conditions shown in Table 5 were used. Table 9 shows the processing steps, processing details, and processing times.
TABLE 9 Surface Purification Result after CMP Cu-wiring CMP surface oxide film CMP Al-wiring CMP acid alumina surface surface slurry alkaline acid alumina polishing processing silica slurry slurry iron oxide step [detail of steam] polishing polishing salt mixed step 1 steam/ultraviolet 1 min 1 min 1 min processing [steam containing promotion ingredient] step 2steam/ ultraviolet 15 to 30 sec 15 to 30 sec 15 to 30 sec processing [saturated steam] step 3drying processing 15 to 30 sec 15 to 30 sec 15 to 30 sec [superheated steam] - Oxcide Film CMP surface:
- After alkaline silica slurry polishing, steam processing of step 1 was directly performed not through scrubber processing using brush. For purification promotion, an HF-surface active agent was used.
- After step 1, slurry particles are not measured on surfaces. After
step 2, surface active agents are not detected on surfaces. - Al-Wiring CMP Surface:
- Performed was the same processing as the oxide film CMP surface processing except using an alkaline-surface active agent as a purification promotion solution. It is direct processing not through scrubber processing. After step 1, alumina slurry particles do not remain on surfaces. This is by the spraying power of steam, the effect of the promotion agent, that is, slide-etching effect on the oxide film surface, and the zeta-potential effect of oxide film/alumina slurry particle of the surface active agent. After
step 2, surface active agents are not detected on surfaces. - Cu-Wiring CMP Surface:
- Performed was quite the same processing as Al-wiring CMP surface processing. Similarly, by the spraying power of steam, the slide-etching effect, and the zeta-potential effect of the surface active agent, completely pure surfaces were obtained.
- Shown are examples of excimer ultraviolet processing apparatus in which resist films are peeled off by steam/ultraviolet rays superimposition processing.
- Shown are examples of steam/ultraviolet rays superimposition processing to ion-implanted resist films, which are hard to peel off. Sample: silicon thermal oxidation film etched surface, ion-implantation to the lower-layer silicon substrate.
- Ion-implantation conditions: acceleration energy of 80 keV, dose amount of phosphorus of 6×10 15/cm2.
- Ultraviolet lamp: KrI excimer lamp, wavelength; 191 nm.
- Ultraviolet irradiation quantity: 10 mW/cm 2 (surface to be processed).
- Table 10 shows the peeling-off results.
- After saturated steam processing at 100° C. and ultraviolet irradiation processing for two minutes of the condition 1, the resist film could be removed by spraying process for one minute.
- After saturated steam processing at 120° C. and ultraviolet irradiation processing for thirty seconds of the
condition 2, the resist film could be removed by spraying process for thirty seconds.
Claims (19)
1. A surface purification apparatus used in a manufacturing process of a semiconductor device or a liquid crystal display device, characterized by comprising
means for bringing steam into contact with and means for spraying steam onto a surface having need of purification, wherein said surface is purified.
2. A surface purification apparatus described in claim 1 , characterized in that said surface is one selected from among process surfaces from a substrate to a semiconductor device, surfaces of process apparatus and process apparatus parts, and surfaces of apparatus and apparatus parts in relation to lithographic processes.
3. A surface purification apparatus described in claim 1 , characterized in that said surface is processed with saturated or superheated steam at a temperature of 70° C. to 200° C.
4. A surface purification apparatus described in claim 1 , characterized by comprising a steam supply apparatus comprising a steam generation system, a steam-superheating system, a control system for supplied ultrapure-water quantity and heat amount, and a steam pressure control system, constructed with including a steam inlet and steam-spraying nozzle, and arbitrarily switching and supplying saturated or superheated steam at a temperature of 70° C. to 200° C.
5. A surface purification apparatus described in claim 4 , characterized in that said steam supply apparatus further includes a switching system for a supply line for a solution containing a purification promotion ingredient and said ultrapure water supply line, and an injection pump, and comprises a system for switching steam containing said purification promotion ingredient and steam not containing it.
6. A surface purification apparatus described in claim 1 , characterized by comprising irradiation means for irradiating with ultraviolet rays, wherein said surface is processed in combination with processing of irradiating said surface with ultraviolet rays in said steam processing.
7. A surface purification apparatus described in claim 6 , characterized in that said irradiation means uses an ultraviolet lamp of a wavelength corresponding to a 50% transmissive distance of not less than 10 mm to steam.
8. A one-by-one surface purification apparatus characterized in that a system for introducing steam, and a drive system in which a spraying surface is swept by a steam-spraying nozzle moving relatively to a surface being processed, are provided in a chamber including a substrate take in/out system and an atmosphere discharge system, and said steam-spraying nozzle sprays steam onto said surface.
9. A surface purification apparatus described in claim 1 , characterized in that an ultraviolet reactor comprising an ultraviolet lamp of a wavelength corresponding to a 50% transmissive distance of not less than 10 mm to steam, is accompanied, said ultraviolet lamp is disposed in parallel with said surface, and said surface in steam processing is irradiated and processed.
10. A surface purification apparatus described in claim 8 , characterized in that said atmosphere discharge system further comprises a suction system, and the surface being processed is dried by discharging the atmosphere in the chamber after superheated steam processing.
11. A surface purification method used in a manufacturing process of a semiconductor device or a liquid crystal display device, characterized in that,
by using a process for bringing steam into contact with a surface having need of purification, and
a process for spraying steam onto the surface having need of purification,
said surface is processed.
12. A surface purification method described in claim 11 , characterized in that said surface is one selected from among process surfaces from a substrate to a semiconductor device, surfaces of process apparatus and process apparatus parts, and surfaces of apparatus and apparatus parts in relation to lithographic processes.
13. A surface purification method described in claim 11 , characterized in that said surface is processed with saturated or superheated steam at a temperature of 70° C. to 200° C.
14. A surface purification method described in claim 11 , characterized in that said surface is processed in combination with processing of irradiating said surface with ultraviolet rays of a wavelength corresponding to a 50% transmissive distance of not less than 10 mm to steam, in said steam processing.
15. A surface purification method described in claim 14 , characterized in that organic matters having adhered to said surface are removed by said steam processing and said process of irradiating with ultraviolet rays.
16. A surface purification method described in claim 14 , characterized in that an organic matter film formed on said surface is removed by said steam processing and said process of irradiating with ultraviolet rays.
17. A surface purification method described in claim 14 , characterized in that particles having adhered to said surface are removed by said steam processing and said process of irradiating with ultraviolet rays.
18. A surface purification method described in claim 13 , characterized in that generation of water marks is staved off by discharging the atmosphere in the chamber after superheated steam processing of said surface, and drying the surface being processed.
19. A surface purification method described in claim 11 , characterized in that said surface is a silicon substrate, and said silicon surface is made to be a hydrogen termination structure by steam-processing silicon exposed on said silicon substrate surface.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/656,190 US20040045579A1 (en) | 1999-08-12 | 2003-09-08 | Surface purification apparatus and surface purification method |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP22891999 | 1999-08-12 | ||
| JP11-228919 | 1999-08-12 | ||
| US09/417,009 US6630031B1 (en) | 1999-08-12 | 1999-10-12 | Surface purification apparatus and surface purification method |
| JP11-290344 | 1999-10-12 | ||
| JP29034499A JP2001118817A (en) | 1999-08-12 | 1999-10-12 | Surface-purifying device and method |
| US10/656,190 US20040045579A1 (en) | 1999-08-12 | 2003-09-08 | Surface purification apparatus and surface purification method |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/417,009 Continuation US6630031B1 (en) | 1999-08-12 | 1999-10-12 | Surface purification apparatus and surface purification method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20040045579A1 true US20040045579A1 (en) | 2004-03-11 |
Family
ID=26528536
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/417,009 Expired - Fee Related US6630031B1 (en) | 1999-08-12 | 1999-10-12 | Surface purification apparatus and surface purification method |
| US10/656,190 Abandoned US20040045579A1 (en) | 1999-08-12 | 2003-09-08 | Surface purification apparatus and surface purification method |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/417,009 Expired - Fee Related US6630031B1 (en) | 1999-08-12 | 1999-10-12 | Surface purification apparatus and surface purification method |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US6630031B1 (en) |
| JP (1) | JP2001118817A (en) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110287346A1 (en) * | 2010-05-19 | 2011-11-24 | Hoya Corporation | Mask blank manufacturing method, transfer mask manufacturing method, mask blank, and transfer mask |
| US20130054019A1 (en) * | 2011-08-26 | 2013-02-28 | Elwha LLC, a limited liability company of the State of Delaware | Treatment system and method for ingestible product dispensing system and method |
| US20130054020A1 (en) * | 2011-08-26 | 2013-02-28 | Elwha LLC, a limited liability company of the State of Delaware | Treatment system and method for ingestible product dispensing system and method |
| US20140055773A1 (en) * | 2012-08-21 | 2014-02-27 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Method and device for inspecting glass substrate of liquid crystal display |
| US8892249B2 (en) | 2011-08-26 | 2014-11-18 | Elwha Llc | Substance control system and method for dispensing systems |
| US8989895B2 (en) | 2011-08-26 | 2015-03-24 | Elwha, Llc | Substance control system and method for dispensing systems |
| US9037478B2 (en) | 2011-08-26 | 2015-05-19 | Elwha Llc | Substance allocation system and method for ingestible product preparation system and method |
| US9111256B2 (en) | 2011-08-26 | 2015-08-18 | Elwha Llc | Selection information system and method for ingestible product preparation system and method |
| US9240028B2 (en) | 2011-08-26 | 2016-01-19 | Elwha Llc | Reporting system and method for ingestible product preparation system and method |
| US9600850B2 (en) | 2011-08-26 | 2017-03-21 | Elwha Llc | Controlled substance authorization system and method for ingestible product preparation system and method |
| US9619958B2 (en) | 2012-06-12 | 2017-04-11 | Elwha Llc | Substrate structure duct treatment system and method for ingestible product system and method |
| US9785985B2 (en) | 2011-08-26 | 2017-10-10 | Elwha Llc | Selection information system and method for ingestible product preparation system and method |
| US9922576B2 (en) | 2011-08-26 | 2018-03-20 | Elwha Llc | Ingestion intelligence acquisition system and method for ingestible material preparation system and method |
| US10026336B2 (en) | 2011-08-26 | 2018-07-17 | Elwha Llc | Refuse intelligence acquisition system and method for ingestible product preparation system and method |
| US10104904B2 (en) | 2012-06-12 | 2018-10-23 | Elwha Llc | Substrate structure parts assembly treatment system and method for ingestible product system and method |
| US10121218B2 (en) | 2012-06-12 | 2018-11-06 | Elwha Llc | Substrate structure injection treatment system and method for ingestible product system and method |
| US10192037B2 (en) | 2011-08-26 | 2019-01-29 | Elwah LLC | Reporting system and method for ingestible product preparation system and method |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001252550A (en) * | 2000-03-10 | 2001-09-18 | Yokogawa Electric Corp | Steam supply device |
| US20030217762A1 (en) * | 2002-02-18 | 2003-11-27 | Lam Research Corporation | Water supply apparatus and method thereof |
| JP2004288766A (en) * | 2003-03-20 | 2004-10-14 | Tokyo Electron Ltd | Equipment and method for substrate processing |
| US20050199484A1 (en) * | 2004-02-10 | 2005-09-15 | Franek Olstowski | Ozone generator with dual dielectric barrier discharge and methods for using same |
| US20060237032A1 (en) * | 2005-04-22 | 2006-10-26 | Ming-Te Cheng | Cleaning method for semiconductor elements |
| CA2623358C (en) | 2005-09-26 | 2014-09-09 | University Of Leeds | Fuel injector |
| JP5478469B2 (en) * | 2010-11-29 | 2014-04-23 | オメガセミコン電子株式会社 | Superheated steam supply apparatus and substrate processing apparatus |
| JP5652357B2 (en) * | 2011-09-06 | 2015-01-14 | Tdk株式会社 | Washing and drying equipment |
| KR102623544B1 (en) | 2019-06-10 | 2024-01-10 | 삼성전자주식회사 | Wafer cleaning apparatus based on light irradiation and wafer cleaning system comprising the same |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4736758A (en) * | 1985-04-15 | 1988-04-12 | Wacom Co., Ltd. | Vapor drying apparatus |
| US5269878A (en) * | 1992-12-10 | 1993-12-14 | Vlsi Technology, Inc. | Metal patterning with dechlorinization in integrated circuit manufacture |
| US5326406A (en) * | 1991-07-31 | 1994-07-05 | Kawasaki Steel Corporation | Method of cleaning semiconductor substrate and apparatus for carrying out the same |
| US5503708A (en) * | 1992-11-27 | 1996-04-02 | Hitachi, Ltd. | Method of and apparatus for removing an organic film |
| US5964952A (en) * | 1994-10-04 | 1999-10-12 | Kunze-Concewitz; Horst | Method of cleaning surfaces with water and steam |
| US6146469A (en) * | 1998-02-25 | 2000-11-14 | Gamma Precision Technology | Apparatus and method for cleaning semiconductor wafers |
| US6152153A (en) * | 1997-12-08 | 2000-11-28 | Kabushiki Kaisha Toshiba | Substrate cleaning/drying equipment and substrate cleaning/drying method |
| US6178973B1 (en) * | 1998-07-28 | 2001-01-30 | International Business Machines Corporation | Method and apparatus for ozone generation and surface treatment |
| US6503464B1 (en) * | 1999-08-12 | 2003-01-07 | Sipec Corporation | Ultraviolet processing apparatus and ultraviolet processing method |
| US6508258B1 (en) * | 1998-10-05 | 2003-01-21 | Lorimer D'arcy Harold | Method and apparatus for cleaning flat workpieces within a semiconductor manufacturing system |
| US6601594B2 (en) * | 1997-05-09 | 2003-08-05 | Semitool, Inc. | Apparatus and method for delivering a treatment liquid and ozone to treat the surface of a workpiece |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62126638A (en) * | 1985-11-27 | 1987-06-08 | Fujitsu Ltd | Preprocessing method for semiconductor substrate |
| JPH04369222A (en) * | 1991-06-17 | 1992-12-22 | Kawasaki Steel Corp | Manufacture of semiconductor device |
| JP3751324B2 (en) * | 1993-12-10 | 2006-03-01 | 忠弘 大見 | Substrate surface cleaning method and surface cleaning agent |
-
1999
- 1999-10-12 JP JP29034499A patent/JP2001118817A/en active Pending
- 1999-10-12 US US09/417,009 patent/US6630031B1/en not_active Expired - Fee Related
-
2003
- 2003-09-08 US US10/656,190 patent/US20040045579A1/en not_active Abandoned
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4736758A (en) * | 1985-04-15 | 1988-04-12 | Wacom Co., Ltd. | Vapor drying apparatus |
| US5326406A (en) * | 1991-07-31 | 1994-07-05 | Kawasaki Steel Corporation | Method of cleaning semiconductor substrate and apparatus for carrying out the same |
| US5503708A (en) * | 1992-11-27 | 1996-04-02 | Hitachi, Ltd. | Method of and apparatus for removing an organic film |
| US5269878A (en) * | 1992-12-10 | 1993-12-14 | Vlsi Technology, Inc. | Metal patterning with dechlorinization in integrated circuit manufacture |
| US5964952A (en) * | 1994-10-04 | 1999-10-12 | Kunze-Concewitz; Horst | Method of cleaning surfaces with water and steam |
| US6601594B2 (en) * | 1997-05-09 | 2003-08-05 | Semitool, Inc. | Apparatus and method for delivering a treatment liquid and ozone to treat the surface of a workpiece |
| US6152153A (en) * | 1997-12-08 | 2000-11-28 | Kabushiki Kaisha Toshiba | Substrate cleaning/drying equipment and substrate cleaning/drying method |
| US6146469A (en) * | 1998-02-25 | 2000-11-14 | Gamma Precision Technology | Apparatus and method for cleaning semiconductor wafers |
| US6178973B1 (en) * | 1998-07-28 | 2001-01-30 | International Business Machines Corporation | Method and apparatus for ozone generation and surface treatment |
| US6508258B1 (en) * | 1998-10-05 | 2003-01-21 | Lorimer D'arcy Harold | Method and apparatus for cleaning flat workpieces within a semiconductor manufacturing system |
| US6503464B1 (en) * | 1999-08-12 | 2003-01-07 | Sipec Corporation | Ultraviolet processing apparatus and ultraviolet processing method |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8535855B2 (en) * | 2010-05-19 | 2013-09-17 | Hoya Corporation | Mask blank manufacturing method, transfer mask manufacturing method, mask blank, and transfer mask |
| US20110287346A1 (en) * | 2010-05-19 | 2011-11-24 | Hoya Corporation | Mask blank manufacturing method, transfer mask manufacturing method, mask blank, and transfer mask |
| US9600850B2 (en) | 2011-08-26 | 2017-03-21 | Elwha Llc | Controlled substance authorization system and method for ingestible product preparation system and method |
| US9997006B2 (en) * | 2011-08-26 | 2018-06-12 | Elwha Llc | Treatment system and method for ingestible product dispensing system and method |
| US10192037B2 (en) | 2011-08-26 | 2019-01-29 | Elwah LLC | Reporting system and method for ingestible product preparation system and method |
| US8892249B2 (en) | 2011-08-26 | 2014-11-18 | Elwha Llc | Substance control system and method for dispensing systems |
| US8989895B2 (en) | 2011-08-26 | 2015-03-24 | Elwha, Llc | Substance control system and method for dispensing systems |
| US9037478B2 (en) | 2011-08-26 | 2015-05-19 | Elwha Llc | Substance allocation system and method for ingestible product preparation system and method |
| US9111256B2 (en) | 2011-08-26 | 2015-08-18 | Elwha Llc | Selection information system and method for ingestible product preparation system and method |
| US9240028B2 (en) | 2011-08-26 | 2016-01-19 | Elwha Llc | Reporting system and method for ingestible product preparation system and method |
| US20130054019A1 (en) * | 2011-08-26 | 2013-02-28 | Elwha LLC, a limited liability company of the State of Delaware | Treatment system and method for ingestible product dispensing system and method |
| US10026336B2 (en) | 2011-08-26 | 2018-07-17 | Elwha Llc | Refuse intelligence acquisition system and method for ingestible product preparation system and method |
| US9785985B2 (en) | 2011-08-26 | 2017-10-10 | Elwha Llc | Selection information system and method for ingestible product preparation system and method |
| US9922576B2 (en) | 2011-08-26 | 2018-03-20 | Elwha Llc | Ingestion intelligence acquisition system and method for ingestible material preparation system and method |
| US9947167B2 (en) * | 2011-08-26 | 2018-04-17 | Elwha Llc | Treatment system and method for ingestible product dispensing system and method |
| US20130054020A1 (en) * | 2011-08-26 | 2013-02-28 | Elwha LLC, a limited liability company of the State of Delaware | Treatment system and method for ingestible product dispensing system and method |
| US9619958B2 (en) | 2012-06-12 | 2017-04-11 | Elwha Llc | Substrate structure duct treatment system and method for ingestible product system and method |
| US10104904B2 (en) | 2012-06-12 | 2018-10-23 | Elwha Llc | Substrate structure parts assembly treatment system and method for ingestible product system and method |
| US10121218B2 (en) | 2012-06-12 | 2018-11-06 | Elwha Llc | Substrate structure injection treatment system and method for ingestible product system and method |
| US20140055773A1 (en) * | 2012-08-21 | 2014-02-27 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Method and device for inspecting glass substrate of liquid crystal display |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2001118817A (en) | 2001-04-27 |
| US6630031B1 (en) | 2003-10-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6630031B1 (en) | Surface purification apparatus and surface purification method | |
| TW466558B (en) | Method of removing contamination adhered to surfaces and apparatus used therefor | |
| US6610168B1 (en) | Resist film removal apparatus and resist film removal method | |
| CN100510958C (en) | Pattern forming method | |
| JP3410720B2 (en) | Cleaning method for quartz substrate using conductive solution | |
| TWI667708B (en) | Method and hardware for enhanced removal of post etch polymer and hardmask removal | |
| WO1996041370A1 (en) | Removal of material by polarized radiation and back side application of radiation | |
| TW201306117A (en) | Substrate processing method and substrate processing apparatus | |
| JP2006229198A (en) | Method and apparatus for UV internal cleaning equipment | |
| US20020083961A1 (en) | Method and apparatus for cleaning semiconductor wafer | |
| JP4917651B2 (en) | Resist film removing apparatus and resist film removing method | |
| JP5287558B2 (en) | Substrate processing method | |
| TW200834706A (en) | Method for removing foreign matters from substrate surface | |
| Zafonte et al. | UV/ozone cleaning for organics removal on silicon wafers | |
| KR930010054B1 (en) | Cleaning agent and cleaning method using the same | |
| CN115903374A (en) | Substrate for blank mask, cleaning method thereof, and blank mask including same | |
| JP3457059B2 (en) | Container cleaning method and cleaning device | |
| Singh et al. | Techniques for removal of contamination from EUVL mask without surface damage | |
| Mercadier et al. | Hydrophobic Films Surface Preparation And Its Impact On Wet Cleaning | |
| KR101431506B1 (en) | Stripping and removal of organic-containing materials from electronic device substrate surfaces | |
| Hirano et al. | Surface preparation of EUVL mask substrate for multilayer coating by supersonic hydrocleaning technique | |
| JP2011129800A (en) | Exposure apparatus, surface treatment method, and device manufacturing method | |
| Kim et al. | A novel cleaning approach to remove the carbon contaminant from Ru surface of EUV mask | |
| Sanada et al. | Resist Stripping and Surface Cleaning Technique using High Speed Steam-Droplet Mixture | |
| Chinn | Microfabrication techniques for biologists: a primer on building micromachines |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |