US20030124693A1 - Enzymatic conversion of epoxides - Google Patents
Enzymatic conversion of epoxides Download PDFInfo
- Publication number
- US20030124693A1 US20030124693A1 US10/302,788 US30278802A US2003124693A1 US 20030124693 A1 US20030124693 A1 US 20030124693A1 US 30278802 A US30278802 A US 30278802A US 2003124693 A1 US2003124693 A1 US 2003124693A1
- Authority
- US
- United States
- Prior art keywords
- process according
- epoxide
- groups
- group
- chosen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000002118 epoxides Chemical class 0.000 title abstract 2
- 238000006243 chemical reaction Methods 0.000 title description 42
- 230000002255 enzymatic effect Effects 0.000 title description 5
- 238000000034 method Methods 0.000 claims abstract description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 150000002924 oxiranes Chemical class 0.000 claims description 67
- 108010013164 halohydrin dehalogenase Proteins 0.000 claims description 21
- 125000003118 aryl group Chemical group 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims description 13
- 239000012038 nucleophile Substances 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 9
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical group ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 8
- 125000003342 alkenyl group Chemical group 0.000 claims description 8
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 8
- 241000589155 Agrobacterium tumefaciens Species 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 125000003277 amino group Chemical group 0.000 claims description 5
- 239000012736 aqueous medium Substances 0.000 claims description 5
- 229910052794 bromium Inorganic materials 0.000 claims description 5
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 229910052740 iodine Inorganic materials 0.000 claims description 5
- 125000001424 substituent group Chemical group 0.000 claims description 5
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 claims description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 4
- 229920001184 polypeptide Polymers 0.000 claims description 4
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- 125000000129 anionic group Chemical group 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 241000186073 Arthrobacter sp. Species 0.000 claims description 2
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 3
- AGIBHMPYXXPGAX-UHFFFAOYSA-N 2-(iodomethyl)oxirane Chemical compound ICC1CO1 AGIBHMPYXXPGAX-UHFFFAOYSA-N 0.000 claims 1
- 125000002252 acyl group Chemical group 0.000 claims 1
- 239000006185 dispersion Substances 0.000 claims 1
- 125000001188 haloalkyl group Chemical group 0.000 claims 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 33
- 102000004190 Enzymes Human genes 0.000 description 31
- 108090000790 Enzymes Proteins 0.000 description 31
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 20
- 239000000047 product Substances 0.000 description 19
- 239000000872 buffer Substances 0.000 description 11
- 229960004132 diethyl ether Drugs 0.000 description 11
- 0 *C1CO1.*CC(*)O.C.[H+3] Chemical compound *C1CO1.*CC(*)O.C.[H+3] 0.000 description 10
- -1 aromatic azidoalcohols Chemical class 0.000 description 10
- 239000012074 organic phase Substances 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 150000003944 halohydrins Chemical class 0.000 description 9
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- DHEGJYKMZJGYGW-QMMMGPOBSA-N (r)-1-para-nitro-phenyl-2-azido-ethanol Chemical compound [N-]=[N+]=NC[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 DHEGJYKMZJGYGW-QMMMGPOBSA-N 0.000 description 5
- 102000005486 Epoxide hydrolase Human genes 0.000 description 5
- 108020002908 Epoxide hydrolase Proteins 0.000 description 5
- 238000005356 chiral GC Methods 0.000 description 5
- YKIUTLHCSNCTDZ-UHFFFAOYSA-N 2-(4-nitrophenyl)oxirane Chemical compound C1=CC([N+](=O)[O-])=CC=C1C1OC1 YKIUTLHCSNCTDZ-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004296 chiral HPLC Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 238000007142 ring opening reaction Methods 0.000 description 4
- YKIUTLHCSNCTDZ-MRVPVSSYSA-N (s)-4-nitrostyrene oxide Chemical compound C1=CC([N+](=O)[O-])=CC=C1[C@@H]1OC1 YKIUTLHCSNCTDZ-MRVPVSSYSA-N 0.000 description 3
- JSOGDEOQBIUNTR-UHFFFAOYSA-N 2-(azidomethyl)oxirane Chemical compound [N-]=[N+]=NCC1CO1 JSOGDEOQBIUNTR-UHFFFAOYSA-N 0.000 description 3
- ZEPXDCVIHLGTNB-UHFFFAOYSA-N 2-azido-2-(4-nitrophenyl)ethanol Chemical compound [N-]=[N+]=NC(CO)C1=CC=C([N+]([O-])=O)C=C1 ZEPXDCVIHLGTNB-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000007993 MOPS buffer Substances 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004098 Tetracycline Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000003158 alcohol group Chemical group 0.000 description 3
- 150000001540 azides Chemical class 0.000 description 3
- UGUUDTWORXNLAK-UHFFFAOYSA-N azidoalcohol Chemical compound ON=[N+]=[N-] UGUUDTWORXNLAK-UHFFFAOYSA-N 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229940093499 ethyl acetate Drugs 0.000 description 3
- 235000019439 ethyl acetate Nutrition 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229960002180 tetracycline Drugs 0.000 description 3
- 229930101283 tetracycline Natural products 0.000 description 3
- 235000019364 tetracycline Nutrition 0.000 description 3
- 150000003522 tetracyclines Chemical class 0.000 description 3
- IBWLXNDOMYKTAD-MRVPVSSYSA-N (2s)-2-(4-chlorophenyl)oxirane Chemical compound C1=CC(Cl)=CC=C1[C@@H]1OC1 IBWLXNDOMYKTAD-MRVPVSSYSA-N 0.000 description 2
- 229940051269 1,3-dichloro-2-propanol Drugs 0.000 description 2
- DEWLEGDTCGBNGU-UHFFFAOYSA-N 1,3-dichloropropan-2-ol Chemical compound ClCC(O)CCl DEWLEGDTCGBNGU-UHFFFAOYSA-N 0.000 description 2
- DTXBDTUEXOVFTN-UHFFFAOYSA-N 1-azido-3-chloropropan-2-ol Chemical compound ClCC(O)CN=[N+]=[N-] DTXBDTUEXOVFTN-UHFFFAOYSA-N 0.000 description 2
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 2
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000006184 cosolvent Substances 0.000 description 2
- 239000000287 crude extract Substances 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 239000012847 fine chemical Substances 0.000 description 2
- 238000003818 flash chromatography Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000012434 nucleophilic reagent Substances 0.000 description 2
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 229940127557 pharmaceutical product Drugs 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000006340 racemization Effects 0.000 description 2
- 238000006798 ring closing metathesis reaction Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- CXFYQOLDGQVUGO-QMMMGPOBSA-N (1r)-2-azido-1-(4-chlorophenyl)ethanol Chemical compound [N-]=[N+]=NC[C@H](O)C1=CC=C(Cl)C=C1 CXFYQOLDGQVUGO-QMMMGPOBSA-N 0.000 description 1
- MATJBGYRKJDRBU-UHFFFAOYSA-N 1-azido-3-bromopropan-2-ol Chemical compound BrCC(O)CN=[N+]=[N-] MATJBGYRKJDRBU-UHFFFAOYSA-N 0.000 description 1
- JSSIVJGRLZMOJX-UHFFFAOYSA-N 2-(2,3-dichlorophenyl)oxirane Chemical compound ClC1=CC=CC(C2OC2)=C1Cl JSSIVJGRLZMOJX-UHFFFAOYSA-N 0.000 description 1
- ILDXSRFKXABMHH-UHFFFAOYSA-N 2-(2-aminophenyl)ethanol Chemical compound NC1=CC=CC=C1CCO ILDXSRFKXABMHH-UHFFFAOYSA-N 0.000 description 1
- KYHJWLAPKITUMU-UHFFFAOYSA-N 2-(2-nitrophenyl)oxirane Chemical compound [O-][N+](=O)C1=CC=CC=C1C1OC1 KYHJWLAPKITUMU-UHFFFAOYSA-N 0.000 description 1
- YVMKRPGFBQGEBF-UHFFFAOYSA-N 2-(3-chlorophenyl)oxirane Chemical compound ClC1=CC=CC(C2OC2)=C1 YVMKRPGFBQGEBF-UHFFFAOYSA-N 0.000 description 1
- VVZFDVJTIOLMKC-UHFFFAOYSA-N 2-(3-nitrophenyl)oxirane Chemical compound [O-][N+](=O)C1=CC=CC(C2OC2)=C1 VVZFDVJTIOLMKC-UHFFFAOYSA-N 0.000 description 1
- IBWLXNDOMYKTAD-UHFFFAOYSA-N 2-(4-chlorophenyl)oxirane Chemical compound C1=CC(Cl)=CC=C1C1OC1 IBWLXNDOMYKTAD-UHFFFAOYSA-N 0.000 description 1
- VVHFXJOCUKBZFS-UHFFFAOYSA-N 2-(chloromethyl)-2-methyloxirane Chemical compound ClCC1(C)CO1 VVHFXJOCUKBZFS-UHFFFAOYSA-N 0.000 description 1
- OIFAHDAXIUURLN-UHFFFAOYSA-N 2-(fluoromethyl)oxirane Chemical compound FCC1CO1 OIFAHDAXIUURLN-UHFFFAOYSA-N 0.000 description 1
- VEUMANXWQDHAJV-UHFFFAOYSA-N 2-[2-[(2-hydroxyphenyl)methylideneamino]ethyliminomethyl]phenol Chemical class OC1=CC=CC=C1C=NCCN=CC1=CC=CC=C1O VEUMANXWQDHAJV-UHFFFAOYSA-N 0.000 description 1
- MALKRPRQNKEVSK-UHFFFAOYSA-N 2-azido-1-phenylethanol Chemical compound [N-]=[N+]=NCC(O)C1=CC=CC=C1 MALKRPRQNKEVSK-UHFFFAOYSA-N 0.000 description 1
- OVFUAYYHQWUHCD-UHFFFAOYSA-N 2-butan-2-yloxirane Chemical compound CCC(C)C1CO1 OVFUAYYHQWUHCD-UHFFFAOYSA-N 0.000 description 1
- WHNBDXQTMPYBAT-UHFFFAOYSA-N 2-butyloxirane Chemical compound CCCCC1CO1 WHNBDXQTMPYBAT-UHFFFAOYSA-N 0.000 description 1
- XWCQSILTDPAWDP-UHFFFAOYSA-N 2-chloro-1-phenylethanol Chemical compound ClCC(O)C1=CC=CC=C1 XWCQSILTDPAWDP-UHFFFAOYSA-N 0.000 description 1
- DVLFYONBTKHTER-UHFFFAOYSA-N 3-(N-morpholino)propanesulfonic acid Chemical compound OS(=O)(=O)CCCN1CCOCC1 DVLFYONBTKHTER-UHFFFAOYSA-N 0.000 description 1
- 125000006043 5-hexenyl group Chemical group 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000186249 Corynebacterium sp. Species 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241001131785 Escherichia coli HB101 Species 0.000 description 1
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 241000187488 Mycobacterium sp. Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 241000187562 Rhodococcus sp. Species 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000007073 chemical hydrolysis Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- CRQQGFGUEAVUIL-UHFFFAOYSA-N chlorothalonil Chemical compound ClC1=C(Cl)C(C#N)=C(Cl)C(C#N)=C1Cl CRQQGFGUEAVUIL-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000013601 cosmid vector Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 108010017796 epoxidase Proteins 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 108010055015 haloalcohol dehalogenase Proteins 0.000 description 1
- 108010063852 haloalcohol hydrogen-halide lyase Proteins 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P41/00—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
Definitions
- the invention relates to a process for converting an epoxide to an alcohol. More specifically, the invention relates to an enzymatic process for converting an epoxide to an alcohol by nucleophilic substitution.
- a reaction wherein an epoxide is converted to an alcohol by nucleophilic substitution may be depicted as follows:
- R may represent a wide range of groups, such as various substituted or unsubstituted alkyl groups, whereas X represents a nucleophile.
- the product of this conversion may be a very useful building block in the preparation of various fine chemicals, such as certain pharmaceutical products.
- the reaction may produce two different enantiomers. As the products are often used for applications wherein enantiomeric purity is of great importance, many attempts to find enantioselective ways of carrying out this reaction have been reported.
- An example of such a reaction is the enantioselective ring opening of an epoxide by an azide anion (N 3 ⁇ ), which may be referred to as an azidolysis.
- the product of the reaction an optically active azido alcohol is a precursor for biologically active pharmaceuticals such as amino alcohols.
- a highly enantioselective azidolysis of meso-epoxides and various terminal epoxides using chiral salen complexes has been described by the group of Jacobsen (Martinez et al., J. Am. Chem. Soc., 1995, 117, 5897; Farrow et al., J. Am. Chem.
- a halohydrin dehalogenase (also referred to as halohydrin hydrogen-halide-lyase, halohydrin epoxidase or haloalcohol dehalogenase) catalyzes the ring-closure of a halohydrin to an epoxide.
- a halohydrin dehalogenase may also catalyze the reverse reaction. The equilibrium of both reactions may be depicted as follows:
- R may be chosen from a wide range of groups, such as various substituted or unsubstituted aryl or alkyl groups, and wherein X represents a halogen such as bromide, chloride or iodide.
- reactions catalyzed by use of enzymes involve the use of less (organic) solvents, or other reagents that might be environmentally suspect such as metal complexes and the like.
- catalytic chemical azidolysis of epoxides is typically performed using environmentally unfriendly metals, such as chromium, cobalt or titanium complexes, in organic solvents, such as dichloromethane, acetonitrile or dimethylformamide.
- enzymes are often more selective and more efficient catalysts than their chemical counterparts designed by man.
- halohydrins and epoxides are used as building blocks for various pharmaceutical products.
- Halohydrins are often considered as direct precursors for epoxides. Ring closure of an optically pure halohydrin generally leads to an optically pure epoxide.
- a kinetic resolution of a halohydrin containing an aromatic group, such as 2-chloro-1-phenylethanol, with a halohydrin dehalogenase from Agrobacterium radiobacter AD1 has been described (Lutje Spelberg et al., Tetrahedron: Asymmetry, 1999, 10, 2863).
- the present invention provides a process wherein, optionally substituted, epoxides may be converted to alcohols in a highly enantioselective manner. It has been found that the desired enantioselectivity may be accomplished by enzymatically converting an, optionally substituted, epoxide of the formula
- R 1 is hydrogen or an, optionally substituted, aromatic or aliphatic group, to a mixture of an optically enriched epoxide of the formula (I) and an optically enriched alcohol of the formula
- R 2 is chosen from the group of I, Cl, Br, CN, N 3 , NO 2 , NO 3 , SCN, OCN, OR′, NHR′, SR′, SnR′, SeR′, PR′ and CO 2 R′, wherein R′ is chosen from hydrogen, amino groups, hydroxyl groups, alkyl groups, aryl groups, aralkyl, alkenyl and cycloalkyl groups, which process comprises reacting the epoxide with an anionic nucleophile (R 2 ⁇ ) in the presence of a halohydrin dehalogenase.
- R 2 ⁇ anionic nucleophile
- the present process is highly regiospecific.
- two different products may be formed: one in which the —OH group is present at the carbon atom adjacent to the R 1 group, and one in which the —OH group is present at the carbon atom on the distal end from the R 1 group.
- the isomer with the —OH group at the carbon atom adjacent to the R 1 is formed.
- the product of the reaction is a building block for a wide variety of pharmaceutical compounds.
- 2-azido-1-phenylethanol which may be formed by the enzymatic reaction of sodium azide and styrene oxide, can be converted to biologically active 2-aminophenyl ethanol by catalytic hydrogenation.
- R 1 group is hydrogen or an, optionally substituted, aromatic or aliphatic group, which preferably contains from 1 to 20 carbon atoms.
- R 1 is chosen from the group of optionally substituted alkyl, aryl, aralkyl, alkenyl, cycloalkyl, and alkoxy groups.
- Preferred examples of the alkyl group represented by R 1 include straight or branched alkyl groups having 1 to 15 carbon atoms such as a methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, hexyl group, heptyl group or dodecyl group.
- Representative epoxides from this group include 1,2-epoxy propane, 1,2-epoxy-3-metylpentane and 1,2-epoxy hexane.
- the alkyl group can have substituents such as a halogen atom, leading to for example epichlorohydrin, epifluorohydrin or epibromohydrin.
- the alkyl group can have a substituent such as an hydroxyl group, for example glycidol.
- the alkyl group can have a unsubstituted or substituted amino group such as amino, methylamino or dimethylamino.
- aryl groups represented by R 1 include phenyl and naphtyl groups. Styrene oxide or styrene oxides having a substituent or multiple substituents on the aromatic ring are examples of the phenyl group.
- epoxides are styrene oxide, 4-nitrostyrene oxide, 2-nitrostyrene oxide, 3-nitrostyrene oxide, 3-chlorostyrene oxide, 4 chlorostyrene oxide or 2,3-dichlorostyrene oxide.
- aralkyl groups represented by R 1 include a benzyl group, 2-phenylethyl group and a 1-naphtylmethyl group.
- alkenyl groups represented by R 1 include a vinyl group, allyl group and 5-hexenyl group.
- Examples of cycloalkyl groups represented by R 1 include a cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group.
- Examples of alkoxy groups represented by R 1 include a phenoxy group, 4-nitrophenoxy group, napthyloxy group, methoxy group, hexyloxy group and vinyloxy group.
- a preferred class of epoxides that may be converted has the following formula:
- This class of epoxides may be substituted at the carbon atom bearing the R 1 group by a —CH 2 R 4 group, wherein the R 4 group may be independently chosen from Cl, Br and I.
- Preferred examples of this class of epoxides are epichlorohydrin, epibromohydrin and 2-(chloromethyl)-2-methyloxirane. It has been found that during conversion to an alcohol, particularly when azide is used as the nucleophile, the enantionmer of the epoxide which is not converted is racemized. Due to this racemization a total conversion of epichlorohydrin is achieved and the product is obtained in high optically purity.
- the epoxide is a stryrene oxide, which may or may not be substituted.
- the product obtained will be a mixture of two compounds having their alcohol functionality on their carbon atom ⁇ or ⁇ to the aromatic ring.
- the non-catalyzed chemical ring opening of styrene oxide by sodium azide will yield a mixture of regio-isomers with the alcohol functionality on the ⁇ and on the ⁇ -position in a molar ratio of 2:98 ( ⁇ : ⁇ ).
- the other regio-isomer i.e. wherein the alcohol functionality is present at the carbon atom a to the aromatic ring.
- the carbon atom ⁇ to the aromatic ring is the carbon atom within the epoxide ring which bears the aromatic ring substitutent.
- R 1 is an ortho-, meta-, or para-substituent chosen from the group of —NO 2 , —NH 2 , —CH 3 , —OCH 3 , —OCH 2 CH 3 , —OH, —F, —Cl, —Br, —I, —COOH and —CN. It has been found that the regiospecificity is particularly high for the conversion of these epoxides.
- the epoxide can be present in solubilized form in a concentration of 1 to 300 mM or as a second solid or liquid phase in concentration up to 300 mM in the reaction medium.
- the epoxide itself can be the second phase or it can be dissolved in a second organic phase. This can be done by dissolving the epoxide in an organic solvent which is immiscible with water, such as hexane or octane. The obtained solution is then brought into contact with the aqueous phase containing the enzyme and the two phases are vigorously mixed.
- the use of such a second phase has the advantage that the separation of the epoxide and the alcohol after the reaction can be simplified.
- the alcohol is expected to remain solubilized in the aqueous phase and the epoxide can typically be recovered from the organic phase.
- the epoxide is prior to its conversion brought in an aqueous medium in which it will preferably be present in an amount of 0.01 to 20 wt. %, based on the combined weights of the aqueous medium and the epoxide.
- nucleophile chosen to convert the epoxide in a process according to the invention will normally depend on the nature of the objective product.
- Suitable nucleophiles include of I, Cl, Br, CN, N 3 , NO 2 , NO 3 , SCN, OCN, OR′, NHR′, SR′, SnR′, SeR′, PR′ and CO 2 R′, wherein R′ is chosen from hydrogen, amino groups, hydroxyl groups, alkyl groups, aryl groups, aralkyl, alkenyl and cycloalkyl groups.
- substituted alkyl groups, aryl groups, aralkyl, alkenyl and cycloalkyl groups are also encompassed.
- R′ When R′ is an alkyl group, it preferably contains from 1 to 15, more preferably from 1 to 6 carbon atoms. When R′ is an aryl group, it preferably is a phenyl or a naphtyl group. Preferred aralkyl groups which may be represented by R′ include benzyl, 2-phenylethyl and 1-naphtylmethyl groups. Preferred alkenyl groups from which R′ may be chosen are vinyl and allyl groups. When R′ is a cycloalkyl group, it may suitably have from 3 to 12 carbon atoms. Preferred cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
- the nucleophile is NO 2 ⁇ or N 3 ⁇ .
- the nucleophile may be employed in the form of a salt, for instance as a sodium or potassium salt.
- An excess of the nucleophilic reagent may lead to the non-enantioselective formation of the unwanted regio-isomer of the objective product. This may be circumvented by either performing the reaction on a shorter time-scale, performing the reaction at a lower temperature, employing a larger quantity of the enzyme, or by adding the nucleophilic reagent to the reaction mixture in a slower fashion.
- the nucelophile will be used in an amount of 0.6 to 100 molar equivalents with respect to the epoxide, depending on the position of the equilibrium between the epoxide and the alcohol.
- the nucelophile will be used in an amount of 0.6 to 100 molar equivalents with respect to the epoxide, depending on the position of the equilibrium between the epoxide and the alcohol.
- 0.6 molar equivalents suffice to achieve a substantially completed kinetic resolution since the position of the equilibrium favors the formation of the alcohol over the epoxide.
- sodium chloride as the nucleophile, an excess (50-100 molar equivalents) are preferably added to favor the formation of the alcohol.
- a buffered aqueous medium to which the epoxide is solubilized or is added as a second solid or liquid phase.
- Suitable buffers are for example Tris-buffer (2 amino-2-(hydroxymethyl)-1,3 propanediol adjusted to a desired pH with H 2 SO 4 ), glycine-buffer (glycine adjusted to a desired pH by NaOH), phosphates buffer or MOPS buffer (4-morpholinepropanesulfonic acid adjusted to a desired pH with NaOH). These are preferably used a concentration of 50 to 250 mM.
- co-solvents like dimethyl sulfoxide, tetrahydrofuran or acetonitrile may be added to increase the solubility of the epoxide.
- Co-solvents may be added in amounts of 5 vol. % up to 50 vol. %.
- An increasing percentage of co-solvent may favor the solubility of the epoxide.
- a disadvantageous inactivation of the enzyme can be observed at higher co-solvent concentrations.
- the pH of the medium preferably lies between 3 and 12, more preferably between 6.5 and 8.
- the temperature at which the reaction is carried out preferably lies between 0 to 60° C., more preferably between 20 and 30° C.
- the enzyme used is a halohydrin dehalogenase.
- a highly suitable halohydrin dehalogenase is a polypeptide having an amino acid sequence as shown in SEQ ID NO 2 or a homologue or functional derivative thereof.
- a homologue refers to a sequence which is at least for 90% homologous, and preferably at least 90% identical, to the sequence of which it is a homologue.
- a functional derivative is a polypeptide which has undergone a minor derivatization or modification substantially without adversely affecting the enzymatic and catalytic properties of the polypeptide.
- Suitable examples of enzymes that can be used are halohydrin dehalogenase of Agrobacterium radiobacter (CBS 750.97), Mycobacterium sp. strain GP1 (Poelarends et al J. Bacteriol., 1999, 181, 2050) or Arthrobacter sp. strain AD2 (van den Wijngaard et al., J. Bacteriol., 1991, 124).
- Particular good results have been obtained using a halohydrin dehalogenase derived from Agrobacterium radiobacter strain AD1 deposited at the Centraal Bureau voor de Schimmelcultures on May 7, 1997 under deposit number CBS 750.97.
- Another enzyme obtained from this organism has been described extensively in the international patent application 98/53081 for its epoxide hydrolase activity.
- an enzyme used according to the invention should be distinguished from epoxide hydrolases.
- the latter have been described extensively in Archer, Tetrahedron, 53 (1997), pp. 15617-15662. The only feature that both types of enzymes may have in common is that they can be isolated from Agrobacterium radiobacter strain AD1.
- Lutje Spelberg et al., Tetrahedron: Asymmetry, 9 (1998), pp. 459-466 and European patent application 0 879 890 relate to applications of an epoxide hydrolase.
- the enzyme can be added as whole cells, in lyophilized form as a crude extract or as a purified enzyme.
- the enzyme can be immobilized on a macroscopic carriers such as cellulose, sephadex or dextran.
- the enzyme can also be applied as crosslinked enzyme crystals (CLEC's) or entrapped in reversed micelles.
- CLEC's crosslinked enzyme crystals
- an enzyme solution is mixed with a buffer solution containing a nucleophile and an epoxide.
- additives such as mercapto ethanol or glycerol can be added to the reaction mixture to stabilize the enzyme.
- the whole reaction mixture can be extracted using organic solvents such as diethylether, ethyl acetate, dichloromethane or toluene.
- organic solvents such as diethylether, ethyl acetate, dichloromethane or toluene.
- the epoxide and the alcohol can subsequently be separated by techniques such as crystallisation (in the case of solid substances), fraction distillation or flash chromatography on silica 60H using for example heptane/ethylacetate(ratio 7:3) as eluent.
- the enantiomeric composition of the epoxides and alcohols can be determined using chiral gaschromatography or chiral HPLC.
- a gene library of A. radiobacter AD1 was constructed in the cosmid vector pLAFR3. After in vitro packaging, the library was transduced to E. coli HB101. Transconjugants were screened for dehalogenase activity with 1,3-dichloro-2-propanol.
- the halohydrin dehalogenase gene, designated hheC was sequenced and subsequently amplified by PCR and cloned behind the T7 promotor of the expression vector pGEF + , yielding pGEFhheC.
- the halohydrin dehalogenase gene was overexpressed up to 30% of soluble protein by introduction of pGEFhheC in E. coli BL21(DE3).
- HheC has the sequence shown as SEQ ID NO 1.
- Plasmid DNA was transformed by electroporation to competent E. coli BL21 (DE3) cells, which were then plated out on LB medium containing tetracycline and incubated overnight at 30° C.
- a preculture was started by inoculating 100 ml of LB medium containing tetracycline with the transformants from a plate to a initial OD 600 of 0.1.
- the culture was incubated at 30° C. until an OD 600 of 1-2 was reached, diluted in 1 l of LB medium containing tetracycline and incubated overnight at 20° C.
- the cells were subsequently centrifuged, washed and resuspended.
- a crude extract was prepared by ultrasonic disruption and centrifugation of the cells. This was followed by a purification step with a Resource Q column yielding the enzyme having SEQ ID NO 2.
- SEQ ID NO 1 DNA Sequence of the Halohydrin Dehalogenase Gene from AD1 (Capitals Only) taaaatctcggcaaatatctagcgatcataggatataaaggatctgagtA TGTCAACCGCAATTGTAACAAACGTTAAGCATTTTGGGGGAATGGGGTCT GCACTTCGTCTCGGAAGCAGGACATACAGTGGCTTGCCACGATGAAAG CTTCAAACAAAAGGACGAACTTGAAGCCTTTGCCGAAACCTATCCACAAC TCAAACCAATGTCGGAACAAGAACCAGCGGAACTCATCGAGGCAGTTACC TCCGCTTATGGTCAAGTTGATGTACTTGTGAGCAACGACATATTCGCACC AGAGTTCCAACCCATAGATAAATACGCTGTAGAGGACTATCGCGGTGCGG TCGAGGCGCTACAAATTAGACCATTTGCACTGGTCAACGCCGTTGCAAGT CAAATGAAGAAGCGCAAAAGCGGACATATTATATCGCGGTGC
- SEQ ID NO 2 Amino Acid Sequence of HheC MSTAIVTNVKHFGGMGSALRLSEAGHTVACHDESFKQKDELEAFAETYPQ LKPMSEQEPAELIEAVTSAYGQVDVLVSNDIFAPEFQPIDKYAVEDYRGA VEALQIRPFALVNAVASQMKKRKSGHIIFITSATPFGPWKELSTYTSARA GACTLANALSKELGEYNIPVFAIGPNYLHSEDSPYFYPTEPWKTNPEHVA HVKKVTALQRLGTQKELGELVAFLASGSCDYLTGQVFWLAGGFPMIERWP GMPE
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
- The invention relates to a process for converting an epoxide to an alcohol. More specifically, the invention relates to an enzymatic process for converting an epoxide to an alcohol by nucleophilic substitution.
-
- In this reaction scheme, R may represent a wide range of groups, such as various substituted or unsubstituted alkyl groups, whereas X represents a nucleophile. The product of this conversion may be a very useful building block in the preparation of various fine chemicals, such as certain pharmaceutical products. The reaction may produce two different enantiomers. As the products are often used for applications wherein enantiomeric purity is of great importance, many attempts to find enantioselective ways of carrying out this reaction have been reported.
- An example of such a reaction is the enantioselective ring opening of an epoxide by an azide anion (N 3 − ), which may be referred to as an azidolysis. The product of the reaction, an optically active azido alcohol is a precursor for biologically active pharmaceuticals such as amino alcohols. A highly enantioselective azidolysis of meso-epoxides and various terminal epoxides using chiral salen complexes has been described by the group of Jacobsen (Martinez et al., J. Am. Chem. Soc., 1995, 117, 5897; Farrow et al., J. Am. Chem. Soc., 1996, 118, 7420). Preparations of optically active aromatic azidoalcohols through a biocatalyzed reaction have also been reported: e.g. by reduction of an α-azidoketone (Bese et al., J. Org. Chem., 1994, 59, 8288), lipase catalyzed resolution (Foelsche et al, J. Org. Chem., 1990, 55, 1749), or monohydroxylation (Boyd et al., Tetrahedron: Asymmetry, 1996, 7, 1559).
- The reverse reaction, i.e. the formation of an epoxide from e.g. a haloalcohol, using an enzymatically catalyzed reaction, has been given much attention in the literature, particular using halohydrin dehalogenases. All these reactions involved aliphatic halohydrins, such as 1,3-dihalopropanol, 2,3-dihalopropanol, and 3-halo-1,2-propanediol, to produce optically pure halohydrins and epoxides (Kasai et al., J. Mol. Cat:B, 1998, 4, 237). Generally, a halohydrin dehalogenase (also referred to as halohydrin hydrogen-halide-lyase, halohydrin epoxidase or haloalcohol dehalogenase) catalyzes the ring-closure of a halohydrin to an epoxide. For a limited number of halohydrins, it has been described that a halohydrin dehalogenase may also catalyze the reverse reaction. The equilibrium of both reactions may be depicted as follows:
- wherein R may be chosen from a wide range of groups, such as various substituted or unsubstituted aryl or alkyl groups, and wherein X represents a halogen such as bromide, chloride or iodide.
- One example using a halohydrin dehalogenase and a nucleophile different from a halide has been described by Nakamura et al., Tetrahedron, 1994, 50, 11821. In this reaction, a halohydrin dehalogenase from Corynebacterium sp. Strain N-1074 was used to open an epoxide with cyanide to yield a β-hydroxy nitrile.
- Asymmetric ring opening of an epoxide by azide has been described using a crude enzyme preparation from a Rhodococcus sp. (see Faber et al., Tetrahedron Letters, 1994, 35, 81). The enzyme responsible for the reaction is suggested to be an epoxide hydrolase rather than a halohydrin dehalogenase.
- When compared to chemically catalyzed reactions, reactions catalyzed by use of enzymes involve the use of less (organic) solvents, or other reagents that might be environmentally suspect such as metal complexes and the like. For example, catalytic chemical azidolysis of epoxides is typically performed using environmentally unfriendly metals, such as chromium, cobalt or titanium complexes, in organic solvents, such as dichloromethane, acetonitrile or dimethylformamide. Furthermore, enzymes are often more selective and more efficient catalysts than their chemical counterparts designed by man. For a more complete overview of the advantages of enzymatic catalysis, reference is made to Faber, Biotransformations in Organic Chemistry, 3 rd ed., Springer-Verlag, New York, 1997.
- In the fine chemical industry, optically pure halohydrins and epoxides are used as building blocks for various pharmaceutical products. Halohydrins are often considered as direct precursors for epoxides. Ring closure of an optically pure halohydrin generally leads to an optically pure epoxide. Recently, a kinetic resolution of a halohydrin containing an aromatic group, such as 2-chloro-1-phenylethanol, with a halohydrin dehalogenase from Agrobacterium radiobacter AD1 has been described (Lutje Spelberg et al., Tetrahedron: Asymmetry, 1999, 10, 2863).
- The present invention provides a process wherein, optionally substituted, epoxides may be converted to alcohols in a highly enantioselective manner. It has been found that the desired enantioselectivity may be accomplished by enzymatically converting an, optionally substituted, epoxide of the formula
-
- wherein R 2 is chosen from the group of I, Cl, Br, CN, N3, NO2, NO3, SCN, OCN, OR′, NHR′, SR′, SnR′, SeR′, PR′ and CO2R′, wherein R′ is chosen from hydrogen, amino groups, hydroxyl groups, alkyl groups, aryl groups, aralkyl, alkenyl and cycloalkyl groups, which process comprises reacting the epoxide with an anionic nucleophile (R2 − ) in the presence of a halohydrin dehalogenase.
- {Klopt de valentie van fosfor in PR′, of moeten er nog andere substituenten aan het fosforatoom zitten? Zo ja, dan moeten die genoemd worden.}
- Surprisingly, it has been found that by converting an epoxide according to the invention a very high enantiomeric excess may be obtained. Even when the starting material is a racemic mixture of both enantiomers of the epoxide, mainly, if not only, one of the possible enantiomers of the product is obtained. Accordingly, the invention enables not only a very enantioselective manner of producing an alcohol, but also an enantioselective kinetic resolution of the epoxide. For instance, in case of a reaction of (substituted) styrene oxides with an azide, the (R)-enantiomer of the azidoalcohol is mainly formed, leaving behind the non-reacted (S)-enantiomer of the epoxide.
- Moreover, the present process is highly regiospecific. Upon ring-opening of the epoxide, two different products may be formed: one in which the —OH group is present at the carbon atom adjacent to the R 1 group, and one in which the —OH group is present at the carbon atom on the distal end from the R1 group. In a process according to the invention, mainly, if not only, the isomer with the —OH group at the carbon atom adjacent to the R1 is formed.
- The product of the reaction, the alcohol with the formula (II), is a building block for a wide variety of pharmaceutical compounds. For example, 2-azido-1-phenylethanol, which may be formed by the enzymatic reaction of sodium azide and styrene oxide, can be converted to biologically active 2-aminophenyl ethanol by catalytic hydrogenation.
- In principle, any kind of epoxide may be converted in accordance with the invention. As mentioned, the R 1 group is hydrogen or an, optionally substituted, aromatic or aliphatic group, which preferably contains from 1 to 20 carbon atoms. Preferably, R1 is chosen from the group of optionally substituted alkyl, aryl, aralkyl, alkenyl, cycloalkyl, and alkoxy groups.
- Preferred examples of the alkyl group represented by R 1 include straight or branched alkyl groups having 1 to 15 carbon atoms such as a methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, hexyl group, heptyl group or dodecyl group. Representative epoxides from this group include 1,2-epoxy propane, 1,2-epoxy-3-metylpentane and 1,2-epoxy hexane. The alkyl group can have substituents such as a halogen atom, leading to for example epichlorohydrin, epifluorohydrin or epibromohydrin. The alkyl group can have a substituent such as an hydroxyl group, for example glycidol. The alkyl group can have a unsubstituted or substituted amino group such as amino, methylamino or dimethylamino. Examples of aryl groups represented by R1 include phenyl and naphtyl groups. Styrene oxide or styrene oxides having a substituent or multiple substituents on the aromatic ring are examples of the phenyl group. Representative examples of epoxides are styrene oxide, 4-nitrostyrene oxide, 2-nitrostyrene oxide, 3-nitrostyrene oxide, 3-chlorostyrene oxide, 4 chlorostyrene oxide or 2,3-dichlorostyrene oxide. Examples of aralkyl groups represented by R1 include a benzyl group, 2-phenylethyl group and a 1-naphtylmethyl group. Examples of alkenyl groups represented by R1 include a vinyl group, allyl group and 5-hexenyl group. Examples of cycloalkyl groups represented by R1 include a cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group. Examples of alkoxy groups represented by R1 include a phenoxy group, 4-nitrophenoxy group, napthyloxy group, methoxy group, hexyloxy group and vinyloxy group.
-
- This class of epoxides may be substituted at the carbon atom bearing the R 1 group by a —CH2R4 group, wherein the R4 group may be independently chosen from Cl, Br and I. Preferred examples of this class of epoxides are epichlorohydrin, epibromohydrin and 2-(chloromethyl)-2-methyloxirane. It has been found that during conversion to an alcohol, particularly when azide is used as the nucleophile, the enantionmer of the epoxide which is not converted is racemized. Due to this racemization a total conversion of epichlorohydrin is achieved and the product is obtained in high optically purity. Normally, in a kinetic resolution the maximum yield of the product is limited to 50%, but due to the racemization a yield of higher than 50% can be achieved. Another advantage of this process, besides the increased yield, is a much simpler product recovery since a separation of the product from the remaining substrate is not necessary.
- In another preferred embodiment, the epoxide is a stryrene oxide, which may or may not be substituted. When this conversion is carried out chemically, i.e. in the absence of a halohydrin dehalogenase according to the invention, the product obtained will be a mixture of two compounds having their alcohol functionality on their carbon atom α or β to the aromatic ring. For example, the non-catalyzed chemical ring opening of styrene oxide by sodium azide will yield a mixture of regio-isomers with the alcohol functionality on the α and on the β-position in a molar ratio of 2:98 (α:β). Surprisingly, when a styrene oxide is converted in accordance with the invention, the other regio-isomer (i.e. wherein the alcohol functionality is present at the carbon atom a to the aromatic ring. The carbon atom α to the aromatic ring is the carbon atom within the epoxide ring which bears the aromatic ring substitutent.) is obtained selectively. As separation of the two possible regio-isomers is very difficult, this regiospecificity is a great advantage of the invention.
-
- wherein R 1 is an ortho-, meta-, or para-substituent chosen from the group of —NO2, —NH2, —CH3, —OCH3, —OCH2CH3, —OH, —F, —Cl, —Br, —I, —COOH and —CN. It has been found that the regiospecificity is particularly high for the conversion of these epoxides.
- The epoxide can be present in solubilized form in a concentration of 1 to 300 mM or as a second solid or liquid phase in concentration up to 300 mM in the reaction medium. The epoxide itself can be the second phase or it can be dissolved in a second organic phase. This can be done by dissolving the epoxide in an organic solvent which is immiscible with water, such as hexane or octane. The obtained solution is then brought into contact with the aqueous phase containing the enzyme and the two phases are vigorously mixed. The use of such a second phase has the advantage that the separation of the epoxide and the alcohol after the reaction can be simplified. Generally, the alcohol is expected to remain solubilized in the aqueous phase and the epoxide can typically be recovered from the organic phase. Preferably, the epoxide is prior to its conversion brought in an aqueous medium in which it will preferably be present in an amount of 0.01 to 20 wt. %, based on the combined weights of the aqueous medium and the epoxide.
- The nature of the nucleophile chosen to convert the epoxide in a process according to the invention will normally depend on the nature of the objective product. Suitable nucleophiles include of I, Cl, Br, CN, N 3, NO2, NO3, SCN, OCN, OR′, NHR′, SR′, SnR′, SeR′, PR′ and CO2R′, wherein R′ is chosen from hydrogen, amino groups, hydroxyl groups, alkyl groups, aryl groups, aralkyl, alkenyl and cycloalkyl groups. Of course, substituted alkyl groups, aryl groups, aralkyl, alkenyl and cycloalkyl groups are also encompassed. When R′ is an alkyl group, it preferably contains from 1 to 15, more preferably from 1 to 6 carbon atoms. When R′ is an aryl group, it preferably is a phenyl or a naphtyl group. Preferred aralkyl groups which may be represented by R′ include benzyl, 2-phenylethyl and 1-naphtylmethyl groups. Preferred alkenyl groups from which R′ may be chosen are vinyl and allyl groups. When R′ is a cycloalkyl group, it may suitably have from 3 to 12 carbon atoms. Preferred cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
- Preferably, particularly when the epoxide is a styrene oxide or a substituted styrene oxide, the nucleophile is NO 2 − or N3 − . The nucleophile may be employed in the form of a salt, for instance as a sodium or potassium salt. An excess of the nucleophilic reagent may lead to the non-enantioselective formation of the unwanted regio-isomer of the objective product. This may be circumvented by either performing the reaction on a shorter time-scale, performing the reaction at a lower temperature, employing a larger quantity of the enzyme, or by adding the nucleophilic reagent to the reaction mixture in a slower fashion. Typically, the nucelophile will be used in an amount of 0.6 to 100 molar equivalents with respect to the epoxide, depending on the position of the equilibrium between the epoxide and the alcohol. For example, in the case of sodium azide as the nucleophile 0.6 molar equivalents suffice to achieve a substantially completed kinetic resolution since the position of the equilibrium favors the formation of the alcohol over the epoxide. In the case of sodium chloride as the nucleophile, an excess (50-100 molar equivalents) are preferably added to favor the formation of the alcohol.
- It is preferred that the reaction is carried out in a buffered aqueous medium to which the epoxide is solubilized or is added as a second solid or liquid phase. Suitable buffers are for example Tris-buffer (2 amino-2-(hydroxymethyl)-1,3 propanediol adjusted to a desired pH with H 2SO4), glycine-buffer (glycine adjusted to a desired pH by NaOH), phosphates buffer or MOPS buffer (4-morpholinepropanesulfonic acid adjusted to a desired pH with NaOH). These are preferably used a concentration of 50 to 250 mM.
- Optionally, co-solvents like dimethyl sulfoxide, tetrahydrofuran or acetonitrile may be added to increase the solubility of the epoxide. Co-solvents may be added in amounts of 5 vol. % up to 50 vol. %. An increasing percentage of co-solvent may favor the solubility of the epoxide. However, a disadvantageous inactivation of the enzyme can be observed at higher co-solvent concentrations.
- The pH of the medium preferably lies between 3 and 12, more preferably between 6.5 and 8. The temperature at which the reaction is carried out preferably lies between 0 to 60° C., more preferably between 20 and 30° C.
- The enzyme used is a halohydrin dehalogenase. A highly suitable halohydrin dehalogenase is a polypeptide having an amino acid sequence as shown in SEQ ID NO 2 or a homologue or functional derivative thereof. In the context of the invention, the term ‘a homologue’ refers to a sequence which is at least for 90% homologous, and preferably at least 90% identical, to the sequence of which it is a homologue. A functional derivative is a polypeptide which has undergone a minor derivatization or modification substantially without adversely affecting the enzymatic and catalytic properties of the polypeptide. Suitable examples of enzymes that can be used are halohydrin dehalogenase of Agrobacterium radiobacter (CBS 750.97), Mycobacterium sp. strain GP1 (Poelarends et al J. Bacteriol., 1999, 181, 2050) or Arthrobacter sp. strain AD2 (van den Wijngaard et al., J. Bacteriol., 1991, 124). Particular good results have been obtained using a halohydrin dehalogenase derived from Agrobacterium radiobacter strain AD1 deposited at the Centraal Bureau voor de Schimmelcultures on May 7, 1997 under deposit number CBS 750.97. Another enzyme obtained from this organism has been described extensively in the international patent application 98/53081 for its epoxide hydrolase activity.
- It is to be noted that an enzyme used according to the invention, a halohydrin dehalogenase, should be distinguished from epoxide hydrolases. The latter have been described extensively in Archer, Tetrahedron, 53 (1997), pp. 15617-15662. The only feature that both types of enzymes may have in common is that they can be isolated from Agrobacterium radiobacter strain AD1. Likewise, Lutje Spelberg et al., Tetrahedron: Asymmetry, 9 (1998), pp. 459-466 and European patent application 0 879 890 relate to applications of an epoxide hydrolase.
- The enzyme can be added as whole cells, in lyophilized form as a crude extract or as a purified enzyme. The enzyme can be immobilized on a macroscopic carriers such as cellulose, sephadex or dextran. The enzyme can also be applied as crosslinked enzyme crystals (CLEC's) or entrapped in reversed micelles. In a typical experiment, an enzyme solution is mixed with a buffer solution containing a nucleophile and an epoxide. Optionally, additives such as mercapto ethanol or glycerol can be added to the reaction mixture to stabilize the enzyme.
- After the reaction the whole reaction mixture can be extracted using organic solvents such as diethylether, ethyl acetate, dichloromethane or toluene. The epoxide and the alcohol can subsequently be separated by techniques such as crystallisation (in the case of solid substances), fraction distillation or flash chromatography on silica 60H using for example heptane/ethylacetate(ratio 7:3) as eluent. The enantiomeric composition of the epoxides and alcohols can be determined using chiral gaschromatography or chiral HPLC.
- The invention will now be further elucidated by the following, non-restrictive examples.
- A gene library of A. radiobacter AD1 was constructed in the cosmid vector pLAFR3. After in vitro packaging, the library was transduced to E. coli HB101. Transconjugants were screened for dehalogenase activity with 1,3-dichloro-2-propanol. The halohydrin dehalogenase gene, designated hheC, was sequenced and subsequently amplified by PCR and cloned behind the T7 promotor of the expression vector pGEF+, yielding pGEFhheC. The halohydrin dehalogenase gene was overexpressed up to 30% of soluble protein by introduction of pGEFhheC in E. coli BL21(DE3). HheC has the sequence shown as SEQ ID NO 1.
- For the described kinetic resolutions purified enzyme was used. Plasmid DNA was transformed by electroporation to competent E. coli BL21 (DE3) cells, which were then plated out on LB medium containing tetracycline and incubated overnight at 30° C. A preculture was started by inoculating 100 ml of LB medium containing tetracycline with the transformants from a plate to a initial OD600 of 0.1. The culture was incubated at 30° C. until an OD600 of 1-2 was reached, diluted in 1 l of LB medium containing tetracycline and incubated overnight at 20° C. The cells were subsequently centrifuged, washed and resuspended. A crude extract was prepared by ultrasonic disruption and centrifugation of the cells. This was followed by a purification step with a Resource Q column yielding the enzyme having SEQ ID NO 2.
- The above procedure is analogous to a procedure which has been described in more detail in the international patent application 98/53081, where the enzyme that was prepared was an epoxide hydrolase. The description of the recombinant preparation of the enzyme of said international patent application is to be considered incorporated herein by reference.
- To 15 ml of Tris-SO 4 buffer (50 mM, pH=7.3) containing 2 mM of para-nitro styrene oxide and 10 mM of NaN3, 2.8 mg of purified enzyme, obtained according to example 1, was added. The reaction was monitored by periodically taking 200 μl samples and extracting them with 2 ml of diethylether. The reaction was stopped when an e.e. of higher than 99% of the remaining enantiomer was reached and the solution was twice extracted with diethylether. The organic phase was analysed by chiral HPLC using a chiralpak AS column from Daicel. The remaining (S)-para-nitro styrene oxide was obtained with an e.e. >99% and the product (R)-2-azido-1-(para-nitro-phenyl)-ethanol with an e.e. of 94%. The corresponding E-value was calculated to be higher than 200 from the e.e.'s of the epoxide and the azido alcohol (Straathof et al., Enzyme Microb. Technol. 1997, 21, 559). The other regio-isomer 2-azido-2-(para-nitro-phenyl)-ethanol was also formed due to a chemical side reaction in a ratio of 1:12 compared to (R)-2-azido-1-(para-nitro-phenyl)-ethanol.
- To 1 ml of Tris-SO 4 buffer (50 mM, pH=7.3) containing 0.25 mM of para-nitro styrene oxide and 0.5 mM of NaN3, 0.7 mg of purified enzyme, obtained according to example 1, was added. The reaction was stopped after 15 min and the solution was extracted with diethylether. The organic phase was analysed by chiral HPLC. The remaining (S)-para-nitro styrene oxide was obtained with an e.e. >99% and the product (R)-2-azido-1-(para-nitro-phenyl)-ethanol with an e.e. of 96%. The other regio-isomer 2-azido-2-(para-nitro-phenyl)-ethanol was formed in a ratio of 1:217 compared to (R)-2-azido-1-(para-nitro-phenyl)-ethanol. From this we concluded that the enzymatic azidolysis is almost absolutely regioselective (β selectivity >99%). The observed lower regioselectivity during a kinetic resolution on a longer time scale was due to the unwanted chemical side reaction.
- To 60 ml of MOPS buffer (50 mM, pH=7.0), 0.47 gram (3.2 mmol) of racemic para-nitro styrene oxide was added and the suspension was stirred for 60 min. The halohydrin dehalogenase, obtained as described in example 1, (29 mg in 6 ml buffer) was added. A prepared stock solution of 0.12 gram (1.6 mmol) NaN 3 in 5 ml MOPS buffer was slowly added over a period of 24 hours. The reaction was stopped and the suspension was three times extracted with diethylether. After separating, the organic phase was dried with MgSO4, and removed by rotary evaporator yielding an orange oil. This mixture was redissolved in diethylether and the composition and e.e. of the products were determined by chiral HPLC. The mixture mainly consisted of (S)-para-nitro styrene oxide in 46% yield (98% e.e.) and (R)-2-azido-1-(para-nitrophenyl)ethanol in 47% yield (97% e.e.). The chemical side product 2-azido-2-(para-nitrophenyl)ethanol was formed to a total of 4% of the reaction mixture. The product of chemical hydrolysis of the epoxide, para-nitrophenyl ethanediol was formed in 3%. All the mentioned yields are calculated yields. Flash chromatography on silica 60H using heptane/ethylacetate (ratio 7:3) as eluent yielded pure epoxide and azido alcohols. The NMR data were identical with synthesized racemic reference compounds.
- To 20 ml of Tris-SO 4 buffer (50 mM, pH=7.3) containing 2 mM of para-chlorostyrene oxide and 1.2 mM of NaN3, 1.0 mg of purified enzyme, obtained as described in example 1, was added. At 55% conversion, reaction was stopped and the solution was extracted with diethylether. The organic phase was analysed by chiral GC. The remaining (S)-para-chloro styrene oxide was obtained with an e.e. of higher than 99% and (R)-2-azido-1-(para-chloro-phenyl)-ethanol with an e.e. of 98%
- To 20 ml of Tris-SO 4 buffer (50 mM, pH=7.3) containing 2 mM of para-chlorostyrene oxide and 1.2 mM of NaNO2, 1.0 mg of purified enzyme, obtained as described in example 1, was added. At 58% conversion, reaction was stopped and the solution was extracted with diethylether. The organic phase was analysed by chiral GC. The remaining (S)-para-chloro styrene oxide was obtained with an e.e. of higher than 99%.
- To 20 ml of Tris-SO 4 buffer (50 mM, pH=7.3) containing 20 mM of epichlorohydrin and 20 mM of NaN3, 1.0 mg of purified enzyme was added. At 66% conversion, reaction was stopped and the solution was extracted with diethylether. The organic phase was analyzed by chiral GC. Besides the remaining epichlorohydrin, the mixture consisted of 1-azido-3-chloro-2-propanol in 92% e.e., 2-azidomethyl-oxirane in 92% e.e. and the non-chiral 1,3-dichloro-2-propanol.
- To 20 ml of Tris-SO 4 buffer (50 mM, pH 7.3) containing 20 mM of epichlorohydrin and 20 mM of NaN3, 1.0 mg of purified enzyme was added. At total conversion of epichlorohydrin, the reaction was stopped and the solution was extracted with diethylether. The organic phase was analysed by chiral GC. The product consisted of a mixture of 1-azido-3-chloro-2-propanol in 92% e.e. and 2-azidomethyl-oxirane in 92% e.e. (Addition of a small amount of an NaOH gave 2-azidomethyl-oxirane as a single product in 92% e.e.)
- To 20 ml of Tris-SO 4 buffer (50 mM, pH=6.5) containing 20 mM of epibromohydrin, 30 mM of NaN3, 50 mM NaBr, 1.0 mg of purified enzyme was added. After completion of the reaction, the mixture obtained was extracted with diethylether and the organic phase was analyzed by chiral GC. The product 1-azido-3-bromo-2-propanol was obtained in >99% e.e. and 75% yield.
- SEQ ID NO 1: DNA Sequence of the Halohydrin Dehalogenase Gene from AD1 (Capitals Only)
taaaatctcggcaaatatctagcgatcataggatataaaggatctgagtA TGTCAACCGCAATTGTAACAAACGTTAAGCATTTTGGGGGAATGGGGTCT GCACTTCGTCTCTCGGAAGCAGGACATACAGTGGCTTGCCACGATGAAAG CTTCAAACAAAAGGACGAACTTGAAGCCTTTGCCGAAACCTATCCACAAC TCAAACCAATGTCGGAACAAGAACCAGCGGAACTCATCGAGGCAGTTACC TCCGCTTATGGTCAAGTTGATGTACTTGTGAGCAACGACATATTCGCACC AGAGTTCCAACCCATAGATAAATACGCTGTAGAGGACTATCGCGGTGCGG TCGAGGCGCTACAAATTAGACCATTTGCACTGGTCAACGCCGTTGCAAGT CAAATGAAGAAGCGCAAAAGCGGACATATTATCTTTATTACCTCTGCAAC GCCCTTCGGGCCTTGGAAGGAACTTTCTACCTACACGTCAGCCCGAGCAG GTGCATGCACCTTGGCAAATGCCCTTTCGAAGGAACTCGGTGAATACAAC ATTCCGGTGTTCGCAATAGGACCCAATTATCTTCACAGTGAAGATAGTCC CTACTTCTACCCCACAGAACCGTGGAAAACGAATCCAGAACACGTTGCCC ATGTCAAAAAAGTCACTGCGCTCCAGCGGTTAGGTACACAGAAAGAATTG GGAGAACTCGTCGCGTTTCTCGCGTCTGGTAGTTGTGACTATCTGACCGG CCAGGTGTTCTGGTTGGCCGGCGGATTCCCAATGATCGAGCGTTGGCCTG GTATGCCCGAGTAGgaccggagtgagaactctcttcaagactgcttgcag ttttggattgccgcgggacagacgttttgc - SEQ ID NO 2: Amino Acid Sequence of HheC
MSTAIVTNVKHFGGMGSALRLSEAGHTVACHDESFKQKDELEAFAETYPQ LKPMSEQEPAELIEAVTSAYGQVDVLVSNDIFAPEFQPIDKYAVEDYRGA VEALQIRPFALVNAVASQMKKRKSGHIIFITSATPFGPWKELSTYTSARA GACTLANALSKELGEYNIPVFAIGPNYLHSEDSPYFYPTEPWKTNPEHVA HVKKVTALQRLGTQKELGELVAFLASGSCDYLTGQVFWLAGGFPMIERWP GMPE
Claims (21)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/833,933 US7695942B2 (en) | 2000-05-25 | 2007-08-03 | Enzymatic conversion of epoxides |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP00201874.5 | 2000-05-25 | ||
| EP00201874A EP1158054A1 (en) | 2000-05-25 | 2000-05-25 | Enzymatic conversion of epoxides |
| PCT/NL2001/000403 WO2001090397A1 (en) | 2000-05-25 | 2001-05-23 | Enzymatic conversion of epoxides |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/NL2001/000403 Continuation WO2001090397A1 (en) | 2000-05-25 | 2001-05-23 | Enzymatic conversion of epoxides |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/833,933 Continuation US7695942B2 (en) | 2000-05-25 | 2007-08-03 | Enzymatic conversion of epoxides |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030124693A1 true US20030124693A1 (en) | 2003-07-03 |
Family
ID=8171560
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/302,788 Abandoned US20030124693A1 (en) | 2000-05-25 | 2002-11-22 | Enzymatic conversion of epoxides |
| US11/833,933 Expired - Fee Related US7695942B2 (en) | 2000-05-25 | 2007-08-03 | Enzymatic conversion of epoxides |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/833,933 Expired - Fee Related US7695942B2 (en) | 2000-05-25 | 2007-08-03 | Enzymatic conversion of epoxides |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US20030124693A1 (en) |
| EP (2) | EP1158054A1 (en) |
| JP (1) | JP2004504015A (en) |
| AT (1) | ATE337408T1 (en) |
| AU (1) | AU2001260802A1 (en) |
| DE (1) | DE60122505T3 (en) |
| ES (1) | ES2271010T3 (en) |
| WO (1) | WO2001090397A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007071599A3 (en) * | 2005-12-21 | 2007-08-16 | Basf Ag | A process for the production of an optically enriched tertiary alcohol |
| US20090042261A1 (en) * | 2006-03-03 | 2009-02-12 | Basf Se | Process for the preparation of optically active 5-substituted 2-oxazolidinones from racemic epoxides and cyanate employing a halohydrin dehalogenase |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100651393B1 (en) | 2001-02-28 | 2006-11-28 | 에스케이 주식회사 | Method for preparing (R) -1-amino-2-propanol using hydrolase |
| US7132267B2 (en) | 2002-08-09 | 2006-11-07 | Codexis, Inc. | Enzymatic processes for the production of 4-substituted 3-hydroxybutyric acid derivatives and vicinal cyano, hydroxy substituted carboxylic acid esters |
| US7125693B2 (en) | 2002-08-09 | 2006-10-24 | Codexis, Inc. | Enzymatic processes for the production of 4-substituted 3-hydroxybutyric acid derivatives |
| US7588928B2 (en) * | 2003-08-11 | 2009-09-15 | Codexis, Inc. | Halohydrin dehalogenases and related polynucleotides |
| US7541171B2 (en) | 2003-08-11 | 2009-06-02 | Codexis, Inc. | Halohydrin dehalogenases and related polynucleotides |
| JP2007502123A (en) | 2003-08-11 | 2007-02-08 | コデクシス, インコーポレイテッド | Improved halohydrin dehalogenase and related polynucleotides |
| JP2008537477A (en) * | 2005-02-23 | 2008-09-18 | コデクシス, インコーポレイテッド | Improved halohydrin dehalogenase and related polynucleotides |
| WO2007128469A1 (en) * | 2006-05-03 | 2007-11-15 | Dsm Ip Assets B.V. | Process for the preparation of enantiomerically enriched nitriles |
| WO2007137816A1 (en) * | 2006-05-30 | 2007-12-06 | Dsm Ip Assets B.V. | Process for the preparation of epoxide intermediates for pharmaceutical compounds such as statins |
| US8187856B2 (en) | 2008-12-18 | 2012-05-29 | Codexis, Inc. | Recombinant halohydrin dehalogenase polypeptides |
| WO2012122333A1 (en) | 2011-03-08 | 2012-09-13 | Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University | Microbial conversion of glucose to styrene and its derivatives |
| CN104749273B (en) * | 2015-03-12 | 2017-04-12 | 浙江工业大学 | Method for detecting azide ions or cyanide ions in water |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5210031A (en) † | 1989-07-20 | 1993-05-11 | Nitto Chemical Industry Co., Ltd. | Process for the production of R(-)-4-halo-3-hydroxybutyronitrile |
| JP3073037B2 (en) † | 1991-03-04 | 2000-08-07 | 三菱レイヨン株式会社 | Recombinant plasmid having halohydrin epoxidase gene and microorganism transformed with the plasmid |
| JP3728045B2 (en) † | 1997-01-31 | 2005-12-21 | 三菱レイヨン株式会社 | A novel protein that catalyzes the conversion of halohydrin to optically active diols |
| EP0879890A1 (en) * | 1997-05-21 | 1998-11-25 | Rijksuniversiteit te Groningen | Enantioselective epoxide hydrolases and genes encoding these |
-
2000
- 2000-05-25 EP EP00201874A patent/EP1158054A1/en not_active Withdrawn
-
2001
- 2001-05-23 ES ES01934641T patent/ES2271010T3/en not_active Expired - Lifetime
- 2001-05-23 AT AT01934641T patent/ATE337408T1/en not_active IP Right Cessation
- 2001-05-23 JP JP2001586592A patent/JP2004504015A/en active Pending
- 2001-05-23 WO PCT/NL2001/000403 patent/WO2001090397A1/en not_active Ceased
- 2001-05-23 DE DE60122505T patent/DE60122505T3/en not_active Expired - Lifetime
- 2001-05-23 EP EP01934641A patent/EP1287155B2/en not_active Expired - Lifetime
- 2001-05-23 AU AU2001260802A patent/AU2001260802A1/en not_active Abandoned
-
2002
- 2002-11-22 US US10/302,788 patent/US20030124693A1/en not_active Abandoned
-
2007
- 2007-08-03 US US11/833,933 patent/US7695942B2/en not_active Expired - Fee Related
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007071599A3 (en) * | 2005-12-21 | 2007-08-16 | Basf Ag | A process for the production of an optically enriched tertiary alcohol |
| US20080299626A1 (en) * | 2005-12-21 | 2008-12-04 | Basf Aktiengesellschaft | Process For the Production of an Optically Enriched Tertiary Alcohol |
| US8198069B2 (en) | 2005-12-21 | 2012-06-12 | Basf Se | Method of producing an optically enriched tertiary alcohol from an epoxide using halohydrin dehalogenase |
| US20090042261A1 (en) * | 2006-03-03 | 2009-02-12 | Basf Se | Process for the preparation of optically active 5-substituted 2-oxazolidinones from racemic epoxides and cyanate employing a halohydrin dehalogenase |
| US7993904B2 (en) | 2006-03-03 | 2011-08-09 | Basf Se | Process for the preparation of optically active 5-substituted 2-oxazolidinones from racemic epoxides and cyanate employing a halohydrin dehalogenase |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1287155B2 (en) | 2011-01-12 |
| DE60122505T2 (en) | 2007-05-03 |
| US20080220485A1 (en) | 2008-09-11 |
| JP2004504015A (en) | 2004-02-12 |
| US7695942B2 (en) | 2010-04-13 |
| WO2001090397A1 (en) | 2001-11-29 |
| EP1287155A1 (en) | 2003-03-05 |
| EP1287155B1 (en) | 2006-08-23 |
| ES2271010T3 (en) | 2007-04-16 |
| EP1158054A1 (en) | 2001-11-28 |
| AU2001260802A1 (en) | 2001-12-03 |
| DE60122505D1 (en) | 2006-10-05 |
| DE60122505T3 (en) | 2011-07-28 |
| ATE337408T1 (en) | 2006-09-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7695942B2 (en) | Enzymatic conversion of epoxides | |
| Elenkov et al. | Enantioselective ring opening of epoxides with cyanide catalysed by halohydrin dehalogenases: A new approach to non‐racemic β‐hydroxy nitriles | |
| Poessl et al. | Non‐racemic halohydrins via biocatalytic hydrogen‐transfer reduction of halo‐ketones and one‐pot cascade reaction to enantiopure epoxides | |
| EP1994162B1 (en) | Process for the preparation of optically active 5-substituted 2-oxazolidinones from racemic epoxides and cyanate employing a halohydrin dehalogenase | |
| WO2007128469A1 (en) | Process for the preparation of enantiomerically enriched nitriles | |
| Xu et al. | Biocatalytic resolution of glycidyl aryl ethers by Trichosporon loubierii: cell/substrate ratio influences the optical purity of (R)-epoxides | |
| EP1966385B1 (en) | A process for the production of an optically enriched tertiary alcohol | |
| JP4843813B2 (en) | Method for preparing R- or S-form α-substituted heterocyclic carboxylic acid and enantiomer of α-substituted heterocyclic carboxylic acid ester of the opposite mirror image using enzyme | |
| JP4843812B2 (en) | Method for optical resolution of racemic α-substituted heterocyclic carboxylic acids using enzymes | |
| US7067291B2 (en) | Biocatalytic preparation of enantiomerically enriched aminopentanenitrile | |
| KR100567899B1 (en) | Method for preparing trans- (1S, 2S) -2-bromo-1-indanyl acetate by enzymatic method | |
| JP3741758B2 (en) | Process for producing optically active glycerol derivatives |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: RIJKSUNIVERSITEIT GRONINGEN, NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SPELBERG, JEFFREY HARALD LUTJE;JANSSEN, DICK BAREND;REEL/FRAME:013780/0805 Effective date: 20030127 |
|
| AS | Assignment |
Owner name: ENZIS PATENT B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRONINGEN, RIJKSUNIVERSITEIT;REEL/FRAME:014116/0444 Effective date: 20030311 |
|
| AS | Assignment |
Owner name: CODEXIS INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENZIS PATENT B.V.;REEL/FRAME:017744/0699 Effective date: 20060501 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |