US20030174587A1 - Method of correcting a real-time clock of an electronic apparatus - Google Patents
Method of correcting a real-time clock of an electronic apparatus Download PDFInfo
- Publication number
- US20030174587A1 US20030174587A1 US10/276,196 US27619602A US2003174587A1 US 20030174587 A1 US20030174587 A1 US 20030174587A1 US 27619602 A US27619602 A US 27619602A US 2003174587 A1 US2003174587 A1 US 2003174587A1
- Authority
- US
- United States
- Prior art keywords
- clock
- real
- time
- time clock
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000004590 computer program Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 4
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/72—Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
- H04M1/724—User interfaces specially adapted for cordless or mobile telephones
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G3/00—Producing timing pulses
- G04G3/02—Circuits for deriving low frequency timing pulses from pulses of higher frequency
- G04G3/022—Circuits for deriving low frequency timing pulses from pulses of higher frequency the desired number of pulses per unit of time being obtained by adding to or substracting from a pulse train one or more pulses
Definitions
- the invention relates to a method of correcting a real-time clock of an electronic apparatus, notably a mobile telephone, the real-time clock operating with a first clock generator which generates a real-time clock while the electronic apparatus operates with a second clock generator which generates a system clock.
- the second clock generator serves to generate a system clock with which the mobile telephone operates. For example, the relevant transmission frequencies or the entire transmission between mobile telephone and network are derived from the clock given.
- An extremely stable RF oscillator is used as a clock generator; such an oscillator usually oscillates at a frequency of 13 MHz.
- a first clock generator which drives a real-time clock. This first clock generator is of relevance on the one hand for the transmission and receiving mode of the mobile telephone, because it delivers the temporal information for the paging mode of the mobile telephone.
- time intervals are subdivided into individual, successive frames as is known quite well in the field of mobile telephones, so that it need not be explained further.
- the real-time clock also serves to enable display of the actual time to the user of the telephone.
- the first clock generator is usually a 32 kHz or 64 kHz quartz oscillator.
- a 32 kHz oscillator an ideal quartz oscillator oscillates at a frequency of 32768 Hz.
- Oscillators customarily used for this purpose usually deviate from this ideal frequency or, since they are comparatively simple and inexpensive components, are comparatively unstable and respond, for example, to temperature fluctuations by exhibiting frequency fluctuations, etc. Because of the frequency instability, therefore, the real-time clock runs incorrectly. Consequently, the time that can be displayed to the user does not correspond to the real time. Such deviations are larger, or occur faster after adjustment of the real-time clock, as the actual frequency deviates more from the previously mentioned standard frequency of, for example, 32768 Hz. This means that the user has to readjust the clock at comparatively short intervals.
- the actual frequency of the real-time clock is first determined in an arbitrary manner, meaning that the frequency at which the real-time clock oscillates is determined.
- the term “actual frequency” does not necessarily mean the relevant instantaneous frequency; to the contrary, the actual frequency, or corresponding information enabling determination of the actual frequency, may have been determined already prior to the correction step.
- the ratio of this actual frequency to the standard frequency of the ideal oscillator is determined in order to determine the deviation of the real-time clock per second therefrom.
- the time difference dt within which the real-time clock must be readjusted by a correction time difference ⁇ t can be readily determined, be it that the clock is too slow and must be advanced or that the clock is too fast and must be set back. Subsequently, after expiration of dt the clock is readjusted by ⁇ t.
- the method in accordance with the invention thus enables automatic correction, so that the user is always displayed the real time.
- the correction mechanism may be automatic to the extent that continuous correction is performed in such a manner that either the actual frequency is determined each time after expiration of dt, so after a preceding correction, and a new time difference dt is determined, said new time difference dt relating to the last correction instant.
- Arbitrary schemes as to when or how often and on the basis of which actual frequency the correction is performed are thus feasible.
- the actual frequency is determined from the previously determined ratio of the frequency system clock to the actual frequency of the real-time clock.
- a value indicating the ratio of the frequency of the system clock to the actual frequency of the real-time clock is inherently determined on the basis of software.
- this ratio or the value is calculated instead from the given system clock and clock information arising from the frame mode of operation.
- the deviation of the real-time clock can thus be determined so as to be taken into account in the context of the frame mode of operation.
- the determination of this ratio or value is known per se and need not be further elaborated.
- this ratio indicates the ratio of the system clock frequency to the real-time clock frequency and because the system clock frequency is extremely stable, that is, at least approximately the same at any instant, the actual frequency of the real-time clock can be simply derived from this ratio so as to be used as a basis for further processing. Alternatively, of course, it is also possible to determine the actual frequency of the real-time clock directly.
- the determination and correction can take place automatically and continuously.
- a change of the real-time clock frequency underlying the calculation arises from a change of the value of the ratio which is also determined anew by software, that is, each time after expiration of a given period of time.
- This ratio value is stored in a register in known mobile telephones. After determination of a new ratio value, it is written into the register and read out so as to determine the actual frequency when necessary.
- the invention also relates to a real-time clock for generating and delivering signals indicating the time of day, which clock includes:
- a clock generator for generating a real-time clock for operating the real-time clock
- [0018] means for determining the deviation time of the real-time clock per second and, on the basis thereof, a time difference dt within which the real-time clock is to be corrected by the correction time difference ⁇ t, and for generating a correction time difference signal after expiration of the time dt.
- the first means may be arranged to determine the actual frequency of the real-time clock, to determine the ratio V clock/standard of the actual frequency of the real-time clock to the reference frequency of a standard clock, to determine the deviation time of the real-time clock per second from the difference (1 ⁇ V clock/standard ), and to determine the time difference dt, on the basis of the deviation time per second, within which the real-time clock is to be corrected by a correction time difference ⁇ t.
- the first means may be arranged to determine the actual frequency of the real-time clock from an already known ratio of the frequency of a system clock at which an electronic apparatus comprising the real-time clock, notably a mobile telephone, operates to the actual frequency of the real-time clock.
- the means are advantageously implemented in the form of a computer program with program coding means conceived in conformity with the method, meaning that the complete determination of all relevant parameters takes place purely mathematically.
- program coding means conceived in conformity with the method, meaning that the complete determination of all relevant parameters takes place purely mathematically.
- electrical signals are to be generated.
- the corrected clock time is automatically displayed on the display.
- the invention also relates to an electronic apparatus, notably a mobile telephone, which includes a real-time clock which operates with a first clock generator which generates a real-time clock and with a second clock generator which generates a system clock and with which the electronic apparatus, notably the mobile telephone, operates.
- This electronic apparatus is characterized in that it includes a real-time clock of the described kind.
- the drawing shows the principle of an electronic apparatus in accordance with the invention in the form of a mobile telephone which is provided with a real-time clock in accordance with the invention.
- the drawing shows merely the components which are of relevance for carrying out the described method; other customary components of a mobile telephone have been omitted for the sake of clarity.
- the reference numeral 1 denotes the general system of a mobile telephone with all of its operative elements. Such operative elements include a second clock generator 2 which is denoted by the reference T 2 . With the system 1 there is associated a real-time clock 3 which has its own clock generator 4 which is denoted by the reference T 1 in the figure.
- the real-time clock also includes means 5 in the form of an appropriate software program which serves to determine the necessary correction of the real time which is displayed, for example, on a display 6 .
- the real-time clock 3 communicates with a register memory 7 in which a ratio value V, determined by suitable arithmetic means 8 of the system 1 , is written continuously.
- This purely arithmetically determined ratio value V represents the ratio of the frequency of the second clock generator 2 to the actual frequency of the first clock generator 4 .
- the second clock generator 2 is a very stable 13 MHz oscillator via which the entire system of the mobile telephone operates. In respect of the transmission mode this system operates in the frame mode in which the time-related information concerning the relevant frame is supplied by the first clock generator 4 for the real-time clock.
- the arithmetic means 8 can determine the ratio V from the succession of frames in relation to the oscillation mode of the second clock generator 2 .
- the means 5 of the real-time clock 3 are constructed in such a manner that they are capable of determining the actual frequency of the real-time clock from the ratio V. This ratio is determined and stored anew at predetermined time intervals. Because the second clock generator 2 oscillates in a very stable manner, any changes of the stored ratio can be attributed exclusively to changes of the frequency of the first clock generator 4 , for example, a 32 kHz oscillator.
- the means 5 After determination of the actual frequency of the real-time clock, the means 5 determine the ratio V clock/standard of the actual frequency of the real-time clock to the reference frequency of a standard clock.
- a frequency of 32768 Hz is to be considered as the standard clock in the case of a first clock generator 4 formed by a 32 kHz oscillator. Depending on whether the clock is fast or slow, this ratio will be larger or smaller than 1.
- the means 5 determine the deviation time of the real-time clock per second from the difference (1 ⁇ V clock/standard ). Subsequently, from this deviation time per second the means 5 determine the time difference dt after which the real-time clock must be corrected by a predetermined correction time difference ⁇ t, for example, one second.
- the corresponding correction of the clock is performed continuously, that is, each time after expiration of such a time difference, the overall operation advantageously being automatic and continuous.
- the display 6 thus continuously displays the correct clock time or, in as far as no seconds are displayed, the clock time displayed is based at least on the correct real time.
- the first clock generator 4 is a 32 kHz oscillator and that the second clock generator 2 is a 13 MHz generator. It is also assumed that for the ratio V the value “403.50” is written in the register 7 .
- a deviation time of the real-time clock per second is then calculated as:
- the real-time clock is 0.017 seconds slow per second.
- the method in accordance with the invention enables simple correction of the real-time clock.
- the accuracy of the first clock generator used in the real-time clock is then no longer determined by the accuracy requirements of the real-time clock, which can be simply corrected on the basis of the method in accordance with the invention, but by other components of the system, so that cheaper quartz crystals can be used for the first clock generators, if desired.
- additional components such as, for example, a variable capacitor via which the deviation of the real-time clock is corrected in conformity with the state of the art (being an intricate operation because of the components additionally required for controlling the capacitor) can now be dispensed with.
- the correction time automatically takes into account also the temperature dependency of the first clock generator.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electric Clocks (AREA)
Abstract
Description
- The invention relates to a method of correcting a real-time clock of an electronic apparatus, notably a mobile telephone, the real-time clock operating with a first clock generator which generates a real-time clock while the electronic apparatus operates with a second clock generator which generates a system clock.
- Electronic apparatus of this kind are known, for example in the form of mobile telephones. The second clock generator serves to generate a system clock with which the mobile telephone operates. For example, the relevant transmission frequencies or the entire transmission between mobile telephone and network are derived from the clock given. An extremely stable RF oscillator is used as a clock generator; such an oscillator usually oscillates at a frequency of 13 MHz. There is also provided a first clock generator which drives a real-time clock. This first clock generator is of relevance on the one hand for the transmission and receiving mode of the mobile telephone, because it delivers the temporal information for the paging mode of the mobile telephone. In the context of such a paging mode time intervals are subdivided into individual, successive frames as is known quite well in the field of mobile telephones, so that it need not be explained further. The real-time clock also serves to enable display of the actual time to the user of the telephone.
- The first clock generator is usually a 32 kHz or 64 kHz quartz oscillator. For example, in the case of a 32 kHz oscillator an ideal quartz oscillator oscillates at a frequency of 32768 Hz. Oscillators customarily used for this purpose, however, usually deviate from this ideal frequency or, since they are comparatively simple and inexpensive components, are comparatively unstable and respond, for example, to temperature fluctuations by exhibiting frequency fluctuations, etc. Because of the frequency instability, therefore, the real-time clock runs incorrectly. Consequently, the time that can be displayed to the user does not correspond to the real time. Such deviations are larger, or occur faster after adjustment of the real-time clock, as the actual frequency deviates more from the previously mentioned standard frequency of, for example, 32768 Hz. This means that the user has to readjust the clock at comparatively short intervals.
- Therefore, it is an object of the invention to provide a method which enables correction of such real time in a simple manner, that is, without user intervention being required.
- In order to achieve this object, a method of the kind set forth in accordance with the invention is characterized in that it includes the following steps:
- determining the actual frequency of the real-time clock,
- determining the ratio V clock/standard of the actual frequency of the real-time clock to the reference frequency of a standard clock,
- determining the deviation time of the real-time clock per second from the difference (1−V clock/standard),
- determining, on the basis of the deviation time per second, a time difference dt within which the real-time clock is to be corrected by a correction time difference Δt,
- correcting the real time by Δt after expiration of dt.
- In conformity with the method of the invention, the actual frequency of the real-time clock is first determined in an arbitrary manner, meaning that the frequency at which the real-time clock oscillates is determined. In this context the term “actual frequency” does not necessarily mean the relevant instantaneous frequency; to the contrary, the actual frequency, or corresponding information enabling determination of the actual frequency, may have been determined already prior to the correction step. Subsequently, the ratio of this actual frequency to the standard frequency of the ideal oscillator is determined in order to determine the deviation of the real-time clock per second therefrom. When this deviation per second is known, the time difference dt within which the real-time clock must be readjusted by a correction time difference Δt, for example, one second, can be readily determined, be it that the clock is too slow and must be advanced or that the clock is too fast and must be set back. Subsequently, after expiration of dt the clock is readjusted by Δt. The method in accordance with the invention thus enables automatic correction, so that the user is always displayed the real time.
- The correction mechanism may be automatic to the extent that continuous correction is performed in such a manner that either the actual frequency is determined each time after expiration of dt, so after a preceding correction, and a new time difference dt is determined, said new time difference dt relating to the last correction instant. Alternatively, of course, it is also possible to retain the actual frequency determined for a given period of time and to perform a new determination only after expiration of several time differences dt so as to perform a correction each time after expiration of dt. Arbitrary schemes as to when or how often and on the basis of which actual frequency the correction is performed are thus feasible.
- According to a further elaboration of the invention it may be arranged that the actual frequency is determined from the previously determined ratio of the frequency system clock to the actual frequency of the real-time clock. In many mobile telephones a value indicating the ratio of the frequency of the system clock to the actual frequency of the real-time clock is inherently determined on the basis of software. In that case the actual frequency of the real-time clock is not directly determined; this ratio or the value is calculated instead from the given system clock and clock information arising from the frame mode of operation. For the frame mode of operation the deviation of the real-time clock can thus be determined so as to be taken into account in the context of the frame mode of operation. The determination of this ratio or value is known per se and need not be further elaborated. However, because this ratio indicates the ratio of the system clock frequency to the real-time clock frequency and because the system clock frequency is extremely stable, that is, at least approximately the same at any instant, the actual frequency of the real-time clock can be simply derived from this ratio so as to be used as a basis for further processing. Alternatively, of course, it is also possible to determine the actual frequency of the real-time clock directly.
- In a further elaboration of the idea of the invention it may be arranged that for the time difference it is determined when the real-time clock is to be corrected by a correction time difference of one second. Thus, in conformity with this version of the invention the real-time clock can deviate by one second at the most, because the correction takes place automatically after expiration of a time difference within which the clock is one second fast or slow.
- As described above, the determination and correction can take place automatically and continuously. In the case where the actual frequency is determined from the ratio of the system clock frequency to the real-time clock frequency, a change of the real-time clock frequency underlying the calculation arises from a change of the value of the ratio which is also determined anew by software, that is, each time after expiration of a given period of time. This ratio value is stored in a register in known mobile telephones. After determination of a new ratio value, it is written into the register and read out so as to determine the actual frequency when necessary.
- In addition to the method, the invention also relates to a real-time clock for generating and delivering signals indicating the time of day, which clock includes:
- a clock generator for generating a real-time clock for operating the real-time clock, and
- means for determining the deviation time of the real-time clock per second and, on the basis thereof, a time difference dt within which the real-time clock is to be corrected by the correction time difference Δt, and for generating a correction time difference signal after expiration of the time dt.
- The first means may be arranged to determine the actual frequency of the real-time clock, to determine the ratio V clock/standard of the actual frequency of the real-time clock to the reference frequency of a standard clock, to determine the deviation time of the real-time clock per second from the difference (1−Vclock/standard), and to determine the time difference dt, on the basis of the deviation time per second, within which the real-time clock is to be corrected by a correction time difference Δt. Furthermore, the first means may be arranged to determine the actual frequency of the real-time clock from an already known ratio of the frequency of a system clock at which an electronic apparatus comprising the real-time clock, notably a mobile telephone, operates to the actual frequency of the real-time clock.
- The means are advantageously implemented in the form of a computer program with program coding means conceived in conformity with the method, meaning that the complete determination of all relevant parameters takes place purely mathematically. For readjustment of the real-time clock, finally, electrical signals are to be generated. When the signals are generated, the corrected clock time is automatically displayed on the display.
- Finally, the invention also relates to an electronic apparatus, notably a mobile telephone, which includes a real-time clock which operates with a first clock generator which generates a real-time clock and with a second clock generator which generates a system clock and with which the electronic apparatus, notably the mobile telephone, operates. This electronic apparatus is characterized in that it includes a real-time clock of the described kind.
- Further advantages, characteristics and details of the invention will become apparent from the following description of an embodiment which is given with reference to the drawing.
- The drawing shows the principle of an electronic apparatus in accordance with the invention in the form of a mobile telephone which is provided with a real-time clock in accordance with the invention. The drawing shows merely the components which are of relevance for carrying out the described method; other customary components of a mobile telephone have been omitted for the sake of clarity.
- The
reference numeral 1 denotes the general system of a mobile telephone with all of its operative elements. Such operative elements include asecond clock generator 2 which is denoted by the reference T2. With thesystem 1 there is associated a real-time clock 3 which has itsown clock generator 4 which is denoted by the reference T1 in the figure. The real-time clock also includesmeans 5 in the form of an appropriate software program which serves to determine the necessary correction of the real time which is displayed, for example, on adisplay 6. - The real-
time clock 3 communicates with aregister memory 7 in which a ratio value V, determined by suitable arithmetic means 8 of thesystem 1, is written continuously. This purely arithmetically determined ratio value V represents the ratio of the frequency of thesecond clock generator 2 to the actual frequency of thefirst clock generator 4. Thesecond clock generator 2 is a very stable 13 MHz oscillator via which the entire system of the mobile telephone operates. In respect of the transmission mode this system operates in the frame mode in which the time-related information concerning the relevant frame is supplied by thefirst clock generator 4 for the real-time clock. The arithmetic means 8 can determine the ratio V from the succession of frames in relation to the oscillation mode of thesecond clock generator 2. - The
means 5 of the real-time clock 3 are constructed in such a manner that they are capable of determining the actual frequency of the real-time clock from the ratio V. This ratio is determined and stored anew at predetermined time intervals. Because thesecond clock generator 2 oscillates in a very stable manner, any changes of the stored ratio can be attributed exclusively to changes of the frequency of thefirst clock generator 4, for example, a 32 kHz oscillator. - After determination of the actual frequency of the real-time clock, the
means 5 determine the ratio Vclock/standard of the actual frequency of the real-time clock to the reference frequency of a standard clock. A frequency of 32768 Hz is to be considered as the standard clock in the case of afirst clock generator 4 formed by a 32 kHz oscillator. Depending on whether the clock is fast or slow, this ratio will be larger or smaller than 1. Subsequently, themeans 5 determine the deviation time of the real-time clock per second from the difference (1−Vclock/standard). Subsequently, from this deviation time per second themeans 5 determine the time difference dt after which the real-time clock must be corrected by a predetermined correction time difference Δt, for example, one second. After determination of this time difference, the corresponding correction of the clock is performed continuously, that is, each time after expiration of such a time difference, the overall operation advantageously being automatic and continuous. Thedisplay 6 thus continuously displays the correct clock time or, in as far as no seconds are displayed, the clock time displayed is based at least on the correct real time. - Hereinafter, the method in accordance with the invention will be illustrated briefly again on the basis of an example.
- It is assumed that the
first clock generator 4 is a 32 kHz oscillator and that thesecond clock generator 2 is a 13 MHz generator. It is also assumed that for the ratio V the value “403.50” is written in theregister 7. -
- The actual frequency of the real-time clock thus amounts to 32218.1 Hz, that is, starting from the ratio V=403.50 determined at an earlier instant.
- The ratio V clock/standard results therefrom as follows:
- Vclock/standard=32218,1:32768=0,983.
- A deviation time of the real-time clock per second is then calculated as:
- t deviationrror/s=1−V clock standard=1−0.983=0.017.
- Thus, the real-time clock is 0.017 seconds slow per second.
- The time difference dt after which a correction time difference Δt of one second has accumulated can be calculated therefrom:
- dt=1:0.017=58.823 s.
- This means that the real-time clock, being slow in this case, is to be advanced by one second after 58.823 seconds.
- Overall, the method in accordance with the invention enables simple correction of the real-time clock. The accuracy of the first clock generator used in the real-time clock is then no longer determined by the accuracy requirements of the real-time clock, which can be simply corrected on the basis of the method in accordance with the invention, but by other components of the system, so that cheaper quartz crystals can be used for the first clock generators, if desired. Furthermore, additional components such as, for example, a variable capacitor via which the deviation of the real-time clock is corrected in conformity with the state of the art (being an intricate operation because of the components additionally required for controlling the capacitor) can now be dispensed with. Moreover, the correction time automatically takes into account also the temperature dependency of the first clock generator.
Claims (9)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10112373A DE10112373A1 (en) | 2001-03-15 | 2001-03-15 | Correcting real time clock for electronic unit involves determining time difference using error time per second within which real time clock is to be corrected by correction time difference |
| PCT/IB2002/000796 WO2002076061A1 (en) | 2001-03-15 | 2002-03-13 | Method of correcting a real-time clock of an electronic apparatus |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20030174587A1 true US20030174587A1 (en) | 2003-09-18 |
| US7118269B2 US7118269B2 (en) | 2006-10-10 |
Family
ID=7677503
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/276,196 Expired - Lifetime US7118269B2 (en) | 2001-03-15 | 2002-03-13 | Method of correcting a real-time clock of an electronic apparatus |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US7118269B2 (en) |
| EP (1) | EP1371208B1 (en) |
| JP (1) | JP2004519679A (en) |
| AT (1) | ATE431671T1 (en) |
| DE (2) | DE10112373A1 (en) |
| WO (1) | WO2002076061A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030076747A1 (en) * | 2001-10-19 | 2003-04-24 | Lg Electronics, Inc. | Time error compensating apparatus and method in a terminal |
| US20040194110A1 (en) * | 2003-03-26 | 2004-09-30 | Microsoft Corporation | Extensible user context system for delivery of notifications |
| WO2006070261A1 (en) * | 2004-12-30 | 2006-07-06 | Nokia Corporation | System and method for representing a secure time on a device on an insecure clock |
| US20080316867A1 (en) * | 2007-06-20 | 2008-12-25 | Princeton Technology Corporation | Correction apparatus and clock device using the same |
| US20090180358A1 (en) * | 2008-01-10 | 2009-07-16 | Oki Semiconductor Co., Ltd. | Frequency corrector and clocking apparatus using the same |
| CN102455656A (en) * | 2010-10-22 | 2012-05-16 | 比亚迪股份有限公司 | Automobile clock calibration system and calibration method |
| US9898034B2 (en) * | 2013-09-09 | 2018-02-20 | Intel IP Corporation | Data processing device and method for determining a clock relationship |
| US20240168537A1 (en) * | 2022-11-18 | 2024-05-23 | Nxp Usa, Inc. | System |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102005020349B4 (en) * | 2005-05-02 | 2007-05-03 | Prof. Dr. Horst Ziegler und Partner GbR (vertretungsberechtigter Gesellschafter: Prof. Dr. Horst Ziegler 33100 Paderborn) | Metering system |
| US7636276B2 (en) | 2006-01-03 | 2009-12-22 | Alan Navarre | Device for measurement of geo-solar time parameters |
| US20090257321A1 (en) * | 2008-04-14 | 2009-10-15 | Gary Lee Scott | Dithering control of oscillator frequency to reduce cumulative timing error in a clock |
| KR101346185B1 (en) | 2012-03-28 | 2013-12-31 | 삼성중공업 주식회사 | A RTC module and a computer system including thereof |
| US9317059B2 (en) | 2013-11-20 | 2016-04-19 | Intel IP Corporation | Systems and methods for tracking elapsed time |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4378167A (en) * | 1979-03-29 | 1983-03-29 | Kabushiki Kaisha Suwa Seikosha | Electronic timepiece with frequency correction |
| US4407589A (en) * | 1981-02-13 | 1983-10-04 | Davidson John R | Error correction method and apparatus for electronic timepieces |
| US4408897A (en) * | 1982-09-22 | 1983-10-11 | Ebauches Electroniques S.A. | Electronic timepiece having a digital frequency correction circuit |
| US4903251A (en) * | 1989-09-05 | 1990-02-20 | Ford Motor Company | Accuracy adjustment for time-of-day clock using a microcontroller |
| US5375105A (en) * | 1993-07-20 | 1994-12-20 | Borowski; Raymond J. | Timekeeping rate regulator for crystal controlled watches and clocks |
| US5481507A (en) * | 1993-11-29 | 1996-01-02 | Mitsubishi Denki Kabushiki Kaisha | Electronic timekeeping device reduced adjustment data storage requirement |
| US5717661A (en) * | 1994-12-20 | 1998-02-10 | Poulson; T. Earl | Method and apparatus for adjusting the accuracy of electronic timepieces |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FI95980C (en) * | 1992-09-04 | 1996-04-10 | Nokia Mobile Phones Ltd | Method and switchgear for accurate measurement of time with an inaccurate clock |
| US5313154A (en) | 1992-10-28 | 1994-05-17 | Honeywell Inc. | Apparatus for detecting a frequency deviation between two frequency sources |
| JP2624176B2 (en) * | 1994-05-20 | 1997-06-25 | 日本電気株式会社 | Electronic clock and time correction method |
| US5613235A (en) | 1995-06-29 | 1997-03-18 | Nokia Mobile Phones Limited | Operation of a radiotelephone in a synchronous extended standby mode for conserving battery power |
| JPH10190568A (en) * | 1996-12-27 | 1998-07-21 | Matsushita Electric Ind Co Ltd | Wireless receiver |
| US6304517B1 (en) * | 1999-06-18 | 2001-10-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for real time clock frequency error correction |
-
2001
- 2001-03-15 DE DE10112373A patent/DE10112373A1/en not_active Withdrawn
-
2002
- 2002-03-13 AT AT02703815T patent/ATE431671T1/en not_active IP Right Cessation
- 2002-03-13 US US10/276,196 patent/US7118269B2/en not_active Expired - Lifetime
- 2002-03-13 DE DE60232312T patent/DE60232312D1/en not_active Expired - Lifetime
- 2002-03-13 WO PCT/IB2002/000796 patent/WO2002076061A1/en active Application Filing
- 2002-03-13 JP JP2002573406A patent/JP2004519679A/en active Pending
- 2002-03-13 EP EP02703815A patent/EP1371208B1/en not_active Expired - Lifetime
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4378167A (en) * | 1979-03-29 | 1983-03-29 | Kabushiki Kaisha Suwa Seikosha | Electronic timepiece with frequency correction |
| US4407589A (en) * | 1981-02-13 | 1983-10-04 | Davidson John R | Error correction method and apparatus for electronic timepieces |
| US4408897A (en) * | 1982-09-22 | 1983-10-11 | Ebauches Electroniques S.A. | Electronic timepiece having a digital frequency correction circuit |
| US4903251A (en) * | 1989-09-05 | 1990-02-20 | Ford Motor Company | Accuracy adjustment for time-of-day clock using a microcontroller |
| US5375105A (en) * | 1993-07-20 | 1994-12-20 | Borowski; Raymond J. | Timekeeping rate regulator for crystal controlled watches and clocks |
| US5481507A (en) * | 1993-11-29 | 1996-01-02 | Mitsubishi Denki Kabushiki Kaisha | Electronic timekeeping device reduced adjustment data storage requirement |
| US5717661A (en) * | 1994-12-20 | 1998-02-10 | Poulson; T. Earl | Method and apparatus for adjusting the accuracy of electronic timepieces |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6961287B2 (en) * | 2001-10-19 | 2005-11-01 | Lg Electronics Inc. | Time error compensating apparatus and method in a terminal |
| US20030076747A1 (en) * | 2001-10-19 | 2003-04-24 | Lg Electronics, Inc. | Time error compensating apparatus and method in a terminal |
| US20040194110A1 (en) * | 2003-03-26 | 2004-09-30 | Microsoft Corporation | Extensible user context system for delivery of notifications |
| US8316456B2 (en) | 2004-12-30 | 2012-11-20 | Nokia Corporation | System and method for representing a secure time in a device based upon an insecure clock |
| WO2006070261A1 (en) * | 2004-12-30 | 2006-07-06 | Nokia Corporation | System and method for representing a secure time on a device on an insecure clock |
| US20060150254A1 (en) * | 2004-12-30 | 2006-07-06 | Nokia Corporation | System and method for representing a secure time in a device based upon an insecure clock |
| US20080316867A1 (en) * | 2007-06-20 | 2008-12-25 | Princeton Technology Corporation | Correction apparatus and clock device using the same |
| US7854544B2 (en) * | 2007-06-20 | 2010-12-21 | Princeton Technology Corporation | Correction apparatus and clock device using the same |
| US20090180358A1 (en) * | 2008-01-10 | 2009-07-16 | Oki Semiconductor Co., Ltd. | Frequency corrector and clocking apparatus using the same |
| US8201991B2 (en) * | 2008-01-10 | 2012-06-19 | Oki Semiconductor Co., Ltd. | Frequency corrector and clocking apparatus using the same |
| CN102455656A (en) * | 2010-10-22 | 2012-05-16 | 比亚迪股份有限公司 | Automobile clock calibration system and calibration method |
| US9898034B2 (en) * | 2013-09-09 | 2018-02-20 | Intel IP Corporation | Data processing device and method for determining a clock relationship |
| US20240168537A1 (en) * | 2022-11-18 | 2024-05-23 | Nxp Usa, Inc. | System |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1371208A1 (en) | 2003-12-17 |
| WO2002076061A1 (en) | 2002-09-26 |
| JP2004519679A (en) | 2004-07-02 |
| WO2002076061A8 (en) | 2003-04-03 |
| DE10112373A1 (en) | 2002-09-26 |
| EP1371208B1 (en) | 2009-05-13 |
| ATE431671T1 (en) | 2009-05-15 |
| US7118269B2 (en) | 2006-10-10 |
| DE60232312D1 (en) | 2009-06-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100396785B1 (en) | Apparatus and method for compensating time error of gsm terminal | |
| US7118269B2 (en) | Method of correcting a real-time clock of an electronic apparatus | |
| US5274545A (en) | Device and method for providing accurate time and/or frequency | |
| EP0683443B1 (en) | Time correction of an electronic clock | |
| KR100687230B1 (en) | RCT device and current time correction method of RTC device | |
| JPH07154243A (en) | Electronic timepiece device and correction value determination device and method | |
| US5719827A (en) | Highly stable frequency generator | |
| JP2002311173A (en) | Electronic timepiece, time error correction method and time error correction program for electronic timepiece | |
| JPH1020052A (en) | Time correction method and device | |
| JP2006047101A (en) | Timepiece precision correction device | |
| JPH06214059A (en) | Electronic clock | |
| JPH11223688A (en) | Clock device | |
| JP2004347457A (en) | Electronic timepiece | |
| KR950015036B1 (en) | Automatic time adjustment | |
| JPH11183660A (en) | Portable information processing device with built-in watch | |
| KR20020096662A (en) | Computer system and control method thereof | |
| JP2000323926A (en) | Temperature compensation device | |
| JPH11122103A (en) | Frequency correction circuit | |
| KR20040033613A (en) | Apparatus For Compensating Real Time Clock Timing For Mobile Communication | |
| JP2000258565A (en) | Time correction device and clock and apparatus provided with this device | |
| JPH01216293A (en) | Time error correcting method | |
| JPH05341065A (en) | Clock circuit | |
| JP2006053008A (en) | Clock and clock error adjustment method | |
| JP2005069948A (en) | Electronic timepiece, its stepping compensation method, and recording time correction method therefor | |
| JPH0658963A (en) | Method and apparatus for measuring frequency |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BENING, ANDREAS;REEL/FRAME:013816/0577 Effective date: 20021004 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: NXP B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KONINKLIJKE PHILIPS ELECTRONICS N.V.;REEL/FRAME:018635/0787 Effective date: 20061117 |
|
| FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| AS | Assignment |
Owner name: ERICSSON MODEMS SA, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NXP B.V.;REEL/FRAME:033816/0912 Effective date: 20080728 Owner name: ST-ERICSSON SA, SWITZERLAND Free format text: CHANGE OF NAME;ASSIGNOR:ST WIRELESS SA;REEL/FRAME:033817/0155 Effective date: 20090407 Owner name: ST WIRELESS SA, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NXP B.V.;REEL/FRAME:033816/0912 Effective date: 20080728 |
|
| AS | Assignment |
Owner name: ST WIRELESS SA, SWITZERLAND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE PREVIOUSLY RECORDED AT REEL: 33816 FRAME: 0912. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:033864/0063 Effective date: 20080728 |
|
| AS | Assignment |
Owner name: ST-ERICSSON SA, EN LIQUIDATION, SWITZERLAND Free format text: CHANGE OF NAME;ASSIGNORS:ST WIRELESS SA;ST-ERICSSON SA;REEL/FRAME:034470/0582 Effective date: 20141113 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |