US20030124552A1 - Biochips and method of screening using drug induced gene and protein expression profiling - Google Patents
Biochips and method of screening using drug induced gene and protein expression profiling Download PDFInfo
- Publication number
- US20030124552A1 US20030124552A1 US10/140,680 US14068002A US2003124552A1 US 20030124552 A1 US20030124552 A1 US 20030124552A1 US 14068002 A US14068002 A US 14068002A US 2003124552 A1 US2003124552 A1 US 2003124552A1
- Authority
- US
- United States
- Prior art keywords
- disease
- gene
- protein
- animal model
- drug
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003814 drug Substances 0.000 title claims abstract description 207
- 229940079593 drug Drugs 0.000 title claims abstract description 204
- 238000000034 method Methods 0.000 title claims abstract description 171
- 238000000018 DNA microarray Methods 0.000 title claims abstract description 98
- 108090000623 proteins and genes Proteins 0.000 title claims description 544
- 102000004169 proteins and genes Human genes 0.000 title claims description 287
- 238000010195 expression analysis Methods 0.000 title description 13
- 238000012216 screening Methods 0.000 title description 4
- 201000010099 disease Diseases 0.000 claims abstract description 160
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 160
- 238000010171 animal model Methods 0.000 claims abstract description 110
- 238000011282 treatment Methods 0.000 claims abstract description 87
- 230000000694 effects Effects 0.000 claims abstract description 60
- 238000012360 testing method Methods 0.000 claims abstract description 56
- 239000000203 mixture Substances 0.000 claims abstract description 55
- 238000011156 evaluation Methods 0.000 claims abstract description 41
- 230000001988 toxicity Effects 0.000 claims abstract description 38
- 231100000419 toxicity Toxicity 0.000 claims abstract description 38
- 239000000090 biomarker Substances 0.000 claims abstract description 19
- 230000014509 gene expression Effects 0.000 claims description 239
- 150000007523 nucleic acids Chemical class 0.000 claims description 105
- 102000039446 nucleic acids Human genes 0.000 claims description 100
- 108020004707 nucleic acids Proteins 0.000 claims description 100
- 241001465754 Metazoa Species 0.000 claims description 75
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 53
- 230000037361 pathway Effects 0.000 claims description 48
- 108020004414 DNA Proteins 0.000 claims description 46
- 239000012634 fragment Substances 0.000 claims description 46
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 36
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 28
- 238000005065 mining Methods 0.000 claims description 18
- 230000027455 binding Effects 0.000 claims description 16
- 230000002757 inflammatory effect Effects 0.000 claims description 14
- 206010028980 Neoplasm Diseases 0.000 claims description 9
- 230000007613 environmental effect Effects 0.000 claims description 8
- 108700020796 Oncogene Proteins 0.000 claims description 7
- 206010003246 arthritis Diseases 0.000 claims description 7
- 102000043276 Oncogene Human genes 0.000 claims description 6
- 108700020978 Proto-Oncogene Proteins 0.000 claims description 6
- 102000052575 Proto-Oncogene Human genes 0.000 claims description 6
- 230000005775 apoptotic pathway Effects 0.000 claims description 6
- 201000011510 cancer Diseases 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 6
- 230000037353 metabolic pathway Effects 0.000 claims description 6
- 229920001184 polypeptide Polymers 0.000 claims description 6
- 206010020751 Hypersensitivity Diseases 0.000 claims description 5
- 208000026935 allergic disease Diseases 0.000 claims description 5
- 230000010261 cell growth Effects 0.000 claims description 5
- 230000016396 cytokine production Effects 0.000 claims description 5
- 230000007815 allergy Effects 0.000 claims description 4
- 208000027866 inflammatory disease Diseases 0.000 claims description 4
- 108091005461 Nucleic proteins Proteins 0.000 claims description 3
- 238000002493 microarray Methods 0.000 abstract description 11
- 235000018102 proteins Nutrition 0.000 description 203
- 239000000523 sample Substances 0.000 description 162
- 238000009396 hybridization Methods 0.000 description 109
- 108091034117 Oligonucleotide Proteins 0.000 description 106
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 57
- 210000000056 organ Anatomy 0.000 description 56
- 210000004027 cell Anatomy 0.000 description 54
- 238000002474 experimental method Methods 0.000 description 48
- 239000000835 fiber Substances 0.000 description 45
- 238000003491 array Methods 0.000 description 42
- 239000003795 chemical substances by application Substances 0.000 description 37
- 239000000758 substrate Substances 0.000 description 37
- 238000004458 analytical method Methods 0.000 description 36
- 239000000178 monomer Substances 0.000 description 35
- 229920000642 polymer Polymers 0.000 description 33
- 230000008569 process Effects 0.000 description 33
- 238000011161 development Methods 0.000 description 32
- 230000018109 developmental process Effects 0.000 description 32
- 239000007787 solid Substances 0.000 description 31
- 108020004999 messenger RNA Proteins 0.000 description 30
- 239000000126 substance Substances 0.000 description 30
- -1 Cationic Anion Chemical class 0.000 description 28
- 238000010561 standard procedure Methods 0.000 description 28
- 238000010606 normalization Methods 0.000 description 22
- 125000005647 linker group Chemical group 0.000 description 21
- 239000000463 material Substances 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 20
- 238000003786 synthesis reaction Methods 0.000 description 20
- 238000001514 detection method Methods 0.000 description 19
- 239000002299 complementary DNA Substances 0.000 description 18
- 238000013461 design Methods 0.000 description 18
- 206010061818 Disease progression Diseases 0.000 description 17
- 230000005750 disease progression Effects 0.000 description 17
- 239000011521 glass Substances 0.000 description 17
- 239000013641 positive control Substances 0.000 description 17
- 230000004044 response Effects 0.000 description 17
- 238000003752 polymerase chain reaction Methods 0.000 description 16
- 102000005962 receptors Human genes 0.000 description 15
- 108020003175 receptors Proteins 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 14
- 230000000875 corresponding effect Effects 0.000 description 14
- 125000000524 functional group Chemical group 0.000 description 14
- 230000006698 induction Effects 0.000 description 14
- 238000002372 labelling Methods 0.000 description 14
- 230000004060 metabolic process Effects 0.000 description 14
- 108091006027 G proteins Proteins 0.000 description 13
- 102000030782 GTP binding Human genes 0.000 description 13
- 108091000058 GTP-Binding Proteins 0.000 description 13
- 239000000427 antigen Substances 0.000 description 13
- 108091007433 antigens Proteins 0.000 description 13
- 102000036639 antigens Human genes 0.000 description 13
- 230000000295 complement effect Effects 0.000 description 13
- 238000000605 extraction Methods 0.000 description 13
- 230000003993 interaction Effects 0.000 description 13
- 239000013642 negative control Substances 0.000 description 13
- 239000002773 nucleotide Substances 0.000 description 13
- 125000003729 nucleotide group Chemical group 0.000 description 13
- 210000001519 tissue Anatomy 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 12
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 12
- 239000003153 chemical reaction reagent Substances 0.000 description 12
- 230000037406 food intake Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 238000003498 protein array Methods 0.000 description 12
- 108091060211 Expressed sequence tag Proteins 0.000 description 11
- 230000004075 alteration Effects 0.000 description 11
- 230000003321 amplification Effects 0.000 description 11
- 238000013459 approach Methods 0.000 description 11
- 239000002131 composite material Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 239000002547 new drug Substances 0.000 description 11
- 238000003199 nucleic acid amplification method Methods 0.000 description 11
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 10
- 208000006673 asthma Diseases 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 125000006239 protecting group Chemical group 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 238000013518 transcription Methods 0.000 description 10
- 230000035897 transcription Effects 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 241000282412 Homo Species 0.000 description 9
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 150000001413 amino acids Chemical class 0.000 description 9
- 239000012620 biological material Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 230000002068 genetic effect Effects 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 150000008300 phosphoramidites Chemical class 0.000 description 9
- 230000026731 phosphorylation Effects 0.000 description 9
- 238000006366 phosphorylation reaction Methods 0.000 description 9
- 229920003023 plastic Polymers 0.000 description 9
- 239000004033 plastic Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 235000002639 sodium chloride Nutrition 0.000 description 9
- 230000009261 transgenic effect Effects 0.000 description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- 241001529936 Murinae Species 0.000 description 8
- 102000003923 Protein Kinase C Human genes 0.000 description 8
- 108090000315 Protein Kinase C Proteins 0.000 description 8
- 235000001014 amino acid Nutrition 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 230000008236 biological pathway Effects 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 239000007850 fluorescent dye Substances 0.000 description 8
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 7
- 108091028043 Nucleic acid sequence Proteins 0.000 description 7
- 206010070863 Toxicity to various agents Diseases 0.000 description 7
- 230000009471 action Effects 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 230000006907 apoptotic process Effects 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 150000001982 diacylglycerols Chemical class 0.000 description 7
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 7
- 230000003053 immunization Effects 0.000 description 7
- 238000007901 in situ hybridization Methods 0.000 description 7
- 210000003734 kidney Anatomy 0.000 description 7
- 210000004072 lung Anatomy 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 230000002503 metabolic effect Effects 0.000 description 7
- 238000010172 mouse model Methods 0.000 description 7
- 230000004850 protein–protein interaction Effects 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 231100000331 toxic Toxicity 0.000 description 7
- 230000002588 toxic effect Effects 0.000 description 7
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- 206010061218 Inflammation Diseases 0.000 description 6
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000012472 biological sample Substances 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 230000004663 cell proliferation Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 230000004054 inflammatory process Effects 0.000 description 6
- 210000004185 liver Anatomy 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 230000009871 nonspecific binding Effects 0.000 description 6
- 239000002853 nucleic acid probe Substances 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 230000002285 radioactive effect Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 206010039073 rheumatoid arthritis Diseases 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 231100000027 toxicology Toxicity 0.000 description 6
- NOIRDLRUNWIUMX-UHFFFAOYSA-N 2-amino-3,7-dihydropurin-6-one;6-amino-1h-pyrimidin-2-one Chemical compound NC=1C=CNC(=O)N=1.O=C1NC(N)=NC2=C1NC=N2 NOIRDLRUNWIUMX-UHFFFAOYSA-N 0.000 description 5
- 108700028369 Alleles Proteins 0.000 description 5
- 206010007269 Carcinogenicity Diseases 0.000 description 5
- 102000019034 Chemokines Human genes 0.000 description 5
- 108010012236 Chemokines Proteins 0.000 description 5
- 230000005778 DNA damage Effects 0.000 description 5
- 231100000277 DNA damage Toxicity 0.000 description 5
- 241000287828 Gallus gallus Species 0.000 description 5
- 108010002350 Interleukin-2 Proteins 0.000 description 5
- 108090001007 Interleukin-8 Proteins 0.000 description 5
- 241000699660 Mus musculus Species 0.000 description 5
- 108010008211 N-Formylmethionine Leucyl-Phenylalanine Proteins 0.000 description 5
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 5
- 206010033128 Ovarian cancer Diseases 0.000 description 5
- 102000011420 Phospholipase D Human genes 0.000 description 5
- 108090000553 Phospholipase D Proteins 0.000 description 5
- 102000015439 Phospholipases Human genes 0.000 description 5
- 108010064785 Phospholipases Proteins 0.000 description 5
- 108091000080 Phosphotransferase Proteins 0.000 description 5
- 239000013566 allergen Substances 0.000 description 5
- 229960002685 biotin Drugs 0.000 description 5
- 235000020958 biotin Nutrition 0.000 description 5
- 239000011616 biotin Substances 0.000 description 5
- 230000007670 carcinogenicity Effects 0.000 description 5
- 231100000260 carcinogenicity Toxicity 0.000 description 5
- 210000003169 central nervous system Anatomy 0.000 description 5
- PRQROPMIIGLWRP-BZSNNMDCSA-N chemotactic peptide Chemical compound CSCC[C@H](NC=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 PRQROPMIIGLWRP-BZSNNMDCSA-N 0.000 description 5
- 235000013330 chicken meat Nutrition 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 230000008030 elimination Effects 0.000 description 5
- 238000003379 elimination reaction Methods 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 238000012854 evaluation process Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 238000002966 oligonucleotide array Methods 0.000 description 5
- 239000002751 oligonucleotide probe Substances 0.000 description 5
- 102000020233 phosphotransferase Human genes 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 230000000770 proinflammatory effect Effects 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 210000002784 stomach Anatomy 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 230000003827 upregulation Effects 0.000 description 5
- 108010085238 Actins Proteins 0.000 description 4
- 208000024827 Alzheimer disease Diseases 0.000 description 4
- 108090001008 Avidin Proteins 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 208000009386 Experimental Arthritis Diseases 0.000 description 4
- 102100022337 Integrin alpha-V Human genes 0.000 description 4
- 206010061535 Ovarian neoplasm Diseases 0.000 description 4
- 108091093037 Peptide nucleic acid Proteins 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 230000008512 biological response Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 102000038379 digestive enzymes Human genes 0.000 description 4
- 108091007734 digestive enzymes Proteins 0.000 description 4
- 230000008406 drug-drug interaction Effects 0.000 description 4
- 230000005713 exacerbation Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 238000001502 gel electrophoresis Methods 0.000 description 4
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 4
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 4
- 238000002649 immunization Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 210000000936 intestine Anatomy 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 230000035790 physiological processes and functions Effects 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 4
- 238000011830 transgenic mouse model Methods 0.000 description 4
- 238000012800 visualization Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 102000007469 Actins Human genes 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 102100023700 C-C motif chemokine 16 Human genes 0.000 description 3
- 102100036845 C-C motif chemokine 22 Human genes 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 108700039887 Essential Genes Proteins 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 108010070675 Glutathione transferase Proteins 0.000 description 3
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 3
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 3
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 3
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 3
- 101000978375 Homo sapiens C-C motif chemokine 16 Proteins 0.000 description 3
- 108010040765 Integrin alphaV Proteins 0.000 description 3
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 3
- 108010065805 Interleukin-12 Proteins 0.000 description 3
- 102000013462 Interleukin-12 Human genes 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- 102000015696 Interleukins Human genes 0.000 description 3
- 108010063738 Interleukins Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 3
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 3
- 108700019146 Transgenes Proteins 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 238000005284 basis set Methods 0.000 description 3
- 239000013060 biological fluid Substances 0.000 description 3
- 238000010804 cDNA synthesis Methods 0.000 description 3
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 3
- 230000022131 cell cycle Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229940104302 cytosine Drugs 0.000 description 3
- 238000009795 derivation Methods 0.000 description 3
- 238000007876 drug discovery Methods 0.000 description 3
- 239000002359 drug metabolite Substances 0.000 description 3
- 210000003979 eosinophil Anatomy 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000029142 excretion Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 229940047122 interleukins Drugs 0.000 description 3
- 238000011005 laboratory method Methods 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 3
- 239000002777 nucleoside Substances 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 230000008506 pathogenesis Effects 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000007112 pro inflammatory response Effects 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000008279 sol Substances 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- PJENNOWAVBNNNE-CQJMVLFOSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-formamido-4-methylsulfanylbutanoyl]amino]-4-methylpentanoyl]amino]-3-phenylpropanoyl]amino]-3-phenylpropanoic acid Chemical compound C([C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC=O)CCSC)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 PJENNOWAVBNNNE-CQJMVLFOSA-N 0.000 description 2
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 2
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 2
- ZXCIEWBDUAPBJF-MUUNZHRXSA-N 2-O-acetyl-1-O-octadecyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCCOC[C@@H](OC(C)=O)COP([O-])(=O)OCC[N+](C)(C)C ZXCIEWBDUAPBJF-MUUNZHRXSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 102100023701 C-C motif chemokine 18 Human genes 0.000 description 2
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 2
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 108010055166 Chemokine CCL5 Proteins 0.000 description 2
- 102000009410 Chemokine receptor Human genes 0.000 description 2
- 108050000299 Chemokine receptor Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000000503 Collagen Type II Human genes 0.000 description 2
- 108010041390 Collagen Type II Proteins 0.000 description 2
- 108010007457 Extracellular Signal-Regulated MAP Kinases Proteins 0.000 description 2
- 102000007665 Extracellular Signal-Regulated MAP Kinases Human genes 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108010024636 Glutathione Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 102100034221 Growth-regulated alpha protein Human genes 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 2
- 101000713083 Homo sapiens C-C motif chemokine 22 Proteins 0.000 description 2
- 101001046687 Homo sapiens Integrin alpha-E Proteins 0.000 description 2
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 2
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 2
- JJKOTMDDZAJTGQ-DQSJHHFOSA-N Idoxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN2CCCC2)=CC=1)/C1=CC=C(I)C=C1 JJKOTMDDZAJTGQ-DQSJHHFOSA-N 0.000 description 2
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 2
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 2
- 102100032818 Integrin alpha-4 Human genes 0.000 description 2
- 102100022341 Integrin alpha-E Human genes 0.000 description 2
- 102100025306 Integrin alpha-IIb Human genes 0.000 description 2
- 102100022297 Integrin alpha-X Human genes 0.000 description 2
- 108010041012 Integrin alpha4 Proteins 0.000 description 2
- 102000000426 Integrin alpha6 Human genes 0.000 description 2
- 108010041100 Integrin alpha6 Proteins 0.000 description 2
- 102100025390 Integrin beta-2 Human genes 0.000 description 2
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 2
- 102100037872 Intercellular adhesion molecule 2 Human genes 0.000 description 2
- 102100037871 Intercellular adhesion molecule 3 Human genes 0.000 description 2
- 108010002352 Interleukin-1 Proteins 0.000 description 2
- 102000000589 Interleukin-1 Human genes 0.000 description 2
- 108090000174 Interleukin-10 Proteins 0.000 description 2
- 108010002386 Interleukin-3 Proteins 0.000 description 2
- 108010002616 Interleukin-5 Proteins 0.000 description 2
- 108010002586 Interleukin-7 Proteins 0.000 description 2
- 150000008575 L-amino acids Chemical class 0.000 description 2
- 102100033467 L-selectin Human genes 0.000 description 2
- 102100039564 Leukosialin Human genes 0.000 description 2
- 241000721701 Lynx Species 0.000 description 2
- 102000043136 MAP kinase family Human genes 0.000 description 2
- 108091054455 MAP kinase family Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 2
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 108060004795 Methyltransferase Proteins 0.000 description 2
- 108700027649 Mitogen-Activated Protein Kinase 3 Proteins 0.000 description 2
- 102100024192 Mitogen-activated protein kinase 3 Human genes 0.000 description 2
- 101000995928 Mus musculus Nucleolar protein 58 Proteins 0.000 description 2
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 2
- 108700042498 N-formyl-methionyl-leucyl-phenylalanyl-phenylalanine Proteins 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 102100023472 P-selectin Human genes 0.000 description 2
- 108091007960 PI3Ks Proteins 0.000 description 2
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 2
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 2
- 108010003541 Platelet Activating Factor Proteins 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 101150020201 RB gene Proteins 0.000 description 2
- 102100039692 RNA-binding motif, single-stranded-interacting protein 1 Human genes 0.000 description 2
- 108091035242 Sequence-tagged site Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 description 2
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 2
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 2
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 2
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229940114079 arachidonic acid Drugs 0.000 description 2
- 235000021342 arachidonic acid Nutrition 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 239000012148 binding buffer Substances 0.000 description 2
- 230000008238 biochemical pathway Effects 0.000 description 2
- 210000002459 blastocyst Anatomy 0.000 description 2
- 239000002981 blocking agent Substances 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 230000010083 bronchial hyperresponsiveness Effects 0.000 description 2
- 238000010805 cDNA synthesis kit Methods 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- 230000019522 cellular metabolic process Effects 0.000 description 2
- 230000004640 cellular pathway Effects 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000007418 data mining Methods 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- 238000001784 detoxification Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000000890 drug combination Substances 0.000 description 2
- 230000000857 drug effect Effects 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 2
- 229960005542 ethidium bromide Drugs 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 2
- 229960002963 ganciclovir Drugs 0.000 description 2
- 238000003633 gene expression assay Methods 0.000 description 2
- 102000034356 gene-regulatory proteins Human genes 0.000 description 2
- 108091006104 gene-regulatory proteins Proteins 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- 210000004907 gland Anatomy 0.000 description 2
- 229960003180 glutathione Drugs 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 238000012203 high throughput assay Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000005660 hydrophilic surface Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229950002248 idoxifene Drugs 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 230000000984 immunochemical effect Effects 0.000 description 2
- 238000003365 immunocytochemistry Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000000155 isotopic effect Effects 0.000 description 2
- 238000002032 lab-on-a-chip Methods 0.000 description 2
- 150000002617 leukotrienes Chemical class 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 150000007974 melamines Chemical class 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 239000003471 mutagenic agent Substances 0.000 description 2
- 231100000707 mutagenic chemical Toxicity 0.000 description 2
- 230000003505 mutagenic effect Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 125000003835 nucleoside group Chemical group 0.000 description 2
- 210000004248 oligodendroglia Anatomy 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 239000000902 placebo Substances 0.000 description 2
- 229940068196 placebo Drugs 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 229920002721 polycyanoacrylate Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920005554 polynitrile Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 231100000683 possible toxicity Toxicity 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 150000003180 prostaglandins Chemical class 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 102000034285 signal transducing proteins Human genes 0.000 description 2
- 108091006024 signal transducing proteins Proteins 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 108010026810 superoxide-forming enzyme Proteins 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 231100001274 therapeutic index Toxicity 0.000 description 2
- 230000004797 therapeutic response Effects 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000005748 tumor development Effects 0.000 description 2
- 230000034512 ubiquitination Effects 0.000 description 2
- 150000003673 urethanes Chemical class 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- NSMXQKNUPPXBRG-SECBINFHSA-N (R)-lisofylline Chemical compound O=C1N(CCCC[C@H](O)C)C(=O)N(C)C2=C1N(C)C=N2 NSMXQKNUPPXBRG-SECBINFHSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- IPVFGAYTKQKGBM-BYPJNBLXSA-N 1-[(2r,3s,4r,5r)-3-fluoro-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-iodopyrimidine-2,4-dione Chemical compound F[C@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 IPVFGAYTKQKGBM-BYPJNBLXSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- KIWODJBCHRADND-UHFFFAOYSA-N 3-anilino-4-[1-[3-(1-imidazolyl)propyl]-3-indolyl]pyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C=2C3=CC=CC=C3N(CCCN3C=NC=C3)C=2)=C1NC1=CC=CC=C1 KIWODJBCHRADND-UHFFFAOYSA-N 0.000 description 1
- ROFZMKDROVBLNY-UHFFFAOYSA-N 4-nitro-2-benzofuran-1,3-dione Chemical compound [O-][N+](=O)C1=CC=CC2=C1C(=O)OC2=O ROFZMKDROVBLNY-UHFFFAOYSA-N 0.000 description 1
- 102100033400 4F2 cell-surface antigen heavy chain Human genes 0.000 description 1
- 101150096316 5 gene Proteins 0.000 description 1
- 102100022464 5'-nucleotidase Human genes 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 102100031585 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Human genes 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- 102100026423 Adhesion G protein-coupled receptor E5 Human genes 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 102100035248 Alpha-(1,3)-fucosyltransferase 4 Human genes 0.000 description 1
- 102100022749 Aminopeptidase N Human genes 0.000 description 1
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 description 1
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 description 1
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 102000019260 B-Cell Antigen Receptors Human genes 0.000 description 1
- 108010012919 B-Cell Antigen Receptors Proteins 0.000 description 1
- 102100025218 B-cell differentiation antigen CD72 Human genes 0.000 description 1
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 108010081589 Becaplermin Proteins 0.000 description 1
- 102100029945 Beta-galactoside alpha-2,6-sialyltransferase 1 Human genes 0.000 description 1
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 description 1
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 description 1
- 206010006482 Bronchospasm Diseases 0.000 description 1
- 108050005711 C Chemokine Proteins 0.000 description 1
- 102000017483 C chemokine Human genes 0.000 description 1
- 102100031172 C-C chemokine receptor type 1 Human genes 0.000 description 1
- 101710149814 C-C chemokine receptor type 1 Proteins 0.000 description 1
- 102100031151 C-C chemokine receptor type 2 Human genes 0.000 description 1
- 101710149815 C-C chemokine receptor type 2 Proteins 0.000 description 1
- 102100024167 C-C chemokine receptor type 3 Human genes 0.000 description 1
- 101710149862 C-C chemokine receptor type 3 Proteins 0.000 description 1
- 101710149863 C-C chemokine receptor type 4 Proteins 0.000 description 1
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 1
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 1
- 102100036301 C-C chemokine receptor type 7 Human genes 0.000 description 1
- 102100036305 C-C chemokine receptor type 8 Human genes 0.000 description 1
- 102100025074 C-C chemokine receptor-like 2 Human genes 0.000 description 1
- 102100036841 C-C motif chemokine 1 Human genes 0.000 description 1
- 102100023705 C-C motif chemokine 14 Human genes 0.000 description 1
- 102100023703 C-C motif chemokine 15 Human genes 0.000 description 1
- 102100023698 C-C motif chemokine 17 Human genes 0.000 description 1
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 1
- 102100036848 C-C motif chemokine 20 Human genes 0.000 description 1
- 102100036166 C-X-C chemokine receptor type 1 Human genes 0.000 description 1
- 102100028989 C-X-C chemokine receptor type 2 Human genes 0.000 description 1
- 102100028990 C-X-C chemokine receptor type 3 Human genes 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- 102100031658 C-X-C chemokine receptor type 5 Human genes 0.000 description 1
- 102100036150 C-X-C motif chemokine 5 Human genes 0.000 description 1
- 102100036170 C-X-C motif chemokine 9 Human genes 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 102100032957 C5a anaphylatoxin chemotactic receptor 1 Human genes 0.000 description 1
- 102100024217 CAMPATH-1 antigen Human genes 0.000 description 1
- 102100032976 CCR4-NOT transcription complex subunit 6 Human genes 0.000 description 1
- 108010030356 CD11a Antigen Proteins 0.000 description 1
- 108010017009 CD11b Antigen Proteins 0.000 description 1
- 102000004354 CD11b Antigen Human genes 0.000 description 1
- 108010011491 CD11c Antigen Proteins 0.000 description 1
- 108010059108 CD18 Antigens Proteins 0.000 description 1
- 102100027207 CD27 antigen Human genes 0.000 description 1
- 102000049320 CD36 Human genes 0.000 description 1
- 108010045374 CD36 Antigens Proteins 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 102100036008 CD48 antigen Human genes 0.000 description 1
- 108010065524 CD52 Antigen Proteins 0.000 description 1
- 102100022002 CD59 glycoprotein Human genes 0.000 description 1
- 102100025222 CD63 antigen Human genes 0.000 description 1
- 102100025221 CD70 antigen Human genes 0.000 description 1
- 102100027221 CD81 antigen Human genes 0.000 description 1
- 102100027217 CD82 antigen Human genes 0.000 description 1
- 102100035793 CD83 antigen Human genes 0.000 description 1
- 102000024905 CD99 Human genes 0.000 description 1
- 108060001253 CD99 Proteins 0.000 description 1
- 108050007957 Cadherin Proteins 0.000 description 1
- 102000004631 Calcineurin Human genes 0.000 description 1
- 108010042955 Calcineurin Proteins 0.000 description 1
- 102000004414 Calcitonin Gene-Related Peptide Human genes 0.000 description 1
- 108090000932 Calcitonin Gene-Related Peptide Proteins 0.000 description 1
- 108090000312 Calcium Channels Proteins 0.000 description 1
- 102000003922 Calcium Channels Human genes 0.000 description 1
- 102000019025 Calcium-Calmodulin-Dependent Protein Kinases Human genes 0.000 description 1
- 108010026870 Calcium-Calmodulin-Dependent Protein Kinases Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102100035904 Caspase-1 Human genes 0.000 description 1
- 108090000426 Caspase-1 Proteins 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010082155 Chemokine CCL18 Proteins 0.000 description 1
- 102000006579 Chemokine CXCL10 Human genes 0.000 description 1
- 108010008978 Chemokine CXCL10 Proteins 0.000 description 1
- 102100031699 Choline transporter-like protein 1 Human genes 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108010048623 Collagen Receptors Proteins 0.000 description 1
- 102100025877 Complement component C1q receptor Human genes 0.000 description 1
- 102100025680 Complement decay-accelerating factor Human genes 0.000 description 1
- 102100030886 Complement receptor type 1 Human genes 0.000 description 1
- 102100032768 Complement receptor type 2 Human genes 0.000 description 1
- 108010062580 Concanavalin A Proteins 0.000 description 1
- 102000010970 Connexin Human genes 0.000 description 1
- 108050001175 Connexin Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- 108050006400 Cyclin Proteins 0.000 description 1
- 102000016736 Cyclin Human genes 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- 102100039061 Cytokine receptor common subunit beta Human genes 0.000 description 1
- 102100026234 Cytokine receptor common subunit gamma Human genes 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- 102100025012 Dipeptidyl peptidase 4 Human genes 0.000 description 1
- 102100023471 E-selectin Human genes 0.000 description 1
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 1
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102100025137 Early activation antigen CD69 Human genes 0.000 description 1
- 102100029722 Ectonucleoside triphosphate diphosphohydrolase 1 Human genes 0.000 description 1
- 102100023688 Eotaxin Human genes 0.000 description 1
- 101710139422 Eotaxin Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 108010008165 Etanercept Proteins 0.000 description 1
- 229940124602 FDA-approved drug Drugs 0.000 description 1
- 108010076288 Formyl peptide receptors Proteins 0.000 description 1
- 102000011652 Formyl peptide receptors Human genes 0.000 description 1
- 102100021260 Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1 Human genes 0.000 description 1
- 101150112014 Gapdh gene Proteins 0.000 description 1
- 208000002705 Glucose Intolerance Diseases 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 102100030595 HLA class II histocompatibility antigen gamma chain Human genes 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 102100038006 High affinity immunoglobulin epsilon receptor subunit alpha Human genes 0.000 description 1
- 101710128966 High affinity immunoglobulin epsilon receptor subunit alpha Proteins 0.000 description 1
- 102100026122 High affinity immunoglobulin gamma Fc receptor I Human genes 0.000 description 1
- 102100032742 Histone-lysine N-methyltransferase SETD2 Human genes 0.000 description 1
- 101000800023 Homo sapiens 4F2 cell-surface antigen heavy chain Proteins 0.000 description 1
- 101000678236 Homo sapiens 5'-nucleotidase Proteins 0.000 description 1
- 101000777636 Homo sapiens ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Proteins 0.000 description 1
- 101000718243 Homo sapiens Adhesion G protein-coupled receptor E5 Proteins 0.000 description 1
- 101001022185 Homo sapiens Alpha-(1,3)-fucosyltransferase 4 Proteins 0.000 description 1
- 101000757160 Homo sapiens Aminopeptidase N Proteins 0.000 description 1
- 101000934359 Homo sapiens B-cell differentiation antigen CD72 Proteins 0.000 description 1
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101000863864 Homo sapiens Beta-galactoside alpha-2,6-sialyltransferase 1 Proteins 0.000 description 1
- 101000716068 Homo sapiens C-C chemokine receptor type 6 Proteins 0.000 description 1
- 101000716065 Homo sapiens C-C chemokine receptor type 7 Proteins 0.000 description 1
- 101000716063 Homo sapiens C-C chemokine receptor type 8 Proteins 0.000 description 1
- 101000978381 Homo sapiens C-C motif chemokine 14 Proteins 0.000 description 1
- 101000978376 Homo sapiens C-C motif chemokine 15 Proteins 0.000 description 1
- 101000978362 Homo sapiens C-C motif chemokine 17 Proteins 0.000 description 1
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 description 1
- 101000713099 Homo sapiens C-C motif chemokine 20 Proteins 0.000 description 1
- 101000947174 Homo sapiens C-X-C chemokine receptor type 1 Proteins 0.000 description 1
- 101000916050 Homo sapiens C-X-C chemokine receptor type 3 Proteins 0.000 description 1
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- 101000922405 Homo sapiens C-X-C chemokine receptor type 5 Proteins 0.000 description 1
- 101000947186 Homo sapiens C-X-C motif chemokine 5 Proteins 0.000 description 1
- 101000947172 Homo sapiens C-X-C motif chemokine 9 Proteins 0.000 description 1
- 101000867983 Homo sapiens C5a anaphylatoxin chemotactic receptor 1 Proteins 0.000 description 1
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000716130 Homo sapiens CD48 antigen Proteins 0.000 description 1
- 101000897400 Homo sapiens CD59 glycoprotein Proteins 0.000 description 1
- 101000934368 Homo sapiens CD63 antigen Proteins 0.000 description 1
- 101000934356 Homo sapiens CD70 antigen Proteins 0.000 description 1
- 101000914479 Homo sapiens CD81 antigen Proteins 0.000 description 1
- 101000914469 Homo sapiens CD82 antigen Proteins 0.000 description 1
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 1
- 101000940912 Homo sapiens Choline transporter-like protein 1 Proteins 0.000 description 1
- 101000933665 Homo sapiens Complement component C1q receptor Proteins 0.000 description 1
- 101000856022 Homo sapiens Complement decay-accelerating factor Proteins 0.000 description 1
- 101000727061 Homo sapiens Complement receptor type 1 Proteins 0.000 description 1
- 101000941929 Homo sapiens Complement receptor type 2 Proteins 0.000 description 1
- 101001033280 Homo sapiens Cytokine receptor common subunit beta Proteins 0.000 description 1
- 101000908391 Homo sapiens Dipeptidyl peptidase 4 Proteins 0.000 description 1
- 101000622123 Homo sapiens E-selectin Proteins 0.000 description 1
- 101000934374 Homo sapiens Early activation antigen CD69 Proteins 0.000 description 1
- 101001012447 Homo sapiens Ectonucleoside triphosphate diphosphohydrolase 1 Proteins 0.000 description 1
- 101000894906 Homo sapiens Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1 Proteins 0.000 description 1
- 101001069921 Homo sapiens Growth-regulated alpha protein Proteins 0.000 description 1
- 101001082627 Homo sapiens HLA class II histocompatibility antigen gamma chain Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000913074 Homo sapiens High affinity immunoglobulin gamma Fc receptor I Proteins 0.000 description 1
- 101001046870 Homo sapiens Hypoxia-inducible factor 1-alpha Proteins 0.000 description 1
- 101000878602 Homo sapiens Immunoglobulin alpha Fc receptor Proteins 0.000 description 1
- 101001078143 Homo sapiens Integrin alpha-IIb Proteins 0.000 description 1
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 1
- 101001046677 Homo sapiens Integrin alpha-V Proteins 0.000 description 1
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 description 1
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 1
- 101001015004 Homo sapiens Integrin beta-3 Proteins 0.000 description 1
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 description 1
- 101000599862 Homo sapiens Intercellular adhesion molecule 3 Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 101000960936 Homo sapiens Interleukin-5 receptor subunit alpha Proteins 0.000 description 1
- 101001018097 Homo sapiens L-selectin Proteins 0.000 description 1
- 101000605020 Homo sapiens Large neutral amino acids transporter small subunit 1 Proteins 0.000 description 1
- 101000777628 Homo sapiens Leukocyte antigen CD37 Proteins 0.000 description 1
- 101000984196 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily A member 5 Proteins 0.000 description 1
- 101000984190 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily B member 1 Proteins 0.000 description 1
- 101000868279 Homo sapiens Leukocyte surface antigen CD47 Proteins 0.000 description 1
- 101000980823 Homo sapiens Leukocyte surface antigen CD53 Proteins 0.000 description 1
- 101000608935 Homo sapiens Leukosialin Proteins 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- 101000917826 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-a Proteins 0.000 description 1
- 101000917824 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-b Proteins 0.000 description 1
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 1
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 1
- 101001063392 Homo sapiens Lymphocyte function-associated antigen 3 Proteins 0.000 description 1
- 101001023379 Homo sapiens Lysosome-associated membrane glycoprotein 1 Proteins 0.000 description 1
- 101000934372 Homo sapiens Macrosialin Proteins 0.000 description 1
- 101000961414 Homo sapiens Membrane cofactor protein Proteins 0.000 description 1
- 101000950669 Homo sapiens Mitogen-activated protein kinase 9 Proteins 0.000 description 1
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 1
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 1
- 101000971513 Homo sapiens Natural killer cells antigen CD94 Proteins 0.000 description 1
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 1
- 101000973997 Homo sapiens Nucleosome assembly protein 1-like 4 Proteins 0.000 description 1
- 101000622137 Homo sapiens P-selectin Proteins 0.000 description 1
- 101000947178 Homo sapiens Platelet basic protein Proteins 0.000 description 1
- 101001043564 Homo sapiens Prolow-density lipoprotein receptor-related protein 1 Proteins 0.000 description 1
- 101000668165 Homo sapiens RNA-binding motif, single-stranded-interacting protein 1 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 101000596234 Homo sapiens T-cell surface protein tactile Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 101000800116 Homo sapiens Thy-1 membrane glycoprotein Proteins 0.000 description 1
- 101000835093 Homo sapiens Transferrin receptor protein 1 Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 101000801228 Homo sapiens Tumor necrosis factor receptor superfamily member 1A Proteins 0.000 description 1
- 101000611023 Homo sapiens Tumor necrosis factor receptor superfamily member 6 Proteins 0.000 description 1
- 101000760337 Homo sapiens Urokinase plasminogen activator surface receptor Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 102000026633 IL6 Human genes 0.000 description 1
- 108010073816 IgE Receptors Proteins 0.000 description 1
- 102000009438 IgE Receptors Human genes 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102100038005 Immunoglobulin alpha Fc receptor Human genes 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- 102100025323 Integrin alpha-1 Human genes 0.000 description 1
- 102100032817 Integrin alpha-5 Human genes 0.000 description 1
- 102100032832 Integrin alpha-7 Human genes 0.000 description 1
- 102100022339 Integrin alpha-L Human genes 0.000 description 1
- 102100022338 Integrin alpha-M Human genes 0.000 description 1
- 108010041341 Integrin alpha1 Proteins 0.000 description 1
- 102000000507 Integrin alpha2 Human genes 0.000 description 1
- 102000000510 Integrin alpha3 Human genes 0.000 description 1
- 108010041357 Integrin alpha3 Proteins 0.000 description 1
- 108010041014 Integrin alpha5 Proteins 0.000 description 1
- 102100025304 Integrin beta-1 Human genes 0.000 description 1
- 102100032999 Integrin beta-3 Human genes 0.000 description 1
- 102100033000 Integrin beta-4 Human genes 0.000 description 1
- 102100033011 Integrin beta-6 Human genes 0.000 description 1
- 102100033016 Integrin beta-7 Human genes 0.000 description 1
- 102100033336 Integrin beta-8 Human genes 0.000 description 1
- 102000012355 Integrin beta1 Human genes 0.000 description 1
- 108010022222 Integrin beta1 Proteins 0.000 description 1
- 102000008607 Integrin beta3 Human genes 0.000 description 1
- 108010020950 Integrin beta3 Proteins 0.000 description 1
- 102000012334 Integrin beta4 Human genes 0.000 description 1
- 108010022238 Integrin beta4 Proteins 0.000 description 1
- 108010064600 Intercellular Adhesion Molecule-3 Proteins 0.000 description 1
- 101710148794 Intercellular adhesion molecule 2 Proteins 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102100027268 Interferon-stimulated gene 20 kDa protein Human genes 0.000 description 1
- 102000003815 Interleukin-11 Human genes 0.000 description 1
- 108090000177 Interleukin-11 Proteins 0.000 description 1
- 102000013691 Interleukin-17 Human genes 0.000 description 1
- 108050003558 Interleukin-17 Proteins 0.000 description 1
- 102100026879 Interleukin-2 receptor subunit beta Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 102100039078 Interleukin-4 receptor subunit alpha Human genes 0.000 description 1
- 102100039881 Interleukin-5 receptor subunit alpha Human genes 0.000 description 1
- 102100037792 Interleukin-6 receptor subunit alpha Human genes 0.000 description 1
- 102100021593 Interleukin-7 receptor subunit alpha Human genes 0.000 description 1
- 108010018951 Interleukin-8B Receptors Proteins 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 102100026244 Interleukin-9 receptor Human genes 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 108010092694 L-Selectin Proteins 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 102000006835 Lamins Human genes 0.000 description 1
- 108010047294 Lamins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102100031586 Leukocyte antigen CD37 Human genes 0.000 description 1
- 102100025574 Leukocyte immunoglobulin-like receptor subfamily A member 5 Human genes 0.000 description 1
- 102100032913 Leukocyte surface antigen CD47 Human genes 0.000 description 1
- 102100024221 Leukocyte surface antigen CD53 Human genes 0.000 description 1
- 108010005832 Leukosialin Proteins 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- 102100029204 Low affinity immunoglobulin gamma Fc region receptor II-a Human genes 0.000 description 1
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 1
- 102100030984 Lymphocyte function-associated antigen 3 Human genes 0.000 description 1
- 102100035304 Lymphotactin Human genes 0.000 description 1
- 102100035133 Lysosome-associated membrane glycoprotein 1 Human genes 0.000 description 1
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 1
- 101710127797 Macrophage colony-stimulating factor 1 Proteins 0.000 description 1
- 102100028198 Macrophage colony-stimulating factor 1 receptor Human genes 0.000 description 1
- 102100025136 Macrosialin Human genes 0.000 description 1
- 102100027754 Mast/stem cell growth factor receptor Kit Human genes 0.000 description 1
- 102100039373 Membrane cofactor protein Human genes 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 206010051676 Metastases to peritoneum Diseases 0.000 description 1
- 102000016397 Methyltransferase Human genes 0.000 description 1
- 108091092878 Microsatellite Proteins 0.000 description 1
- 101710151805 Mitochondrial intermediate peptidase 1 Proteins 0.000 description 1
- 102100037809 Mitogen-activated protein kinase 9 Human genes 0.000 description 1
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 101000946797 Mus musculus C-C motif chemokine 9 Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- 108050000637 N-cadherin Proteins 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 102100021462 Natural killer cells antigen CD94 Human genes 0.000 description 1
- 102100023064 Nectin-1 Human genes 0.000 description 1
- 102100035488 Nectin-2 Human genes 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- 102000003729 Neprilysin Human genes 0.000 description 1
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 1
- 108010047771 Neuron-Glia Cell Adhesion Molecules Proteins 0.000 description 1
- 101100384865 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cot-1 gene Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- BZQFBWGGLXLEPQ-UHFFFAOYSA-N O-phosphoryl-L-serine Natural products OC(=O)C(N)COP(O)(O)=O BZQFBWGGLXLEPQ-UHFFFAOYSA-N 0.000 description 1
- 208000027771 Obstructive airways disease Diseases 0.000 description 1
- 108010089503 Organic Anion Transporters Proteins 0.000 description 1
- 102000007990 Organic Anion Transporters Human genes 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 108010035766 P-Selectin Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 241000577979 Peromyscus spicilegus Species 0.000 description 1
- 102000007074 Phospholipase C beta Human genes 0.000 description 1
- 108010047834 Phospholipase C beta Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 108010035030 Platelet Membrane Glycoprotein IIb Proteins 0.000 description 1
- 102100036154 Platelet basic protein Human genes 0.000 description 1
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000238425 Polyplacophora Species 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 102100021923 Prolow-density lipoprotein receptor-related protein 1 Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102100024923 Protein kinase C beta type Human genes 0.000 description 1
- 101710094033 Protein kinase C beta type Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 108020005093 RNA Precursors Proteins 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 101001029064 Rattus norvegicus ATP-binding cassette sub-family C member 6 Proteins 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 208000002200 Respiratory Hypersensitivity Diseases 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 102100027744 Semaphorin-4D Human genes 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 1
- 101710088580 Stromal cell-derived factor 1 Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 101710165202 T-cell surface antigen CD2 Proteins 0.000 description 1
- 102100035268 T-cell surface protein tactile Human genes 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 102100033523 Thy-1 membrane glycoprotein Human genes 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 101710183280 Topoisomerase Proteins 0.000 description 1
- 108010033576 Transferrin Receptors Proteins 0.000 description 1
- 102100026144 Transferrin receptor protein 1 Human genes 0.000 description 1
- 102000006747 Transforming Growth Factor alpha Human genes 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000011117 Transforming Growth Factor beta2 Human genes 0.000 description 1
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 1
- 101800000304 Transforming growth factor beta-2 Proteins 0.000 description 1
- 102000056172 Transforming growth factor beta-3 Human genes 0.000 description 1
- 108090000097 Transforming growth factor beta-3 Proteins 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000015098 Tumor Suppressor Protein p53 Human genes 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 102100033732 Tumor necrosis factor receptor superfamily member 1A Human genes 0.000 description 1
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 102100040403 Tumor necrosis factor receptor superfamily member 6 Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 102100024689 Urokinase plasminogen activator surface receptor Human genes 0.000 description 1
- 108010000134 Vascular Cell Adhesion Molecule-1 Proteins 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 108010046516 Wheat Germ Agglutinins Proteins 0.000 description 1
- 238000012452 Xenomouse strains Methods 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000010085 airway hyperresponsiveness Effects 0.000 description 1
- PPQRONHOSHZGFQ-LMVFSUKVSA-N aldehydo-D-ribose 5-phosphate Chemical group OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PPQRONHOSHZGFQ-LMVFSUKVSA-N 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 208000030961 allergic reaction Diseases 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 1
- 206010002022 amyloidosis Diseases 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000037037 animal physiology Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 238000011091 antibody purification Methods 0.000 description 1
- 229940019748 antifibrinolytic proteinase inhibitors Drugs 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000002917 arthritic effect Effects 0.000 description 1
- 210000003567 ascitic fluid Anatomy 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 230000006736 behavioral deficit Effects 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000007321 biological mechanism Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 108091006004 biotinylated proteins Proteins 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 238000004159 blood analysis Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 230000007885 bronchoconstriction Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000009134 cell regulation Effects 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 230000001713 cholinergic effect Effects 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000005321 cobalt glass Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- FMGSKLZLMKYGDP-USOAJAOKSA-N dehydroepiandrosterone Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC=C21 FMGSKLZLMKYGDP-USOAJAOKSA-N 0.000 description 1
- 238000003936 denaturing gel electrophoresis Methods 0.000 description 1
- 238000003935 denaturing gradient gel electrophoresis Methods 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 229950006137 dexfosfoserine Drugs 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000009274 differential gene expression Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000012362 drug development process Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 229940073621 enbrel Drugs 0.000 description 1
- 239000002375 environmental carcinogen Substances 0.000 description 1
- 230000009483 enzymatic pathway Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 108010052621 fas Receptor Proteins 0.000 description 1
- 102000018823 fas Receptor Human genes 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 210000004905 finger nail Anatomy 0.000 description 1
- ZFKJVJIDPQDDFY-UHFFFAOYSA-N fluorescamine Chemical compound C12=CC=CC=C2C(=O)OC1(C1=O)OC=C1C1=CC=CC=C1 ZFKJVJIDPQDDFY-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 150000003948 formamides Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000011223 gene expression profiling Methods 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 102000054767 gene variant Human genes 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 238000012248 genetic selection Methods 0.000 description 1
- 210000002980 germ line cell Anatomy 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- 230000023611 glucuronidation Effects 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 101150098203 grb2 gene Proteins 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 231100000640 hair analysis Toxicity 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940094991 herring sperm dna Drugs 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 108091008147 housekeeping proteins Proteins 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000037456 inflammatory mechanism Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 208000030603 inherited susceptibility to asthma Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 108010024084 integrin alpha7 Proteins 0.000 description 1
- 108010021309 integrin beta6 Proteins 0.000 description 1
- 108010021315 integrin beta7 Proteins 0.000 description 1
- 108010021506 integrin beta8 Proteins 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 101150044508 key gene Proteins 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 210000005053 lamin Anatomy 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- VNYSSYRCGWBHLG-AMOLWHMGSA-N leukotriene B4 Chemical compound CCCCC\C=C/C[C@@H](O)\C=C\C=C\C=C/[C@@H](O)CCCC(O)=O VNYSSYRCGWBHLG-AMOLWHMGSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229950011606 lisofylline Drugs 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 108010019677 lymphotactin Proteins 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000031852 maintenance of location in cell Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- TWXDDNPPQUTEOV-FVGYRXGTSA-N methamphetamine hydrochloride Chemical compound Cl.CN[C@@H](C)CC1=CC=CC=C1 TWXDDNPPQUTEOV-FVGYRXGTSA-N 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- ZAHQPTJLOCWVPG-UHFFFAOYSA-N mitoxantrone dihydrochloride Chemical compound Cl.Cl.O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO ZAHQPTJLOCWVPG-UHFFFAOYSA-N 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000003990 molecular pathway Effects 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000003843 mucus production Effects 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- DSWNRHCOGVRDOE-UHFFFAOYSA-N n,n-dimethylmethanimidamide Chemical compound CN(C)C=N DSWNRHCOGVRDOE-UHFFFAOYSA-N 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 238000013188 needle biopsy Methods 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 230000005455 negative regulation of mast cell degranulation Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 238000003499 nucleic acid array Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 229940043515 other immunoglobulins in atc Drugs 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000003950 pathogenic mechanism Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000004976 peripheral blood cell Anatomy 0.000 description 1
- 208000010918 peritoneal neoplasm Diseases 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000000858 peroxisomal effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000002205 phenol-chloroform extraction Methods 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 1
- 239000002644 phorbol ester Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoramidic acid Chemical compound NP(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 description 1
- 108091005981 phosphorylated proteins Proteins 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- USRGIUJOYOXOQJ-GBXIJSLDSA-N phosphothreonine Chemical compound OP(=O)(O)O[C@H](C)[C@H](N)C(O)=O USRGIUJOYOXOQJ-GBXIJSLDSA-N 0.000 description 1
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical compound OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 108010017843 platelet-derived growth factor A Proteins 0.000 description 1
- 108010000685 platelet-derived growth factor AB Proteins 0.000 description 1
- 210000004910 pleural fluid Anatomy 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 201000009104 prediabetes syndrome Diseases 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- CAVPDPHVQVHXCQ-UHFFFAOYSA-N prop-1-en-2-yl formate Chemical compound CC(=C)OC=O CAVPDPHVQVHXCQ-UHFFFAOYSA-N 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 201000010174 renal carcinoma Diseases 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 239000013545 self-assembled monolayer Substances 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000003196 serial analysis of gene expression Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 230000002739 subcortical effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000004876 tela submucosa Anatomy 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical class [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 150000003595 thromboxanes Chemical class 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 210000004906 toe nail Anatomy 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000012301 transgenic model Methods 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- 238000000539 two dimensional gel electrophoresis Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000010798 ubiquitination Methods 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 238000005353 urine analysis Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 238000007794 visualization technique Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54353—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Definitions
- the present invention provides for a powerful method for identification of gene- and protein-induction by drugs in molecular pathways at both the cellular and whole animal level.
- the invention relates to a biochip microarray, wherein experimental information is loaded into a computer database which allows for mining of data, analysis of data for the predictability, evaluation of efficacy and toxicity of newly-discovered drugs, existing drugs, families of drugs or classes of drugs.
- the present invention drastically reduces the cost and time associated with testing of drugs for FDA approval for use in humans.
- the first begins with a screen for compounds that have a desired effect on a cell (e.g., induction of apoptosis), or organism (e.g., inhibition of angiogenesis) as measured in a specific biological assay.
- Compounds with the desired activity may then be modified to increase potency, stability, or other properties, and the modified compounds retested in the assay.
- a compound that acts as an inhibitor of angiogenesis when tested in a mouse tumor model may be identified, and structurally related compounds synthesized and tested in the same assay.
- a critical limitation of this approach is that, often, the mechanisms of action, such as the molecular target(s) and cellular pathway(s) affected by the compound, are unknown, and cannot be determined by the screen. Furthermore, this approach may provide little information about the specificity, either in terms of target or pathways, of the drug's effect.
- the second approach to drug screening involves testing numerous compounds for a specific effect on a known molecular target, typically a cloned gene sequence of an isolated enzyme or protein. For example, high-throughput assays can be developed in which numerous compounds can be tested for the ability to change the level of transcription from a specific promoter or the binding of identified proteins.
- the invention generally relates to compositions and methods for an effective and efficient new drug discovery, drug evaluation and drug toxicity.
- the invention has many important uses including the production of a gene and/or protein chips for identification of drug mediated gene and/or protein expression or repression. More particularly, the invention provides for a methods and compositions for construction of a biochip with multiple properties for use in identification of gene- and/or protein-induction or expression levels by drugs; allows for the evaluation of efficacy and toxicity of any drug of choice; prediction of efficacy and toxicity of newly-discovered drugs, families of drugs or classes of drugs.
- Experimental information acquired from the biochip is inputted into a Drug-Gene-Protein-Biology (DGPB) database from which experimental data can be mined and analyzed based on the users preferences.
- DGPB Drug-Gene-Protein-Biology
- the present invention provides a biochip array for evaluating the effect of a composition for the treatment of a disease.
- the biochip array comprises a surface having stably attached thereto a plurality of molecules capable of selective binding to at least one member of the group consisting of DNA, RNA, proteins, peptides or fragments thereof that is representative of an animal model for the disease.
- the member is provided from any metabolic pathway, apoptotic pathway, inflammatory pathway, cytokine production pathway, cellular growth product pathways, proto-oncogenes, oncogenes, antibodies or fragments thereof that are provided by the animal model.
- the molecules used in the construction of the biochip array are derived from the “gold standard” animal model for human disease.
- the biochip array is preferably comprised of genes, nucleic acids, proteins, peptides or any fragments thereof derived from an animal model subjected to drug treatment. Either the whole animal or any organ or cell of the human disease animal model can be used to isolate the above molecules.
- the “gold standard” human disease animal model can be any widely accepted animal which is representative of human disease.
- the disease can be: allergy, arthritis, inflammatory disease, cancer such as breast cancer, testicular cancer, ovarian cancer and the like.
- a “gold standard” animal model for allergy and asthma is the OVA-albumin induced mouse asthma model.
- a “gold standard” animal model for arthritis is the collagen-induced arthritis mouse model.
- the disease also can be one which is caused by external environmental influences or stress-related diseases.
- the invention also provides a method for predicting the effect of a test composition for the treatment of a disease, the method comprising selecting an animal model for the disease, providing a biochip array for evaluating the effect of said test composition for the treatment of the disease, said biochip array comprising a surface having stably attached thereto a plurality of molecules capable of selective binding to at least one member of the group consisting of DNA, RNA, proteins, peptides or fragments thereof that is representative of an animal model for the disease, using the test composition in the animal model to obtain a first set of biological markers representative of the effect of the test composition in the animal model, using the biochip array to generate a first set of data representative of the first set of biological markers, and evaluating the first set of data to predict the effect of the test composition on the disease.
- the animal model is a standard animal model for human disease.
- the biological markers generally are selected from the group consisting of DNA, RNA, proteins, peptides or fragments thereof, wherein the markers are selected from any metabolic pathway; apoptotic pathway; inflammatory pathway; cytokine production pathway; cellular growth product pathways; proto-oncogenes; oncogenes; antibodies or fragments thereof provided by the animal model.
- a second composition having a known treatment effect on the disease further comprises selecting a second composition having a known treatment effect on the disease, using the second composition in the animal model to obtain a second set of biological markers representative of the effect of the second composition in the animal model, using the biochip array to generate a second set of data representative of the second set of biological markers, and comparing the first and second sets of data to predict the effect of the test composition on the disease.
- the method further comprises generating a control set of biological markers representative of the effect of no treatment in the animal model, using the biochip array to generate a control set of data representative of the control set of biological markers, and comparing the first and control sets of data to predict the effect of the test composition on the disease.
- the present invention also provides a method for predicting the effect of a test composition for the treatment of a disease comprising constructing a drug-gene-protein-biology database containing a plurality of data sets representative of the effects of a plurality of compositions in the animal model and comparing the test set of data with the database to predict the effect of the test composition on the disease.
- the toxicity of a drug to humans can be evaluated prior to any human trials.
- the drug for example can be an FDA-approved drug, a newly discovered drug, environmental toxic drug, or any environmental agent.
- the biochip is preferably used for drug discovery, evaluation of drug toxicity, predictability of toxic effects of a drug, identification of genes and proteins induced or repressed by the drug of action in a standard human disease animal model, or organs and cells thereof.
- the biochip is preferably comprised of genes, proteins, peptides or fragments thereof, combinations thereof, selected from any metabolic pathway; apoptotic pathway; inflammatory pathway; cytokine production pathway; cellular growth product pathways; proto-oncogenes; oncogenes; antibodies or fragments thereof.
- the biochip comprises gene fragments from any part of a gene or several parts of the same gene, whole genes, nucleic acids, proteins or fragments thereof, peptides or fragments thereof, from both treated and untreated whole animal human disease animal models, organs or cells.
- changes in gene expression between treated and untreated human disease animal models, or organs and cells thereof are detected by differentially labeling the nucleic acids and hybridizing sequence specific probes of choice.
- the sequence specific probe can be any sequence of any gene that is to be investigated.
- changes in protein expression between treated and untreated standard human disease animal models, or organs and cells thereof are detected by differentially labeling peptide probes and hybridizing sequence specific probes of choice.
- the sequence specific probe can be any sequence of any protein, peptide or fragment thereof, that is to be investigated.
- the gene and protein expression changes in standard human disease animals that are treated with drug of choice versus the untreated are stored in a Drug-Gene-Protein-Biology database.
- the database is used to compare gene and protein expression profiles of standard human disease animal models treated with different drugs as compared to untreated animals.
- the database is used to evaluate a drug to be tested for therapeutic purposes, or to evaluate the molecular expression of efficacy of the drug for the designated therapeutic purpose, or to evaluate the molecular expression of toxicity of the drug.
- the Drug-Gene-Protein-Biology database can be mined to predict gene and protein expression, the efficacy and potential toxicity of a drug belonging to a family or class of drugs.
- the invention will include methods for the development of the Drug-Gene-Protein-Biology database. These methods will include systems, any novel software programs, devices and processes.
- FIG. 1 is an illustration showing the application of the Predictive Molecular Expression of Efficacy, Toxicity, Adsorption, Distribution, Metabolism and Excretion (PMEET-ADME) process as applied to drug evaluation.
- the PMEET-ADME process can be applied to the drug evaluation at various points. One point is after drug selection during the pre-clinical evaluation process.
- Application of PMEET-ADME at this stage of the drug evaluation process provides a ranking of the candidate drug with regard to the benchmark drugs. The ranking reflects the projected efficacy, toxicity, adsorption, distribution, metabolism, and elimination of the candidate drug with respect to the benchmark drugs.
- a second point of application of the PMEET-ADME process is to drugs discarded during the drug selection process.
- PMEET-ADME process for any potential uses of the drug. This could result in previously discarded candidate drugs reaching FDA approval.
- a third point of application for the PMEET-ADME process is in the evaluation of drug-drug interactions and toxicity. Application of the PMEET-ADME process to drug-drug interactions during the pre-clinical phase of drug evaluation provides indications for possible adverse drug combinations prior to the treatment of humans.
- FIG. 2 is a diagram showing the identification of gene and protein expression networks.
- Panel A is a diagram of a normal and diseased state gene or protein expression network.
- Panel B is a diagram of the diseased and treated state gene or protein expression network. In both panels a square indicates a down regulation of a gene or protein and a circle indicates an up regulation of a gene or protein.
- the present invention provides for compositions and methods for construction of a biochip with multiple properties for use in identification of gene- and protein-induction by drugs; allows for the evaluation of efficacy and toxicity of any drug of choice; prediction of efficacy and toxicity of newly-discovered drugs, families of drugs or classes of drugs.
- the experimental information is inputted into a Drug-Gene-Protein-Biology (DGPB) database from which experimental data can be mined and analyzed based on the users preferences.
- DGPB Drug-Gene-Protein-Biology
- Whole genome gene expression profiling is a relatively new technique that allows the analysis of several thousands of gene fragments in one experiment. This technique is made possible by the attachment of several thousands of gene fragments, in assigned locations, to a glass slide or a silicon wafer to produce a “gene chip”. A single gene chip can contain up to 40,000 gene fragments for gene expression analysis. Gene fragments can be from any part of a gene or several parts of the same gene. In general, the gene fragments are composed of two different groups, experimental and control. The experimental group contains fragments of genes whose expression is going to be profiled. While the control group contains the fragments of genes for several positive and several negative control genes.
- Control genes provide the means to monitor the quality of an experiment and provide “landmarks” for the location of the genes attached to the glass or silicon support.
- the gene fragments are arranged in a grid pattern, repeated several times to form a “super grid” so as to allow multiple data points for analysis and landmarks to locate specific gene fragments (Microarray Biochip Technology, ed. Mark Schena (Natick, Mass.: Eaton Publishing 2000).
- the gene chip can be used to evaluate the differences in gene expression between untreated and treated cells. This is accomplished by differentially labeling the nucleic acids derived from the treated and untreated cells followed by sequence specific hybridization of the differentially labeled nucleic acids to the same gene chip. Conclusions and comparisons about the genes differentially expressed between the treated and untreated samples can be made after removal of the excess differentially labeled nucleic acid from the gene chip, data collection and data analysis (Microarray Biochip Technology, ed. Mark Schena (Natick, Mass.: Eaton Publishing 2000; Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P. and Trent, J. M. (1999). Expression profiling using cDNA microarrays. Nature Genetics Vol. 21S, p. 10-14)).
- Genes that are affected by the treatment of the cells are determined by comparing and identifying the differential gene expression between untreated and treated cells. For example, gene fragments having proportionally less labeled nucleic acid from the treated cells than from the untreated cells are said to have decreased expression or to have “repressed” gene expression. Whereas gene fragments that have proportionally more labeled nucleic acid from the treated cells than from the untreated cells are said to have increased expression or to have “induced” gene expression.
- a gene chip provides information about altered gene expression patterns from which the expression patterns of induction or repression of proteins can be deduced but, with the additional information provided by a “protein chip” the actual expression pattern of the proteins can be deduced and correlated with gene expression.
- Subjecting human disease animal models to a battery of different drug treatments results in the induction or repression of many pathways at the cellular level, for example, gene and protein expression or repression.
- the present invention comprises the use of gene and protein chips for identifying these changes and use of the information obtained from the gene and/or protein biochip to build a Drug-Gene-Protein-Biology Database.
- Experimental treatments that are limited to a family of drugs identifies genes and proteins induced and repressed by the individual drugs and the drug family.
- DGPB Drug-Gene-Protein-Biology database
- the DGPB database will include information from metabolic profiling and the typical industrial methods of evaluating a drug, drug family or drug class effect on the treated biological material. These last two profiling methods, the metabolic and the typical industrial, has the added advantage of providing a link between the present methods of drug evaluation and the future methods of drug evaluation.
- the Drug-Gene-Protein-Biology (DGPB) database links drug action, genetic response, protein response and biological response together providing information storage so that software tools can compare and analyze data.
- software tools are well known to those skilled in the art.
- the capacity of the database provides for a continuing increase in the ability to use the information for purposes of predicting the biological response of a new drug based on the genes and proteins that demonstrate induction or repression.
- the database can be “mined” for the identification of new drug targets, new biological switches, new biological pathways, and the actions of drugs and drug treatments across a wide gene and protein profile.
- a PMEET-ADME experiment has many advantages over typical or presently performed gene chip based experiments.
- animal models that are medically relevant models of human diseases (pre-clinical animal models) for the drug are used in the evaluation. These models include use of transgenic mice and other transgenic animals including p53 tumor suppressor gene knockouts for tumorigenic studies, use of a transgenic model for impaired glucose tolerance and human Alzheimer's amyloid precursor protein models for the study of glucose metabolism and for the pathogenesis of Alzheimer's disease, respectively, etc.
- the biochips of the present invention are used for analysis of both genes and proteins so that genes and proteins induced or repressed by the drugs can be identified.
- the other major advantage of the biochips is that they are also used in determining the metabolic profile and potential toxicity of a new drug or identify new uses for drugs that have not been approved by the FDA to treat a certain condition.
- the experimental information obtained from the biochip of the present invention is used for correlating the gene and protein profile of known toxic drugs with the profile of newly discovered drugs, thereby providing a predictive model of drug toxicity for either individual drugs, families of drugs, sub-classes of drugs, etc.
- the advantage is that these toxic drugs are identified prior to proceeding to further experimental or clinical trials, thereby, cutting the cost of drug production.
- the other major advantage of the present experiment is that it provides for a database that is used for the organization of data, analysis of data, and mining of data. In this way a predictive index can be determined for the possibility of a new drug succeeding in FDA trials.
- the PMEET-ADME process preferably is applied to the drug evaluation process at one of the following three locations (FIG. 1).
- the first location is after drug selection during the pre-clinical evaluation process.
- Application of PMEET-ADME at this stage of the drug evaluation process provides a ranking of the candidate drugs with regard to benchmark drugs in medically relevant animal models of human disease of interest. The ranking reflects the projected efficacy, toxicity, adsorption, distribution, metabolism and elimination of the candidate drug with respect to benchmark drugs.
- a second site of application is to the drugs that have been discarded during the drug selection process. In this case, drugs that showed promise, but were not selected to continue through the selection process are evaluated using the PMEET-ADME process for determining the probability of the drugs achieving FDA approval.
- a third location for the application of the PMEET-ADME process is in the evaluation of drug-drug interactions and toxicity.
- Application of the PMEET-ADME process to drug-drug interactions during the pre-clinical phase of drug evaluation provides indications for possible adverse drug combinations prior to the treatment of humans.
- a model for evaluating a disease and treatment process can be constructed by understanding the expression and modification of these key genes and proteins.
- biochip is a microarray chip comprised of gene fragments from any part of a gene or several parts of the same gene, whole genes, nucleic acids, proteins or fragments thereof, peptides or fragments thereof.
- the biochip can be comprised of any combinations of the above molecules in any pattern on the chip.
- pattern can be parallel horizontal or vertical lines, spots, circles, grids, checkered designs, or any other desired design.
- the terms, “gold standard animal models”, “medically relevant animal model”, or “animal model” are used interchangeably throughout the disclosure. As used herein, the above terms refer to any animal model that has been used to study a human disease, including any standard, well-accepted animal models of various human disease indications, or animal models that have been used to study the effects of therapies and drugs for pre-clinical evaluation. These animal models also include transgenic animals.
- Transgenic animals are widely available, for example, transgenic mice which constitutively express an antibody-type molecule encoded by the transgene and which has an IgE heavy chain constant region and is specific for a pre-defined antigen, provide an allergic reaction to that antigen without prior sensitization and are useful as allergy models.
- animal is used herein to include all vertebrate animals, except humans. It also includes an individual animal in all stages of development, including embryonic and fetal stages.
- a “transgenic animal”, as used herein, is an animal containing one or more cells bearing genetic information received, directly or indirectly, by deliberate genetic manipulation at a subcellular level, such as by microinjection or infection with recombinant virus.
- This introduced DNA molecule may be integrated within a chromosome, or it may be extra-chromosomally replicating DNA.
- the term “germ cell-line transgenic animal” refers to a transgenic animal in which the genetic information was introduced into a germ line cell, thereby conferring the ability to transfer the information to offspring. If such offspring in fact possess some or all of that information, then they, too, are transgenic animals.
- the genetic alteration or genetic information may be foreign to the species of animal to which the recipient belongs, or foreign only to the particular individual recipient. In the last case, the altered or introduced gene may be expressed differently than the native gene.
- ES cells may be obtained from pre-implantation embryos cultured in vitro and fused with embryos (M. J. Evans et al., Nature 292: 154-156 (1981); Bradley et al., Nature 309: 255-258 (1984); Gossler et al. Proc. Natl. Acad. Sci. USA 83: 9065-9069 (1986); and Robertson et al., Nature 322, 445-448 (1986)).
- Transgenes can be efficiently introduced into the ES cells by a variety of standard techniques such as DNA transfection, microinjection, or by retrovirus-mediated transduction.
- the resultant transformed ES cells can thereafter be combined with blastocysts from a non-human animal.
- the introduced ES cells thereafter colonize the embryo and contribute to the germ line of the resulting chimeric animal (R. Jaenisch, Science 240: 1468-1474 (1988)).
- Nonhomologous plasmid-chromosome interactions are more frequent, occurring at levels 10 5 -fold (Lin et al., Proc. Natl. Acad Sci. USA 82:1391-1395 (1985)) to 10 2 -fold (Thomas et al., Cell 44:419-428 (1986); Song et al., Proc. Natl. Acad. Sci. USA 84:6820-6824 (1987)) greater than comparable homologous insertion.
- PNS positive-negative selection
- Nonhomologous recombinants are selected against by using the Herpes Simplex virus thymidine kinase (HSV-TK) gene and selecting against its nonhomologous insertion with the herpes drugs such as gancyclovir (GANC) or FIAU (1-(2-deoxy 2-fluoro-B-D-arabinofluranosyl)-5-iodouracil).
- HSV-TK Herpes Simplex virus thymidine kinase
- GANC gancyclovir
- FIAU 1-(2-deoxy 2-fluoro-B-D-arabinofluranosyl)-5-iodouracil
- a “targeted gene” or “Knock-out” is a DNA sequence introduced into the geriline of a non-human animal by way of human intervention, including but not limited to, the above described methods.
- the targeted genes of the invention include DNA sequences that are designed to specifically alter cognate endogenous alleles.
- the methods for evaluating the targeted recombination events as well as the resulting knockout mice are readily available and known in the art. Such methods include, but are not limited to DNA (Southern) hybridization to detect the targeted allele, polymerase chain reaction (PCR), polyacrylamide gel electrophoresis (PAGE) and Western blots to detect DNA, RNA and protein.
- DNA Southern
- PCR polymerase chain reaction
- PAGE polyacrylamide gel electrophoresis
- Western blots to detect DNA, RNA and protein.
- the OVA-induced Bronchial Asthma Mouse Model for Inhibition of Mast Cell Degranulation Asthma is a complex disease, which is characterized by spontaneous exacerbation of airways obstruction and persistent bronchial hyperresponsiveness.
- Chronic infiltration with activated T-lymphocytes, eosinophils and macrophages/monocytes of the airway submucosa is another established feature.
- Inflammatory mechanisms, with expression of cytokines, and the release of inflammatory mediators underlie the pathogenesis of bronchoconstriction and bronchial hyperresponsiveness.
- much of the pathogenic mechanism remains unclear, e.g., the mechanisms that induce persistence of symptoms and chronic inflammation and the interventions necessary to control and prevent the disease.
- Some common examples of inflammatory diseases are asthma, lupus, multiple sclerosis, osteoarthritis, psoriasis, Crohn's disease and rheumatoid arthritis.
- Tables 1 through 4 lists a number of genes and/or proteins that may be modulated by different drugs; table 1 (CD markers), table 2 (adhesion molecules) table 3 (chemokines and chemokine receptors), and table 4 (interleukins and their receptors).
- IgE immunoglobulin E
- Fc ⁇ RI ⁇ immunoglobulin receptor-receptor
- IgG( 1-4 ) genes encoding the immunoglobulin E and the IgE-receptor (Fc ⁇ RI ⁇ ) as well as the genes for the other immunoglobulins, IgG( 1-4 ), IgA 1 , IgA 2 , IgM, IgE, and IgD encoding free and membrane bound immunoglobulins and the genes encoding their corresponding receptors.
- an indicated gene means the gene and all currently known variants thereof, including the different mRNA transcripts to which the gene and its variants can give rise, and any further gene variants which may be elucidated.
- such variants will have significant homology (sequence identity) to a sequence of a table above, e.g. a variant will have at least about 70 percent homology (sequence identity) to a sequence of the above tables 1-4, more typically at least about 75, 80, 85, 90, 95, 97, 98 or 99 homology (sequence identity) to a sequence of the above tables 1-4.
- Homology of a variant can be determined by any of a number of standard techniques such as a BLAST program.
- Sequences for the genes listed in Tables 1-4 can be found in GenBank (http://www.ncbi.nlm.nih.gov/).
- GenBank http://www.ncbi.nlm.nih.gov/.
- the gene sequences may be genomic, cDNA or mRNA sequences.
- Preferred sequences are mammalian genes containing the complete coding region and 5′ untranslated sequences. Particularly preferred are human cDNA sequences.
- a mouse model is used to evaluate the effect of the compounds in accord with the present invention on the histological, radiographic and clinical appearance of induced type II collagen arthritis.
- RA rheumatoid arthritis
- Any acceptable animal model can be used for testing gene expression induced by drugs.
- Other examples of gold standard animal models of human disease include the following.
- the animal model for Alzheimer's disease in humans which is produced by placing a selective lesion in a subcortical nucleus (nucleus basalis of Meynert) with a resultant cortical cholinergic deficiency, similar in magnitude to that seen in early to moderate stage Alzheimer's disease. Numerous behavioral deficits, including the inability to learn and retain new information, characterizes this lesion. Drugs that can normalize these abnormalities would have a reasonable expectation of efficacy in Alzheimer's disease. Haroutunian, V., Kanof, P., Davis, K. L: Pharmacological Alleviations of Cholinergic-Lesion-Induced Memory Defects in Rats. Life Sciences, 37:945-952 (1985).
- OVCAR3 human ovarian cancer animal model accurately approximates the clinical presentation of stage M-IV ovarian cancer of peritoneal carcinomatosis. Untreated, OVCAR3 tumor is lethal to nude mice.
- the biochip chip can also be used to determine carcinogenicity or toxicity of various environmental agents by comparing the gene expression between animals exposed to the agent versus those animals not exposed.
- the cancer suppressing gene of an animal model is controlled by genetic manipulation to render it susceptible to carcinogenic influences.
- one of a pair of cancer suppressing genes of the animal is rendered inactive, so that the offspring of the animal may be exposed to the expected environmental carcinogen for testing purposes. Tumor development of the animal thus exposed is a positive indication of carcinogenicity of the suspected environmental influence.
- animal models can also be immunized with an antigen of choice such as allergens, inflammatory proteins or peptides, haptens and the like.
- an antigen of choice such as allergens, inflammatory proteins or peptides, haptens and the like.
- the animals are immunized with allergens and then the drug of choice is administered to determine any changes in gene or protein expression. Immunization of animals is well known in the art.
- the antigen can be administered to the mammal by any number of suitable routes such as subcutaneous, intraperitoneal, intravenous, intramuscular, intracutaneous injection, topically or orally.
- the optimal immunizing interval, immunizing dose, etc. can vary within relatively wide ranges.
- Typical procedures involve injection of the antigen several times over a number of months.
- Antigen may be co-administered with an adjuvant to increase the antigenicity of the antigen.
- an adjuvant for example, in the CIA mouse model of arthritis, lipopolysaccharide (LPS) can be used as an adjuvant to increase the antigenicity response to collagen in inducing a particularly aggressive form of arthritis in the mouse.
- LPS lipopolysaccharide
- Treatment of animals with the drug of choice will influence expression or repression of certain proteins, for example, those proteins involved in inflammation if the drug of choice is anti-inflammatory; biological pathways, for example, enzymatic pathways, regulatory pathways, chemokine pathways, etc.
- the drug of choice may repress or allow over-expression of a particular protein in a pathway.
- many cellular pathways are stimulated via the G-protein, using phospholipases as secondary messengers.
- Three phospholipases have been characterized and can be used in the design of the biochip to determine activation of, for example, inflammatory pathways. Other phospholipases can be included when they are characterized sufficiently.
- PLC ⁇ 2 which generates two second messengers, 1,4,5-inositol triphosphate (IP 3 ) and diacylglycerol (DG).
- IP 3 1,4,5-inositol triphosphate
- DG diacylglycerol
- IP 3 binds to certain calcium channels to stimulate the release of calcium from intracellular storage, resulting in an increase in the cytosolic concentration of calcium that is observed during stimulation by chemoattractants.
- DG in concert with released calcium, activates protein kinase C (PKC).
- a second, phospholipase A 2 (PLA 2 ), generates arachidonic acid from the phospholipids of the inner face of the plasma membrane.
- Arachidonic acid provides the precursors for the inflammatory mediators such as leukotrienes and prostaglandins.
- PLA 2 is activated upon phosphorylation by the mitogen-activated protein (MAP) kinase.
- MAP mitogen-activated protein
- a third phospholipase is phospholipase D (PLD), which generates phosphatidic acid and choline from phosphatidylcholine.
- Phosphatidic acid may be involved in activation of respiratory burst oxidase in addition to playing a role in the production of DG, which activates PKC.
- activation of PLD requires calcium.
- FMLP fMet-Leu-Phe
- FMLP fMet-Leu-Phe
- PKC is activated by DG, which is generated by PLC.
- PKC acts to phosphorylate serine and threonine residues.
- PKC consists of six different isoforms, three of which are sensitive to intracellular calcium ( ⁇ , ⁇ , and ⁇ forms) and three that are not ( ⁇ , ⁇ , and ⁇ forms).
- Neutrophils contain the ⁇ , ⁇ , and ⁇ forms but not the ⁇ form.
- the calcium-dependent and DG-dependent PKC (PKC- ⁇ ) responds to FMLP and phorbol ester stimulation by translocating from the cytosol to the membrane. It then phosphorylates a number of cytosolic proteins, such as those involved in the respiratory burst oxidase system.
- FMLP can also activate the calcium-independent, DG-dependent and phosphatidyl serine-dependent PKC form.
- a drug of choice which acts in a similar manner may be identified or its mechanism of action elucidated allowing for design of new drugs with lower side effects.
- the MAP kinase reportedly is activated by the ⁇ , ⁇ subunits of the G-proteins by the activities of Ras and Raf. This kinase pathway is also stimulated by C 5a and IL-8 (Buhl et al., J. Biol. Chem. 270: 19828-19832, 1995; Knall et al., J. Biol. Chem. 271: 2832-2838, 1996).
- MAP kinase induces tyrosine phosphorylation of several regulatory proteins, such as the extracellular signal-regulated kinase (ERK)-1.
- ERK extracellular signal-regulated kinase
- Phosphatidylinositol 3-kinase is responsible for the formation of PI triphosphate (PIP 3 ) that is observed upon stimulation by FMLP.
- Any gene or protein involved in such pathways can be used in the design of the biochip in order to elucidate at which stages drugs repress, express or do not change expression levels.
- Examples of genes and/or proteins in pathways that can be influenced by drugs for use in designing the protein and/or gene chips are listed in Table 5.
- the biochip can be comprised of any molecule, for example, oligonucleotides, DNA, PNA (peptide nucleic acids) or RNA, proteins, peptides, amino acid sequences or fragments thereof.
- the oligonucleotides that comprise the biochip are of a defined length and similarity. This allows for similar hybridization characteristics.
- the hybridization characteristics to be similar across a wide range of oligonucleotides, as is well known to those skilled in the art, it is required that the oligonucleotides be of the substantially same length, have a similar percentage of Guanine to Cytosine content and lack any extensive runs of poly A, poly G, poly C, or poly T tracts.
- the goal of having these parameters is to produce oligonucleotides that have similar melting and hybridization temperatures. Additionally, these oligonucleotides should, preferably, lack lengthy complementary regions and not form hairpins.
- One method for generating the biochip of the present invention is disclosed in U.S. Pat. No. 6,093,302, by Montgomery.
- the method disclosed is a solid phase synthesis method for the preparation of diverse sequences of separate polymers or nucleic acid sequences using electrochemical placement of monomers or nucleic acids at a specific location on a substrate containing at least one electrode that is preferably in contact with a buffering or scavenging solution to prevent chemical cross-talk between electrodes due to diffusion of electrochemically generated reagents.
- oligonucleotide analogue array can be synthesized on a solid substrate by a variety of methods, including, but not limited to, light-directed chemical coupling, and mechanically directed coupling. See Pirrung et al., U.S. Pat. No. 5,143,854 (see also PCT Application No. WO 90/15070) and Fodor et al., PCT Publication Nos.
- WO 92/10092 and WO 93/09668 which disclose methods of forming vast arrays of peptides, oligonucleotides and other molecules using for example, light-directed synthesis techniques. See also, Fodor et al., Science, 251:767-777 (1991). These procedures for synthesis of polymer arrays are now referred to as VLSIPSTM procedures. Using the VLSIPSTM approach, one heterogeneous array of polymers is converted through simultaneous coupling at a number of reaction sites, into a different heterogeneous array.
- VLSIPSTM technology is considered pioneering technology in the fields of combinatorial synthesis and screening of combinatorial libraries.
- the light-directed combinatorial synthesis of oligonucleotide arrays on a glass surface proceeds using automated phosphoramidite chemistry and chip masking techniques.
- a glass surface is derivatized with a silane reagent containing a functional group, e.g., a hydroxyl or amine group blocked by a photolabile protecting group. Photolysis through a photolithographic mask is used selectively to expose functional groups which are then ready to react with incoming 5′-photoprotected nucleoside phosphoramidite.
- the phosphoramidites react only with those sites which are illuminated (and thus exposed by removal of the photolabile blocking group). Thus, the phosphoramidites only add to those areas selectively exposed from the preceding step. These steps are repeated until the desired array of sequences have been synthesized on the solid surface. Combinatorial synthesis of different oligonucleotide analogues at different locations on the array is determined by the pattern of illumination during synthesis and the order of addition of coupling reagents.
- Peptide substituted nucleic acids are commercially available from e.g. Biosearch, Inc. (Bedford, Mass.) which comprise a polyamide backbone and the bases found in naturally occurring nucleosides. Peptide nucleic acids are capable of binding to nucleic acids with high specificity, and are considered “oligonucleotide analogues” for purposes of this disclosure.
- large arrays can be generated using presynthesized oligonucleotides laid down in linear rows to form an array, which then can be divided or cut into strips, to form a number of smaller, uniform arrays. Strips from different arrays can be combined to form more complex composite arrays. In this way, both the efficiency of oligonucleotide attachment (or synthesis) is improved, and there is a significant increase in reproducibility of the arrays.
- each oligonucleotide can form an oligonucleotide strip that is longer than it is wide; that is, when hybridization to a target sequence occurs, a strip of hybridization occurs. This significantly increases the ability to distinguishing over non-specific hybridization and background effects when detection is via visualization, such as through the use of radioisotope detection.
- the length of the strip allows repeated detection reactions to be made, with or without slight variations in the position along the length of the strip. Averaging of the data points allows the minimization of false positives or position dependent noise such as dust, microdebris, etc.
- the present invention also provides for oligonucleotide arrays comprising a solid support with a plurality of different oligonucleotide pools.
- plural herein is meant at least two different oligonucleotide species, with from about 10 to 1000 being preferred, and from about 50 to 500 being particularly preferred and from about 100-200 being especially preferred, although smaller or larger number of different oligonucleotide species may be used as well.
- the number of oligonucleotides per array will depend in part on the size and composition of the array, as well as the end use of the array. Thus, for certain diagnostic arrays, only a few different oligonucleotide probes may be required; other uses such as cDNA analysis may require more oligonucleotide probes to collect the desired information.
- composition of the solid support may be anything to which oligonucleotides may be attached, preferably covalently, and will also depend on the method of attachment.
- the solid support is substantially nonporous; that is, the oligonucleotides are attached predominantly at the surface of the solid support.
- suitable solid supports include, but are not limited to, those made of plastics, resins, polysaccharides, silica or silica-based materials, functionalized glass, modified silicon, carbon, metals, inorganic glasses, membranes, nylon, natural fibers such as silk, wool and cotton, and polymers.
- the material comprising the solid support has reactive groups such as carboxy, amino, hydroxy, etc., which are used for attachment of the oligonucleotides.
- the oligonucleotides are attached without the use of such functional groups, as is more fully described below.
- Polymers are preferred, and suitable polymers include, but are not limited to, polystyrene, polyethylene glycol tetraphthalate, polyvinyl acetate, polyvinyl chloride, polyvinyl pyrrolidone, polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene, butyl rubber, styrenebutadiene rubber, natural rubber, polyethylene, polypropylene, (poly)tetrafluoroethylene, (poly)vinylidenefluoride, polycarbonate and polymethylpentene.
- Other preferred polymers include those well known in the art, see for example, U.S. Pat. No. 5,427,779.
- the solid support has covalently attached oligonucleotides.
- oligonucleotide or “nucleic acid” or grammatical equivalents herein is meant at least two nucleotides covalently linked together.
- a nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, a nucleic acid may have an analogous backbone, comprising, for example, phosphoramide (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sblul et al., Eur. J. Biochem.
- ribose-phosphate backbone may be made to increase the stability and half-life of such molecules in physiological environments, or to increase the stability of the hybridization complexes (duplexes).
- the attached oligonucleotides are single stranded.
- the oligonucleotide may be DNA, both genomic and cDNA, RNA or a hybrid, where the oligonucleotide contains any combination of deoxyribo- and ribo-nucleotides, and any combination of uracil, adenine, thymine, cytosine and guanine, as well as other bases such as inosine, xanthine and hypoxanthine.
- the length of the oligonucleotide i.e. the number of nucleotides, can vary widely, as will be appreciated by those in the art. Generally, oligonucleotides of at least 6 to 8 bases are preferred, with oligonucleotides ranging from about 10 to 500 being preferred, with from about 20 to 200 being particularly preferred, and 40 to 100 being especially preferred. Longer oligonucleotides are preferred, since higher stringency hybridization and wash conditions can be used, which decreases or eliminates non-specific hybridization. However, shorter oligonucleotides can be used if the array uses levels of redundancy to control the background, or utilizes more stable duplexes.
- the arrays of the invention comprise at least two different covalently attached oligonucleotide species, with more than two being preferred.
- “different” oligonucleotide herein is meant an oligonucleotide that has a nucleotide sequence that differs in at least one position from the sequence of a second oligonucleotide; that is, at least a single base is different. If the desired pattern is comprised of parallel lines, arrays can be made wherein not every strip contains an oligonucleotide. That is, when the solid support comprises a number of different support surfaces, such as fibers, for example, not every fiber must contain an oligonucleotide.
- “spacer” fibers may be used to help alignment or detection.
- every row or fiber has a covalently attached oligonucleotide.
- some rows or fibers may contain the same oligonucleotide, or all the oligonucleotides may be different.
- any level of redundancy can be built into the array; that is, different fibers or rows containing identical oligonucleotides can be used.
- the space between the oligonucleotide strips, or spots, etc, can vary widely, although generally is kept to a minimum in the interests of miniaturization.
- the space will depend on the methods used to generate the array; for example, for woven arrays utilizing fibers, the methodology utilized for weaving can determine the space between the fibers.
- Each oligonucleotide pool or species is arranged in a desired pattern design, such as for example, a linear row to form an immobilized, distinct, oligonucleotide strip.
- distinct herein is meant that each row is separated by some physical distance.
- immobilized herein is meant that the oligonucleotide is attached to the support surface, preferably covalently.
- strip herein is meant a conformation of the oligonucleotide species that is longer than it is wide.
- each strip is a different fiber.
- the arrays can be arranged in any desired pattern.
- the solid support comprises a single support surface. That is, a plurality of different oligonucleotide pools are attached to a single support surface, in distinct linear rows, forming oligonucleotide strips.
- the linear rows or stripes are parallel to each other.
- any conformation of strips or desired patterns can be used as well.
- the solid support comprises a plurality of separate support surfaces that are combined to form a single array.
- each support surface can be considered a fiber.
- the array comprises a number of fibers, each of which can contain a different oligonucleotide. That is, only one oligonucleotide species is attached to each fiber, and the fibers are then combined to form the array.
- fiber herein is meant an elongate strand.
- the fiber is flexible; that is, it can be manipulated without breaking.
- the fiber can have any shape or cross-section.
- the fibers can comprise, for example, long slender strips of a solid support that have been cut off from a sheet of solid support.
- the fibers have a substantially circular cross section, and are typically thread-like.
- Fibers are generally made of the same materials outlined above for solid supports, and each solid support can comprise fibers with the same or different compositions.
- the fibers of the arrays can be held together in a number of ways.
- the fibers can be held together via attachment to a backing or support. This is particularly preferred when the fibers are not physically interconnected.
- adhesives can be used to hold the fibers to a backing or support, such as a thin sheet of plastic or polymeric material.
- the adhesive and backing are optically transparent, such that hybridization detection can be done through the backing.
- the backing comprises the same material as the fiber; alternatively, any thin films or sheets can be used. Suitable adhesives are known in the art, and will resist high temperatures and aqueous conditions.
- the fibers can be attached to a backing or support using clips or holders.
- the fibers and backing comprise plastics or polymers that melt
- the fibers are attached to the backing via heat treatment at the ends.
- the fibers are woven together to form woven fiber arrays.
- the array further comprises at least a third and a fourth fiber which are interwoven with the first and second fibers.
- the weft also sometimes referred to as the woof
- warp fibers contains covalently attached oligonucleotides.
- the strips of different arrays can be placed adjacently together to form composite or combination arrays.
- a “composite” or “combination array” or grammatical equivalents is an array containing at least two strips from different arrays for a fiber array; the same types of composite arrays can be made from single support surface arrays. That is, one strip is from a first fiber array, and another is from a second fiber array. The second fiber array has at least one covalently attached oligonucleotide that is not present in said first array, i.e. the arrays are different.
- the composite arrays can be made solely of alignment arrays, solely of woven arrays, or a combination of different types.
- the width and number of strips in a composite array can vary, depending on the size of the fibers, the number of fibers, the number of target sequences for which testing is occurring, etc.
- composite arrays comprise at least two strips.
- the composite arrays can comprise any number of strips, and can range from 2 to 1000, with from 5-100 being particularly preferred.
- the strips of arrays in a composite array are generally adjacent to one another, such that the composite array is of a minimal size. However, there can be small spaces between the strips for facilitating or optimizing detection. Additionally, as for the fibers within an array, the strips of a composite array may be attached or stuck to a backing or support to facilitate handling.
- oligonucleotide arrays of the present invention may vary.
- oligonucleotides are synthesized using traditional and well-known methods and then attached to the support surface.
- the oligonucleotides may be synthesized on the surface, as is known in the art.
- oligonucleotides are synthesized as is known in the art, and then attached to the surface, see for example, U.S. Pat. Nos. 5,427,779; 4,973,493; 4,979,959; 5,002,582; 5,217,492; 5,258,041 and 5,263,992.
- coupling can proceed in one of two ways: a) the oligonucleotide is derivatized with a photoreactive group, followed by attachment to the surface; or b) the surface is first treated with a photoreactive group, followed by application of the oligonucleotide.
- the activating agent can be N-oxy-succinimide, which is put on the surface first, followed by attachment of a N-terminal amino-modified oligonucleotide, as is generally described in Amos et al., Surface Modification of Polymers by Photochemical Immobilization, The 17th Annual Meeting of the Society of Biomaterials, May 1991, Scottsdale Ariz.
- a suitable protocol involves the use of binding buffer containing 50 mM sodium phosphate pH 8.3, 15% Na 2 SO 4 and 1 mm EDTA, with the addition of 0.1-10 pM/ ⁇ l of amino-terminally modified oligonucleotide.
- the sample is incubated for some time, from 1 second to about 45 minutes at 37° C., followed by washing (generally using 0.4 N NaOH/0.25% Tween-20), followed by blocking of remaining active sites with 1 mg/ml of BSA in PBS, followed by washing in PBS.
- the methods allow the use of a large excess of an oligonucleotide, preferably under saturating conditions; thus, the uniformity along the strip is very high.
- the oligonucleotides can also be covalently attached to the support surface.
- the attachment may be very strong, yet non-covalent.
- biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.
- Oligonucleotides can be added to the surface in a variety of ways. In one method, the entire surface is activated, followed by application of the oligonucleotide pools in linear rows or any other desired pattern, with the appropriate blocking of the excess sites on the surface using known blocking agents such as bovine serum albumin. Alternatively, the activation agent can be applied in linear rows, followed by oligonucleotide attachment.
- the oligonucleotides can be done in several ways.
- the oligonucleotides are applied using ink jet technology, for example using a piezoelectric pump.
- the oligonucleotides are drawn, using for example a pen with a fine tip filled with the oligonucleotide solution. If a series or pattern of dots is desired, for example, a plotter pen may be used.
- patterns can be etched or scored into the surface to form uniform microtroughs, followed by filling of the microtrough with solution, for example using known microfluidic technologies.
- Oligonucleotide arrays have a variety of uses, including the detection of target sequences, sequencing by hybridization, and other known applications (see for example Chetverin et al., Biotechnology, Vol. 12, November 1994, pp1034-1099, (1994)).
- the arrays are used to detect target sequences in biological markers derived from animal models.
- target sequence or grammatical equivalents herein means a nucleic acid sequence on a single strand of nucleic acid.
- a double stranded sequence can be a target sequence, when triplex formation with the probe sequence is done.
- the target sequence may be a portion of a gene, a regulatory sequence, genomic DNA, cDNA, mRNA, or others. It may be any length, with the understanding that longer sequences are more specific.
- oligonucleotides are made to hybridize to target sequences to determine the presence, absence, or relative amounts of the target sequence in a sample.
- the arrays are used to detect changes in gene expression when an animal model is subjected to a drug treatment, drug discovery, evaluation of drug toxicity, drug efficacy, cell metabolism and the like.
- the arrays can also be designed to detect the expression or repression of genes encoding signaling proteins in metabolic pathways due to the administered drug, detect whether a certain drug results in the expression or repression of genes involved in inflammatory responses, etc.
- arrays can be generated containing oligonucleotides designed to hybridize to mRNA sequences and used in differential display screening of different tissues, or for DNA indexing.
- the arrays of the invention can be formulated into kits containing the arrays and any number of reagents, such as PCR amplification reagents, labeling reagents, etc.
- the arrays of the invention containing the oligonucleotides are contacted with a sample containing the target sequences under conditions which allow hybridization to occur.
- the samples are treated as is known in the art, including any sample preparation such as purification or amplification, followed by labeling of the target sequences, as is known in the art, using radioisotopes, or fluorescent or electrochemiluminescent compounds.
- the arrays containing the resulting hybridization complexes are then washed under a variety of stringency conditions ranging from low to high stringency, depending on the length and composition of the oligonucleotides. Detection of the hybridization complex proceeds as is known in the art.
- the high density array will typically include a number of probes that specifically hybridize to the sequences of interest.
- the array will include one or more control probes.
- Test probes are oligonucleotides that range from about 5 to 45 or 5 to about 500 nucleotides, more preferably from about 10 to 40 nucleotides and most preferably from about 15 to about 40 nucleotides in length. In other particularly preferred embodiments the probes are 20 or 25 nucleotides in length. In another preferred embodiments, test probes are single or double stranded DNA sequences. DNA sequences are isolated or cloned from natural sources or amplified from natural sources using nature nucleic acid as templates. These probes have sequences complementary to particular subsequences of the genes whose expression they are designed to detect. Thus, the test probes are capable of specifically hybridizing to the target nucleic acid they are to detect.
- the high density array can contain a number of control probes.
- the control probes fall into three categories referred to herein as 1) normalization controls; 2) expression level controls; and 3) mismatch controls.
- Normalization controls are oligonucleotides or other nucleic acid probes that are complementary to labeled reference oligonucleotides or other nucleic acid sequences that are added to the nucleic acid sample.
- the signals obtained from the normalization controls after hybridization provide a control for variations in hybridization conditions, label intensity, “reading” efficiency and other factors that may cause the signal of a perfect hybridization to vary between arrays.
- signals (e.g., fluorescence intensity) read from all other probes in the array are divided by the signal (e.g., fluorescence intensity) from the control probes thereby normalizing the measurements.
- Virtually any probe can serve as a normalization control.
- Preferred normalization probes are selected to reflect the average length of the other probes present in the array, however, they can be selected to cover a range of lengths.
- the normalization control(s) can also be selected to reflect the (average) base composition of the other probes in the array, however, in a preferred embodiment, only one or a few normalization probes are used and they are selected such that they hybridize well (i.e. no secondary structure) and do not match any target-specific probes.
- Expression level controls are probes that hybridize specifically with constitutively expressed genes in the biological sample. Virtually any constitutively expressed gene provides a suitable target for expression level controls. Typically expression level control probes have sequences complementary to subsequences of constitutively expressed “housekeeping genes” including but not limited to the ⁇ -actin gene, the transferrin receptor gene, the GAPDH gene and the like.
- Mismatch controls can also be provided for the probes to the target genes, for expression level controls or for normalization controls.
- Mismatch controls are oligonucleotides probes or other nucleic acid probes identical to their corresponding test or control probes except for the presence of one or more mismatched bases.
- a mismatched base is a base selected so that it is not complementary to the corresponding base in the target sequence to which the probe would otherwise specifically hybridize.
- One or more mismatches are selected such that under appropriate hybridization conditions (e.g. stringent conditions) the test or control probe would be expected to hybridize with its target sequence but the mismatch probe would not hybridize (or would hybridize to a significantly lesser extent).
- Preferred mismatch probes contain a central mismatch.
- a corresponding mismatch probe will have the identical sequence except for a single base mismatch (e.g., substituting a G, a C or a T for an A) at any of positions 6 through 14 (the central mismatch).
- Mismatch probes thus provide a control for non-specific binding or cross-hybridization to a nucleic acid in the sample other than the target to which the probe is directed. Mismatch probes thus indicate whether a hybridization is specific or not. For example, if the target is present the perfect match probes should be consistently brighter than the mismatch probes. In addition, if all central mismatches are present, the mismatch probes can be used to detect a mutation. The difference in intensity between the perfect match and the mismatch probe provides a good measure of the concentration of the hybridized material.
- oligonucleotide probes in the high density array are selected to bind specifically to the nucleic acid target to which they are directed with minimal non-specific binding or cross-hybridization under the particular hybridization conditions utilized. Because the high density arrays of this invention can contain in excess of 1,000,000 different probes, it is possible to provide every probe of a characteristic length that binds to a particular nucleic acid sequence.
- expression monitoring arrays are used to identify the presence and expression (transcription) level of genes which are several hundred base pairs long. For most applications it is useful to identify the presence, absence, or expression level of several thousand to one hundred thousand genes. Because the number of oligonucleotides per array is limited in a preferred embodiment, it is desired to include only a limited set of probes specific to each gene whose expression is to be detected.
- nucleic acid hybridization simply involves contacting a probe and target nucleic acid under conditions where the probe and its complementary target can form stable hybrid duplexes through complementary base pairing. The nucleic acids that do not form hybrid duplexes are then washed away leaving the hybridized nucleic acids to be detected, typically through detection of an attached detectable label. It is generally recognized that nucleic acids are denatured by increasing the temperature or decreasing the salt concentration of the buffer containing the nucleic acids. Under low stringency conditions (e.g., low temperature and/or high salt) hybrid duplexes (e.g., DNA:DNA, RNA:RNA, or RNA:DNA) will form even where the annealed sequences are not perfectly complementary. Thus, specificity of hybridization is reduced at lower stringency. Conversely, at higher stringency (e.g., higher temperature or lower salt) successful hybridization requires fewer mismatches.
- low stringency conditions e.g., low temperature and/or high salt
- hybridization conditions may be selected to provide any degree of stringency.
- hybridization is performed at low stringency in this case in 6 ⁇ SSPE-T at 37° C. (0.005% Triton X-100) to ensure hybridization and then subsequent washes are performed at higher stringency (e.g., 1 ⁇ SSPE-T) at 37° C. to eliminate mismatched hybrid duplexes.
- Successive washes may be performed at increasingly higher stringency (e.g., down to as low as 0.25 ⁇ SSPE-T at 37° C. to 50° C.) until a desired level of hybridization specificity is obtained.
- Stringency can also be increased by addition of agents such as formamide.
- Hybridization specificity may be evaluated by comparison of hybridization to the test probes with hybridization to the various controls that can be present (e.g., expression level control, normalization control, mismatch control, etc.).
- the wash is performed at the highest stringency that produces consistent results and that provides a signal intensity greater than approximately 10% of the background intensity.
- the hybridized array may be washed at successively higher stringency solutions and read between each wash. Analysis of the data sets thus produced will reveal a wash stringency above which the hybridization pattern is not appreciably altered and which provides adequate signal for the particular oligonucleotide probes of interest.
- background signal is reduced by the use of a detergent (e.g., C-TAB) or a blocking reagent (e.g., sperm DNA, cot-1 DNA, etc.) during the hybridization to reduce non-specific binding.
- a detergent e.g., C-TAB
- a blocking reagent e.g., sperm DNA, cot-1 DNA, etc.
- the hybridization is performed in the presence of about 0.5 mg/ml DNA (e.g., herring sperm DNA).
- the use of blocking agents in hybridization is well known to those of skill in the art (see, e.g. Chapter 8 in P. Tijssen).
- RNAs or DNAs are generally in the order of RNA:RNA>RNA:DNA>DNA:DNA, in solution.
- Long probes have better duplex stability with a target, but poorer mismatch discrimination than shorter probes (mismatch discrimination refers to the measured hybridization signal ratio between a perfect match probe and a single base mismatch probe).
- Shorter probes e.g., 8-mers discriminate mismatches very well, but the overall duplex stability is low.
- T m thermal stability of the duplex formed between the target and the probe using, e.g., known oligonucleotide analogues allow for optimization of duplex stability and mismatch discrimination.
- One useful aspect of altering the T m arises from the fact that adenine-thymidine (A-T) duplexes have a lower T m than guanine-cytosine (G-C) duplexes due in part to the fact that the A-T duplexes have 2 hydrogen bonds per base-pair, while the G-C duplexes have 3 hydrogen bonds per base pair.
- A-T adenine-thymidine
- G-C guanine-cytosine
- oligonucleotide arrays in which there is a non-uniform distribution of bases, it is not generally possible to optimize hybridization for each oligonucleotide simultaneously.
- TMACl salt tetramethyl ammonium chloride
- Altered duplex stability conferred by using oligonucleotide analogue probes can be ascertained by following, for example, fluorescence signal intensity of oligonucleotides analogue arrays hybridized with a target oligonucleotide over time.
- the data allow optimization of specific hybridization conditions at for example, room temperature.
- Another way of verifying altered duplex stability is by following the signal intensity generated upon hybridization with time. It has been reported that experiments using DNA targets and DNA chips have shown that signal intensity increases with time, and that the more stable duplexes generate higher signal intensities faster than less stable duplexes. The signals reach a plateau or “saturate” after a certain amount of time due to all of the binding sites becoming occupied. These data allow for optimization of hybridization, and determination of the best conditions at a specified temperature.
- the hybridized nucleic acids are detected by detecting one or more labels attached to the sample nucleic acids.
- the labels can be incorporated by any number of means well known to those of skill in the art.
- the label can be incorporated using polymerase chain reaction (PCR).
- PCR polymerase chain reaction
- transcription amplification as described above, using a labeled nucleotide (e.g., fluoroscein-labeled UTP and/or CTP) incorporates a label into the transcribed nucleic acids.
- a labeled nucleotide e.g., fluoroscein-labeled UTP and/or CTP
- a label can be added directly to the original nucleic acid sample (e.g., mRNA, polyA mRNA, cDNA, genomic DNA, etc.) or to the amplification product after the amplification is completed.
- Means of attaching labels to nucleic acids are well known to those of skill in the art and include, for example nick translation or end-labeling (e.g. with a labeled RNA) by kinasing of the nucleic acid and subsequent attachment (ligation) of a nucleic acid linker joining the sample nucleic acid to a label (e.g., a fluorophore).
- Detectable labels suitable for use in the present invention include any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means.
- Useful labels in the present invention include biotin for staining with labeled streptavidin conjugate, magnetic beads (e.g., DynabeadsTM), fluorescent dyes (e.g., fluoroscein, Texas red, rhodamine, green fluorescent protein, and the like), radiolabels (e.g., 3 H, 125 I, 35 S, 14 C, or 32 p), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and calorimetric labels such as colloidal gold or colored glass or plastic (e.g., polystyrene, polypropylene, latex, etc.) beads.
- Radiolabels can be detected using photographic film or scintillation counters
- fluorescent markers may be detected using a photodetector to detect emitted light.
- Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting the reaction product produced by the action of the enzyme on the substrate, and calorimetric labels are detected by simply visualizing the colored label.
- One particular preferred method uses colloidal gold label that can be detected by measuring scattered light.
- the label can be added to the target (sample) nucleic acid(s) prior to, or after hybridization.
- direct labels are detectable labels that are directly attached to or incorporated into the target (sample) nucleic acid prior to hybridization.
- indirect labels are joined to the hybrid duplex after hybridization.
- the indirect label is attached to a binding moiety that has been attached to the target nucleic acid prior to the hybridization. After hybridization, an avidin-conjugated fluorophore will bind the biotin bearing hybrid duplexes providing a label that is easily detected.
- Means of detecting labeled target (sample) nucleic acids hybridized to the probes of high density arrays are known to those of skill in the art. Thus, for example, where a calorimetric label is used, simple visualization of the label is sufficient. Where a radioactive labeled probe is used, detection of the radiation (e.g. with photographic film or solid state detector) is sufficient.
- the target nucleic acids are labeled with a fluorescent label and the localization of the label on the probe array is accomplished with fluorescent microscopy.
- the hybridized array is excited with a light source at the excitation wavelength of the particular fluorescent label and the resulting fluorescence at the emission wavelength is detected.
- the excitation light source is a laser appropriate for the excitation of the fluorescent label.
- the confocal microscope may be automated with a computer-controlled stage to automatically scan the entire high density array.
- the microscope may be equipped with a phototransducer (e.g., a photomultiplier, a solid state array, a CCD camera etc) attached to an automated data acquisition system to automatically record the fluorescence signal produced by hybridization to each oligonucleotide probe on the array.
- a phototransducer e.g., a photomultiplier, a solid state array, a CCD camera etc
- Such automated systems are described in U.S. Pat. No. 5,143,854, and PCT Publication No. WO 99/32660.
- Use of laser illumination in conjunction with automated confocal microscopy for signal detection permits detection at a resolution of better than about 100 ⁇ m, more preferably better than about 50 ⁇ m, most preferably better than about 25 ⁇ m.
- hybridization signals will vary in strength with efficiency of hybridization, the amount of label on the sample nucleic acid and the amount of the particular nucleic acid in the sample.
- nucleic acids present at very low levels e.g., ⁇ 1 pM
- concentration e.g., ⁇ 1 pM
- the signal becomes virtually indistinguishable from background.
- a threshold intensity value may be selected below which a signal is not counted as being essentially indistinguishable from background.
- the hybridization array is provided with normalization controls.
- These normalization controls are probes complementary to control sequences added in a known concentration to the sample. Where the overall hybridization conditions are poor, the normalization controls will show a smaller signal reflecting reduced hybridization. Conversely, where hybridization conditions are good, the normalization controls will provide a higher signal reflecting the improved hybridization. Normalization of the signal derived from other probes in the array to the normalization controls thus provides a control for variations in hybridization conditions.
- normalization is accomplished by dividing the measured signal from the other probes in the array by the average signal produced by the normalization controls. Normalization may also include correction for variations due to sample preparation and amplification. Such normalization can be accomplished by dividing the measured signal by the average signal from the sample preparation/amplification control probes. The resulting values can be multiplied by a constant value to scale the results.
- the high density array can include mismatch controls.
- the difference in hybridization signal intensity between the target specific probe and its corresponding mismatch control is a measure of the discrimination of the target-specific probe.
- the signal of the mismatch probe is subtracted from its corresponding test probe to provide a measure of the signal due to specific binding of the test probe.
- the concentration of a particular sequence can then be determined by measuring the signal intensity of each of the probes that bind specifically to that gene and normalizing to the normalization controls. Where the signal from the probes is greater than the mismatch, the mismatch is subtracted. Where the mismatch intensity is equal to or greater than its corresponding test probe, the signal is ignored.
- the expression level of a particular gene can be scored by the number of positive signals (either absolute or above a threshold value), the intensity of the positive signals (either absolute or above a selected threshold value) or a combination of both metrics (e.g., a weighted average).
- a computer system is used to compare the hybridization intensities of the perfect match and mismatch probes of each pair. If the gene is expressed, the hybridization intensity (or affinity) of a perfect match probe of a pair should be recognizably higher than the corresponding mismatch probe. Generally, if the hybridization intensities of a pair of probes are substantially the same, it may indicate the gene is not expressed. However, the determination is not based on a single pair of probes, the determination of whether a gene is expressed is based on an analysis of many pairs of probes.
- the system After the system compares the hybridization intensity of the perfect match and mismatch probes, the system indicates expression of the gene. As an example, the system may indicate to a user that the gene is either present (expressed), marginal or absent (unexpressed). Specific procedures for data analysis are described infra.
- probes need not be nucleic acid probes but also can be other polymers such as peptides.
- Peptide probes can be used to detect the concentration of peptides, polypeptides, or polymers in a sample. The probes should be carefully selected to have bonding affinity to the compound whose concentration they are to be used to measure.
- a computer system such as that disclosed in PCT Publication No. WO 99/05323 can be used to identify genes or expressed sequence tags whose expression correlates to particular tissue types.
- the methods of monitoring gene expression involve (1) providing a pool of target nucleic acids comprising RNA transcript(s) of one or more target genes, or nucleic acids derived from the RNA transcript(s); (2) hybridizing the nucleic acid sample to a high density array of probes (including control probes); and (3) detecting the hybridized nucleic acids and calculating a relative expression (transcription) level.
- nucleic acid sample comprising mRNA transcript(s) of the gene or genes, or nucleic acids derived from the mRNA transcript(s).
- a nucleic acid derived from an mRNA transcript refers to a nucleic acid for whose synthesis the mRNA transcript or a subsequence thereof has ultimately served as a template.
- a cDNA reverse transcribed from an mRNA, an RNA transcribed from that cDNA, a DNA amplified from the cDNA, an RNA transcribed from the amplified DNA, etc. are all derived from the mRNA transcript and detection of such derived products is indicative of the presence and/or abundance of the original transcript in a sample.
- suitable samples include, but are not limited to mRNA transcripts of the gene or genes, cDNA reverse transcribed from the mRNA, cRNA transcribed from the cDNA, DNA amplified from the genes, RNA transcribed from amplified DNA, and the like.
- the nucleic acid sample is one in which the concentration of the mRNA transcript(s) of the gene or genes, or the concentration of the nucleic acids derived from the mRNA transcript(s) is proportional to the transcription level (and therefore expression level) of that gene.
- the hybridization signal intensity be proportional to the amount of hybridized nucleic acid.
- the proportionality be relatively strict (e.g., a doubling in transcription rate results in a doubling in mRNA transcript in the sample nucleic acid pool and a doubling in hybridization signal), one of skill will appreciate that the proportionality can be more relaxed and even non-linear.
- an assay where a 5 fold difference in concentration of the target mRNA results in a 3 to 6 fold difference in hybridization intensity is sufficient for most purposes.
- appropriate controls can be run to correct for variations introduced in sample preparation and hybridization as described herein.
- serial dilutions of “standard” target mRNAs can be used to prepare calibration curves according to methods well known in the art. Of course, where simple detection of the presence or absence of a transcript is desired, no elaborate control or calibration is required.
- such a nucleic acid sample is the total DNA or RNA isolated from a biological sample.
- biological sample refers to a standard human disease animal model.
- the biological sample can be obtained by using the whole animal, or organs from the animal such as, for example, spleen, liver, kidneys, brain, spinal cord etc. Cells from the animal may also be used.
- the biological sample can also be of any biological tissue or fluid. Frequently, the sample will be a “clinical sample” which is a sample derived from a patient.
- Such samples include, but are not limited to sputum, blood, cells of the immune system, tissue or fine needle biopsy samples, urine, peritoneal fluid, and pleural fluid, or cells therefrom.
- Biological samples also can include sections of tissues such as frozen sections taken for histological purposes.
- the nucleic acid (either genomic DNA or mRNA) is isolated from the sample according to any of a number of methods well known to those of skill in the art.
- genomic DNA is preferably isolated.
- expression levels of a gene or genes are to be detected, preferably RNA (mRNA) is isolated.
- mRNA RNA
- Methods of isolating total mRNA are well known to those skilled in the art. For example, methods of isolation and purification of nucleic acids are described in detail in Chapter 3 of Laboratory Techniques in Biochemistry and Molecular Biology: Hybridization With Nucleic Acid Probes, Part 1. Theory and Nucleic Acid Preparation, P. Tijssen, ed. Elsevier, N.Y. (1993).
- the total nucleic acid is isolated from a given sample using, for example, an acid guanidium-phenol-chloroform extraction method and poly A + mRNA is isolated by oligo dT column chromatography or by using (dT)n magnetic beads (see, e.g. Sambrook et al., Molecular Cloning: A Laboratory Manual ( 2 nd ed.), Vols. 1-3, Cold Spring Harbor Laboratory, (1989), or Current Protocols in Molecular Biology, F. Ausubel et al., ed. Greene Publishing and Wiley-Interscience, New York (1987)).
- RNAeasy® from Qiagen.
- Other preferred methods also include automated systems such as for example the ABI 6700 Nucleic Acid Work Station, the Roche Magna Pure system, the Qiagen BioRobot 3000 system and the Gentra systems nucleic acid extractor.
- Methods of “quantitative” amplification are well known to those of skill in the art.
- quantitative PCR involves simultaneously co-amplifying a known quantity of a control sequence using the same primers. This provides an internal standard that may be used to calibrate the PCR reaction.
- the high density array may then include probes specific to the internal standard for quantification of the amplified nucleic acid.
- ddPCR Differential Display Polymerase Chain Reaction
- SH Subtractive Hybridization
- SSH Suppression Subtractive Hybridization
- RAPDs Random Amplified Primer Display
- DCH Duplicate Colony Hybridization
- AFP Amplified Fragment Length Polymorphism
- SAGE Serial Amplification of Gene Expression
- MSSP Lynx Therapeutics
- RDA-cDNA Representation Difference Analysis of cDNA
- RNA fingerprinting For example, a variation on polymerase chain reaction (PCR) analysis, known as RNA fingerprinting or differential display PCR, has been used to identify messages differentially expressed in ovarian or breast carcinomas (Liang et al., 1992; Sager et al., 1993; Mok et al., 1994; Watson et al., 1994).
- PCR polymerase chain reaction
- RFLP restriction-fragment-length polymorphism
- SSCP single strand conformation polymorphism
- AFLP amplified fragment-length polymorphism
- SSR single-sequence repeat
- Kits for RAPD and AFLP analyses are commercially available, e.g., from Perkin Elmer Applied Biosystems (Foster City, Calif.).
- restriction fragment length polymorphism employs restriction enzyme digestion of DNA, followed by size separation of the digested DNA by gel electrophoresis, and hybridization of the size-separated DNA with a specific polynucleotide fragment. Differences in the size of the restriction fragments to which the polynucleotide probe binds reflect sequence differences in DNA samples, or DNA polymorphisms. See Tanksley, Biotechnology 7:257-264 (1988).
- PCR-based fingerprinting methods result in the generation of a large number of reproducible DNA fragments of specific size that can be separated, typically by gel electrophoresis. These fragments are visualized to produce a “fingerprint” of the amplified DNA. Visualization of the size-separated fragments is effected either by direct visualization, e.g., with a fluorescent dye, by hybridization with a polynucleotide probe, or by labeling the amplification products during PCR (radioactively or fluorescently) followed by detection of the labeled products in the gel.
- Protein arrays makes it possible to detect post-translational modifications of numerous proteins and provide a valuable tool to investigate protein and cellular regulations. Protein arrays can also be used to screen a large number of potential interactions directly and can detect interactions that take place only under certain conditions, e.g. phosphorylation. Protein arrays are, therefore, useful for a variety of applications, particularly for revealing disease mechanisms, searching for diagnostic indicators and for identifying therapeutic targets.
- HK-X binds to a pro-inflammatory receptor for human peripheral blood cells.
- pro-inflammatory agents such as lymphocytes, particularly activated T-cells, and granulocytes such as mast cells, eosinophils, and basophils.
- G protein ⁇ kinase inhibitory agent Upon binding of the G protein ⁇ kinase inhibitory agent to its receptor, pro-inflammatory responses are inhibited.
- the G-protein subunits ⁇ , ⁇ , and ⁇ are downregulated and also phosphorylation of these subunits is inhibited.
- Pro-inflammatory responses that can be inhibited by the agent-receptor complex are degranulation and migration of the receptor-bearing cell.
- a whole animal can be treated with mock (control), HK-X or any other drug of choice plus pro-inflammatory agents, and pro-inflammatory agents.
- pro-inflammatory agents useful for stimulating the cells are IL-8, N-formyl peptides, activated complement fragment (C5a), leukotriene B4 (LTB4) and platelet activating factor (PAF).
- a protein chip is comprised of antibodies or recombinant proteins for different peptides in the inflammatory pathway. Detection by fluorescent labeling or other means will identify the over-expression, repression or no change in level of each molecule involved in the pathway.
- the protein content of the PMEET-ADME protein chip also includes antibodies for proteins that are involved in ADME, toxicity and drug efficacy.
- Protein arrays are based on several principles.
- a protein can be recognized and identified unambiguously by specific molecules such as antibodies, recombinant proteins and small chemicals that can specifically interact with it.
- a protein or a small chemical can be immobilized on a solid support and the immobilized molecule still retains its ability in protein—protein interactions.
- Agents antibodies, recombinant proteins, and small chemicals
- solid supports such as glass plates, agarose beads, or polyvinylidene difluoride (PVDF) membranes (LeGendre, 1990, Biotechniques, Vol.9, No.6, p. 788-805).
- PVDF polyvinylidene difluoride
- agents refers to antibodies, recombinant proteins, synthesized peptides, and other chemicals immobilized on the solid support of a protein array.
- the agents immobilized on a solid support can be antibodies, recombinant proteins, or small chemicals.
- Antibodies are raised by immunizing animals (e.g., rabbit, mouse, rat, goat or chicken) with antigens (proteins or peptides). A large number of antibodies (monoclonal and polyclonal) are commercially available.
- Recombinant proteins are constructed by using recombinant DNA techniques. Many proteins have been conveniently expressed in a recombinant form with a tag such as glutathione-S-transferase (GST) and polyhistidine (6 ⁇ His), to facilitate purification and identification.
- GST glutathione-S-transferase
- 6 ⁇ His polyhistidine
- supports refers to the materials on which agents are deposited and immobilized.
- the supports are as described above but can also include either plates (glass or plastics) or membranes made of nitrocellulose, nylon, or polyvinylidene difluoride (PVDF). Membranes are easier to handle and agents can be readily immobilized on them. Glass or plastic plates provide rigid support and are therefore necessary in some special applications.
- any conceivable substrate may be employed in accordance with the present invention.
- the substrate can be biological, nonbiological, organic, inorganic, or a combination of any of these, existing as particles, strands, precipitates, gels, sheets, tubing, spheres, containers, capillaries, pads, slices, films, plates, slides, etc.
- the substrate can have any convenient shape, such as a disc, square, sphere, circle, etc.
- the substrate is preferably flat, but can take on a variety of alternative structure configurations.
- the substrate can contain raised or depressed regions on which synthesis can take place.
- the substrate and its surface preferably form a rigid support on which to carry out the reactions described herein.
- the substrate and the area for synthesis of each individual polymer or small molecule can be of any size and shape.
- a substrate can comprise different materials at different regions.
- Other materials, which are preferably used as substrates include silicon nitride, silicon oxide, silicon, diamond, chalcopyrites, wurtzites, sphalerites, halites; glass, such as, cobalt glass, Pyrex glass, vycor glass, borosilicate glass and quartz; ceramics, such as, alumina, porcelain, zircon, corderite, titanates, metal oxides, clays, and zeolites; polymers, such as, paralyene, high density polyethylene, teflons, nylons, polycarbonates, polystyrenes, polyacylates, polycyanoacrylates, polyvinyl alcohols, polyimides, polyamides, polysiloxanes, polysilicones, polynitriles, polyvinyl chlorides, alkyd polymers, celluloses, expoxy polymers, melamines, urethanes, copolymers and mixtures of any of the above with other polymers, and mixtures of any of any of
- Agents are immobilized on a solid support directly or indirectly. Agents can be directly deposited at high density on a support, which can be as small as a microscopic slide. Agents can also be immobilized indirectly on the support. For instance, protein A or G can be printed on a support. Agents (antibodies) are then immobilized on the support through their interactions with protein A or G.
- the advantage of this method is that by engaging the constant regions of antibodies with protein A or G, the variable regions of the antibodies (antigen-binding domains) will be fully exposed to interact with antigens. Recombinant fusion proteins can be immobilized through the interaction between their tags and the ligands printed on the support.
- One most important characteristic of protein arrays is that all agents are immobilized at predetermined positions, so that each agent can be identified by its position. After agents are immobilized, the support can be treated with 5% non-fat milk or 5% bovine serum albumin for several hours in order to block non-specific protein binding.
- the molecules attached to the surface of the substrate include monomers, nucleotides, and linker molecules. All of these molecules generally bond to the substrate by covalent bonds or ionic interactions. Alternatively, all of these molecules can be bonded, also by covalent bonds or ionic interactions, to a layer overlaying the substrate, for example, a permeable membrane layer, which layer can be adhered to the substrate surface in several different ways, including covalent bonding, ionic interactions, dispersive interactions and hydrophilic or hydrophobic interactions. In still another manner of attachment, a monomer or preformed molecule may be bonded to a linker molecule that is bonded to either the substrate or a layer overlaying the substrate.
- the monomers, linker molecules and pre-formed molecules used herein, are preferably provided with a chemical functional group that is protected by a protecting group removable by electrochemically generated reagents.
- the protecting group is on the distal or terminal end of the linker molecule, monomer, or pre-formed molecule, opposite the substrate. That is, the linker molecule preferably terminates in a chemical functional group, such as an amino or carboxy acid group, bearing an electrochemically removable protective group.
- Chemical functional groups that are found on the monomers, linker molecules and pre-formed molecules include any chemically reactive functionality. Usually, chemical functional groups are associated with corresponding protective groups and will be chosen or utilized based on the product being synthesized.
- the molecules of the invention bond to deprotected chemical functional groups by covalent bonds or ionic interactions.
- Monomers used in accordance with the present invention to synthesize the various polymers contemplated include all members of the set of small molecules that can be joined together to form a polymer.
- This set includes, but is not limited to, the set of common L-amino acids, the set of D-amino acids, the set of synthetic amino acids, the set of nucleotides and the set of pentoses and hexoses.
- monomers include any member of a basis set for synthesis of a polymer. For example, trimers of L-amino acids form a basis set of approximately 8000 monomers for synthesis of polypeptides. Different basis sets of monomers may be used at successive steps in the synthesis of a polymer using the inventive method.
- the number of monomers that can be used in accordance with the inventive synthesis methods can vary widely, for example from 2 to several thousand monomers can be used, but in more preferred embodiments, the number of monomers will range from approximately 4 to approximately 200, and, more preferably, the number of monomers will range from 4-20.
- Additional monomers that can be used in accordance with the invention also include the set of monomers that can be decorated, i.e., monomers to which chemical moieties can be added, such as prostaglandins, benzodiazapines, thromboxanes and leukotrienes.
- monomers to which chemical moieties can be added such as prostaglandins, benzodiazapines, thromboxanes and leukotrienes.
- Combinations of monomers useful for polymer synthesis and monomers that can be decorated are also contemplated by the invention.
- the above-discussed monomers may be obtained in unprotected form from most any chemical supply company, and most, if not all, can be obtained in protected form from Bachem, Inc., Torrance, Calif.
- Phosphoramidite monomers for nucleic acid synthesis can be obtained from Applied Biosystems, Inc., Foster City, Calif.
- Monomers are amino acids, preferably comprising a protective group at its amino or carboxy terminus that is removable by an electrochemically generated reagent.
- a polymer in which the monomers are alpha amino acids and are joined together through amide bonds is a peptide, also known as a polypeptide.
- the amino acids may be the L-optical isomer or the D-optical isomer or a mixture of the two.
- Peptides are at least two amino acid monomers long, and often are more than 20 amino acid monomers long.
- any pre-formed molecule can be bonded to the substrate, a layer overlaying the substrate, a monomer or a linker molecule.
- Pre-formed molecules include, for example, proteins, including in particular, receptors, enzymes, ion channels, and antibodies, nucleic acids, polysaccharides, porphyrins, and the like.
- Pre-formed molecules are, in general, formed at a site other than on the substrate of the invention.
- a pre-formed molecule is bonded to a deprotected functional group on a molecule, monomer, or another pre-formed molecule.
- a pre-formed molecule that is already attached to the substrate may additionally bear at least one protected chemical functional group to which a monomer or other pre-formed molecule may bond, following deprotection of the chemical functional group.
- Protective groups are materials that bind to a monomer, a linker molecule or a pre-formed molecule to protect a reactive functionality on the monomer, linker molecule or pre-formed molecule, which may be removed upon selective exposure to an activator, such as an electrochemically generated reagent.
- Protective groups that can be used in accordance with the present invention preferably include all acid and base labile protecting groups.
- peptide amine groups are preferably protected by t-butyloxycarbonyl (BOC) or benzyloxycarbonyl (CBZ), both of which are acid labile, or by 9-fluorenylmethoxycarbonyl (FMOC), which is base labile.
- hydroxy groups on phosphoramidites can be protected by dimethoxytrityl (DMT), which is acid labile.
- DMT dimethoxytrityl
- Exocyclic amine groups on nucleosides, in particular on phosphoramidites are preferably protected by dimethylformamidine on the adenosine and guanosine bases, and isobutyryl on the cytidine bases, both of which are base labile protecting groups.
- This protection strategy is known as fast oligonucleotide deprotection (FOD).
- FOD fast oligonucleotide deprotection
- Phosphoramidites protected in this manner are known as FOD phosphoramidites.
- any unreacted deprotected chemical functional groups can be capped at any point during a synthesis reaction to avoid or to prevent further bonding at such molecule.
- Capping groups “cap” deprotected functional groups by, for example, binding with the unreacted amino functions to form amides.
- Capping agents suitable for use in the present invention include: acetic anhydride, n-acetylimidizole, isopropenyl formate, fluorescamine, 3-nitrophthalic anhydride and 3-sulfoproponic anhydride. Of these, acetic anhydride and n-acetylimidizole are preferred.
- the surface of the substrate is preferably provided with a layer of linker molecules.
- Linker molecules allow for indirect attachment of monomers or pre-formed molecules to the substrate or a layer overlaying the substrate.
- the linker molecules are preferably attached to an overlaying layer via silicon-carbon bonds, using, for example, controlled porosity glass (CPG) as the layer material.
- CPG controlled porosity glass
- Linker molecules also facilitate target recognition of the synthesized polymers.
- the linker molecules are preferably chosen based upon their hydrophilic/hydrophobic properties to improve presentation of synthesized polymers to certain receptors. For example, in the case of a hydrophilic receptor, hydrophilic linker molecules will be preferred so as to permit the receptor to approach more closely the synthesized polymer.
- the linker molecules are preferably of sufficient length to permit polymers on a completed substrate to interact freely with binding entities exposed to the substrate.
- the linker molecules when used, are preferably 650 atoms long to provide sufficient exposure of the functional groups to the binding entity.
- the linker molecules which may be advantageously used in accordance with the invention include, for example, aryl acetylene, ethylene glycol oligomers containing from 2 to 20 monomer units, diamines, diacids, amino acids, and combinations thereof. Other linker molecules known by those skilled in the art, may also be used.
- the molecules of the invention i.e., the monomers, linker molecules and pre-formed molecules, can be attached directly to the substrate or can be attached to a layer or membrane of separating material that overlays the substrate.
- Materials can include, for example, controlled porosity glass (CPG); generic polymers, such as, teflons, nylons, polycarbonates, polystyrenes, polyacylates, polycyanoacrylates, polyvinyl alcohols, polyamides, polyimides, polysiloxanes, polysilicones, polynitriles, polyelectrolytes, hydrogels, epoxy polymers, melamines, urethanes and copolymers and mixtures of these and other polymers; biologically derived polymers, such as, polysaccharides, polyhyaluric acids, celluloses, and chitons; ceramics, such as, alumina, metal oxides, clays, and zeolites; surfactants; thiols; self-assembled mono
- PMEET-ADME Cytokine Array can be made of agents for cytokine assay.
- PMEET-ADME Cell Cycle Array can be made of agents for detecting cell cycle related factors;
- PMEET-ADME Signal Transduction Array can be made of agents for examining signaling proteins such as G-proteins;
- PMEET-ADME Inflammatory Factor Array can be made of agents that examine the inflammatory pathway;
- PMEET-ADME Transcription Factor Array can be made of agents for analyzing activators and suppressors of transcription, and the like.
- a source e.g.
- the amount of antibodies immobilized also can be different, preferably in the range of nanogram to microgram.
- the number of different agents immobilized on one solid support varies depending on the particular applications.
- Protein arrays can be applied in studying protein expression patterns.
- An antibody array is incubated with a protein sample prepared under the conditions that native protein—protein interactions are minimized. After incubation, unbound or non-specific binding proteins can be removed with several washes. Proteins specifically bound to their respective antibodies on the array are then detected. Because the antibodies are immobilized in a predetermined order, the identity of the protein captured at each position is therefore known. Measurement of protein amount at all positions on the array thus reflects the protein expression pattern in the sample.
- the quantities of the proteins trapped on the array can be measured in several ways.
- the proteins in the samples can be metabolically labeled with radioactive isotopes ( 35 S for total proteins and 32 P for phosphorylated proteins).
- the amount of labeled proteins bound to each antibody on an array can be quantitated by autoradiography and densitometry.
- the protein sample can also be labeled by biotinylation in vitro. Biotinylated proteins trapped on the array will then be detected by avidin or streptavidin which strongly binds biotin. If avidin is conjugated with horseradish peroxidase or alkaline phosphatase, the captured protein can be visualized by enhanced chemical luminescence.
- the amount of proteins bound to each antibody represents the level of the specific protein in the sample. If a specific group of proteins are interested, they can be detected by agents which specifically recognize them. Other methods, like immunochemical staining, surface plasmon resonance, matrix-assisted laser desorption/ionization-time of flight, can also be used to detect the captured proteins.
- Protein arrays can be applied in studying post-translational modifications such as phosphorylation, glycosylation or ubiquitination.
- arrays comprising antibodies on glass plates or membranes are used to capture cellular proteins.
- the phosphorylation of the proteins captured on the array can be revealed if the proteins are metabolically labeled with 32 P in vivo.
- the phosphorylation can be detected by antibodies against phosphorylated amino acids.
- Antibodies against phosphotyrosine, phosphoserine or phosphothreonine are commercially available and used in many applications. When these antibodies are used, the phosphorylation state of a protein can be detected through a similar strategy used in immunoblotting.
- glycosylation of the many proteins captured on the array can be studied either by labeling glycoproteins with radioactive glycosylation precursors or by using molecules that specifically recognize carbohydrate moieties of glycoproteins.
- a family of such molecules are lectins including Concanavalin A and Wheat Germ agglutinin.
- antibodies specific for ubiquitin can be used.
- the antibodies are chicken monoclonal antibodies that are tethered to a support or suspended in a gelatinous material.
- the use of chicken monoclonal antibodies provides an increased ability to make antibodies to mammalian proteins due to the evolutionary distance between chickens and mammals as well as a rapid method for the development of monoclonal antibodies.
- Protein arrays can be applied in studying protein—protein interactions.
- a protein When a protein is captured by its antibody immobilized on an array, other proteins may also be tethered to the same position due to protein—protein interaction.
- a protein mixture e.g., cell lysate, proteins from medically relevant animal models
- the protein of interest After incubation of the protein mixture with the array, the protein of interest will be captured in the position where its interacting protein(s) is captured.
- the identity of its interacting protein is known (because the identity of each agent is predetermined).
- the protein of interest can be localized by either its specific antibodies or other methods.
- the protein of interest can be expressed as a fusion protein with a tag and can then be detected by the tag's specific property.
- a GFP fusion protein can be readily detected under UV light.
- using an array with a larger pool of different agents will increase the chance of detecting the interacting proteins.
- protein arrays made of multiple recombinant proteins are used to identify protein—protein interactions.
- Many recombinant fusion proteins containing a tag (e.g., GST or 6 ⁇ His) at their N- or C-termini are constructed, expressed, and purified. These recombinant proteins are immobilized as agents onto the support printed with their ligands (e.g., glutathione or nickel). After incubation, the protein of interest is captured by the agents (recombinant proteins) immobilized on the array. By detecting the position where the protein of interest is captured, the identity of its interacting protein is obtained.
- the recombinant protein array provides a very convenient tool for detecting protein—protein interaction.
- RNA expression shift that occurs in diseases can be studied and evaluated for markers that could be used as diagnostics to indicate the coming disease or condition.
- the databases are used to identify genes and proteins that would be good candidates for therapeutic intervention during a disease state or condition.
- a preferred embodiment of the database referred to as Drug-Gene-Protein-Biology Database (DGPB) links drug action, genetic response, protein response and biological response together providing information storage and software tools to compare and analyze data.
- DGPB Drug-Gene-Protein-Biology Database
- the information in the database is mined allowing for the ability to predict the biological response of a new drug based on the genes and proteins that demonstrate induction or repression.
- the database is mined for the identification of new drug targets, new biological switches, new biological pathways, and the actions of drugs and drug treatments across a wide gene and protein profile.
- Another preferred embodiment of the ability of the database is to categorize the information such as gene expression, protein profiling, and the like, by animal models.
- the information is sub-categorized based on diseases and similarity of gene expression, protein profiling and the like. Any information can be mined by searching for example, disease categories and which genes and proteins are expressed or repressed depending on the drug used; comparison of the different gene and protein profiles between the different animal models subjected to the same or different drug; biochemical pathways can be compared; inflammatory pathways, etc.
- the DGPB database is preferably able to categorize and link data obtained using the biochips from medically relevant models of human diseases to gene, protein, and metabolic profiling.
- any commercial software programs may be used for database mining.
- the preferred model is a database that has the ability to organize expression or concentration information in a way that facilitates mining.
- a preferred database model organizes information relating to, e.g., sample preparation, expression analysis of experiment results, and intermediate and final results of mining gene expression measurements, gene sets and the like.
- the model is readily translatable into database languages such as SQL and the like.
- the database model can scale to permit mining of gene expression measurements collected from large numbers of samples.
- a computer based method for mining a plurality of experiment information includes a variety of steps such as collecting information from experiments and chip designs.
- the method can include steps of selecting experiments to be mined. Experiment results and other information can be organized by experimental analysis, and the like.
- a step of defining one or more groupings for the experiments to be mined is also part of the method.
- the method also includes a step of selecting based upon the groupings, information about the experiments to be mined to form a plurality of resulting information. This resulting information can include one or more resulting gene sets, and the like.
- the method formats the resulting information for viewing by a user. The combination of these steps can provide to the user the ability to access experiment information.
- Visualization techniques can be used in conjunction with the steps of the method to enable users to more easily understand the results of the data mining.
- a step of recording conclusions about the results of the data mining can also be part of the method.
- Mining the database for expression information includes a variety of steps such as collecting information about results of experiments; a step of gathering information about samples and information about the experiments, which can comprise an experimental analysis and the like, is also part of the method; the step of adding one or more attributes to the information about the experiments can also be performed.
- the method then transforms the plurality of results of experiments into a plurality of transformed information. Transformations can include normalizing, de-normalizing, aggregation, scaling, and the like. Steps of mining the plurality of transformed information and visualizing the plurality of transformed information can also be part of the method.
- One embodiment of the present invention operates in the context of a system for analyzing biological or other materials using the above-described chips.
- Experimental information obtained from the biochips is inputted into the database.
- information regarding a specific genetic sequence of interest may be downloaded from external databases such as GenBank.
- a sample to be analyzed is exposed to probes as described above.
- the nucleotides may or may not bind to the probes.
- the nucleotides are tagged with fluorescein labels to determine which probes have bonded to nucleotide sequences from the sample.
- the prepared samples are placed in a scanning system.
- the scanning system includes, for example, a detection device such as a confocal microscope or CCD (charge-coupled device) that is used to detect the location where labeled receptors have bound to the substrate.
- the output of scanning system is an image file(s) indicating, in the case of fluorescein labeled receptor, the fluorescence intensity (photon counts or other related measurements, such as voltage) as a function of position on the substrate. Because higher photon counts will be observed where the labeled receptor has bound more strongly to the array of polymers, and because the monomer sequence of the polymers on the substrate is known as a function of position, it becomes possible to determine the sequence(s) of polymer(s) on the substrate that are complementary to the receptor.
- the image files and the design of the chips are inputted to an analysis system that, for example, calls base sequences, or determines expression levels of genes or expressed sequence tags.
- the expression level of a gene or EST is herein understood to be the concentration within a sample of mRNA or protein that would result from the transcription of the gene or EST.
- analysis techniques are disclosed in WO97/10365 and U.S. Pat. No. 5,974,164.
- the DGPB database maintains information used to analyze, for example, expression and the results of expression analysis.
- Contents of the database can include tables listing analyses performed, analysis results, experiments performed, sample preparation protocols and parameters of these protocols, chip designs, etc.
- An aspect of the database is that it contains information resulting from the PMEET-ADME biochip experimentation.
- the database may contain information concerning the expression of many genes or ESTs, protein expression, metabolic profiling, etc.
- the database may include duplicate representations of data in expression analysis database.
- the database may also include various tables to facilitate mining operations conducted by a user who operates a querying and mining system.
- the querying and mining system includes a user interface that permits an operator to make queries to investigate expression of genes, proteins etc., that are influenced by drugs in the medically relevant animal model.
- One or more computers may maintain DGPB database.
- the computer system maintaining the database can be a single computer or a system of computers and can be accessed through various interface systems well known in the art.
- a network interface may provide a direct connection to a remote server via a telephone link or to the Internet.
- the network interface can also connect to a local area network (LAN) or other network interconnecting many computer systems.
- LAN local area network
- the database is preferably a multidimensional relational database with a complex internal structure.
- other types of databases can also be used without departing from the scope of the present invention.
- attributes Associated with experimental samples are attributes. Some of the attributes are strings or values identifying concentrations, sample preparation dates, expiration dates, and the like. Other attributes identify characteristics that are highly useful in searching, for example, for genes of interest; diseases; disease progression in a medically relevant animal by comparing time points; the disease state of tissue, the organ, or species from which a sample is extracted. A sample can have more than one attribute, and an attribute can describe more than one sample item.
- Each attribute has an associated attribute type and an associated value for the attribute.
- attribute types are “concentration,” “preparation date,” “expiration date,” etc.
- Another example of an attribute type would be “specimen type” where possible values would correspond to “tissue,” “organ culture,” “purified cells,” “primary cell culture,” “established cell line,” “drug of choice” and the like.
- attribute types can derive from other attribute types.
- the attribute type “medically relevant animal model” can be derived from an attribute type “inflammation” which is in turn derived from an attribute “disease.”
- Some attribute types have no associated attributes but rather define levels of categorization.
- the derivations relating a “parent” attribute type to a “child” attribute type can include one or more parents or children.
- One representative attribute type derivation type is category-subcategory where the parent type represents a category such as, for example, “drug” and the child type represents the subcategory, for example, “gene expression”.
- the availability of derivation relationships among attribute types greatly facilitate the formulation of useful queries to mining the database, allowing the user to readily identify attribute types of interest.
- the database can also be organized in table format relating to information about experiments.
- An experiment table lists experiments whereby results are available for querying.
- a data map table lists entries corresponding to sets of genes or proteins that may be induced by a particular drug across a spectrum of animal models. Each set corresponds to a collection of experiments performed to investigate the genes, proteins, toxic side effects etc., in the set, and thus defines the collection of experiments corresponding to each gene set, or protein set, etc.
- An analysis set table defines sets of analyses that have been performed corresponding to each gene or protein set, for example. Each entry defines an association between an analysis, an experiment and an entry in data map table.
- Tables related to analysis information are also a preferred method of organization of data.
- the data may be organized according to “absolute result” or “relative result”.
- Different absolute result types may include e.g., present, marginal, absent, and unknown, indicating an estimate of the expression level of a given gene or EST, protein expression or lack thereof, efficacy of drug, toxicity, etc.
- Relative analyses compare expression of a gene, protein etc, between, at least, two experiments.
- Different relative result types may include e.g., increased, no change, decreased, and unknown, all describing the change of expression.
- Querying and mining systems also perform various expression analysis operations.
- Each entry in a criteria set table identifies a set of criteria used to query a group selected by sample item or by attribute.
- Each entry in a criteria set experiment table identifies a set of criteria applied to gene, protein, EST expression levels, toxicity etc., of a particular sample item belonging to a group identified by reference.
- a user preferences table which stores references to user preference files that record the preferences of individual users. Users may wish to store functions used for normalization of expression data for later use.
- a simple illustration of the process steps for mining a plurality of experimental information is as follows. This illustration should not limit the scope of the invention and one of ordinary skill in the art would recognize other variations, modifications, and alternatives.
- a first step information from experiments and chip designs is collected. Then, in a second step, experimental analyses to mine are selected. In a third step, one or more sample attributions are defined.
- resulting information is determined from the experimental analyses by mining to form a plurality of resulting information. This resulting information can include one or more resulting gene sets or any other information required by the user.
- a final step formats the resulting information for viewing by a user. The combination of these steps can provide to the user the ability to access experimental information.
- genes and proteins of previously unknown function may have their gene or protein function assigned to them through the searching of the orthologous databases and comparison to the PMEET-ADME databases.
- a gene previously identified to be expressed in a limb of a lower eukaryotic organism maybe be linked to, or shown to be responsible for a negative or positive response to a drug in a target organ, for example.
- a gene that was previously shown only to be expressed in a limb of a distantly related species is linked to, or, shown to be responsive to a drug.
- In situ hybridization, immunocytochemistry and cytochemistry include methods well known in the art. See Mitchell et al., “In situ hybridization: a review of methodologies and applications in the biomedical sciences,” Medical Laboratory Sciences, vol. 49, pp. 107-118 (1992). Martinez et al., “Non-radioactive Localization of Nucleic Acids by Direct In Situ PCR and In Situ RT-PCR in Paraffin-embedded Sections,” Journal of Histochemistry and Cytochemistry, vol. 43, 1995. Oosterwijk et al., “Expression of Intermediate-sized Filaments in Developing and Adult Human Kidney and Renal Cell Carcinoma,” The Journal of Histochemistry and Cytochemistry, 38(3): 385-392 (1990).
- labeled inhibitors are used to directly visualize the cellular distribution of the target protease.
- the label can be fluorescent for fluorescence microscopy, radioactive for autoradiography, or electron dense for electron microscopy.
- the target structures can be whole cells, cells fixed onto slides or sections through solid tissue.
- a useful modification of these techniques is to use an indirect (“sandwich”) assay employing the specific high affinity interaction between biotin and avidin (reviewed in Methods in Enzymology, vol. 184, 1990).
- kits may be used e.g. to test for alkaline phosphatase activity, cells are fixed in 80% ethanol (Buehr and McLaren, Meth. Enzymol. 225: 58-77, 1993) and stained employing a protocol from an AP cytochemistry kit (Sigma Chemical Co., St. Louis, Mo.).
- In situ hybridization can be performed using 35 S-labeled cRNA probes by the method of Angerer et al. (Angerer, L. M., Stoler, M. H., and Angerer, R. C., “In Situ Hybridization With RNA Probes: An Annotated Recipe.” In K. L. Valentino, J. H. Eberwine, and J. D. Barches (Eds) “In Situ Hybridization,” Oxford University Press 43-70 (1987), incorporated herein by reference in its entirety) as modified by Popper et al. (Popper, P., Ulibarri, C., and Micevych, P.
- Oligodendrocyte cultures can be enriched according to the method of Suzumura et al. (Suzumura, A., Bhat, S., Eccleston, P. A. et al., “The Isolation and Long-Term Culture of Oligodendrocytes From Newborn Mouse Brain,” Brain Res. 324:379-383 (1984), incorporated herein by reference in its entirety). These cells can be treated in a similar manner as brain slices for in situ hybridization.
- Immunized animal models are prepared using the currently available standard techniques. This includes but is not limited to the techniques of using an adjuvant to increase the antigenicity of an antigen.
- the antigen can be either injected into the animals muscle, stomach, blood, applied intra-nasally or topically, feed to the animal or through the surgical process of introduction through the spleen.
- Animal models are also prepared surgically, by using the application of standard techniques and procedures. These techniques include, but are not limited to, the grafting of biological material from one animal to another, the removal of a portion of an animal, the occlusion of a vein, artery, duct, gland or opening. Additionally, the damaging of a normal tissue, gland or organ using a surgical means to reduce, limit or restrict normal function is included.
- Positive control drugs are selected based on their properties of efficacy, therapeutic index, few side effects, low toxicity and desirable ADME properties (Absorption, Distribution, Metabolism, and Elimination) in the selected medically relevant disease model.
- the positive control drugs are drugs that are the standard of care used in the medical community for treatment of the disease that the medically relevant animal model reflects.
- some drugs have a very high therapeutic response but may also have undesirable toxicity and/or side effects.
- Negative control drugs are selected based on their properties of toxicity, side effects and low, or lower efficacy than the current standard of care used by the medical community for treatment of the disease that the medically relevant animal model reflects.
- These negative control drugs for example, are drugs that failed to be successful in FDA phase I, II or III trails for the disease that the medically relevant animal model reflects. Additionally, these negative drugs are drugs that have never been in FDA phase I, II or III trails due to their failure in the pre-clinical trail model(s), including the medically relevant animal model that it is being used as a negative control for in the PMEET-ADME experiments.
- the negative control drugs will have a undesirable toxicity, or an undesirable toxicology, or an undesirable ADME (Absorption, Distribution, Metabolism and Elimination) profile, or undesirable side effects, or a low therapeutic index, or a combination of the previously listed undesirable properties. Examples of such drugs are listed in Table 6. TABLE 6 Examples of drugs that have been discontinued or terminated in FDA trials.
- the PMEET-ADME process preferably involves the application of a two-chip system to determine the efficacy, toxicity and ADME of a drug. This is desirable due to the presence of a translational control existing between the expressed RNA and the translated protein as well as the fact that modification of proteins results in an alteration of the proteins' activities. Thus an understanding of the proteins' state and the genetic state of the organism is preferred.
- Determination or selection of biochip content preferably is based on the comparison of gene expression and protein expression across the development of the diseased state in the medically relevant animal model as well as the gene expression and protein expression in the diseased state as it responds to medical treatment.
- These medical treatments include a positive control drug, i.e., one that should ameliorate the diseased state and a negative drug, i.e., one that has undesirable properties such as toxic effects, induction of additional diseased states or an increase or exacerbation of the model diseased state.
- the identification of biochip content, for both the gene and protein chips utilizes comparisons made between normal animals versus diseased animals versus treated diseased animals. Additional comparisons between time-points within a treated or untreated diseased state are performed.
- the rationale behind the comparison of the treatment groups within a time-point is that it allows identification of differentially expressed genes and proteins that produce or are involved in the production of the diseased state as well as in the amelioration or reduction of the diseased state. Comparison of the treatment groups across time-points, thus, allows for the identification of the genes and proteins involved in the severity of the disease or the amelioration of the disease depending on the treatment group that is being evaluated.
- An illustrative gene expression experiment is set up as follows, using medically relevant disease animal models. The animals are randomly sorted out into: Control (No-disease); Diseased mock treatment control (drug vehicle only); Diseased positive treatment control (Positive drug treatment); Diseased negative treatment control (Negative drug treatment); Diseased candidate treatment(s) (Candidate drug treatment groups); wherein each group is comprised of multiple numbers of animals.
- Time points to compare gene and protein expression between normal and diseased animals are selected. In general, these time-points are at the initial stage of the medically relevant disease, at the full development or complete involvement of the disease, and at several time-points intermediate of the disease induction and the fully involved disease. Thus the time points allow the study of the disease progression in a pathological fashion.
- Organs involved in the disease or the organs afflicted by the disease are harvested.
- the lungs are the organs that are harvested.
- Harvested organs from each group are either randomly distributed to three sub-groups (gene expression, protein expression or standard practices) or each organ from each mouse is divided into thirds and each third is placed in one of three sub-groups (gene expression, protein expression and standard practices).
- Genes, proteins and fragments thereof are extracted and purified as described above.
- the RNA from each of the subgroups can be extracted using one of a number of different standard methods.
- RNAeasy® from Qiagen
- automate systems are now available that makes the extraction of nucleic acids from biological material a high-through put process. Examples of these systems include the ABI 6700 Nucleic Acid Work Station, the Roche Magna Pure system, the Qiagen BioRobot 3000 system and the Gentra systems nucleic acid extractor.
- the extracted RNA is maintained in a standard method that prevents lose or degradation of the RNA.
- One standard method for this is as a precipitated pellet in a plastic microfuge tube that has low nucleic acid adhesion.
- the pellet is stored under 100% Ethanol at ⁇ 80° C. and sealed shut to prevent evaporation.
- the individual subgroup samples are checked for degradation, or intactness, and the quantity of the RNA is determined.
- the standard method for quantifying a nucleic acid sample is spectrophotometrically (A 260 ) and the standard method for determining intactness is a denaturing gel electrophoresis followed by Northern Blot and Hybridization using a labeled (radioactive or non-radioactive label; isotopic or non-isotopic) antisense gene that is well characterized and studied such as Actin or GAPDH.
- the intactness and quantity of the nucleic acid can be determined using one of the new “Lab-on-a-chip” systems that are available. An example of one of these instruments is the Agilent Bioworkstations.
- a first strand cDNA synthesis is synthesized either by using one of the standard procedures of using individual purchased reagents and either the reverse AMV or MMULV transcriptases or a commercially available cDNA synthesis kit or a commercially available double stranded cDNA synthesis kit.
- the first strand synthesis cDNA can be generated from total RNA or from mRNA.
- mRNA the poly A+ fraction of the total RNA will need to be purified using the standard technique of Oligo dT column purification or using one of the many commercial kits that are available.
- the synthesis of 2 nd strand DNA can commence. Once again, this can use the standard procedure and individual purchased reagents or the 2 nd strand synthesis can be carried out using any of the commercially available kits.
- the following diagram is an illustrative example of the design of an array or matrix and is not meant to be construed as a limitation, thereof, in any way.
- RNA expression profiles between normal; diseased; and, diseased+treatments at the selected time-points requires that a comparison between the different treatments and disease states at the selected time-points as well as between the different time-points be performed.
- the comparisons are visualized in the context of a two-dimensional array or matrix.
- RNA expression profile comparisons occur down the columns and across the rows. As RNA expression profiling occurs down the rows between normal and mock treated diseased animals, any RNA's that are differentially (induced or repressed) regulated during the development of the disease, during disease progression and in the fully developed disease are revealed. Comparison of the RNA profiling between time-points for the mock treated diseased control reveal gene expression that is involved in the development of the disease. The expansion of the comparisons down the rows to include the positive and negative treatments of the diseased animals identifies the genes that are involved in the amelioration of a disease state (positive drug control) and the genes that involved in the exacerbation (negative drug control) of a diseased state. The comparison of the gene and protein expression profiles between the control treatments to the diseased animal model and the treatments of the candidate drugs evaluates the candidate drugs' efficacy and toxicity.
- the gene and protein expression comparisons are also compared in multiple organs.
- the organs that are subjected to gene and protein expression profiling are those organs that are involved in systemic detoxification of the body, organs that are involved in the movement of the drug, organs that would be the targets of a drugs toxicity and the organ that is the target organ for the disease.
- the organs that are evaluated include (but are not limited to) the lungs, stomach, intestine, heart, kidney, liver and the central nervous system.
- the previous two dimensional table becomes a multi-layered matrix composed of a table for each organ.
- ddPCR Differential Display Polymerase Chain Reaction
- SH Subtractive Hybridization
- SSH Suppression Subtractive Hybridization
- RAPDs Random Amplified Primer Display
- DCH Duplicate Colony Hybridization
- AFP Amplified Fragment Length Polymorphism
- SAGE Serial Amplification of Gene Expression
- MSSP Lynx Therapeutics
- Representation Difference Analysis of cDNA RDA-cDNA
- Selection of gene content for the gene expression biochip occurs by selecting the genes that fit into the categories of disease progression or development and healthy state decrease or loss. For example, disease progression or disease development genes are selected based on the comparison of the normal animals gene expression profile to the mock treated diseased animals gene expression profile. Induction or upregulation of a gene's expression or genes' expression in a medically relevant diseased animal model indicates that the induced gene is involved with the induction of the disease state. Especially relevant are those genes that are induced early in the development of the disease before any disease symptoms can be detected or those genes induced early in the disease process. Genes that have an induced gene expression profile or an upregulated gene expression profile that follows the disease progression are implicated in the progression of the disease state and implicated in the increasing severity of the disease state.
- Any repression of genes are identified by comparing the gene expression profiles of the normal animal to the gene expression profile of medically relevant animal model.
- the gene(s) that demonstrate repression prior to the presentation of symptoms or early in the disease presentation process for the medically relevant animal model are “grouped” in the category of the maintenance of the normal or healthy state.
- Genes that are repressed during the progression of the disease are “grouped” in the category of the decrease of the healthy state or an increase of disease severity.
- the genes selected to be the efficacy genes are selected based on the gene expression profiles of the genes in the disease target organ. Typically, these genes are those genes that are repressed during disease development and progression and either induced or left unaltered in expression by the positive control drug. Additionally, genes that are induced during disease development and/or during disease progression or induced by the negative control drug are also selected for content on the gene expression biochips as negative parameters of efficacy.
- genes selected for toxicology and ADME are selected in a manner similar to the efficacy genes using the same previously described concepts but from the kidney, liver, central nervous system, stomach and intestine.
- Animal models are randomly distributed to the same groups as described above and time points are selected for comparison of gene and protein expression between normal and diseased animals, using the same criteria as described above for gene expression.
- the procedure again begins with the harvesting of the organs involved in the disease or the organs afflicted by the disease (normal, diseased and treated organs).
- the lungs would be the organs that are harvested.
- Harvested organs from each group are either randomly distributed to three sub-groups (gene expression, protein expression or standard practices) or each organ from each mouse is divided into thirds and each third is placed in one of three sub-groups (gene expression, protein expression and standard practices).
- Proteins are extracted from each of the subgroups.
- the proteins are extracted using one of a number of different standard methods. These methods are typically a standard cell lysis method. In general, these methods involve the piece of organ or tissue being treated with digestive enzymes and solutions that contain detergents. Other methods of extracting proteins from pieces of organs involve treatment of the piece with digestive enzymes followed by repeated freezing and thawing or placing the material under high pressure after enzymatic treatment or enzymatic treatment followed by swelling the cells until they burst. Additionally, automate systems are now available that makes the extraction of proteins from biological material a high-through put process. An example of these automated systems is the Qiagen BioRobot 3000.
- the extracted protein is maintained in a standard method that prevents loss or degradation of the protein.
- One standard method of storage is as a pellet in a low adhesion plastic microfuge tube in the presence of proteinase inhibitors. Commonly the pellet is stored at ⁇ 80° C. or ⁇ 20° C. and sealed shut to prevent evapor
- the extracted protein is checked for degradation, or intactness and is quantified.
- the standard method for quantifying a protein sample is spectrophotometrically (A 280 ) or through a standard chemical assay.
- the standard method for determining intactness of a protein is a protein gel. Examples of these protein gels are Sodium Dodecyl Sulphate Polyacrylamide gel electrophoresis (SDS-PAGE), denaturing gradient gel electrophoresis, two-dimensional gel electrophoresis (2-D Gels) and polyacrylamide gel electrophoresis (PAGE).
- SDS-PAGE Sodium Dodecyl Sulphate Polyacrylamide gel electrophoresis
- denaturing gradient gel electrophoresis denaturing gradient gel electrophoresis
- 2-D Gels two-dimensional gel electrophoresis
- PAGE polyacrylamide gel electrophoresis
- protein expression profiles are determined by 2-D gel electrophoresis.
- the 2-D gels are performed, landmarked, analyzed (by a computer program) and compared for induced and repressed protein expression as well as for modifications to the proteins or the production of novel protein complexes.
- Comparison of the protein expression profiles between normal; diseased; and, diseased+treatments; at the selected time-points requires that a comparison between the different treatments and disease states at the selected time-points as well as between the different time-points be performed.
- the following matrix is constructed for illustrative purposes only and is not meant as a limitation to the invention.
- the protein expression profile comparisons need to occur down the columns and across the rows. As protein expression profiling occurs down the rows between normal and mock treated diseased animals, the protein's that are differentially (induced or repressed) regulated during the development of the disease, during disease progression and in the fully developed disease are revealed. Comparison of the protein profiling between time-points for the mock treated diseased control reveal protein expression that is involved in the development of the disease. The expansion of the comparisons down the rows to include the positive and negative treatments of the diseased animals identifies the proteins that are involved in the amelioration of the disease state (positive drug control) and the proteins that involved in the exacerbation or non-efficacious treatment (negative drug control) of a diseased state. The comparison of the gene and protein expression profiles between the control treatments to the diseased animal model and the treatments of the candidate drugs allows an evaluation of the candidate drugs' efficacy and toxicity.
- the organs that are subjected to gene and protein expression profiling are the organs that are involved in systemic detoxification of the body, organs that are involved in the movement of the drug, organs that would be the targets of a drug's toxicity and the organs that are the target organ for the disease.
- the organs that are evaluated include (but not limited to) the lungs, stomach, intestine, heart, kidney, liver and the central nervous system.
- the previous two-dimensional table becomes a multi-layered matrix composed of a table for each organ.
- Proteins that are determined to be differentially expressed between two time-points or between two treatments are excised from the gel and prepared for Matrix Assisted Laser Desorption Ionization Time of Flight analysis (MALDI-TOF). The resulting data is then used to search the protein databases to determine the identity of the protein or to determine if the protein is an unknown.
- MALDI-TOF Matrix Assisted Laser Desorption Ionization Time of Flight analysis
- Selection of protein content for the protein expression biochip occurs by selecting antibodies to proteins that fit into the categories of disease progression or development and healthy state decrease or loss. Disease progression or disease development proteins are selected based on the comparison of the normal animals protein expression profile to the mock treated diseased animals protein expression profile. Induction or upregulation of a protein's expression or proteins' expression or an alteration to the protein (e.g. phosphorylation) in a medically relevant diseased animal model is an indication that the induced or altered protein is involved with the induction of the disease state. Especially relevant are those proteins that are induced or altered early in the development of the disease before any disease symptoms can be detected or those proteins induced or altered early in the disease process.
- Proteins that have an induced or altered protein expression profile or an upregulated protein expression profile that follows the disease progression are implicated in the progression of the disease state and implicated in the increasing severity of the disease state. Eventually, a point is reached at a later stage in the disease where the induction or alteration of protein expression or the upregulation or alteration of protein expression is implicated as a “sick animal” response, whereby, the animal's physiology is attempting to reach or bring the body back into physiological.
- Repressed proteins are identified by comparing the protein expression profiles of the normal animal to the protein expression profile of medically relevant animal model.
- the protein(s) that demonstrate repression prior to the presentation of symptoms or early in the disease presentation process for the medically relevant animal model are implicated in the maintenance of the normal or healthy state. Proteins that are repressed during the progression of the disease are implicated in a decrease of the healthy state or an increase of disease severity.
- the proteins selected to be the efficacy proteins are selected based on the protein expression profiles of the proteins in the disease target organ. Typically these proteins are the proteins that are repressed during disease development and progression and either induced or have a normal expression pattern in the expression pattern of the positive control drug time-points. Additionally, proteins that are induced or altered during disease development and/or during disease progression or induced or altered by the negative control drug can be selected for content on the protein expression biochips as negative parameters of efficacy.
- the proteins selected for toxicology and ADME are selected in a manner similar to the efficacy genes using the same previously described concepts but from the kidney, liver, central nervous system, stomach and intestine.
- Part A Design of the Gene Expression Biochips
- the gene and protein expression biochips allow for the evaluation of the efficacy, toxicity, absorption, distribution, metabolism and elimination of a tested drug as described above.
- the genes for the gene expression biochips are oligonucleotides of a defined length; have similar hybridization characteristics; lack lengthy complementary regions; and, should not form hairpins.
- For the hybridization characteristics to be similar across a wide range of oligonucleotides requires that the oligonucleotides be of the same length, have a similar percentage of Guanine to Cytosine content and lack any extensive runs of poly A, poly G, poly C or poly T tracts. The goal of having these parameters is to produce oligonucleotides that have similar melting and hybridization temperatures.
- Oligonucleotides can be designed using commercially available software, using the stipulated parameters or stipulate parameters. Examples of such software are “MacVector” and “Oligo”. Production of the oligonucleotides is accomplished by using a DNA synthesizer followed by purification of the oligonucleotides using an HPLC equipped with an UV detector and a fraction collector. Finally, the sequence and length of oligonucleotides is verified using a mass based method and instruments (e.g. MALDI-TOF analysis).
- a mass based method and instruments e.g. MALDI-TOF analysis.
- the purified and verified oligonucleotides are spotted onto a microscope slide coated with a low adhesion hydrophilic surface or covalently attached to the surface of the microscope slide (low adhesion hydrophilic surface) using standard chemistry conjugation chemistry.
- the gene expression biochip is designed in a grid and quadrant fashion using positive control genes at the comers of the grids for alignment and identification of the grids.
- the positive control genes are genes that are not expressed or are not present in the animal kingdom, for example, oligonucleotides generated from the gene sequence of a plant gene or artificially designed oligonucleotides.
- the labeled complementary positive control can be spiked into the hybridization buffer during the gene expression biochip hybridization experiments.
- Additional controls include positive and negative experimental controls.
- the positive experimental controls are controls for genes that are expected to be present and expressed in the RNA extracted from the harvested organs. As an example, all or some of the housekeeping genes (e.g. GAPDH and Actin) are used as positive experimental controls.
- Negative experimental control genes are genes that are not found in the animal kingdom and serve the function of providing an evaluation of the amount of background or non-specific hybridization occurring. The positive controls provide experimental evidence that the hybridization experiment was successful.
- the content of the protein expression biochips are antibodies specific for the differentially expressed proteins (See Tables 1-5 for examples of antigens to which antibodies can be generated against for use in the protein expression biochip), or any other molecule that binds selectively with the target protein, as discussed in the detailed description of the invention.
- antibodies can be from commercial sources, or are generated in-house using standard immunization and antibody purification procedures, such as standard hybridoma techniques; using the Abginex Xeno-mouse; phage display techniques; or, using a combination of animal immunization (e.g. mouse, rat, donkey, chicken, etc.) and phage display.
- the antibodies are conjugated (using standard conjugation chemistry) to a microarray solid support.
- the protein expression biochip is designed to comprise positive control antibodies, experimental positive control antibodies and negative control antibodies.
- the positive control antibodies are to molecules that occur ubiquitously through out the cells of an animal, such as housekeeping proteins such as GAPDH or Actin, and are spiked into the protein expression biochip experimental binding solution.
- the negative control antibodies are to haptens that do not exist naturally.
- Antibodies are detected using digoxigenin or are fluorescently labeled (FITC).
- FITC fluorescently labeled
- the antibodies are attached to known locations in a grid format so as to provide landmarks and identification points for the locations of the antibodies. Each of these grid formats are repeated many times on the PMEET-ADME protein expression biochip so as to provide several experimental replicates per PMEET-ADME protein expression experiment.
- Part A Testing and Evaluation of Biological Fluids and Biological Materials
- the testing and evaluation of the biological fluids are conducted according to the standard techniques and procedures that are involved in the typical clinical testing of biological fluids. These tests include urine analysis, blood analysis, analysis of central nervous system fluids and the testing of fecal material.
- the testing and evaluation of drug metabolites is conducted according to the standard techniques and procedures that are involved in the determination of drugs and drug metabolites in the blood of an animal. These tests include the testing of hair samples, fingernail, toenail, urine, blood and saliva.
- the scoring system for the PMEET-ADME gene expression chip is a system based on the signal intensity from an oligonucleotide and the importance of the gene in the PMEET-ADME system.
- the scoring system is a weighted scoring system that takes into consideration the involvement of a gene in the efficacy, toxicity and ADME process and the intensity or the level of expression of that gene in that sample for that portion of the PMEET-ADME experiment. As an example, genes that have been determined to be implicated in disease development or disease progression are weighted in proportion to their involvement in disease development or progression and scored negatively as expression increases above normal levels.
- the genes that are implicated in efficacy are weighted with respect to their impact upon the development or maintenance of the normal physiological state except that these genes are assigned a positive score as their expression increased over normal expression.
- an overall PMEET-ADME score can be produced for the gene expression biochip.
- the scoring system for the PMEET-ADME protein expression chip is the same as described above, but based on the signal intensity from an antibody and the importance of the protein in the PMEET-ADME system.
- the scoring system is a weighted scoring system that takes into consideration the involvement of a protein or the alteration of a protein in the efficacy, toxicity and ADME process and the intensity or the level of expression of that protein or alteration of that protein in that sample for that portion of the PMEET-ADME experiment.
- proteins that have been determined to be implicated in disease development or disease progression are weighted in proportion to their involvement in disease development or progression and scored negatively as expression increases above normal levels.
- the proteins that have been implicated in efficacy are weighted with respect to their impact upon the development or maintenance of the normal physiological state except that these genes are assigned a positive score as their expression increased over normal expression.
- an overall PMEET-ADME score can be produced for the protein expression biochip.
- the combination of the PMEET-ADME gene expression and protein expression score requires an evaluation of the genes and proteins involved in the different process of efficacy, toxicity, ADME, disease progression and disease development.
- the scores from the PMEET-ADME gene and protein expression experiments are weighted and the two scores are combined to produce a single combined PMEET-ADME score.
- Animals are randomly distributed to the following groups: Control (No-disease); Diseased mock treatment control (drug vehicle only); Diseased positive treatment control (Positive drug treatment); Diseased negative treatment control (Negative drug treatment); Diseased candidate treatment(s) (Candidate drug treatment groups).
- the first time point is at the initial phase of the medically relevant disease, at several intermediate time-points during the progression of the disease, and the final time point is during the full-blown disease state.
- the organs involved in the disease or the organs afflicted by the disease are harvested.
- the lungs are harvested.
- Harvested organs from each group are randomly distributed to three sub-groups (gene expression, protein expression or standard practices) or each organ from each mouse is divided into thirds and each third is placed in one of three sub-groups (gene expression, protein expression and standard practices).
- RNA from each of the subgroups is extracted. Extraction methods used, but are not limited to, are the Cesium Chloride cushion method, the Acid-Phenol method, the Tri-Sol® method and numerous different column extraction methods or solid support extraction methods (e.g. RNAeasy® from Qiagen). Additionally, automated systems are also used that makes the extraction of nucleic acids from biological material a high-through put process. Examples of these systems include the ABI 6700 Nucleic Acid WorkStation, the Roche Magna Pure system, the Qiagen BioRobot 3000 system and the Gentra systems nucleic acid extractor.
- the extracted RNA is maintained in a standard method that prevents loss or degradation of the RNA. One standard method for this is as a precipitated pellet in a plastic microfuge tube that has low nucleic acid adhesion. Commonly the pellet is stored under 100% Ethanol at ⁇ 80° C. and sealed shut to prevent evaporation.
- RNA in gene expression subgroup has been extracted from each control and treatment group from a single time-point, the individual subgroup samples are checked for degradation, and the quantity of the RNA is determined.
- the standard method for quantifying a nucleic acid sample has been described above.
- RNA From the extracted and intact RNA, a first strand cDNA synthesis is synthesized by using any one of the standard procedures described above.
- the first strand synthesis cDNA is generated from total RNA or from mRNA.
- the poly A+ fraction of the total RNA is purified using the standard technique of Oligo dT column purification or using one of the many commercial kits that are available.
- the cDNA can be labeled using a chemical labeling method such as the Roche Molecular Biochemicals Biotin Chem-link and the DIG chem-link systems.
- the total RNA or the poly A+mRNA can be labeled using a chemical labeling method.
- the combined hybridization mixture is heat denatured, quick cooled on ice and placed onto the PMEET-ADME gene expression microarray, commonly within a hybridization chamber, and incubated at the predetermined hybridization temperature for a period of time, usually overnight. The next day the hybridization solution is removed and the gene expression microarray is washed in solutions of decreasing salt concentrations (increasing stringency) and in the presence of elevated temperatures. These washes remove all of the unbound normal and experiment nucleic acids (reduce background and remove excess labeled nucleic acids).
- the intensity of the labeled nucleic acids at an oligonucleotide location is determined by using a commercial available reader and software system. As examples of a reader and software package, the GSI Lumonics reader and the Scanlytics software program.
- the proteins from the animal model experimental groups are extracted from each of the subgroups.
- the proteins are extracted using one of a number of different standard methods. These methods are typically a standard cell lysis method. In general, these methods involve the piece of organ or tissue being treated with digestive enzymes and solutions that contain detergents. Other methods of extracting proteins from pieces of organs involve treatment of the piece of organ or tissue with digestive enzymes followed by repeated freezing and thawing; or placing the material under high pressure after enzymatic treatment; or enzymatic treatment followed by swelling of the cells until they burst. Additionally, automate systems are now available that makes the extraction of proteins from biological material a high-through put process. An example of these automated systems is the Qiagen BioRobot 3000.
- the proteins are prepared for the PMEET-ADME protein expression chip by labeling with a fluorescent dye attached to a chemical linker that has an NHS ester for the labeling of proteins through the free amino groups present in the individual proteins.
- An aliquot of the labeled protein is mixed into the protein-binding buffer and the mixture is placed onto the PMEET-ADME protein expression chip. Each time-point and treatment group is assayed in this manner and the data collected for evaluation by the PMEET-ADME scoring system.
- PMEET-ADME gene and protein expression biochips are generated for humans by using gene and protein databases, gene and protein alignment programs and gene and protein similarity comparison programs. The genes and proteins that make up the content for the Medically Relevant Animal Models gene and protein expression biochips are used to search the human gene and protein database(s) to find similar genes and proteins. These human genes and the antibodies to these human proteins are then used to provide content for Human gene and protein expression PMEET-ADME biochips. These human chips are useful in FDA phase I, II and III trials to evaluate an individuals response to the treatment. Additionally, human biochips many eventually provide diagnostic and therapeutic biochips for the evaluation of patients.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Wood Science & Technology (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Food Science & Technology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
- This application claims priority to U.S. Ser. No. 60/289,407, filed May 8, 2001.
- 1. Field of the Invention
- The present invention provides for a powerful method for identification of gene- and protein-induction by drugs in molecular pathways at both the cellular and whole animal level. In particular, the invention relates to a biochip microarray, wherein experimental information is loaded into a computer database which allows for mining of data, analysis of data for the predictability, evaluation of efficacy and toxicity of newly-discovered drugs, existing drugs, families of drugs or classes of drugs. The present invention drastically reduces the cost and time associated with testing of drugs for FDA approval for use in humans.
- 2. Background
- Many biological functions are accomplished by altering the expression of various genes through transcriptional (e.g. through control of initiation, provision of RNA precursors, RNA processing, etc.) and/or translational control. For example, fundamental biological processes such as the cell cycle, cell differentiation and cell death, are often characterized by the variations in the expression levels of groups of genes.
- Changes in gene expression also are associated with pathogenesis. For example, the lack of sufficient expression of functional tumor suppressor genes and/or the over expression of oncogene/proto-oncogenes could lead to tumorgenesis (Marshall, Cell, 64:313-326 (1991); Weinberg, Science, 254:1138-1146 (1991)). Thus, changes in the expression levels of particular genes (e.g. oncogenes or tumor suppressors) serve as signposts for the presence and progression of various diseases.
- Often drugs are screened and prescreened for the ability to interact with a major target without regard to other effects the drugs have on cells. Often such other effects cause toxicity in the whole animal, which prevent the development and use of the potential drug. Therefore, there is a need in the art to develop a systematic approach to test and develop new drugs for their effects on cellular metabolism without relying on gross morphologic and phenotypic effects.
- Two approaches presently dominate the search for new drugs. The first begins with a screen for compounds that have a desired effect on a cell (e.g., induction of apoptosis), or organism (e.g., inhibition of angiogenesis) as measured in a specific biological assay. Compounds with the desired activity may then be modified to increase potency, stability, or other properties, and the modified compounds retested in the assay. Thus, a compound that acts as an inhibitor of angiogenesis when tested in a mouse tumor model may be identified, and structurally related compounds synthesized and tested in the same assay. A critical limitation of this approach is that, often, the mechanisms of action, such as the molecular target(s) and cellular pathway(s) affected by the compound, are unknown, and cannot be determined by the screen. Furthermore, this approach may provide little information about the specificity, either in terms of target or pathways, of the drug's effect. In contrast, the second approach to drug screening involves testing numerous compounds for a specific effect on a known molecular target, typically a cloned gene sequence of an isolated enzyme or protein. For example, high-throughput assays can be developed in which numerous compounds can be tested for the ability to change the level of transcription from a specific promoter or the binding of identified proteins.
- The use of high-throughput screens is a powerful methodology for identifying drug candidates, however, it has its limitations. In particular, the assay provides little or no information about the effects of a compound at the cellular or organism level. In order to develop lead compounds into successful drugs, it is necessary not only to find compounds which are able to bind well to the primary target which is being screened, but also to ensure that the compounds are not simultaneously interacting with other targets within the cell. These effects must be tested by using the drug in a series of cell and whole animal studies to determine toxicity of side effects in vivo. In fact, analysis of the specificity and toxicity studies of candidate drugs can consume a significant fraction of the drug development process (see, e.g., Oliff et al., 1997, “Molecular Targets for Drug Development,” in DeVita et al., Cancer: Principles & Practice of Oncology, 5 TH Ed., Lippincott-Raven Publishers, Philadelphia, Pa.).
- Several gene expression assays are now becoming practicable for quantitating the drug effect on a large fraction of the genes and proteins in a cell culture (see, e.g., Schena et al., Science, 270:467-470; Lockhart et al., 1996, Nature Biotechnology 14:1675-1680; Blanchard et al., 1996, Nature Biotechnology 14:1649; Ashby et al., U.S. Pat. No. 5,569,588, issued Oct. 29, 1996). Raw data from these gene expression assays are often difficult to coherently interpret. Such measurement technologies typically return numerous genes with altered expression in response to a drug, typically 50-100, possibly up to 1,000 or as few as 10. In a typical case, without more analysis it is not possible to discern cause and effect from such data alone. The fact that one or a few genes among many has an altered expression in a pair of related biological states yields little or no insight into what caused this change and what the effects of this change are. These data in themselves do not inform an investigator about the pathways affected or primary targets of a drug. They do not indicate which effects result from effects on one primary target (e.g., the target screened in a high-throughput assay) versus which effects are the result of other primary targets of the drug.
- Knowledge of all the primary targets is necessary in understanding efficacy, side-effects, toxicities, possible failures of efficacy, activation of metabolic responses, etc. Further, the identification of all primary targets of a drug can lead to discovery of alternative primary targets suitable to achieve the original therapeutic response. However, without effective methods of analysis, one is left to ad hoc further experimentation to interpret such gene expression results in terms of biological pathways and mechanisms. Systematic procedures for guiding the interpretation of such data and or such experimentation are needed.
- Thus there is a need for improved (e.g., faster and less expensive) systems and methods to identify multiple primary targets of a drug, based on effective interpretation of such data as gene expression data.
- The invention generally relates to compositions and methods for an effective and efficient new drug discovery, drug evaluation and drug toxicity. As discussed below, the invention has many important uses including the production of a gene and/or protein chips for identification of drug mediated gene and/or protein expression or repression. More particularly, the invention provides for a methods and compositions for construction of a biochip with multiple properties for use in identification of gene- and/or protein-induction or expression levels by drugs; allows for the evaluation of efficacy and toxicity of any drug of choice; prediction of efficacy and toxicity of newly-discovered drugs, families of drugs or classes of drugs. Experimental information acquired from the biochip is inputted into a Drug-Gene-Protein-Biology (DGPB) database from which experimental data can be mined and analyzed based on the users preferences.
- The present invention provides a biochip array for evaluating the effect of a composition for the treatment of a disease. The biochip array comprises a surface having stably attached thereto a plurality of molecules capable of selective binding to at least one member of the group consisting of DNA, RNA, proteins, peptides or fragments thereof that is representative of an animal model for the disease. The member is provided from any metabolic pathway, apoptotic pathway, inflammatory pathway, cytokine production pathway, cellular growth product pathways, proto-oncogenes, oncogenes, antibodies or fragments thereof that are provided by the animal model.
- The molecules used in the construction of the biochip array are derived from the “gold standard” animal model for human disease. The biochip array is preferably comprised of genes, nucleic acids, proteins, peptides or any fragments thereof derived from an animal model subjected to drug treatment. Either the whole animal or any organ or cell of the human disease animal model can be used to isolate the above molecules.
- The “gold standard” human disease animal model can be any widely accepted animal which is representative of human disease. For example, the disease can be: allergy, arthritis, inflammatory disease, cancer such as breast cancer, testicular cancer, ovarian cancer and the like. One example of a “gold standard” animal model for allergy and asthma is the OVA-albumin induced mouse asthma model. One example of a “gold standard” animal model for arthritis is the collagen-induced arthritis mouse model. The disease also can be one which is caused by external environmental influences or stress-related diseases.
- The invention also provides a method for predicting the effect of a test composition for the treatment of a disease, the method comprising selecting an animal model for the disease, providing a biochip array for evaluating the effect of said test composition for the treatment of the disease, said biochip array comprising a surface having stably attached thereto a plurality of molecules capable of selective binding to at least one member of the group consisting of DNA, RNA, proteins, peptides or fragments thereof that is representative of an animal model for the disease, using the test composition in the animal model to obtain a first set of biological markers representative of the effect of the test composition in the animal model, using the biochip array to generate a first set of data representative of the first set of biological markers, and evaluating the first set of data to predict the effect of the test composition on the disease. Preferably, the animal model is a standard animal model for human disease. The biological markers generally are selected from the group consisting of DNA, RNA, proteins, peptides or fragments thereof, wherein the markers are selected from any metabolic pathway; apoptotic pathway; inflammatory pathway; cytokine production pathway; cellular growth product pathways; proto-oncogenes; oncogenes; antibodies or fragments thereof provided by the animal model.
- In preferred embodiments of the invention, further comprises selecting a second composition having a known treatment effect on the disease, using the second composition in the animal model to obtain a second set of biological markers representative of the effect of the second composition in the animal model, using the biochip array to generate a second set of data representative of the second set of biological markers, and comparing the first and second sets of data to predict the effect of the test composition on the disease.
- In other preferred embodiments, the method further comprises generating a control set of biological markers representative of the effect of no treatment in the animal model, using the biochip array to generate a control set of data representative of the control set of biological markers, and comparing the first and control sets of data to predict the effect of the test composition on the disease.
- The present invention also provides a method for predicting the effect of a test composition for the treatment of a disease comprising constructing a drug-gene-protein-biology database containing a plurality of data sets representative of the effects of a plurality of compositions in the animal model and comparing the test set of data with the database to predict the effect of the test composition on the disease.
- In another embodiment the toxicity of a drug to humans can be evaluated prior to any human trials. The drug, for example can be an FDA-approved drug, a newly discovered drug, environmental toxic drug, or any environmental agent.
- In another embodiment, the biochip is preferably used for drug discovery, evaluation of drug toxicity, predictability of toxic effects of a drug, identification of genes and proteins induced or repressed by the drug of action in a standard human disease animal model, or organs and cells thereof. The biochip is preferably comprised of genes, proteins, peptides or fragments thereof, combinations thereof, selected from any metabolic pathway; apoptotic pathway; inflammatory pathway; cytokine production pathway; cellular growth product pathways; proto-oncogenes; oncogenes; antibodies or fragments thereof.
- In another embodiment, the biochip comprises gene fragments from any part of a gene or several parts of the same gene, whole genes, nucleic acids, proteins or fragments thereof, peptides or fragments thereof, from both treated and untreated whole animal human disease animal models, organs or cells.
- In another embodiment, changes in gene expression between treated and untreated human disease animal models, or organs and cells thereof are detected by differentially labeling the nucleic acids and hybridizing sequence specific probes of choice. The sequence specific probe can be any sequence of any gene that is to be investigated.
- In another embodiment, changes in protein expression between treated and untreated standard human disease animal models, or organs and cells thereof are detected by differentially labeling peptide probes and hybridizing sequence specific probes of choice. The sequence specific probe can be any sequence of any protein, peptide or fragment thereof, that is to be investigated.
- In preferred embodiment the gene and protein expression changes in standard human disease animals that are treated with drug of choice versus the untreated are stored in a Drug-Gene-Protein-Biology database. The database is used to compare gene and protein expression profiles of standard human disease animal models treated with different drugs as compared to untreated animals. In one aspect, the database is used to evaluate a drug to be tested for therapeutic purposes, or to evaluate the molecular expression of efficacy of the drug for the designated therapeutic purpose, or to evaluate the molecular expression of toxicity of the drug.
- In another preferred embodiment, the Drug-Gene-Protein-Biology database can be mined to predict gene and protein expression, the efficacy and potential toxicity of a drug belonging to a family or class of drugs.
- In another embodiment the invention will include methods for the development of the Drug-Gene-Protein-Biology database. These methods will include systems, any novel software programs, devices and processes.
- Other aspects of the invention are disclosed infra.
- FIG. 1 is an illustration showing the application of the Predictive Molecular Expression of Efficacy, Toxicity, Adsorption, Distribution, Metabolism and Excretion (PMEET-ADME) process as applied to drug evaluation. The PMEET-ADME process can be applied to the drug evaluation at various points. One point is after drug selection during the pre-clinical evaluation process. Application of PMEET-ADME at this stage of the drug evaluation process provides a ranking of the candidate drug with regard to the benchmark drugs. The ranking reflects the projected efficacy, toxicity, adsorption, distribution, metabolism, and elimination of the candidate drug with respect to the benchmark drugs. A second point of application of the PMEET-ADME process is to drugs discarded during the drug selection process. In this case, drugs that were promising but did not survive the drug selection process are evaluated using PMEET-ADME process for any potential uses of the drug. This could result in previously discarded candidate drugs reaching FDA approval. A third point of application for the PMEET-ADME process is in the evaluation of drug-drug interactions and toxicity. Application of the PMEET-ADME process to drug-drug interactions during the pre-clinical phase of drug evaluation provides indications for possible adverse drug combinations prior to the treatment of humans.
- FIG. 2 is a diagram showing the identification of gene and protein expression networks. Panel A is a diagram of a normal and diseased state gene or protein expression network. Panel B is a diagram of the diseased and treated state gene or protein expression network. In both panels a square indicates a down regulation of a gene or protein and a circle indicates an up regulation of a gene or protein.
- The present invention provides for compositions and methods for construction of a biochip with multiple properties for use in identification of gene- and protein-induction by drugs; allows for the evaluation of efficacy and toxicity of any drug of choice; prediction of efficacy and toxicity of newly-discovered drugs, families of drugs or classes of drugs. The experimental information is inputted into a Drug-Gene-Protein-Biology (DGPB) database from which experimental data can be mined and analyzed based on the users preferences.
- Whole genome gene expression profiling is a relatively new technique that allows the analysis of several thousands of gene fragments in one experiment. This technique is made possible by the attachment of several thousands of gene fragments, in assigned locations, to a glass slide or a silicon wafer to produce a “gene chip”. A single gene chip can contain up to 40,000 gene fragments for gene expression analysis. Gene fragments can be from any part of a gene or several parts of the same gene. In general, the gene fragments are composed of two different groups, experimental and control. The experimental group contains fragments of genes whose expression is going to be profiled. While the control group contains the fragments of genes for several positive and several negative control genes. Control genes provide the means to monitor the quality of an experiment and provide “landmarks” for the location of the genes attached to the glass or silicon support. Typically the gene fragments are arranged in a grid pattern, repeated several times to form a “super grid” so as to allow multiple data points for analysis and landmarks to locate specific gene fragments (Microarray Biochip Technology, ed. Mark Schena (Natick, Mass.: Eaton Publishing 2000).
- The gene chip can be used to evaluate the differences in gene expression between untreated and treated cells. This is accomplished by differentially labeling the nucleic acids derived from the treated and untreated cells followed by sequence specific hybridization of the differentially labeled nucleic acids to the same gene chip. Conclusions and comparisons about the genes differentially expressed between the treated and untreated samples can be made after removal of the excess differentially labeled nucleic acid from the gene chip, data collection and data analysis (Microarray Biochip Technology, ed. Mark Schena (Natick, Mass.: Eaton Publishing 2000; Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P. and Trent, J. M. (1999). Expression profiling using cDNA microarrays. Nature Genetics Vol. 21S, p. 10-14)).
- Genes that are affected by the treatment of the cells are determined by comparing and identifying the differential gene expression between untreated and treated cells. For example, gene fragments having proportionally less labeled nucleic acid from the treated cells than from the untreated cells are said to have decreased expression or to have “repressed” gene expression. Whereas gene fragments that have proportionally more labeled nucleic acid from the treated cells than from the untreated cells are said to have increased expression or to have “induced” gene expression.
- Analysis of a list containing the gene fragments, level of induction or repression or no change, and the function of the gene allows the identification of biological pathways that have altered gene expression patterns. Thus, the massive amount of genetic information provided by a single gene chip experiment allows the identification of biochemical pathways exhibiting altered gene expression patterns due to a specific drug treatment. A gene chip provides information about altered gene expression patterns from which the expression patterns of induction or repression of proteins can be deduced but, with the additional information provided by a “protein chip” the actual expression pattern of the proteins can be deduced and correlated with gene expression.
- Subjecting human disease animal models to a battery of different drug treatments results in the induction or repression of many pathways at the cellular level, for example, gene and protein expression or repression. The present invention comprises the use of gene and protein chips for identifying these changes and use of the information obtained from the gene and/or protein biochip to build a Drug-Gene-Protein-Biology Database. Experimental treatments that are limited to a family of drugs identifies genes and proteins induced and repressed by the individual drugs and the drug family. Combining the gene expression profile and protein expression profile information from individual drugs, a drug family or a class of drugs into a single “Drug-Gene-Protein-Biology” database (DGPB) provides for the identification of genes and proteins that respond to individual drugs as well as drug families and classes. Furthermore, in preferred embodiments, the DGPB database will include information from metabolic profiling and the typical industrial methods of evaluating a drug, drug family or drug class effect on the treated biological material. These last two profiling methods, the metabolic and the typical industrial, has the added advantage of providing a link between the present methods of drug evaluation and the future methods of drug evaluation.
- In the present invention, the Drug-Gene-Protein-Biology (DGPB) database links drug action, genetic response, protein response and biological response together providing information storage so that software tools can compare and analyze data. Such software tools are well known to those skilled in the art. As the information in the database expands, the capacity of the database provides for a continuing increase in the ability to use the information for purposes of predicting the biological response of a new drug based on the genes and proteins that demonstrate induction or repression. Additionally, the database can be “mined” for the identification of new drug targets, new biological switches, new biological pathways, and the actions of drugs and drug treatments across a wide gene and protein profile.
- Experiments conducted to evaluate a drug for its molecular (both at the genetic and amino acid level) expression, efficacy, toxicity, ability to be adsorbed, will be referred to as Predictive Molecular Expression of Efficacy, Toxicity, Adsorption, Distribution, Metabolism and Excretion (PMEET-ADME) experiments. These experiments are conducted in accord with the present invention using biochips discussed infra. Information obtained from such experiments are inputted into the DGPB database, which will provide information predictive of a new drug's success in FDA clinical trials.
- A PMEET-ADME experiment has many advantages over typical or presently performed gene chip based experiments. For example, animal models that are medically relevant models of human diseases (pre-clinical animal models) for the drug are used in the evaluation. These models include use of transgenic mice and other transgenic animals including p53 tumor suppressor gene knockouts for tumorigenic studies, use of a transgenic model for impaired glucose tolerance and human Alzheimer's amyloid precursor protein models for the study of glucose metabolism and for the pathogenesis of Alzheimer's disease, respectively, etc. The biochips of the present invention are used for analysis of both genes and proteins so that genes and proteins induced or repressed by the drugs can be identified. Either the whole animal, or key organs such as lymph node, brain, kidney, liver, etc., are used to isolate genes and proteins for construction of the biochips. The other major advantage of the biochips is that they are also used in determining the metabolic profile and potential toxicity of a new drug or identify new uses for drugs that have not been approved by the FDA to treat a certain condition. More importantly, the experimental information obtained from the biochip of the present invention is used for correlating the gene and protein profile of known toxic drugs with the profile of newly discovered drugs, thereby providing a predictive model of drug toxicity for either individual drugs, families of drugs, sub-classes of drugs, etc. The advantage is that these toxic drugs are identified prior to proceeding to further experimental or clinical trials, thereby, cutting the cost of drug production.
- The other major advantage of the present experiment is that it provides for a database that is used for the organization of data, analysis of data, and mining of data. In this way a predictive index can be determined for the possibility of a new drug succeeding in FDA trials.
- The combination of the Predictive Molecular Expression of Efficacy, Toxicity, Adsorption, Distribution, Metabolism and Excretion (PMEET-ADME) experiments and the DGPB database as applied in the present invention for drug evaluation will improve the efficiency of drug evaluation, provide a predictive method for evaluation of a drug and provide evaluation of a drug in diseased or stressed animals. These advances in drug evaluation will have the benefit of providing drug evaluations in whole animal models that are medically relevant models of human diseases, animals that stressed due to the disease, and drug evaluations that are compared against currently used drugs.
- The PMEET-ADME process preferably is applied to the drug evaluation process at one of the following three locations (FIG. 1). The first location is after drug selection during the pre-clinical evaluation process. Application of PMEET-ADME at this stage of the drug evaluation process provides a ranking of the candidate drugs with regard to benchmark drugs in medically relevant animal models of human disease of interest. The ranking reflects the projected efficacy, toxicity, adsorption, distribution, metabolism and elimination of the candidate drug with respect to benchmark drugs. A second site of application is to the drugs that have been discarded during the drug selection process. In this case, drugs that showed promise, but were not selected to continue through the selection process are evaluated using the PMEET-ADME process for determining the probability of the drugs achieving FDA approval. A third location for the application of the PMEET-ADME process is in the evaluation of drug-drug interactions and toxicity. Application of the PMEET-ADME process to drug-drug interactions during the pre-clinical phase of drug evaluation provides indications for possible adverse drug combinations prior to the treatment of humans.
- The identification and elucidation of biological pathways involved in the disease process, disease progression, secondary effects of a disease as well as the response of the disease and the animal to treatment by drugs provides a novel process for the evaluation of candidate drugs, as illustrated in FIG. 2. The use of gene and protein biochips to analyze medically relevant animal models for human disease provides for the identification of biological pathways that are specifically involved in the biology of a disease. The rationale is that since these medically relevant models of human disease have been previously used to study human disease and to evaluate treatments for a disease, data obtained from these animal models is used to extrapolate gene and protein expression data to the human disease. For example, gene and protein expression of biological pathways involved in the disease, disease treatment, disease toxicology efficacy of a treatment as well as the identification of drugs having toxic effects. A model for evaluating a disease and treatment process can be constructed by understanding the expression and modification of these key genes and proteins.
- These models require the identification of the key genes and proteins and in the case of the genes the expression status (induced or repressed) and in the case of the proteins the expression and modification status (induced or repressed as well as modification event). The identified individual key gene or protein events are assigned a weighting factor based on their response to the benchmarking drugs. Thus, by constructing biochips containing the key genes and proteins an evaluation of a candidate drug against benchmark drugs can be performed.
- The term “biochip” as used herein, is a microarray chip comprised of gene fragments from any part of a gene or several parts of the same gene, whole genes, nucleic acids, proteins or fragments thereof, peptides or fragments thereof. The biochip can be comprised of any combinations of the above molecules in any pattern on the chip.
- The term “pattern” as used herein, can be parallel horizontal or vertical lines, spots, circles, grids, checkered designs, or any other desired design.
- Examples of Gold Standard Animal Models
- The terms, “gold standard animal models”, “medically relevant animal model”, or “animal model” are used interchangeably throughout the disclosure. As used herein, the above terms refer to any animal model that has been used to study a human disease, including any standard, well-accepted animal models of various human disease indications, or animal models that have been used to study the effects of therapies and drugs for pre-clinical evaluation. These animal models also include transgenic animals.
- Transgenic Animals as Gold Standard Human Disease Animal Models
- Transgenic animals are widely available, for example, transgenic mice which constitutively express an antibody-type molecule encoded by the transgene and which has an IgE heavy chain constant region and is specific for a pre-defined antigen, provide an allergic reaction to that antigen without prior sensitization and are useful as allergy models.
- The term “animal” is used herein to include all vertebrate animals, except humans. It also includes an individual animal in all stages of development, including embryonic and fetal stages.
- A “transgenic animal”, as used herein, is an animal containing one or more cells bearing genetic information received, directly or indirectly, by deliberate genetic manipulation at a subcellular level, such as by microinjection or infection with recombinant virus. This introduced DNA molecule may be integrated within a chromosome, or it may be extra-chromosomally replicating DNA.
- The term “germ cell-line transgenic animal” refers to a transgenic animal in which the genetic information was introduced into a germ line cell, thereby conferring the ability to transfer the information to offspring. If such offspring in fact possess some or all of that information, then they, too, are transgenic animals. The genetic alteration or genetic information may be foreign to the species of animal to which the recipient belongs, or foreign only to the particular individual recipient. In the last case, the altered or introduced gene may be expressed differently than the native gene.
- Construction of transgenic animals is well-known in the art. A type of target cell for transgene introduction is the embryonal stem cell (ES). ES cells may be obtained from pre-implantation embryos cultured in vitro and fused with embryos (M. J. Evans et al., Nature 292: 154-156 (1981); Bradley et al., Nature 309: 255-258 (1984); Gossler et al. Proc. Natl. Acad. Sci. USA 83: 9065-9069 (1986); and Robertson et al., Nature 322, 445-448 (1986)). Transgenes can be efficiently introduced into the ES cells by a variety of standard techniques such as DNA transfection, microinjection, or by retrovirus-mediated transduction. The resultant transformed ES cells can thereafter be combined with blastocysts from a non-human animal. The introduced ES cells thereafter colonize the embryo and contribute to the germ line of the resulting chimeric animal (R. Jaenisch, Science 240: 1468-1474 (1988)).
- To determine the contributions of individual genes and their expression products isolated genes to selectively inactivate the native wild-type gene in totipotent ES cells are used and then generate transgenic mice. The use of gene-targeted ES cells in the generation of gene-targeted transgenic mice was described 1987 (Thomas et al., Cell 51:503-512, (1987)) and is reviewed elsewhere (Frohman et al., Cell 56:145-147 (1989); Capecchi, Trends in Genet. 5:70-76 (1989); Baribault et al., Mol. Biol. Med. 6:481-492, (1989); Wagner, EMBO J. 9: 3025-3032 (1990); Bradley et al., BioTechnology 10: 534-539 (1992)).
- Techniques are available to inactivate or alter any genetic region to any mutation desired by using targeted homologous recombination to insert specific changes into chromosomal alleles. However, in comparison with homologous extrachromosomal recombination, which occurs at frequencies approaching 100% homologous plasmid-chromosome recombination was originally reported to only be detected at frequencies between 10 −6 and 10−3 (Lin et al., Proc. Natl. Acad. Sci. USA 82:1391-1395 (1985); Smithies et al., Nature 317: 230-234 (1985); Thomas et al., Cell 44:419-428, (1986); Song et al., Proc. Natl. Acad Sci. USA 84:6820-6824 (1987)). Nonhomologous plasmid-chromosome interactions are more frequent, occurring at levels 105-fold (Lin et al., Proc. Natl. Acad Sci. USA 82:1391-1395 (1985)) to 102-fold (Thomas et al., Cell 44:419-428 (1986); Song et al., Proc. Natl. Acad. Sci. USA 84:6820-6824 (1987)) greater than comparable homologous insertion.
- To overcome this low proportion of targeted recombination in murine ES cells, various strategies have been developed to detect or select rare homologous recombinants. One approach for detecting homologous alteration events uses the polymerase chain reaction (PCR) to screen pools of transformant cells for homologous insertion, followed by screening individual clones (Kim et al., Nucleic Acids Res. 16:8887-8903 (1988); Kim et al, Gene 103:227-233 (1991)). Alternatively, a positive genetic selection approach has been developed in which a marker gene is constructed which will only be active if homologous insertion occurs, allowing these recombinants to be selected directly (Sedivy et al., Proc. Natl. Acad. Sci. USA 86:227-231 (1989)). One of the most general approaches developed for selecting homologous recombinants is the positive-negative selection (PNS) method developed for genes for which no direct selection of the alteration exists (Mansour et al., Nature 336:348-352: (1988); Capecchi, Science 244:1288-1292, (1989); Capecchi, Trends in Genet. 5:70-76 (1989)). The PNS method is more efficient for targeting genes that are not expressed at high levels because the marker gene has its own promoter. Nonhomologous recombinants are selected against by using the Herpes Simplex virus thymidine kinase (HSV-TK) gene and selecting against its nonhomologous insertion with the herpes drugs such as gancyclovir (GANC) or FIAU (1-(2-deoxy 2-fluoro-B-D-arabinofluranosyl)-5-iodouracil). By this counter-selection, the number of homologous recombinants in the surviving transformants can be enriched.
- As used herein, a “targeted gene” or “Knock-out” (KO) is a DNA sequence introduced into the geriline of a non-human animal by way of human intervention, including but not limited to, the above described methods. The targeted genes of the invention include DNA sequences that are designed to specifically alter cognate endogenous alleles.
- The methods for evaluating the targeted recombination events as well as the resulting knockout mice are readily available and known in the art. Such methods include, but are not limited to DNA (Southern) hybridization to detect the targeted allele, polymerase chain reaction (PCR), polyacrylamide gel electrophoresis (PAGE) and Western blots to detect DNA, RNA and protein.
- The OVA-induced Bronchial Asthma Mouse Model for Inhibition of Mast Cell Degranulation Asthma is a complex disease, which is characterized by spontaneous exacerbation of airways obstruction and persistent bronchial hyperresponsiveness. Chronic infiltration with activated T-lymphocytes, eosinophils and macrophages/monocytes of the airway submucosa is another established feature. Inflammatory mechanisms, with expression of cytokines, and the release of inflammatory mediators, underlie the pathogenesis of bronchoconstriction and bronchial hyperresponsiveness. However, much of the pathogenic mechanism remains unclear, e.g., the mechanisms that induce persistence of symptoms and chronic inflammation and the interventions necessary to control and prevent the disease.
- It has long been recognized that a single inhaled allergen challenge can induce an acute increase in airway responsiveness in some individuals and animal models. However, repeated allergen inhalations have demonstrated more pronounced, consistent, and prolonged increases in airway responsiveness. This mouse model of long-term repeated inhalations of allergen has been used to study the long term effect of allergic diseases in the lung, and to delineate the cells, mechanisms, molecules, and mediators involved in the induction of airway hyperresponsiveness of lung in humans.
- Some common examples of inflammatory diseases are asthma, lupus, multiple sclerosis, osteoarthritis, psoriasis, Crohn's disease and rheumatoid arthritis.
- According to the invention different drugs may be used to modulate the expression of genes involved in inflammatory diseases. Tables 1 through 4 lists a number of genes and/or proteins that may be modulated by different drugs; table 1 (CD markers), table 2 (adhesion molecules) table 3 (chemokines and chemokine receptors), and table 4 (interleukins and their receptors). Also included as particularly interesting are the genes encoding the immunoglobulin E (IgE) and the IgE-receptor (FcεRIα) as well as the genes for the other immunoglobulins, IgG( 1-4), IgA1, IgA2, IgM, IgE, and IgD encoding free and membrane bound immunoglobulins and the genes encoding their corresponding receptors.
TABLE 1 CD markers CD1a-d CD30 CD61 CD91 CD121 CD2 CD31 CD62E CDw92 CD122 CD3 CD32 CD62L CD93 CDw123 CD4 CD33 CD62P CD94 CD124 CD5 CD34 CD63 CD95 CDw125 CD6 CD35 CD64 CD96 CD126 CD7 CD36 CD65 CD97 CD127 CD8 CD37 CD66a-e CD98 CDw128 CD9 CD38 CD67 CD99 CD129 CD10 CD39 CD68 CD100 CD130 CD11a CD40 CD69 CD101 CDw131 CD11b CD41 CD70 CD102 CD132 CD11c CD42a-d CD71 CD103 CD133 CDw12 CD43 CD72 CD104 CD134 CD13 CD44 CD73 CD105 CD14 CD45 CD74 CD106 CD15 CD46 CDw75 CD107a,b CD16 CD47 CDw76 CDw08 CDw17 CD48 CD77 CD109 CD18 CD49a-f CDw78 CD110 CD19 CD50 CD79a,b CD111 CD20 CD51 CD80 CD112 CD21 CD52 CD81 CD113 CD22 CD53 CD82 CD114 CD23 CD54 CD83 CD115 CD24 CD55 CDw84 CD116 CD25 CD56 CD85 CD117 CD26 CD57 CD86 CD118 CD27 CD58 CD87 CD119 CD28 CD59 CD88 CD120a,b CD29 CDw60 CD89 CD30 CD90 -
TABLE 2 Adhesion molecules L-selectin TCRγ/δ BB-1 Integrin α7 Integrin α6 P-selectin CD28 N-cadherin Integrin α8 Integrin β5 E-selectin LFA-3 E-cadherin integrin αV Integrin αV HNK-1 PECAM-1 P-cadherin Integrin β2 Integrin β6 Sialyl-Lewis VCAM-1 Integrin β1 integrin αL Integrin αV X CD 15 ICAM-2 Integrin α1 Integrin αM Integrin β7 LFA-2 ICAM-3 Integrin α2 Integrin αX Integrin αIEL CD22 Leukosialin Integrin α3 Integrin β3 Integrin α4 ICAM-1 HCAM Integrin α4 Integrin αV Integrin β8 N-CAM CD45RO Integrin α5 Integrin αIib Integrin αV Ng-CAM CD5 Integrin α6 Integrin β4 TCRα/β HPCA-2 -
TABLE 3 Chemokines and Chemokine receptors C-X-C C-C hemokine chemokines chemokines C chemokines eceptors IL-8 MCAF/MCP-1 ABCD-1 Lymphotactin CCR1 NAP-2 MIP-1 α,β LMC CCR2 GRO/MGSA RANTES AMAC-1 CCR3 γIP-10 I-309 NCC-4 CCR4 ENA-78 CCF18 LKN-1 CCR5 SDF-1 SLC STCP-1 CCR6 1-TAC TARC TECK CCR7 LIX PARC EST CCR8 SCYB9 LARC MDC CXCR1 B EBI 1 Eotaxin CXCR2 cell-attracting chemokine 1 HCC-1 CXCR3 HCC-4 CXCR4 CXCR5 CX3CR -
TABLE 4 Interleukins and their receptors G-CSF IL-2 Rα IL-8 IL-16 TGF-β1 G-CSF R IL-2 Rβ IL-9 IL-17 TGF-β1,2 GM-CSF IL-2 Rγ 1L-9 R IL-18 TGF-β2 IFN-γ IL-3 IL-10 PDGF TGF-β3 IGF-I IL-3 Rα IL-10 R PDGF A Chain TGF-β5 IGF-I R IL-4 IL-11 PDGF-AA LAP TGF-β1 IGF-II IL-4 R IL-11 R PDGF-AB Latent TGF-β1 IL-1α IL-5 IL-12 PDGF B Chain TGF-βbpl IL-1β IL-5 Rα IL-12 p40 PDGF-BB TGF-βRII IL-1 RI IL-6 IL-12 p70 PDGF Rα TGF-βRIII IL-1 RII IL-6 R IL-13 PDGF Rβ IL-1rα IL-7 IL-13 Rα TGF-α IL-2 IL-7 R IL-15 TGF-β - It should be appreciated that in the above tables 1 through 4, an indicated gene means the gene and all currently known variants thereof, including the different mRNA transcripts to which the gene and its variants can give rise, and any further gene variants which may be elucidated. In general, however, such variants will have significant homology (sequence identity) to a sequence of a table above, e.g. a variant will have at least about 70 percent homology (sequence identity) to a sequence of the above tables 1-4, more typically at least about 75, 80, 85, 90, 95, 97, 98 or 99 homology (sequence identity) to a sequence of the above tables 1-4. Homology of a variant can be determined by any of a number of standard techniques such as a BLAST program.
- Sequences for the genes listed in Tables 1-4 can be found in GenBank (http://www.ncbi.nlm.nih.gov/). The gene sequences may be genomic, cDNA or mRNA sequences. Preferred sequences are mammalian genes containing the complete coding region and 5′ untranslated sequences. Particularly preferred are human cDNA sequences.
- Induced Type II Collagen Arthritis Mouse Model
- A mouse model is used to evaluate the effect of the compounds in accord with the present invention on the histological, radiographic and clinical appearance of induced type II collagen arthritis.
- Autoimmune diseases cause significant and chronic morbidity and disability. Arthritis in its many forms is representative of a family of autoimmune diseases. In the clinical realm, rheumatoid arthritis (RA) is the most common form of the severe arthrodysplastic disease. All clinicians agree that RA is a progressive disease.
- The histopathology of arthritic lesions occurring in murine collagen induced arthritis model (CIA) share enormous similarities to that of RA in human patients. Thus, murine CIA is an accepted model to study potential therapeutic treatments of RA.
- Any acceptable animal model can be used for testing gene expression induced by drugs. Other examples of gold standard animal models of human disease include the following.
- The animal model for Alzheimer's disease in humans, which is produced by placing a selective lesion in a subcortical nucleus (nucleus basalis of Meynert) with a resultant cortical cholinergic deficiency, similar in magnitude to that seen in early to moderate stage Alzheimer's disease. Numerous behavioral deficits, including the inability to learn and retain new information, characterizes this lesion. Drugs that can normalize these abnormalities would have a reasonable expectation of efficacy in Alzheimer's disease. Haroutunian, V., Kanof, P., Davis, K. L: Pharmacological Alleviations of Cholinergic-Lesion-Induced Memory Defects in Rats. Life Sciences, 37:945-952 (1985).
- The OVCAR3 human ovarian cancer animal model accurately approximates the clinical presentation of stage M-IV ovarian cancer of peritoneal carcinomatosis. Untreated, OVCAR3 tumor is lethal to nude mice.
- Animal Models For Evaluating Suspected Environmentally Influenced Carcinogenicity
- The biochip chip can also be used to determine carcinogenicity or toxicity of various environmental agents by comparing the gene expression between animals exposed to the agent versus those animals not exposed. In order to determine carcinogenicity of suspected environmental influences, the cancer suppressing gene of an animal model is controlled by genetic manipulation to render it susceptible to carcinogenic influences. In this regard, one of a pair of cancer suppressing genes of the animal is rendered inactive, so that the offspring of the animal may be exposed to the expected environmental carcinogen for testing purposes. Tumor development of the animal thus exposed is a positive indication of carcinogenicity of the suspected environmental influence.
- As an example of production of a mouse model for evaluation of carcinogenicity of suspected environmental influences, a strain of mice had been developed having heterogeneity of the RB gene. Exposure of the mouse to a carcinogen results in alteration of the dominant RB gene thereby resulting in production of the homozygous, recessive condition with attendant tumor development. (See, for example, Nature, 326:292, (1987); Nature, 326:295, (1987); Proc. Natl. Acad Sci. U.S.A., 83:9065, (1986)).
- Immunization of Animal Models
- To determine whether a drug induces or represses a gene or protein for design of drug treatments, animal models can also be immunized with an antigen of choice such as allergens, inflammatory proteins or peptides, haptens and the like. For example, in the OVA animal model, the animals are immunized with allergens and then the drug of choice is administered to determine any changes in gene or protein expression. Immunization of animals is well known in the art. The antigen can be administered to the mammal by any number of suitable routes such as subcutaneous, intraperitoneal, intravenous, intramuscular, intracutaneous injection, topically or orally. The optimal immunizing interval, immunizing dose, etc., can vary within relatively wide ranges. Typical procedures involve injection of the antigen several times over a number of months. Antigen may be co-administered with an adjuvant to increase the antigenicity of the antigen. For example, in the CIA mouse model of arthritis, lipopolysaccharide (LPS) can be used as an adjuvant to increase the antigenicity response to collagen in inducing a particularly aggressive form of arthritis in the mouse.
- Identification of Pathways that can be Influenced by Drugs
- Treatment of animals with the drug of choice will influence expression or repression of certain proteins, for example, those proteins involved in inflammation if the drug of choice is anti-inflammatory; biological pathways, for example, enzymatic pathways, regulatory pathways, chemokine pathways, etc. The drug of choice may repress or allow over-expression of a particular protein in a pathway. For example, many cellular pathways are stimulated via the G-protein, using phospholipases as secondary messengers. Three phospholipases have been characterized and can be used in the design of the biochip to determine activation of, for example, inflammatory pathways. Other phospholipases can be included when they are characterized sufficiently.
- One is phosopholipase C, PLC β2, which generates two second messengers, 1,4,5-inositol triphosphate (IP3) and diacylglycerol (DG). The β, γ subunits of the G-protein generated during activation of the FPR [formyl peptide receptor] activate PLCβ2. IP3 binds to certain calcium channels to stimulate the release of calcium from intracellular storage, resulting in an increase in the cytosolic concentration of calcium that is observed during stimulation by chemoattractants. DG, in concert with released calcium, activates protein kinase C (PKC).
- A second, phospholipase A 2 (PLA2), generates arachidonic acid from the phospholipids of the inner face of the plasma membrane. Arachidonic acid provides the precursors for the inflammatory mediators such as leukotrienes and prostaglandins. PLA2 is activated upon phosphorylation by the mitogen-activated protein (MAP) kinase.
- A third phospholipase is phospholipase D (PLD), which generates phosphatidic acid and choline from phosphatidylcholine. Phosphatidic acid may be involved in activation of respiratory burst oxidase in addition to playing a role in the production of DG, which activates PKC. However, activation of PLD requires calcium. For example, FMLP (fMet-Leu-Phe) cannot stimulate PLD in calcium-depleted cells (Kessels et al., J. Biol. Chem. 266: 23152-23156, 1991). In addition, it appears that the G-protein Arf and G-protein Rho regulate PLD activity (Brown et al., Cell 75: 1137-1144, 1993; Cockcroft et al., Science 263: 523-526, 1994; Singer et al., J. Biol. Chem. 270: 14944-14950, 1995).
- As discussed above, PKC is activated by DG, which is generated by PLC. PKC acts to phosphorylate serine and threonine residues. PKC consists of six different isoforms, three of which are sensitive to intracellular calcium (α, β, and γ forms) and three that are not (δ, ε, and ζ forms). Neutrophils contain the α, β, and ζ forms but not the γ form. The calcium-dependent and DG-dependent PKC (PKC-β) responds to FMLP and phorbol ester stimulation by translocating from the cytosol to the membrane. It then phosphorylates a number of cytosolic proteins, such as those involved in the respiratory burst oxidase system. FMLP can also activate the calcium-independent, DG-dependent and phosphatidyl serine-dependent PKC form. Thus, a drug of choice which acts in a similar manner may be identified or its mechanism of action elucidated allowing for design of new drugs with lower side effects.
- The MAP kinase reportedly is activated by the β, γ subunits of the G-proteins by the activities of Ras and Raf. This kinase pathway is also stimulated by C 5a and IL-8 (Buhl et al., J. Biol. Chem. 270: 19828-19832, 1995; Knall et al., J. Biol. Chem. 271: 2832-2838, 1996). MAP kinase induces tyrosine phosphorylation of several regulatory proteins, such as the extracellular signal-regulated kinase (ERK)-1. Thus MAP, or regulatory proteins such as (ERK-1) in the pathway can be used in the design of the biochip.
- Phosphatidylinositol 3-kinase (PI3K) is responsible for the formation of PI triphosphate (PIP 3) that is observed upon stimulation by FMLP.
- The above is just one example of how a drug may affect a certain pathway by repressing or inducing expression of one protein, for example G-protein.
- Any gene or protein involved in such pathways can be used in the design of the biochip in order to elucidate at which stages drugs repress, express or do not change expression levels. Examples of genes and/or proteins in pathways that can be influenced by drugs for use in designing the protein and/or gene chips are listed in Table 5.
TABLE 5 Gene Name Gene Abbreviation Comments BMP-2 Caspase 1 CD 4 CD 11 FAS antigen G-CSF GM-CSF ICAM-1 IFN α4 IgER IgE IL 1 IL 3 IL 4 IL 5 IL 10 IL 13 IL 15 MCSF MLP-1 RANTES TGFα TNFα TNFβ C5a IL8 IFNα ICAM IL2 IL6 Formal Peptide FPR Receptor VCAM Nitrous Oxide Pathway Oxide Pathway Peroxide Pathway Carbonic Acid Pathway Histamine Release Pathway Matrix MMPs Pathway Metalloproteinases Tissue Inhibitors of TIMPs Pathway MMPs G-proteins Pathway(s) Peripheral Blood Pathway Cellular controls Mucus Production Pathway Eosinophil Activation Pathway and Mobilization P13 Raf Ras Pp60 Src ERK-1 G protein α G protein β G-protein γ PLC γ Grb2 Gene Name Gene Abbreviation Comments SOS Shc MAP K Jun Kinase Myc Fos NFK B IKB Apoptosis Pathway PLC β Syk JAK 3 FCεR1 Collagen Pathway Lamin Pathway Receptors Cell Proliferation Transcription Factors Cell Proliferation Growth Factors Cell Proliferation Connexins Cell Proliferation Phosphatases Cell Proliferation Kinases Cell Proliferation Helicases DNA Damage and Repair DNA repair genes DNA Damage and Repair GADDS DNA Damage and Repair Topoisomerases DNA Damage and Repair Eras DNA Damage and Repair Serum Amyloids Inflammation Chemokines Inflammation Interleukins Inflammation Adhesion Molecules Inflammation Glutathione Enzymes Metabolism P450 Metabolism Methyltransferases Metabolism Redox Enzymes Metabolism Glucuronidation Metabolism Enzymes Oxide Response Genes Oxidative stress Superoxide Dismutase SOD Metabolism Peroxisomal Enzymes Caspase Apoptosis Fas Apoptosis Bak Apoptosis Calcineurin Apoptosis Cyclins Apoptosis Bax Apoptosis TNFs Apoptosis MDR Transport Organic Anion Transport Cationic Anion Transport P53 MDM2 HIF1 - PMEET-ADME Biochip
- One skilled in the art will appreciate that an enormous number of array designs are suitable for the practice of this invention. The biochip can be comprised of any molecule, for example, oligonucleotides, DNA, PNA (peptide nucleic acids) or RNA, proteins, peptides, amino acid sequences or fragments thereof.
- Preferably, the oligonucleotides that comprise the biochip are of a defined length and similarity. This allows for similar hybridization characteristics. For the hybridization characteristics to be similar across a wide range of oligonucleotides, as is well known to those skilled in the art, it is required that the oligonucleotides be of the substantially same length, have a similar percentage of Guanine to Cytosine content and lack any extensive runs of poly A, poly G, poly C, or poly T tracts. The goal of having these parameters is to produce oligonucleotides that have similar melting and hybridization temperatures. Additionally, these oligonucleotides should, preferably, lack lengthy complementary regions and not form hairpins.
- One method for generating the biochip of the present invention is disclosed in U.S. Pat. No. 6,093,302, by Montgomery. The method disclosed is a solid phase synthesis method for the preparation of diverse sequences of separate polymers or nucleic acid sequences using electrochemical placement of monomers or nucleic acids at a specific location on a substrate containing at least one electrode that is preferably in contact with a buffering or scavenging solution to prevent chemical cross-talk between electrodes due to diffusion of electrochemically generated reagents.
- Another suitable method of generating the biochip of the present invention is disclosed in Microarray Biochip Technology, ed. Mark Schena (Natick, Mass.: Eaton Publishing 2000); and Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P. and Trent, J. M. (1999). Expression Profiling Using cDNA Microarrays, Nature Genetics Vol. 21S, p. 10-14.
- Other methods of forming high density arrays of oligonucleotides, peptides and other polymer sequences with a minimal number of synthetic steps are known. The oligonucleotide analogue array can be synthesized on a solid substrate by a variety of methods, including, but not limited to, light-directed chemical coupling, and mechanically directed coupling. See Pirrung et al., U.S. Pat. No. 5,143,854 (see also PCT Application No. WO 90/15070) and Fodor et al., PCT Publication Nos. WO 92/10092 and WO 93/09668 which disclose methods of forming vast arrays of peptides, oligonucleotides and other molecules using for example, light-directed synthesis techniques. See also, Fodor et al., Science, 251:767-777 (1991). These procedures for synthesis of polymer arrays are now referred to as VLSIPS™ procedures. Using the VLSIPS™ approach, one heterogeneous array of polymers is converted through simultaneous coupling at a number of reaction sites, into a different heterogeneous array.
- The development of VLSIPS™ technology is considered pioneering technology in the fields of combinatorial synthesis and screening of combinatorial libraries. In brief, the light-directed combinatorial synthesis of oligonucleotide arrays on a glass surface proceeds using automated phosphoramidite chemistry and chip masking techniques. In one specific implementation, a glass surface is derivatized with a silane reagent containing a functional group, e.g., a hydroxyl or amine group blocked by a photolabile protecting group. Photolysis through a photolithographic mask is used selectively to expose functional groups which are then ready to react with incoming 5′-photoprotected nucleoside phosphoramidite. The phosphoramidites react only with those sites which are illuminated (and thus exposed by removal of the photolabile blocking group). Thus, the phosphoramidites only add to those areas selectively exposed from the preceding step. These steps are repeated until the desired array of sequences have been synthesized on the solid surface. Combinatorial synthesis of different oligonucleotide analogues at different locations on the array is determined by the pattern of illumination during synthesis and the order of addition of coupling reagents.
- In the event that an oligonucleotide analogue with a polyamide backbone is used in the VLSIPS™ procedure, it is generally inappropriate to use phosphoramidite chemistry to perform synthetic steps, since the monomers do not attach to one another via a phosphate linkage. Instead, peptide synthetic methods are substituted. See, e.g. Pirrung et al., U.S. Pat. No. 5,143,854.
- Peptide substituted nucleic acids are commercially available from e.g. Biosearch, Inc. (Bedford, Mass.) which comprise a polyamide backbone and the bases found in naturally occurring nucleosides. Peptide nucleic acids are capable of binding to nucleic acids with high specificity, and are considered “oligonucleotide analogues” for purposes of this disclosure.
- In accord with the present invention, large arrays can be generated using presynthesized oligonucleotides laid down in linear rows to form an array, which then can be divided or cut into strips, to form a number of smaller, uniform arrays. Strips from different arrays can be combined to form more complex composite arrays. In this way, both the efficiency of oligonucleotide attachment (or synthesis) is improved, and there is a significant increase in reproducibility of the arrays.
- It is also a desired embodiment of the present invention to provide regions having varying widths and lengths of attached oligonucleotides. Each oligonucleotide can form an oligonucleotide strip that is longer than it is wide; that is, when hybridization to a target sequence occurs, a strip of hybridization occurs. This significantly increases the ability to distinguishing over non-specific hybridization and background effects when detection is via visualization, such as through the use of radioisotope detection. When other types of detection such as fluorescence is used, the length of the strip allows repeated detection reactions to be made, with or without slight variations in the position along the length of the strip. Averaging of the data points allows the minimization of false positives or position dependent noise such as dust, microdebris, etc.
- Thus, the present invention also provides for oligonucleotide arrays comprising a solid support with a plurality of different oligonucleotide pools. By “plurality” herein is meant at least two different oligonucleotide species, with from about 10 to 1000 being preferred, and from about 50 to 500 being particularly preferred and from about 100-200 being especially preferred, although smaller or larger number of different oligonucleotide species may be used as well. As will be appreciated by those in the art, the number of oligonucleotides per array will depend in part on the size and composition of the array, as well as the end use of the array. Thus, for certain diagnostic arrays, only a few different oligonucleotide probes may be required; other uses such as cDNA analysis may require more oligonucleotide probes to collect the desired information.
- The composition of the solid support may be anything to which oligonucleotides may be attached, preferably covalently, and will also depend on the method of attachment. Preferably, the solid support is substantially nonporous; that is, the oligonucleotides are attached predominantly at the surface of the solid support.
- Accordingly, suitable solid supports include, but are not limited to, those made of plastics, resins, polysaccharides, silica or silica-based materials, functionalized glass, modified silicon, carbon, metals, inorganic glasses, membranes, nylon, natural fibers such as silk, wool and cotton, and polymers. In some embodiments, the material comprising the solid support has reactive groups such as carboxy, amino, hydroxy, etc., which are used for attachment of the oligonucleotides. Alternatively, the oligonucleotides are attached without the use of such functional groups, as is more fully described below. Polymers are preferred, and suitable polymers include, but are not limited to, polystyrene, polyethylene glycol tetraphthalate, polyvinyl acetate, polyvinyl chloride, polyvinyl pyrrolidone, polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene, butyl rubber, styrenebutadiene rubber, natural rubber, polyethylene, polypropylene, (poly)tetrafluoroethylene, (poly)vinylidenefluoride, polycarbonate and polymethylpentene. Other preferred polymers include those well known in the art, see for example, U.S. Pat. No. 5,427,779.
- The solid support has covalently attached oligonucleotides. By “oligonucleotide” or “nucleic acid” or grammatical equivalents herein is meant at least two nucleotides covalently linked together. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, a nucleic acid may have an analogous backbone, comprising, for example, phosphoramide (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl. Acids Res. 14:3487 (1986); Sawai et al, Chem. Lett. 805 (1984), Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate, phosphorodithioate, phosphoramidate, O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), peptide nucleic acid linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31:1008 (1992); Nielsen, Nature, 365:566 (1993)) or morpholino-type backbones. These modifications of the ribose-phosphate backbone may be done to increase the stability and half-life of such molecules in physiological environments, or to increase the stability of the hybridization complexes (duplexes). Generally, the attached oligonucleotides are single stranded. The oligonucleotide may be DNA, both genomic and cDNA, RNA or a hybrid, where the oligonucleotide contains any combination of deoxyribo- and ribo-nucleotides, and any combination of uracil, adenine, thymine, cytosine and guanine, as well as other bases such as inosine, xanthine and hypoxanthine.
- The length of the oligonucleotide, i.e. the number of nucleotides, can vary widely, as will be appreciated by those in the art. Generally, oligonucleotides of at least 6 to 8 bases are preferred, with oligonucleotides ranging from about 10 to 500 being preferred, with from about 20 to 200 being particularly preferred, and 40 to 100 being especially preferred. Longer oligonucleotides are preferred, since higher stringency hybridization and wash conditions can be used, which decreases or eliminates non-specific hybridization. However, shorter oligonucleotides can be used if the array uses levels of redundancy to control the background, or utilizes more stable duplexes.
- The arrays of the invention comprise at least two different covalently attached oligonucleotide species, with more than two being preferred. By “different” oligonucleotide herein is meant an oligonucleotide that has a nucleotide sequence that differs in at least one position from the sequence of a second oligonucleotide; that is, at least a single base is different. If the desired pattern is comprised of parallel lines, arrays can be made wherein not every strip contains an oligonucleotide. That is, when the solid support comprises a number of different support surfaces, such as fibers, for example, not every fiber must contain an oligonucleotide. For example, “spacer” fibers (or rows, when a single support surface is used) may be used to help alignment or detection. In a preferred embodiment, every row or fiber has a covalently attached oligonucleotide. In this embodiment, some rows or fibers may contain the same oligonucleotide, or all the oligonucleotides may be different. Thus, for example, it may be desirable in some applications to have rows or fibers containing either positive or negative controls, evenly spaced throughout the array, i.e., every nth fiber or row is a control. Similarly, any level of redundancy can be built into the array; that is, different fibers or rows containing identical oligonucleotides can be used.
- The space between the oligonucleotide strips, or spots, etc, can vary widely, although generally is kept to a minimum in the interests of miniaturization. The space will depend on the methods used to generate the array; for example, for woven arrays utilizing fibers, the methodology utilized for weaving can determine the space between the fibers.
- Each oligonucleotide pool or species is arranged in a desired pattern design, such as for example, a linear row to form an immobilized, distinct, oligonucleotide strip. By “distinct” herein is meant that each row is separated by some physical distance. By “immobilized” herein is meant that the oligonucleotide is attached to the support surface, preferably covalently. By “strip” herein is meant a conformation of the oligonucleotide species that is longer than it is wide. When the array comprises a number of different support surfaces, such as outlined above for fibers, each strip is a different fiber. However, the arrays can be arranged in any desired pattern.
- In one embodiment, the solid support comprises a single support surface. That is, a plurality of different oligonucleotide pools are attached to a single support surface, in distinct linear rows, forming oligonucleotide strips. In a preferred embodiment, the linear rows or stripes are parallel to each other. However, any conformation of strips or desired patterns can be used as well. In one embodiment, there are preferably at least about 1 strip per millimeter, with at least about 2 strips per millimeter being preferred, and at least about 3 strips per millimeter being particularly preferred, although arrays utilizing from 3 to 10 strips, or higher, per millimeter also can be generated, depending on the methods used to lay down the oligonucleotides.
- In an alternative embodiment, the solid support comprises a plurality of separate support surfaces that are combined to form a single array. In this embodiment, each support surface can be considered a fiber. Thus, the array comprises a number of fibers, each of which can contain a different oligonucleotide. That is, only one oligonucleotide species is attached to each fiber, and the fibers are then combined to form the array.
- By “fiber” herein is meant an elongate strand. Preferably the fiber is flexible; that is, it can be manipulated without breaking. The fiber can have any shape or cross-section. The fibers can comprise, for example, long slender strips of a solid support that have been cut off from a sheet of solid support. Alternatively, and preferably, the fibers have a substantially circular cross section, and are typically thread-like. Fibers are generally made of the same materials outlined above for solid supports, and each solid support can comprise fibers with the same or different compositions.
- The fibers of the arrays can be held together in a number of ways. For example, the fibers can be held together via attachment to a backing or support. This is particularly preferred when the fibers are not physically interconnected. For example, adhesives can be used to hold the fibers to a backing or support, such as a thin sheet of plastic or polymeric material. In a preferred embodiment, the adhesive and backing are optically transparent, such that hybridization detection can be done through the backing. In a preferred embodiment, the backing comprises the same material as the fiber; alternatively, any thin films or sheets can be used. Suitable adhesives are known in the art, and will resist high temperatures and aqueous conditions. Alternatively, the fibers can be attached to a backing or support using clips or holders. In an additional embodiment, for example when the fibers and backing comprise plastics or polymers that melt, the fibers are attached to the backing via heat treatment at the ends. The fibers, i.e., the separate support surfaces, plus the means to hold them together, together form the solid support.
- In a preferred embodiment, the fibers are woven together to form woven fiber arrays. Thus, the array further comprises at least a third and a fourth fiber which are interwoven with the first and second fibers. In this embodiment, either or both of the weft (also sometimes referred to as the woof) and warp fibers contains covalently attached oligonucleotides.
- If desired, the strips of different arrays can be placed adjacently together to form composite or combination arrays. A “composite” or “combination array” or grammatical equivalents is an array containing at least two strips from different arrays for a fiber array; the same types of composite arrays can be made from single support surface arrays. That is, one strip is from a first fiber array, and another is from a second fiber array. The second fiber array has at least one covalently attached oligonucleotide that is not present in said first array, i.e. the arrays are different.
- The composite arrays can be made solely of alignment arrays, solely of woven arrays, or a combination of different types. The width and number of strips in a composite array can vary, depending on the size of the fibers, the number of fibers, the number of target sequences for which testing is occurring, etc. Generally, composite arrays comprise at least two strips. As will be appreciated by those in the art, the composite arrays can comprise any number of strips, and can range from 2 to 1000, with from 5-100 being particularly preferred.
- The strips of arrays in a composite array are generally adjacent to one another, such that the composite array is of a minimal size. However, there can be small spaces between the strips for facilitating or optimizing detection. Additionally, as for the fibers within an array, the strips of a composite array may be attached or stuck to a backing or support to facilitate handling.
- As will be appreciated by those in the art, the method of making the oligonucleotide arrays of the present invention may vary. In a preferred embodiment, oligonucleotides are synthesized using traditional and well-known methods and then attached to the support surface. Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art.
- The oligonucleotides are synthesized as is known in the art, and then attached to the surface, see for example, U.S. Pat. Nos. 5,427,779; 4,973,493; 4,979,959; 5,002,582; 5,217,492; 5,258,041 and 5,263,992. Briefly, coupling can proceed in one of two ways: a) the oligonucleotide is derivatized with a photoreactive group, followed by attachment to the surface; or b) the surface is first treated with a photoreactive group, followed by application of the oligonucleotide. The activating agent can be N-oxy-succinimide, which is put on the surface first, followed by attachment of a N-terminal amino-modified oligonucleotide, as is generally described in Amos et al., Surface Modification of Polymers by Photochemical Immobilization, The 17th Annual Meeting of the Society of Biomaterials, May 1991, Scottsdale Ariz. Thus, for example, a suitable protocol involves the use of binding buffer containing 50 mM sodium phosphate pH 8.3, 15% Na 2SO4 and 1 mm EDTA, with the addition of 0.1-10 pM/μl of amino-terminally modified oligonucleotide. The sample is incubated for some time, from 1 second to about 45 minutes at 37° C., followed by washing (generally using 0.4 N NaOH/0.25% Tween-20), followed by blocking of remaining active sites with 1 mg/ml of BSA in PBS, followed by washing in PBS. The methods allow the use of a large excess of an oligonucleotide, preferably under saturating conditions; thus, the uniformity along the strip is very high.
- The oligonucleotides can also be covalently attached to the support surface. In an additional embodiment, the attachment may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.
- Oligonucleotides can be added to the surface in a variety of ways. In one method, the entire surface is activated, followed by application of the oligonucleotide pools in linear rows or any other desired pattern, with the appropriate blocking of the excess sites on the surface using known blocking agents such as bovine serum albumin. Alternatively, the activation agent can be applied in linear rows, followed by oligonucleotide attachment.
- Application of the oligonucleotides can be done in several ways. In a preferred embodiment, the oligonucleotides are applied using ink jet technology, for example using a piezoelectric pump. In another method, the oligonucleotides are drawn, using for example a pen with a fine tip filled with the oligonucleotide solution. If a series or pattern of dots is desired, for example, a plotter pen may be used. In addition, patterns can be etched or scored into the surface to form uniform microtroughs, followed by filling of the microtrough with solution, for example using known microfluidic technologies.
- Oligonucleotide arrays have a variety of uses, including the detection of target sequences, sequencing by hybridization, and other known applications (see for example Chetverin et al., Biotechnology, Vol. 12, November 1994, pp1034-1099, (1994)).
- In a preferred embodiment, the arrays are used to detect target sequences in biological markers derived from animal models. The term “target sequence” or grammatical equivalents herein means a nucleic acid sequence on a single strand of nucleic acid. In some embodiments, a double stranded sequence can be a target sequence, when triplex formation with the probe sequence is done. The target sequence may be a portion of a gene, a regulatory sequence, genomic DNA, cDNA, mRNA, or others. It may be any length, with the understanding that longer sequences are more specific. As is outlined herein, oligonucleotides are made to hybridize to target sequences to determine the presence, absence, or relative amounts of the target sequence in a sample.
- In a preferred embodiment, the arrays are used to detect changes in gene expression when an animal model is subjected to a drug treatment, drug discovery, evaluation of drug toxicity, drug efficacy, cell metabolism and the like. The arrays can also be designed to detect the expression or repression of genes encoding signaling proteins in metabolic pathways due to the administered drug, detect whether a certain drug results in the expression or repression of genes involved in inflammatory responses, etc.
- Similarly, arrays can be generated containing oligonucleotides designed to hybridize to mRNA sequences and used in differential display screening of different tissues, or for DNA indexing. In addition, the arrays of the invention can be formulated into kits containing the arrays and any number of reagents, such as PCR amplification reagents, labeling reagents, etc.
- Hybridizing Nucleic Acids to High Density Arrays
- 1. Probe Design
- As is outlined herein, the arrays of the invention containing the oligonucleotides are contacted with a sample containing the target sequences under conditions which allow hybridization to occur. Generally, the samples are treated as is known in the art, including any sample preparation such as purification or amplification, followed by labeling of the target sequences, as is known in the art, using radioisotopes, or fluorescent or electrochemiluminescent compounds. In addition, in some embodiments, it may be desirable to chemically cross-link the two strands of the hybridization complex. The arrays containing the resulting hybridization complexes are then washed under a variety of stringency conditions ranging from low to high stringency, depending on the length and composition of the oligonucleotides. Detection of the hybridization complex proceeds as is known in the art.
- The high density array will typically include a number of probes that specifically hybridize to the sequences of interest. In addition, in a preferred embodiment, the array will include one or more control probes.
- The high density array chips includes “test probes.” Test probes, for example, are oligonucleotides that range from about 5 to 45 or 5 to about 500 nucleotides, more preferably from about 10 to 40 nucleotides and most preferably from about 15 to about 40 nucleotides in length. In other particularly preferred embodiments the probes are 20 or 25 nucleotides in length. In another preferred embodiments, test probes are single or double stranded DNA sequences. DNA sequences are isolated or cloned from natural sources or amplified from natural sources using nature nucleic acid as templates. These probes have sequences complementary to particular subsequences of the genes whose expression they are designed to detect. Thus, the test probes are capable of specifically hybridizing to the target nucleic acid they are to detect.
- In addition test probes that bind the target nucleic acid(s) of interest, the high density array can contain a number of control probes. The control probes fall into three categories referred to herein as 1) normalization controls; 2) expression level controls; and 3) mismatch controls.
- Normalization controls are oligonucleotides or other nucleic acid probes that are complementary to labeled reference oligonucleotides or other nucleic acid sequences that are added to the nucleic acid sample. The signals obtained from the normalization controls after hybridization provide a control for variations in hybridization conditions, label intensity, “reading” efficiency and other factors that may cause the signal of a perfect hybridization to vary between arrays. In a preferred embodiment, signals (e.g., fluorescence intensity) read from all other probes in the array are divided by the signal (e.g., fluorescence intensity) from the control probes thereby normalizing the measurements.
- Virtually any probe can serve as a normalization control. However, it is recognized that hybridization efficiency varies with base composition and probe length. Preferred normalization probes are selected to reflect the average length of the other probes present in the array, however, they can be selected to cover a range of lengths. The normalization control(s) can also be selected to reflect the (average) base composition of the other probes in the array, however, in a preferred embodiment, only one or a few normalization probes are used and they are selected such that they hybridize well (i.e. no secondary structure) and do not match any target-specific probes.
- Expression level controls are probes that hybridize specifically with constitutively expressed genes in the biological sample. Virtually any constitutively expressed gene provides a suitable target for expression level controls. Typically expression level control probes have sequences complementary to subsequences of constitutively expressed “housekeeping genes” including but not limited to the β-actin gene, the transferrin receptor gene, the GAPDH gene and the like.
- Mismatch controls can also be provided for the probes to the target genes, for expression level controls or for normalization controls. Mismatch controls are oligonucleotides probes or other nucleic acid probes identical to their corresponding test or control probes except for the presence of one or more mismatched bases. A mismatched base is a base selected so that it is not complementary to the corresponding base in the target sequence to which the probe would otherwise specifically hybridize. One or more mismatches are selected such that under appropriate hybridization conditions (e.g. stringent conditions) the test or control probe would be expected to hybridize with its target sequence but the mismatch probe would not hybridize (or would hybridize to a significantly lesser extent). Preferred mismatch probes contain a central mismatch. Thus, for example, where a probe is a 20 mer, a corresponding mismatch probe will have the identical sequence except for a single base mismatch (e.g., substituting a G, a C or a T for an A) at any of positions 6 through 14 (the central mismatch).
- Mismatch probes thus provide a control for non-specific binding or cross-hybridization to a nucleic acid in the sample other than the target to which the probe is directed. Mismatch probes thus indicate whether a hybridization is specific or not. For example, if the target is present the perfect match probes should be consistently brighter than the mismatch probes. In addition, if all central mismatches are present, the mismatch probes can be used to detect a mutation. The difference in intensity between the perfect match and the mismatch probe provides a good measure of the concentration of the hybridized material.
- In a preferred embodiment, oligonucleotide probes in the high density array are selected to bind specifically to the nucleic acid target to which they are directed with minimal non-specific binding or cross-hybridization under the particular hybridization conditions utilized. Because the high density arrays of this invention can contain in excess of 1,000,000 different probes, it is possible to provide every probe of a characteristic length that binds to a particular nucleic acid sequence.
- In addition, in a preferred embodiment, expression monitoring arrays are used to identify the presence and expression (transcription) level of genes which are several hundred base pairs long. For most applications it is useful to identify the presence, absence, or expression level of several thousand to one hundred thousand genes. Because the number of oligonucleotides per array is limited in a preferred embodiment, it is desired to include only a limited set of probes specific to each gene whose expression is to be detected.
- In a preferred embodiment, it is desirable to choose a preferred or optimum subset of probes for each gene before synthesizing the high density array.
- Hybridization
- Nucleic acid hybridization simply involves contacting a probe and target nucleic acid under conditions where the probe and its complementary target can form stable hybrid duplexes through complementary base pairing. The nucleic acids that do not form hybrid duplexes are then washed away leaving the hybridized nucleic acids to be detected, typically through detection of an attached detectable label. It is generally recognized that nucleic acids are denatured by increasing the temperature or decreasing the salt concentration of the buffer containing the nucleic acids. Under low stringency conditions (e.g., low temperature and/or high salt) hybrid duplexes ( e.g., DNA:DNA, RNA:RNA, or RNA:DNA) will form even where the annealed sequences are not perfectly complementary. Thus, specificity of hybridization is reduced at lower stringency. Conversely, at higher stringency (e.g., higher temperature or lower salt) successful hybridization requires fewer mismatches.
- One of skill in the art will appreciate that hybridization conditions may be selected to provide any degree of stringency. In a preferred embodiment, hybridization is performed at low stringency in this case in 6×SSPE-T at 37° C. (0.005% Triton X-100) to ensure hybridization and then subsequent washes are performed at higher stringency (e.g., 1×SSPE-T) at 37° C. to eliminate mismatched hybrid duplexes. Successive washes may be performed at increasingly higher stringency (e.g., down to as low as 0.25×SSPE-T at 37° C. to 50° C.) until a desired level of hybridization specificity is obtained. Stringency can also be increased by addition of agents such as formamide. Hybridization specificity may be evaluated by comparison of hybridization to the test probes with hybridization to the various controls that can be present (e.g., expression level control, normalization control, mismatch control, etc.).
- In general, there is a tradeoff between hybridization specificity (stringency) and signal intensity. Thus, in a preferred embodiment, the wash is performed at the highest stringency that produces consistent results and that provides a signal intensity greater than approximately 10% of the background intensity. Thus, in a preferred embodiment, the hybridized array may be washed at successively higher stringency solutions and read between each wash. Analysis of the data sets thus produced will reveal a wash stringency above which the hybridization pattern is not appreciably altered and which provides adequate signal for the particular oligonucleotide probes of interest.
- In a preferred embodiment, background signal is reduced by the use of a detergent (e.g., C-TAB) or a blocking reagent (e.g., sperm DNA, cot-1 DNA, etc.) during the hybridization to reduce non-specific binding. In a particularly preferred embodiment, the hybridization is performed in the presence of about 0.5 mg/ml DNA (e.g., herring sperm DNA). The use of blocking agents in hybridization is well known to those of skill in the art (see, e.g. Chapter 8 in P. Tijssen).
- The stability of duplexes formed between RNAs or DNAs are generally in the order of RNA:RNA>RNA:DNA>DNA:DNA, in solution. Long probes have better duplex stability with a target, but poorer mismatch discrimination than shorter probes (mismatch discrimination refers to the measured hybridization signal ratio between a perfect match probe and a single base mismatch probe). Shorter probes (e.g., 8-mers) discriminate mismatches very well, but the overall duplex stability is low.
- Altering the thermal stability (T m) of the duplex formed between the target and the probe using, e.g., known oligonucleotide analogues allow for optimization of duplex stability and mismatch discrimination. One useful aspect of altering the Tm arises from the fact that adenine-thymidine (A-T) duplexes have a lower Tm than guanine-cytosine (G-C) duplexes due in part to the fact that the A-T duplexes have 2 hydrogen bonds per base-pair, while the G-C duplexes have 3 hydrogen bonds per base pair. In heterogeneous oligonucleotide arrays in which there is a non-uniform distribution of bases, it is not generally possible to optimize hybridization for each oligonucleotide simultaneously. Thus, in some embodiments, it is desirable to selectively destabilize G-C duplexes and/or to increase the stability of A-T duplexes. This can be accomplished, e.g., by substituting guanine residues in the probes of an array which form G-C duplexes with hypoxanthine, or by substituting adenine residues in probes which form A-T duplexes with 2,6-diaminopurine or by using the salt tetramethyl ammonium chloride (TMACl) in place of NaCl.
- Altered duplex stability conferred by using oligonucleotide analogue probes can be ascertained by following, for example, fluorescence signal intensity of oligonucleotides analogue arrays hybridized with a target oligonucleotide over time. The data allow optimization of specific hybridization conditions at for example, room temperature.
- Another way of verifying altered duplex stability is by following the signal intensity generated upon hybridization with time. It has been reported that experiments using DNA targets and DNA chips have shown that signal intensity increases with time, and that the more stable duplexes generate higher signal intensities faster than less stable duplexes. The signals reach a plateau or “saturate” after a certain amount of time due to all of the binding sites becoming occupied. These data allow for optimization of hybridization, and determination of the best conditions at a specified temperature.
- Methods of optimizing hybridization conditions are well known to those of skill in the art (see, for example, Laboratory techniques in Biochemistry and molecular Biology, Vol. 24: Hybridization With Nucleic Acid Probes, P. Tijssen, ed. Elsevier, N.Y., (1993)).
- Labeling of Probes
- In a preferred embodiment, the hybridized nucleic acids are detected by detecting one or more labels attached to the sample nucleic acids. The labels can be incorporated by any number of means well known to those of skill in the art. For example, the label can be incorporated using polymerase chain reaction (PCR). In a preferred embodiment, transcription amplification, as described above, using a labeled nucleotide (e.g., fluoroscein-labeled UTP and/or CTP) incorporates a label into the transcribed nucleic acids.
- Alternatively, a label can be added directly to the original nucleic acid sample (e.g., mRNA, polyA mRNA, cDNA, genomic DNA, etc.) or to the amplification product after the amplification is completed. Means of attaching labels to nucleic acids are well known to those of skill in the art and include, for example nick translation or end-labeling (e.g. with a labeled RNA) by kinasing of the nucleic acid and subsequent attachment (ligation) of a nucleic acid linker joining the sample nucleic acid to a label (e.g., a fluorophore).
- Detectable labels suitable for use in the present invention include any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Useful labels in the present invention include biotin for staining with labeled streptavidin conjugate, magnetic beads (e.g., Dynabeads™), fluorescent dyes (e.g., fluoroscein, Texas red, rhodamine, green fluorescent protein, and the like), radiolabels (e.g., 3H, 125I, 35S, 14C, or 32p), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and calorimetric labels such as colloidal gold or colored glass or plastic (e.g., polystyrene, polypropylene, latex, etc.) beads.
- Means of detecting such labels are well known to those of skill in the art. Thus for example, radiolabels can be detected using photographic film or scintillation counters, fluorescent markers may be detected using a photodetector to detect emitted light. Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting the reaction product produced by the action of the enzyme on the substrate, and calorimetric labels are detected by simply visualizing the colored label. One particular preferred method uses colloidal gold label that can be detected by measuring scattered light.
- The label can be added to the target (sample) nucleic acid(s) prior to, or after hybridization. So called “direct labels” are detectable labels that are directly attached to or incorporated into the target (sample) nucleic acid prior to hybridization. In contrast, so called “indirect labels” are joined to the hybrid duplex after hybridization. Often, the indirect label is attached to a binding moiety that has been attached to the target nucleic acid prior to the hybridization. After hybridization, an avidin-conjugated fluorophore will bind the biotin bearing hybrid duplexes providing a label that is easily detected. For a detailed review of methods of labeling nucleic acids and detecting labeled hybridized nucleic acids (see, Laboratory techniques in Biochemistry and molecular Biology, Vol. 24: Hybridization With Nucleic Acid Probes, P. Tijssen, ed. Elsevier, N.Y., (1993)).
- Similarly, where the expression levels of genes have been altered in the animal model by administration of a test drug, comparison of the expression levels of the genes in the treated animal model to one which has not been treated, will reveal any deviations in the expression levels of the genes in the test animal group as compared to the untreated animal group.
- Means of detecting labeled target (sample) nucleic acids hybridized to the probes of high density arrays are known to those of skill in the art. Thus, for example, where a calorimetric label is used, simple visualization of the label is sufficient. Where a radioactive labeled probe is used, detection of the radiation (e.g. with photographic film or solid state detector) is sufficient.
- In a preferred embodiment, however, the target nucleic acids are labeled with a fluorescent label and the localization of the label on the probe array is accomplished with fluorescent microscopy. The hybridized array is excited with a light source at the excitation wavelength of the particular fluorescent label and the resulting fluorescence at the emission wavelength is detected. In a particularly preferred embodiment, the excitation light source is a laser appropriate for the excitation of the fluorescent label.
- The confocal microscope may be automated with a computer-controlled stage to automatically scan the entire high density array. Similarly, the microscope may be equipped with a phototransducer (e.g., a photomultiplier, a solid state array, a CCD camera etc) attached to an automated data acquisition system to automatically record the fluorescence signal produced by hybridization to each oligonucleotide probe on the array. Such automated systems are described in U.S. Pat. No. 5,143,854, and PCT Publication No. WO 99/32660. Use of laser illumination in conjunction with automated confocal microscopy for signal detection permits detection at a resolution of better than about 100 μm, more preferably better than about 50 μm, most preferably better than about 25 μm.
- One skilled in the art will appreciate that methods for evaluating the hybridization results vary with the nature of the specific probe nucleic acids used as well as the controls provided. In the simplest embodiment, simple quantification of the fluorescence intensity for each probe is determined. This is accomplished simply by measuring probe signal strength at each location (representing a different probe) on the high density array (e.g., where the label is a fluorescent label, detection of the amount of fluorescence (intensity) produced by a fixed excitation illumination at each location on the array. Comparison of the absolute intensities of an array hybridized to nucleic acids form a “test” sample with intensities produced by a “control” sample provides a measure of the relative expression of the nucleic acids that hybridize to each of the probes.
- One skilled in the art, however, will appreciate that hybridization signals will vary in strength with efficiency of hybridization, the amount of label on the sample nucleic acid and the amount of the particular nucleic acid in the sample. Typically nucleic acids present at very low levels (e.g., <1 pM) will show a very weak signal. At some low level of concentration, the signal becomes virtually indistinguishable from background. In evaluating the hybridization data, a threshold intensity value may be selected below which a signal is not counted as being essentially indistinguishable from background.
- In addition, the provision of appropriate controls permits a more detailed analysis that controls for variations in hybridization conditions, for example, non-specific binding and the like. Thus, for example, in a preferred embodiment, the hybridization array is provided with normalization controls. These normalization controls are probes complementary to control sequences added in a known concentration to the sample. Where the overall hybridization conditions are poor, the normalization controls will show a smaller signal reflecting reduced hybridization. Conversely, where hybridization conditions are good, the normalization controls will provide a higher signal reflecting the improved hybridization. Normalization of the signal derived from other probes in the array to the normalization controls thus provides a control for variations in hybridization conditions. Typically normalization is accomplished by dividing the measured signal from the other probes in the array by the average signal produced by the normalization controls. Normalization may also include correction for variations due to sample preparation and amplification. Such normalization can be accomplished by dividing the measured signal by the average signal from the sample preparation/amplification control probes. The resulting values can be multiplied by a constant value to scale the results.
- As indicated above, the high density array can include mismatch controls. In a preferred embodiment, there is a mismatch control having a central mismatch for every probe (except the normalization controls ) in the array. It is expected that after washing in stringent conditions, where a perfect match would be expected to hybridize to the probe, but not to the mismatch, the signal from the mismatch controls should only reflect non-specific binding or the presence in the sample of a nucleic acid that hybridizes with the mismatch. Where both the probe in question and its corresponding mismatch control show high signals, or the mismatch shows a higher signal than its corresponding test probe, there is a problem with the hybridization and the signal from those probes is ignored. The difference in hybridization signal intensity between the target specific probe and its corresponding mismatch control is a measure of the discrimination of the target-specific probe. Thus, in a preferred embodiment, the signal of the mismatch probe is subtracted from its corresponding test probe to provide a measure of the signal due to specific binding of the test probe.
- The concentration of a particular sequence can then be determined by measuring the signal intensity of each of the probes that bind specifically to that gene and normalizing to the normalization controls. Where the signal from the probes is greater than the mismatch, the mismatch is subtracted. Where the mismatch intensity is equal to or greater than its corresponding test probe, the signal is ignored. The expression level of a particular gene can be scored by the number of positive signals (either absolute or above a threshold value), the intensity of the positive signals (either absolute or above a selected threshold value) or a combination of both metrics (e.g., a weighted average).
- In some preferred embodiments, a computer system is used to compare the hybridization intensities of the perfect match and mismatch probes of each pair. If the gene is expressed, the hybridization intensity (or affinity) of a perfect match probe of a pair should be recognizably higher than the corresponding mismatch probe. Generally, if the hybridization intensities of a pair of probes are substantially the same, it may indicate the gene is not expressed. However, the determination is not based on a single pair of probes, the determination of whether a gene is expressed is based on an analysis of many pairs of probes.
- After the system compares the hybridization intensity of the perfect match and mismatch probes, the system indicates expression of the gene. As an example, the system may indicate to a user that the gene is either present (expressed), marginal or absent (unexpressed). Specific procedures for data analysis are described infra.
- It should be understood that the probes need not be nucleic acid probes but also can be other polymers such as peptides. Peptide probes can be used to detect the concentration of peptides, polypeptides, or polymers in a sample. The probes should be carefully selected to have bonding affinity to the compound whose concentration they are to be used to measure.
- In addition to high density nucleic acid arrays, other methods are also useful for massive gene expression monitoring. Differential display, described by Liang, P. and Pardee, A.B., Science, 257:967-971 (1992) provides a useful means for distinguishing gene expression between two samples. Serial analysis of gene expression Velculescu et al., Science, 270:484-487 (1995) provides another method for quantitative and qualitative analysis of gene expression. Optical fiber oligonucleotide sensors, described by Ferguson et al., Nature Biotechnology, 14:1681-1684, (1996) can also be used for gene expression monitoring.
- A computer system, such as that disclosed in PCT Publication No. WO 99/05323 can be used to identify genes or expressed sequence tags whose expression correlates to particular tissue types.
- Methods of Monitoring Gene Expression
- Generally the methods of monitoring gene expression involve (1) providing a pool of target nucleic acids comprising RNA transcript(s) of one or more target genes, or nucleic acids derived from the RNA transcript(s); (2) hybridizing the nucleic acid sample to a high density array of probes (including control probes); and (3) detecting the hybridized nucleic acids and calculating a relative expression (transcription) level.
- Providing a Nucleic Acid Sample
- One skilled in the art will appreciate that in order to measure the transcription level (and thereby the expression level) of a gene or genes, it is desirable to provide a nucleic acid sample comprising mRNA transcript(s) of the gene or genes, or nucleic acids derived from the mRNA transcript(s). As used herein, a nucleic acid derived from an mRNA transcript refers to a nucleic acid for whose synthesis the mRNA transcript or a subsequence thereof has ultimately served as a template. Thus, a cDNA reverse transcribed from an mRNA, an RNA transcribed from that cDNA, a DNA amplified from the cDNA, an RNA transcribed from the amplified DNA, etc., are all derived from the mRNA transcript and detection of such derived products is indicative of the presence and/or abundance of the original transcript in a sample. Thus, suitable samples include, but are not limited to mRNA transcripts of the gene or genes, cDNA reverse transcribed from the mRNA, cRNA transcribed from the cDNA, DNA amplified from the genes, RNA transcribed from amplified DNA, and the like.
- In a particularly preferred embodiment, where it is desired to quantify the transcription level (and thereby expression) of one or more genes in a sample, the nucleic acid sample is one in which the concentration of the mRNA transcript(s) of the gene or genes, or the concentration of the nucleic acids derived from the mRNA transcript(s) is proportional to the transcription level (and therefore expression level) of that gene. Similarly, it is preferred that the hybridization signal intensity be proportional to the amount of hybridized nucleic acid. Although it is preferred that the proportionality be relatively strict (e.g., a doubling in transcription rate results in a doubling in mRNA transcript in the sample nucleic acid pool and a doubling in hybridization signal), one of skill will appreciate that the proportionality can be more relaxed and even non-linear. Thus, for example, an assay where a 5 fold difference in concentration of the target mRNA results in a 3 to 6 fold difference in hybridization intensity is sufficient for most purposes. Where precise quantification is required appropriate controls can be run to correct for variations introduced in sample preparation and hybridization as described herein. In addition, serial dilutions of “standard” target mRNAs can be used to prepare calibration curves according to methods well known in the art. Of course, where simple detection of the presence or absence of a transcript is desired, no elaborate control or calibration is required.
- In the simplest embodiment, such a nucleic acid sample is the total DNA or RNA isolated from a biological sample. The term “biological sample”, as used herein, refers to a standard human disease animal model. The biological sample can be obtained by using the whole animal, or organs from the animal such as, for example, spleen, liver, kidneys, brain, spinal cord etc. Cells from the animal may also be used. The biological sample can also be of any biological tissue or fluid. Frequently, the sample will be a “clinical sample” which is a sample derived from a patient. Such samples include, but are not limited to sputum, blood, cells of the immune system, tissue or fine needle biopsy samples, urine, peritoneal fluid, and pleural fluid, or cells therefrom. Biological samples also can include sections of tissues such as frozen sections taken for histological purposes.
- The nucleic acid (either genomic DNA or mRNA) is isolated from the sample according to any of a number of methods well known to those of skill in the art. One skilled in the art will appreciate that where alterations in the copy number of a gene are to be detected, genomic DNA is preferably isolated. Conversely, where expression levels of a gene or genes are to be detected, preferably RNA (mRNA) is isolated. Methods of isolating total mRNA are well known to those skilled in the art. For example, methods of isolation and purification of nucleic acids are described in detail in Chapter 3 of Laboratory Techniques in Biochemistry and Molecular Biology: Hybridization With Nucleic Acid Probes, Part 1. Theory and Nucleic Acid Preparation, P. Tijssen, ed. Elsevier, N.Y. (1993).
- In a preferred embodiment, the total nucleic acid is isolated from a given sample using, for example, an acid guanidium-phenol-chloroform extraction method and poly A + mRNA is isolated by oligo dT column chromatography or by using (dT)n magnetic beads (see, e.g. Sambrook et al., Molecular Cloning: A Laboratory Manual (2 nd ed.), Vols. 1-3, Cold Spring Harbor Laboratory, (1989), or Current Protocols in Molecular Biology, F. Ausubel et al., ed. Greene Publishing and Wiley-Interscience, New York (1987)). Other methods for extraction include for example, the Cesium Chloride cushion method, acid-phenol extraction, Tri-Sol®, column extraction methods or solid support extraction methods such as RNAeasy® from Qiagen. Other preferred methods also include automated systems such as for example the ABI 6700 Nucleic Acid Work Station, the Roche Magna Pure system, the Qiagen BioRobot 3000 system and the Gentra systems nucleic acid extractor.
- Frequently, it is desirable to amplify the nucleic acid sample prior to hybridization. One of skill in the art will appreciate that whatever amplification method is used, if a quantitative result is desired, care must be taken to use a method that maintains or controls for the relative frequencies of the amplified nucleic acids.
- Methods of “quantitative” amplification are well known to those of skill in the art. For example, quantitative PCR involves simultaneously co-amplifying a known quantity of a control sequence using the same primers. This provides an internal standard that may be used to calibrate the PCR reaction. The high density array may then include probes specific to the internal standard for quantification of the amplified nucleic acid.
- Comparison of Gene Expression
- Various techniques are well known in the art for comparing gene expression across different treatments and time points. For example, Differential Display Polymerase Chain Reaction (ddPCR), Subtractive Hybridization (SH), Suppression Subtractive Hybridization (SSH), Random Amplified Primer Display (RAPDs), Duplicate Colony Hybridization (DCH), Amplified Fragment Length Polymorphism (ALFP), Serial Amplification of Gene Expression (SAGE), MSSP (Lynx Therapeutics), Representation Difference Analysis of cDNA (RDA-cDNA). All of these techniques can be used in the present invention for comparison of gene expression and identification of genes.
- For example, a variation on polymerase chain reaction (PCR) analysis, known as RNA fingerprinting or differential display PCR, has been used to identify messages differentially expressed in ovarian or breast carcinomas (Liang et al., 1992; Sager et al., 1993; Mok et al., 1994; Watson et al., 1994). By using arbitrary primers to generate “fingerprints” from total cell RNA, followed by separation of the amplified fragments by high resolution gel electrophoresis, it is possible to identify RNA species that are either up-regulated or down-regulated in cancer cells. Results of these studies indicate the presence of several markers of potential utility for diagnosis of breast or ovarian cancer, α 6-integrin (Sager et al., 1993), DESTOO1 and DEST002 (Watson et al., 1994), and LF4.0 (Mok et al., 1994).
- Suppression Subtractive Hybridization technology has been described by Chenchik et al. (U.S. Pat. No. 5,565,340). Other methods of subtractive hybridization, described for example, by Wigler et al. (U.S. Pat. No. 5,436,142); Hampson et al. ( Nucl. Acids Res. 20:2899 (1992)); Yang et al. (Anal. Biochem. 237:109-114(1996)); Balzer et al. (Nucl. Acids Res. 22:2853-2854(1994)), and others, can also be employed.
- Many genetic-marker technologies are also adaptable to fingerprinting, including restriction-fragment-length polymorphism (RFLP) Bostein et al (1980) Am. J. Hum. Genet. 32:314-331; single strand conformation polymorphism (SSCP) Fischer et al. (1983) Proc. Natl. Acad. Sci. USA 80:1579-1583, Orita et al. (1989) Genomics 5:874-879; amplified fragment-length polymorphism (AFLP) Vos et al. (1995) Nucleic Acids Res. 23:4407-4414; microsatellite or single-sequence repeat (SSR) Weber J L and May P E (1989) Am. J. Hum. Genet. 44:388-396; rapid-amplified polymorphic DNA (RAPD) Williams et al (1990) Nucleic Acids Res. 18:6531-6535; sequence tagged site (STS) Olson et al. (1989) Science 245:1434-1435; genetic-bit analysis (GBA) Nikiforov et al (1994) Nucleic Acids Res. 22:4167-4175; allele-specific polymerase chain reaction (ASPCR) Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448, Newton et al. (1989) Nucleic Acids Res. 17:2503-2516; nick-translation PCR (e.g., TaqMan™) Lee et al. (1993) Nucleic Acids Res. 21:3761-3766; and allele-specific hybridization (ASH) Wallace et al. (1979) Nucleic Acids Res. 6:3543-3557, (Sheldon et al. (1993) Clinical Chemistry 39(4):718-719) among others. Kits for RAPD and AFLP analyses are commercially available, e.g., from Perkin Elmer Applied Biosystems (Foster City, Calif.). For example, the restriction fragment length polymorphism (RFLP) technique employs restriction enzyme digestion of DNA, followed by size separation of the digested DNA by gel electrophoresis, and hybridization of the size-separated DNA with a specific polynucleotide fragment. Differences in the size of the restriction fragments to which the polynucleotide probe binds reflect sequence differences in DNA samples, or DNA polymorphisms. See Tanksley, Biotechnology 7:257-264 (1988).
- PCR-based fingerprinting methods result in the generation of a large number of reproducible DNA fragments of specific size that can be separated, typically by gel electrophoresis. These fragments are visualized to produce a “fingerprint” of the amplified DNA. Visualization of the size-separated fragments is effected either by direct visualization, e.g., with a fluorescent dye, by hybridization with a polynucleotide probe, or by labeling the amplification products during PCR (radioactively or fluorescently) followed by detection of the labeled products in the gel.
- Protein Biochips
- Information on protein expression profile is very useful in identifying diagnostic and therapeutic targets. Protein arrays makes it possible to detect post-translational modifications of numerous proteins and provide a valuable tool to investigate protein and cellular regulations. Protein arrays can also be used to screen a large number of potential interactions directly and can detect interactions that take place only under certain conditions, e.g. phosphorylation. Protein arrays are, therefore, useful for a variety of applications, particularly for revealing disease mechanisms, searching for diagnostic indicators and for identifying therapeutic targets.
- An example of an anti-inflammatory drug is the HK-X molecule (f-Met-Leu-Phe-Phe), discussed in US applications: [insert] , the references being incorporated herewith in their entirety. The mechanism of action of HK-X (f-Met-Leu-Phe-Phe ) is by inhibition of G protein γ kinase and has been found to inactivate certain pro-inflammatory responses of human peripheral blood cells that have been stimulated by pro-inflammatory agents or molecules by binding to receptors found on pro-inflammatory mediating cells such as lymphocytes, particularly activated T-cells, and granulocytes such as mast cells, eosinophils, and basophils.
- Upon binding of the G protein γ kinase inhibitory agent to its receptor, pro-inflammatory responses are inhibited. The G-protein subunits α, β, and γ are downregulated and also phosphorylation of these subunits is inhibited. Pro-inflammatory responses that can be inhibited by the agent-receptor complex are degranulation and migration of the receptor-bearing cell.
- Therefore, to identify inflammatory pathways and molecules which can be repressed by certain drugs, a whole animal can be treated with mock (control), HK-X or any other drug of choice plus pro-inflammatory agents, and pro-inflammatory agents. Examples of pro-inflammatory agents useful for stimulating the cells are IL-8, N-formyl peptides, activated complement fragment (C5a), leukotriene B4 (LTB4) and platelet activating factor (PAF).
- In accord with one embodiment of the present invention, a protein chip is comprised of antibodies or recombinant proteins for different peptides in the inflammatory pathway. Detection by fluorescent labeling or other means will identify the over-expression, repression or no change in level of each molecule involved in the pathway. The protein content of the PMEET-ADME protein chip also includes antibodies for proteins that are involved in ADME, toxicity and drug efficacy.
- Protein arrays are based on several principles. First, a protein can be recognized and identified unambiguously by specific molecules such as antibodies, recombinant proteins and small chemicals that can specifically interact with it. Second, a protein or a small chemical can be immobilized on a solid support and the immobilized molecule still retains its ability in protein—protein interactions. Agents (antibodies, recombinant proteins, and small chemicals) can be immobilized on solid supports such as glass plates, agarose beads, or polyvinylidene difluoride (PVDF) membranes (LeGendre, 1990, Biotechniques, Vol.9, No.6, p. 788-805). Third, many different agents can be immobilized at different positions on a solid support without cross interactions among them. This insures that each agent independently interacts with its respective target protein.
- The term “agents” as used herein refers to antibodies, recombinant proteins, synthesized peptides, and other chemicals immobilized on the solid support of a protein array.
- In the preferred embodiments, the agents immobilized on a solid support can be antibodies, recombinant proteins, or small chemicals. Antibodies are raised by immunizing animals (e.g., rabbit, mouse, rat, goat or chicken) with antigens (proteins or peptides). A large number of antibodies (monoclonal and polyclonal) are commercially available. Recombinant proteins are constructed by using recombinant DNA techniques. Many proteins have been conveniently expressed in a recombinant form with a tag such as glutathione-S-transferase (GST) and polyhistidine (6×His), to facilitate purification and identification. Small chemicals (including but not limited to synthesized peptides) can be immobilized on a support to capture and identify specific proteins.
- The term “supports” as used herein refers to the materials on which agents are deposited and immobilized.
- In the preferred embodiments, the supports are as described above but can also include either plates (glass or plastics) or membranes made of nitrocellulose, nylon, or polyvinylidene difluoride (PVDF). Membranes are easier to handle and agents can be readily immobilized on them. Glass or plastic plates provide rigid support and are therefore necessary in some special applications. Essentially, any conceivable substrate may be employed in accordance with the present invention. The substrate can be biological, nonbiological, organic, inorganic, or a combination of any of these, existing as particles, strands, precipitates, gels, sheets, tubing, spheres, containers, capillaries, pads, slices, films, plates, slides, etc. The substrate can have any convenient shape, such as a disc, square, sphere, circle, etc. The substrate is preferably flat, but can take on a variety of alternative structure configurations. For example, the substrate can contain raised or depressed regions on which synthesis can take place. The substrate and its surface preferably form a rigid support on which to carry out the reactions described herein. The substrate and the area for synthesis of each individual polymer or small molecule can be of any size and shape. Moreover, a substrate can comprise different materials at different regions.
- Other materials, which are preferably used as substrates include silicon nitride, silicon oxide, silicon, diamond, chalcopyrites, wurtzites, sphalerites, halites; glass, such as, cobalt glass, Pyrex glass, vycor glass, borosilicate glass and quartz; ceramics, such as, alumina, porcelain, zircon, corderite, titanates, metal oxides, clays, and zeolites; polymers, such as, paralyene, high density polyethylene, teflons, nylons, polycarbonates, polystyrenes, polyacylates, polycyanoacrylates, polyvinyl alcohols, polyimides, polyamides, polysiloxanes, polysilicones, polynitriles, polyvinyl chlorides, alkyd polymers, celluloses, expoxy polymers, melamines, urethanes, copolymers and mixtures of any of the above with other polymers, and mixtures of any of the above with glass or ceramics; and waxes, such as, apeizon. Other substrate materials can also be used.
- Agents are immobilized on a solid support directly or indirectly. Agents can be directly deposited at high density on a support, which can be as small as a microscopic slide. Agents can also be immobilized indirectly on the support. For instance, protein A or G can be printed on a support. Agents (antibodies) are then immobilized on the support through their interactions with protein A or G. The advantage of this method is that by engaging the constant regions of antibodies with protein A or G, the variable regions of the antibodies (antigen-binding domains) will be fully exposed to interact with antigens. Recombinant fusion proteins can be immobilized through the interaction between their tags and the ligands printed on the support. One most important characteristic of protein arrays is that all agents are immobilized at predetermined positions, so that each agent can be identified by its position. After agents are immobilized, the support can be treated with 5% non-fat milk or 5% bovine serum albumin for several hours in order to block non-specific protein binding.
- Preferably, the molecules attached to the surface of the substrate include monomers, nucleotides, and linker molecules. All of these molecules generally bond to the substrate by covalent bonds or ionic interactions. Alternatively, all of these molecules can be bonded, also by covalent bonds or ionic interactions, to a layer overlaying the substrate, for example, a permeable membrane layer, which layer can be adhered to the substrate surface in several different ways, including covalent bonding, ionic interactions, dispersive interactions and hydrophilic or hydrophobic interactions. In still another manner of attachment, a monomer or preformed molecule may be bonded to a linker molecule that is bonded to either the substrate or a layer overlaying the substrate.
- The monomers, linker molecules and pre-formed molecules used herein, are preferably provided with a chemical functional group that is protected by a protecting group removable by electrochemically generated reagents. Preferably, the protecting group is on the distal or terminal end of the linker molecule, monomer, or pre-formed molecule, opposite the substrate. That is, the linker molecule preferably terminates in a chemical functional group, such as an amino or carboxy acid group, bearing an electrochemically removable protective group. Chemical functional groups that are found on the monomers, linker molecules and pre-formed molecules include any chemically reactive functionality. Usually, chemical functional groups are associated with corresponding protective groups and will be chosen or utilized based on the product being synthesized. The molecules of the invention bond to deprotected chemical functional groups by covalent bonds or ionic interactions.
- Monomers used in accordance with the present invention to synthesize the various polymers contemplated include all members of the set of small molecules that can be joined together to form a polymer. This set includes, but is not limited to, the set of common L-amino acids, the set of D-amino acids, the set of synthetic amino acids, the set of nucleotides and the set of pentoses and hexoses. As used herein, monomers include any member of a basis set for synthesis of a polymer. For example, trimers of L-amino acids form a basis set of approximately 8000 monomers for synthesis of polypeptides. Different basis sets of monomers may be used at successive steps in the synthesis of a polymer using the inventive method. The number of monomers that can be used in accordance with the inventive synthesis methods can vary widely, for example from 2 to several thousand monomers can be used, but in more preferred embodiments, the number of monomers will range from approximately 4 to approximately 200, and, more preferably, the number of monomers will range from 4-20.
- Additional monomers that can be used in accordance with the invention also include the set of monomers that can be decorated, i.e., monomers to which chemical moieties can be added, such as prostaglandins, benzodiazapines, thromboxanes and leukotrienes. Combinations of monomers useful for polymer synthesis and monomers that can be decorated are also contemplated by the invention. The above-discussed monomers may be obtained in unprotected form from most any chemical supply company, and most, if not all, can be obtained in protected form from Bachem, Inc., Torrance, Calif. Phosphoramidite monomers for nucleic acid synthesis can be obtained from Applied Biosystems, Inc., Foster City, Calif.
- Monomers are amino acids, preferably comprising a protective group at its amino or carboxy terminus that is removable by an electrochemically generated reagent. A polymer in which the monomers are alpha amino acids and are joined together through amide bonds is a peptide, also known as a polypeptide. In the context of the present invention, it should be appreciated that the amino acids may be the L-optical isomer or the D-optical isomer or a mixture of the two. Peptides are at least two amino acid monomers long, and often are more than 20 amino acid monomers long.
- Furthermore, essentially any pre-formed molecule can be bonded to the substrate, a layer overlaying the substrate, a monomer or a linker molecule. Pre-formed molecules include, for example, proteins, including in particular, receptors, enzymes, ion channels, and antibodies, nucleic acids, polysaccharides, porphyrins, and the like. Pre-formed molecules are, in general, formed at a site other than on the substrate of the invention. In a preferred embodiment, a pre-formed molecule is bonded to a deprotected functional group on a molecule, monomer, or another pre-formed molecule. In this regard, a pre-formed molecule that is already attached to the substrate may additionally bear at least one protected chemical functional group to which a monomer or other pre-formed molecule may bond, following deprotection of the chemical functional group.
- “Protective groups” as used herein, are materials that bind to a monomer, a linker molecule or a pre-formed molecule to protect a reactive functionality on the monomer, linker molecule or pre-formed molecule, which may be removed upon selective exposure to an activator, such as an electrochemically generated reagent. Protective groups that can be used in accordance with the present invention preferably include all acid and base labile protecting groups. For example, peptide amine groups are preferably protected by t-butyloxycarbonyl (BOC) or benzyloxycarbonyl (CBZ), both of which are acid labile, or by 9-fluorenylmethoxycarbonyl (FMOC), which is base labile. Additionally, hydroxy groups on phosphoramidites can be protected by dimethoxytrityl (DMT), which is acid labile. Exocyclic amine groups on nucleosides, in particular on phosphoramidites, are preferably protected by dimethylformamidine on the adenosine and guanosine bases, and isobutyryl on the cytidine bases, both of which are base labile protecting groups. This protection strategy is known as fast oligonucleotide deprotection (FOD). Phosphoramidites protected in this manner are known as FOD phosphoramidites.
- As mentioned above, any unreacted deprotected chemical functional groups can be capped at any point during a synthesis reaction to avoid or to prevent further bonding at such molecule. Capping groups “cap” deprotected functional groups by, for example, binding with the unreacted amino functions to form amides. Capping agents suitable for use in the present invention include: acetic anhydride, n-acetylimidizole, isopropenyl formate, fluorescamine, 3-nitrophthalic anhydride and 3-sulfoproponic anhydride. Of these, acetic anhydride and n-acetylimidizole are preferred.
- In accordance with the invention, the surface of the substrate is preferably provided with a layer of linker molecules. Linker molecules allow for indirect attachment of monomers or pre-formed molecules to the substrate or a layer overlaying the substrate. The linker molecules are preferably attached to an overlaying layer via silicon-carbon bonds, using, for example, controlled porosity glass (CPG) as the layer material. Linker molecules also facilitate target recognition of the synthesized polymers. Furthermore, the linker molecules are preferably chosen based upon their hydrophilic/hydrophobic properties to improve presentation of synthesized polymers to certain receptors. For example, in the case of a hydrophilic receptor, hydrophilic linker molecules will be preferred so as to permit the receptor to approach more closely the synthesized polymer.
- The linker molecules are preferably of sufficient length to permit polymers on a completed substrate to interact freely with binding entities exposed to the substrate. The linker molecules, when used, are preferably 650 atoms long to provide sufficient exposure of the functional groups to the binding entity. The linker molecules, which may be advantageously used in accordance with the invention include, for example, aryl acetylene, ethylene glycol oligomers containing from 2 to 20 monomer units, diamines, diacids, amino acids, and combinations thereof. Other linker molecules known by those skilled in the art, may also be used.
- The molecules of the invention, i.e., the monomers, linker molecules and pre-formed molecules, can be attached directly to the substrate or can be attached to a layer or membrane of separating material that overlays the substrate. Materials can include, for example, controlled porosity glass (CPG); generic polymers, such as, teflons, nylons, polycarbonates, polystyrenes, polyacylates, polycyanoacrylates, polyvinyl alcohols, polyamides, polyimides, polysiloxanes, polysilicones, polynitriles, polyelectrolytes, hydrogels, epoxy polymers, melamines, urethanes and copolymers and mixtures of these and other polymers; biologically derived polymers, such as, polysaccharides, polyhyaluric acids, celluloses, and chitons; ceramics, such as, alumina, metal oxides, clays, and zeolites; surfactants; thiols; self-assembled monolayers; porous carbon; and fullerine materials. The membrane can be coated onto the substrate by spin coating, dip coating or manual application, or any other art acceptable form of coating.
- Different protein arrays can be made for different purposes. For instance, “PMEET-ADME Cytokine Array” can be made of agents for cytokine assay. “PMEET-ADME Cell Cycle Array” can be made of agents for detecting cell cycle related factors; “PMEET-ADME Signal Transduction Array” can be made of agents for examining signaling proteins such as G-proteins; “PMEET-ADME Inflammatory Factor Array” can be made of agents that examine the inflammatory pathway; “PMEET-ADME Transcription Factor Array” can be made of agents for analyzing activators and suppressors of transcription, and the like. In order to reveal the broad protein expression pattern in a source (e.g. a cell line, medically relevant animal models), thousands of different antibodies are immobilized in a single support. The amount of antibodies immobilized also can be different, preferably in the range of nanogram to microgram. The number of different agents immobilized on one solid support varies depending on the particular applications.
- Protein arrays can be applied in studying protein expression patterns. An antibody array is incubated with a protein sample prepared under the conditions that native protein—protein interactions are minimized. After incubation, unbound or non-specific binding proteins can be removed with several washes. Proteins specifically bound to their respective antibodies on the array are then detected. Because the antibodies are immobilized in a predetermined order, the identity of the protein captured at each position is therefore known. Measurement of protein amount at all positions on the array thus reflects the protein expression pattern in the sample.
- The quantities of the proteins trapped on the array can be measured in several ways. First, the proteins in the samples can be metabolically labeled with radioactive isotopes ( 35S for total proteins and 32P for phosphorylated proteins). The amount of labeled proteins bound to each antibody on an array can be quantitated by autoradiography and densitometry. Second, the protein sample can also be labeled by biotinylation in vitro. Biotinylated proteins trapped on the array will then be detected by avidin or streptavidin which strongly binds biotin. If avidin is conjugated with horseradish peroxidase or alkaline phosphatase, the captured protein can be visualized by enhanced chemical luminescence. The amount of proteins bound to each antibody represents the level of the specific protein in the sample. If a specific group of proteins are interested, they can be detected by agents which specifically recognize them. Other methods, like immunochemical staining, surface plasmon resonance, matrix-assisted laser desorption/ionization-time of flight, can also be used to detect the captured proteins.
- Protein arrays can be applied in studying post-translational modifications such as phosphorylation, glycosylation or ubiquitination. In the preferred embodiments, arrays comprising antibodies on glass plates or membranes are used to capture cellular proteins. The phosphorylation of the proteins captured on the array can be revealed if the proteins are metabolically labeled with 32P in vivo. Alternatively, the phosphorylation can be detected by antibodies against phosphorylated amino acids. Antibodies against phosphotyrosine, phosphoserine or phosphothreonine are commercially available and used in many applications. When these antibodies are used, the phosphorylation state of a protein can be detected through a similar strategy used in immunoblotting. Similarly, the glycosylation of the many proteins captured on the array can be studied either by labeling glycoproteins with radioactive glycosylation precursors or by using molecules that specifically recognize carbohydrate moieties of glycoproteins. A family of such molecules are lectins including Concanavalin A and Wheat Germ agglutinin. To detect protein ubiquitination, antibodies specific for ubiquitin can be used.
- In a preferred embodiment, the antibodies are chicken monoclonal antibodies that are tethered to a support or suspended in a gelatinous material. The use of chicken monoclonal antibodies provides an increased ability to make antibodies to mammalian proteins due to the evolutionary distance between chickens and mammals as well as a rapid method for the development of monoclonal antibodies.
- Protein arrays can be applied in studying protein—protein interactions. When a protein is captured by its antibody immobilized on an array, other proteins may also be tethered to the same position due to protein—protein interaction. A protein mixture (e.g., cell lysate, proteins from medically relevant animal models) is made under such conditions that protein—protein interactions are preserved. After incubation of the protein mixture with the array, the protein of interest will be captured in the position where its interacting protein(s) is captured. By localizing the position of the interested protein, the identity of its interacting protein is known (because the identity of each agent is predetermined). The protein of interest can be localized by either its specific antibodies or other methods. The protein of interest can be expressed as a fusion protein with a tag and can then be detected by the tag's specific property. For example, a GFP fusion protein can be readily detected under UV light. Besides, using an array with a larger pool of different agents will increase the chance of detecting the interacting proteins.
- In another preferred embodiment, protein arrays made of multiple recombinant proteins are used to identify protein—protein interactions. Many recombinant fusion proteins containing a tag (e.g., GST or 6×His) at their N- or C-termini are constructed, expressed, and purified. These recombinant proteins are immobilized as agents onto the support printed with their ligands (e.g., glutathione or nickel). After incubation, the protein of interest is captured by the agents (recombinant proteins) immobilized on the array. By detecting the position where the protein of interest is captured, the identity of its interacting protein is obtained. The recombinant protein array provides a very convenient tool for detecting protein—protein interaction.
- DATABASES and SOFTWARE
- Devices and computer systems have been developed for collecting information about gene expression or expressed sequence tags (EST) in large numbers of samples. The PMEET-ADME process will produce copious amounts of data (gene and protein expression profiles in response to treatments in numerous animal models) that will be stored in databases. These databases can be mined (using commercially available software programs or as described below) for genes and proteins that correlate with numerous responses and projections as to involvement in pathways can be made. From this information the RNA expression shift that occurs in diseases can be studied and evaluated for markers that could be used as diagnostics to indicate the coming disease or condition. In the same manner, the databases are used to identify genes and proteins that would be good candidates for therapeutic intervention during a disease state or condition.
- In order to derive full benefit from the investment made in collecting and storing expression data, techniques enabling one to efficiently mine the data to find items of particular relevance are highly desirable.
- A preferred embodiment of the database, referred to as Drug-Gene-Protein-Biology Database (DGPB) links drug action, genetic response, protein response and biological response together providing information storage and software tools to compare and analyze data. As the information in the database expands, the information in the database is mined allowing for the ability to predict the biological response of a new drug based on the genes and proteins that demonstrate induction or repression. In another preferred embodiment the database is mined for the identification of new drug targets, new biological switches, new biological pathways, and the actions of drugs and drug treatments across a wide gene and protein profile.
- Another preferred embodiment of the ability of the database is to categorize the information such as gene expression, protein profiling, and the like, by animal models. In another preferred embodiment the information is sub-categorized based on diseases and similarity of gene expression, protein profiling and the like. Any information can be mined by searching for example, disease categories and which genes and proteins are expressed or repressed depending on the drug used; comparison of the different gene and protein profiles between the different animal models subjected to the same or different drug; biochemical pathways can be compared; inflammatory pathways, etc. The DGPB database is preferably able to categorize and link data obtained using the biochips from medically relevant models of human diseases to gene, protein, and metabolic profiling.
- Any commercial software programs may be used for database mining. However, the preferred model is a database that has the ability to organize expression or concentration information in a way that facilitates mining. A preferred database model organizes information relating to, e.g., sample preparation, expression analysis of experiment results, and intermediate and final results of mining gene expression measurements, gene sets and the like. The model is readily translatable into database languages such as SQL and the like. The database model can scale to permit mining of gene expression measurements collected from large numbers of samples.
- According to an embodiment of the present invention, a computer based method for mining a plurality of experiment information is provided. The method includes a variety of steps such as collecting information from experiments and chip designs. The method can include steps of selecting experiments to be mined. Experiment results and other information can be organized by experimental analysis, and the like. A step of defining one or more groupings for the experiments to be mined is also part of the method. The method also includes a step of selecting based upon the groupings, information about the experiments to be mined to form a plurality of resulting information. This resulting information can include one or more resulting gene sets, and the like. Finally, the method formats the resulting information for viewing by a user. The combination of these steps can provide to the user the ability to access experiment information.
- Visualization techniques can be used in conjunction with the steps of the method to enable users to more easily understand the results of the data mining. In further embodiments, a step of recording conclusions about the results of the data mining can also be part of the method.
- Mining the database for expression information includes a variety of steps such as collecting information about results of experiments; a step of gathering information about samples and information about the experiments, which can comprise an experimental analysis and the like, is also part of the method; the step of adding one or more attributes to the information about the experiments can also be performed. The method then transforms the plurality of results of experiments into a plurality of transformed information. Transformations can include normalizing, de-normalizing, aggregation, scaling, and the like. Steps of mining the plurality of transformed information and visualizing the plurality of transformed information can also be part of the method.
- One embodiment of the present invention operates in the context of a system for analyzing biological or other materials using the above-described chips. Experimental information obtained from the biochips is inputted into the database. Optionally, information regarding a specific genetic sequence of interest may be downloaded from external databases such as GenBank.
- In an experimental format, a sample to be analyzed is exposed to probes as described above. For example, on a oligonucleotide based chip, the nucleotides may or may not bind to the probes. The nucleotides are tagged with fluorescein labels to determine which probes have bonded to nucleotide sequences from the sample. The prepared samples are placed in a scanning system. The scanning system includes, for example, a detection device such as a confocal microscope or CCD (charge-coupled device) that is used to detect the location where labeled receptors have bound to the substrate. The output of scanning system is an image file(s) indicating, in the case of fluorescein labeled receptor, the fluorescence intensity (photon counts or other related measurements, such as voltage) as a function of position on the substrate. Because higher photon counts will be observed where the labeled receptor has bound more strongly to the array of polymers, and because the monomer sequence of the polymers on the substrate is known as a function of position, it becomes possible to determine the sequence(s) of polymer(s) on the substrate that are complementary to the receptor.
- The image files and the design of the chips are inputted to an analysis system that, for example, calls base sequences, or determines expression levels of genes or expressed sequence tags. The expression level of a gene or EST is herein understood to be the concentration within a sample of mRNA or protein that would result from the transcription of the gene or EST. For example, such analysis techniques are disclosed in WO97/10365 and U.S. Pat. No. 5,974,164.
- The DGPB database maintains information used to analyze, for example, expression and the results of expression analysis. Contents of the database can include tables listing analyses performed, analysis results, experiments performed, sample preparation protocols and parameters of these protocols, chip designs, etc.
- An aspect of the database is that it contains information resulting from the PMEET-ADME biochip experimentation. For example, the database may contain information concerning the expression of many genes or ESTs, protein expression, metabolic profiling, etc. To mine the data, the database may include duplicate representations of data in expression analysis database. The database may also include various tables to facilitate mining operations conducted by a user who operates a querying and mining system. The querying and mining system includes a user interface that permits an operator to make queries to investigate expression of genes, proteins etc., that are influenced by drugs in the medically relevant animal model. One or more computers may maintain DGPB database.
- The computer system maintaining the database can be a single computer or a system of computers and can be accessed through various interface systems well known in the art. A network interface may provide a direct connection to a remote server via a telephone link or to the Internet. The network interface can also connect to a local area network (LAN) or other network interconnecting many computer systems.
- The database is preferably a multidimensional relational database with a complex internal structure. However, other types of databases can also be used without departing from the scope of the present invention.
- It can be useful to identify genes or ESTs, proteins, etc., whose expression varies in some way depending on one or more drug attributes administered to the medically relevant animal models. Therefore, it is necessary for querying and mining system to have awareness of drug attributes associated with expression analysis results. In a presently preferable embodiment, expression analyses can be conducted on experiment data according to one or more selectable criteria to produce experimental analysis result data.
- Associated with experimental samples are attributes. Some of the attributes are strings or values identifying concentrations, sample preparation dates, expiration dates, and the like. Other attributes identify characteristics that are highly useful in searching, for example, for genes of interest; diseases; disease progression in a medically relevant animal by comparing time points; the disease state of tissue, the organ, or species from which a sample is extracted. A sample can have more than one attribute, and an attribute can describe more than one sample item.
- Each attribute has an associated attribute type and an associated value for the attribute. Examples of attribute types are “concentration,” “preparation date,” “expiration date,” etc. Another example of an attribute type would be “specimen type” where possible values would correspond to “tissue,” “organ culture,” “purified cells,” “primary cell culture,” “established cell line,” “drug of choice” and the like.
- Certain attribute types can derive from other attribute types. For example, the attribute type “medically relevant animal model” can be derived from an attribute type “inflammation” which is in turn derived from an attribute “disease.” Some attribute types have no associated attributes but rather define levels of categorization. The derivations relating a “parent” attribute type to a “child” attribute type can include one or more parents or children. One representative attribute type derivation type is category-subcategory where the parent type represents a category such as, for example, “drug” and the child type represents the subcategory, for example, “gene expression”. The availability of derivation relationships among attribute types greatly facilitate the formulation of useful queries to mining the database, allowing the user to readily identify attribute types of interest.
- The database can also be organized in table format relating to information about experiments. An experiment table lists experiments whereby results are available for querying. For example, a data map table lists entries corresponding to sets of genes or proteins that may be induced by a particular drug across a spectrum of animal models. Each set corresponds to a collection of experiments performed to investigate the genes, proteins, toxic side effects etc., in the set, and thus defines the collection of experiments corresponding to each gene set, or protein set, etc. An analysis set table defines sets of analyses that have been performed corresponding to each gene or protein set, for example. Each entry defines an association between an analysis, an experiment and an entry in data map table.
- It is also highly desirable to have information in the DGPB database regarding housekeeping genes, that is, genes with known expression level that are used to calibrate the expression monitoring process.
- Tables related to analysis information are also a preferred method of organization of data. The data may be organized according to “absolute result” or “relative result”. Different absolute result types may include e.g., present, marginal, absent, and unknown, indicating an estimate of the expression level of a given gene or EST, protein expression or lack thereof, efficacy of drug, toxicity, etc. Relative analyses compare expression of a gene, protein etc, between, at least, two experiments. Different relative result types may include e.g., increased, no change, decreased, and unknown, all describing the change of expression.
- Querying and mining systems also perform various expression analysis operations. Each entry in a criteria set table identifies a set of criteria used to query a group selected by sample item or by attribute. Each entry in a criteria set experiment table identifies a set of criteria applied to gene, protein, EST expression levels, toxicity etc., of a particular sample item belonging to a group identified by reference.
- Various other tables can be included such as a user preferences table which stores references to user preference files that record the preferences of individual users. Users may wish to store functions used for normalization of expression data for later use.
- A simple illustration of the process steps for mining a plurality of experimental information is as follows. This illustration should not limit the scope of the invention and one of ordinary skill in the art would recognize other variations, modifications, and alternatives. In a first step, information from experiments and chip designs is collected. Then, in a second step, experimental analyses to mine are selected. In a third step, one or more sample attributions are defined. In a third step, resulting information is determined from the experimental analyses by mining to form a plurality of resulting information. This resulting information can include one or more resulting gene sets or any other information required by the user. A final step formats the resulting information for viewing by a user. The combination of these steps can provide to the user the ability to access experimental information.
- Determination of an Unknown Genes' Function through the Use of Orthologous Gene Databases
- During the process of determining and identifying genes and proteins for biochip content it is possible that a number of the genes and proteins will have novel functions, novel drug response or novel expression patterns. By further studying (sequencing and database searching) these genes and proteins may be recognized as previously unidentified or the function or expression of these genes and proteins maybe identified as novel. Furthermore by searching orthologous databases a function for the novel gene or protein maybe identified.
- Additionally, genes and proteins of previously unknown function may have their gene or protein function assigned to them through the searching of the orthologous databases and comparison to the PMEET-ADME databases. As an example, a gene previously identified to be expressed in a limb of a lower eukaryotic organism maybe be linked to, or shown to be responsible for a negative or positive response to a drug in a target organ, for example. Thus, a gene that was previously shown only to be expressed in a limb of a distantly related species is linked to, or, shown to be responsive to a drug.
- In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.
- Materials and Methods
- In Situ Hybridization, Immunocytochemistry and Cytochemistry
- In situ hybridization, immunocytochemistry and cytochemistry include methods well known in the art. See Mitchell et al., “In situ hybridization: a review of methodologies and applications in the biomedical sciences,” Medical Laboratory Sciences, vol. 49, pp. 107-118 (1992). Martinez et al., “Non-radioactive Localization of Nucleic Acids by Direct In Situ PCR and In Situ RT-PCR in Paraffin-embedded Sections,” Journal of Histochemistry and Cytochemistry, vol. 43, 1995. Oosterwijk et al., “Expression of Intermediate-sized Filaments in Developing and Adult Human Kidney and Renal Cell Carcinoma,” The Journal of Histochemistry and Cytochemistry, 38(3): 385-392 (1990).
- To directly visualize enzyme pathways, labeled inhibitors are used to directly visualize the cellular distribution of the target protease. The label can be fluorescent for fluorescence microscopy, radioactive for autoradiography, or electron dense for electron microscopy. The target structures can be whole cells, cells fixed onto slides or sections through solid tissue. A useful modification of these techniques is to use an indirect (“sandwich”) assay employing the specific high affinity interaction between biotin and avidin (reviewed in Methods in Enzymology, vol. 184, 1990). Commercially available kits may be used e.g. to test for alkaline phosphatase activity, cells are fixed in 80% ethanol (Buehr and McLaren, Meth. Enzymol. 225: 58-77, 1993) and stained employing a protocol from an AP cytochemistry kit (Sigma Chemical Co., St. Louis, Mo.).
- Immunoblots and immunohistochemistry can be performed according to the method of Bronstein, et al. (Bronstein, J. M., Wasterlain, C. G., Lasher, R., Bok D., Farber, D. B., “Localization of Retinal Calmodulin Kinase,” Exp Eye Res. 47:391-402 (1988), incorporated herein by reference in its entirety)
- In situ hybridization can be performed using 35S-labeled cRNA probes by the method of Angerer et al. (Angerer, L. M., Stoler, M. H., and Angerer, R. C., “In Situ Hybridization With RNA Probes: An Annotated Recipe.” In K. L. Valentino, J. H. Eberwine, and J. D. Barches (Eds) “In Situ Hybridization,” Oxford University Press 43-70 (1987), incorporated herein by reference in its entirety) as modified by Popper et al. (Popper, P., Ulibarri, C., and Micevych, P. E., “The Role of Target Muscles in the Expression of Calcitonin Gene-Related Peptide mRNA in the Spinal Nucleus of the Bulbocavernosus,” Mol. Brain. Res. 13:43-51 (1992), incorporated herein by reference in its entirety). Oligodendrocyte cultures can be enriched according to the method of Suzumura et al. (Suzumura, A., Bhat, S., Eccleston, P. A. et al., “The Isolation and Long-Term Culture of Oligodendrocytes From Newborn Mouse Brain,” Brain Res. 324:379-383 (1984), incorporated herein by reference in its entirety). These cells can be treated in a similar manner as brain slices for in situ hybridization.
- Preparation of Immunized Animal Models
- Immunized animal models are prepared using the currently available standard techniques. This includes but is not limited to the techniques of using an adjuvant to increase the antigenicity of an antigen. The antigen can be either injected into the animals muscle, stomach, blood, applied intra-nasally or topically, feed to the animal or through the surgical process of introduction through the spleen.
- Animal models are also prepared surgically, by using the application of standard techniques and procedures. These techniques include, but are not limited to, the grafting of biological material from one animal to another, the removal of a portion of an animal, the occlusion of a vein, artery, duct, gland or opening. Additionally, the damaging of a normal tissue, gland or organ using a surgical means to reduce, limit or restrict normal function is included.
- Selection of Positive Control and Negative Control Drugs
- Part A: Positive Control Drug Selection
- Positive control drugs are selected based on their properties of efficacy, therapeutic index, few side effects, low toxicity and desirable ADME properties (Absorption, Distribution, Metabolism, and Elimination) in the selected medically relevant disease model. Typically the positive control drugs are drugs that are the standard of care used in the medical community for treatment of the disease that the medically relevant animal model reflects. However, some drugs have a very high therapeutic response but may also have undesirable toxicity and/or side effects.
- Part B: Negative Control Drug Selection
- Negative control drugs are selected based on their properties of toxicity, side effects and low, or lower efficacy than the current standard of care used by the medical community for treatment of the disease that the medically relevant animal model reflects. These negative control drugs, for example, are drugs that failed to be successful in FDA phase I, II or III trails for the disease that the medically relevant animal model reflects. Additionally, these negative drugs are drugs that have never been in FDA phase I, II or III trails due to their failure in the pre-clinical trail model(s), including the medically relevant animal model that it is being used as a negative control for in the PMEET-ADME experiments. Typically, the negative control drugs will have a undesirable toxicity, or an undesirable toxicology, or an undesirable ADME (Absorption, Distribution, Metabolism and Elimination) profile, or undesirable side effects, or a low therapeutic index, or a combination of the previously listed undesirable properties. Examples of such drugs are listed in Table 6.
TABLE 6 Examples of drugs that have been discontinued or terminated in FDA trials. Drug Company Indication Termination Colloral Autoimmune Rheumatoid Results were equal Technologies LLC Arthritis to placebo DHEA Neuricrine Alzheimer's Results were equal Biosciences Disease to placebo ENBREL Immunex Congestive Heart Lack of efficacy Corporation Failure Idoxifene Glaxo SmithKline Osteoporosis Lack of efficacy Idoxifene GlaxoSmithKline Breast Cancer Lack of efficacy Lisofylline Cell Therapeutics Acute Respiratory Safety Board Disease recommendation - Part C: Determination of Chemical Hazards
- The determination of a chemical's toxicology and hazardous profile is performed by replacing the positive, negative and candidate drugs with the chemicals for evaluation. In this case the positive control would be no treatment or mock treatment and the negative control would be a chemical with known toxicology and hazard profile. Examples of representative chemicals are listed in Table 7.
TABLE 7 Examples of hazardous chemicals Chemical Hazard Formaldehyde Inhalation and contact Paraformaldehyde Inhalation and contact Acrdine orange Mutagen Ethidium Bromide (EtBr) Mutagen Hydrochloric Acid (HCl) Inhalation and Contact Sodium Hydroxide Inhalation and Contact Methanol Ingestion and Contact Ethanol Ingestion and Contact Acetone Ingestion and Contact Sodium Dodecyl Sulphate Inhalation and Contact (SDS) Dextran Sulphate Inhalation Saponin Inhalation and Contact Tetra Methyl Ammonium Inhalation, Ingestion and Contact Chloride (TMAC) Tetra Ethyl Ammonium Inhalation, Ingestion and Contact Chloride (TEAC) Acids (General) Inhalation, Ingestion and Contact Bases (General) Inhalation, Ingestion and Contact Detergents (General) Inhalation, Ingestion and Contact Salts (General) Inhalation, Ingestion and Contact Powders (General) Inhalation, Ingestion and Contact Organics (General) Inhalation, Ingestion and Contact Inorganics (General) Inhalation, Ingestion and Contact - Selection of Biochip (Gene Chip and Protein Chip) Content
- The PMEET-ADME process preferably involves the application of a two-chip system to determine the efficacy, toxicity and ADME of a drug. This is desirable due to the presence of a translational control existing between the expressed RNA and the translated protein as well as the fact that modification of proteins results in an alteration of the proteins' activities. Thus an understanding of the proteins' state and the genetic state of the organism is preferred.
- Determination or selection of biochip content preferably is based on the comparison of gene expression and protein expression across the development of the diseased state in the medically relevant animal model as well as the gene expression and protein expression in the diseased state as it responds to medical treatment. These medical treatments include a positive control drug, i.e., one that should ameliorate the diseased state and a negative drug, i.e., one that has undesirable properties such as toxic effects, induction of additional diseased states or an increase or exacerbation of the model diseased state. The identification of biochip content, for both the gene and protein chips, utilizes comparisons made between normal animals versus diseased animals versus treated diseased animals. Additional comparisons between time-points within a treated or untreated diseased state are performed. The rationale behind the comparison of the treatment groups within a time-point is that it allows identification of differentially expressed genes and proteins that produce or are involved in the production of the diseased state as well as in the amelioration or reduction of the diseased state. Comparison of the treatment groups across time-points, thus, allows for the identification of the genes and proteins involved in the severity of the disease or the amelioration of the disease depending on the treatment group that is being evaluated.
- An illustrative gene expression experiment is set up as follows, using medically relevant disease animal models. The animals are randomly sorted out into: Control (No-disease); Diseased mock treatment control (drug vehicle only); Diseased positive treatment control (Positive drug treatment); Diseased negative treatment control (Negative drug treatment); Diseased candidate treatment(s) (Candidate drug treatment groups); wherein each group is comprised of multiple numbers of animals.
- Time points to compare gene and protein expression between normal and diseased animals are selected. In general, these time-points are at the initial stage of the medically relevant disease, at the full development or complete involvement of the disease, and at several time-points intermediate of the disease induction and the fully involved disease. Thus the time points allow the study of the disease progression in a pathological fashion.
- Organs involved in the disease or the organs afflicted by the disease (normal, diseased and treated organs) are harvested. As an example, in a murine asthma model, the lungs are the organs that are harvested. Harvested organs from each group are either randomly distributed to three sub-groups (gene expression, protein expression or standard practices) or each organ from each mouse is divided into thirds and each third is placed in one of three sub-groups (gene expression, protein expression and standard practices). Genes, proteins and fragments thereof are extracted and purified as described above. For example, the RNA from each of the subgroups can be extracted using one of a number of different standard methods. These methods include, but are not limited to, the Cesium Chloride cushion method, the Acid-Phenol method, the Tri-Sol® method and numerous different column extraction methods or solid support extraction methods (e.g. RNAeasy® from Qiagen). Additionally, automate systems are now available that makes the extraction of nucleic acids from biological material a high-through put process. Examples of these systems include the ABI 6700 Nucleic Acid Work Station, the Roche Magna Pure system, the Qiagen BioRobot 3000 system and the Gentra systems nucleic acid extractor. The extracted RNA is maintained in a standard method that prevents lose or degradation of the RNA. One standard method for this is as a precipitated pellet in a plastic microfuge tube that has low nucleic acid adhesion. Commonly the pellet is stored under 100% Ethanol at −80° C. and sealed shut to prevent evaporation. Once all of the gene expression subgroup samples from each control and treatment group from a single time-point has had the RNA extracted from the biological material, the individual subgroup samples are checked for degradation, or intactness, and the quantity of the RNA is determined. The standard method for quantifying a nucleic acid sample is spectrophotometrically (A 260) and the standard method for determining intactness is a denaturing gel electrophoresis followed by Northern Blot and Hybridization using a labeled (radioactive or non-radioactive label; isotopic or non-isotopic) antisense gene that is well characterized and studied such as Actin or GAPDH. Conversely, the intactness and quantity of the nucleic acid can be determined using one of the new “Lab-on-a-chip” systems that are available. An example of one of these instruments is the Agilent Bioworkstations.
- From the extracted and intact RNA, a first strand cDNA synthesis is synthesized either by using one of the standard procedures of using individual purchased reagents and either the reverse AMV or MMULV transcriptases or a commercially available cDNA synthesis kit or a commercially available double stranded cDNA synthesis kit. The first strand synthesis cDNA can be generated from total RNA or from mRNA. In the second case (mRNA) the poly A+ fraction of the total RNA will need to be purified using the standard technique of Oligo dT column purification or using one of the many commercial kits that are available. After first strand cDNA synthesis is complete, the synthesis of 2 nd strand DNA can commence. Once again, this can use the standard procedure and individual purchased reagents or the 2nd strand synthesis can be carried out using any of the commercially available kits.
- The following diagram is an illustrative example of the design of an array or matrix and is not meant to be construed as a limitation, thereof, in any way. For example, for comparison of the RNA expression profiles between normal; diseased; and, diseased+treatments; at the selected time-points requires that a comparison between the different treatments and disease states at the selected time-points as well as between the different time-points be performed. The comparisons are visualized in the context of a two-dimensional array or matrix.
Disease state and treatment Time-points for harvesting organs Disease State Treatment 1 2 3 4 5 6 7 8 9 10 11 12 Normal None + + + + + + + + + + + + Diseased Mock + + + + + + + + + + + + Diseased Positive* − − − − + + + + + + + + Diseased Negative* − − − − + + + + + + + + Diseased Candidate 1*# − − − − + + + + + + + + Diseased Candidate 2*# − − − − + + + + + + + + - The RNA expression profile comparisons occur down the columns and across the rows. As RNA expression profiling occurs down the rows between normal and mock treated diseased animals, any RNA's that are differentially (induced or repressed) regulated during the development of the disease, during disease progression and in the fully developed disease are revealed. Comparison of the RNA profiling between time-points for the mock treated diseased control reveal gene expression that is involved in the development of the disease. The expansion of the comparisons down the rows to include the positive and negative treatments of the diseased animals identifies the genes that are involved in the amelioration of a disease state (positive drug control) and the genes that involved in the exacerbation (negative drug control) of a diseased state. The comparison of the gene and protein expression profiles between the control treatments to the diseased animal model and the treatments of the candidate drugs evaluates the candidate drugs' efficacy and toxicity.
- The gene and protein expression comparisons are also compared in multiple organs. For example, the organs that are subjected to gene and protein expression profiling are those organs that are involved in systemic detoxification of the body, organs that are involved in the movement of the drug, organs that would be the targets of a drugs toxicity and the organ that is the target organ for the disease. As an example, in a murine asthma model the organs that are evaluated, include (but are not limited to) the lungs, stomach, intestine, heart, kidney, liver and the central nervous system. Thus the previous two dimensional table becomes a multi-layered matrix composed of a table for each organ.
- The gene expression methods (and modifications of or alterations of) that are used to compare gene expression across the different treatments and time-points are as described supra. For example, Differential Display Polymerase Chain Reaction (ddPCR); Subtractive Hybridization (SH); Suppression Subtractive Hybridization (SSH); Random Amplified Primer Display (RAPDs); Duplicate Colony Hybridization (DCH); Amplified Fragment Length Polymorphism (ALFP); Serial Amplification of Gene Expression (SAGE); MSSP (Lynx Therapeutics); Representation Difference Analysis of cDNA (RDA-cDNA).
- Selection of gene content for the gene expression biochip occurs by selecting the genes that fit into the categories of disease progression or development and healthy state decrease or loss. For example, disease progression or disease development genes are selected based on the comparison of the normal animals gene expression profile to the mock treated diseased animals gene expression profile. Induction or upregulation of a gene's expression or genes' expression in a medically relevant diseased animal model indicates that the induced gene is involved with the induction of the disease state. Especially relevant are those genes that are induced early in the development of the disease before any disease symptoms can be detected or those genes induced early in the disease process. Genes that have an induced gene expression profile or an upregulated gene expression profile that follows the disease progression are implicated in the progression of the disease state and implicated in the increasing severity of the disease state. Eventually, a point is reached in the later stages in the disease where the induction of gene expression or the upregulation of gene expression is implicated as a “sick animal” response, whereby, the animals physiology is attempting to reach or bring the body back into physiological balance.
- Any repression of genes are identified by comparing the gene expression profiles of the normal animal to the gene expression profile of medically relevant animal model. The gene(s) that demonstrate repression prior to the presentation of symptoms or early in the disease presentation process for the medically relevant animal model are “grouped” in the category of the maintenance of the normal or healthy state. Genes that are repressed during the progression of the disease are “grouped” in the category of the decrease of the healthy state or an increase of disease severity.
- Furthermore, by comparing the gene expression profiles of the normal animal to the gene expression profile of the medically relevant animal model and the treated medically relevant animal models will continue to provide further insight to the genes that are involved in efficacy, toxicity and ADME. In general, the genes selected to be the efficacy genes are selected based on the gene expression profiles of the genes in the disease target organ. Typically, these genes are those genes that are repressed during disease development and progression and either induced or left unaltered in expression by the positive control drug. Additionally, genes that are induced during disease development and/or during disease progression or induced by the negative control drug are also selected for content on the gene expression biochips as negative parameters of efficacy.
- The genes selected for toxicology and ADME are selected in a manner similar to the efficacy genes using the same previously described concepts but from the kidney, liver, central nervous system, stomach and intestine.
- The comparison of the gene expression across and down these time-points and treatments are performed using a computer program as discussed supra.
- Protein Expression Experiment Preparation
- Animal models are randomly distributed to the same groups as described above and time points are selected for comparison of gene and protein expression between normal and diseased animals, using the same criteria as described above for gene expression. The procedure again begins with the harvesting of the organs involved in the disease or the organs afflicted by the disease (normal, diseased and treated organs). As an example, in a murine asthma model, the lungs would be the organs that are harvested. Harvested organs from each group are either randomly distributed to three sub-groups (gene expression, protein expression or standard practices) or each organ from each mouse is divided into thirds and each third is placed in one of three sub-groups (gene expression, protein expression and standard practices).
- Proteins are extracted from each of the subgroups. The proteins are extracted using one of a number of different standard methods. These methods are typically a standard cell lysis method. In general, these methods involve the piece of organ or tissue being treated with digestive enzymes and solutions that contain detergents. Other methods of extracting proteins from pieces of organs involve treatment of the piece with digestive enzymes followed by repeated freezing and thawing or placing the material under high pressure after enzymatic treatment or enzymatic treatment followed by swelling the cells until they burst. Additionally, automate systems are now available that makes the extraction of proteins from biological material a high-through put process. An example of these automated systems is the Qiagen BioRobot 3000. The extracted protein is maintained in a standard method that prevents loss or degradation of the protein. One standard method of storage is as a pellet in a low adhesion plastic microfuge tube in the presence of proteinase inhibitors. Commonly the pellet is stored at −80° C. or −20° C. and sealed shut to prevent evaporation.
- The extracted protein is checked for degradation, or intactness and is quantified. The standard method for quantifying a protein sample is spectrophotometrically (A 280) or through a standard chemical assay. The standard method for determining intactness of a protein is a protein gel. Examples of these protein gels are Sodium Dodecyl Sulphate Polyacrylamide gel electrophoresis (SDS-PAGE), denaturing gradient gel electrophoresis, two-dimensional gel electrophoresis (2-D Gels) and polyacrylamide gel electrophoresis (PAGE). Conversely, the intactness and quantity of the protein can be determined using one of the new “Lab-on-a-chip” systems that are available. An example of these instruments is the Agilent Bioworkstations.
- From the extracted and intact proteins, protein expression profiles are determined by 2-D gel electrophoresis. The 2-D gels are performed, landmarked, analyzed (by a computer program) and compared for induced and repressed protein expression as well as for modifications to the proteins or the production of novel protein complexes. Comparison of the protein expression profiles between normal; diseased; and, diseased+treatments; at the selected time-points requires that a comparison between the different treatments and disease states at the selected time-points as well as between the different time-points be performed. The following matrix is constructed for illustrative purposes only and is not meant as a limitation to the invention.
Disease state and treatment Time-points for harvesting organs Disease State Treatment 1 2 3 4 5 6 7 8 9 10 11 12 Normal None + + + + + + + + + + + + Diseased Mock + + + + + + + + + + + + Diseased Positive* − − − − + + + + + + + + Diseased Negative* − − − − + + + + + + + + Diseased Candidate 1*# − − − − + + + + + + + + Diseased Candidate 2*# − − − − + + + + + + + + - The protein expression profile comparisons need to occur down the columns and across the rows. As protein expression profiling occurs down the rows between normal and mock treated diseased animals, the protein's that are differentially (induced or repressed) regulated during the development of the disease, during disease progression and in the fully developed disease are revealed. Comparison of the protein profiling between time-points for the mock treated diseased control reveal protein expression that is involved in the development of the disease. The expansion of the comparisons down the rows to include the positive and negative treatments of the diseased animals identifies the proteins that are involved in the amelioration of the disease state (positive drug control) and the proteins that involved in the exacerbation or non-efficacious treatment (negative drug control) of a diseased state. The comparison of the gene and protein expression profiles between the control treatments to the diseased animal model and the treatments of the candidate drugs allows an evaluation of the candidate drugs' efficacy and toxicity.
- The organs that are subjected to gene and protein expression profiling are the organs that are involved in systemic detoxification of the body, organs that are involved in the movement of the drug, organs that would be the targets of a drug's toxicity and the organs that are the target organ for the disease. As an example, in a murine asthma model the organs that are evaluated include (but not limited to) the lungs, stomach, intestine, heart, kidney, liver and the central nervous system. Thus the previous two-dimensional table becomes a multi-layered matrix composed of a table for each organ.
- Proteins that are determined to be differentially expressed between two time-points or between two treatments are excised from the gel and prepared for Matrix Assisted Laser Desorption Ionization Time of Flight analysis (MALDI-TOF). The resulting data is then used to search the protein databases to determine the identity of the protein or to determine if the protein is an unknown.
- Selection of protein content for the protein expression biochip occurs by selecting antibodies to proteins that fit into the categories of disease progression or development and healthy state decrease or loss. Disease progression or disease development proteins are selected based on the comparison of the normal animals protein expression profile to the mock treated diseased animals protein expression profile. Induction or upregulation of a protein's expression or proteins' expression or an alteration to the protein (e.g. phosphorylation) in a medically relevant diseased animal model is an indication that the induced or altered protein is involved with the induction of the disease state. Especially relevant are those proteins that are induced or altered early in the development of the disease before any disease symptoms can be detected or those proteins induced or altered early in the disease process. Proteins that have an induced or altered protein expression profile or an upregulated protein expression profile that follows the disease progression are implicated in the progression of the disease state and implicated in the increasing severity of the disease state. Eventually, a point is reached at a later stage in the disease where the induction or alteration of protein expression or the upregulation or alteration of protein expression is implicated as a “sick animal” response, whereby, the animal's physiology is attempting to reach or bring the body back into physiological.
- Repressed proteins are identified by comparing the protein expression profiles of the normal animal to the protein expression profile of medically relevant animal model. The protein(s) that demonstrate repression prior to the presentation of symptoms or early in the disease presentation process for the medically relevant animal model are implicated in the maintenance of the normal or healthy state. Proteins that are repressed during the progression of the disease are implicated in a decrease of the healthy state or an increase of disease severity.
- Furthermore, by comparing the protein expression profiles of the normal animal to the protein expression profile of the medically relevant animal model and the treated medically relevant animal models continually provides further insight to the proteins that are involved in efficacy, toxicity and ADME. The selection of the genes for these groups is partially based on their organ expression.
- In general, the proteins selected to be the efficacy proteins are selected based on the protein expression profiles of the proteins in the disease target organ. Typically these proteins are the proteins that are repressed during disease development and progression and either induced or have a normal expression pattern in the expression pattern of the positive control drug time-points. Additionally, proteins that are induced or altered during disease development and/or during disease progression or induced or altered by the negative control drug can be selected for content on the protein expression biochips as negative parameters of efficacy.
- The proteins selected for toxicology and ADME are selected in a manner similar to the efficacy genes using the same previously described concepts but from the kidney, liver, central nervous system, stomach and intestine.
- Data obtained from the biochips are inputted into the DGPB database and analyzed as described supra.
- Design of the PMEET-ADME Gene and Protein Expression Biochips.
- Part A: Design of the Gene Expression Biochips
- The gene and protein expression biochips allow for the evaluation of the efficacy, toxicity, absorption, distribution, metabolism and elimination of a tested drug as described above. In general, the genes for the gene expression biochips are oligonucleotides of a defined length; have similar hybridization characteristics; lack lengthy complementary regions; and, should not form hairpins. For the hybridization characteristics to be similar across a wide range of oligonucleotides requires that the oligonucleotides be of the same length, have a similar percentage of Guanine to Cytosine content and lack any extensive runs of poly A, poly G, poly C or poly T tracts. The goal of having these parameters is to produce oligonucleotides that have similar melting and hybridization temperatures. Oligonucleotides can be designed using commercially available software, using the stipulated parameters or stipulate parameters. Examples of such software are “MacVector” and “Oligo”. Production of the oligonucleotides is accomplished by using a DNA synthesizer followed by purification of the oligonucleotides using an HPLC equipped with an UV detector and a fraction collector. Finally, the sequence and length of oligonucleotides is verified using a mass based method and instruments (e.g. MALDI-TOF analysis).
- The purified and verified oligonucleotides are spotted onto a microscope slide coated with a low adhesion hydrophilic surface or covalently attached to the surface of the microscope slide (low adhesion hydrophilic surface) using standard chemistry conjugation chemistry. The gene expression biochip is designed in a grid and quadrant fashion using positive control genes at the comers of the grids for alignment and identification of the grids. The positive control genes are genes that are not expressed or are not present in the animal kingdom, for example, oligonucleotides generated from the gene sequence of a plant gene or artificially designed oligonucleotides. In this format, the labeled complementary positive control can be spiked into the hybridization buffer during the gene expression biochip hybridization experiments. Additional controls include positive and negative experimental controls. The positive experimental controls are controls for genes that are expected to be present and expressed in the RNA extracted from the harvested organs. As an example, all or some of the housekeeping genes (e.g. GAPDH and Actin) are used as positive experimental controls. Negative experimental control genes are genes that are not found in the animal kingdom and serve the function of providing an evaluation of the amount of background or non-specific hybridization occurring. The positive controls provide experimental evidence that the hybridization experiment was successful.
- Spotting of the oligonucleotides to a microarray slide is performed using the methods described in the detailed description of the invention, supra. The primary oligonucleotide grid is replicated many times on the same slide so as to provide several experimental replicates per PMEET-ADME gene expression hybridization experiment.
- Design of the Protein Expression Biochips
- The content of the protein expression biochips are antibodies specific for the differentially expressed proteins (See Tables 1-5 for examples of antigens to which antibodies can be generated against for use in the protein expression biochip), or any other molecule that binds selectively with the target protein, as discussed in the detailed description of the invention.
- There are a variety of methods and sources that are used to obtain the required antibodies. These antibodies can be from commercial sources, or are generated in-house using standard immunization and antibody purification procedures, such as standard hybridoma techniques; using the Abginex Xeno-mouse; phage display techniques; or, using a combination of animal immunization (e.g. mouse, rat, donkey, chicken, etc.) and phage display. The antibodies are conjugated (using standard conjugation chemistry) to a microarray solid support. The protein expression biochip is designed to comprise positive control antibodies, experimental positive control antibodies and negative control antibodies. The positive control antibodies are to molecules that occur ubiquitously through out the cells of an animal, such as housekeeping proteins such as GAPDH or Actin, and are spiked into the protein expression biochip experimental binding solution. The negative control antibodies are to haptens that do not exist naturally. Antibodies are detected using digoxigenin or are fluorescently labeled (FITC). The antibodies are attached to known locations in a grid format so as to provide landmarks and identification points for the locations of the antibodies. Each of these grid formats are repeated many times on the PMEET-ADME protein expression biochip so as to provide several experimental replicates per PMEET-ADME protein expression experiment.
- Metabolic Profiling
- Part A: Testing and Evaluation of Biological Fluids and Biological Materials
- The testing and evaluation of the biological fluids are conducted according to the standard techniques and procedures that are involved in the typical clinical testing of biological fluids. These tests include urine analysis, blood analysis, analysis of central nervous system fluids and the testing of fecal material.
- Part B: Testing and Evaluation of Drug Metabolites
- The testing and evaluation of drug metabolites is conducted according to the standard techniques and procedures that are involved in the determination of drugs and drug metabolites in the blood of an animal. These tests include the testing of hair samples, fingernail, toenail, urine, blood and saliva.
- PMEET-ADME Score Development and Determination
- Part A: Development of Scoring System for the Gene Chip
- The scoring system for the PMEET-ADME gene expression chip is a system based on the signal intensity from an oligonucleotide and the importance of the gene in the PMEET-ADME system. The scoring system is a weighted scoring system that takes into consideration the involvement of a gene in the efficacy, toxicity and ADME process and the intensity or the level of expression of that gene in that sample for that portion of the PMEET-ADME experiment. As an example, genes that have been determined to be implicated in disease development or disease progression are weighted in proportion to their involvement in disease development or progression and scored negatively as expression increases above normal levels. The genes that are implicated in efficacy are weighted with respect to their impact upon the development or maintenance of the normal physiological state except that these genes are assigned a positive score as their expression increased over normal expression. Thus, by providing a weighted scoring system for the genes based on their impact in the maintenance of a physiological state and the scoring of these genes' expression as either negative or positive, an overall PMEET-ADME score can be produced for the gene expression biochip.
- Part B: Development of Scoring System for the Protein Chip
- The scoring system for the PMEET-ADME protein expression chip is the same as described above, but based on the signal intensity from an antibody and the importance of the protein in the PMEET-ADME system. The scoring system is a weighted scoring system that takes into consideration the involvement of a protein or the alteration of a protein in the efficacy, toxicity and ADME process and the intensity or the level of expression of that protein or alteration of that protein in that sample for that portion of the PMEET-ADME experiment. As an example, proteins that have been determined to be implicated in disease development or disease progression are weighted in proportion to their involvement in disease development or progression and scored negatively as expression increases above normal levels. The proteins that have been implicated in efficacy are weighted with respect to their impact upon the development or maintenance of the normal physiological state except that these genes are assigned a positive score as their expression increased over normal expression. Thus, by providing a weighted score system for the proteins based on their impact in the maintenance of a physiological state and the scoring of these proteins' expression as either negative or positive, an overall PMEET-ADME score can be produced for the protein expression biochip.
- Part C: Development of PMEET-ADME Scoring System
- The combination of the PMEET-ADME gene expression and protein expression score requires an evaluation of the genes and proteins involved in the different process of efficacy, toxicity, ADME, disease progression and disease development. The scores from the PMEET-ADME gene and protein expression experiments are weighted and the two scores are combined to produce a single combined PMEET-ADME score.
- PMEET-ADME Gene and Protein Expression
- Animals are randomly distributed to the following groups: Control (No-disease); Diseased mock treatment control (drug vehicle only); Diseased positive treatment control (Positive drug treatment); Diseased negative treatment control (Negative drug treatment); Diseased candidate treatment(s) (Candidate drug treatment groups).
- Animals are sacrificed at different time points of disease progression. The first time point is at the initial phase of the medically relevant disease, at several intermediate time-points during the progression of the disease, and the final time point is during the full-blown disease state. The organs involved in the disease or the organs afflicted by the disease (normal, diseased and treated organs) are harvested. As an example, in a murine asthma model, the lungs are harvested. Harvested organs from each group are randomly distributed to three sub-groups (gene expression, protein expression or standard practices) or each organ from each mouse is divided into thirds and each third is placed in one of three sub-groups (gene expression, protein expression and standard practices).
- RNA from each of the subgroups is extracted. Extraction methods used, but are not limited to, are the Cesium Chloride cushion method, the Acid-Phenol method, the Tri-Sol® method and numerous different column extraction methods or solid support extraction methods (e.g. RNAeasy® from Qiagen). Additionally, automated systems are also used that makes the extraction of nucleic acids from biological material a high-through put process. Examples of these systems include the ABI 6700 Nucleic Acid WorkStation, the Roche Magna Pure system, the Qiagen BioRobot 3000 system and the Gentra systems nucleic acid extractor. The extracted RNA is maintained in a standard method that prevents loss or degradation of the RNA. One standard method for this is as a precipitated pellet in a plastic microfuge tube that has low nucleic acid adhesion. Commonly the pellet is stored under 100% Ethanol at −80° C. and sealed shut to prevent evaporation.
- Once all of the RNA in gene expression subgroup, has been extracted from each control and treatment group from a single time-point, the individual subgroup samples are checked for degradation, and the quantity of the RNA is determined. The standard method for quantifying a nucleic acid sample has been described above.
- From the extracted and intact RNA, a first strand cDNA synthesis is synthesized by using any one of the standard procedures described above. The first strand synthesis cDNA is generated from total RNA or from mRNA. In the second case (mRNA) the poly A+ fraction of the total RNA is purified using the standard technique of Oligo dT column purification or using one of the many commercial kits that are available.
- A) During the first strand synthesis reactions the nucleic acid, the cDNA, is labeled through the incorporation of fluorescent nucleotides.
- B) Alternatively, the cDNA can be labeled using a chemical labeling method such as the Roche Molecular Biochemicals Biotin Chem-link and the DIG chem-link systems.
- C) The total RNA or the poly A+mRNA can be labeled using a chemical labeling method.
- These oligonucleotides are then applied to the PMEET-ADME gene expression biochip. In general, this experiment is carried out for each of the time-points and treatment groups by using an aliquot of the labeled normal nucleic acid, an aliquot of the experimental nucleic acid, an aliquot of the positive controls with a standard hybridization buffer. Alternative hybridization buffers could be used in place of the standard hybridization buffer. These alternatives are generated by using different salts in the hybridization buffer, the addition of hybridization accelerators, addition of chemicals and proteins to reduce non-specific hybridization and/or the addition of chemicals and proteins to increase the specificity of hybridizations. The combined hybridization mixture is heat denatured, quick cooled on ice and placed onto the PMEET-ADME gene expression microarray, commonly within a hybridization chamber, and incubated at the predetermined hybridization temperature for a period of time, usually overnight. The next day the hybridization solution is removed and the gene expression microarray is washed in solutions of decreasing salt concentrations (increasing stringency) and in the presence of elevated temperatures. These washes remove all of the unbound normal and experiment nucleic acids (reduce background and remove excess labeled nucleic acids).
- The intensity of the labeled nucleic acids at an oligonucleotide location is determined by using a commercial available reader and software system. As examples of a reader and software package, the GSI Lumonics reader and the Scanlytics software program.
- Once all of the time-points and treatment groups are compared to normal, the PMEET-ADME score is determined.
- With respect to PMEET-ADME protein expression, the protocols described above are followed, with the exception that antibodies are immobilized on the PMEET-ADME chip.
- The proteins from the animal model experimental groups are extracted from each of the subgroups. The proteins are extracted using one of a number of different standard methods. These methods are typically a standard cell lysis method. In general, these methods involve the piece of organ or tissue being treated with digestive enzymes and solutions that contain detergents. Other methods of extracting proteins from pieces of organs involve treatment of the piece of organ or tissue with digestive enzymes followed by repeated freezing and thawing; or placing the material under high pressure after enzymatic treatment; or enzymatic treatment followed by swelling of the cells until they burst. Additionally, automate systems are now available that makes the extraction of proteins from biological material a high-through put process. An example of these automated systems is the Qiagen BioRobot 3000.
- The proteins are prepared for the PMEET-ADME protein expression chip by labeling with a fluorescent dye attached to a chemical linker that has an NHS ester for the labeling of proteins through the free amino groups present in the individual proteins. An aliquot of the labeled protein is mixed into the protein-binding buffer and the mixture is placed onto the PMEET-ADME protein expression chip. Each time-point and treatment group is assayed in this manner and the data collected for evaluation by the PMEET-ADME scoring system.
- All data obtained from any experiment is inputted into the DGPB database for analysis and evaluation.
- Generation of Biochips for Evaluation of PMEET-ADME in Humans
- PMEET-ADME gene and protein expression biochips are generated for humans by using gene and protein databases, gene and protein alignment programs and gene and protein similarity comparison programs. The genes and proteins that make up the content for the Medically Relevant Animal Models gene and protein expression biochips are used to search the human gene and protein database(s) to find similar genes and proteins. These human genes and the antibodies to these human proteins are then used to provide content for Human gene and protein expression PMEET-ADME biochips. These human chips are useful in FDA phase I, II and III trials to evaluate an individuals response to the treatment. Additionally, human biochips many eventually provide diagnostic and therapeutic biochips for the evaluation of patients.
- The invention has been described in detail with reference to preferred embodiments thereof. However, it will be appreciated that, upon consideration of the present specification and drawings, those skilled in the art may make modifications and improvements within the spirit and scope of this invention as defined by the claims.
Claims (23)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/140,680 US7993907B2 (en) | 2001-05-08 | 2002-05-08 | Biochips and method of screening using drug induced gene and protein expression profiling |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US28940701P | 2001-05-08 | 2001-05-08 | |
| US10/140,680 US7993907B2 (en) | 2001-05-08 | 2002-05-08 | Biochips and method of screening using drug induced gene and protein expression profiling |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20030124552A1 true US20030124552A1 (en) | 2003-07-03 |
| US7993907B2 US7993907B2 (en) | 2011-08-09 |
Family
ID=23111403
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/140,680 Expired - Fee Related US7993907B2 (en) | 2001-05-08 | 2002-05-08 | Biochips and method of screening using drug induced gene and protein expression profiling |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US7993907B2 (en) |
| WO (1) | WO2002090979A1 (en) |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020119462A1 (en) * | 2000-07-31 | 2002-08-29 | Mendrick Donna L. | Molecular toxicology modeling |
| US20020197729A1 (en) * | 2001-06-21 | 2002-12-26 | Fuji Photo Film Co., Ltd. | Biochemical analysis unit and method for manufacturing the same |
| US20030044992A1 (en) * | 2001-08-31 | 2003-03-06 | Chao Anthony C. | Cell-based multiplexing ADME analysis using focused fluid flow |
| US20030101182A1 (en) * | 2001-07-18 | 2003-05-29 | Omri Govrin | Method and system for smart search engine and other applications |
| US20040072160A1 (en) * | 2001-05-22 | 2004-04-15 | Donna Mendrick | Molecular toxicology modeling |
| US20040197781A1 (en) * | 2003-04-02 | 2004-10-07 | Sana Theodore R. | Nucleic acid array in situ fabrication methods and arrays produced using the same |
| US20050112621A1 (en) * | 2003-11-25 | 2005-05-26 | Korea Institute Of Science And Technology | Quantitative biopolymer detecting system using monolithic piezoelectric cantilever by resonant frequency shift, method for fabricating the same system and method for detecting biopolymer quantitatively using the same system |
| US20060058966A1 (en) * | 2004-09-15 | 2006-03-16 | Bruckner Howard W | Methods and systems for guiding selection of chemotherapeutic agents |
| WO2005052181A3 (en) * | 2003-11-24 | 2006-04-27 | Gene Logic Inc | Methods for molecular toxicology modeling |
| US20060161354A1 (en) * | 2003-10-14 | 2006-07-20 | Pharsight Corporation | Drug model explorer |
| US20060223053A1 (en) * | 2004-11-09 | 2006-10-05 | Roper D K | Direct measurement of sorption on three-dimensional surfaces such as resins, membranes or other preformed materials using lateral dispersion to estimate rapid sorption kinetics or high binding capacities |
| US20070022482A1 (en) * | 2005-06-13 | 2007-01-25 | Eckfeldt Craig E | High-throughput functional analysis of gene expression |
| US20070027634A1 (en) * | 2002-01-31 | 2007-02-01 | Mendrick Donna L | Molecular hepatotoxicology modeling |
| US20070043515A1 (en) * | 2000-07-31 | 2007-02-22 | Gene Logic, Inc. | Molecular toxicology modeling |
| US20070055448A1 (en) * | 2003-08-07 | 2007-03-08 | Gene Logic Inc. | Primary rat hepatocyte toxicity modeling |
| US20070054269A1 (en) * | 2001-07-10 | 2007-03-08 | Mendrick Donna L | Molecular cardiotoxicology modeling |
| US20070061086A1 (en) * | 2001-07-10 | 2007-03-15 | Donna Mendrick | Cardiotoxin molecular toxicology modeling |
| US20070072175A1 (en) * | 2005-05-13 | 2007-03-29 | Biogen Idec Ma Inc. | Nucleotide array containing polynucleotide probes complementary to, or fragments of, cynomolgus monkey genes and the use thereof |
| US20070082332A1 (en) * | 2001-07-10 | 2007-04-12 | Gene Logic, Inc. | Molecular cardiotoxicology modeling |
| US20070093969A1 (en) * | 2002-11-22 | 2007-04-26 | Mendrick Donna L | Molecular nephrotoxicology modeling |
| US20070106479A1 (en) * | 2005-11-10 | 2007-05-10 | In Silico Biosciences, Inc. | Method and apparatus for computer modeling of the interaction between and among cortical and subcortical areas in the human brain for the purpose of predicting the effect of drugs in psychiatric & cognitive diseases |
| US20080235233A1 (en) * | 1999-10-22 | 2008-09-25 | Cerner Innovation, Inc. | Genetc profiling and banking system and method |
| US20080281526A1 (en) * | 2004-03-22 | 2008-11-13 | Diggans James C | Methods For Molecular Toxicology Modeling |
| US20110071767A1 (en) * | 2004-04-07 | 2011-03-24 | Ocimum Biosoluntions, Inc. | Hepatotoxicity Molecular Models |
| US20120034613A1 (en) * | 2010-08-03 | 2012-02-09 | Nse Products, Inc. | Apparatus and Method for Testing Relationships Between Gene Expression and Physical Appearance of Skin |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003075016A1 (en) * | 2002-03-07 | 2003-09-12 | Cambridge University Technical Services Limited (Cuts) | Scd fingerprints |
| CN101643505B (en) * | 2009-05-27 | 2012-05-30 | 北京维德维康生物技术有限公司 | Nitrofuran compound and preparation method and application thereof |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5863779A (en) * | 1997-08-21 | 1999-01-26 | Incyte Pharmaceuticals, Inc. | UBC7-like ubiquitin-conjugating enzyme |
| US6197599B1 (en) * | 1998-07-30 | 2001-03-06 | Guorong Chin | Method to detect proteins |
| US6322976B1 (en) * | 1998-05-28 | 2001-11-27 | Medical Research Council | Compositions and methods of disease diagnosis and therapy |
| US6326180B1 (en) * | 2001-03-26 | 2001-12-04 | Pe Corporation (Ny) | Isolated human enzyme, nucleic acid molecules encoding human enzyme, and uses thereof |
| US6346381B1 (en) * | 1997-12-22 | 2002-02-12 | Genset | Prostate cancer gene |
| US6383789B1 (en) * | 2001-03-22 | 2002-05-07 | Pe Corporation (Ny) | Isolated human UDP-glycosyltransferase, nucleic acid molecules encoding human UDP-glycosyltransferase, and uses thereof |
-
2002
- 2002-05-08 US US10/140,680 patent/US7993907B2/en not_active Expired - Fee Related
- 2002-05-08 WO PCT/US2002/014828 patent/WO2002090979A1/en not_active Ceased
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5863779A (en) * | 1997-08-21 | 1999-01-26 | Incyte Pharmaceuticals, Inc. | UBC7-like ubiquitin-conjugating enzyme |
| US6346381B1 (en) * | 1997-12-22 | 2002-02-12 | Genset | Prostate cancer gene |
| US6322976B1 (en) * | 1998-05-28 | 2001-11-27 | Medical Research Council | Compositions and methods of disease diagnosis and therapy |
| US6197599B1 (en) * | 1998-07-30 | 2001-03-06 | Guorong Chin | Method to detect proteins |
| US6383789B1 (en) * | 2001-03-22 | 2002-05-07 | Pe Corporation (Ny) | Isolated human UDP-glycosyltransferase, nucleic acid molecules encoding human UDP-glycosyltransferase, and uses thereof |
| US6326180B1 (en) * | 2001-03-26 | 2001-12-04 | Pe Corporation (Ny) | Isolated human enzyme, nucleic acid molecules encoding human enzyme, and uses thereof |
Cited By (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110041164A1 (en) * | 1999-10-22 | 2011-02-17 | Cerner Innovation, Inc. | Genetic profiling and banking system and method |
| US7844469B2 (en) | 1999-10-22 | 2010-11-30 | Cerner Innovation, Inc. | Genetic profiling and banking system and method |
| US8682695B2 (en) * | 1999-10-22 | 2014-03-25 | Cerner Innovation, Inc. | Genetic profiling and banking system and method |
| US20120271656A1 (en) * | 1999-10-22 | 2012-10-25 | Cerner Innovation, Inc. | Genetic profiling and banking system and method |
| US20100114601A1 (en) * | 1999-10-22 | 2010-05-06 | Cerner Innovation, Inc. | System and methods for prescribing therapeutic and preventive regimens |
| US8239212B2 (en) | 1999-10-22 | 2012-08-07 | Cerner Innovation, Inc. | Genetic profiling and banking system and method |
| US20080235233A1 (en) * | 1999-10-22 | 2008-09-25 | Cerner Innovation, Inc. | Genetc profiling and banking system and method |
| US20020119462A1 (en) * | 2000-07-31 | 2002-08-29 | Mendrick Donna L. | Molecular toxicology modeling |
| US7590493B2 (en) | 2000-07-31 | 2009-09-15 | Ocimum Biosolutions, Inc. | Methods for determining hepatotoxins |
| US20070043515A1 (en) * | 2000-07-31 | 2007-02-22 | Gene Logic, Inc. | Molecular toxicology modeling |
| US20040072160A1 (en) * | 2001-05-22 | 2004-04-15 | Donna Mendrick | Molecular toxicology modeling |
| US7426441B2 (en) | 2001-05-22 | 2008-09-16 | Ocimum Biosolutions, Inc. | Methods for determining renal toxins |
| US7415358B2 (en) | 2001-05-22 | 2008-08-19 | Ocimum Biosolutions, Inc. | Molecular toxicology modeling |
| US20070124086A1 (en) * | 2001-05-22 | 2007-05-31 | Mendrick Donna L | Molecular nephrotoxicology modeling |
| US20020197729A1 (en) * | 2001-06-21 | 2002-12-26 | Fuji Photo Film Co., Ltd. | Biochemical analysis unit and method for manufacturing the same |
| US20070082332A1 (en) * | 2001-07-10 | 2007-04-12 | Gene Logic, Inc. | Molecular cardiotoxicology modeling |
| US20070054269A1 (en) * | 2001-07-10 | 2007-03-08 | Mendrick Donna L | Molecular cardiotoxicology modeling |
| US7447594B2 (en) | 2001-07-10 | 2008-11-04 | Ocimum Biosolutions, Inc. | Molecular cardiotoxicology modeling |
| US20070061086A1 (en) * | 2001-07-10 | 2007-03-15 | Donna Mendrick | Cardiotoxin molecular toxicology modeling |
| US20030101182A1 (en) * | 2001-07-18 | 2003-05-29 | Omri Govrin | Method and system for smart search engine and other applications |
| US20030044992A1 (en) * | 2001-08-31 | 2003-03-06 | Chao Anthony C. | Cell-based multiplexing ADME analysis using focused fluid flow |
| US20070027634A1 (en) * | 2002-01-31 | 2007-02-01 | Mendrick Donna L | Molecular hepatotoxicology modeling |
| US20070093969A1 (en) * | 2002-11-22 | 2007-04-26 | Mendrick Donna L | Molecular nephrotoxicology modeling |
| US20040197781A1 (en) * | 2003-04-02 | 2004-10-07 | Sana Theodore R. | Nucleic acid array in situ fabrication methods and arrays produced using the same |
| US20070055448A1 (en) * | 2003-08-07 | 2007-03-08 | Gene Logic Inc. | Primary rat hepatocyte toxicity modeling |
| US20060161354A1 (en) * | 2003-10-14 | 2006-07-20 | Pharsight Corporation | Drug model explorer |
| WO2005052181A3 (en) * | 2003-11-24 | 2006-04-27 | Gene Logic Inc | Methods for molecular toxicology modeling |
| US20050112621A1 (en) * | 2003-11-25 | 2005-05-26 | Korea Institute Of Science And Technology | Quantitative biopolymer detecting system using monolithic piezoelectric cantilever by resonant frequency shift, method for fabricating the same system and method for detecting biopolymer quantitatively using the same system |
| US20080281526A1 (en) * | 2004-03-22 | 2008-11-13 | Diggans James C | Methods For Molecular Toxicology Modeling |
| US20110071767A1 (en) * | 2004-04-07 | 2011-03-24 | Ocimum Biosoluntions, Inc. | Hepatotoxicity Molecular Models |
| US20060058966A1 (en) * | 2004-09-15 | 2006-03-16 | Bruckner Howard W | Methods and systems for guiding selection of chemotherapeutic agents |
| US20060223053A1 (en) * | 2004-11-09 | 2006-10-05 | Roper D K | Direct measurement of sorption on three-dimensional surfaces such as resins, membranes or other preformed materials using lateral dispersion to estimate rapid sorption kinetics or high binding capacities |
| US20070072175A1 (en) * | 2005-05-13 | 2007-03-29 | Biogen Idec Ma Inc. | Nucleotide array containing polynucleotide probes complementary to, or fragments of, cynomolgus monkey genes and the use thereof |
| US20070022482A1 (en) * | 2005-06-13 | 2007-01-25 | Eckfeldt Craig E | High-throughput functional analysis of gene expression |
| US8150629B2 (en) | 2005-11-10 | 2012-04-03 | In Silico Biosciences | Method and apparatus for computer modeling of the interaction between and among cortical and subcortical areas in the human brain for the purpose of predicting the effect of drugs in psychiatric and cognitive diseases |
| US20070106479A1 (en) * | 2005-11-10 | 2007-05-10 | In Silico Biosciences, Inc. | Method and apparatus for computer modeling of the interaction between and among cortical and subcortical areas in the human brain for the purpose of predicting the effect of drugs in psychiatric & cognitive diseases |
| US8332158B2 (en) | 2005-11-10 | 2012-12-11 | In Silico Biosciences, Inc. | Method and apparatus for computer modeling of the interaction between and among cortical and subcortical areas in the human brain for the purpose of predicting the effect of drugs in psychiatric and cognitive diseases |
| US20120034613A1 (en) * | 2010-08-03 | 2012-02-09 | Nse Products, Inc. | Apparatus and Method for Testing Relationships Between Gene Expression and Physical Appearance of Skin |
Also Published As
| Publication number | Publication date |
|---|---|
| US7993907B2 (en) | 2011-08-09 |
| WO2002090979A1 (en) | 2002-11-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7993907B2 (en) | Biochips and method of screening using drug induced gene and protein expression profiling | |
| Alizadeh et al. | The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes | |
| Ruddle | A new era in mammalian gene mapping: somatic cell genetics and recombinant DNA methodologies | |
| US20040077003A1 (en) | Composition for the detection of blood cell and immunological response gene expression | |
| Alizadeh et al. | Probing lymphocyte biology by genomic-scale gene expression analysis | |
| Deyholos et al. | High‐density microarrays for gene expression analysis | |
| US20100029500A1 (en) | Oligonucleotide arrays to monitor gene expression and methods for making and using same | |
| WO2001057276A9 (en) | Human genome-derived single exon nucleic acid probes useful for analysis of gene expression in human bone marrow | |
| AU2004245998A1 (en) | PNI microarray and uses | |
| Carrier et al. | Differential gene expression in CD3e-and RAG1-deficient thymuses: definition of a set of genes potentially involved in thymocyte maturation | |
| CA2326835A1 (en) | A method for obtaining a plant with a genetic lesion in a gene sequence | |
| US20100279298A1 (en) | Methods and Compositions For Detecting Autoimmune Disorders | |
| CA2758523C (en) | Methods for assessing responsiveness of b-cell lymphoma to treatment with anti-cd40 antibodies | |
| CN103547680B (en) | Improved method and kit for determining severity and progression of periodontal disease | |
| CA2470965A1 (en) | System biology approach: high throughput screening (hts) platforms with multiple dimensions | |
| WO2013181367A1 (en) | Cancer-associated germ-line and somatic markers and uses thereof | |
| Cortese | The array of today | |
| US7172867B2 (en) | Methods of testing for allergic diseases, and therapeutic agents for treating same | |
| EP1462527A1 (en) | Novel markers for inflammatory bowel disease | |
| US20030073085A1 (en) | Amplifying expressed sequences from genomic DNA of higher-order eukaryotic organisms for DNA arrays | |
| GB2360284A (en) | Human genome-derived single exon nucleic acid probes | |
| CN1304448A (en) | Human Dendritic Cell Expressed Gene Cluster | |
| Fox-Clipsham | Foal immunodeficiency syndrome: identification of the causal mutation | |
| Kitchens et al. | Using DNA chips to unravel the genetics of Type 1 diabetes | |
| Class et al. | Patent application title: CANCER-ASSOCIATED GERM-LINE AND SOMATIC MARKERS AND USES THEREOF Inventors: Kerstin Lindblad-Toh (Malden, MA, US) Kerstin Lindblad-Toh (Malden, MA, US) Noriko Tonomura (Belmont, MA, US) Evan Mauceli (Roslindale, MA, US) Jaime Modiano (Roseville, MN, US) Matthew Breen (Apex, NC, US) Assignees: THE BROAD INSTITUTE, INC. TRUSTEES OF TUFTS COLLEGE NORTH CAROLINA STATE UNIVERSITY Regents of the University of Minnesota |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HISTATEK, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LINDEMANN, GARRETT;LIPANI, JOHN A.;REEL/FRAME:013492/0040 Effective date: 20020925 |
|
| AS | Assignment |
Owner name: MOWYCAL LENDING, LLC, ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HISTATEK, INC.;REEL/FRAME:015703/0592 Effective date: 20050105 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150809 |