US20030126690A1 - Treatment of fabric articles with hydrophobic chelants - Google Patents
Treatment of fabric articles with hydrophobic chelants Download PDFInfo
- Publication number
- US20030126690A1 US20030126690A1 US10/320,873 US32087302A US2003126690A1 US 20030126690 A1 US20030126690 A1 US 20030126690A1 US 32087302 A US32087302 A US 32087302A US 2003126690 A1 US2003126690 A1 US 2003126690A1
- Authority
- US
- United States
- Prior art keywords
- agents
- composition
- lipophilic fluid
- fabric
- polar phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004744 fabric Substances 0.000 title claims abstract description 55
- 230000002209 hydrophobic effect Effects 0.000 title claims abstract description 25
- 238000011282 treatment Methods 0.000 title claims description 7
- 239000012530 fluid Substances 0.000 claims abstract description 101
- 239000000203 mixture Substances 0.000 claims abstract description 85
- 238000000034 method Methods 0.000 claims abstract description 53
- 239000013522 chelant Substances 0.000 claims abstract description 13
- -1 cyclic siloxane Chemical class 0.000 claims description 42
- 239000003795 chemical substances by application Substances 0.000 claims description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- 239000002689 soil Substances 0.000 claims description 29
- 239000004094 surface-active agent Substances 0.000 claims description 25
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 claims description 15
- 239000003995 emulsifying agent Substances 0.000 claims description 13
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 claims description 12
- 239000002216 antistatic agent Substances 0.000 claims description 10
- 108090000790 Enzymes Proteins 0.000 claims description 9
- 102000004190 Enzymes Human genes 0.000 claims description 9
- 239000002979 fabric softener Substances 0.000 claims description 8
- 239000004615 ingredient Substances 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 7
- IUMSDRXLFWAGNT-UHFFFAOYSA-N Dodecamethylcyclohexasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 IUMSDRXLFWAGNT-UHFFFAOYSA-N 0.000 claims description 6
- 239000003112 inhibitor Substances 0.000 claims description 6
- 239000002304 perfume Substances 0.000 claims description 6
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 claims description 5
- 238000005299 abrasion Methods 0.000 claims description 5
- 239000003242 anti bacterial agent Substances 0.000 claims description 5
- 239000003086 colorant Substances 0.000 claims description 5
- 239000000834 fixative Substances 0.000 claims description 5
- 239000000516 sunscreening agent Substances 0.000 claims description 5
- 230000037331 wrinkle reduction Effects 0.000 claims description 5
- 230000037303 wrinkles Effects 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 4
- 239000006174 pH buffer Substances 0.000 claims description 4
- 238000004078 waterproofing Methods 0.000 claims description 4
- 239000007844 bleaching agent Substances 0.000 description 20
- 229960001484 edetic acid Drugs 0.000 description 19
- 239000012071 phase Substances 0.000 description 19
- 229920001296 polysiloxane Polymers 0.000 description 19
- 238000004140 cleaning Methods 0.000 description 18
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 17
- 125000000217 alkyl group Chemical group 0.000 description 12
- 238000005108 dry cleaning Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 9
- 239000000975 dye Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229940088598 enzyme Drugs 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000011269 treatment regimen Methods 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000003599 detergent Substances 0.000 description 5
- 150000005690 diesters Chemical class 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 5
- 210000002374 sebum Anatomy 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical class C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000002738 chelating agent Substances 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 125000006353 oxyethylene group Chemical group 0.000 description 4
- RVZRBWKZFJCCIB-UHFFFAOYSA-N perfluorotributylamine Chemical class FC(F)(F)C(F)(F)C(F)(F)C(F)(F)N(C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F RVZRBWKZFJCCIB-UHFFFAOYSA-N 0.000 description 4
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical class CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 239000000828 canola oil Substances 0.000 description 3
- 235000019519 canola oil Nutrition 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 238000004900 laundering Methods 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229940031439 squalene Drugs 0.000 description 3
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- CCPYCNSBZPTUMJ-UHFFFAOYSA-N 1,3,5,7,9,2,4,6,8,10-pentaoxapentasilecane Chemical class O1[SiH2]O[SiH2]O[SiH2]O[SiH2]O[SiH2]1 CCPYCNSBZPTUMJ-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 2
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical class OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 102000004157 Hydrolases Human genes 0.000 description 2
- 108090000604 Hydrolases Proteins 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- AQEFLFZSWDEAIP-UHFFFAOYSA-N di-tert-butyl ether Chemical compound CC(C)(C)OC(C)(C)C AQEFLFZSWDEAIP-UHFFFAOYSA-N 0.000 description 2
- XRWMGCFJVKDVMD-UHFFFAOYSA-M didodecyl(dimethyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCC XRWMGCFJVKDVMD-UHFFFAOYSA-M 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 229940117927 ethylene oxide Drugs 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000004965 peroxy acids Chemical class 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- FENFUOGYJVOCRY-UHFFFAOYSA-N 1-propoxypropan-2-ol Chemical compound CCCOCC(C)O FENFUOGYJVOCRY-UHFFFAOYSA-N 0.000 description 1
- GQCZPFJGIXHZMB-UHFFFAOYSA-N 1-tert-Butoxy-2-propanol Chemical compound CC(O)COC(C)(C)C GQCZPFJGIXHZMB-UHFFFAOYSA-N 0.000 description 1
- WMDZKDKPYCNCDZ-UHFFFAOYSA-N 2-(2-butoxypropoxy)propan-1-ol Chemical compound CCCCOC(C)COC(C)CO WMDZKDKPYCNCDZ-UHFFFAOYSA-N 0.000 description 1
- CUDYYMUUJHLCGZ-UHFFFAOYSA-N 2-(2-methoxypropoxy)propan-1-ol Chemical compound COC(C)COC(C)CO CUDYYMUUJHLCGZ-UHFFFAOYSA-N 0.000 description 1
- XYVAYAJYLWYJJN-UHFFFAOYSA-N 2-(2-propoxypropoxy)propan-1-ol Chemical compound CCCOC(C)COC(C)CO XYVAYAJYLWYJJN-UHFFFAOYSA-N 0.000 description 1
- JJVODHIRRAFJDE-UHFFFAOYSA-N 2-(hydroxyamino)-2-phenylacetic acid Chemical class ONC(C(O)=O)C1=CC=CC=C1 JJVODHIRRAFJDE-UHFFFAOYSA-N 0.000 description 1
- JDSQBDGCMUXRBM-UHFFFAOYSA-N 2-[2-(2-butoxypropoxy)propoxy]propan-1-ol Chemical compound CCCCOC(C)COC(C)COC(C)CO JDSQBDGCMUXRBM-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- WAEVWDZKMBQDEJ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)CO WAEVWDZKMBQDEJ-UHFFFAOYSA-N 0.000 description 1
- FYYLCPPEQLPTIQ-UHFFFAOYSA-N 2-[2-(2-propoxypropoxy)propoxy]propan-1-ol Chemical compound CCCOC(C)COC(C)COC(C)CO FYYLCPPEQLPTIQ-UHFFFAOYSA-N 0.000 description 1
- GRUVVLWKPGIYEG-UHFFFAOYSA-N 2-[2-[carboxymethyl-[(2-hydroxyphenyl)methyl]amino]ethyl-[(2-hydroxyphenyl)methyl]amino]acetic acid Chemical compound C=1C=CC=C(O)C=1CN(CC(=O)O)CCN(CC(O)=O)CC1=CC=CC=C1O GRUVVLWKPGIYEG-UHFFFAOYSA-N 0.000 description 1
- JUAGHBASZWRMQH-UHFFFAOYSA-N 2-diethoxyphosphorylethanamine Chemical compound CCOP(=O)(CCN)OCC JUAGHBASZWRMQH-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 101001073212 Arabidopsis thaliana Peroxidase 33 Proteins 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 101001123325 Homo sapiens Peroxisome proliferator-activated receptor gamma coactivator 1-beta Proteins 0.000 description 1
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 235000019944 Olestra Nutrition 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102100028961 Peroxisome proliferator-activated receptor gamma coactivator 1-beta Human genes 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004614 Process Aid Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000005138 alkoxysulfonyl group Chemical group 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000002648 azanetriyl group Chemical group *N(*)* 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- VKKVMDHHSINGTJ-UHFFFAOYSA-M di(docosyl)-dimethylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCCCCCC VKKVMDHHSINGTJ-UHFFFAOYSA-M 0.000 description 1
- OCTAKUVKMMLTHX-UHFFFAOYSA-M di(icosyl)-dimethylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCCCC OCTAKUVKMMLTHX-UHFFFAOYSA-M 0.000 description 1
- 150000001470 diamides Chemical class 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- VIXPKJNAOIWFMW-UHFFFAOYSA-M dihexadecyl(dimethyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCC VIXPKJNAOIWFMW-UHFFFAOYSA-M 0.000 description 1
- ZCPCLAPUXMZUCD-UHFFFAOYSA-M dihexadecyl(dimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCC ZCPCLAPUXMZUCD-UHFFFAOYSA-M 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical class CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- YUSUIRJJVGGXKW-UHFFFAOYSA-N ethene;2-(2-hydroxyanilino)acetic acid Chemical compound C=C.OC(=O)CNC1=CC=CC=C1O.OC(=O)CNC1=CC=CC=C1O YUSUIRJJVGGXKW-UHFFFAOYSA-N 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- IFQUWYZCAGRUJN-UHFFFAOYSA-N ethylenediaminediacetic acid Chemical compound OC(=O)CNCCNCC(O)=O IFQUWYZCAGRUJN-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 125000001924 fatty-acyl group Chemical group 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- HTDJPCNNEPUOOQ-UHFFFAOYSA-N hexamethylcyclotrisiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O1 HTDJPCNNEPUOOQ-UHFFFAOYSA-N 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 125000002349 hydroxyamino group Chemical group [H]ON([H])[*] 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- AEDVWMXHRPMJAD-UHFFFAOYSA-N n,n,1,1,2,2,3,3,4,4,4-undecafluorobutan-1-amine Chemical compound FN(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F AEDVWMXHRPMJAD-UHFFFAOYSA-N 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 238000005494 tarnishing Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- GSANOGQCVHBHIF-UHFFFAOYSA-N tetradecamethylcycloheptasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 GSANOGQCVHBHIF-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M thiocyanate group Chemical group [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L1/00—Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods
- D06L1/02—Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods using organic solvents
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L1/00—Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L1/00—Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods
- D06L1/02—Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods using organic solvents
- D06L1/04—Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods using organic solvents combined with specific additives
Definitions
- the present invention relates to compositions and methods to treat fabrics with a lipophilic fluid and hydrophobic chelants.
- the present invention is also directed to compositions containing a lipophilic fluid and a hydrophobic chelant.
- Dry cleaning typically involves the use of non-aqueous, lipophilic fluids as the solvent or solution for cleaning. While the absence of water permits the cleaning of fabrics without the potential disastrous side effects water may present, these lipophilic fluids do not perform well on hydrophilic and/or combination soils.
- hydrophobic chelant-containing care and treatment regimens and compositions for use with lipophilic fluid compositions are provided.
- the present invention is directed to a method for attaining improved fabric cleaning in a lipophilic fluid treatment regimen, wherein the method includes the steps of exposing the fabric to a lipophilic fluid and exposing the fabric to a hydrophobic chelant.
- the present invention is also directed to a composition for attaining improved fabric cleaning in a lipophilic fluid treatment regimen, wherein the composition includes a lipophilic fluid and a hydrophobic chelant.
- fabrics and “fabric” used herein is intended to mean any article that is customarily cleaned in a conventional laundry process or in a dry cleaning process. As such the term encompasses articles of clothing, linen, drapery, and clothing accessories. The term also encompasses other items made in whole or in part of fabric, such as tote bags, furniture covers, tarpaulins and the like.
- soil means any undesirable substance on a fabric article that is desired to be removed.
- water-based soils it is meant that the soil comprised water at the time it first came in contact with the fabric article, or the soil retains a significant portion of water on the fabric article.
- water-based soils include, but are not limited to beverages, many food soils, water soluble dyes, bodily fluids such as sweat, urine or blood, outdoor soils such as grass stains and mud.
- the lipophilic fluid herein is one having a liquid phase present under operating conditions of a fabric article treating appliance, in other words, during treatment of a fabric article in accordance with the present invention.
- a lipophilic fluid can be fully liquid at ambient temperature and pressure, can be an easily melted solid, e.g., one which becomes liquid at temperatures in the range from about 0 deg. C. to about 60 deg. C., or can comprise a mixture of liquid and vapor phases at ambient temperatures and pressures, e.g., at 25 deg. C. and 1 atm. pressure.
- the lipophilic fluid is not a compressible gas such as carbon dioxide.
- the lipophilic fluids herein be nonflammable or have relatively high flash points and/or low VOC (volatile organic compound) characteristics, these terms having their conventional meanings as used in the dry cleaning industry, to equal or, preferably, exceed the characteristics of known conventional dry cleaning fluids.
- suitable lipophilic fluids herein are readily flowable and nonviscous.
- lipophilic fluids herein are required to be fluids capable of at least partially dissolving sebum or body soil as defined in the test hereinafter. Mixtures of lipophilic fluid are also suitable, and provided that the requirements of the Lipophilic Fluid Test, as described below, are met, the lipophilic fluid can include any fraction of dry-cleaning solvents, especially newer types including fluorinated solvents, or perfluorinated amines. Some perfluorinated amines such as perfluorotributylamines while unsuitable for use as lipophilic fluid may be present as one of many possible adjuncts present in the lipophilic fluid-containing composition.
- Suitable lipophilic fluids include, but are not limited to, diol solvent systems e.g., higher diols such as C6- or C8- or higher diols, organosilicone solvents including both cyclic and acyclic types, and the like, and mixtures thereof.
- a preferred group of nonaqueous lipophilic fluids suitable for incorporation as a major component of the compositions of the present invention include low-volatility nonfluorinated organics, silicones, especially those other than amino functional silicones, and mixtures thereof.
- Low volatility nonfluorinated organics include for example OLEAN® and other polyol esters, or certain relatively nonvolatile biodegradable mid-chain branched petroleum fractions.
- nonaqueous lipophilic fluids suitable for incorporation as a major component of the compositions of the present invention include, but are not limited to, glycol ethers, for example propylene glycol methyl ether, propylene glycol n-propyl ether, propylene glycol t-butyl ether, propylene glycol n-butyl ether, dipropylene glycol methyl ether, dipropylene glycol n-propyl ether, dipropylene glycol t-butyl ether, dipropylene glycol n-butyl ether, tripropylene glycol methyl ether, tripropylene glycol n-propyl ether, tripropylene glycol t-butyl ether, tripropylene glycol n-butyl ether.
- glycol ethers for example propylene glycol methyl ether, propylene glycol n-propyl ether, propylene glycol t-butyl ether, prop
- Suitable silicones for use as a major component, e.g., more than 50%, of the composition include cyclopentasiloxanes, sometimes termed “D5”, and/or linear analogs having approximately similar volatility, optionally complemented by other compatible silicones.
- Suitable silicones are well known in the literature, see, for example, Kirk Othmer's Encyclopedia of Chemical Technology, and are available from a number of commercial sources, including General Electric, Toshiba Silicone, Bayer, and Dow Corning. Other suitable lipophilic fluids are commercially available from Procter & Gamble or from Dow Chemical and other suppliers.
- any nonaqueous fluid that is both capable of meeting known requirements for a dry-cleaning fluid (e.g, flash point etc.) and is capable of at least partially dissolving sebum, as indicated by the test method described below, is suitable as a lipophilic fluid herein.
- a dry-cleaning fluid e.g, flash point etc.
- a surfactant e.g., cyclopentasiloxanes
- the following is the method for investigating and qualifying other materials, e.g., other low-viscosity, free-flowing silicones, for use as the lipophilic fluid.
- the method uses commercially available Crisco® canola oil, oleic acid (95% pure, available from Sigma Aldrich Co.) and squalene (99% pure, available from J. T. Baker) as model soils for sebum.
- the test materials should be substantially anhydrous and free from any added adjuncts, or other materials during evaluation.
- each vial will contain one type of lipophilic soil. Place 1.0 g of canola oil in the first; in a second vial place 1.0 g of the oleic acid (95%), and in a third and final vial place 1.0 g of the squalene (99.9%). To each vial add 1 g of the fluid to be tested for lipophilicity. Separately mix at room temperature and pressure each vial containing the lipophilic soil and the fluid to be tested for 20 seconds on a standard vortex mixer at maximum setting. Place vials on the bench and allow to settle for 15 minutes at room temperature and pressure.
- the nonaqueous fluid qualifies as suitable for use as a “lipophilic fluid” in accordance with the present invention.
- the amount of nonaqueous fluid dissolved in the oil phase will need to be further determined before rejecting or accepting the nonaqueous fluid as qualified.
- test fluid is also qualified for use as a lipophilic fluid.
- the method can be further calibrated using heptacosafluorotributylamine, i.e., Fluorinert FC-43 (fail) and cyclopentasiloxane (pass).
- a suitable GC is a Hewlett Packard Gas Chromatograph HP5890 Series II equipped with a split/splitless injector and FID.
- a suitable column used in determining the amount of lipophilic fluid present is a J&W Scientific capillary column DB-1HT, 30 meter, 0.25 mm id, 0.1 um film thickness cat# 1221131.
- the GC is suitably operated under the following conditions:
- Carrier Gas Hydrogen
- Preferred lipophilic fluids suitable for use herein can further be qualified for use on the basis of having an excellent garment care profile.
- Garment care profile testing is well known in the art and involves testing a fluid to be qualified using a wide range of garment or fabric article components, including fabrics, threads and elastics used in seams, etc., and a range of buttons.
- Preferred lipophilic fluids for use herein have an excellent garment care profile, for example they have a good shrinkage and/or fabric puckering profile and do not appreciably damage plastic buttons.
- lipophilic fluids for example ethyl lactate
- ethyl lactate can be quite objectionable in their tendency to dissolve buttons, and if such a material is to be used in the compositions of the present invention, it will be formulated with water and/or other solvents such that the overall mix is not substantially damaging to buttons.
- Some suitable lipophilic fluids may be found in granted U.S. Pat. Nos. 5,865,852; 5,942,007; 6,042,617; 6,042,618; 6,056,789; 6,059,845; and 6,063,135, which are incorporated herein by reference.
- Lipophilic fluids can include linear and cyclic polysiloxanes, hydrocarbons and chlorinated hydrocarbons, with the exception of PERC and DF2000 which are explicitly not covered by the lipophilic fluid definition as used herein. More preferred are the linear and cyclic polysiloxanes and hydrocarbons of the glycol ether, acetate ester, lactate ester families. Preferred lipophilic fluids include cyclic siloxanes having a boiling point at 760 mm Hg. of below about 250° C.
- cyclic siloxanes for use in this invention are octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane.
- the cyclic siloxane comprises decamethylcyclopentasiloxane (D5, pentamer) and is substantially free of octamethylcyclotetrasiloxane (tetramer) and dodecamethylcyclohexasiloxane (hexamer).
- useful cyclic siloxane mixtures might contain, in addition to the preferred cyclic siloxanes, minor amounts of other cyclic siloxanes including octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane or higher cyclics such as tetradecamethylcycloheptasiloxane.
- the amount of these other cyclic siloxanes in useful cyclic siloxane mixtures will be less than about 10 percent based on the total weight of the mixture.
- the industry standard for cyclic siloxane mixtures is that such mixtures comprise less than about 1% by weight of the mixture of octamethylcyclotetrasiloxane.
- compositions of the present invention include hydrophobic chelants at a level of suitable for the purpose as known by those of ordinary skill in the art. For example from about 1 ppm to about 100 ppm and/or from about 10 ppm to about 50 ppm by weight of the compositions.
- Nonlimiting examples of hydrophobic chelants in accordance with the present invention include EHPG derivatives and diesters of EDTA, derivatives of HEDTA, for example a lauric acid derivative of the formula:
- R is a C 1 -C 14 alkyl, typically a C 6 -C 12 alkyl; diester derivatives of EHPG such as shown in the formula:
- ethylenediaminetetraacetic anhydride derivatives; anhydrides (I) of EDTA was treated with 2,6-dimethylphenol, citric acid, ethylenediamine (II), ethylene glycol, NH2OH.HCl, di-Et diethylaminoethylphosphonate, glycine, HSCH2CH2NH2, or a similar compd. to prep. sym. diamides, diesters, polyamides, or polyesters of EDTA that are useful as chelating agents, stabilizers, or detergent additives. Amides can also be prepd.
- EDTA ethylenediaminediacetic acid or II with ClCH2CONHMe or BrCH2CONHMe; amides and esters of EDTA; glycine, N,N′-1,2-ethanediylbis[N-(carboxymethyl)-, reaction products with amino alcohols and amino esters; EDTA ethylenediamine polyamide; detergent additive EDTA polyamide; glycol EDTA polyester; alc EDTA ester; amine EDTA amide; phosphonate EDTA ester; EDTA diesters, the alkyl groups of which consist of up to 22 C atoms; EDTA dialkyl esters; diethyl, didodecyl, and dioctadecyl esters of EDTA; didodecyl EDTA esters; (ethylenedinitrilo)tetraacetic acid dialkyl esters and mixtures thereof.
- hydrophilic chelants to the polar phase, whereby they become soluble in the hydrophobic phase upon chelating a soil.
- a low MW lupasol which is only soluble in the water phase
- the chelation of the polyphenolics may make the lupasol soluble in the lipophilic fluid.
- Additional chelants suitable for use herein may include silicone chelants or polymeric chelants.
- EHPG is Ethylene bis([o-hydroxyphenyl]glycine)
- EDTA is Ethylenediamine tetraacetic acid
- HEDTA is 2-hydroxyethylethylenediamine triacidic acid
- the hydrophobic chelants are ligands that have high transition metal binding constants, at least comparable to EDTA.
- the hydrophobicity is being achieved by esterifying carboxylates to lower anionic charge or by attaching hydrophobic groups to the aromatic portion of EHPG.
- the chelants are soluble in the lipophilic fluid, such as D5.
- the chelants have R groups that are esters, amides or separately as alkyl groups on the phenols that are siloxanes, ethyleneoxides and propyleneoxides.
- the chainlength size should be similar to the alkyl chains maybe up to 10 siloxylethyl groups, 6 or so EOs or POs. Nonlimiting examples of which are shown below.
- the hydrophobic chelant may be an EDDS type of derivative, especially where diesters and/or alkyl chains are present on the secondary N-atoms.
- Adjunct materials can vary widely and can be used at widely ranging levels.
- detersive enzymes such as proteases, amylases, cellulases, lipases and the like as well as bleach catalysts including the macrocyclic types having manganese or similar transition metals all useful in laundry and cleaning products can be used herein at very low, or less commonly, higher levels.
- Adjunct materials that are catalytic, for example enzymes can be used in “forward” or “reverse” modes, a discovery independently useful from the specific appliances of the present invention.
- a lipolase or other hydrolase may be used, optionally in the presence of alcohols as adjuncts, to convert fatty acids to esters, thereby increasing their solubility in the lipophilic fluid.
- any adjunct ingredient must be suitable for use in combination with the lipophilic fluid.
- the compositions may comprise emulsifiers.
- Emulsifiers are well known in the chemical art. Essentially, an emulsifier acts to bring two or more insoluble or semi-soluble phases together to create a stable or semi-stable emulsion. It is preferred in the claimed invention that the emulsifier serves a dual purpose wherein it is capable of acting not only as an emulsifier but also as a treatment performance booster. For example, the emulsifier may also act as a surfactant thereby boosting cleaning performance. Both ordinary emulsifiers and emulsifier/surfactants are commercially available.
- cleaning additives include, but are not limited to, builders, surfactants, enzymes, bleach activators, bleach catalysts, bleach boosters, bleaches, alkalinity sources, antibacterial agents, colorants, perfumes, pro-perfumes, finishing aids, lime soap dispersants, composition malodor control agents, odor neutralizers, polymeric dye transfer inhibiting agents, crystal growth inhibitors, photobleaches, non-hydrophobic chelants, anti-tarnishing agents, anti-microbial agents, anti-oxidants, anti-redeposition agents, soil release polymers, electrolytes, pH modifiers, thickeners, abrasives, divalent or trivalent ions, metal ion salts, enzyme stabilizers, corrosion inhibitors, diamines or polyamines and/or their alkoxylates, suds stabilizing polymers, solvents, process aids, fabric softening agents, optical brighteners, hydrotropes, suds or foam suppressors, suds or foam booster
- surfactant conventionally refers to materials that are surface-active either in the water, the lipophilic fluid, or the mixture of the two.
- Some illustrative surfactants include nonionic, cationic and silicone surfactants as used in conventional aqueous detergent systems. Suitable nonionic surfactants include, but are not limited to:
- polyoxyethylene lauryl ether with 4 or 23 oxyethylene groups
- polyoxyethylene cetyl ether with 2, 10 or 20 oxyethylene groups
- polyoxyethylene stearyl ether with 2, 10, 20, 21 or 100 oxyethylene groups
- polyoxyethylene (2), (10) oleyl ether with 2 or 10 oxyethylene groups.
- Commercially available examples include, but are not limited to: ALFONIC, BRIJ, GENAPOL, NEODOL, SURFONIC, TRYCOL. See also U.S. Pat. No. 6,013,683 Hill et al.
- Suitable caiionic surfactants include, but are not limited to dialkyldimethylammonium salts having the formula:
- Examples include: didodecyldimethylammonium bromide (DDAB), dihexadecyldimethyl ammonium chloride, dihexadecyldimethyl ammonium bromide, dioctadecyldimethyl ammonium chloride, dieicosyldimethyl ammonium chloride, didocosyldimethyl ammonium chloride, dicoconutdimethyl ammonium chloride, ditallowdimethyl ammonium bromide (DTAB).
- DDAB didodecyldimethylammonium bromide
- DTAB didodecyldimethylammonium bromide
- Suitable silicone surfactants include, but are not limited to the polyalkyleneoxide polysiloxanes having a dimethyl polysiloxane hydrophobic moiety and one or more hydrophilic polyalkylene side chains and have the general formula:
- a+b are from about 1 to about 50, preferably from about 3 to about 30, more preferably from about 10 to about 25, and each R 1 is the same or different and is selected from the group consisting of methyl and a poly(ethyleneoxide/propyleneoxide) copolymer group having the general formula:
- R 1 being a poly(ethyleneoxide/propyleneoxide) copolymer group, and wherein n is 3 or 4, preferably 3; total c (for all polyalkyleneoxy side groups) has a value of from 1 to about 100, preferably from about 6 to about 100; total d is from 0 to about 14, preferably from 0 to about 3; and more preferably d is 0; total c+d has a value of from about 5 to about 150, preferably from about 9 to about 100 and each R 2 is the same or different and is selected from the group consisting of hydrogen, an alkyl having 1 to 4 carbon atoms, and an acetyl group, preferably hydrogen and methyl group. Examples of these surfactants may be found in U.S. Pat. No. 5,705,562 Hill and U.S. Pat. No. 5,707,613 Hill, both of which are incorporated herein by reference.
- Examples of this type of surfactants are the Silwet® surfactants which are available CK Witco, OSi Division, Danbury, Conn. Representative Silwet surfactants are as follows. Name Average MW Average a + b Average total c L-7608 600 1 9 L-7607 1,000 2 17 L-77 600 1 9 L-7605 6,000 20 99 L-7604 4,000 21 53 L-7600 4,000 11 68 L-7657 5,000 20 76 L-7602 3,000 20 29
- the molecular weight of the polyalkyleneoxy group (R 1 ) is less than or equal to about 10,000.
- the molecular weight of the polyalkyleneoxy group is less than or equal to about 8,000, and most preferably ranges from about 300 to about 5,000.
- the values of c and d can be those numbers which provide molecular weights within these ranges.
- the number of ethyleneoxy units (—C 2 H 4 O) in the polyether chain (R 1 ) must be sufficient to render the polyalkyleneoxide polysiloxane water dispersible or water soluble. If propyleneoxy groups are present in the polyalkylenoxy chain, they can be distributed randomly in the chain or exist as blocks.
- Preferred Silwet surfactants are L-7600, L-7602, L-7604, L-7605, L-7657, and mixtures thereof. Besides surface activity, polyalkyleneoxide polysiloxane surfactants can also provide other benefits, such as antistatic benefits, and softness to fabrics.
- polyalkyleneoxide polysiloxanes of the present invention can be prepared according to the procedure set forth in U.S. Pat. No. 3,299,112, incorporated herein by reference.
- Another suitable silicone surfactant is SF-1488, which is available from GE silicone fluids.
- the adjunct may also be an antistatic agent.
- Any suitable well-known antistatic agents used in laundering and dry cleaning art are suitable for use in the methods and compositions of the present invention.
- Especially suitable as antistatic agents are the subset of fabric softeners which are known to provide antistatic benefits.
- antistatic agent is not to be limited to just this subset of fabric softeners and includes all antistatic agents.
- the method of the present invention is directed to attaining improved fabric cleaning in a lipophilic fluid treatment regimen, and includes the steps of exposing the fabric to a lipophilic fluid and exposing the fabric to a hydrophobic chelant. Optionally but preferably, it may include the step of exposing the fabric to a polar phase.
- the polar phase may include water, alcohol, or mixtures thereof. If the polar phase does include water, it preferably comprises at least about 0.5% water by weight of fabric and at most about 10% water by weight of fabric.
- the lipophilic fluid may comprise a linear siloxane, a cyclic siloxane, or mixtures thereof.
- the lipophilic fluid is selected from the group consisting essentially of octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, and mixtures thereof. Even more preferably, the lipophilic fluid comprises decamethylcyclopentasiloxane. Most preferably, the lipophilic fluid comprises decamethylcyclopentasiloxane and is substantially free of octamethylcyclotetrasiloxane. Due to the flash points of the aforementioned siloxanes, the method preferably occurs at less than about 80° C.
- the fabrics may also be exposed to an emulsifier an/or a surfactant either separately or as a result of being contained within the polar phase, the lipophilic fluid, and/or the bleach system.
- the fabrics may also be exposed to adjunct ingredients selected from the group consisting essentially of enzymes, bleaches, surfactants, fabric softeners, perfumes, antibacterial agents, antistatic agents, brighteners, dye fixatives, dye abrasion inhibitors, anti-crocking agents, wrinkle reduction agents, wrinkle resistance agents, soil release polymers, sunscreen agents, anti-fade agents, builders, chelants, sudsing agents, composition malodor control agents, composition coloring agents, pH buffers, waterproofing agents, soil repellency agents, and mixtures thereof.
- adjuncts can also be applied either separately or as a result of being contained within the polar phase, the lipophilic fluid, and/or the hydrophobic chelant.
- composition of the present invention is directed to attaining improved fabric cleaning in a lipophilic fluid treatment regimen, wherein the composition comprises a lipophilic fluid and a hydrophobic chelant.
- the composition can further comprise a polar phase.
- the polar phase may include water, alcohol, and mixtures thereof. Also, the polar phase preferably comprises at least about 0.1% water by weight of composition and at most about 5% water by weight of composition.
- the polar phase may comprise a buffer to maintain pH.
- the composition may contain non-hydrophobic chelants also to stabilize the product during storage prior to delivery in the lipophilic system.
- chelating agents may comprise, but are not limited to, ethylenediaminedisuccunate (EDDS), ethylene diamine tetra acetic acid (EDTA), quaternary ammonia compounds, or 1-Hydroxyethane-1,1-diphosphonic acid (HEDP).
- the lipophilic fluid may comprise a linear siloxane, a cyclic siloxane, or mixtures thereof.
- the lipophilic fluid comprises a lipophilic fluid selected from the group consisting essentially of octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, and mixtures thereof. More preferably, the lipophilic fluid comprises decamethylcyclopentasiloxane. Most preferably, the lipophilic fluid comprises decamethylcyclopentasiloxane and is substantially free of octamethylcyclotetrasiloxane.
- the bleach system may include oxygen-based bleach, bleach activator and a peroxide source, pre-formed peracid, oxidative bleach enzyme, photo bleach, bleach boosting compounds, metal bleach catalysts, ozone, chlorine dioxide or mixtures of multiple bleach systems.
- the polar phase preferably comprises at least about 1% water by weight of fabric.
- the bleach system has at least about 2 ppm AvO, more preferably at least about 25 ppm AvO, even more preferably at least about 50 ppm AvO, even more preferably at least about 100 ppm AvO.
- the bleach system has at most about 10000 ppm AvO. Most preferably, the bleach system has at least about 100 ppm AvO and at most about 5000 ppm AvO.
- the bleach system may be within the polar phase and/or within the lipophilic fluid as opposed to being a stand-alone component.
- the fabrics may also be exposed to an emulsifier an/or a surfactant either separately or as a result of being contained within the polar phase, the lipophilic fluid, and/or the bleach system.
- the fabrics may also be exposed to adjunct ingredients selected from the group consisting essentially of enzymes, bleaches, emulsifiers, surfactants, fabric softeners, perfumes, antibacterial agents, antistatic agents, brighteners, dye fixatives, dye abrasion inhibitors, anti-crocking agents, wrinkle reduction agents, wrinkle resistance agents, soil release polymers, sunscreen agents, anti-fade agents, builders, chelants, sudsing agents, composition malodor control agents, composition coloring agents, pH buffers, waterproofing agents, soil repellency agents, and mixtures thereof.
- adjuncts can also be applied either separately or as a result of being contained within the polar phase, the lipophilic fluid, and/or the bleach system.
- compositions of the present invention may be combined with other fabric treatments.
- the fabric articles prior to the application of the lipophilic fluid the fabric articles may be subjected to the particulate removal method described in co-pending application Serial No. 60/191,965, to Noyes et al., filed Mar. 24, 2000, the relevant parts of which are incorporated herein by reference.
- the present invention may be used in a service, such as a dry cleaning service, diaper service, uniform cleaning service, or commercial business, such as a Laundromat, dry cleaner, linen service which is part of a hotel, restaurant, convention center, airport, cruise ship, port facility, casino, or may be used in the home.
- a service such as a dry cleaning service, diaper service, uniform cleaning service, or commercial business, such as a Laundromat, dry cleaner, linen service which is part of a hotel, restaurant, convention center, airport, cruise ship, port facility, casino, or may be used in the home.
- compositions of the present invention may be performed in an apparatus that is a modified existing apparatus and is retrofitted in such a manner as to conduct the process of the present invention in addition to related processes.
- compositions of the present invention may also be performed in an apparatus, which is not a modified existing apparatus but is one specifically built in such a manner so as to conduct the process of the present invention or may be added to another apparatus as part of a lipophilic fluid processing system.
- the methods of the present invention may be performed in an apparatus, which is not a modified existing apparatus but is one specifically built in such a manner so as to conduct the process of the present invention and related processes.
- An apparatus used to carry out the present invention will typically contain some type of control system. These include electrical systems, such as, the so-called smart control systems, as well-as more traditional electromechanical systems.
- the control systems would enable the user to select the size of the fabric load to be cleaned, the type of soiling, the extent of the soiling, the time for the cleaning cycle.
- the user could use pre-set cleaning and/or refreshing cycles, or the apparatus could control the length of the cycle, based on any number of ascertainable parameters. This would be especially true for electrical control systems. For example, when the collection rate of lipophilic fluid reaches a steady rate the apparatus could turn its self off after a fixed period of time, or initiate another process for the lipophilic fluid.
- control device In the case of electrical control systems, one option is to make the control device a so-called “smart device”. This could mean including, but not limited to, self diagnostic system, load type and cycle selection, linking the machine to the Internet and allowing for the consumer to start the apparatus remotely, be informed when the apparatus has cleaned a fabric article, or for the supplier to remotely diagnose problems if the apparatus should break down. Furthermore, if the apparatus of the present invention is only a part of a cleaning system, the so called “smart system” could be communicating with the other cleaning devices which would be used to complete the remainder of the cleaning process, such as a washing machine, and a dryer.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Detergent Compositions (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Methods and compositions to treat fabrics with lipophilic fluid and a hydrophobic chelant are provided by the present invention.
Description
- This application claims priority to U.S. Provisional Application Serial No. 60/343,094 filed Dec. 20, 2001.
- The present invention relates to compositions and methods to treat fabrics with a lipophilic fluid and hydrophobic chelants. The present invention is also directed to compositions containing a lipophilic fluid and a hydrophobic chelant.
- Conventional laundering techniques for the cleaning and treatment of fabric articles such as garments have long involved both traditional aqueous based washing and a technique commonly referred to as “dry cleaning”. Traditional aqueous based washing techniques have involved immersion of the fabric articles in a solution of water and detergent or soap products followed by rinsing and drying. However, such conventional immersion cleaning techniques have proven unsatisfactory on a wide range fabric articles that require special handling and/or cleaning methods due to fabric content, construction, etceteras, that is unsuitable for immersion in water.
- Accordingly, the use of the laundering method of “dry cleaning” has been developed. Dry cleaning typically involves the use of non-aqueous, lipophilic fluids as the solvent or solution for cleaning. While the absence of water permits the cleaning of fabrics without the potential disastrous side effects water may present, these lipophilic fluids do not perform well on hydrophilic and/or combination soils.
- Because these lipophilic fluids are typically used in “neat” form (i.e. they contain no additional additives), dry cleaners must often perform pre-treating and/or pre-spotting to remove tough soils from fabrics prior to the dry cleaning cycle. Further, nothing is typically added to boost “whiteness” or “brightness” in fabrics that are dry-cleaned as can be observed from “dingy” or “dull” fabrics returned from a dry cleaner. It would be desirable to add bleaching to the lipophilic fluid treatment regimen in order to increase the lipophilic fluids' brightening, whitening, and/or soil removal capability thereby reducing or eliminating the need for pre-treating and/or pre-spotting.
- Many fabrics and textiles highly valued by the consumer (e.g., silk) are prone to undue damage when exposed to water in large quantities. For this reason garments made from such fabric and textiles must be dry cleaned.
- Accordingly, the need remains for hydrophobic chelant-containing care and treatment regimens for use with lipophilic fluid compositions.
- This need is met by the present invention wherein hydrophobic chelant-containing care and treatment regimens and compositions for use with lipophilic fluid compositions are provided.
- The present invention is directed to a method for attaining improved fabric cleaning in a lipophilic fluid treatment regimen, wherein the method includes the steps of exposing the fabric to a lipophilic fluid and exposing the fabric to a hydrophobic chelant.
- The present invention is also directed to a composition for attaining improved fabric cleaning in a lipophilic fluid treatment regimen, wherein the composition includes a lipophilic fluid and a hydrophobic chelant.
- These and other aspects, features and advantages will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the appended claims. All percentages, ratios and proportions herein are by weight, unless otherwise specified. All temperatures are in degrees Celsius (° C.) unless otherwise specified. All measurements are in SI units unless otherwise specified. All documents cited are in relevant part, incorporated herein by reference.
- Definitions
- The term “fabrics” and “fabric” used herein is intended to mean any article that is customarily cleaned in a conventional laundry process or in a dry cleaning process. As such the term encompasses articles of clothing, linen, drapery, and clothing accessories. The term also encompasses other items made in whole or in part of fabric, such as tote bags, furniture covers, tarpaulins and the like.
- The term “soil” means any undesirable substance on a fabric article that is desired to be removed. By the terms “water-based” or “hydrophilic” soils, it is meant that the soil comprised water at the time it first came in contact with the fabric article, or the soil retains a significant portion of water on the fabric article. Examples of water-based soils include, but are not limited to beverages, many food soils, water soluble dyes, bodily fluids such as sweat, urine or blood, outdoor soils such as grass stains and mud.
- Lipophilic Fluid
- The lipophilic fluid herein is one having a liquid phase present under operating conditions of a fabric article treating appliance, in other words, during treatment of a fabric article in accordance with the present invention. In general such a lipophilic fluid can be fully liquid at ambient temperature and pressure, can be an easily melted solid, e.g., one which becomes liquid at temperatures in the range from about 0 deg. C. to about 60 deg. C., or can comprise a mixture of liquid and vapor phases at ambient temperatures and pressures, e.g., at 25 deg. C. and 1 atm. pressure. Thus, the lipophilic fluid is not a compressible gas such as carbon dioxide.
- It is preferred that the lipophilic fluids herein be nonflammable or have relatively high flash points and/or low VOC (volatile organic compound) characteristics, these terms having their conventional meanings as used in the dry cleaning industry, to equal or, preferably, exceed the characteristics of known conventional dry cleaning fluids.
- Moreover, suitable lipophilic fluids herein are readily flowable and nonviscous.
- In general, lipophilic fluids herein are required to be fluids capable of at least partially dissolving sebum or body soil as defined in the test hereinafter. Mixtures of lipophilic fluid are also suitable, and provided that the requirements of the Lipophilic Fluid Test, as described below, are met, the lipophilic fluid can include any fraction of dry-cleaning solvents, especially newer types including fluorinated solvents, or perfluorinated amines. Some perfluorinated amines such as perfluorotributylamines while unsuitable for use as lipophilic fluid may be present as one of many possible adjuncts present in the lipophilic fluid-containing composition.
- Other suitable lipophilic fluids include, but are not limited to, diol solvent systems e.g., higher diols such as C6- or C8- or higher diols, organosilicone solvents including both cyclic and acyclic types, and the like, and mixtures thereof.
- A preferred group of nonaqueous lipophilic fluids suitable for incorporation as a major component of the compositions of the present invention include low-volatility nonfluorinated organics, silicones, especially those other than amino functional silicones, and mixtures thereof. Low volatility nonfluorinated organics include for example OLEAN® and other polyol esters, or certain relatively nonvolatile biodegradable mid-chain branched petroleum fractions.
- Another preferred group of nonaqueous lipophilic fluids suitable for incorporation as a major component of the compositions of the present invention include, but are not limited to, glycol ethers, for example propylene glycol methyl ether, propylene glycol n-propyl ether, propylene glycol t-butyl ether, propylene glycol n-butyl ether, dipropylene glycol methyl ether, dipropylene glycol n-propyl ether, dipropylene glycol t-butyl ether, dipropylene glycol n-butyl ether, tripropylene glycol methyl ether, tripropylene glycol n-propyl ether, tripropylene glycol t-butyl ether, tripropylene glycol n-butyl ether. Suitable silicones for use as a major component, e.g., more than 50%, of the composition include cyclopentasiloxanes, sometimes termed “D5”, and/or linear analogs having approximately similar volatility, optionally complemented by other compatible silicones. Suitable silicones are well known in the literature, see, for example, Kirk Othmer's Encyclopedia of Chemical Technology, and are available from a number of commercial sources, including General Electric, Toshiba Silicone, Bayer, and Dow Corning. Other suitable lipophilic fluids are commercially available from Procter & Gamble or from Dow Chemical and other suppliers.
- Qualification of Lipophilic Fluid and Lipophilic Fluid Test (LF Test)
- Any nonaqueous fluid that is both capable of meeting known requirements for a dry-cleaning fluid (e.g, flash point etc.) and is capable of at least partially dissolving sebum, as indicated by the test method described below, is suitable as a lipophilic fluid herein. As a general guideline, perfluorobutylamine (Fluorinert FC-43®) on its own (with or without adjuncts) is a reference material which by definition is unsuitable as a lipophilic fluid for use herein (it is essentially a nonsolvent) while cyclopentasiloxanes have suitable sebum-dissolving properties and dissolves sebum.
- The following is the method for investigating and qualifying other materials, e.g., other low-viscosity, free-flowing silicones, for use as the lipophilic fluid. The method uses commercially available Crisco® canola oil, oleic acid (95% pure, available from Sigma Aldrich Co.) and squalene (99% pure, available from J. T. Baker) as model soils for sebum. The test materials should be substantially anhydrous and free from any added adjuncts, or other materials during evaluation.
- Prepare three vials, each vial will contain one type of lipophilic soil. Place 1.0 g of canola oil in the first; in a second vial place 1.0 g of the oleic acid (95%), and in a third and final vial place 1.0 g of the squalene (99.9%). To each vial add 1 g of the fluid to be tested for lipophilicity. Separately mix at room temperature and pressure each vial containing the lipophilic soil and the fluid to be tested for 20 seconds on a standard vortex mixer at maximum setting. Place vials on the bench and allow to settle for 15 minutes at room temperature and pressure. If, upon standing, a clear single phase is formed in any of the vials containing lipophilic soils, then the nonaqueous fluid qualifies as suitable for use as a “lipophilic fluid” in accordance with the present invention. However, if two or more separate layers are formed in all three vials, then the amount of nonaqueous fluid dissolved in the oil phase will need to be further determined before rejecting or accepting the nonaqueous fluid as qualified.
- In such a case, with a syringe, carefully extract a 200-microliter sample from each layer in each vial. The syringe-extracted layer samples are placed in GC auto sampler vials and subjected to conventional GC analysis after determining the retention time of calibration samples of each of the three models soils and the fluid being tested. If more than 1% of the test fluid by GC, preferably greater, is found to be present in any one of the layers which consists of the oleic acid, canola oil or squalene layer, then the test fluid is also qualified for use as a lipophilic fluid. If needed, the method can be further calibrated using heptacosafluorotributylamine, i.e., Fluorinert FC-43 (fail) and cyclopentasiloxane (pass). A suitable GC is a Hewlett Packard Gas Chromatograph HP5890 Series II equipped with a split/splitless injector and FID. A suitable column used in determining the amount of lipophilic fluid present is a J&W Scientific capillary column DB-1HT, 30 meter, 0.25 mm id, 0.1 um film thickness cat# 1221131. The GC is suitably operated under the following conditions:
- Carrier Gas: Hydrogen
- Column Head Pressure: 9 psi
- Flows:
- Column Flow @˜ 1.5 ml/min.
- Split Vent @˜250-500 ml/min.
- Septum Purge @1 ml/min.
- Injection: HP 7673 Autosampler, 10 ul syringe, 1 ul injection
- Injector Temperature: 350° C.
- Detector Temperature: 380° C.
- Oven Temperature Program:
- initial 60° C. hold 1 min.
- rate 25° C./min.
- final 380° C. hold 30 min.
- Preferred lipophilic fluids suitable for use herein can further be qualified for use on the basis of having an excellent garment care profile. Garment care profile testing is well known in the art and involves testing a fluid to be qualified using a wide range of garment or fabric article components, including fabrics, threads and elastics used in seams, etc., and a range of buttons. Preferred lipophilic fluids for use herein have an excellent garment care profile, for example they have a good shrinkage and/or fabric puckering profile and do not appreciably damage plastic buttons. Certain materials which in sebum removal qualify for use as lipophilic fluids, for example ethyl lactate, can be quite objectionable in their tendency to dissolve buttons, and if such a material is to be used in the compositions of the present invention, it will be formulated with water and/or other solvents such that the overall mix is not substantially damaging to buttons. Other lipophilic fluids, D5, for example, meet the garment care requirements quite admirably. Some suitable lipophilic fluids may be found in granted U.S. Pat. Nos. 5,865,852; 5,942,007; 6,042,617; 6,042,618; 6,056,789; 6,059,845; and 6,063,135, which are incorporated herein by reference.
- Lipophilic fluids can include linear and cyclic polysiloxanes, hydrocarbons and chlorinated hydrocarbons, with the exception of PERC and DF2000 which are explicitly not covered by the lipophilic fluid definition as used herein. More preferred are the linear and cyclic polysiloxanes and hydrocarbons of the glycol ether, acetate ester, lactate ester families. Preferred lipophilic fluids include cyclic siloxanes having a boiling point at 760 mm Hg. of below about 250° C. Specifically preferred cyclic siloxanes for use in this invention are octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane. Preferably, the cyclic siloxane comprises decamethylcyclopentasiloxane (D5, pentamer) and is substantially free of octamethylcyclotetrasiloxane (tetramer) and dodecamethylcyclohexasiloxane (hexamer).
- However, it should be understood that useful cyclic siloxane mixtures might contain, in addition to the preferred cyclic siloxanes, minor amounts of other cyclic siloxanes including octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane or higher cyclics such as tetradecamethylcycloheptasiloxane. Generally the amount of these other cyclic siloxanes in useful cyclic siloxane mixtures will be less than about 10 percent based on the total weight of the mixture. The industry standard for cyclic siloxane mixtures is that such mixtures comprise less than about 1% by weight of the mixture of octamethylcyclotetrasiloxane.
- Hydrophobic Chelants
- The methods and compositions of the present invention include hydrophobic chelants at a level of suitable for the purpose as known by those of ordinary skill in the art. For example from about 1 ppm to about 100 ppm and/or from about 10 ppm to about 50 ppm by weight of the compositions.
-
-
-
- chelating agents containing 1) C5-14 hydrophobic group and/or 2) anionic groups; HO2CCHR1NHCR3R4CR5R6NHCR2CO2H (R1-2=2-hydroxyphenyl optionally substituted by 1-4 alkyl, alkoxy, aryl, aryloxy, Cl, alkoxysulfonyl, or other groups; R3-6=H, alkyl), e.g., [HO-o-C6H4CH(CO2H)NHCH2]2; hydroxyphenylglycine derivatives;
- ethylenediaminephenol derivatives of the formula 1, below or its salt, where X1,X2=OH; Y1-8=H, OH, halogen, COOH, a phosphonic acid group, a sulfonic acid group, CO, a nitro group, a nitroso group, an amino group, an imino group, a nitrilo group, a nitrile group, a thiocyanate group, a hydroxyamino group, a hydroxyimino group, or alkyl or alkoxy which may have a substituent, provided that one of Y1-8 is not a H atom; Z1-4=H, COOH, or a sulfonic acid group; and R1-4=H or alkyl which may have a substituent.
-
- ethylenediaminetetraacetic anhydride derivatives; anhydrides (I) of EDTA was treated with 2,6-dimethylphenol, citric acid, ethylenediamine (II), ethylene glycol, NH2OH.HCl, di-Et diethylaminoethylphosphonate, glycine, HSCH2CH2NH2, or a similar compd. to prep. sym. diamides, diesters, polyamides, or polyesters of EDTA that are useful as chelating agents, stabilizers, or detergent additives. Amides can also be prepd. by treatment of ethylenediaminediacetic acid or II with ClCH2CONHMe or BrCH2CONHMe; amides and esters of EDTA; glycine, N,N′-1,2-ethanediylbis[N-(carboxymethyl)-, reaction products with amino alcohols and amino esters; EDTA ethylenediamine polyamide; detergent additive EDTA polyamide; glycol EDTA polyester; alc EDTA ester; amine EDTA amide; phosphonate EDTA ester; EDTA diesters, the alkyl groups of which consist of up to 22 C atoms; EDTA dialkyl esters; diethyl, didodecyl, and dioctadecyl esters of EDTA; didodecyl EDTA esters; (ethylenedinitrilo)tetraacetic acid dialkyl esters and mixtures thereof.
- In another embodiment, the addition of hydrophilic chelants to the polar phase, whereby they become soluble in the hydrophobic phase upon chelating a soil. Example, let say a low MW lupasol (which is only soluble in the water phase) goes down to the surface and chelates a soil (tea). The chelation of the polyphenolics may make the lupasol soluble in the lipophilic fluid.
- Additional chelants suitable for use herein may include silicone chelants or polymeric chelants.
- EHPG is Ethylene bis([o-hydroxyphenyl]glycine)
- EDTA is Ethylenediamine tetraacetic acid
- HEDTA is 2-hydroxyethylethylenediamine triacidic acid
- In one embodiment, the hydrophobic chelants are ligands that have high transition metal binding constants, at least comparable to EDTA. The hydrophobicity is being achieved by esterifying carboxylates to lower anionic charge or by attaching hydrophobic groups to the aromatic portion of EHPG.
- In a preferred embodiment, the chelants are soluble in the lipophilic fluid, such as D5.
- In yet another embodiment, the chelants have R groups that are esters, amides or separately as alkyl groups on the phenols that are siloxanes, ethyleneoxides and propyleneoxides. The chainlength size should be similar to the alkyl chains maybe up to 10 siloxylethyl groups, 6 or so EOs or POs. Nonlimiting examples of which are shown below.
-
-
- Adjunct Ingredients
- Adjunct materials can vary widely and can be used at widely ranging levels. For example, detersive enzymes such as proteases, amylases, cellulases, lipases and the like as well as bleach catalysts including the macrocyclic types having manganese or similar transition metals all useful in laundry and cleaning products can be used herein at very low, or less commonly, higher levels. Adjunct materials that are catalytic, for example enzymes, can be used in “forward” or “reverse” modes, a discovery independently useful from the specific appliances of the present invention. For example, a lipolase or other hydrolase may be used, optionally in the presence of alcohols as adjuncts, to convert fatty acids to esters, thereby increasing their solubility in the lipophilic fluid. This is a “reverse” operation, in contrast with the normal use of this hydrolase in water to convert a less water-soluble fatty ester to a more water-soluble material. In any event, any adjunct ingredient must be suitable for use in combination with the lipophilic fluid.
- The compositions may comprise emulsifiers. Emulsifiers are well known in the chemical art. Essentially, an emulsifier acts to bring two or more insoluble or semi-soluble phases together to create a stable or semi-stable emulsion. It is preferred in the claimed invention that the emulsifier serves a dual purpose wherein it is capable of acting not only as an emulsifier but also as a treatment performance booster. For example, the emulsifier may also act as a surfactant thereby boosting cleaning performance. Both ordinary emulsifiers and emulsifier/surfactants are commercially available.
- Some suitable cleaning additives (adjunct ingredients) include, but are not limited to, builders, surfactants, enzymes, bleach activators, bleach catalysts, bleach boosters, bleaches, alkalinity sources, antibacterial agents, colorants, perfumes, pro-perfumes, finishing aids, lime soap dispersants, composition malodor control agents, odor neutralizers, polymeric dye transfer inhibiting agents, crystal growth inhibitors, photobleaches, non-hydrophobic chelants, anti-tarnishing agents, anti-microbial agents, anti-oxidants, anti-redeposition agents, soil release polymers, electrolytes, pH modifiers, thickeners, abrasives, divalent or trivalent ions, metal ion salts, enzyme stabilizers, corrosion inhibitors, diamines or polyamines and/or their alkoxylates, suds stabilizing polymers, solvents, process aids, fabric softening agents, optical brighteners, hydrotropes, suds or foam suppressors, suds or foam boosters, fabric softeners, antistatic agents, dye fixatives, dye abrasion inhibitors, anti-crocking agents, wrinkle reduction agents, wrinkle resistance agents, soil release polymers, soil repellency agents, sunscreen agents, anti-fade agents, and mixtures thereof.
- The term “surfactant” conventionally refers to materials that are surface-active either in the water, the lipophilic fluid, or the mixture of the two. Some illustrative surfactants include nonionic, cationic and silicone surfactants as used in conventional aqueous detergent systems. Suitable nonionic surfactants include, but are not limited to:
- a) Polyethylene oxide condensates of nonyl phenol and myristyl alcohol, such as in U.S. Pat. No. 4,685,930 Kasprzak; and
- b) fatty alcohol ethoxylates, R—(OCH 2CH2)aOH a=1 to 100, typically 12-40, R=hydrocarbon residue 8 to 20 C atoms, typically linear alkyl. Examples polyoxyethylene lauryl ether, with 4 or 23 oxyethylene groups; polyoxyethylene cetyl ether with 2, 10 or 20 oxyethylene groups; polyoxyethylene stearyl ether, with 2, 10, 20, 21 or 100 oxyethylene groups; polyoxyethylene (2), (10) oleyl ether, with 2 or 10 oxyethylene groups. Commercially available examples include, but are not limited to: ALFONIC, BRIJ, GENAPOL, NEODOL, SURFONIC, TRYCOL. See also U.S. Pat. No. 6,013,683 Hill et al.
- Suitable caiionic surfactants include, but are not limited to dialkyldimethylammonium salts having the formula:
- R′R″N+(CH3)2X−
- Where each R′R″ is independently selected from the group consisting of 12-30 C atoms or derived from tallow, coconut oil or soy, X=Cl or Br, Examples include: didodecyldimethylammonium bromide (DDAB), dihexadecyldimethyl ammonium chloride, dihexadecyldimethyl ammonium bromide, dioctadecyldimethyl ammonium chloride, dieicosyldimethyl ammonium chloride, didocosyldimethyl ammonium chloride, dicoconutdimethyl ammonium chloride, ditallowdimethyl ammonium bromide (DTAB). Commercially available examples include, but are not limited to: ADOGEN, ARQUAD, TOMAH, VARIQUAT. See also U.S. Pat. No. 6,013,683 Hill et al., .
- Suitable silicone surfactants include, but are not limited to the polyalkyleneoxide polysiloxanes having a dimethyl polysiloxane hydrophobic moiety and one or more hydrophilic polyalkylene side chains and have the general formula:
- R1—(CH3)2SiO—[(CH3)2SiO]a[(CH3)(R1)SiO]b—Si(CH3)2—R1
- wherein a+b are from about 1 to about 50, preferably from about 3 to about 30, more preferably from about 10 to about 25, and each R 1 is the same or different and is selected from the group consisting of methyl and a poly(ethyleneoxide/propyleneoxide) copolymer group having the general formula:
- —(CH2)nO(C2H4O)c(C3H6O)dR2
- with at least one R 1 being a poly(ethyleneoxide/propyleneoxide) copolymer group, and wherein n is 3 or 4, preferably 3; total c (for all polyalkyleneoxy side groups) has a value of from 1 to about 100, preferably from about 6 to about 100; total d is from 0 to about 14, preferably from 0 to about 3; and more preferably d is 0; total c+d has a value of from about 5 to about 150, preferably from about 9 to about 100 and each R2 is the same or different and is selected from the group consisting of hydrogen, an alkyl having 1 to 4 carbon atoms, and an acetyl group, preferably hydrogen and methyl group. Examples of these surfactants may be found in U.S. Pat. No. 5,705,562 Hill and U.S. Pat. No. 5,707,613 Hill, both of which are incorporated herein by reference.
- Examples of this type of surfactants are the Silwet® surfactants which are available CK Witco, OSi Division, Danbury, Conn. Representative Silwet surfactants are as follows.
Name Average MW Average a + b Average total c L-7608 600 1 9 L-7607 1,000 2 17 L-77 600 1 9 L-7605 6,000 20 99 L-7604 4,000 21 53 L-7600 4,000 11 68 L-7657 5,000 20 76 L-7602 3,000 20 29 - The molecular weight of the polyalkyleneoxy group (R 1) is less than or equal to about 10,000. Preferably, the molecular weight of the polyalkyleneoxy group is less than or equal to about 8,000, and most preferably ranges from about 300 to about 5,000. Thus, the values of c and d can be those numbers which provide molecular weights within these ranges. However, the number of ethyleneoxy units (—C2H4O) in the polyether chain (R1) must be sufficient to render the polyalkyleneoxide polysiloxane water dispersible or water soluble. If propyleneoxy groups are present in the polyalkylenoxy chain, they can be distributed randomly in the chain or exist as blocks. Preferred Silwet surfactants are L-7600, L-7602, L-7604, L-7605, L-7657, and mixtures thereof. Besides surface activity, polyalkyleneoxide polysiloxane surfactants can also provide other benefits, such as antistatic benefits, and softness to fabrics.
- The preparation of polyalkyleneoxide polysiloxanes is well known in the art. Polyalkyleneoxide polysiloxanes of the present invention can be prepared according to the procedure set forth in U.S. Pat. No. 3,299,112, incorporated herein by reference.
- Another suitable silicone surfactant is SF-1488, which is available from GE silicone fluids.
- These and other surfactants suitable for use in combination with the lipophilic fluid as adjuncts are well known in the art, being described in more detail in Kirk Othmer's Encyclopedia of Chemical Technology, 3rd Ed., Vol. 22, pp. 360-379, “Surfactants and Detersive Systems”, incorporated by reference herein. Further suitable nonionic detergent surfactants are generally disclosed in U.S. Pat. No. 3,929,678, Laughlin et al., issued Dec. 30, 1975, at column 13, line 14 through column 16, line 6, incorporated herein by reference.
- The adjunct may also be an antistatic agent. Any suitable well-known antistatic agents used in laundering and dry cleaning art are suitable for use in the methods and compositions of the present invention. Especially suitable as antistatic agents are the subset of fabric softeners which are known to provide antistatic benefits. For example those fabric softeners which have a fatty acyl group which has an iodine value of above 20, such as N,N-di(tallowoyl-oxy-ethyl)-N,N-dimethyl ammonium methylsulfate. However, it is-to be understood that the term antistatic agent is not to be limited to just this subset of fabric softeners and includes all antistatic agents.
- Although the methods and/or compositions utilized in present invention will be described in detail, it should be understood, and one skilled in the art will recognize, that any compositions, processes, and/or apparatuses capable of carrying out the invention could be used.
- Method
- The method of the present invention is directed to attaining improved fabric cleaning in a lipophilic fluid treatment regimen, and includes the steps of exposing the fabric to a lipophilic fluid and exposing the fabric to a hydrophobic chelant. Optionally but preferably, it may include the step of exposing the fabric to a polar phase.
- The polar phase may include water, alcohol, or mixtures thereof. If the polar phase does include water, it preferably comprises at least about 0.5% water by weight of fabric and at most about 10% water by weight of fabric.
- The lipophilic fluid may comprise a linear siloxane, a cyclic siloxane, or mixtures thereof. Preferably, the lipophilic fluid is selected from the group consisting essentially of octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, and mixtures thereof. Even more preferably, the lipophilic fluid comprises decamethylcyclopentasiloxane. Most preferably, the lipophilic fluid comprises decamethylcyclopentasiloxane and is substantially free of octamethylcyclotetrasiloxane. Due to the flash points of the aforementioned siloxanes, the method preferably occurs at less than about 80° C.
- While carrying out the method of the present invention, the fabrics may also be exposed to an emulsifier an/or a surfactant either separately or as a result of being contained within the polar phase, the lipophilic fluid, and/or the bleach system. The fabrics may also be exposed to adjunct ingredients selected from the group consisting essentially of enzymes, bleaches, surfactants, fabric softeners, perfumes, antibacterial agents, antistatic agents, brighteners, dye fixatives, dye abrasion inhibitors, anti-crocking agents, wrinkle reduction agents, wrinkle resistance agents, soil release polymers, sunscreen agents, anti-fade agents, builders, chelants, sudsing agents, composition malodor control agents, composition coloring agents, pH buffers, waterproofing agents, soil repellency agents, and mixtures thereof. These adjuncts can also be applied either separately or as a result of being contained within the polar phase, the lipophilic fluid, and/or the hydrophobic chelant.
- Composition
- The composition of the present invention is directed to attaining improved fabric cleaning in a lipophilic fluid treatment regimen, wherein the composition comprises a lipophilic fluid and a hydrophobic chelant. Optionally, the composition can further comprise a polar phase.
- If included, the polar phase may include water, alcohol, and mixtures thereof. Also, the polar phase preferably comprises at least about 0.1% water by weight of composition and at most about 5% water by weight of composition.
- Further, the polar phase may comprise a buffer to maintain pH.
- The composition may contain non-hydrophobic chelants also to stabilize the product during storage prior to delivery in the lipophilic system. Such chelating agents may comprise, but are not limited to, ethylenediaminedisuccunate (EDDS), ethylene diamine tetra acetic acid (EDTA), quaternary ammonia compounds, or 1-Hydroxyethane-1,1-diphosphonic acid (HEDP).
- The lipophilic fluid may comprise a linear siloxane, a cyclic siloxane, or mixtures thereof. Preferably, the lipophilic fluid comprises a lipophilic fluid selected from the group consisting essentially of octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, and mixtures thereof. More preferably, the lipophilic fluid comprises decamethylcyclopentasiloxane. Most preferably, the lipophilic fluid comprises decamethylcyclopentasiloxane and is substantially free of octamethylcyclotetrasiloxane.
- The bleach system may include oxygen-based bleach, bleach activator and a peroxide source, pre-formed peracid, oxidative bleach enzyme, photo bleach, bleach boosting compounds, metal bleach catalysts, ozone, chlorine dioxide or mixtures of multiple bleach systems. If the bleach system comprises pre-formed peracid the polar phase preferably comprises at least about 1% water by weight of fabric. Preferably, the bleach system has at least about 2 ppm AvO, more preferably at least about 25 ppm AvO, even more preferably at least about 50 ppm AvO, even more preferably at least about 100 ppm AvO. Preferably, the bleach system has at most about 10000 ppm AvO. Most preferably, the bleach system has at least about 100 ppm AvO and at most about 5000 ppm AvO. The bleach system may be within the polar phase and/or within the lipophilic fluid as opposed to being a stand-alone component.
- While carrying out the present invention, the fabrics may also be exposed to an emulsifier an/or a surfactant either separately or as a result of being contained within the polar phase, the lipophilic fluid, and/or the bleach system. The fabrics may also be exposed to adjunct ingredients selected from the group consisting essentially of enzymes, bleaches, emulsifiers, surfactants, fabric softeners, perfumes, antibacterial agents, antistatic agents, brighteners, dye fixatives, dye abrasion inhibitors, anti-crocking agents, wrinkle reduction agents, wrinkle resistance agents, soil release polymers, sunscreen agents, anti-fade agents, builders, chelants, sudsing agents, composition malodor control agents, composition coloring agents, pH buffers, waterproofing agents, soil repellency agents, and mixtures thereof. These adjuncts can also be applied either separately or as a result of being contained within the polar phase, the lipophilic fluid, and/or the bleach system.
- It will be understood that the methods and/or compositions of the present invention may be combined with other fabric treatments. For example, prior to the application of the lipophilic fluid the fabric articles may be subjected to the particulate removal method described in co-pending application Serial No. 60/191,965, to Noyes et al., filed Mar. 24, 2000, the relevant parts of which are incorporated herein by reference.
- The present invention may be used in a service, such as a dry cleaning service, diaper service, uniform cleaning service, or commercial business, such as a Laundromat, dry cleaner, linen service which is part of a hotel, restaurant, convention center, airport, cruise ship, port facility, casino, or may be used in the home.
- The methods and/or compositions of the present invention may be performed in an apparatus that is a modified existing apparatus and is retrofitted in such a manner as to conduct the process of the present invention in addition to related processes.
- The methods and/or compositions of the present invention may also be performed in an apparatus, which is not a modified existing apparatus but is one specifically built in such a manner so as to conduct the process of the present invention or may be added to another apparatus as part of a lipophilic fluid processing system. This would include all the associated plumbing, such as connection to a chemical and water supply, and sewerage for waste wash fluids.
- Finally, the methods of the present invention may be performed in an apparatus, which is not a modified existing apparatus but is one specifically built in such a manner so as to conduct the process of the present invention and related processes.
- An apparatus used to carry out the present invention will typically contain some type of control system. These include electrical systems, such as, the so-called smart control systems, as well-as more traditional electromechanical systems. The control systems would enable the user to select the size of the fabric load to be cleaned, the type of soiling, the extent of the soiling, the time for the cleaning cycle. Alternatively, the user could use pre-set cleaning and/or refreshing cycles, or the apparatus could control the length of the cycle, based on any number of ascertainable parameters. This would be especially true for electrical control systems. For example, when the collection rate of lipophilic fluid reaches a steady rate the apparatus could turn its self off after a fixed period of time, or initiate another process for the lipophilic fluid.
- In the case of electrical control systems, one option is to make the control device a so-called “smart device”. This could mean including, but not limited to, self diagnostic system, load type and cycle selection, linking the machine to the Internet and allowing for the consumer to start the apparatus remotely, be informed when the apparatus has cleaned a fabric article, or for the supplier to remotely diagnose problems if the apparatus should break down. Furthermore, if the apparatus of the present invention is only a part of a cleaning system, the so called “smart system” could be communicating with the other cleaning devices which would be used to complete the remainder of the cleaning process, such as a washing machine, and a dryer.
Claims (26)
1. A method for treating a fabric article in need of treatment comprising the step of exposing the fabric article to a hydrophobic chelant-containing composition comprising a lipophilic fluid and a hydrophobic chelant, such that the fabric article is treated.
2. A method according to claim 1 wherein composition further comprises a polar phase.
3. A method according to claim 2 wherein said polar phase comprises water.
4. A method according to claim 2 wherein said polar phase comprises at least about 0.1% water by weight of fabric.
5. A method according to claim 3 wherein said polar phase comprises at most about 5% water by weight of fabric.
6. A method according to claim 2 wherein said polar phase comprises alcohol.
7. The method according to claim 1 wherein the lipophilic fluid comprises a linear siloxane, a cyclic siloxane and mixtures thereof.
8. The method according to claim 1 wherein said lipophilic fluid comprises a lipophilic fluid selected from the group consisting of octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, and mixtures thereof.
9. The method according to claim 8 wherein said lipophilic fluid comprises decamethylcyclopentasiloxane.
10. The method according to claim 8 wherein said lipophilic fluid comprises decamethylcyclopentasiloxane and is substantially free of octamethylcyclotetrasiloxane.
11. A method according to claim 1 comprising the additional step of exposing said fabric article to an emulsifier.
12. A method according to claim 1 comprising the additional step of exposing said fabric article to a surfactant.
13. A method according to claim 1 wherein the method occurs at less than about 80° C.
14. A method according to claim 2 wherein the method occurs at less than about 80° C.
15. A method according to claim 1 wherein said fabric is also exposed to adjunct ingredients selected from the group consisting of enzymes, bleaches, surfactants, fabric softeners, perfumes, antibacterial agents, antistatic agents, brighteners, dye fixatives, dye abrasion inhibitors, anti-crocking agents, wrinkle reduction agents, wrinkle resistance agents, soil release polymers, sunscreen agents, anti-fade agents, builders, chelants, sudsing agents, composition malodor control agents, composition coloring agents, pH buffers, waterproofing agents, soil repellency agents, and mixtures thereof.
16. A fabric treating composition comprising a lipophilic fluid and a hydrophobic chelant.
17. The composition according to claim 16 wherein said composition further comprises a polar phase.
18. The composition according to claim 17 wherein said polar phase comprises water.
19. The composition according to claim 18 wherein said polar phase comprises at least about 0.1% water by weight of composition.
20. The composition according to claim 18 wherein said polar phase comprises at most about 5% water by weight of composition.
21. The composition according to claim 17 wherein said polar phase comprises alcohol.
22. The composition according to claim 16 wherein said lipophilic fluid comprises a linear siloxane, a cyclic siloxane, or mixtures thereof.
23. The composition according to claim 16 wherein said lipophilic fluid comprises a lipophilic fluid selected from the group consisting of octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, and mixtures thereof.
24. The composition according to claim 23 wherein said lipophilic fluid comprises decamethylcyclopentasiloxane.
25. The composition according to claim 23 wherein said lipophilic fluid comprises decamethylcyclopentasiloxane and is substantially free of octamethylcyclotetrasiloxane.
26. The composition according to claim 16 further comprising adjunct ingredients selected from the group consisting of enzymes, bleaches, emulsifiers, surfactants, fabric softeners, perfumes, antibacterial agents, antistatic agents, brighteners, dye fixatives, dye abrasion inhibitors, anti-crocking agents, wrinkle reduction agents, wrinkle resistance agents, soil release polymers, sunscreen agents, anti-fade agents, builders, non-hydrophobic chelants, sudsing agents, composition malodor control agents, composition coloring agents, pH buffers, waterproofing agents, soil repellency agents, and mixtures thereof.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/320,873 US20030126690A1 (en) | 2001-12-20 | 2002-12-17 | Treatment of fabric articles with hydrophobic chelants |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US34309401P | 2001-12-20 | 2001-12-20 | |
| US10/320,873 US20030126690A1 (en) | 2001-12-20 | 2002-12-17 | Treatment of fabric articles with hydrophobic chelants |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030126690A1 true US20030126690A1 (en) | 2003-07-10 |
Family
ID=23344688
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/320,873 Abandoned US20030126690A1 (en) | 2001-12-20 | 2002-12-17 | Treatment of fabric articles with hydrophobic chelants |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20030126690A1 (en) |
| EP (1) | EP1458923A2 (en) |
| JP (1) | JP2005513291A (en) |
| AU (1) | AU2002357905A1 (en) |
| CA (1) | CA2468207A1 (en) |
| WO (1) | WO2003054278A2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050003988A1 (en) * | 2003-06-27 | 2005-01-06 | The Procter & Gamble Company | Enzyme bleach lipophilic fluid cleaning compositions |
| WO2020200974A1 (en) * | 2019-04-05 | 2020-10-08 | Unilever Plc | Detergent compositions |
Citations (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3671441A (en) * | 1968-11-04 | 1972-06-20 | Diamond Shamrock Corp | Dry cleaning detergent |
| US4102824A (en) * | 1976-06-25 | 1978-07-25 | Kao Soap Co., Ltd. | Non-aqueous detergent composition |
| US4639321A (en) * | 1985-01-22 | 1987-01-27 | The Procter And Gamble Company | Liquid detergent compositions containing organo-functional polysiloxanes |
| US4685930A (en) * | 1984-11-13 | 1987-08-11 | Dow Corning Corporation | Method for cleaning textiles with cyclic siloxanes |
| US4708807A (en) * | 1986-04-30 | 1987-11-24 | Dow Corning Corporation | Cleaning and waterproofing composition |
| US5057240A (en) * | 1989-10-10 | 1991-10-15 | Dow Corning Corporation | Liquid detergent fabric softening laundering composition |
| US5091105A (en) * | 1989-10-10 | 1992-02-25 | Dow Corning Corporation | Liquid detergent fabric softening laundering composition |
| US5225340A (en) * | 1991-06-28 | 1993-07-06 | Nalco Chemical Company | Process for reducing metal concentration in aqueous systems |
| US5531915A (en) * | 1993-03-05 | 1996-07-02 | The Procter & Gamble Company | Detergent compositions containing ethylenediamine-N,N'-diglutaric acid or 2-hydroxypropylenediamine-N,N'-disuccinic acid |
| US5705562A (en) * | 1995-11-20 | 1998-01-06 | Dow Corning Corporation | Spontaneously formed clear silicone microemulsions |
| US5865852A (en) * | 1997-08-22 | 1999-02-02 | Berndt; Dieter R. | Dry cleaning method and solvent |
| US5876510A (en) * | 1995-03-09 | 1999-03-02 | The Dow Chemical Company | Process for cleaning articles |
| US5888250A (en) * | 1997-04-04 | 1999-03-30 | Rynex Holdings Ltd. | Biodegradable dry cleaning solvent |
| US5942007A (en) * | 1997-08-22 | 1999-08-24 | Greenearth Cleaning, Llp | Dry cleaning method and solvent |
| US5977040A (en) * | 1989-10-26 | 1999-11-02 | Toshiba Silicone Co., Ltd. | Cleaning compositions |
| US6013683A (en) * | 1998-12-17 | 2000-01-11 | Dow Corning Corporation | Single phase silicone and water compositions |
| US6042618A (en) * | 1997-08-22 | 2000-03-28 | Greenearth Cleaning Llc | Dry cleaning method and solvent |
| US6042617A (en) * | 1997-08-22 | 2000-03-28 | Greenearth Cleaning, Llc | Dry cleaning method and modified solvent |
| US6056789A (en) * | 1997-08-22 | 2000-05-02 | Greenearth Cleaning Llc. | Closed loop dry cleaning method and solvent |
| US6060546A (en) * | 1996-09-05 | 2000-05-09 | General Electric Company | Non-aqueous silicone emulsions |
| US6059845A (en) * | 1997-08-22 | 2000-05-09 | Greenearth Cleaning, Llc | Dry cleaning apparatus and method capable of utilizing a siloxane composition as a solvent |
| US6063135A (en) * | 1997-08-22 | 2000-05-16 | Greenearth Cleaning Llc | Dry cleaning method and solvent/detergent mixture |
| US6177399B1 (en) * | 1998-10-07 | 2001-01-23 | Dow Corning Taiwan, Inc. | Process for cleaning textile utilizing a low molecular weight siloxane |
| US6200352B1 (en) * | 1997-08-27 | 2001-03-13 | Micell Technologies, Inc. | Dry cleaning methods and compositions |
| US6258130B1 (en) * | 1999-11-30 | 2001-07-10 | Unilever Home & Personal Care, A Division Of Conopco, Inc. | Dry-cleaning solvent and method for using the same |
| US6273919B1 (en) * | 1997-04-04 | 2001-08-14 | Rynex Holdings Ltd. | Biodegradable ether dry cleaning solvent |
| US6309425B1 (en) * | 1999-10-12 | 2001-10-30 | Unilever Home & Personal Care, Usa, Division Of Conopco, Inc. | Cleaning composition and method for using the same |
| US6310029B1 (en) * | 1999-04-09 | 2001-10-30 | General Electric Company | Cleaning processes and compositions |
| US6313079B1 (en) * | 2000-03-02 | 2001-11-06 | Unilever Home & Personal Care Usa, Division Of Conopco | Heterocyclic dry-cleaning surfactant and method for using the same |
| US20020004953A1 (en) * | 2000-03-03 | 2002-01-17 | Perry Robert J. | Siloxane dry cleaning composition and process |
| US6368359B1 (en) * | 1999-12-17 | 2002-04-09 | General Electric Company | Process for stabilization of dry cleaning solutions |
| US20020115582A1 (en) * | 2000-02-22 | 2002-08-22 | General Electric Company | Siloxane dry cleaning composition and process |
| US20020174493A1 (en) * | 2000-03-10 | 2002-11-28 | General Electric Company | Siloxane dry cleaning composition and process |
| US6691536B2 (en) * | 2000-06-05 | 2004-02-17 | The Procter & Gamble Company | Washing apparatus |
| US6706677B2 (en) * | 2000-06-05 | 2004-03-16 | Procter & Gamble Company | Bleaching in conjunction with a lipophilic fluid cleaning regimen |
| US6828292B2 (en) * | 2000-06-05 | 2004-12-07 | Procter & Gamble Company | Domestic fabric article refreshment in integrated cleaning and treatment processes |
| US6939837B2 (en) * | 2000-06-05 | 2005-09-06 | Procter & Gamble Company | Non-immersive method for treating or cleaning fabrics using a siloxane lipophilic fluid |
-
2002
- 2002-12-17 US US10/320,873 patent/US20030126690A1/en not_active Abandoned
- 2002-12-19 AU AU2002357905A patent/AU2002357905A1/en not_active Abandoned
- 2002-12-19 JP JP2003554971A patent/JP2005513291A/en not_active Withdrawn
- 2002-12-19 EP EP02792450A patent/EP1458923A2/en not_active Withdrawn
- 2002-12-19 CA CA002468207A patent/CA2468207A1/en not_active Abandoned
- 2002-12-19 WO PCT/US2002/040650 patent/WO2003054278A2/en not_active Ceased
Patent Citations (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3671441A (en) * | 1968-11-04 | 1972-06-20 | Diamond Shamrock Corp | Dry cleaning detergent |
| US4102824A (en) * | 1976-06-25 | 1978-07-25 | Kao Soap Co., Ltd. | Non-aqueous detergent composition |
| US4685930A (en) * | 1984-11-13 | 1987-08-11 | Dow Corning Corporation | Method for cleaning textiles with cyclic siloxanes |
| US4639321A (en) * | 1985-01-22 | 1987-01-27 | The Procter And Gamble Company | Liquid detergent compositions containing organo-functional polysiloxanes |
| US4708807A (en) * | 1986-04-30 | 1987-11-24 | Dow Corning Corporation | Cleaning and waterproofing composition |
| US5057240A (en) * | 1989-10-10 | 1991-10-15 | Dow Corning Corporation | Liquid detergent fabric softening laundering composition |
| US5091105A (en) * | 1989-10-10 | 1992-02-25 | Dow Corning Corporation | Liquid detergent fabric softening laundering composition |
| US5977040A (en) * | 1989-10-26 | 1999-11-02 | Toshiba Silicone Co., Ltd. | Cleaning compositions |
| US6136766A (en) * | 1989-10-26 | 2000-10-24 | Toshiba Silicone Co., Ltd. | Cleaning compositions |
| US5985810A (en) * | 1989-10-26 | 1999-11-16 | Toshiba Silicone Co., Ltd. | Cleaning compositions |
| US5225340A (en) * | 1991-06-28 | 1993-07-06 | Nalco Chemical Company | Process for reducing metal concentration in aqueous systems |
| US5531915A (en) * | 1993-03-05 | 1996-07-02 | The Procter & Gamble Company | Detergent compositions containing ethylenediamine-N,N'-diglutaric acid or 2-hydroxypropylenediamine-N,N'-disuccinic acid |
| US5876510A (en) * | 1995-03-09 | 1999-03-02 | The Dow Chemical Company | Process for cleaning articles |
| US5707613A (en) * | 1995-11-20 | 1998-01-13 | Dow Corning Corporation | Spontaneously formed clear silicone microemulsions |
| US5705562A (en) * | 1995-11-20 | 1998-01-06 | Dow Corning Corporation | Spontaneously formed clear silicone microemulsions |
| US6060546A (en) * | 1996-09-05 | 2000-05-09 | General Electric Company | Non-aqueous silicone emulsions |
| US5888250A (en) * | 1997-04-04 | 1999-03-30 | Rynex Holdings Ltd. | Biodegradable dry cleaning solvent |
| US6156074A (en) * | 1997-04-04 | 2000-12-05 | Rynex Holdings, Ltd. | Biodegradable dry cleaning solvent |
| US6273919B1 (en) * | 1997-04-04 | 2001-08-14 | Rynex Holdings Ltd. | Biodegradable ether dry cleaning solvent |
| US6056789A (en) * | 1997-08-22 | 2000-05-02 | Greenearth Cleaning Llc. | Closed loop dry cleaning method and solvent |
| US6042618A (en) * | 1997-08-22 | 2000-03-28 | Greenearth Cleaning Llc | Dry cleaning method and solvent |
| US6059845A (en) * | 1997-08-22 | 2000-05-09 | Greenearth Cleaning, Llc | Dry cleaning apparatus and method capable of utilizing a siloxane composition as a solvent |
| US6063135A (en) * | 1997-08-22 | 2000-05-16 | Greenearth Cleaning Llc | Dry cleaning method and solvent/detergent mixture |
| US5942007A (en) * | 1997-08-22 | 1999-08-24 | Greenearth Cleaning, Llp | Dry cleaning method and solvent |
| US5865852A (en) * | 1997-08-22 | 1999-02-02 | Berndt; Dieter R. | Dry cleaning method and solvent |
| US6042617A (en) * | 1997-08-22 | 2000-03-28 | Greenearth Cleaning, Llc | Dry cleaning method and modified solvent |
| US6200352B1 (en) * | 1997-08-27 | 2001-03-13 | Micell Technologies, Inc. | Dry cleaning methods and compositions |
| US6177399B1 (en) * | 1998-10-07 | 2001-01-23 | Dow Corning Taiwan, Inc. | Process for cleaning textile utilizing a low molecular weight siloxane |
| US6013683A (en) * | 1998-12-17 | 2000-01-11 | Dow Corning Corporation | Single phase silicone and water compositions |
| US6310029B1 (en) * | 1999-04-09 | 2001-10-30 | General Electric Company | Cleaning processes and compositions |
| US20010034912A1 (en) * | 1999-04-09 | 2001-11-01 | Kilgour John A. | Cleaning processes and compositions |
| US6309425B1 (en) * | 1999-10-12 | 2001-10-30 | Unilever Home & Personal Care, Usa, Division Of Conopco, Inc. | Cleaning composition and method for using the same |
| US20010020308A1 (en) * | 1999-11-30 | 2001-09-13 | Unilever Home & Personal Care Usa | Dry-cleaning solvent and method for using the same |
| US6258130B1 (en) * | 1999-11-30 | 2001-07-10 | Unilever Home & Personal Care, A Division Of Conopco, Inc. | Dry-cleaning solvent and method for using the same |
| US6368359B1 (en) * | 1999-12-17 | 2002-04-09 | General Electric Company | Process for stabilization of dry cleaning solutions |
| US20020115582A1 (en) * | 2000-02-22 | 2002-08-22 | General Electric Company | Siloxane dry cleaning composition and process |
| US6313079B1 (en) * | 2000-03-02 | 2001-11-06 | Unilever Home & Personal Care Usa, Division Of Conopco | Heterocyclic dry-cleaning surfactant and method for using the same |
| US20020004953A1 (en) * | 2000-03-03 | 2002-01-17 | Perry Robert J. | Siloxane dry cleaning composition and process |
| US20020174493A1 (en) * | 2000-03-10 | 2002-11-28 | General Electric Company | Siloxane dry cleaning composition and process |
| US6691536B2 (en) * | 2000-06-05 | 2004-02-17 | The Procter & Gamble Company | Washing apparatus |
| US6706677B2 (en) * | 2000-06-05 | 2004-03-16 | Procter & Gamble Company | Bleaching in conjunction with a lipophilic fluid cleaning regimen |
| US6828292B2 (en) * | 2000-06-05 | 2004-12-07 | Procter & Gamble Company | Domestic fabric article refreshment in integrated cleaning and treatment processes |
| US6939837B2 (en) * | 2000-06-05 | 2005-09-06 | Procter & Gamble Company | Non-immersive method for treating or cleaning fabrics using a siloxane lipophilic fluid |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050003988A1 (en) * | 2003-06-27 | 2005-01-06 | The Procter & Gamble Company | Enzyme bleach lipophilic fluid cleaning compositions |
| WO2020200974A1 (en) * | 2019-04-05 | 2020-10-08 | Unilever Plc | Detergent compositions |
| CN113677785A (en) * | 2019-04-05 | 2021-11-19 | 联合利华知识产权控股有限公司 | Detergent composition |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2468207A1 (en) | 2003-07-03 |
| AU2002357905A8 (en) | 2003-07-09 |
| WO2003054278A3 (en) | 2004-03-25 |
| WO2003054278A2 (en) | 2003-07-03 |
| AU2002357905A1 (en) | 2003-07-09 |
| JP2005513291A (en) | 2005-05-12 |
| EP1458923A2 (en) | 2004-09-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6734153B2 (en) | Treatment of fabric articles with specific fabric care actives | |
| US6673764B2 (en) | Visual properties for a wash process using a lipophilic fluid based composition containing a colorant | |
| US6706076B2 (en) | Process for separating lipophilic fluid containing emulsions with electric coalescence | |
| EP1290268B1 (en) | Improved visual properties for a wash process | |
| US6706677B2 (en) | Bleaching in conjunction with a lipophilic fluid cleaning regimen | |
| US7018423B2 (en) | Method for the use of aqueous vapor and lipophilic fluid during fabric cleaning | |
| EP1417373B1 (en) | Methods and systems for drying lipophilic fluid-containing fabrics | |
| CA2410199C (en) | Bleaching in conjunction with a lipophilic fluid cleaning regimen | |
| US6660703B2 (en) | Treatment of fabric articles with rebuild agents | |
| US20030126690A1 (en) | Treatment of fabric articles with hydrophobic chelants | |
| US20030121107A1 (en) | Solvent treatment of fabric articles | |
| AU2001268189B2 (en) | Method for the use of aqueous vapor and lipophilic fluid during fabric cleaning | |
| US20060200915A1 (en) | Methods and systems for drying lipophilic fluid-containing fabrics | |
| AU2001268189A1 (en) | Method for the use of aqueous vapor and lipophilic fluid during fabric cleaning | |
| WO2003054279A2 (en) | Treatment of fabric articles | |
| WO2001094501A2 (en) | A process for separating lipophilic fluid containing emulsions with electric coalescence | |
| AU2002327456A1 (en) | Methods and systems for drying lipophilic fluid-containing fabrics |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: PROCTER & GAMBLE COMPANY, THE, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHEPER, WILLIAM MICHAEL;PERKINS, CHRISTOPHER MARK;REEL/FRAME:013700/0748;SIGNING DATES FROM 20021119 TO 20021122 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |