US20030077282A1 - Use of bispecific antibodies to regulate immune responses - Google Patents
Use of bispecific antibodies to regulate immune responses Download PDFInfo
- Publication number
- US20030077282A1 US20030077282A1 US10/270,084 US27008402A US2003077282A1 US 20030077282 A1 US20030077282 A1 US 20030077282A1 US 27008402 A US27008402 A US 27008402A US 2003077282 A1 US2003077282 A1 US 2003077282A1
- Authority
- US
- United States
- Prior art keywords
- receptor
- bispecific antibody
- activating
- antibody
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/283—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against Fc-receptors, e.g. CD16, CD32, CD64
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
Definitions
- the present invention relates to methods for controlling the activity, development, differentiation, proliferation rate, and migration, of cells of the mammalian immune system.
- the invention relates to methods for cross-linking an inhibitory receptor with an activating receptor using a bispecific antibody. The cross-linking results in the inhibition of the activating receptor.
- the immune system is used to combat bacteria, viruses, and foreign multicellular organisms, as well as cancerous cells. Immune responses are provided by cells of the bone marrow, spleen, and other tissues. Unfortunately, improper regulation of the immune system can result in a number of disorders or pathological conditions. These disorders or conditions include chronic inflammation, autoimmune disease, and undesired allergic reactions to foreign particles or foreign tissues.
- Cells of the immune system possess many types of membrane-bound proteins that serve as receptors.
- the ligands for these receptors may be small molecules, proteins, e.g., cytokines or chemokines, or membrane-bound proteins residing on a separate cell.
- the occupation of a receptor by its ligand, binding of a receptor by a soluble antibody, cross-linking of like-receptors to each other, and cross-linking of unlike receptors to each other can result in changes in cellular activity. Some of these events result in “cell activation,” while other events result in “cell inhibition.”
- lipid rafts are a region of the plasma membrane with reduced fluidity of the lipid molecules.
- Cell activation or inhibition also relates to changes in phosphorylation state of receptors; changes in the proliferative state of the cell; calcium fluxes; changes in genetic expression; changes in secretion or in degranulation; differentiation of the cell; changes in the proliferative rate of the cell; changes in cell migration; and changes in chemotaxis.
- Cell activation may also include the reversal of T cell anergy (see, e.g., Lin, et al., J. Biol. Chem. 273, 19914 (1998); and Sunder-Plassman and Reinherz, J. Biol. Chem. 273, 24249 (1998)).
- the question of whether a signaling event, which results in any of the above changes, is activating or inhibiting can be determined on an individual basis. For example, if occupation of an unidentified receptor results in an increases of genetic expression of cytokine mRNA, secretion (or degranulation), release of inflammatory cytokines, phagocytic or lytic activity, the unidentified receptor may be termed an activating receptor. Similarly, if occupation of an unidentified receptor inhibits activity dependent on a known activating receptor, then that unidentified receptor may be termed an inhibiting receptor.
- ITIM immunoreceptor tyrosine-based inhibition motif
- ITAM immunoreceptor tyrosine-based activation motif
- cross-linking of an inhibiting receptor with an activating receptor may result in inhibition of the activating receptor.
- cross-linking involves the use of three components, where these components are added an incubation medium containing cultured cells, such as cultured T cells or mast cells.
- these components are antibodies, where each antibody recognizes a different antigen on the cell surface.
- a third component is often a third independent antibody which recognizes the constant region of the first two antibodies.
- a multi-component cross-linking system allows for efficient and controlled studies in conducting research experiments with cultured cells.
- a multi-component cross-linking system is not a practical method for pharmaceutical intervention or drug therapy.
- One disadvantage is that cross-linking using a three-component system requires four different binding reactions.
- a second disadvantage is the use of three antibodies to cross-link receptors is therapeutically not feasible.
- the present invention addresses these problems by providing one bispecific antibody, which is capable of binding and physiologically affecting an activating receptor and inhibiting receptor on a cell of the immune system.
- the present invention provides a method for using a bispecific antibody to reduce the activity of a cell or of an activating receptor, wherein said bispecific antibody binds to: (a) an activating receptor; and (b) an inhibiting receptor.
- the inhibiting receptor contains an ITIM motif, and may be selected from the group consisting of: Fc ⁇ RIIB, LAIR-1, KIR, OX2R, OX2Ra, DSP-1, CD5, MAFA, CTLA-4, HM18, Ly49, and gp49B1.
- the activating receptor contains an ITAM motif and may be selected from the group consisting of Fc ⁇ RI, Fc ⁇ RIII, Fc ⁇ RIIA, Fc ⁇ RIIC, T-cell receptor, TREM-1, TREM-2, CD28, CD3, CD2, and DAP-12.
- the activating receptor is Fc ⁇ RI and the inhibiting receptor is OX2Ra.
- the bispecific antibody comprises a chemical linking agent that is covalently incorporated into the bispecific antibody.
- the bispecific antibody is a single polypeptide chain antibody or is humanized.
- the bispecific antibody is administered in conjunction with an agent that stimulates expression of an inhibiting receptor or an activating receptor.
- This agent is selected from the group consisting of granulocyte colony stimulating factor and interferon- ⁇ .
- the bispecific antibody is administered in conjunction with a therapeutic selected from the group consisting of an antiinflammatory agent, a chemotherapeutic agent, an immunosuppressive agent, and an anti-malarial agent.
- the antiinflammatory agent is selected from the group consisting of corticosteroids, glucocorticoids, soluble tumor necrosis factor receptor, and antibodies against tumor necrosis factor.
- the chemotherapeutic agent is selected from the group consisting of methotrexate, vincristine, and cyclophosphamide.
- the present invention provides a composition comprising the bispecific antibody of claim 1 in conjunction with an acceptable carrier.
- the bispecific antibody is administeredThe method of claim 1, in vivo or to cultured cells.
- the present invention provides a kit comprising the bispecific antibody in a compartment; and instructions for use.
- an “antibody” or “antibody molecule” generally consists of two heavy chains and two light chains, where usually each light chain is linked to a heavy chain by a disulfide bond, and where usually the two heavy chains are linked together by a disulfide bond (Brody, Analyt. Biochem. 247, 247 (1997)).
- Light chains are classified as either kappa or lambda.
- Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, and define the antibody's isotype as IgG, IgM, IgA, IgD and IgE, respectively.
- variable and constant regions are joined by a “J” region of about 12 or more amino acids, with the heavy chain also including a “D” region of about 10 more amino acids.
- a “bispecific antibody” refers to vinding fragments from two different antibodies, humanized binding fragments from two different antibodies, or peptide mimetics of binding fragments from two different antiboides. Each binding fragment recognizes a different receptor, e.g., an inhibiting receptor and an activating receptor. Bispecific antibodies normally exhibit specific binding to two separate antigens.
- the term “cocktail” refers to a solution from which aliquots may be withdrawn, and then transferred to a reaction mixture or cell incubation mixture.
- the cocktail may supply a mixture of different antibodies, for the purpose of initiating a cross-linking reaction.
- the cocktail may supply a mixture of ancillary compounds to the reaction mixture, such as a combination of protease inhibitors. Cocktails are pre-mixed combinations of reagents that allow the transfer of reagents to be effected more rapidly and more accurately.
- Epitopic determinants includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics.
- receptor may refer to the rate of transcription (mRNA synthesis), rate of translation (polypeptide synthesis), rate of transfer of a receptor polypeptide from an intracellular compartment to an extracellular compartment, or to the proportion of receptor polypeptide occurring in as: [extracellular]/[intracellular+extracellular] compartment.
- receptor refers to a class of proteins, including the membrane-bound proteins of a cell that can be associated with a biological ligand or an analogue thereof, such as a hormone, a cytokine, an antibody, a membrane-bound protein of another cell, or a ligand bound to the membrane of another cell.
- the membrane-bound receptor may reside on the plasma membrane, or may reside on an intracellular vesicle, destined for eventual insertion in the plasma membrane.
- a ligand may serve as an agonist or an antagonist of the receptor (Goodman, et al. (1990) Goodman & Gilman's: The Pharmacological Bases of Therapeutics (8th ed.) Pergamon Press, Tarrytown, N.Y.).
- the association between the ligand and receptor may be temporary or permanent, and it may involve a non-covalent linkage or a covalent linkage.
- Many receptors are used to control cell behavior or cell-signaling events. Where the association of a ligand with a receptor provokes an increase in a cellular event, the receptor is called an “activating” receptor.
- the receptor may be called “inhibiting.”
- various ligands can provoke either the activation or the inhibition of the receptor, and here the receptor may be termed “activating” or “inhibiting,” depending on which ligand is used most often in the physiological situation.
- a protein or other macromolecule may be called a receptor because it binds a naturally occurring ligand, but also because it binds a synthetic or non-physiological ligand, such as a drug or experimental probe.
- activating receptor is most accurately used to refer to a single polypeptide chain comprising a ligand-binding region and a cytosolic signaling region, or a complex of polypeptides, comprising a ligand-binding polypeptide and a cytosolic signaling polypeptide.
- an inhibitory receptor may exert its inhibitory effect on a number of different activating receptors, that is, not solely on one type of activating receptor.
- a receptor can be both activating and inhibiting, where the activating or inhibiting effect depends on the physiology of the cell.
- CD22 a protein of human and mouse B cells
- ITAM activating motif
- ITIM inhibitorting motif
- a receptor can exert an activating or inhibiting effect on the B cell receptor, depending on the physiology and surroundings of the B cell (Gergely, et al., Immunology Letters 68, 3 (1999); Sato, et al., Immunity 5, 551 (1996)).
- the question of whether any given receptor is inhibiting or activating may depend on the ligand, for example, one type of mitogen versus another type of mitogen (Sato, et al., Immunity 5, 551 (1996)).
- polypeptide receptor used in cell activation does not contain an activating domain, but is bound to a second polypeptide that does contain an activating domain, it is acceptable to refer to each of the following three entities as an “activating receptor”: (1) The polypeptide receptor not containing an activating domain; (2) The polypeptide containing the activating domain; and (3) The entire complex of the above-mentioned two polypeptides.
- receptor is broadly defined to include membrane-bound or membrane-associated macromolecules that may be targeted by a pharmaceutical agent, but are not necessarily the target of a physiological ligand.
- receptor also includes macromolecules that are covalently or non-covalently associated with the outside surface of the plasma membrane, and not necessarily inserted into the phospholipid bilayer of the plasma membrane.
- Motif refers to a sequence of amino acids within a polypeptide, where that sequence confers specific properties to that polypeptide.
- the present invention provides a bispecific antibody that can bind specifically to two separate receptors of a cell.
- two types of receptors bearin two types of motifs are encountered in a number of membrane-bound receptors of white blood cells. These the receptors and their respective motifs are called the ITAM and ITIM.
- the consensus ITAM sequence is YxxL/Ix 6-8 YxxL/I, where (Y) may be phosphorylated resulting in a change in signaling properties of the activating receptor and/or the accessory protein.
- the ITAM motif may occur within an activating receptor itself, or within an accessory protein that binds to the activating receptor, thus conferring activating properties to the activating receptor. ITAM receptors as described below
- the ITIM motif is defined by the consensus sequence I/V/LxYxxL/V in the cytoplasmic domain where (Y) can be phosphorylated, resulting in the ability of the polypeptide bearing the ITIM motif to recruit various enzymes, where the enzymes aid in relaying an inhibitory signal to the cell (Sathish, et al., J. Immunol. 166, 1763 (2001)).
- inhibitory receptors include, e.g., Fc ⁇ RIIB, LAIR, FDF03, KIR, gp49B , ILT25, PIR-B, Ly49, CTLA4, DSP-1, CD200Ra/OXRa, CD94/NKG2A, NKG2B-E, PECAM-1, CD5, CD22, CD72, PIR1, SIRP ⁇ , HM18, LRC, ILT, KIR, LIR, MIR, and MAFA (see, e.g., Long (1999) Ann. Rev. Immunol. 17:875; Lanier (1997) Immunity 6:371; Newton-Nash and Newman (1999) J. Immunol.
- Activating receptors include, e.g., CD3, CD2, CD10, CD161, DAP-12, KAR, KARAP, Fc ⁇ FRI, Fc ⁇ FRII, Fc ⁇ RIIA, Fc ⁇ RIIC, Fc ⁇ RIII/CD16, Trem-1, Trem-2, CD28, p44, p46, B cell receptor, LMP2A, STAM, STAM-2, GPVI, and CD40 (See, e.g., Azzoni, et al. (1998) J. Immunol. 161:3493; Kita, et al. (1999) J. Immunol. 162:6901; Merchant, et al. (2000) J. Biol. Chem.
- KIR inhibiting
- a mouse IgE/Fc ⁇ RI complex was cross-linked to a mouse IgE/Fc ⁇ RI complex.
- KIR was first tagged with mouse anti-human GL183 F(ab)′ 2 .
- a mouse anti-human GL183 F(ab)′ 2 /KIR complex was cross-linked to mouse IgE/Fc ⁇ RI complex with a bridging antibody (donkey anti-mouse DAM F(ab)′ 2 ).
- a bridging antibody donkey anti-mouse DAM F(ab)′ 2
- Cross-linking KIR inhibiting
- CD25/CD3 ⁇ activating
- the cross-linking of KIR can result in an inhibition of CD25/CD3 ⁇ -dependent cell activity (Blery, et al., J. Biol. Chem. 272, 8989 (1997)).
- CD25/CD3 ⁇ is a chimeric molecule composed of CD25 ecto- and transmembrane domains fused to CD3 ⁇ (Donnadieu, et al., Proc. Natl. Acad. Sci. 269, 32828 (1994)).
- Cross-linking of KIR with CD25/CD3 ⁇ can inhibit CD25/CD3 ⁇ -mediated cell activation.
- the cross-linking cocktail contained IgE (targets CD25/CD3 ⁇ ), GL183 (targets KIR), and donkey anti-rat Ig F(ab)′ 2 (Blery, et al., J. Biol. Chem. 272, 8989 (1997)).
- Gp49B1 Cross-linking Gp49B1 (inhibiting) with Fc ⁇ RI (activating).
- Gp49B1 is a protein of mouse cells, not human cells. Gp49B1 occurs on mouse mast cells, as well as on mouse NK cells stimulated with IL-2 (Wang, et al., J. Immunol. 158, 13 (1997)).
- the physiological ligand for gp49B1 is MHC class I molecules.
- Gp49B1 contains an ITIM motif.
- Gp49B1 shares a 35% amino acid identity with the human protein, KIR.
- a human homologue of gp49B1, called HM18 occurs on human mast cells, human monocytes, and human NK cells.
- Cross linking of gp49B1 and Fc ⁇ RI on mouse mast cells was studied using the cross-linking cocktail comprising rat IgE, rat IgM anti-gp49B1, anti-gp49B1, and F(ab′) 2 mouse anti-rat IgG (Lu-Kuo, et al., J. Biol. Chem. 274, 5791 (1999)).
- the cross-linking of gp49B1 with Fc ⁇ RI inhibited cell activation, as measured by monitoring the association of SHP-1 (a phosphatase) with gp49B1, by measuring calcium fluxes, and by measuring enzyme secretion.
- Cross-linking was effected as follows.
- Fc ⁇ RI was tagged by adding mouse IgE.
- Fc ⁇ RI becomes bound by IgE.
- one mouse IgE/Fc ⁇ RI complex is cross-linked to another mouse IgE/Fc ⁇ RI complex with donkey anti-mouse F(ab)′ 2 .
- the scenario described so far results only in cell activation.
- Fc ⁇ RIIB (inhibiting) was cross-linked to a mouse IgE/Fc ⁇ RI complex.
- Fc ⁇ RIIB was first tagged with 2.4G2, resulting in a 2.4G2/Fc ⁇ RIIB complex.
- a rat 2.4G2/Fc ⁇ RIIB complex was cross-linked to mouse IgE/Fc ⁇ RI complex with a bridging antibody (TNP-F(ab)′ 2 MAR).
- TNP-F(ab)′ 2 MAR is used to cross-link mouse anti-TNP IgE and rat anti-Fc ⁇ RII 2.4G2.
- TNP-F(ab)′ 2 MAR is used to cross-link mouse anti-TNP IgE and rat anti-Fc ⁇ RII 2.4G2.
- the result of this third step is inhibition of cell activation (Blery, et al., J. Biol. Chem. 272, 8989 (1997)).
- cross-linking Fc ⁇ RIIB and Fc ⁇ RI has been characterized by a number of other investigators.
- cross-linking was by a cocktail containing IgE and F(ab′) 2 fragments of RAM Ig (Malbec, et al., J. Immunol. 160, 1647 (1998)).
- cross-linking was by a cocktail containing IgE anti-DNP, 2.4G2 F(ab′) 2 , and TNP-MAR F(ab′) 2 (Lesourne, et al., J. Biol. Chem. 276, 6327 (2001)).
- FDF03 Cross-linking FDF03 (inhibiting) with Fc ⁇ RII (activating).
- FDF03 is a human membrane-bound protein found in monocytes, macrophages, granulocytes, and monocyte-derived dendritic cells.
- FDF03 contains an ITIM motif in its cytoplasmic region and thus may be abbreviated as FDF03-ITIM.
- Fc ⁇ RII in humans occurs in three forms, where one is an inhibitory receptor and two are activating receptors.
- Fc ⁇ RIIA and Fc ⁇ RIIC are activating, and contain an ITAM motif, and thus may be represented as Fc ⁇ RIIA-ITAM and Fc ⁇ RIIC-ITAM.
- Fc ⁇ RIIB is inhibiting, and may be represented as Fc ⁇ RIIB-ITIM (Kim, et al., J. Immunol. 162, 4253 (1999)).
- the study reported below concerned one of the activating forms of Fc ⁇ RII, where the exact form was not stated.
- LAIR-1 Cross-linking LAIR-1 (inhibiting) with Fc ⁇ RII (activating).
- LAIR-1 contains an ITIM motif and hence may be abbreviated as LAIR-1-ITIM.
- LAIR-1 (inhibiting) and Fc ⁇ RII (activating) were cross-linked to each other with a cross-linking cocktail.
- the cross-linking cocktail contained mAbIV.3 (binds Fc ⁇ RII), mAb DX26 (binds LAIR-1), and goat F(ab′) 2 anti-mouse Ig. Adding anti-Fc ⁇ RII alone to the cells provoked calcium flux. However, adding the entire cross-linking cocktail did not result in the calcium flux.
- Fc ⁇ RIIB (inhibiting) with B cell receptor (activating).
- Fc ⁇ RIIB (also called CD32B) is a membrane-bound protein of B cells. B cells proliferate and secrete antibodies in response to exposure to foreign antigen. The antibodies secreted by the B cell exert a feedback effect on the B cell, where this negative feedback effect is by means of contact of the antibody with Fc ⁇ RIIb and the B cell receptor. Stimulation of Fc ⁇ RIIb (inhibiting) by pharmaceutical means is expected to be useful in disease states where B cell activity results in harm. These include autoimmune diseases, such as rheumatoid arthritis.
- mice deficient in Fc ⁇ RIIb have increased arthritis (apparently because Fc ⁇ RIIb is not present, and thus cannot exert its inhibitory effect) (Yuasa, et al., J. Exp. Med. 189, 187 (1999)).
- Fc ⁇ RIIB is present not only on B cells, but also on mast cells and macrophages, where the Fc ⁇ RIIB also exerts an inhibitory effect (Daeron, et al., 3, 635 (1995); Ujike, et al., J. Exp. Med. 189, 1573 (1999)).
- Fc ⁇ RIIB bears an ITIM motif in its cytoplasmic region.
- Fc ⁇ RIIB occurs in two forms in humans, namely, Fc ⁇ RIIB1 and Fc ⁇ RIIB2 (Bruhns, et al., J. Biol. Chem. 275, 37357 (2000)).
- the B cell receptor is a complex of mIg (this binds the antigen), Ig- ⁇ (part of signaling unit), and Ig- ⁇ (part of signaling unit). Ig- ⁇ and Ig- ⁇ each contain an ITAM motif. Cross-linking of one B cell receptor to another B cell receptor by polyvalent antigen results in cell activation.
- cross-linking of B cell receptor to Fc ⁇ RIIB is inhibitory, as mentioned above.
- Cross-linking (co-ligation) of these two receptors results in the phosphorylation of a tyrosine residue in the ITIM motif, resulting the conversion of Fc ⁇ RIIb-ITIM to Fc ⁇ RIIb-ITIM-phosphate (Gergely, et al., Immunology Letters 68, 3 (1999); Coggeshall, Curr. Opinion Immunol. 10, 306 (1998); Sarmay, et al., J. Biol. Chem. 271, 30499 (1996)).
- Experimental cross-linking of the two receptors can be accomplished by adding to cells: (1) Intact IgG anti-IgM; (2) Aggregated IgG plus anti-Ig; or (3) Adding anti-Fc ⁇ RBII (anti-CD32BI) followed by biotinylated anti-mouse IgG and biotinylated anti-human Ig plus avidin (Sarmay, et al. (1996)).
- c-Kit is a membrane bound protein that functions as an activating receptor. c-Kit does not contain an ITAM motif. The protein occurs on mast cells, where it functions in innate immune mechanisms, in contrast to Fc ⁇ RI of mast cells, which functions in adaptive immune mechanisms (Lu-Kuo, et al., J. Biol. Chem. 275, 6022 (2000)). c-Kit belongs to the colony-stimulating factor/platelet-derived growth factor receptor subfamily, where the aforementioned proteins belong to the RTK family (receptor tyrosine kinase family) (Moriyama, et al., J. Biol. Chem. 271, 3347 (1996)).
- CD-5 Cross-linking CD-5 (inhibiting) with CD3 (activating).
- CD-5 is a membrane-bound protein found on T cells and on subpopulations of B cells.
- CD-5 belongs to the scavenger receptor cysteine-rich (SRCR) family. This family includes CD-5, CD6, WC1, M130, Sp ⁇ , Pema-STEG, Ebnerin, CPR-ductin, hensin, and gallbladder mucin (Perez-Villar, Mol. Cell. Biol. 19, 2903 (1999)).
- the cytoplasmic domain of CD-5 contains ITAM-like sequences and ITIM-like sequences.
- Studies with T cells illustrated the inhibitory properties of CD-5, as they related to the T cell receptor or, more specifically, to the CD3component of the T cell receptor.
- Cross-linking of CD-5 (inhibiting) with T cell receptor (activating) was accomplished with a cross-linking cocktail containing biotyinylated anti-CD3, biotinylated anti-CD-5, and avidin. Cross-linking resulted in decreases in T cell receptor-dependent cell activation, as shown by measurements of Ca 2+ levels (Perez-Villar, Mol. Cell. Biol. 19, 2903 (1999)).
- the invention provides for bispecific antibodies in which two different antigen-binding sites are incorporated into a single molecule.
- Bispecific antibodies may be prepared by chemical cross-linking (Brennan, et al., Science 229, 81 (1985); Raso, et al., J. Biol. Chem. 272, 27623 (1997)), disulfide exchange, production of hybrid-hybridomas (quadromas), by transcription and translation to produce a single polypeptide chain embodying a bispecific antibody, or by transcription and translation to produce more than one polypeptide chain that can associate covalently to produce a bispecific antibody.
- the contemplated bispecific antibody can also be made entirely by chemical synthesis.
- the bispecific antibody may comprise two different variable regions, two different constant regions, a variable region and a constant region, or other variations.
- An example of use of transcription/translation to produce a single polypeptide chain bispecific antibody is as follows. Certain animals (camels; llamas; dromedaries) produce heavy chain antibodies, where there is no associated light chain. These antibodies have a single variable region, which can bind to antigen. Recombinant bispecific antibodies comprising two variable regions (from two different heavy chain antibodies) plus a linker region (from llama upper hinge) have been produced. The resulting complex (VH 1 -LH-VH 2 ) can be expressed in bacteria (Conrath, et al., J. Biol. Chem. 276, 7346 (2001)). Humanized counterparts of the bispecific antibodies based on camel heavy chain antibodies are contemplated.
- Single chain variable fragments have been connected to each other to form a bispecific antibody by various techniques: cross-linking C-terminal cysteine residues, adding naturally associating helices from a four-helix bundle, adding leucine zippers, adding a CH3 domain with either a knob or hole at the interacting surfaces, or by connecting CH1 and CL domains to the respective scFV fragments (Conrath, et al., J. Biol. Chem. 276, 7346 (2001)).
- Chemically constructed bispecific antibodies may be prepared by chemically cross-linking heterologous Fab or F(ab′) 2 fragments by means of chemicals such as heterobifunctional reagent succinimidyl-3-(2-pyridyldithiol)-propionate (SPDP, Pierce Chemicals, Rockford, Ill.).
- the Fab and F(ab′) 2 fragments can be obtained from intact antibody by digesting it with papain or pepsin, respectively (Karpovsky, et al., J. Exp. Med. 160, 1686 (1984); Titus, et al., J. Immunol., 138, 4018 (1987)).
- Oligopeptides and polypeptides may be used for linking two different antibodies or antibody chains together. Oligo- and polypeptides may be synthesized by solution phase or by solid phase techniques. These include processes such as are described in Stewart and Young, Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, Ill. (1984); Bodanszky, The Principles of Peptide Synthesis, 2nd ed., Springer, New York (1993); and Molina, et al., Pept. Res. 9, 151 (1996)).
- an azide process for example, an acid chloride process, an acid anhydride process, a mixed anhydride process, an active ester process (for example, p-nitrophenyl ester, N-hydroxy-succinimide ester, or cyanomethyl ester), a carbodiimidazole process, an oxidative-reductive process, or a dicyclohexylcarbodiimide (DCCD)/additive process can be used.
- an active ester process for example, p-nitrophenyl ester, N-hydroxy-succinimide ester, or cyanomethyl ester
- DCCD dicyclohexylcarbodiimide
- Quadromas may be constructed by fusing hybridomas that secrete two different types of antibodies against two different antigens (Milstein and Cuello, Nature 305, 537 (1983); Kurokawa et al., Biotechnology 7, 1163 (1989)). Bispecific antibodies can also be prepared by the transfectoma method (Morrison, Science 229, 1202 (1985)). The invention additionally encompasses bispecific antibody structures produced within recombinant microbial hosts as described in PCT application WO 93/11161 and Holliger, et al., Proc. Natl. Acad. Sci. USA, 90, 6444 (1993).
- bispecific linear molecules such as the so-called “Janusin” structures described by Traunecker, et al., EMBO J. 10, 3655 (1991). This can be accomplished by genetically removing the stop codons at the end of a gene encoding a monomeric single-chain antigen-binding protein and inserting a linker and a gene encoding a second single-chain antigen-binding protein (WO 93/11161).
- the antigen recognition site of most antibodies is comprised of the variable region of the heavy chain and the variable region of the light chain. Both of these variable regions are in close contact with each other, and form the antigen-recognition site.
- Single chain antibodies contain two variable regions on one polypeptide chain, where one variable region is eqivalent to that of a conventional light chain, and the other variable region is equivalent to a conventional heavy chain.
- the design of single chain antibodies includes attention to the linking polypeptide region, which connects the two variable regions.
- Single chain antibodies can be synthesized by chemical means, or by means of translation using a single open reading frame. Details on the synthesis of single chain antibodies are described in U.S. Pat. No. 4,946,778 issued to Ladner, et al.
- bispecific antibodies are formed by linking component antibodies to leucine zipper peptides (Kostelny et al., J. Immunol. 148, 1547 (1992); de Kruif and Logtenberg, J. Biol. Chem. 271, 7630 (1996)).
- Leucine zippers have the general structural formula (Leucinc-X 1 -X 2 -X 3 -X 4 -X 5 -X 6 ) n , where X may be any of the conventional 20 amino acids (Creighton. Proteins, Structures and Molecular Principles, W. H.
- the leucine zipper occurs in a variety of eukaryotic DNA-binding proteins, such as GCN4, C/EBP, c-fos gene product (Fos), c-jun gene product (Jun), and c-myc gene product. In these proteins, the leucine zipper creates a dimerization interface wherein proteins containing leucine zippers may form stable homodimers and/or heterodimers.
- the leucine zippers for use in the present invention preferably have pairwise affinity. Pairwise affinity is defined as the capacity for one species of leucine zipper, for example, the Fos leucine zipper, to predominantly form heterodimers with another species of leucine zipper, for example, the Jun leucine zipper, such that heterodimer formation is preferred over homodimer formation when two species of leucine zipper are present in sufficient concentrations (Schuemann, et al., Nucleic Acids Res. 19, 739 (1991)). Thus, predominant formation of heterodimers leads to a dimer population that is typically 50 to 75 percent, preferentially 75 to 85 percent, and most preferably more than 85 percent heterodimers. When amino-termini of the synthetic peptides each include a cysteine residue to permit intermolecular disulfide bonding, heterodimer formation occurs to the substantial exclusion of homodimerization.
- binding fragments of the component antibodies are fused in-frame to first and second leucine zippers.
- Suitable binding fragments including Fv, Fab, Fab′, or the heavy chain.
- the zippers can be linked to the heavy or light chain of the antibody binding fragment and are usually linked to the C-terminal end. If a constant region or a portion of a constant region is present, the leucine zipper is preferably linked to the constant region or portion thereof. For example, in a Fab′-leucine zipper fusion, the zipper is usually fused to the C-terminal end of the hinge.
- leucine zippers fused to the respective component antibody fragments promotes formation of heterodimeric fragments by annealing of the zippers.
- the annealing of zippers also serves to bring the constant regions into proximity, thereby promoting bonding of constant regions (e.g., in a F(ab′) 2 fragment).
- constant regions e.g., in a F(ab′) 2 fragment.
- Typical human constant regions bond by the formation of two disulfide bonds between hinge regions of the respective chains. This bonding can be strengthened by engineering additional cysteine residue(s) into the respective hinge regions allowing formation of additional disulfide bonds.
- Leucine zippers linked to antibody binding fragments can be produced in various ways.
- polynucleotide sequences encoding a fusion protein comprising a leucine zipper can be expressed by a cellular host or in vitro translation system.
- leucine zippers and/or antibody binding fragments can be produced separately, either by chemical peptide synthesis, by expression of polynucleotide sequences encoding the desired polypeptides, or by cleavage from other proteins containing leucine zippers, antibodies, or macromolecular species, and subsequent purification.
- Such purified polypeptides can be linked by peptide bonds, with or without intervening spacer amino acid sequences, or by non-peptide covalent bonds, with or without intervening spacer molecules, the spacer molecules being either amino acids or other non-amino acid chemical structures. Regardless of the method or type of linkage, such linkage can be reversible. For example, a chemically labile bond, either peptidyl or otherwise, can be cleaved spontaneously or upon treatment with heat, electromagnetic radiation, proteases, or chemical agents.
- Two examples of such reversible linkage are: (1) a linkage comprising a Asn-Gly peptide bond which can be cleaved by hydroxylamine, and (2) a disulfide bond linkage which can be cleaved by reducing agents.
- Component antibody fragment-leucine zippers fusion proteins can be annealed by co-expressing both fusion proteins in the same cell line. Alternatively, the fusion proteins can be expressed in separate cell lines and mixed in vitro. If the component antibody fragments include portions of a constant region (e.g., Fab′ fragments), the leucine zippers can be cleaved after annealing has occurred. The component antibodies remain linked in the bispecific antibody via the constant regions.
- a constant region e.g., Fab′ fragments
- Monoclonal antibodies may be obtained by various techniques familiar to those skilled in the art. Briefly, spleen cells from an animal immunized with a desired antigen are immortalized, commonly by fusion with a myeloma cell (Kohler and Milstein, Eur. J. Immunol. 6, 511 (1976)). Alternative methods of immortalization include transformation with Epstein Barr Virus (EBV), oncogenes, or retroviruses, or other methods well known in the art. Colonies arising from single immortalized cells are screened for production of antibodies of the desired specificity and affinity for the antigen. Yield of the MAbs produced by such cells may be enhanced by various techniques, including injection into the peritoneal cavity of a vertebrate host.
- EBV Epstein Barr Virus
- Humanization of an antibody derived from an animal can result in decreased immunogenicity in the human body, increased half-life, and less activation of resting T cells.
- the antibody may be humanized by grafting complementarity-determining regions of mouse antibody into human antibody sequences. In other words, the constant regions of the mouse antibody are replaced with human constant regions.
- An additional useful alteration is to introduce mutations in the Fc region that result in lesser binding of the antibody to the human Fc receptor (Carpenter, et al., J. Immunol. 165, 6205 (2000); He, et al, J Immunol. 160, 1029 (1998)).
- the term “anti-” refers to a polypeptide, polypeptide region, or polypeptide fragment that specifically binds to the indicated target. It is contemplated the certain embodiments may be modified by a bridging region or hinge region, a signal sequence, by a glycosyl, phosphoryl, sulfate, or acetyl group, by a carboxylated glutamate residue (Gla), by disulfide bonds, by a purification tag such as oligo-histidine or glutathione S-transferase, by a peptide bond cleavage, by a detectable ligand, such as a fluorescent tag or radioactive tag ( 35 S, 3 H, 14 C, 33 P, 32 P, 125 I), by biotinylation, or by an agent intended to promote stability in the body, such as polyethyleneglycol (PEG; pegylated antibody).
- PEG polyethyleneglycol
- the contemplated bispecific antibody may be comprised of anti-KIR and anti-CD2, anti-KIR and anti-CD3, anti-KIR and anti-DAP-12, anti-KIR and anti-KAR, anti-KIR and anti-KARAP, anti-KIR and anti-Fc ⁇ RI, anti-KIR and anti-Fc ⁇ RIIA, anti-KIR and anti-Fc ⁇ RIIC, anti-KIR and anti-Fc ⁇ RIII, anti-KIR and anti-Trem-1, anti-KIR and anti-CD28, anti-KIR and anti-T cell receptor, or anti-KIR and anti-B cell receptor.
- the contemplated bispecific antibody may be comprised of anti-Fc ⁇ RIIB and anti-CD2, anti-Fc ⁇ RIIB and anti-CD3, anti-Fc ⁇ RIIB and anti-DAP-12, anti-Fc ⁇ RIIB and anti-KAR, anti-Fc ⁇ RIIB and anti-KARAP, anti-Fc ⁇ RIIB and anti-Fc ⁇ RI, anti-Fc ⁇ RIIB and anti-Fc ⁇ RIIA, anti-Fc ⁇ RIIB and anti-Fc ⁇ RIIC, anti-Fc ⁇ RIIB and anti-Fc ⁇ RIII, anti-Fc ⁇ RIIB and anti-Trem-1, anti-Fc ⁇ RIIB and anti-CD28, anti-Fc ⁇ RIIB and anti-T cell receptor, or anti-Fc ⁇ RIIB and anti-B cell receptor.
- Bispecific antibodies of the present invention are useful in the treatment or diagnosis of immune disorders, abnormal cell proliferation, etc.
- Such disorder include diseases involving cells which bear activating and/or inhibitory receptors, e.g., IgE-dependent contidionts, inflammatory conditions of the skin or mucosa, autoimmune condtions, immune disorders of the nervous and muscle systems, systemic inflammation, and transplant related immune diseases (see, e.g., Salvi and Babu (2000) New Engl. J. Med. 342:1292; Saini et al. (1999) J. Immunol. 162:5624; Barnes (1999) New Engl. J. Med. 341:2006; Kita, et al. (1999) J. Immunol.
- Therapeutic formulations of bispecific antibodies are prepared for storage by mixing antibody having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers (Gemmarp. Remington's Pharmaceutical Sciences, 20th ed., Phila. (2000)), in the form of lyophilized cake or aqueous solutions.
- Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics or polyethylene glycol (PEG).
- buffers such as phosphate, citrate, and other organic acids
- antioxidants including ascorbic acid
- the bispecific antibody to be used for in vivo administration must be sterile. Sterilization can be accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. The bispecific antibody ordinarily will be stored in lyophilized form or in solution.
- Therapeutic bispecific antibody compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
- the route of administration is in accord with known methods, e.g. injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, intracerebrospinal, or intralesional routes, or by sustained release systems.
- sustained-release preparations include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules.
- Sustained release matrices include polyesters, hydrogels, polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman, et al., Biopolymers, 22, 547 (1983)), poly (2-hydroxyethylmethacrylate) (Langer, et al., J. Biomed. Mater. Res., 15, 167 (1981)); Langer, Chem.
- Sustained-release bispecific antibody compositions also include liposomally entrapped antibody. Liposomes containing antibody can be prepared (Epstein et al., Proc. Natl. Acad. Sci. USA, 82, 3688 (1985 ); Hwang et al., Proc. Natl. Acad. Sci.
- the liposomes are of the small (about 200-800 Angstroms) unilamelar type in which the lipid content is greater than about 30 mol. % cholesterol, the selected proportion being adjusted for the optimal antibody therapy.
- the bispecific antibody can also be administered by inhalation.
- Commercially available nebulizers for liquid formulations including jet nebulizers and ultrasonic nebulizers are useful for administration.
- Liquid formulations can be directly nebulized and lyophilized powder can be nebulized after reconstitution.
- a bispecific antibody can be aerosolized using a fluorocarbon formulation and a metered dose inhaler, or inhaled as a lyophilized and milled powder.
- an “effective amount” of bispecific antibody to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, the type of bispecific antibody employed, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administrationas required to obtain the optimal therapeutic effect. Typically, the clinician will administer the bispecific antibody until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays.
- the antibody composition will be formulated, dosed, and administered in a fashion consistent with good medical practice.
- Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the antibody, the particular type of antibody, the method of administration, the scheduling of aministration, and other factors known to medical practitioners.
- the “therapeutically effective amount” of antibody to be administered will be governed by such considerations, and is the minimum amount necessary to prevent, ameliorate, or treat the inflammatory disorder.
- This invention provides reagents and therapeutics of value for the treatment of diseases or pathological states involving cells of the immune system.
- the reagents comprise bispecific antibodies.
- the bispecific antibody comprises two different regions, each of which recognizes and binds to an antigen.
- the antigens occur as part membrane-bound proteins residing on or near the plasma membrane of immunological cells.
- the antigens are receptors, such as receptors for cytokines, receptors for antibodies (e.g., Fc receptors), or receptors for foreign antigens (T cell receptor) foreign antigens.
- the two antigens may be tethered together, and the close proximity of the two antigens (the two receptors) may result in functional communication between the two receptors.
- tethering involves an activating receptor and an inhibiting receptor, the end result may be inhibition of the activating receptor with consequent inhibition of cell activity.
- Cell activity may be assessed by calcium flux, change in phosphorylation state of the cytoplasmic portions of the receptors, change in recruitment of intracellular proteins to either the activating or inhibiting receptor, and recruitment of enzymes or proteins to “rafts” in the cell membrane (Yang and Reinherz, J. Biol. Chem. 276, 18775 (2001)). Change in cell activity may also be assessed by the state of differentiation of the cell, the state of proliferation of the cell, or by the ability of a cell to lyse a target cell.
- bispecific antibody in combination with a therapeutic agent.
- Psoriasis may be treated with corticosteroids, methotrexate, cyclosporine, alefacept, and methoxsalen (psoralen) with ultraviolet light (Granstein, New Engl. J. Med. 345, 284 (2001)).
- Rheumatoid arthritis may be treated with glucocorticoids, prednisolone, hydroxychloroquine, and sulfasalazine (Kirwan, et al., New Engl. J. Med. 333, 142 (1995)).
- Rheumatoid arthritis may also be treated with antibodies against tumor necrosis factor- ⁇ (infliximab, CDP571, D2E7, CDP870) (Feldmann and Maini, Annu. Rev. Immunol. 19, 163 (2001), and soluble forms of tumor necrosis factor- ⁇ receptor (etanercept, lenercept, pegylated truncated p55 TNF-R) (Feldmann and Maini, Annu. Rev. Immunol. 19, 163 (2001); Pisetsky, New Engl. J. Med. 342, 810 (2000)).
- tumor necrosis factor- ⁇ infliximab, CDP571, D2E7, CDP870
- soluble forms of tumor necrosis factor- ⁇ receptor etanercept, lenercept, pegylated truncated p55 TNF-R
- Crohn's diseases may be treated with prednisone, mercaptopurine, azathioprine, infliximab, methotrexate, budesonide, cyclosporine, 5-acetylsalicylic acid, and growth hormone (Sartor, New Engl. J. Med. 342, 1664 (2000)).
- Systemic lupus erythematosus may be treated with aspirin or other non-steroidal antiinflammatory therapeutics, hydroxychloroquine or other anti-malarial therapeutics, quinacrine, danzol, vincristine, and cyclophosphamide (Mills, New Engl. J. Med. 330, 1871 (1994)).
- Allergic asthma may be treated with anti-IgE, glucocorticoids, or ⁇ 2 -adrenergic-receptor agonists (Salvi and Babu, New Engl. J. Med. 342, 1292 (2000)), budesonide (corticosteroid), terbutaline ( ⁇ 2 -agonist) (Haahtela, et al., New Engl. J. Med. 331, 700 (1994)).
- Agents aimed at B cell responses include cyclophosphamide, methotrexate, leflunomide, brequinar, and 15-deoxyspergualin (Auchincloss and Sachs, Ann. Rev. Immunol. 16, 433 (1998)).
- Antagonists of histidine receptors are used for the treatment of a number of allergic disorders, including chronic urticaria (Greaves, New Engl. J. Med. 332, 1767 (1995)), allergic rhinitis, asthma, urticaria, atopic dermatitis, allergic rhinoconjunctivitis, anaphylaxis, and pruritis (Simons and Simons, New Engl. J. Med. 330, 1663 (1994)).
- These antagonists include fexofenadine (Kay, New Engl. J. Med.
- an immunosuppressant such as methotrexate, methylprednisolone, antilymphocyte globulin, antithymocyte globulin, cyclosporine, azathioprine, steroids, lymphoic irradiation (Kawauchi, et al., J. Thorac. Cardiovasc. Surg. 106, 779 (1993); Matsumiya, et al., Xenotransplantation 3, 76 (1996)), cyclophosphamide, mycophenolic acid (Zhong, et al., Transplantation Proc.
- tacrolimus (Ruzicka, et al., New Engl. J. Med. 337, 816 (1997)), rapamycin, FK506 (Blazar, et al., J. Immunol. 160, 5355 (1998)).
- the bispecific antibody molecules of this invention are particularly useful in kits and assay methods. For example, these methods would also be applied to screening for binding and inhibitory activity on cultured cells.
- Several methods of automating assays have been developed in recent years so as to permit screening of tens of thousands of compounds per year (BIOMEK automated workstation, Beckman Instruments, Palo Alto, Calif., and Fodor, et al., Science 251, 767 (1991)).
- the latter describes means for testing binding by a plurality of defined polymers synthesized on a solid substrate.
- suitable assays to screen for candidate target proteins can be greatly facilitated by the availability of large amounts of purified bispecific antibody such as is provided by this invention.
- This invention also contemplates use of bispecific antibodies in a variety of diagnostic kits and methods for detecting cells of the immune system, where the activities of the cells may be inhibited by addition of the bispecific antibody.
- the kit will have a compartment containing either a defined bispecific antibody which recognizes at least two epitopes, residing on one or more receptors. Compartments containing reagents, and instructions, will normally be provided.
- Bispecific antibodies are useful in diagnostic applications to detect the presence of elevated levels of receptors, and in increased sensitivity of any given receptor to the receptor's ligand. Any increased sensitivity to the ligand, or to the bispecific antibody itself, will be predictive of the therapeutic outcome of in vivo use of the bispecific antibody. Increased sensitivity may be assessed by a biological assay, or by binding. Binding of the bispecific antibody to a patient's cells may be detected directly by using a radioactively labeled bispecific antibody, or indirectly by measuring the biological response. The introduction of labels into antibodies has been described (Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor (1988); Coligan, Current Protocols In Immunology Greene/Wiley, New York (1991 and periodic supplements)).
- Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, magnetic particles, and the like. Patents, teaching the use of such labels include U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. Also, recombinant immunoglobulins and binding fragments may be produced (Moore, et al. U.S. Pat. No. 4,642,334; Cabilly, U.S. Pat. No. 4,816,567).
- the reagents for diagnostic assays are supplied in kits, so as to optimize the sensitivity of the assay.
- the protocol, and the label either labeled or unlabeled bispecific antibody, provided. This is usually in conjunction with other additives, such as buffers, stabilizers, materials necessary for signal production such as substrates for enzymes, and the like.
- the kit will also contain instructions for proper use and disposal of the contents after use.
- the kit has compartments for each useful reagent, and will contain instructions for proper use and disposal of reagents.
- the reagents are provided as a dry lyophilized powder, where the reagents may be reconstituted in an aqueous medium having appropriate concentrations for performing the assay.
- labeling may be achieved by covalently or non-covalently joining a moiety which directly or indirectly provides a detectable signal.
- Possibilities for direct labeling include label groups: radiolabels such as 125 I, enzymes (U.S. Pat. No. 3,645,090) such as peroxidase and alkaline phosphatase, and fluorescent labels (U.S. Pat. No. 3,940,475) capable of monitoring the change in fluorescence intensity, wavelength shift, or fluorescence polarization. Both of the patents are incorporated herein by reference.
- Possibilities for indirect labeling include biotinylation of one constituent followed by binding to avidin coupled to one of the above label groups.
- kits which also test for the qualitative or quantitative presence of other markers are also contemplated. Diagnosis or prognosis may depend on the combination of multiple indications used as markers. Thus, kits may test for combinations of markers (Viallet, et al., Progress in Growth Factor Res. 1, 89 (1989)).
- Methods for protein purification include such methods as ammonium sulfate precipitation, column chromatography, electrophoresis, centrifugation, crystallization, and others (Deutscher (1990) “Guide to Protein Purification,” Methods in Enzymology vol. 182, and other volumes in this series; and manufacturer's literature on use of protein purification products, e.g., Pharmacia, Piscataway, N.J., or Bio-Rad, Hercules, Calif.). Standard immunological techniques are described (Coligan, et al., Current Protocls in Immunology, Vol.
- NK cells have been found to contribute to asthma.
- KIR occurs on NK cells and a subset of T-cells (CD8 30 memory T cells) (Vely, et al., J. Immunol. 166, 2487 (2001); Mingari, et al., Immunol. Today 19, 153 (1998)).
- Fc ⁇ RIII occurs on human NK cells (Palmieri, et al., J. Immunol. 162, 7181 (1999)).
- a bispecific reagent that binds KIR and Fc ⁇ RIIIA is contemplated for the treatment of asthma.
- CD94/NKG2-A occurs on human NK cells that binds CD94/NKG2-A and Fc ⁇ RIIIA (Palmieri, et al., J. Immunol. 162, 7181 (1999)).
- a contemplated bispecific reagent that binds CD94/NKG2-A and Fc ⁇ RIIIA is contemplated for the treatment of asthma.
- LAIR-1 occurs on NK cells (Meyaard, et al., J. Immunol. 162, 5800 (1999)).
- a contemplated bispecific reagent that binds LAIR-1 and Fc ⁇ RIIIA is contemplated for the treatment of asthma.
- LAIR-1 occurs on monocytes (Meyaard, et al., Immunity 7, 283 (1997)).
- Fc ⁇ RIIA occurs on human monocytes (Cooney, et al., J. Immunol. 167, 844 (2001)).
- a disease state mediated by monocytes may be treated by the contemplated bispecific antibody, where the disease is initiated or exacerbated by stimulation of the Fc ⁇ RIIA or Fc ⁇ RIIB of the monocyte.
- Rheumatoid arthritis is an autoimmune disease where the inflammed joint contains monocytes and monocyte-derived cytokines.
- Therapeutic use of antibodies directed against monocyte-derived cytokines, such as tumor necrosis factor- ⁇ , is an effective treatment of the disease (MacDonald, et al., J. Clin. Invest. 100, 2404 (1997)).
- monocyte-derived cytokines are the principal factors driving the local inflammatory response in rheumatoid arthritis (MacDonald, et al., J. Clin. Invest. 100, 2404 (1997)).
- a contemplated bispecific antibody reagent for cross-linking LAIR-1 and Fc ⁇ RIIA or C is expected to be effective in treating rheumatoid arthritis.
- Mast cells contain MAFA (Guthmann, et al., Proc. Nat. Acad. Sci. USA 92, 9397 (1995)). Mast cells also contain Fc ⁇ RI (Kalesnikoff, et al., Immunity 14, 801 (2001)). Fc ⁇ RI, which is a high affinity receptor for IgE, is expressed on human mast cells. Activation of human mast cells through Fc ⁇ RI is believed to be responsible for allergen-dependent allergic responses, where this interaction takes place in a Th2 environment (Okayama, et al., J. Immunol. 166, 4705 (2001)).
- Fc ⁇ RI Upon binding of antigen to IgE on the surface of mast cells, Fc ⁇ RI becomes cross-linked, where cross-linking results in the secretion of histamine, cytokines, prostaglandins, and leukotrienes (Busse and Lemanske, New Engl. J. Med. 344, 350 (2001)).
- the contemplated bispecific antibody is expected to be useful for cross-linking MAFA and Fc ⁇ FRI, resulting in inhibition of mast cell activity, and treatment of the allergic responses.
- a bispecific antibody reagent that binds Fc ⁇ RIIB and Fc ⁇ RI of mast cells (Hamanao, et al., J. Immunol. 164, 6113 (2000)) is also expected to be of use for treatment of allergic responses.
- CXCR1 is an activating receptor of neutrophils.
- CXCR-1 binds IL-8 with high affinity, but binds other CXC chemokines with low affinity.
- Fc ⁇ RIIB an inhibiting receptor
- neutrophils play the desirable role of defending against infection.
- the neutrophils also have the undesirable effect of contributing to multiple organ dysfunction syndrome and acute respiratory distress syndrome (Cummings, et al., J. Immunol. 162, 2341 (1999)). It is contemplated to use a bispecific antibody that binds to Fc ⁇ RIIB (inactivating)and to CXCR1 (activating receptor) for the treatment of sepsis.
- T cells from the majority of patients with systemic lupus erythematosis have been found to show increased expression of Fc ⁇ RI ⁇ .
- expression of Fc ⁇ RI ⁇ was about 4-fold higher in T cells of patients with the above disease, relative to that of T cells from normal subjects (Enyedy, et al., Arthritis Rheum. 44, 1114 (2001); Tsokos, et al., Curr. Opin. Rheumatol. 12, 355 (2000)).
- Antigen-receptor signaling via Fc ⁇ RI has been found to be abnormal in lupus (Tsokos, et al., Curr. Opin. Rheumatol. 12, 355 (2000)).
- the ⁇ -chain of Fc ⁇ RI which contains an ITAM motif (activating motif), and appears to have the ability to associate with the T cell receptor (Enyedy, et al., Arthritis Rheumatism 44, 1114 (2001)).
- the ⁇ -chain of Fc ⁇ RI may function not with Fc ⁇ RI, but instead with T cell receptor. It is contemplated to use a bispecific antibody that binds to KIR (inactivating) and to Fc ⁇ RI (activating) for the treatment of lupus.
- Rheumatoid factor consists of antibodies specific for the Fc portion of IgG, where the IgG is of the high affinity type. These high affinity rheumatoid factors contribute to the inflammation of rheumatoid arthritis (Kyburz, et al., J. Immunol. 163, 3116 (1999)).
- Fc ⁇ RIIB and B cell receptor both occur on B cells.
- the major species of Fc ⁇ R on the B cells appears to be Fc ⁇ RIIB1 (Ashman, et al., J. Immunol. 157, 5 (1996)).
- T cells have been identified as contributing to psoriasis, where stimulation of T cells appears to be by recognition of peptides by the T cell receptor (Costello, et al., J. Immunol. 166, 2878 (2001)).
- CD-5 is an inhibitory receptor of T cells, as shown by studies using cross-linking cocktails comprised of biotinylated anti-CD-5, biotinylated anti-CD3, and avidin (Perez-Villar, Mol. Cell. Biol. 19, 2903 (1999)).
- a bispecific antibody recognizing CD5 and T cell receptor is contemplated for the treatment of psoriasis.
- a bispecific antibody recognizing CD-5 and CD3 (a component of T cell receptor) is also contemplated for the treatment of psoriasis.
- T cells have been identified as contributing to psoriasis, where the stimulant of the T cells appears to be via recognition of peptides by the T cell receptor (Costello, et al., J. Immunol. 166, 2878 (2001)).
- LAIR-1 inhibiting has been identified on T cells (Meyaard, et al. J. Immunol. 162, 500 (1999). It is contemplated to use a bispecific antibody reagent that recognizes T cell receptor and LAIR-1 and T cell receptor for the treatment of psoriasis.
- KIR inhibiting
- T cells Vely, et al., J. Immunol. 166, 2487 (2001)
- tt is contemplated to use a bispecific antibody reagent that recognizes KIR and T cell receptor for the treatment of psoriasis.
- CD2 is an activating receptor that is present on T cells (Wild, et al., J. Immunol. 163, 2064 (1999)). As mentioned above, CD2 functions in both T cell receptor-dependent and T cell receptor-independent pathways. The CD2 appears to play a major part in psoriasis, as drugs that target CD2 can be used to treat the disease (Ellis, et al., New Engl. J. Med. 345, 248 (2001)). LAIR-1 (inhibiting) occurs on T cells (Meyaard, et al., J. Immunol. 162, 5800 (1999)). It is contemplated to use a bispecific antibody reagent that recognizes both CD2 and LAIR-1 for the treatment of psoriasis.
- KIR inhibiting
- T cells Vely, et al., J. Immunol. 166, 2487 (2001); Uhrberg, et al., J. Immunol. 166, 3923 (2001)). It is contemplated to use a bispecific antibody reagent that recognizes both CD2 and KIR for the treatment of psoriasis.
- NKG2A inhibiting
- T cells can be found on subsets of T cells, where it occurs as a CD94/NKG2A complex (Uhrberg, et al., J. Immunol. 166, 3923 (2001)). It is contemplated to use a bispecific antibody reagent that recognizes both CD2 and NKG2A for the treatment of psoriasis.
- Mast cells were plated in 96 well Falcon flat-bottom plates (Becton Dickinson Labware, Franklin Lakes, N.J.) and incubated in Roswell Park Memorial Institute (RPMI) media containing 1% bovine serum albumin (BSA).
- Cells were generally plated at 2 ⁇ 10 5 cells/well in the presence, e.g., of anti-muCD200R antibody (antibody DX109), isotype control antibody (rat IgG 1 ), a murine CD200 Ig fusion protein (Hoek, et al., supra), or a control Ig fusion protein (0.002 mg/ml).
- Degranulation and secretion were measured by separate methods. Degranulation was measured as follows. Supernatant (0.02 ml) was removed, e.g., at one hour after adding control or experimental antibodies, and transferred to 0.06 ml of 1.3 mg/ml p-nitrophenol-N-acetyl-B-D-glucosamide (Sigma, St. Louis, Mo.) in 0.1 M citric acid, pH 4.5. After 3-4 hours at 37° C., 0.1 ml of stop sultuion was added (0.2 M glycine, 0.2 M NaCl, pH 10.7) and Abs 405-650 was measured with a microplate reader (Molecular Devices, Sunnyvale Calif.).
- TNF- ⁇ Tumor necrosis factor- ⁇
- IL-13 interleukin-13
- Mouse CD200Ra is an inhibiting receptor, having a long cytoplasmic tail, though it lacks a classical ITIM motif.
- Mouse CD200Rb, c, and d are activating, and have short cytoplasmic tails and charged amino acids in their transmembrane regions, which may pair with DAP-12. Triggering these receptors results in secretion of a variety of cytokines. Human CD200Rb pairs with DAP-12, as does mouse CD200Rb.
- Murine mast cells were exposed to the following conditions, followed by assessment of degranulation (short term incubation) or of secretion of tumor necrosis factor- ⁇ (TNF- ⁇ ) (long term incubation), as indicated.
- Media only (0% degran.; 0 ng/ml TNF- ⁇ );
- IgE only (100% degran.; 7.3 ng/ml TNF- ⁇ );
- anti-CD200Ra antibody only (0% degran.; 0 ng/ml TNF- ⁇ );
- Degranulation and TNF- ⁇ production were measured after incubating cells for 1 h and 6 h, respectively. “Zero” means below the level of reproducible detection.
- Tryptase assays were performed with the substrate N-alpha-benzyl-DL-arginine p-nitroanilide hydrochloride (BAPNA) with color measurement at 405-570 nm.
- BAPNA N-alpha-benzyl-DL-arginine p-nitroanilide hydrochloride
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Dermatology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/270,084 US20030077282A1 (en) | 2001-10-12 | 2002-10-11 | Use of bispecific antibodies to regulate immune responses |
| US12/787,044 US8236309B2 (en) | 2001-10-12 | 2010-05-25 | Use of bispecific antibodies to regulate immune responses |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US32918201P | 2001-10-12 | 2001-10-12 | |
| US10/270,084 US20030077282A1 (en) | 2001-10-12 | 2002-10-11 | Use of bispecific antibodies to regulate immune responses |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/787,044 Continuation US8236309B2 (en) | 2001-10-12 | 2010-05-25 | Use of bispecific antibodies to regulate immune responses |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030077282A1 true US20030077282A1 (en) | 2003-04-24 |
Family
ID=23284239
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/270,084 Abandoned US20030077282A1 (en) | 2001-10-12 | 2002-10-11 | Use of bispecific antibodies to regulate immune responses |
| US12/787,044 Expired - Fee Related US8236309B2 (en) | 2001-10-12 | 2010-05-25 | Use of bispecific antibodies to regulate immune responses |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/787,044 Expired - Fee Related US8236309B2 (en) | 2001-10-12 | 2010-05-25 | Use of bispecific antibodies to regulate immune responses |
Country Status (10)
| Country | Link |
|---|---|
| US (2) | US20030077282A1 (fr) |
| EP (3) | EP2316485A1 (fr) |
| JP (2) | JP4381140B2 (fr) |
| AT (1) | ATE423571T1 (fr) |
| AU (1) | AU2002334997A1 (fr) |
| CA (1) | CA2462883A1 (fr) |
| DE (1) | DE60231316D1 (fr) |
| ES (1) | ES2321701T3 (fr) |
| MX (1) | MXPA04003291A (fr) |
| WO (1) | WO2003030835A2 (fr) |
Cited By (63)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030064063A1 (en) * | 2001-05-01 | 2003-04-03 | Andrew Saxon | Fusion molecules and methods for treatment of immune diseases |
| US20030165875A1 (en) * | 2001-03-20 | 2003-09-04 | Marco Colonna | Novel receptor TREM (triggering receptor expressed on myeloid cells) and uses thereof |
| US20030223991A1 (en) * | 2002-03-15 | 2003-12-04 | Cherwinski Holly M. | Methods of modulating CD200 receptors |
| WO2005023871A1 (fr) * | 2003-09-04 | 2005-03-17 | Ministry Of Education And Science | Agent pour la suppression selective de lymphocytes b autoreactifs associes a la maladie |
| US20050064514A1 (en) * | 2003-01-09 | 2005-03-24 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
| US20060013810A1 (en) * | 2004-05-10 | 2006-01-19 | Johnson Leslie S | Humanized FcgammaRIIB-specific antibodies and methods of use thereof |
| US20060084115A1 (en) * | 2004-02-09 | 2006-04-20 | The Regents Of The University Of California | Selective high affinity polydentate ligands and methods of making such |
| US20060134709A1 (en) * | 2004-11-10 | 2006-06-22 | Jeffery Stavenhagen | Engineering Fc antibody regions to confer effector function |
| US20060193857A1 (en) * | 2004-12-22 | 2006-08-31 | Adam Boruchov | Modulation of Fc gamma receptors for optimizing immunotherapy |
| US20060216282A1 (en) * | 1999-05-06 | 2006-09-28 | The Trustees Of Columbia University In The City Of New York | Methods for inhibiting cutaneous inflammation and hyperpigmentation |
| US20070004909A1 (en) * | 2005-04-15 | 2007-01-04 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US20070036799A1 (en) * | 2005-08-10 | 2007-02-15 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
| US20070253948A1 (en) * | 2004-09-02 | 2007-11-01 | Chan Andrew C | Anti-FC-gamma RIIB receptor antibody and uses therefor |
| US20080044429A1 (en) * | 2006-06-26 | 2008-02-21 | Macrogenics, Inc. | Fc.gamma.RIIB-Specific Antibodies and Methods of Use Thereof |
| US20080044417A1 (en) * | 2006-05-26 | 2008-02-21 | Macrogenics, Inc. | Humanized Fc.gamma.RIIB-Specific Antibodies and Methods of Use Thereof |
| US20080112961A1 (en) * | 2006-10-09 | 2008-05-15 | Macrogenics, Inc. | Identification and Engineering of Antibodies with Variant Fc Regions and Methods of Using Same |
| US20080131435A1 (en) * | 2003-01-09 | 2008-06-05 | Macrogenics, Inc. | Identification and Engineering of Antibodies With Variant Fc Regions and Methods of Using Same |
| US20080138349A1 (en) * | 2006-12-08 | 2008-06-12 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
| US20090011983A1 (en) * | 1997-03-07 | 2009-01-08 | Human Genome Sciences, Inc. | 186 Human Secreted Proteins |
| US20090017026A1 (en) * | 2002-08-14 | 2009-01-15 | Macrogenics, Inc. | FcGammaRIIB Specific Antibodies and Methods of Use Thereof |
| US20090017027A1 (en) * | 2002-08-14 | 2009-01-15 | Macrogenics, Inc. | FcGammaRIIB Specific Antibodies and Methods of Use Thereof |
| US20090053218A1 (en) * | 2002-08-14 | 2009-02-26 | Macrogenics, Inc. | FcGammaRIIB Specific Antibodies and Methods of Use Thereof |
| US20090060910A1 (en) * | 2005-04-15 | 2009-03-05 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US20090076251A1 (en) * | 2002-08-14 | 2009-03-19 | Macrogenics, Inc. | FcGammaRIIB Specific Antibodies and Methods of Use Thereof |
| US20090074771A1 (en) * | 2002-08-14 | 2009-03-19 | Macrogenics, Inc. | FcGammaRIIB Specific Antibodies and Methods of Use Thereof |
| US20090081199A1 (en) * | 2001-03-20 | 2009-03-26 | Bioxell S.P.A. | Novel receptor trem (triggering receptor expressed on myeloid cells) and uses thereof |
| US20090098124A1 (en) * | 2006-03-10 | 2009-04-16 | Macrogenics, Inc. | Identification and engineering of antibodies with variant heavy chains and methods of using same |
| US20090162353A1 (en) * | 2007-12-19 | 2009-06-25 | Macrogenics, Inc. | Compositions for the Prevention and Treatment of Smallpox |
| US20090191195A1 (en) * | 2006-06-26 | 2009-07-30 | Macrogenics, Inc. | Combination of FcgammaRIIB-Specific Antibodies and CD20-Specific Antibodies and Methods of Use Thereof |
| US20100174053A1 (en) * | 2005-04-15 | 2010-07-08 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US20100310560A1 (en) * | 2001-03-20 | 2010-12-09 | Bioxell S.P.A. | Novel receptor trem (triggering receptor expressed on myeloid cells) and uses thereof |
| US20100330034A1 (en) * | 2001-10-12 | 2010-12-30 | Schering Corporation | Use of bispecific antibodies to regulate immune responses |
| US20110081347A1 (en) * | 2008-06-04 | 2011-04-07 | Macrogenics, Inc. | Antibodies with Altered Binding to FcRn and Methods of Using Same |
| US20110097323A1 (en) * | 2008-04-02 | 2011-04-28 | Macrogenics, Inc. | Her2/neu-Specific Antibodies and Methods of Using Same |
| US20110117089A1 (en) * | 2008-04-02 | 2011-05-19 | Macrogenics, Inc. | BCR-Complex-Specific Antibodies And Methods Of Using Same |
| US20140127199A1 (en) * | 2010-11-24 | 2014-05-08 | The United States Of America,As Represented By The Secretary, Department Of Health & Human Services | Compositions and methods for treating or preventing lupus |
| US8802091B2 (en) | 2010-03-04 | 2014-08-12 | Macrogenics, Inc. | Antibodies reactive with B7-H3 and uses thereof |
| US8968730B2 (en) | 2002-08-14 | 2015-03-03 | Macrogenics Inc. | FcγRIIB specific antibodies and methods of use thereof |
| US8981061B2 (en) | 2001-03-20 | 2015-03-17 | Novo Nordisk A/S | Receptor TREM (triggering receptor expressed on myeloid cells) and uses thereof |
| US9000127B2 (en) | 2012-02-15 | 2015-04-07 | Novo Nordisk A/S | Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1) |
| US9096877B2 (en) | 2009-10-07 | 2015-08-04 | Macrogenics, Inc. | Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use |
| US9150656B2 (en) | 2010-03-04 | 2015-10-06 | Macrogenics, Inc. | Antibodies reactive with B7-H3, immunologically active fragments thereof and uses thereof |
| US9273111B2 (en) | 2004-11-29 | 2016-03-01 | Universite De Lorraine | Therapeutic TREM-1 peptides |
| US9376495B2 (en) | 2011-05-21 | 2016-06-28 | Macrogenics, Inc. | Deimmunized serum-binding domains and their use in extending serum half-life |
| US9487587B2 (en) | 2013-03-05 | 2016-11-08 | Macrogenics, Inc. | Bispecific molecules that are immunoreactive with immune effector cells of a companion animal that express an activating receptor and cells that express B7-H3 and uses thereof |
| US9550830B2 (en) | 2012-02-15 | 2017-01-24 | Novo Nordisk A/S | Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1) |
| US9663568B2 (en) | 2012-02-15 | 2017-05-30 | Novo Nordisk A/S | Antibodies that bind peptidoglycan recognition protein 1 |
| US9822181B2 (en) | 2013-08-23 | 2017-11-21 | Macrogenics, Inc. | Bi-specific monovalent diabodies that are capable of binding CD123 and CD3, and uses thereof |
| US9879081B2 (en) | 2013-06-25 | 2018-01-30 | Samsung Electronics Co., Ltd. | Protein complex, bispecific antibody including the protein complex, and method of preparation thereof |
| US9884070B2 (en) | 2008-04-21 | 2018-02-06 | Lawrence Livermore National Security, Llc | Selective high-affinity polydentate ligands and methods of making such |
| US9889197B2 (en) | 2005-04-15 | 2018-02-13 | Macrogenics, Inc. | Covalently-associated diabody complexes that possess charged coil domains and that are capable of enhanced binding to serum albumin |
| US9908938B2 (en) | 2013-03-14 | 2018-03-06 | Macrogenics, Inc. | Bispecific molecules that are immunoreactive with immune effector cells that express an activating receptor and an antigen expressed by a cell infected by a virus and uses thereof |
| US9932400B2 (en) | 2013-08-23 | 2018-04-03 | Macrogenics, Inc. | Bi-specific monovalent diabodies that are capable of binding to gpA33 and CD3, and uses thereof |
| US10017762B2 (en) * | 2010-11-24 | 2018-07-10 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Compositions and methods for treating or preventing lupus |
| US10151754B2 (en) | 2014-01-17 | 2018-12-11 | Minomic International Ltd. | Cell surface prostate cancer antigen for diagnosis |
| US10179814B2 (en) | 2014-07-17 | 2019-01-15 | Novo Nordisk A/S | Site directed mutagenesis of TREM-1 antibodies for decreasing viscosity |
| US10344092B2 (en) | 2013-08-09 | 2019-07-09 | Macrogenics, Inc. | Bi-specific monovalent Fc diabodies that are capable of binding CD32B and CD79b and uses thereof |
| US10717778B2 (en) | 2014-09-29 | 2020-07-21 | Duke University | Bispecific molecules comprising an HIV-1 envelope targeting arm |
| US10961311B2 (en) | 2016-04-15 | 2021-03-30 | Macrogenics, Inc. | B7-H3 binding molecules, antibody drug conjugates thereof and methods of use thereof |
| US11155618B2 (en) | 2018-04-02 | 2021-10-26 | Bristol-Myers Squibb Company | Anti-TREM-1 antibodies and uses thereof |
| US11186636B2 (en) | 2017-04-21 | 2021-11-30 | Amgen Inc. | Anti-human TREM2 antibodies and uses thereof |
| US11254748B2 (en) | 2005-04-15 | 2022-02-22 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US11384149B2 (en) | 2013-08-09 | 2022-07-12 | Macrogenics, Inc. | Bi-specific monovalent Fc diabodies that are capable of binding CD32B and CD79b and uses thereof |
Families Citing this family (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7754208B2 (en) | 2001-01-17 | 2010-07-13 | Trubion Pharmaceuticals, Inc. | Binding domain-immunoglobulin fusion proteins |
| US7696320B2 (en) | 2004-08-24 | 2010-04-13 | Domantis Limited | Ligands that have binding specificity for VEGF and/or EGFR and methods of use therefor |
| US20050169870A1 (en) * | 2004-02-02 | 2005-08-04 | Schering Corporation | Methods of modulating CD200 |
| EP1730194B1 (fr) * | 2004-03-30 | 2011-11-02 | Yissum Research Development Company of the Hebrew University of Jerusalem | Complexes bi-specifiques pour le ciblage de cellules impliquees dans des reactions de type allergique, compositions et utilisations associees |
| EA012622B1 (ru) | 2004-06-01 | 2009-10-30 | Домэнтис Лимитед | Биспецифичные гибридные антитела с увеличенным периодом полувыведения из сыворотки |
| BG65954B1 (bg) * | 2005-01-05 | 2010-07-30 | Чавдар ВАСИЛЕВ | Средство за селективно подтискане активността на патологични автореактивни в-клетки |
| ES2417065T3 (es) | 2005-04-26 | 2013-08-05 | Trion Pharma Gmbh | Combinación de anticuerpos con glucocorticoides para el tratamiento del cáncer |
| GB0510790D0 (en) | 2005-05-26 | 2005-06-29 | Syngenta Crop Protection Ag | Anti-CD16 binding molecules |
| DK2298815T3 (en) | 2005-07-25 | 2015-06-15 | Emergent Product Dev Seattle | B-CELL REDUCTION USING CD37 SPECIFIC AND CD20 SPECIFIC BINDING MOLECULES |
| MX363905B (es) | 2006-06-12 | 2019-04-08 | Aptevo Res & Development Llc | Proteinas de union multivalentes monocatenarias con funcion efectora. |
| EP2240517B1 (fr) * | 2007-12-20 | 2018-03-14 | Merck Sharp & Dohme Corp. | Anticorps fdf03 et leurs utilisations |
| ATE513856T1 (de) | 2008-04-11 | 2011-07-15 | Emergent Product Dev Seattle | Cd37-immuntherapeutikum und kombination mit bifunktionellem chemotherapeutikum davon |
| WO2010048424A1 (fr) * | 2008-10-22 | 2010-04-29 | The Regents Of The University Of Michigan | Procédés, compositions et kits pour diagnostiquer, surveiller et traiter une maladie |
| WO2010135183A1 (fr) * | 2009-05-20 | 2010-11-25 | Schering Corporation | Modulation des récepteurs pilr pour traiter l'état septique |
| WO2013013029A1 (fr) | 2011-07-19 | 2013-01-24 | The Board Of Trustees Of The University Of Illinois | Protéine anti-clta4, anti-glut2 pour traitement du diabète de type 1 |
| SG10201704846VA (en) | 2012-03-14 | 2017-07-28 | Regeneron Pharma | Multispecific antigen-binding molecules and uses thereof |
| US20160115231A1 (en) | 2013-05-21 | 2016-04-28 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Treatment of mast cell related pathologies |
| EP3319994B1 (fr) | 2015-07-06 | 2024-02-07 | Regeneron Pharmaceuticals, Inc. | Molécules multispécifiques de liaison à l'antigène et leurs utilisations |
| WO2017053469A2 (fr) | 2015-09-21 | 2017-03-30 | Aptevo Research And Development Llc | Polypeptides de liaison à cd3 |
| US11352446B2 (en) | 2016-04-28 | 2022-06-07 | Regeneron Pharmaceuticals, Inc. | Methods of making multispecific antigen-binding molecules |
| CA3066569A1 (fr) | 2017-06-07 | 2018-12-13 | Regeneron Pharmaceuticals, Inc. | Compositions et methodes pour l'internalisation d'enzymes |
| IL270235B2 (en) | 2017-08-03 | 2025-02-01 | Alector Llc | Anti-TREM2 antibodies and methods of using them |
| AU2019262953B2 (en) | 2018-04-30 | 2025-12-04 | Regeneron Pharmaceuticals, Inc. | Antibodies, and bispecific antigen-binding molecules that bind HER2 and/or APLP2, conjugates, and uses thereof |
| CA3100021A1 (fr) | 2018-05-17 | 2019-11-21 | Regeneron Pharmaceuticals, Inc. | Anticorps anti-cd63, conjugues et leurs utilisations |
| CN110872356B (zh) * | 2018-09-03 | 2023-06-13 | 广西慧宝源健康产业有限公司 | 双特异性抗体及其使用方法 |
| EP4200332A1 (fr) | 2020-08-19 | 2023-06-28 | Xencor, Inc. | Compositions anti-cd28 et/ou anti-b7h3 |
| US12365743B2 (en) | 2022-02-23 | 2025-07-22 | Xencor, Inc. | Anti-CD28 x anti-PSMA antibodies |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4946778A (en) * | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
| US6197298B1 (en) * | 1991-04-19 | 2001-03-06 | Tanox, Inc. | Modified binding molecules specific for T lymphocytes and their use as in vivo immune modulators in animals |
| US6476195B1 (en) * | 1998-07-30 | 2002-11-05 | Human Genome Sciences, Inc. | Secreted protein HNFGF20 |
| US20030223991A1 (en) * | 2002-03-15 | 2003-12-04 | Cherwinski Holly M. | Methods of modulating CD200 receptors |
| US20040126777A1 (en) * | 2002-01-28 | 2004-07-01 | Bhatt Ramesh Rajani | Lp mammalian proteins; related reagents |
| US20040213783A1 (en) * | 2002-12-27 | 2004-10-28 | Janet Liversidge | Methods of inducing and maintaining immune tolerance |
| US20050169870A1 (en) * | 2004-02-02 | 2005-08-04 | Schering Corporation | Methods of modulating CD200 |
| US7186818B2 (en) * | 2001-04-26 | 2007-03-06 | Immunex Corporation | DNA encoding soluble variants of human OX2 receptors |
| US20070244052A1 (en) * | 2003-12-19 | 2007-10-18 | Schering Corporation | Methods for Identifying Agonists or Antagonists of CD200R Signaling Molecules and Methods of Using the Same |
Family Cites Families (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2046920B1 (fr) | 1969-06-19 | 1974-05-03 | Citizen Watch Co Ltd | |
| US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
| US3940475A (en) | 1970-06-11 | 1976-02-24 | Biological Developments, Inc. | Radioimmune method of assaying quantitatively for a hapten |
| NL154598B (nl) | 1970-11-10 | 1977-09-15 | Organon Nv | Werkwijze voor het aantonen en bepalen van laagmoleculire verbindingen en van eiwitten die deze verbindingen specifiek kunnen binden, alsmede testverpakking. |
| US3817837A (en) | 1971-05-14 | 1974-06-18 | Syva Corp | Enzyme amplification assay |
| US3939350A (en) | 1974-04-29 | 1976-02-17 | Board Of Trustees Of The Leland Stanford Junior University | Fluorescent immunoassay employing total reflection for activation |
| US3996345A (en) | 1974-08-12 | 1976-12-07 | Syva Company | Fluorescence quenching with immunological pairs in immunoassays |
| US4263428A (en) | 1978-03-24 | 1981-04-21 | The Regents Of The University Of California | Bis-anthracycline nucleic acid function inhibitors and improved method for administering the same |
| US4277437A (en) | 1978-04-05 | 1981-07-07 | Syva Company | Kit for carrying out chemically induced fluorescence immunoassay |
| US4275149A (en) | 1978-11-24 | 1981-06-23 | Syva Company | Macromolecular environment control in specific receptor assays |
| US4366241A (en) | 1980-08-07 | 1982-12-28 | Syva Company | Concentrating zone method in heterogeneous immunoassays |
| EP0052322B1 (fr) | 1980-11-10 | 1985-03-27 | Gersonde, Klaus, Prof. Dr. | Méthode de préparation de vésicules lipidiques par traitement aux ultra-sons, utilisation de ce procédé et l'appareillage ainsi utilisé |
| IE52535B1 (en) | 1981-02-16 | 1987-12-09 | Ici Plc | Continuous release pharmaceutical compositions |
| US4485045A (en) | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
| DE3374837D1 (en) | 1982-02-17 | 1988-01-21 | Ciba Geigy Ag | Lipids in the aqueous phase |
| EP0088994B1 (fr) | 1982-03-15 | 1991-06-19 | Schering Corporation | ADN hybride, composition liante produite à l'aide de celui-ci et procédés pour la mise en oeuvre |
| EP0102324A3 (fr) | 1982-07-29 | 1984-11-07 | Ciba-Geigy Ag | Lipides et composés tensio-actifs en phase aqueuse |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| US4544545A (en) | 1983-06-20 | 1985-10-01 | Trustees University Of Massachusetts | Liposomes containing modified cholesterol for organ targeting |
| HUT35524A (en) | 1983-08-02 | 1985-07-29 | Hoechst Ag | Process for preparing pharmaceutical compositions containing regulatory /regulative/ peptides providing for the retarded release of the active substance |
| DE3483949D1 (de) | 1983-09-26 | 1991-02-21 | Udo Dr Med Ehrenfeld | Mittel und erzeugnis fuer die diagnose und therapie von tumoren sowie zur behandlung von schwaechen der zelligen und humoralen immunabwehr. |
| DE3474511D1 (en) | 1983-11-01 | 1988-11-17 | Terumo Corp | Pharmaceutical composition containing urokinase |
| US4954617A (en) * | 1986-07-07 | 1990-09-04 | Trustees Of Dartmouth College | Monoclonal antibodies to FC receptors for immunoglobulin G on human mononuclear phagocytes |
| FI105320B (fi) * | 1988-04-04 | 2000-07-31 | Oncogen | Menetelmä vasta-aineheterokonjugaattien valmistamiseksi, joita käytetään imusoluaktiivisuuden säätelyssä ja diagnoosissa |
| DE3814079A1 (de) | 1988-04-26 | 1989-11-09 | Bayer Ag | Sinterformkoerper auf basis von aluminiumtitanat, verfahren zu ihrer herstellung sowie deren verwendung |
| AU3178993A (en) | 1991-11-25 | 1993-06-28 | Enzon, Inc. | Multivalent antigen-binding proteins |
| EP0861891A1 (fr) * | 1996-12-31 | 1998-09-02 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Produits pour moduler des régulations de cellules négatives et leurs applications biologiques |
| US6955811B2 (en) * | 1997-11-07 | 2005-10-18 | Trillium Therapeutics Inc. | Methods of inhibiting immune response suppression by administering antibodies to OX-2 |
| AU748587B2 (en) * | 1997-11-07 | 2002-06-06 | Trillium Therapeutics Inc | Methods and compositions for immunomodulation |
| US7223729B2 (en) * | 1997-11-07 | 2007-05-29 | Trillium Therapeutics Inc. | Methods of treating allergy by administering a CD200 protein |
| ID26964A (id) * | 1998-02-19 | 2001-02-22 | Xcyte Therapies Inc | Komposisi dan metode untuk pengaturan pengaktifan limfosit |
| WO2000029431A1 (fr) * | 1998-11-17 | 2000-05-25 | Tanox, Inc. | Reticulation de molecules bispecifiques du motif d'activation a base de tyrosine des immunorecepteurs avec le motif d'inhibition a base de tyrosine des immunorecepteurs, dans un but therapeutique |
| US7118743B2 (en) * | 1998-11-17 | 2006-10-10 | Tanox, Inc. | Bispecific molecules cross-linking ITIM and ITAM for therapy |
| CA2369454A1 (fr) | 1999-04-13 | 2000-10-19 | Schering Corporation | Nouvelles utilisations de la proteine ox2 de mammifere et reactifs associes |
| US20020192215A1 (en) * | 1999-04-13 | 2002-12-19 | Schering Corporation, A New Jersey Corporation | Novel uses of mammalian OX2 protein and related reagents |
| KR101018134B1 (ko) | 1999-05-13 | 2011-02-25 | 쉐링 코포레이션 | Ox2 수용체 동족체 |
| EP1240183A2 (fr) | 1999-11-15 | 2002-09-18 | Schering Corporation | Genes de mammifere, reactifs associes et procedes |
| ATE406385T1 (de) * | 2000-11-22 | 2008-09-15 | Trillium Therapeutics Inc | Verkürztes cd200 |
| US20040198661A1 (en) * | 2000-12-08 | 2004-10-07 | Bowdish Katherine S. | Polypeptides and antibodies derived from chronic lymphocytic leukemia cells and uses thereof |
| US9249229B2 (en) * | 2000-12-08 | 2016-02-02 | Alexion Pharmaceuticals, Inc. | Polypeptides and antibodies derived from chronic lymphocytic leukemia cells and uses thereof |
| WO2003064662A1 (fr) | 2001-03-16 | 2003-08-07 | Tanox, Inc. | Molecules bispecifiques reticulant itim et itam pour le traitement des allergies |
| CA2448668A1 (fr) * | 2001-05-24 | 2002-11-28 | Trillium Therapeutics Inc. | Modulation des recepteurs de cd200 |
| EP2316485A1 (fr) * | 2001-10-12 | 2011-05-04 | Schering Corporation | Composition pour soins personnels |
| EP1532176A2 (fr) * | 2002-06-07 | 2005-05-25 | Trillium Therapeutics Inc. | Modulation du developpement osseux par le recepteur cd200 |
-
2002
- 2002-10-11 EP EP10182926A patent/EP2316485A1/fr not_active Withdrawn
- 2002-10-11 AU AU2002334997A patent/AU2002334997A1/en not_active Abandoned
- 2002-10-11 MX MXPA04003291A patent/MXPA04003291A/es active IP Right Grant
- 2002-10-11 JP JP2003533869A patent/JP4381140B2/ja not_active Expired - Lifetime
- 2002-10-11 CA CA002462883A patent/CA2462883A1/fr not_active Abandoned
- 2002-10-11 EP EP09151125A patent/EP2072059A1/fr not_active Withdrawn
- 2002-10-11 WO PCT/US2002/032711 patent/WO2003030835A2/fr not_active Ceased
- 2002-10-11 ES ES02801055T patent/ES2321701T3/es not_active Expired - Lifetime
- 2002-10-11 EP EP02801055A patent/EP1439857B1/fr not_active Expired - Lifetime
- 2002-10-11 AT AT02801055T patent/ATE423571T1/de not_active IP Right Cessation
- 2002-10-11 US US10/270,084 patent/US20030077282A1/en not_active Abandoned
- 2002-10-11 DE DE60231316T patent/DE60231316D1/de not_active Expired - Lifetime
-
2009
- 2009-08-12 JP JP2009187524A patent/JP2009256389A/ja active Pending
-
2010
- 2010-05-25 US US12/787,044 patent/US8236309B2/en not_active Expired - Fee Related
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4946778A (en) * | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
| US6197298B1 (en) * | 1991-04-19 | 2001-03-06 | Tanox, Inc. | Modified binding molecules specific for T lymphocytes and their use as in vivo immune modulators in animals |
| US6476195B1 (en) * | 1998-07-30 | 2002-11-05 | Human Genome Sciences, Inc. | Secreted protein HNFGF20 |
| US7186818B2 (en) * | 2001-04-26 | 2007-03-06 | Immunex Corporation | DNA encoding soluble variants of human OX2 receptors |
| US20040126777A1 (en) * | 2002-01-28 | 2004-07-01 | Bhatt Ramesh Rajani | Lp mammalian proteins; related reagents |
| US20030223991A1 (en) * | 2002-03-15 | 2003-12-04 | Cherwinski Holly M. | Methods of modulating CD200 receptors |
| US20040213783A1 (en) * | 2002-12-27 | 2004-10-28 | Janet Liversidge | Methods of inducing and maintaining immune tolerance |
| US20070244052A1 (en) * | 2003-12-19 | 2007-10-18 | Schering Corporation | Methods for Identifying Agonists or Antagonists of CD200R Signaling Molecules and Methods of Using the Same |
| US20050169870A1 (en) * | 2004-02-02 | 2005-08-04 | Schering Corporation | Methods of modulating CD200 |
Cited By (158)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090011983A1 (en) * | 1997-03-07 | 2009-01-08 | Human Genome Sciences, Inc. | 186 Human Secreted Proteins |
| US8106165B2 (en) | 1997-03-07 | 2012-01-31 | Human Genome Sciences, Inc. | Antibodies to HNFIP24 polypeptides |
| US7449309B2 (en) * | 1999-05-06 | 2008-11-11 | The Trustees Of Columbia University In The City Of New York | Methods for desensitizing a subject to an agent |
| US20090136497A1 (en) * | 1999-05-06 | 2009-05-28 | The Trustees Of Columbia University In The City Of New York | Methods for inhibiting cutaneous inflammation and hyperpigmentation |
| US7906302B2 (en) | 1999-05-06 | 2011-03-15 | The Trustees Of Columbia University In The City Of New York | Methods of preventing or treating contact dermatitis |
| US8278067B2 (en) | 1999-05-06 | 2012-10-02 | The Trustees Of Columbia University In The City Of New York | Method for inhibiting hyperpigmentation |
| US20060216282A1 (en) * | 1999-05-06 | 2006-09-28 | The Trustees Of Columbia University In The City Of New York | Methods for inhibiting cutaneous inflammation and hyperpigmentation |
| US20030165875A1 (en) * | 2001-03-20 | 2003-09-04 | Marco Colonna | Novel receptor TREM (triggering receptor expressed on myeloid cells) and uses thereof |
| US8231878B2 (en) | 2001-03-20 | 2012-07-31 | Cosmo Research & Development S.P.A. | Receptor trem (triggering receptor expressed on myeloid cells) and uses thereof |
| US20050260670A1 (en) * | 2001-03-20 | 2005-11-24 | Marco Colonna | Novel receptor trem (triggering receptor expressed on myeloid cells) and uses thereof |
| US20100310560A1 (en) * | 2001-03-20 | 2010-12-09 | Bioxell S.P.A. | Novel receptor trem (triggering receptor expressed on myeloid cells) and uses thereof |
| US8981061B2 (en) | 2001-03-20 | 2015-03-17 | Novo Nordisk A/S | Receptor TREM (triggering receptor expressed on myeloid cells) and uses thereof |
| US20090081199A1 (en) * | 2001-03-20 | 2009-03-26 | Bioxell S.P.A. | Novel receptor trem (triggering receptor expressed on myeloid cells) and uses thereof |
| US20100305306A1 (en) * | 2001-03-20 | 2010-12-02 | Bioxell S.P.A. | Novel receptor trem (triggering receptor expressed on myeloid cells) and uses thereof |
| US7879324B2 (en) | 2001-05-01 | 2011-02-01 | The Regents Of The University Of California | Fusion molecules and methods for treatment of immune diseases |
| US7265208B2 (en) | 2001-05-01 | 2007-09-04 | The Regents Of The University Of California | Fusion molecules and treatment of IgE-mediated allergic diseases |
| US20030064063A1 (en) * | 2001-05-01 | 2003-04-03 | Andrew Saxon | Fusion molecules and methods for treatment of immune diseases |
| US7879334B1 (en) | 2001-05-01 | 2011-02-01 | The Regents Of The University Of California | Fusion molecules and treatment of IgE-mediated allergic diseases |
| US20090317389A1 (en) * | 2001-05-01 | 2009-12-24 | Andrew Saxon | Fusion molecules and methods for treatment of immune diseases |
| US7534440B2 (en) | 2001-05-01 | 2009-05-19 | The Regents Of The University Of California | Fusion molecules and methods for treatment of immune diseases |
| US20100330034A1 (en) * | 2001-10-12 | 2010-12-30 | Schering Corporation | Use of bispecific antibodies to regulate immune responses |
| US8236309B2 (en) | 2001-10-12 | 2012-08-07 | Schering Corporation | Use of bispecific antibodies to regulate immune responses |
| US20060240010A1 (en) * | 2002-03-15 | 2006-10-26 | Schering Corporation | Methods of modulating CD200 receptors |
| US8263070B2 (en) * | 2002-03-15 | 2012-09-11 | Schering Corporation | Methods of modulating CD200 receptors |
| US20080166353A1 (en) * | 2002-03-15 | 2008-07-10 | Schering Corporation | Methods of Modulating CD200 Receptors |
| US20030223991A1 (en) * | 2002-03-15 | 2003-12-04 | Cherwinski Holly M. | Methods of modulating CD200 receptors |
| US20090076251A1 (en) * | 2002-08-14 | 2009-03-19 | Macrogenics, Inc. | FcGammaRIIB Specific Antibodies and Methods of Use Thereof |
| US8968730B2 (en) | 2002-08-14 | 2015-03-03 | Macrogenics Inc. | FcγRIIB specific antibodies and methods of use thereof |
| US8193318B2 (en) | 2002-08-14 | 2012-06-05 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
| US8187593B2 (en) | 2002-08-14 | 2012-05-29 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
| US20090074771A1 (en) * | 2002-08-14 | 2009-03-19 | Macrogenics, Inc. | FcGammaRIIB Specific Antibodies and Methods of Use Thereof |
| US20090017027A1 (en) * | 2002-08-14 | 2009-01-15 | Macrogenics, Inc. | FcGammaRIIB Specific Antibodies and Methods of Use Thereof |
| US8946387B2 (en) | 2002-08-14 | 2015-02-03 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
| US8044180B2 (en) | 2002-08-14 | 2011-10-25 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
| US20090017026A1 (en) * | 2002-08-14 | 2009-01-15 | Macrogenics, Inc. | FcGammaRIIB Specific Antibodies and Methods of Use Thereof |
| US20090053218A1 (en) * | 2002-08-14 | 2009-02-26 | Macrogenics, Inc. | FcGammaRIIB Specific Antibodies and Methods of Use Thereof |
| US8530627B2 (en) | 2002-08-14 | 2013-09-10 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
| US20050064514A1 (en) * | 2003-01-09 | 2005-03-24 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
| US9028815B2 (en) | 2003-01-09 | 2015-05-12 | Macrogenics, Inc. | Identification and engineering of antibodies with variant FC regions and methods of using same |
| US8192737B2 (en) | 2003-01-09 | 2012-06-05 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
| US8951517B2 (en) | 2003-01-09 | 2015-02-10 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
| US8003774B2 (en) | 2003-01-09 | 2011-08-23 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
| US7960512B2 (en) | 2003-01-09 | 2011-06-14 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
| US20080138344A1 (en) * | 2003-01-09 | 2008-06-12 | Macrogenics, Inc. | Identification and Engineering of Antibodies with Variant Fc Regions and Methods of Using Same |
| US20080131435A1 (en) * | 2003-01-09 | 2008-06-05 | Macrogenics, Inc. | Identification and Engineering of Antibodies With Variant Fc Regions and Methods of Using Same |
| WO2005023871A1 (fr) * | 2003-09-04 | 2005-03-17 | Ministry Of Education And Science | Agent pour la suppression selective de lymphocytes b autoreactifs associes a la maladie |
| US20100184702A1 (en) * | 2004-02-09 | 2010-07-22 | Lawrence Livermore National Security, Llc | Selective High-Affinity Polydentate Ligands and Methods of Making Such |
| US20060084115A1 (en) * | 2004-02-09 | 2006-04-20 | The Regents Of The University Of California | Selective high affinity polydentate ligands and methods of making such |
| US8536133B2 (en) | 2004-02-09 | 2013-09-17 | Lawrence Livermore National Security, Llc. | Selective high-affinity polydentate ligands and methods of making such |
| US7662785B2 (en) | 2004-02-09 | 2010-02-16 | The Regents Of California | Selective high affinity polydentate ligands and methods of making such |
| US8133982B2 (en) | 2004-05-10 | 2012-03-13 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
| US20060013810A1 (en) * | 2004-05-10 | 2006-01-19 | Johnson Leslie S | Humanized FcgammaRIIB-specific antibodies and methods of use thereof |
| US20090202537A1 (en) * | 2004-05-10 | 2009-08-13 | Macrogenics, Inc. | FcGammaRIIB Specific Antibodies and Methods of Use Thereof |
| US8784808B2 (en) | 2004-05-10 | 2014-07-22 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
| US7521542B2 (en) | 2004-05-10 | 2009-04-21 | Macrogenics, Inc. | Humanized FcγRIIB-specific antibodies and methods of use thereof |
| US7655229B2 (en) * | 2004-09-02 | 2010-02-02 | Chan Andrew C | Anti-FC-gamma RIIB receptor antibody and uses therefor |
| US20070253948A1 (en) * | 2004-09-02 | 2007-11-01 | Chan Andrew C | Anti-FC-gamma RIIB receptor antibody and uses therefor |
| US20060134709A1 (en) * | 2004-11-10 | 2006-06-22 | Jeffery Stavenhagen | Engineering Fc antibody regions to confer effector function |
| US8216574B2 (en) | 2004-11-10 | 2012-07-10 | Macrogenics, Inc. | Engineering Fc antibody regions to confer effector function |
| US7632497B2 (en) | 2004-11-10 | 2009-12-15 | Macrogenics, Inc. | Engineering Fc Antibody regions to confer effector function |
| US10603357B2 (en) | 2004-11-29 | 2020-03-31 | Bristol-Myers Squibb Company | Therapeutic TREM-1 peptides |
| US9273111B2 (en) | 2004-11-29 | 2016-03-01 | Universite De Lorraine | Therapeutic TREM-1 peptides |
| US20060193857A1 (en) * | 2004-12-22 | 2006-08-31 | Adam Boruchov | Modulation of Fc gamma receptors for optimizing immunotherapy |
| US10093739B2 (en) | 2005-04-15 | 2018-10-09 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US11254748B2 (en) | 2005-04-15 | 2022-02-22 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US20090060910A1 (en) * | 2005-04-15 | 2009-03-05 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US10093738B2 (en) | 2005-04-15 | 2018-10-09 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US9963510B2 (en) | 2005-04-15 | 2018-05-08 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US9889197B2 (en) | 2005-04-15 | 2018-02-13 | Macrogenics, Inc. | Covalently-associated diabody complexes that possess charged coil domains and that are capable of enhanced binding to serum albumin |
| US11254747B2 (en) | 2005-04-15 | 2022-02-22 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US20100174053A1 (en) * | 2005-04-15 | 2010-07-08 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US20070004909A1 (en) * | 2005-04-15 | 2007-01-04 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US9284375B2 (en) | 2005-04-15 | 2016-03-15 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US9296816B2 (en) | 2005-04-15 | 2016-03-29 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US20070036799A1 (en) * | 2005-08-10 | 2007-02-15 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
| US8217147B2 (en) | 2005-08-10 | 2012-07-10 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
| US20090098124A1 (en) * | 2006-03-10 | 2009-04-16 | Macrogenics, Inc. | Identification and engineering of antibodies with variant heavy chains and methods of using same |
| US7786270B2 (en) | 2006-05-26 | 2010-08-31 | Macrogenics, Inc. | Humanized FcγRIIB-specific antibodies and methods of use thereof |
| US8216579B2 (en) | 2006-05-26 | 2012-07-10 | Macrogenics, Inc. | Humanized FcγRIIB-specific antibodies and methods of use thereof |
| US20080044417A1 (en) * | 2006-05-26 | 2008-02-21 | Macrogenics, Inc. | Humanized Fc.gamma.RIIB-Specific Antibodies and Methods of Use Thereof |
| US8785599B2 (en) | 2006-06-26 | 2014-07-22 | Macrogenics, Inc. | FcγRIIB—specific antibodies and methods of use thereof |
| US8778339B2 (en) | 2006-06-26 | 2014-07-15 | Macrogenics, Inc. | Combination of FcγRIIB-specific antibodies and CD20-specific antibodies and methods of use thereof |
| US20090191195A1 (en) * | 2006-06-26 | 2009-07-30 | Macrogenics, Inc. | Combination of FcgammaRIIB-Specific Antibodies and CD20-Specific Antibodies and Methods of Use Thereof |
| US20080044429A1 (en) * | 2006-06-26 | 2008-02-21 | Macrogenics, Inc. | Fc.gamma.RIIB-Specific Antibodies and Methods of Use Thereof |
| US10100116B2 (en) | 2006-06-26 | 2018-10-16 | Macrogenics, Inc. | FcγRIIB-specific antibodies and methods of use thereof |
| US9737599B2 (en) | 2006-06-26 | 2017-08-22 | Macrogenics, Inc. | Combination of FcγRIIB-specific antibodies and CD20-specific antibodies and methods of use thereof |
| US11098125B2 (en) | 2006-06-26 | 2021-08-24 | Macrogenics, Inc. | FcγRIIB-specific antibodies and methods of use thereof |
| US20080112961A1 (en) * | 2006-10-09 | 2008-05-15 | Macrogenics, Inc. | Identification and Engineering of Antibodies with Variant Fc Regions and Methods of Using Same |
| US9708408B2 (en) | 2006-12-08 | 2017-07-18 | Macrogenics, Inc. | Methods for the treatment of disease using immunoglobulins having Fc Regions with altered affinities for FcγRactivating and FcγRinhibiting |
| US20080138349A1 (en) * | 2006-12-08 | 2008-06-12 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
| US11787871B2 (en) | 2006-12-08 | 2023-10-17 | Macrogenics, Inc. | Methods for the treatment of disease using immunoglobulins having fc regions with altered affinities for FcgammaRactivating and FegammaRinhibiting |
| US10711069B2 (en) | 2006-12-08 | 2020-07-14 | Macrogenics, Inc. | Methods for the treatment of disease using immunoglobulins having Fc regions with altered affinities for FcγRactivating and FcγRinhibiting |
| US8652466B2 (en) | 2006-12-08 | 2014-02-18 | Macrogenics, Inc. | Methods for the treatment of disease using immunoglobulins having Fc regions with altered affinities for FcγRactivating and FcγRinhibiting |
| US20090162353A1 (en) * | 2007-12-19 | 2009-06-25 | Macrogenics, Inc. | Compositions for the Prevention and Treatment of Smallpox |
| US8795667B2 (en) | 2007-12-19 | 2014-08-05 | Macrogenics, Inc. | Compositions for the prevention and treatment of smallpox |
| US9469692B2 (en) | 2008-04-02 | 2016-10-18 | Macrogenics, Inc. | HER2/neu-specific antibodies and methods of using same |
| US8993730B2 (en) | 2008-04-02 | 2015-03-31 | Macrogenics, Inc. | BCR-complex-specific antibodies and methods of using same |
| US8802093B2 (en) | 2008-04-02 | 2014-08-12 | Macrogenics, Inc. | HER2/neu-specific antibodies and methods of using same |
| US20110117089A1 (en) * | 2008-04-02 | 2011-05-19 | Macrogenics, Inc. | BCR-Complex-Specific Antibodies And Methods Of Using Same |
| US8669349B2 (en) | 2008-04-02 | 2014-03-11 | Macrogenics, Inc. | BCR-complex-specific antibodies and methods of using same |
| US20110097323A1 (en) * | 2008-04-02 | 2011-04-28 | Macrogenics, Inc. | Her2/neu-Specific Antibodies and Methods of Using Same |
| US12024569B2 (en) | 2008-04-02 | 2024-07-02 | Macrogenics, Inc. | HER2/neu-specific antibodies and methods of using same |
| US9695236B2 (en) | 2008-04-02 | 2017-07-04 | Macrogenics, Inc. | BCR-complex-specific antibodies and methods of using same |
| US9243069B2 (en) | 2008-04-02 | 2016-01-26 | Macrogenics, Inc. | HER2/neu-specific antibodies and methods of using the same |
| US10479831B2 (en) | 2008-04-02 | 2019-11-19 | Macrogenics, Inc | BCR-complex-specific antibodies and methods of using same |
| US11028183B2 (en) | 2008-04-02 | 2021-06-08 | Macrogenics, Inc. | HER2/neu-specific antibodies and methods of using same |
| US10131713B2 (en) | 2008-04-02 | 2018-11-20 | Macrogenics, Inc. | HER2/neu-specific antibodies and methods of using same |
| US11285165B2 (en) | 2008-04-21 | 2022-03-29 | Lawrence Livermore National Security, Llc | Selective high-affinity polydentate ligands and methods of making such |
| US10292992B2 (en) | 2008-04-21 | 2019-05-21 | Lawrence Livermore National Security, Llc | Selective high-affinity polydentate ligands and methods of making such |
| US9884070B2 (en) | 2008-04-21 | 2018-02-06 | Lawrence Livermore National Security, Llc | Selective high-affinity polydentate ligands and methods of making such |
| US10646502B2 (en) | 2008-04-21 | 2020-05-12 | Lawrence Livermore National Security | Selective high-affinity polydentate ligands and methods of making such |
| US10874678B2 (en) | 2008-04-21 | 2020-12-29 | Lawrence Livermore National Security, Llc | Selective high-affinity polydentate ligands and methods of making such |
| US20110081347A1 (en) * | 2008-06-04 | 2011-04-07 | Macrogenics, Inc. | Antibodies with Altered Binding to FcRn and Methods of Using Same |
| US9096877B2 (en) | 2009-10-07 | 2015-08-04 | Macrogenics, Inc. | Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use |
| US10683364B2 (en) | 2010-03-04 | 2020-06-16 | Macrogenics, Inc. | Antibodies reactive with B7-H3, immunologically active fragments thereof and uses thereof |
| US9150656B2 (en) | 2010-03-04 | 2015-10-06 | Macrogenics, Inc. | Antibodies reactive with B7-H3, immunologically active fragments thereof and uses thereof |
| US9714296B2 (en) | 2010-03-04 | 2017-07-25 | Macrogenics, Inc. | Antibodies reactive with B7-H3, immunologically active fragments thereof and uses thereof |
| US9896508B2 (en) | 2010-03-04 | 2018-02-20 | Macrogenics, Inc. | Antibodies reactive with B7-H3 and uses thereof |
| US8802091B2 (en) | 2010-03-04 | 2014-08-12 | Macrogenics, Inc. | Antibodies reactive with B7-H3 and uses thereof |
| US10730945B2 (en) | 2010-03-04 | 2020-08-04 | Macrogenics, Inc. | Antibodies reactive with B7-H3 and users thereof |
| US9714295B2 (en) | 2010-03-04 | 2017-07-25 | Macrogenics, Inc. | Antibodies reactive with B7-H3, immunologically active fragments thereof and uses thereof |
| US9441049B2 (en) | 2010-03-04 | 2016-09-13 | Macrogenics, Inc. | Antibodies reactive with B7-H3 and uses thereof |
| US9657292B2 (en) * | 2010-11-24 | 2017-05-23 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Compositions and methods for treating or preventing lupus |
| US10017762B2 (en) * | 2010-11-24 | 2018-07-10 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Compositions and methods for treating or preventing lupus |
| AU2010364324B2 (en) * | 2010-11-24 | 2016-07-28 | Government Of The U.S.A. Represented By The Secretary, Dept. Of Health & Human Services | Compositions and methods for treating or preventing lupus |
| US20140127199A1 (en) * | 2010-11-24 | 2014-05-08 | The United States Of America,As Represented By The Secretary, Department Of Health & Human Services | Compositions and methods for treating or preventing lupus |
| US10907151B2 (en) | 2010-11-24 | 2021-02-02 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Compositions and methods for treating or preventing lupus |
| US9376495B2 (en) | 2011-05-21 | 2016-06-28 | Macrogenics, Inc. | Deimmunized serum-binding domains and their use in extending serum half-life |
| US10150809B2 (en) | 2012-02-15 | 2018-12-11 | Bristol-Myers Squibb Company | Antibodies that bind peptidoglycan recognition protein 1 |
| US9663568B2 (en) | 2012-02-15 | 2017-05-30 | Novo Nordisk A/S | Antibodies that bind peptidoglycan recognition protein 1 |
| US9550830B2 (en) | 2012-02-15 | 2017-01-24 | Novo Nordisk A/S | Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1) |
| US10189904B2 (en) | 2012-02-15 | 2019-01-29 | Novo Nordisk A/S | Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1) |
| US9000127B2 (en) | 2012-02-15 | 2015-04-07 | Novo Nordisk A/S | Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1) |
| US10906975B2 (en) | 2012-02-15 | 2021-02-02 | Novo Nordisk A/S | Methods of treating autoimmune disease or chronic inflammation with antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1) |
| US10906965B2 (en) | 2012-02-15 | 2021-02-02 | Novo Nordisk A/S | Methods of treating autoimmune disease or chronic inflammation wtih antibodies that bind peptidoglycan recognition protein 1 |
| US9487587B2 (en) | 2013-03-05 | 2016-11-08 | Macrogenics, Inc. | Bispecific molecules that are immunoreactive with immune effector cells of a companion animal that express an activating receptor and cells that express B7-H3 and uses thereof |
| US10730947B2 (en) | 2013-03-14 | 2020-08-04 | Macrogenics, Inc. | Bispecific molecules that are immunoreactive with immune effector cells that express an activating receptor and an antigen expressed by a cell infected by a virus and uses thereof |
| US11421031B2 (en) | 2013-03-14 | 2022-08-23 | Macrogenics, Inc. | Bispecific molecules that are immunoreactive with immune effector cells that express an activating receptor and an antigen expressed by a cell infected by a virus and uses thereof |
| US9908938B2 (en) | 2013-03-14 | 2018-03-06 | Macrogenics, Inc. | Bispecific molecules that are immunoreactive with immune effector cells that express an activating receptor and an antigen expressed by a cell infected by a virus and uses thereof |
| US9879081B2 (en) | 2013-06-25 | 2018-01-30 | Samsung Electronics Co., Ltd. | Protein complex, bispecific antibody including the protein complex, and method of preparation thereof |
| US10344092B2 (en) | 2013-08-09 | 2019-07-09 | Macrogenics, Inc. | Bi-specific monovalent Fc diabodies that are capable of binding CD32B and CD79b and uses thereof |
| US11384149B2 (en) | 2013-08-09 | 2022-07-12 | Macrogenics, Inc. | Bi-specific monovalent Fc diabodies that are capable of binding CD32B and CD79b and uses thereof |
| US9932400B2 (en) | 2013-08-23 | 2018-04-03 | Macrogenics, Inc. | Bi-specific monovalent diabodies that are capable of binding to gpA33 and CD3, and uses thereof |
| US10787521B2 (en) | 2013-08-23 | 2020-09-29 | Macrogenics, Inc. | Bi-specific monovalent diabodies that are capable of binding CD123 and CD3, and uses thereof |
| US10858430B2 (en) | 2013-08-23 | 2020-12-08 | Macrogenics, Inc. | Bi-specific monovalent diabodies that are capable of binding to gpA33 and CD3, and uses thereof |
| US9822181B2 (en) | 2013-08-23 | 2017-11-21 | Macrogenics, Inc. | Bi-specific monovalent diabodies that are capable of binding CD123 and CD3, and uses thereof |
| US10151754B2 (en) | 2014-01-17 | 2018-12-11 | Minomic International Ltd. | Cell surface prostate cancer antigen for diagnosis |
| US12116408B2 (en) | 2014-07-17 | 2024-10-15 | Novo Nordisk A/S | Site directed mutagenesis of TREM-1 antibodies for decreasing viscosity |
| US11072654B2 (en) | 2014-07-17 | 2021-07-27 | Novo Nordisk A/S | Site directed mutagenesis of TREM-1 antibodies for decreasing viscosity |
| US10179814B2 (en) | 2014-07-17 | 2019-01-15 | Novo Nordisk A/S | Site directed mutagenesis of TREM-1 antibodies for decreasing viscosity |
| US10717778B2 (en) | 2014-09-29 | 2020-07-21 | Duke University | Bispecific molecules comprising an HIV-1 envelope targeting arm |
| US12173051B2 (en) | 2014-09-29 | 2024-12-24 | Duke University | Bispecific molecules comprising an HIV-1 envelope targeting arm |
| US11591400B2 (en) | 2016-04-15 | 2023-02-28 | Macrogenics, Inc. | B7-H3 directed antibody drug conjugates |
| US10961311B2 (en) | 2016-04-15 | 2021-03-30 | Macrogenics, Inc. | B7-H3 binding molecules, antibody drug conjugates thereof and methods of use thereof |
| US11186636B2 (en) | 2017-04-21 | 2021-11-30 | Amgen Inc. | Anti-human TREM2 antibodies and uses thereof |
| US11919954B2 (en) | 2018-04-02 | 2024-03-05 | Bristol-Myers Squibb Company | Anti-TREM-1 antibodies and uses thereof |
| US11952420B2 (en) | 2018-04-02 | 2024-04-09 | Bristol-Myers Squibb Company | Nucleic acids encoding anti-TREM-1 antibodies |
| US11155618B2 (en) | 2018-04-02 | 2021-10-26 | Bristol-Myers Squibb Company | Anti-TREM-1 antibodies and uses thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1439857A4 (fr) | 2004-11-17 |
| US20100330034A1 (en) | 2010-12-30 |
| EP2072059A1 (fr) | 2009-06-24 |
| AU2002334997A1 (en) | 2003-04-22 |
| CA2462883A1 (fr) | 2003-04-17 |
| JP2009256389A (ja) | 2009-11-05 |
| US8236309B2 (en) | 2012-08-07 |
| EP2316485A1 (fr) | 2011-05-04 |
| JP2006501130A (ja) | 2006-01-12 |
| EP1439857B1 (fr) | 2009-02-25 |
| DE60231316D1 (de) | 2009-04-09 |
| WO2003030835A2 (fr) | 2003-04-17 |
| MXPA04003291A (es) | 2004-07-23 |
| ES2321701T3 (es) | 2009-06-10 |
| JP4381140B2 (ja) | 2009-12-09 |
| ATE423571T1 (de) | 2009-03-15 |
| WO2003030835A3 (fr) | 2003-10-09 |
| EP1439857A2 (fr) | 2004-07-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8236309B2 (en) | Use of bispecific antibodies to regulate immune responses | |
| AU2020200981B2 (en) | Multispecific antibodies, multispecific activatable antibodies and methods of using the same | |
| AU2001257206B2 (en) | Bispecific molecules and uses thereof | |
| EP2176294B1 (fr) | Utilisation d'antagonistes de mdl-1 | |
| US6894149B2 (en) | Anti-HLA-DA antibodies and the methods of using thereof | |
| CN101720232A (zh) | 具有修饰的效应器功能的fc受体结合型多肽 | |
| JPH09502708A (ja) | Il4により伝達される疾患の治療に有用な組み換え型il4抗体 | |
| AU2001257206A1 (en) | Bispecific molecules and uses thereof | |
| JPH09501824A (ja) | モノクローナル抗体の免疫抑制活性および毒性のモジュレーションのための方法ならびに物質 | |
| US12024560B2 (en) | Therapeutic agents and methods for enhancing immune responses in tumor microenvironment | |
| CN101675078A (zh) | CRIg拮抗剂 | |
| RU2603097C2 (ru) | Антитела к р-селектину и способы их применения и идентификации | |
| JPH01501201A (ja) | 抗体 | |
| JP2007525416A (ja) | 早期活性化分子のターゲティングに基づく免疫調節 | |
| US20220289855A1 (en) | Immunomodulatory Compounds | |
| HK1132187A (en) | Use of bispecific antibodies to regulate immune responses | |
| HK1155082A (en) | Use of bispecific antibodies to regulate immune responses | |
| JP2024522349A (ja) | C-x-cモチーフケモカイン受容体6(cxcr6)結合分子及びその使用方法 | |
| US20070224196A1 (en) | Immunogenicity-reduced anti-cr1 antibody and compositions and methods of treatment based thereon | |
| AU2007200022A1 (en) | Bispecific molecules and uses thereof | |
| HK1171034A (en) | Diagnosis and treatment of autoimmune demyelinating diseases |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SCHERING CORPORATION, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BIGLER, MICHAEL ERIC;CHERWINSKI, HOLLY;PHILLIPS, JOSEPH H.;REEL/FRAME:013613/0479 Effective date: 20021125 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |