[go: up one dir, main page]

US20030099758A1 - Compositions and methods for producing phosphate salt mixtures and brine solutions to coagulate collagen - Google Patents

Compositions and methods for producing phosphate salt mixtures and brine solutions to coagulate collagen Download PDF

Info

Publication number
US20030099758A1
US20030099758A1 US09/977,929 US97792901A US2003099758A1 US 20030099758 A1 US20030099758 A1 US 20030099758A1 US 97792901 A US97792901 A US 97792901A US 2003099758 A1 US2003099758 A1 US 2003099758A1
Authority
US
United States
Prior art keywords
phosphate
weight
brine solution
range
salt mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/977,929
Inventor
Sharon Book
Matthew Linck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astaris LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/977,929 priority Critical patent/US20030099758A1/en
Assigned to ASTARIS LLC reassignment ASTARIS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOOK, SHARON, LINCK, MATTHEW J.
Priority to EP02022377A priority patent/EP1304039A3/en
Publication of US20030099758A1 publication Critical patent/US20030099758A1/en
Assigned to CITICORP USA, INC., reassignment CITICORP USA, INC., SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASTARIS INTERNATIONAL LLC A DELAWARE LIMITED LIABILITY COMPANY, ASTARIS LLC, LIMITED LIABILITY COMPANY DELAWARE, ASTARIS PRODUCTION LLC, A DELAWARE LIMITED LIABILITY COMPANY
Priority to US11/272,631 priority patent/US7078068B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
    • A23B4/00Preservation of meat, sausages, fish or fish products
    • A23B4/02Preserving by means of inorganic salts
    • A23B4/027Preserving by means of inorganic salts by inorganic salts other than kitchen salt or mixtures thereof with organic compounds, e.g. biochemical compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/40Meat products; Meat meal; Preparation or treatment thereof containing additives
    • A23L13/42Additives other than enzymes or microorganisms in meat products or meat meals
    • A23L13/432Addition of inorganic compounds, e.g. minerals; oligo-elements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/40Table salts; Dietetic salt substitutes
    • A23L27/45Salt substitutes completely devoid of sodium chloride

Definitions

  • the invention relates to compositions and methods for producing brine solutions, phosphate salt mixtures, food products, and coagulating collagen.
  • Salts have certain desirable properties when dissolved in a solvent. Salts may affect the pH, osmolality, osmolarity, partial pressure and other physical properties of a solution. Salts also vary in solubility. For example, ten grams of a certain salt may dissolve completely in 90 grams of water while ten grams of another salt will remain undissolved in 90 grams of water. A mixture of different salts may also have increased or decreased solubility when compared to the individual constituents of the mixture alone. Dry salts, or salts substantially free of water, also impart a more rapid drying response when contacted with a wet surface.
  • salts have been used for thousands of years to season food, preserve food from bacterial growth, and to dry food and bind water. Many of these foods are prepared by adding a particular food product such as meat, cheese, and vegetable matter into a membrane which is congealed upon addition of a dry salt or salt solution. Certain salts are also known to coagulate, or congeal, a protein in solution or on the surface of food products. The term “coagulate” means to remove water from the protein solution. Sausages are but one product of this mode of food preparation.
  • sausage making is an ancient craft encompassing a diverse range of products.
  • the present invention has application to the manufacture of any type of sausage that is put into a casing.
  • the compositions and methods can be used not only in the production of sausages, but may also be used in the production of other food products containing collagen, such as fish, meat, vegetables and cheese.
  • the term food product shall hereinafter refer to any edible substance which can incorporate or become surrounded by collagen.
  • Food grade acids are commonly used in the manufacture of sausage products to spray product surfaces prior to smoking or cooking.
  • the acid reduces surface pH and promotes coagulation of protein at the surface.
  • Acetic acid or vinegar are used extensively.
  • Liquid smoke, when sprayed, dipped, or atomized onto sausage surfaces, imparts flavor, improves color, and aids peeling in some instances.
  • binders/extenders are added to sausage meat formulations to improve emulsion stability, to improve cooking yields, to improve slicing characteristics, to improve flavor, and to reduce formulation costs. Binders/extenders, when utilized, are typically added in amounts up to 3.5%. Typical binders/extenders include cereal byproducts, starch, vegetable flour, soy flour, soy protein concentrate, soy protein isolate, hydrocolloids, sugars, nonfat dry milk, and calcium-reduced nonfat dry milk. Finally, sausage formulations contain salt (sodium chloride), and sometimes alkaline phosphates. Depending on the type of sausage product, salt may be present in an amount of from 0-5% of the final product weight.
  • the resulting sausage batter may be transferred to stuffers for extruding the batter mix into casings.
  • the encased mass may be tied with thread or fastened with metal clips.
  • the stuffed and linked sausage products may then be transferred to a smoke house wherein the sausage products undergo a specialized drying and cooking operation in which the sausage emulsion is coagulated.
  • the product is showered with cold water and then chilled by refrigeration.
  • casings may be removed by a peeling operation.
  • compositions and methods of decreasing the coagulation and drying times of the collagen by contacting a quick drying, high solubility and neutral pH salt solutions to enhance the coagulation process are needed.
  • compositions and methods which allow the combination of these two steps by the addition of a salt spray which both coagulates and dries the food product in a single step are also needed.
  • a brine solution comprising at least about 40% by weight of a phosphate salt mixture wherein the phosphate salt mixture is comprised of at least two phosphate salts selected from the group consisting of monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate, dipotassium phosphate, and tripotassium phosphate is provided.
  • a dry phosphate salt mixture comprising at least two phosphate salts selected from the group consisting of monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate, dipotassium phosphate, and tripotassium phosphate is provided.
  • a food product comprising a brine solution comprising at least about 40% by weight of a phosphate salt mixture.
  • a method of preparing a brine solution by combining a solvent and a salt mixture comprising at least about 40% by weight of a phosphate salt mixture is provided.
  • a method of coagulating collagen comprising the steps of preparing a brine solution by combining a solvent and a salt mixture comprising at least about 40% by weight of a phosphate salt mixture and contacting the brine solution with collagen is provided.
  • a method of preparing a food product comprising the steps of preparing a brine solution by combining a solvent and a salt mixture comprising at least about 40% by weight of a phosphate salt mixture, combining a food product with collagen, and contacting the brine solution with collagen and the food product is provided.
  • phosphate salt mixtures provide for both improved collagen coagulation and improved drying times when compared with other salts while at the same time providing high solubility and neutral pH.
  • high solubility means a salt that is capable of forming high concentrations in solution.
  • neutral pH means a pH preferably between 5.0 and 9.0, and more preferably near 7.0.
  • a brine solution pH of about 9.0 or less was determined to provide optimal collagen coagulation and improved flavor than phosphates with a pH greater than about 9.0.
  • Certain salts are able to dissociate in solution to provide high osmotic strength.
  • the ortho-phosphates referred to herein all dissociate in solution to provide high osmotic strength.
  • the phosphate salt mixtures of the invention are combinations of two or more of the following salts: monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate, dipotassium phosphate, and tripotassium phosphate.
  • These particular salt mixtures mixed at a concentration of at least about 40% by weight of a phosphate salt mixture in a solution provide high solubility, high osmality, neutral pH, and optimal coagulation when applied to collagen in contact with a food product.
  • These salts may also be mixed with both inorganic and organic acids to aid in coagulation and drying.
  • inorganic acids include, but are not limited to hydrochloric, hydrobromic, hydroiodic, sulfuric and phosphoric.
  • Organic acids may be selected, for example, from aliphatic, aromatic, carboxylic and sulfonic classes of organic acids.
  • suitable organic acids include, but are not limited to formic, acetic, propionic, succinic, glycolic, glucoronic, maleic, faroic, glutamic, benzoic, anthranilic, salicylic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, pantothenic, benzenesulfonic, stearic, sulfanilic, algenic and galacturonic acids.
  • the brine solution preferably imparts a neutral pH without the addition of other buffer agents or pH modifiers such as an acid or base.
  • the hydronium ion concentration may be altered by the addition of an acid where the pH is too high.
  • Preferable acids are acetic acid, adipic acid, citric acid, nitric acid, phosphoric acid, and sulfuric acid.
  • DKP 50 50 150 150 10.03 Medium Clear yellow haze DKP 50 50 150 150 9.95 Medium Clear yellow haze DKP:DSP 45:10 55 135.93:29.91 134.16 9.93 Light yellow Clear haze DKP:DSP 31:18 49 92.94:53.4 153.66 9.54 Light yellow Clear haze DKP:MSP 45:7 52 135:21 144 8.31 Light yellow Clear haze DKP:DSP:MSP 42:8:10 60 126:24:30 120 8.28 Medium Clear haze DKP:DSP:MSP 40:10:10 60 120:30:30 120 8.27 Heavy haze Clear DKP:DSP:MSP 42:6:12 60 126:18:12 120 8.03 Light haze Clear DKP:DSP:MSP 40:8:12 60 120:24:36 120 8.06 Medium Clear haze DKP:DSP:MSP 38:10:12 60 114:30:36 120 7.95 Medium Clear haz
  • the preferred salt mixtures retain the more neutral pH when heated to 40° C. Other temperatures will be apparent to those skilled in the art.
  • DKP alone retains an unacceptably high pH at 40° C., but certain phosphate salt mixtures provide more neutral pH at 40° C.
  • % Salt figures may also be in represented as percentages in the dry phosphate salt mixtures before dissolving in solution.
  • the 42%:10% DKP:MSP salt mixture in solution may also be respresented as an 86.5%:13.5% dry DKP:MSP salt mixture.
  • the equation to obtain the remaining dry phosphate salt mixture figures may be calculated by the following equations:
  • a dry phosphate salt percentage is represented, this means the weight of an individual salt component of the dry salt mixture compared to the weight of the entire dry salt mixture.
  • dry means substantially free of water.
  • a dry phosphate salt mixture is a mixture of two or more phosphate salts that is substantially free of water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Seasonings (AREA)

Abstract

Compositions and methods for producing a brine solution, dry phosphate salt mixture, coagulating collagen and producing a food product by contacting with a solution comprising at least about 40% by weight of a phosphate salt mixture wherein the phosphate salt mixture is comprised of at least two phosphate salts selected from the group consisting of monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate, dipotassium phosphate, and tripotassium phosphate.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Not Applicable. [0001]
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable [0002]
  • REFERENCE TO A MICROFICHE APPENDIX
  • Not Applicable [0003]
  • FIELD OF THE INVENTION
  • The invention relates to compositions and methods for producing brine solutions, phosphate salt mixtures, food products, and coagulating collagen. [0004]
  • BACKGROUND OF THE INVENTION
  • Salts have certain desirable properties when dissolved in a solvent. Salts may affect the pH, osmolality, osmolarity, partial pressure and other physical properties of a solution. Salts also vary in solubility. For example, ten grams of a certain salt may dissolve completely in 90 grams of water while ten grams of another salt will remain undissolved in 90 grams of water. A mixture of different salts may also have increased or decreased solubility when compared to the individual constituents of the mixture alone. Dry salts, or salts substantially free of water, also impart a more rapid drying response when contacted with a wet surface. It is believed that the disruption by salt molecules of the ionic, Van der Waals, hydrogen-bonding forces and other physical forces between solvent molecules allows for more rapid dissipation of solvent molecules from the solution. Likewise, certain salts in solution may quickly dry a wet surface, membrane, or substrate when the chemical interactions of the solution are changed. [0005]
  • These properties of salts have particular significance in the food industry. Salts have been used for thousands of years to season food, preserve food from bacterial growth, and to dry food and bind water. Many of these foods are prepared by adding a particular food product such as meat, cheese, and vegetable matter into a membrane which is congealed upon addition of a dry salt or salt solution. Certain salts are also known to coagulate, or congeal, a protein in solution or on the surface of food products. The term “coagulate” means to remove water from the protein solution. Sausages are but one product of this mode of food preparation. [0006]
  • The art of sausage making is an ancient craft encompassing a diverse range of products. There are many types of sausages including (1) ground, fresh sausage products, (2) emulsion-type sausages such as frankfurters, wieners, bologna, liver sausage, and other processed sausage products, and (3) fermented sausage products. The present invention has application to the manufacture of any type of sausage that is put into a casing. In addition, the compositions and methods can be used not only in the production of sausages, but may also be used in the production of other food products containing collagen, such as fish, meat, vegetables and cheese. The term food product shall hereinafter refer to any edible substance which can incorporate or become surrounded by collagen. [0007]
  • Food grade acids are commonly used in the manufacture of sausage products to spray product surfaces prior to smoking or cooking. The acid reduces surface pH and promotes coagulation of protein at the surface. Acetic acid or vinegar are used extensively. Liquid smoke, when sprayed, dipped, or atomized onto sausage surfaces, imparts flavor, improves color, and aids peeling in some instances. [0008]
  • Various binders/extenders are added to sausage meat formulations to improve emulsion stability, to improve cooking yields, to improve slicing characteristics, to improve flavor, and to reduce formulation costs. Binders/extenders, when utilized, are typically added in amounts up to 3.5%. Typical binders/extenders include cereal byproducts, starch, vegetable flour, soy flour, soy protein concentrate, soy protein isolate, hydrocolloids, sugars, nonfat dry milk, and calcium-reduced nonfat dry milk. Finally, sausage formulations contain salt (sodium chloride), and sometimes alkaline phosphates. Depending on the type of sausage product, salt may be present in an amount of from 0-5% of the final product weight. [0009]
  • As is well-known in the art, once all the ingredients have been ground and/or chopped, mixed, and emulsified, the resulting sausage batter may be transferred to stuffers for extruding the batter mix into casings. After the emulsion is stuffed in the casings, the encased mass may be tied with thread or fastened with metal clips. The stuffed and linked sausage products may then be transferred to a smoke house wherein the sausage products undergo a specialized drying and cooking operation in which the sausage emulsion is coagulated. After smoking and cooking, the product is showered with cold water and then chilled by refrigeration. Finally, after properly chilling the product, usually to a temperature of 35° F. to 40° F., casings may be removed by a peeling operation. [0010]
  • In modern sausage and other food product processors, such as those disclosed in U.S. Pat. No. 6,054,155 to Kobussen, et al., herein incorporated by reference in its entirety, the sausage filling is coextruded along with a collagen gel which will form the casing. In order to form the casing, the collagen gel must be dehydrated and the collagen protein structure is altered in order to have the strength and functionality for further processing. This casing has the disadvantage of requiring a coagulation and air drying stages being costly in terms of energy consumption, length and inefficiency of drying times. The food product is simply prepared in too great a quantity and at too rapid a rate to allow for the traditional coagulation and drying steps. The coagulation and drying steps are enhanced by a brine solution. Specifically, the prior art salts do not meet all the needs of sausage manufacturers, such as those salts found in the Kobussen, et al. reference above. [0011]
  • Thus, what is needed are compositions and methods of decreasing the coagulation and drying times of the collagen by contacting a quick drying, high solubility and neutral pH salt solutions to enhance the coagulation process. What is also needed are compositions and methods which allow the combination of these two steps by the addition of a salt spray which both coagulates and dries the food product in a single step. [0012]
  • The invention will be described further in connection with the Example set forth below which is for purposes of illustration only. All percentages are by weight unless otherwise indicated. [0013]
  • BRIEF SUMMARY OF THE INVENTION
  • In overcoming the above disadvantages, it is an object of the invention to produce brine solutions and dry phosphate salt mixtures that may be used to coagulate collagen and reduce drying times of food products in contact with collagen. [0014]
  • Accordingly, and in one aspect of the invention, a brine solution comprising at least about 40% by weight of a phosphate salt mixture wherein the phosphate salt mixture is comprised of at least two phosphate salts selected from the group consisting of monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate, dipotassium phosphate, and tripotassium phosphate is provided. [0015]
  • In a second aspect of the invention, a dry phosphate salt mixture comprising at least two phosphate salts selected from the group consisting of monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate, dipotassium phosphate, and tripotassium phosphate is provided. [0016]
  • In a third aspect of the invention, a food product is provided comprising a brine solution comprising at least about 40% by weight of a phosphate salt mixture. [0017]
  • In a fourth aspect of the invention, a method of preparing a brine solution by combining a solvent and a salt mixture comprising at least about 40% by weight of a phosphate salt mixture is provided. [0018]
  • In a fifth aspect of the invention, a method of coagulating collagen comprising the steps of preparing a brine solution by combining a solvent and a salt mixture comprising at least about 40% by weight of a phosphate salt mixture and contacting the brine solution with collagen is provided. [0019]
  • In a sixth aspect of the invention, a method of preparing a food product comprising the steps of preparing a brine solution by combining a solvent and a salt mixture comprising at least about 40% by weight of a phosphate salt mixture, combining a food product with collagen, and contacting the brine solution with collagen and the food product is provided. [0020]
  • These and other objects, advantages, and features of the invention will become apparent to those persons skilled in the art upon reading the details of the compounds and methods more fully described below. [0021]
  • DETAILED DESCRIPTION OF THE INVENTION
  • It has been discovered that certain phosphate salt mixtures provide for both improved collagen coagulation and improved drying times when compared with other salts while at the same time providing high solubility and neutral pH. The term “high solubility” means a salt that is capable of forming high concentrations in solution. The term “neutral pH” means a pH preferably between 5.0 and 9.0, and more preferably near 7.0. A brine solution pH of about 9.0 or less was determined to provide optimal collagen coagulation and improved flavor than phosphates with a pH greater than about 9.0. Certain salts are able to dissociate in solution to provide high osmotic strength. The ortho-phosphates referred to herein all dissociate in solution to provide high osmotic strength. These characteristics of phosphate salts enable the collagen in contact with the food product to coagulate and form casing which can be further processed. [0022]
  • The phosphate salt mixtures of the invention are combinations of two or more of the following salts: monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate, dipotassium phosphate, and tripotassium phosphate. These particular salt mixtures mixed at a concentration of at least about 40% by weight of a phosphate salt mixture in a solution provide high solubility, high osmality, neutral pH, and optimal coagulation when applied to collagen in contact with a food product. These salts may also be mixed with both inorganic and organic acids to aid in coagulation and drying. Examples of inorganic acids include, but are not limited to hydrochloric, hydrobromic, hydroiodic, sulfuric and phosphoric. Organic acids may be selected, for example, from aliphatic, aromatic, carboxylic and sulfonic classes of organic acids. Examples of suitable organic acids include, but are not limited to formic, acetic, propionic, succinic, glycolic, glucoronic, maleic, faroic, glutamic, benzoic, anthranilic, salicylic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, pantothenic, benzenesulfonic, stearic, sulfanilic, algenic and galacturonic acids. [0023]
  • The proportions of individual phosphate salts in the phosphate salt mixture depend upon the solubility and pH of the resulting solution. Example 1 below provides particular examples of the preferred proportions of the invention. [0024]
  • EXAMPLE 1
  • Different phosphate salt mixtures were dissolved in water at room temperature. The percent salt (% Salt) is measured as the weight of the salt(s) divided by the weight of the entire solution after mixing. The weight of individual dry phosphate salt constituents were measured on a scale and mixed. After mixing each of the dry salt constituents, this dry phosphate salt mixture was added to a solvent and stirred thoroughly. The solvent may be aqueous, or comprise aliphatic or other carbon-based constituents. The following abbreviations apply to Tables 1 and 2 below: dipotassium phosphate (DKP), disodium phosphate (DSP), and monosodium phosphate (MSP). As can be seen by the first two examples of DKP alone in a solution, the pH remains unacceptably high. A high pH salt solution has been determined to be less than optimal when sprayed on collagen in contact with a food product. [0025]
  • Certain ratios of phosphate salts in solution, however, show more neutral pH while retaining high solubility. Thus, the salts below in Table 1 that provide a clear solution and high solubility upon Final Observation are preferred over salts that appear opaque or hazy upon Final Observation. Salts below that have a pH of about 9.0 or less in solution are likewise preferred over salt mixtures that have a pH greater than about 9.0 in solution. The Initial Observation (Initial Observ.) was determined when stirring the mixture was completed. The Final Observation (Final Observ.) was determined 5 to 10 minutes after the Initial Observation. The total percentage by weight of all salts in the solution is designated in the Full % Salt column. [0026]
  • The brine solution preferably imparts a neutral pH without the addition of other buffer agents or pH modifiers such as an acid or base. However, the hydronium ion concentration may be altered by the addition of an acid where the pH is too high. Preferable acids are acetic acid, adipic acid, citric acid, nitric acid, phosphoric acid, and sulfuric acid. [0027]
    TABLE 1
    Full
    Phosphate Salt % Mass Salts Water Initial Final
    Mixtures % Salt Salt (g) (g) pH Observ. Observ.
    DKP 50 50 150 150 10.03 Medium Clear
    yellow haze
    DKP 50 50 150 150 9.95 Medium Clear
    yellow haze
    DKP:DSP 45:10 55 135.93:29.91 134.16 9.93 Light yellow Clear
    haze
    DKP:DSP 31:18 49 92.94:53.4 153.66 9.54 Light yellow Clear
    haze
    DKP:MSP 45:7 52 135:21 144 8.31 Light yellow Clear
    haze
    DKP:DSP:MSP 42:8:10 60 126:24:30 120 8.28 Medium Clear
    haze
    DKP:DSP:MSP 40:10:10 60 120:30:30 120 8.27 Heavy haze Clear
    DKP:DSP:MSP 42:6:12 60 126:18:12 120 8.03 Light haze Clear
    DKP:DSP:MSP 40:8:12 60 120:24:36 120 8.06 Medium Clear
    haze
    DKP:DSP:MSP 38:10:12 60 114:30:36 120 7.95 Medium Clear
    haze
    DKP:DSP:MSP 42:3:12 57 126:9:36 129 7.88 Clear w/ Clear
    trace
    suspended
    particulates
    DKP:MSP 42:10 52 126:30 144 7.92 Clear w/ Clear
    trace
    suspended
    particulates
    DKP:MSP 42:12 54 126:36 138 7.85 Clear w/ Clear
    trace
    suspended
    particulates
    DKP:MSP 42:18 60 126:54 120 7.74 Medium Medium
    haze haze
    DKP:MSP 40:20 60 120:60 120 7.69 Medium Medium
    haze haze
    DKP:DSP:MSP 30:15:15 60 90:45:45 120 7.56 Medium Clear
    haze
  • In addition, the preferred salt mixtures retain the more neutral pH when heated to 40° C. Other temperatures will be apparent to those skilled in the art. As can be seen by the first measurement, DKP alone retains an unacceptably high pH at 40° C., but certain phosphate salt mixtures provide more neutral pH at 40° C. [0028]
    TABLE 2
    Phosphate Salt Full
    Mixtures At % Mass Salts Water Initial Final
    40° C. % Salt Salt (g) (g) pH Observ. Observ.
    DKP 50 50 150 150 9.28 Light
    yellow haze
    DKP:MSP 42:10 52 126:30 144 7.94 Clear w/
    trace
    suspended
    particulates
    DKP:MSP 42:12 54 126:36 138 7.78 Clear w/
    trace
    suspended
    particulates
  • It will be understood by those skilled in the art that the % Salt figures may also be in represented as percentages in the dry phosphate salt mixtures before dissolving in solution. For example, the 42%:10% DKP:MSP salt mixture in solution may also be respresented as an 86.5%:13.5% dry DKP:MSP salt mixture. The equation to obtain the remaining dry phosphate salt mixture figures may be calculated by the following equations:[0029]
  • (Weight Salt 1/Weight Salt 1+Weight Salt 2)×100 for two salt mixtures
  • and[0030]
  • (Weight Salt 1/Weight Salt 1+Weight Salt 2+Weight Salt 3)×100 for three salt mixtures
  • These equations may be easily carried out for four-or-more salt mixtures by adding the weights of the additional salts to the denominator. Therefore, where a dry phosphate salt percentage is represented, this means the weight of an individual salt component of the dry salt mixture compared to the weight of the entire dry salt mixture. The term dry means substantially free of water. Thus, a dry phosphate salt mixture is a mixture of two or more phosphate salts that is substantially free of water. [0031]
  • Food products were tested with several brine solutions with different mixtures and ratios of phosphate salts. It was determined that a neutral pH and high solubility of the phosphate salt mixture was determinative of more rapid collagen coagulation and drying rates. [0032]
  • Although preferred embodiments of the invention have been described in the foregoing Detailed Description of the Invention, it will be understood that the invention is not limited to the embodiments disclosed but is capable of numerous modifications without departing from the spirit and scope of the present invention. [0033]

Claims (48)

What is claimed is:
1. A brine solution comprising:
at least about 40% by weight of a phosphate salt mixture wherein the phosphate salt mixture is comprised of at least two phosphate salts selected from the group consisting of monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate, dipotassium phosphate, and tripotassium phosphate.
2. The brine solution of claim 1 further comprising an acid selected from the group consisting of acetic acid, adipic acid, citric acid, nitric acid, phosphoric acid, and sulfuric acid.
3. The brine solution of claim 1, wherein the brine solution comprises:
a) dipotassium phosphate in the range of about 20 to 40% by weight per weight of the brine solution;
b) disodium phosphate in the range of about 10 to 30% by weight per weight of the brine solution; and
c) monosodium phosphate in the range of about 10 to 30% by weight per weight of the brine solution.
4. The brine solution of claim 1, wherein the brine solution comprises:
a) about 30% dipotassium phosphate by weight per weight of the brine solution;
b) about 15% disodium phosphate by weight per weight of the brine solution; and
c) about 15% monosodium phosphate by weight per weight of the brine solution.
5. The brine solution of claim 1, wherein the brine solution comprises:
a) dipotassium phosphate in the range of about 33 to 50% by weight per weight of the brine solution;
b) disodium phosphate in the range of about 1.5 to 25% by weight per weight of the brine solution; and
c) monosodium phosphate in the range of about 5.5 to 25% by weight per weight of the brine solution.
6. The brine solution of claim 1, wherein the brine solution comprises:
a) about 42% dipotassium phosphate by weight per weight of the brine solution;
b) about 3% disodium phosphate by weight per weight of the brine solution; and
c) about 12% monosodium phosphate by weight per weight of the brine solution.
7. The brine solution of claim 1, wherein the brine solution comprises:
a) dipotassium phosphate in the range of about 35 to 60% by weight per weight of the brine solution; and
b) monosodium phosphate in the range of about 5 to 40% by weight per weight of the brine solution.
8. The brine solution of claim 1, wherein the brine solution comprises:
a) about 42% dipotassium phosphate by weight per weight of the brine solution; and
b) about 10% monosodium phosphate by weight per weight of the brine solution.
9. A food product comprising the brine solution of claim 1.
10. The food product of claim 9, wherein the food product is a meat product.
11. A dry phosphate salt mixture comprising:
at least two phosphate salts selected from the group consisting of monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate, dipotassium phosphate, and tripotassium phosphate.
12. The dry phosphate salt mixture of claim 11 further comprising an acid selected from the group consisting of acetic acid, adipic acid, citric acid, nitric acid, phosphoric acid, and sulfuric acid.
13. The dry phosphate salt mixture of claim 11, wherein the dry phosphate salt mixture comprises:
a) dipotassium phosphate in the range of about 30 to 50% by weight per weight of the dry phosphate salt mixture;
b) disodium phosphate in the range of about 10 to 25% by weight per weight of the dry phosphate salt mixture; and
c) monosodium phosphate in the range of about 10 to 25% by weight per weight of the dry phosphate salt mixture.
14. The dry phosphate salt mixture of claim 11, wherein the dry phosphate salt mixture comprises:
a) about 50% dipotassium phosphate by weight per weight of the dry phosphate salt mixture;
b) about 25% disodium phosphate by weight per weight of the dry phosphate salt mixture; and
c) about 25% monosodium phosphate by weight per weight of the dry phosphate salt mixture.
15. The dry phosphate salt mixture of claim 11, wherein the dry phosphate salt mixture comprises:
a) dipotassium phosphate in the range of about 50 to 74% by weight per weight of the dry phosphate salt mixture;
b) disodium phosphate in the range of about 1 to 5% by weight per weight of the dry phosphate salt mixture; and
c) monosodium phosphate in the range of about 10 to 21% by weight per weight of the dry phosphate salt mixture.
16. The dry phosphate salt mixture of claim 11, wherein the dry phosphate salt mixture comprises:
a) about 74% dipotassium phosphate by weight per weight of the dry phosphate salt mixture;
b) about 5% disodium phosphate by weight per weight of the dry phosphate salt mixture; and
c) about 21% monosodium phosphate by weight per weight of the dry phosphate salt mixture.
17. The dry phosphate salt mixture of claim 11, wherein the dry phosphate salt mixture comprises:
a) dipotassium phosphate in the range of about 60 to 81% by weight per weight of the dry phosphate salt mixture; and
b) monosodium phosphate in the range of about 10 to 19% by weight per weight of the dry phosphate salt mixture.
18. The dry phosphate salt mixture of claim 11, wherein the dry phosphate salt mixture comprises:
a) about 81% dipotassium phosphate by weight per weight of the dry phosphate salt mixture; and
b) about 19% monosodium phosphate by weight per weight of the dry phosphate salt mixture.
19. A method of preparing a brine solution comprising the step of:
combining with a solvent at least about 40% by weight of a phosphate salt mixture wherein the phosphate salt mixture is selected from at least two phosphate salts selected from the group consisting of monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate, dipotassium phosphate, and tripotassium phosphate.
20. The method of claim 19, wherein the solvent is water.
21. The method of claim 19, wherein the brine solution comprises:
a) dipotassium phosphate in the range of about 20 to 40% by weight per weight of the brine solution;
b) disodium phosphate in the range of about 10 to 30% by weight per weight of the brine solution; and
c) monosodium phosphate in the range of about 10 to 30% by weight per weight of the brine solution.
22. The method of claim 19, wherein the brine solution comprises:
a) about 30% dipotassium phosphate by weight;
b) about 15% disodium phosphate by weight; and
c) about 15% monosodium phosphate by weight.
23. The method of claim 19, wherein the brine solution comprises:
a) dipotassium phosphate in the range of about 33 to 50% by weight per weight of the brine solution;
b) disodium phosphate in the range of about 1.5 to 25% by weight per weight of the brine solution; and
c) monosodium phosphate in the range of about 5.5 to 25% by weight per weight of the brine solution.
24. The method of claim 19, wherein the brine solution comprises:
a) about 42% dipotassium phosphate by weight;
b) about 3% disodium phosphate by weight; and
c) about 12% monosodium phosphate by weight.
25. The method of claim 19, wherein the brine solution comprises:
a) dipotassium phosphate in the range of about 35 to 60% by weight per weight of the brine solution; and
b) monosodium phosphate in the range of about 5 to 40% by weight per weight of the brine solution.
26. The method of claim 19, wherein the brine solution comprises:
a) about 42% dipotassium phosphate by weight; and
b) about 10% monosodium phosphate by weight.
27. The method of claim 19, wherein the collagen is in contact with a food product.
28. The method of claim 27, wherein the food product is coextruded with the collagen.
29. A method of coagulating collagen comprising the steps of:
a) combining with a solvent at least about 40% by weight of a phosphate salt mixture wherein the phosphate salt mixture is selected from at least two phosphate salts selected from the group consisting of monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate, dipotassium phosphate, and tripotassium phosphate to form a brine solution; and
b) contacting the brine solution with collagen.
30. The method of claim 29, wherein the solvent is water.
31. The method of claim 29, wherein the brine solution comprises:
a) dipotassium phosphate in the range of about 20 to 40% by weight per weight of the brine solution;
b) disodium phosphate in the range of about 10 to 30% by weight per weight of the brine solution; and
c) monosodium phosphate in the range of about 10 to 30% by weight per weight of the brine solution.
32. The method of claim 29, wherein the brine solution comprises:
a) about 30% dipotassium phosphate by weight;
b) about 15% disodium phosphate by weight; and
c) about 15% monosodium phosphate by weight.
33. The method of claim 29, wherein the brine solution comprises:
a) dipotassium phosphate in the range of about 33 to 50% by weight per weight of the brine solution;
b) disodium phosphate in the range of about 1.5 to 25% by weight per weight of the brine solution; and
c) monosodium phosphate in the range of about 5.5 to 25% by weight per weight of the brine solution.
34. The method of claim 29, wherein the brine solution comprises:
a) about 42% dipotassium phosphate by weight;
b) about 3% disodium phosphate by weight; and
c) about 12% monosodium phosphate by weight.
35. The method of claim 29, wherein the brine solution comprises:
a) dipotassium phosphate in the range of about 35 to 60% by weight per weight of the brine solution; and
b) monosodium phosphate in the range of about 5 to 40% by weight per weight of the brine solution.
36. The method of claim 29, wherein the brine solution comprises:
a) about 42% dipotassium phosphate by weight; and
b) about 10% monosodium phosphate by weight.
37. The method of claim 29, wherein the collagen is in contact with a food product.
38. The method of claim 37, wherein the food product is coextruded with the collagen.
39. A method of preparing a food product comprising:
a) combining with a solvent at least about 40% by weight of a phosphate salt mixture wherein the phosphate salt mixture is selected from at least two phosphate salts selected from the group consisting of monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate, dipotassium phosphate, and tripotassium phosphate to form a brine solution;
b) combining a food product with collagen; and
c) contacting the brine solution with the collagen and the food product.
40. The method of claim 39, wherein the solvent is water.
41. The method of claim 39, wherein the brine solution comprises:
a) dipotassium phosphate in the range of about 20 to 40% by weight per weight of the brine solution;
b) disodium phosphate in the range of about 10 to 30% by weight per weight of the brine solution; and
c) monosodium phosphate in the range of about 10 to 30% by weight per weight of the brine solution.
42. The method of claim 39, wherein the brine solution comprises:
a) about 30% dipotassium phosphate by weight;
b) about 15% disodium phosphate by weight; and
c) about 15% monosodium phosphate by weight.
43. The method of claim 39, wherein the brine solution comprises:
a) dipotassium phosphate in the range of about 33 to 50% by weight per weight of the brine solution;
b) disodium phosphate in the range of about 1.5 to 25% by weight per weight of the brine solution; and
c) monosodium phosphate in the range of about 5.5 to 25% by weight per weight of the brine solution.
44. The method of claim 39, wherein the brine solution comprises:
a) about 42% dipotassium phosphate by weight;
b) about 3% disodium phosphate by weight; and
c) about 12% monosodium phosphate by weight.
45. The method of claim 39, wherein the brine solution comprises:
a) dipotassium phosphate in the range of about 35 to 60% by weight per weight of the brine solution; and
b) monosodium phosphate in the range of about 5 to 40% by weight per weight of the brine solution.
46. The method of claim 39, wherein the brine solution comprises:
a) about 42% dipotassium phosphate by weight; and
b) about 10% monosodium phosphate by weight.
47. The method of claim 39, wherein the collagen is in contact with a food product.
48. The method of claim 47, wherein the food product is coextruded with the collagen.
US09/977,929 2001-10-15 2001-10-15 Compositions and methods for producing phosphate salt mixtures and brine solutions to coagulate collagen Abandoned US20030099758A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/977,929 US20030099758A1 (en) 2001-10-15 2001-10-15 Compositions and methods for producing phosphate salt mixtures and brine solutions to coagulate collagen
EP02022377A EP1304039A3 (en) 2001-10-15 2002-10-09 Compositions and methods for producing phosphate salt mixtures and brine solutions to coagulate collagen
US11/272,631 US7078068B2 (en) 2001-10-15 2005-11-14 Methods for coagulating collagen using phosphate brine solutions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/977,929 US20030099758A1 (en) 2001-10-15 2001-10-15 Compositions and methods for producing phosphate salt mixtures and brine solutions to coagulate collagen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/272,631 Continuation-In-Part US7078068B2 (en) 2001-10-15 2005-11-14 Methods for coagulating collagen using phosphate brine solutions

Publications (1)

Publication Number Publication Date
US20030099758A1 true US20030099758A1 (en) 2003-05-29

Family

ID=25525657

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/977,929 Abandoned US20030099758A1 (en) 2001-10-15 2001-10-15 Compositions and methods for producing phosphate salt mixtures and brine solutions to coagulate collagen
US11/272,631 Expired - Fee Related US7078068B2 (en) 2001-10-15 2005-11-14 Methods for coagulating collagen using phosphate brine solutions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/272,631 Expired - Fee Related US7078068B2 (en) 2001-10-15 2005-11-14 Methods for coagulating collagen using phosphate brine solutions

Country Status (2)

Country Link
US (2) US20030099758A1 (en)
EP (1) EP1304039A3 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030134014A1 (en) * 1999-12-10 2003-07-17 Bergmans Peter Johannes Christoffel Marie Coagulation solution for causing coagulation of a collagen
US20050028434A1 (en) * 2003-06-23 2005-02-10 Envirofuels, L.P. Additive for hydrocarbon fuel and related process
US20070009648A1 (en) * 2005-07-08 2007-01-11 Hawkins Patrick H Systems and methods for meat processing
US20080317915A1 (en) * 2007-04-18 2008-12-25 Red Arrow Products Co., Llc. Casings for Foodstuffs

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095019B1 (en) 2003-05-30 2006-08-22 Chem-Space Associates, Inc. Remote reagent chemical ionization source
US7138626B1 (en) 2005-05-05 2006-11-21 Eai Corporation Method and device for non-contact sampling and detection
US7568401B1 (en) 2005-06-20 2009-08-04 Science Applications International Corporation Sample tube holder
US7576322B2 (en) * 2005-11-08 2009-08-18 Science Applications International Corporation Non-contact detector system with plasma ion source
US8123396B1 (en) 2007-05-16 2012-02-28 Science Applications International Corporation Method and means for precision mixing
US8008617B1 (en) 2007-12-28 2011-08-30 Science Applications International Corporation Ion transfer device
US8071957B1 (en) 2009-03-10 2011-12-06 Science Applications International Corporation Soft chemical ionization source
CA2932421C (en) * 2013-12-02 2020-10-20 Ecophos S.A. Source of phosphate for agriculture and the food industry

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868654A (en) * 1956-05-18 1959-01-13 Monsanto Chemicals Composition of matter and process therefor
US3028246A (en) * 1959-04-30 1962-04-03 Swift & Co Phosphate mixtures for curing meats
US3246692A (en) * 1962-02-07 1966-04-19 Socony Mobil Oil Co Inc Method employing weighted well fluid
US4894249A (en) * 1989-03-13 1990-01-16 Liberty Provisions, Inc. Curing process for meats
US5234971A (en) * 1989-12-28 1993-08-10 G-C Dental Industrial Corp. Odontotherapeutical materials
US5271948A (en) * 1992-03-03 1993-12-21 Teepak, Inc. Method for preparing collagen encased sausage products
US5554401A (en) * 1992-10-01 1996-09-10 Devro Limited High moisture collagen casings
US5843504A (en) * 1996-10-15 1998-12-01 Townsend Engineering Company Method and apparatus for coagulating the outer surface of a sausage strand discharged from a sausage extruding machine
US5938520A (en) * 1997-04-10 1999-08-17 Townsend Engineering Company Conveyor for supporting sausage strands during coagulation cycle, and method of rinsing and drying the same
US5997919A (en) * 1998-03-06 1999-12-07 Townsend Engineering Company Method and apparatus for removing brine from coextruded sausage strands
US6054155A (en) * 1997-12-15 2000-04-25 Townsend Engineering Company Brine formulation for curing extruded sausage strand

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868654A (en) * 1956-05-18 1959-01-13 Monsanto Chemicals Composition of matter and process therefor
US3028246A (en) * 1959-04-30 1962-04-03 Swift & Co Phosphate mixtures for curing meats
US3246692A (en) * 1962-02-07 1966-04-19 Socony Mobil Oil Co Inc Method employing weighted well fluid
US4894249A (en) * 1989-03-13 1990-01-16 Liberty Provisions, Inc. Curing process for meats
US5234971A (en) * 1989-12-28 1993-08-10 G-C Dental Industrial Corp. Odontotherapeutical materials
US5271948A (en) * 1992-03-03 1993-12-21 Teepak, Inc. Method for preparing collagen encased sausage products
US5554401A (en) * 1992-10-01 1996-09-10 Devro Limited High moisture collagen casings
US5843504A (en) * 1996-10-15 1998-12-01 Townsend Engineering Company Method and apparatus for coagulating the outer surface of a sausage strand discharged from a sausage extruding machine
US5938520A (en) * 1997-04-10 1999-08-17 Townsend Engineering Company Conveyor for supporting sausage strands during coagulation cycle, and method of rinsing and drying the same
US6054155A (en) * 1997-12-15 2000-04-25 Townsend Engineering Company Brine formulation for curing extruded sausage strand
US6153234A (en) * 1997-12-15 2000-11-28 Townsend Engineering Company Brine coated sausage strand
US5997919A (en) * 1998-03-06 1999-12-07 Townsend Engineering Company Method and apparatus for removing brine from coextruded sausage strands

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030134014A1 (en) * 1999-12-10 2003-07-17 Bergmans Peter Johannes Christoffel Marie Coagulation solution for causing coagulation of a collagen
US7288214B2 (en) * 1999-12-10 2007-10-30 Stork Townsend Inc. Coagulation solution for causing coagulation of a collagen
US20050028434A1 (en) * 2003-06-23 2005-02-10 Envirofuels, L.P. Additive for hydrocarbon fuel and related process
US7604672B2 (en) * 2003-06-23 2009-10-20 Envirofuels, Llc Additive for hydrocarbon fuel and related process
US20070009648A1 (en) * 2005-07-08 2007-01-11 Hawkins Patrick H Systems and methods for meat processing
US20080317915A1 (en) * 2007-04-18 2008-12-25 Red Arrow Products Co., Llc. Casings for Foodstuffs

Also Published As

Publication number Publication date
EP1304039A2 (en) 2003-04-23
US7078068B2 (en) 2006-07-18
EP1304039A3 (en) 2003-05-07
US20060065876A1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
EP1311165B1 (en) Composition and method for coating foodstuffs
US7081257B2 (en) Gelling vegetable protein
AU703527B2 (en) Processed meat, meat food material using the same, and production method for processed meat
CN101589820B (en) Low-fat health-care chicken meat balls prepared from complex hydrophilic gel and chicken skin instead of fat and method thereof
US7078068B2 (en) Methods for coagulating collagen using phosphate brine solutions
AU2001294367A1 (en) Composition and method for coating foodstuffs
AU2016245900B2 (en) Imitation skinless sausages
CN110663892A (en) Low-phosphorus water-retaining agent and application thereof
US20150010690A1 (en) Method for the preparation of oil-containing meat-based products comprising a direct oil addition protocol
JP2004530441A (en) Method for producing coated foods using substances produced from proteins and hydrocolloids
CN113647578A (en) A kind of method for producing surimi products
JP2001029043A (en) Production of processed meat product
JP2011078356A (en) Method for producing processed meat product
JPH0361416B2 (en)
TW202021477A (en) Composition for flesh processed food, method for producing flesh processed food and method for improving chewiness of flesh processed food
CN108112893A (en) A kind of method for promoting delicious and crisp gastrodermis brittleness
JP4382534B2 (en) Pickle composition
JPH0851922A (en) Bacterial growth control method
AU2015327905B2 (en) Fine emulsion sausages and method of making
RU2284116C1 (en) Composition for meat brining by using hydrolyzate of meat-and-bone residue
CN119867260B (en) Novel compound emulsion adhesive and preparation method and application thereof
JP3381118B2 (en) Powder emulsified fat composition
CA2166735C (en) Processed meat, meat food material using the same, and production method for processed meat
US20040037930A1 (en) Process and composition for treating PSE meat or meat with reduced functionalities
CN120203195A (en) Meat additives and processing methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASTARIS LLC, MISSOURI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOOK, SHARON;LINCK, MATTHEW J.;REEL/FRAME:013035/0257

Effective date: 20020610

AS Assignment

Owner name: CITICORP USA, INC.,, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ASTARIS LLC, LIMITED LIABILITY COMPANY DELAWARE;ASTARIS PRODUCTION LLC, A DELAWARE LIMITED LIABILITY COMPANY;ASTARIS INTERNATIONAL LLC A DELAWARE LIMITED LIABILITY COMPANY;REEL/FRAME:015861/0384

Effective date: 20050208

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION