US20030157002A1 - Apparatus for the conversion of hydrocarbons - Google Patents
Apparatus for the conversion of hydrocarbons Download PDFInfo
- Publication number
- US20030157002A1 US20030157002A1 US10/203,928 US20392803A US2003157002A1 US 20030157002 A1 US20030157002 A1 US 20030157002A1 US 20392803 A US20392803 A US 20392803A US 2003157002 A1 US2003157002 A1 US 2003157002A1
- Authority
- US
- United States
- Prior art keywords
- reactor
- gasses
- catalyst
- conversion
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/04—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by spirally-wound plates or laminae
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2415—Tubular reactors
- B01J19/243—Tubular reactors spirally, concentrically or zigzag wound
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/386—Catalytic partial combustion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/48—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
- C01B3/58—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
- C01B3/583—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00054—Controlling or regulating the heat exchange system
- B01J2219/00056—Controlling or regulating the heat exchange system involving measured parameters
- B01J2219/00058—Temperature measurement
- B01J2219/00063—Temperature measurement of the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00054—Controlling or regulating the heat exchange system
- B01J2219/00056—Controlling or regulating the heat exchange system involving measured parameters
- B01J2219/00065—Pressure measurement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00076—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
- B01J2219/00085—Plates; Jackets; Cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/0015—Controlling the temperature by thermal insulation means
- B01J2219/00155—Controlling the temperature by thermal insulation means using insulating materials or refractories
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/025—Processes for making hydrogen or synthesis gas containing a partial oxidation step
- C01B2203/0261—Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0435—Catalytic purification
- C01B2203/044—Selective oxidation of carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/047—Composition of the impurity the impurity being carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/066—Integration with other chemical processes with fuel cells
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0816—Heating by flames
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0838—Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0838—Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
- C01B2203/0844—Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/085—Methods of heating the process for making hydrogen or synthesis gas by electric heating
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0866—Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0872—Methods of cooling
- C01B2203/0883—Methods of cooling by indirect heat exchange
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1005—Arrangement or shape of catalyst
- C01B2203/1035—Catalyst coated on equipment surfaces, e.g. reactor walls
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
- C01B2203/107—Platinum catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1076—Copper or zinc-based catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1082—Composition of support materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1288—Evaporation of one or more of the different feed components
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1604—Starting up the process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1614—Controlling the temperature
- C01B2203/1619—Measuring the temperature
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/169—Controlling the feed
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/80—Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
- C01B2203/82—Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2260/00—Heat exchangers or heat exchange elements having special size, e.g. microstructures
- F28F2260/02—Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the invention relates to a fuel processor for the conversion of hydrocarbons to hydrogen, and to the conversion process.
- Fuel processors, or reformers are used for large-scale conversion of natural gas to hydrogen. Hydrogen, or a mixture of hydrogen and other gasses like carbon dioxide and nitrogen produced by fuel processors can be used as a fuel for fuel cells, like polymer electrolyte membrane (PEM) fuel cells.
- PEM polymer electrolyte membrane
- the wire mesh stabilizes the flame, and the reaction heat is used for reforming of the remaining hydrocarbons.
- the method has serious drawbacks for small-scale fuel processors.
- the high reaction temperature causes insulation problems, and severe heat loss in small fuel processors.
- the total heat loss being the product of radiation losses, conduction loss and heat loss trough convection
- the insulation problems necessary use of pure oxygen is unpractical.
- the object of this invention is to provide a apparatus for the conversion of hydrocarbons to hydrogen rich gas mixtures, that operates at a relatively low temperature, uses air in stead of pure oxygen, can be operated at atmospheric pressure, has a low pressure drop, is compact, has low thermal mass and having high thermal efficiency.
- this objective is achieved by a apparatus in which heating of the feed gasses, an exothermic reforming reactor, a shift reactor, and cooling of the hot reformed gas stream are integrated in counter flow, in such a way that the feed gasses are heated by the exhaust gasses and by the exothermic CPO reaction and/or the exothermic reaction between Carbon Monoxide and oxygen or the exothermic reaction between hydrogen and oxygen, this heat exchanger having the form of a large number of thermal radiation reflectors that are co-heated by the exothermal of the CPO reaction, and the integrated reactor having the form of a multi-blade spiral, having preferably 4 blades, and between these blades the channels for feed gas (hydrocarbon containing gas), an air containing gas mixture, reformed gas and an empty channel.
- this heat exchanger having the form of a large number of thermal radiation reflectors that are co-heated by the exothermal of the CPO reaction
- the integrated reactor having the form of a multi-blade spiral, having preferably 4 blades, and between these blade
- the inner walls of the channels are coated partly or completely with a catalytically active layer or layers.
- the construction is elucidated in FIG. 1.
- the moistened feed gas and the moistened air containing gas are fed to the outer channels of the spiral reactor. Both gasses follow the spiraling gas channels, flow to the center of the spiral, and during their flow to the center these gasses are heated by the gas stream that has already reacted., and flows from the heart of the reactor outwards trough its spiraling channel. Thus the in going gas stream is heated, and the out going gas stream is cooled in counter flow. An other effect is cooling of the channel walls that act as radiation shields.
- the incoming gasses are kept separated until they have reached a temperature that is sufficiently high for a reaction to take place.
- the blades of the spiral shaped reactor are made from thin sheet metal with a thickness that is preferably less than 1 mm and more than 25 micron, more preferred less than 250 micron, and more than 40 micron. The optimum thickness depends on the material used, the required pressure drop over the reactor, and the size of the reactor. Blade thickness typically lies between 49 and 126 micron. Heat resistant metals and metal alloys like tungsten and tantalum can be used but are expensive. Preferred are stainless steel, like AISI type 316, and alloys of Iron, Chromium, Aluminum and Yttrium. The spiral shaped seals between the blades can be welded, soldered or folded.
- the thin sheet metal can be coated with suitable coatings.
- suitable coatings are corrosion resistant metal layers and for example metal oxide coatings.
- Preferred are metal oxide coatings like; SiO2 optionally comprising also other elements like, but not limited to Tin, Titanium Aluminum, Cerium, Phosphor or Borium. Thickness of the metal oxide layers is in the range of 10 to 1.000.000 nm, typically a few microns.
- Preferred precursors for these protective coatings are polymers, especially Silicone polymers, preferably cross-linkable Silicone elastomers. An example of such a protective coating is given in example 2.
- the fuel processor according to the invention contains spiral shaped thin metal blades that are coated single sided or double sided with a catalytically active layer or layers to obtain a reactor with high heat exchange capacity and low pressure drop. Only the sides of the blades in direct contact with the hydrocarbon containing gas an/or the reformate are coated with catalyst.
- the catalyst layers are preferably applied prior to assembly of the reactor. Application was done by spay coating, brush coating and can be done by most known coating techniques.
- As precursor for the catalyst carrier silicone elastomers can be used that are subsequently crosslinked and pyrolized in an oxygen containing atmosphere.
- the active catalyst can be impregnated after pyrolises in the nano porous silicon oxide layer, can be applied directly as a component in the silicone elastomer coating liquid or can be applied in a two step process were first the silicone elastomer is coated and partially or completely cross linked and subsequently swollen by a suitable solvent containing the active catalyst or a precursor for this active catalyst, drying and pyrolizing.
- the moistening of the feed gasses is also important. Up to 10% of the total heat is necessary for supplying the required amount of water vapor. According to the invention the heat leak of the reformer is used. This is can be done even better if the whole system is operated at atmospheric pressure If the fuel processor is used in combination with a low temperature fuel cell, the moistening is done in two steps. First the heat generated in the fuel cell stack is used, to generate water vapor at a temperature that is below the temperature of the outer shell of the fuel processor, than the water vapor content is further increased by heating the gasses by passing them over the outer shell of the fuel processor that. The outer shell has typically a temperature between 80° C. and 100° C.
- the fuel processor is preferably operated at or close to atmospheric pressure to obtain high system efficiency, it is according to the invention possible to operate the fuel processor at higher than atmospheric pressure.
- the spiral shaped reactor as such is not appropriate for operation with a large pressure difference between the spiral shaped reaction chamber and the surrounding atmosphere.
- This drawback is solved according to this invention by placing the spiral shaped reactor in a pressure resistant chamber as further explained in FIG. 4.
- a pressure leveling connection between the air channel and the pressure resistant chamber is provided. The pressure in the spiral shaped reactor will be at the same level as the pressure in the surrounding pressure resistant chamber.
- Startup of the reactor can be done by electrical heating the center of the spiral outside the gas channels, by placing a catalyst coated or catalytically active hot wire inside the gas channels in the center of the spiral or by direct heating of the center with a flame or catalytic burner.
- the reactor does not contain coordinates inside the gas channels were the distance to the nearest wall is more than 5 mm, this distance being preferably less than 3 mm.
- the fuel processor of this example was designed for feeding a 1 kWe PEM fuel cell.
- the reactor/heat exchanger has a unwound length of 2 meter, a height of 0,3 meter, contains 3 spiral shaped gas slits between 4 spiral shaped 125 micron thick blades(see FIG. 1), one channel (A) with a height of 2 mm is for the in coming moistened hydrocarbon containing gas stream, one other (B) with a height of 4 mm for the incoming moistened air stream, and the third slit (C) is for the out going reformate having a height of 5 mm.
- the total height of the 3 slits, including the four blades is thus 9,5 mm.
- a last reaction step is selective oxidation of the reformate to remove traces of CO.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NL1014404 | 2000-02-17 | ||
| NL1014404A NL1014404C1 (nl) | 2000-02-17 | 2000-02-17 | Apparaat voor de omzetting van fossiele brandstoffen in waterstofrijke gasmengsels. |
| NL1015916 | 2000-08-11 | ||
| NL1015916A NL1015916C1 (nl) | 2000-08-11 | 2000-08-11 | Apparaat voor de omzetting van fossiele brandstoffen in waterstofrijke gasmengsels met behulp van een katalytisch actieve coating. |
| NL1015917A NL1015917C1 (nl) | 2000-08-11 | 2000-08-11 | Methode voor het aanbrengen van katalytisch actieve lagen. |
| NL1015917 | 2000-08-11 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030157002A1 true US20030157002A1 (en) | 2003-08-21 |
Family
ID=27351229
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/203,928 Abandoned US20030157002A1 (en) | 2000-02-17 | 2001-02-19 | Apparatus for the conversion of hydrocarbons |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20030157002A1 (fr) |
| EP (1) | EP1265811A1 (fr) |
| WO (1) | WO2001060739A1 (fr) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050074648A1 (en) * | 2003-10-02 | 2005-04-07 | Arthur Alan R. | Integrated fuel cell stack and catalytic combustor apparatus, assembly, and method of use |
| EP1630130A1 (fr) * | 2004-08-18 | 2006-03-01 | Shell Internationale Researchmaatschappij B.V. | Dispositif pour le traitement de combustible et procédé pour le démarrage dudit dispositif |
| US20070000173A1 (en) * | 2005-06-28 | 2007-01-04 | Michael Boe | Compact reforming reactor |
| US20080020336A1 (en) * | 2004-10-13 | 2008-01-24 | Webasto Ag | Burner Device with a Porous Body |
| US20090214910A1 (en) * | 2008-02-22 | 2009-08-27 | Ultracell Corporation | Low pressure drop fuel processor for use with portable fuel cells |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10142794A1 (de) * | 2001-08-31 | 2003-03-20 | Ballard Power Systems | Katalytische Beschichtung für eine Gaserzeugungseinheit |
| RU2760381C1 (ru) * | 2021-06-09 | 2021-11-24 | Юрий Фёдорович Юрченко | Способ пиролитического разложения газообразных углеводородов и устройство для его осуществления |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3915125A (en) * | 1971-07-16 | 1975-10-28 | Siemens Ag | Method for the operation of internal-combustion engines and gas reformer for implementing the method |
| US3955941A (en) * | 1973-08-20 | 1976-05-11 | California Institute Of Technology | Hydrogen rich gas generator |
| US5324452A (en) * | 1992-07-08 | 1994-06-28 | Air Products And Chemicals, Inc. | Integrated plate-fin heat exchange reformation |
| US5628931A (en) * | 1994-07-07 | 1997-05-13 | Shell Oil Company | Process for the preparation of hydrogen and carbon monoxide containing mixtures |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ZA859580B (en) * | 1985-04-25 | 1986-08-27 | Westinghouse Electric Corp | Apparatus for hydrocarbon fuel processing |
| WO1995010126A1 (fr) * | 1993-10-06 | 1995-04-13 | Ceramatec, Inc. | Conception modulaire d'empilements de piles a combustible d'oxyde solide cpn/reformateur integre |
-
2001
- 2001-02-19 WO PCT/NL2001/000138 patent/WO2001060739A1/fr not_active Ceased
- 2001-02-19 EP EP01953016A patent/EP1265811A1/fr not_active Withdrawn
- 2001-02-19 US US10/203,928 patent/US20030157002A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3915125A (en) * | 1971-07-16 | 1975-10-28 | Siemens Ag | Method for the operation of internal-combustion engines and gas reformer for implementing the method |
| US3955941A (en) * | 1973-08-20 | 1976-05-11 | California Institute Of Technology | Hydrogen rich gas generator |
| US5324452A (en) * | 1992-07-08 | 1994-06-28 | Air Products And Chemicals, Inc. | Integrated plate-fin heat exchange reformation |
| US5628931A (en) * | 1994-07-07 | 1997-05-13 | Shell Oil Company | Process for the preparation of hydrogen and carbon monoxide containing mixtures |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050074648A1 (en) * | 2003-10-02 | 2005-04-07 | Arthur Alan R. | Integrated fuel cell stack and catalytic combustor apparatus, assembly, and method of use |
| US7306868B2 (en) * | 2003-10-02 | 2007-12-11 | Hewlett-Packard Development Company, L.P. | Integrated fuel cell stack and catalytic combustor apparatus, assembly, and method of use |
| US20080085434A1 (en) * | 2003-10-02 | 2008-04-10 | Arthur Alan R | Integrated fuel cell stack and catalytic combustor apparatus, assembly, and method of use |
| US8062803B2 (en) | 2003-10-02 | 2011-11-22 | Eveready Battery Company, Inc. | Fuel cell system and a method of generating electricity |
| EP1630130A1 (fr) * | 2004-08-18 | 2006-03-01 | Shell Internationale Researchmaatschappij B.V. | Dispositif pour le traitement de combustible et procédé pour le démarrage dudit dispositif |
| US20080020336A1 (en) * | 2004-10-13 | 2008-01-24 | Webasto Ag | Burner Device with a Porous Body |
| US7758337B2 (en) * | 2004-10-13 | 2010-07-20 | Enerday Gmbh | Burner device with a porous body |
| US20070000173A1 (en) * | 2005-06-28 | 2007-01-04 | Michael Boe | Compact reforming reactor |
| US20090214910A1 (en) * | 2008-02-22 | 2009-08-27 | Ultracell Corporation | Low pressure drop fuel processor for use with portable fuel cells |
| US8129059B2 (en) * | 2008-02-22 | 2012-03-06 | UltraCell, L.L.C. | Low pressure drop fuel processor for use with portable fuel cells |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1265811A1 (fr) | 2002-12-18 |
| WO2001060739A1 (fr) | 2001-08-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3556638B2 (ja) | 燃料電池装置 | |
| US7235217B2 (en) | Method and apparatus for rapid heating of fuel reforming reactants | |
| EP0951529B1 (fr) | Dispositif de reformage a la vapeur avec purification interne de l'hydrogene | |
| US7101175B2 (en) | Anode tailgas oxidizer | |
| JPH06239601A (ja) | 組合わされた改質装置と転化反応器 | |
| CA3127974A1 (fr) | Installation chimique dotee d'une section de reformage et procede de production d'un produit chimique | |
| RU2411075C2 (ru) | Компактный риформинг-реактор | |
| US20030157002A1 (en) | Apparatus for the conversion of hydrocarbons | |
| KR20060048085A (ko) | 개질장치에서 개질가스를 후처리하는 방법 | |
| JP4505187B2 (ja) | 燃料気体改質器組立物 | |
| JP4278984B2 (ja) | ガス抽出用メンブレン反応器 | |
| JP2005146311A (ja) | 燃料改質装置および改質ガスの製造方法 | |
| JP4739704B2 (ja) | 燃料電池用水素製造装置 | |
| CA2405932A1 (fr) | Procede d'oxydation selective de monoxyde de carbone | |
| JP2007112644A (ja) | Co除去装置,燃料改質装置及び燃料電池システム | |
| US20040071610A1 (en) | Customized flow path substrate | |
| JP2003303610A (ja) | 燃料電池システム及びその運転方法並びにオートサーマルリフォーミング装置 | |
| JP5433892B2 (ja) | 定置型水素製造装置改質器の起動方法 | |
| JP2000178006A (ja) | 改質器及びその運転方法 | |
| JP2007098314A (ja) | 反応装置および燃料電池用改質装置 | |
| HK1093172A (en) | Hydrogen selective membrane for steam reformer | |
| HK1090661B (en) | Method and apparatus for rapid heating of fuel reforming reactants |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |