US20030072783A1 - Localized use of nitric oxide-adducts to prevent internal tissue damage - Google Patents
Localized use of nitric oxide-adducts to prevent internal tissue damage Download PDFInfo
- Publication number
- US20030072783A1 US20030072783A1 US10/253,977 US25397702A US2003072783A1 US 20030072783 A1 US20030072783 A1 US 20030072783A1 US 25397702 A US25397702 A US 25397702A US 2003072783 A1 US2003072783 A1 US 2003072783A1
- Authority
- US
- United States
- Prior art keywords
- nitroso
- nitric oxide
- protein
- oxide adduct
- albumin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000000451 tissue damage Effects 0.000 title 1
- 231100000827 tissue damage Toxicity 0.000 title 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 236
- 238000000034 method Methods 0.000 claims abstract description 109
- 239000011159 matrix material Substances 0.000 claims abstract description 21
- 229920000642 polymer Polymers 0.000 claims abstract description 19
- 150000001875 compounds Chemical class 0.000 claims description 61
- 230000006378 damage Effects 0.000 claims description 52
- 108090000623 proteins and genes Proteins 0.000 claims description 48
- 102000004169 proteins and genes Human genes 0.000 claims description 45
- 108010093594 S-nitrosoalbumin Proteins 0.000 claims description 35
- -1 iron-nitrosyl compound Chemical class 0.000 claims description 34
- 230000008021 deposition Effects 0.000 claims description 32
- 230000002792 vascular Effects 0.000 claims description 26
- 150000001413 amino acids Chemical class 0.000 claims description 24
- 229940083618 sodium nitroprusside Drugs 0.000 claims description 24
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 23
- 210000003038 endothelium Anatomy 0.000 claims description 20
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 210000004204 blood vessel Anatomy 0.000 claims description 15
- ICRHORQIUXBEPA-UHFFFAOYSA-N thionitrous acid Chemical compound SN=O ICRHORQIUXBEPA-UHFFFAOYSA-N 0.000 claims description 15
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 13
- 239000003814 drug Substances 0.000 claims description 13
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 10
- 210000003709 heart valve Anatomy 0.000 claims description 10
- 229960002897 heparin Drugs 0.000 claims description 10
- 229920000669 heparin Polymers 0.000 claims description 10
- 208000037803 restenosis Diseases 0.000 claims description 10
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 9
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 claims description 8
- 229960001138 acetylsalicylic acid Drugs 0.000 claims description 8
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 claims description 8
- 230000002401 inhibitory effect Effects 0.000 claims description 8
- 238000001990 intravenous administration Methods 0.000 claims description 8
- 208000031481 Pathologic Constriction Diseases 0.000 claims description 7
- 230000001681 protective effect Effects 0.000 claims description 7
- 230000036262 stenosis Effects 0.000 claims description 7
- 208000037804 stenosis Diseases 0.000 claims description 7
- 229940124597 therapeutic agent Drugs 0.000 claims description 7
- 230000002965 anti-thrombogenic effect Effects 0.000 claims description 6
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 claims description 5
- 102000007625 Hirudins Human genes 0.000 claims description 5
- 108010007267 Hirudins Proteins 0.000 claims description 5
- 229960002768 dipyridamole Drugs 0.000 claims description 5
- IZEKFCXSFNUWAM-UHFFFAOYSA-N dipyridamole Chemical compound C=12N=C(N(CCO)CCO)N=C(N3CCCCC3)C2=NC(N(CCO)CCO)=NC=1N1CCCCC1 IZEKFCXSFNUWAM-UHFFFAOYSA-N 0.000 claims description 5
- KAQKFAOMNZTLHT-VVUHWYTRSA-N epoprostenol Chemical compound O1C(=CCCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-VVUHWYTRSA-N 0.000 claims description 5
- 229960001123 epoprostenol Drugs 0.000 claims description 5
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 claims description 5
- 229940006607 hirudin Drugs 0.000 claims description 5
- 238000001361 intraarterial administration Methods 0.000 claims description 5
- MBGGBVCUIVRRBF-UHFFFAOYSA-N sulfinpyrazone Chemical compound O=C1N(C=2C=CC=CC=2)N(C=2C=CC=CC=2)C(=O)C1CCS(=O)C1=CC=CC=C1 MBGGBVCUIVRRBF-UHFFFAOYSA-N 0.000 claims description 5
- 229960003329 sulfinpyrazone Drugs 0.000 claims description 5
- KEJOCWOXCDWNID-UHFFFAOYSA-N Nitrilooxonium Chemical compound [O+]#N KEJOCWOXCDWNID-UHFFFAOYSA-N 0.000 claims description 4
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical group [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 claims description 4
- 239000000006 Nitroglycerin Substances 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 4
- 102000015795 Platelet Membrane Glycoproteins Human genes 0.000 claims description 4
- 108010010336 Platelet Membrane Glycoproteins Proteins 0.000 claims description 4
- 229960003711 glyceryl trinitrate Drugs 0.000 claims description 4
- 229960000905 indomethacin Drugs 0.000 claims description 4
- 229920001778 nylon Polymers 0.000 claims description 4
- 238000013268 sustained release Methods 0.000 claims description 4
- 239000012730 sustained-release form Substances 0.000 claims description 4
- 238000002627 tracheal intubation Methods 0.000 claims description 4
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 claims description 4
- 229960005080 warfarin Drugs 0.000 claims description 4
- 239000005552 B01AC04 - Clopidogrel Substances 0.000 claims description 3
- 239000005528 B01AC05 - Ticlopidine Substances 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 102000003839 Human Proteins Human genes 0.000 claims description 3
- 108090000144 Human Proteins Proteins 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 230000000692 anti-sense effect Effects 0.000 claims description 3
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 claims description 3
- GKTWGGQPFAXNFI-HNNXBMFYSA-N clopidogrel Chemical compound C1([C@H](N2CC=3C=CSC=3CC2)C(=O)OC)=CC=CC=C1Cl GKTWGGQPFAXNFI-HNNXBMFYSA-N 0.000 claims description 3
- 229960003009 clopidogrel Drugs 0.000 claims description 3
- 239000012634 fragment Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- PHWBOXQYWZNQIN-UHFFFAOYSA-N ticlopidine Chemical compound ClC1=CC=CC=C1CN1CC(C=CS2)=C2CC1 PHWBOXQYWZNQIN-UHFFFAOYSA-N 0.000 claims description 3
- 229960005001 ticlopidine Drugs 0.000 claims description 3
- 239000013603 viral vector Substances 0.000 claims description 3
- 208000031169 hemorrhagic disease Diseases 0.000 claims description 2
- 208000010125 myocardial infarction Diseases 0.000 claims description 2
- 206010043554 thrombocytopenia Diseases 0.000 claims description 2
- 201000005060 thrombophlebitis Diseases 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims 10
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims 10
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 claims 2
- APRHKFCHNAMXKU-UHFFFAOYSA-N 3-nitroso-3h-dithiole Chemical compound O=NC1SSC=C1 APRHKFCHNAMXKU-UHFFFAOYSA-N 0.000 claims 2
- PMYJGTWUVVVOFO-UHFFFAOYSA-N 4-phenyl-3-furoxancarbonitrile Chemical compound N#CC1=[N+]([O-])ON=C1C1=CC=CC=C1 PMYJGTWUVVVOFO-UHFFFAOYSA-N 0.000 claims 2
- 102000001938 Plasminogen Activators Human genes 0.000 claims 2
- 108010001014 Plasminogen Activators Proteins 0.000 claims 2
- 108010068048 S-nitrosohemoglobin Proteins 0.000 claims 2
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 claims 2
- XEYBHCRIKKKOSS-UHFFFAOYSA-N disodium;azanylidyneoxidanium;iron(2+);pentacyanide Chemical group [Na+].[Na+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].[O+]#N XEYBHCRIKKKOSS-UHFFFAOYSA-N 0.000 claims 2
- 102000009351 human S-nitrosoalbumin Human genes 0.000 claims 2
- 108010009126 human S-nitrosoalbumin Proteins 0.000 claims 2
- GSKDBLIBBOYOFU-UHFFFAOYSA-N oxadiazol-5-amine Chemical compound NC1=CN=NO1 GSKDBLIBBOYOFU-UHFFFAOYSA-N 0.000 claims 2
- 229950000688 phenothiazine Drugs 0.000 claims 2
- 230000004962 physiological condition Effects 0.000 claims 2
- 229940127126 plasminogen activator Drugs 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 41
- 238000000576 coating method Methods 0.000 abstract description 34
- 239000011248 coating agent Substances 0.000 abstract description 32
- 239000000463 material Substances 0.000 abstract description 20
- 230000002411 adverse Effects 0.000 abstract description 8
- 230000000069 prophylactic effect Effects 0.000 abstract 1
- 230000001225 therapeutic effect Effects 0.000 abstract 1
- 210000001772 blood platelet Anatomy 0.000 description 127
- 235000018102 proteins Nutrition 0.000 description 41
- 208000027418 Wounds and injury Diseases 0.000 description 37
- 208000014674 injury Diseases 0.000 description 37
- 102000009027 Albumins Human genes 0.000 description 31
- 108010088751 Albumins Proteins 0.000 description 31
- 210000001367 artery Anatomy 0.000 description 27
- 230000015572 biosynthetic process Effects 0.000 description 27
- 208000007536 Thrombosis Diseases 0.000 description 26
- 210000001105 femoral artery Anatomy 0.000 description 26
- 125000000217 alkyl group Chemical group 0.000 description 23
- 241001465754 Metazoa Species 0.000 description 22
- 229940024606 amino acid Drugs 0.000 description 22
- 235000001014 amino acid Nutrition 0.000 description 22
- 238000002399 angioplasty Methods 0.000 description 22
- XRKMNJXYOFSTBE-UHFFFAOYSA-N disodium;iron(4+);nitroxyl anion;pentacyanide;dihydrate Chemical compound O.O.[Na+].[Na+].[Fe+4].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].O=[N-] XRKMNJXYOFSTBE-UHFFFAOYSA-N 0.000 description 22
- 229930195733 hydrocarbon Natural products 0.000 description 22
- 210000004351 coronary vessel Anatomy 0.000 description 21
- 239000000203 mixture Substances 0.000 description 21
- 230000035755 proliferation Effects 0.000 description 21
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 18
- 210000004369 blood Anatomy 0.000 description 18
- 239000008280 blood Substances 0.000 description 18
- 150000002430 hydrocarbons Chemical class 0.000 description 18
- 229920001184 polypeptide Polymers 0.000 description 18
- 238000002474 experimental method Methods 0.000 description 17
- 230000005764 inhibitory process Effects 0.000 description 17
- APFVFJFRJDLVQX-AHCXROLUSA-N indium-111 Chemical compound [111In] APFVFJFRJDLVQX-AHCXROLUSA-N 0.000 description 16
- 102000004196 processed proteins & peptides Human genes 0.000 description 16
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 16
- 238000011282 treatment Methods 0.000 description 16
- 239000004215 Carbon black (E152) Substances 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical class Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 15
- 238000007034 nitrosation reaction Methods 0.000 description 15
- 150000003573 thiols Chemical class 0.000 description 15
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 14
- 210000001715 carotid artery Anatomy 0.000 description 14
- 241000282887 Suidae Species 0.000 description 13
- 125000003118 aryl group Chemical group 0.000 description 13
- 241000282472 Canis lupus familiaris Species 0.000 description 12
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 208000034827 Neointima Diseases 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 230000009935 nitrosation Effects 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 238000012384 transportation and delivery Methods 0.000 description 11
- 239000000066 endothelium dependent relaxing factor Substances 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 125000001424 substituent group Chemical group 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 9
- 241000283973 Oryctolagus cuniculus Species 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 125000003545 alkoxy group Chemical group 0.000 description 9
- 230000004087 circulation Effects 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 235000002639 sodium chloride Nutrition 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 230000009885 systemic effect Effects 0.000 description 9
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- 239000003146 anticoagulant agent Substances 0.000 description 8
- 230000035602 clotting Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 238000001802 infusion Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 210000004623 platelet-rich plasma Anatomy 0.000 description 8
- 229920006395 saturated elastomer Polymers 0.000 description 8
- 230000002885 thrombogenetic effect Effects 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Chemical class Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 7
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 7
- 230000008827 biological function Effects 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 239000003527 fibrinolytic agent Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 150000002391 heterocyclic compounds Chemical class 0.000 description 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 229920001308 poly(aminoacid) Polymers 0.000 description 7
- 239000004800 polyvinyl chloride Substances 0.000 description 7
- 229960002429 proline Drugs 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 235000000346 sugar Nutrition 0.000 description 7
- 150000008163 sugars Chemical class 0.000 description 7
- 239000005541 ACE inhibitor Substances 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 206010053567 Coagulopathies Diseases 0.000 description 6
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 6
- 125000003710 aryl alkyl group Chemical group 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 230000003511 endothelial effect Effects 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 125000005843 halogen group Chemical group 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 6
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 6
- 229910052717 sulfur Chemical group 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 6
- 210000005166 vasculature Anatomy 0.000 description 6
- 208000024248 Vascular System injury Diseases 0.000 description 5
- 208000012339 Vascular injury Diseases 0.000 description 5
- YEESUBCSWGVPCE-UHFFFAOYSA-N azanylidyneoxidanium iron(2+) pentacyanide Chemical compound [Fe++].[C-]#N.[C-]#N.[C-]#N.[C-]#N.[C-]#N.N#[O+] YEESUBCSWGVPCE-UHFFFAOYSA-N 0.000 description 5
- 229940098773 bovine serum albumin Drugs 0.000 description 5
- 230000002612 cardiopulmonary effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000002586 coronary angiography Methods 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 125000001072 heteroaryl group Chemical group 0.000 description 5
- 125000000623 heterocyclic group Chemical group 0.000 description 5
- 235000011167 hydrochloric acid Nutrition 0.000 description 5
- 239000012442 inert solvent Substances 0.000 description 5
- 238000007918 intramuscular administration Methods 0.000 description 5
- 239000002840 nitric oxide donor Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229960002460 nitroprusside Drugs 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229920000915 polyvinyl chloride Polymers 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 235000010288 sodium nitrite Nutrition 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 238000010561 standard procedure Methods 0.000 description 5
- 238000007910 systemic administration Methods 0.000 description 5
- 0 *C(=O)C1C([2*])CN1C(=O)C([1*])C([3*])SN=O Chemical compound *C(=O)C1C([2*])CN1C(=O)C([1*])C([3*])SN=O 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 108050006400 Cyclin Proteins 0.000 description 4
- 208000005189 Embolism Diseases 0.000 description 4
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 4
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 239000004157 Nitrosyl chloride Substances 0.000 description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 4
- 102000009339 Proliferating Cell Nuclear Antigen Human genes 0.000 description 4
- 108091005623 S-nitrosylated proteins Proteins 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 4
- 208000001435 Thromboembolism Diseases 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229940127219 anticoagulant drug Drugs 0.000 description 4
- 230000017531 blood circulation Effects 0.000 description 4
- 230000000747 cardiac effect Effects 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000001212 derivatisation Methods 0.000 description 4
- 125000004663 dialkyl amino group Chemical group 0.000 description 4
- 210000002889 endothelial cell Anatomy 0.000 description 4
- 210000002744 extracellular matrix Anatomy 0.000 description 4
- 238000001631 haemodialysis Methods 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 230000000322 hemodialysis Effects 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000008069 intimal proliferation Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- VPCDQGACGWYTMC-UHFFFAOYSA-N nitrosyl chloride Chemical compound ClN=O VPCDQGACGWYTMC-UHFFFAOYSA-N 0.000 description 4
- 235000019392 nitrosyl chloride Nutrition 0.000 description 4
- 230000009635 nitrosylation Effects 0.000 description 4
- 230000000269 nucleophilic effect Effects 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000011593 sulfur Chemical group 0.000 description 4
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 4
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 3
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- 206010002091 Anaesthesia Diseases 0.000 description 3
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- 102000004506 Blood Proteins Human genes 0.000 description 3
- 108010017384 Blood Proteins Proteins 0.000 description 3
- 201000000057 Coronary Stenosis Diseases 0.000 description 3
- 230000006820 DNA synthesis Effects 0.000 description 3
- 229920004934 Dacron® Polymers 0.000 description 3
- 102000009123 Fibrin Human genes 0.000 description 3
- 108010073385 Fibrin Proteins 0.000 description 3
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 3
- 230000006295 S-nitrosylation Effects 0.000 description 3
- 229920005654 Sephadex Polymers 0.000 description 3
- 239000012507 Sephadex™ Substances 0.000 description 3
- 108010071390 Serum Albumin Proteins 0.000 description 3
- 102000007562 Serum Albumin Human genes 0.000 description 3
- 208000005392 Spasm Diseases 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 125000003282 alkyl amino group Chemical group 0.000 description 3
- 230000037005 anaesthesia Effects 0.000 description 3
- 230000003143 atherosclerotic effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000010836 blood and blood product Substances 0.000 description 3
- 230000023555 blood coagulation Effects 0.000 description 3
- 239000012503 blood component Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- ZOOGRGPOEVQQDX-UHFFFAOYSA-N cyclic GMP Natural products O1C2COP(O)(=O)OC2C(O)C1N1C=NC2=C1NC(N)=NC2=O ZOOGRGPOEVQQDX-UHFFFAOYSA-N 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 3
- 229950003499 fibrin Drugs 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 125000001188 haloalkyl group Chemical group 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 206010020718 hyperplasia Diseases 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 230000008692 neointimal formation Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Chemical group 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 3
- 230000010118 platelet activation Effects 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000011253 protective coating Substances 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 210000002460 smooth muscle Anatomy 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 229920001059 synthetic polymer Polymers 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 3
- 239000003656 tris buffered saline Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- APIXJSLKIYYUKG-UHFFFAOYSA-N 3 Isobutyl 1 methylxanthine Chemical compound O=C1N(C)C(=O)N(CC(C)C)C2=C1N=CN2 APIXJSLKIYYUKG-UHFFFAOYSA-N 0.000 description 2
- UPXRTVAIJMUAQR-UHFFFAOYSA-N 4-(9h-fluoren-9-ylmethoxycarbonylamino)-1-[(2-methylpropan-2-yl)oxycarbonyl]pyrrolidine-2-carboxylic acid Chemical compound C1C(C(O)=O)N(C(=O)OC(C)(C)C)CC1NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 UPXRTVAIJMUAQR-UHFFFAOYSA-N 0.000 description 2
- 206010003225 Arteriospasm coronary Diseases 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 125000005118 N-alkylcarbamoyl group Chemical group 0.000 description 2
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 2
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 102000010752 Plasminogen Inactivators Human genes 0.000 description 2
- 108010077971 Plasminogen Inactivators Proteins 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 206010038563 Reocclusion Diseases 0.000 description 2
- 108010001742 S-Nitrosoglutathione Proteins 0.000 description 2
- XOWVFANEOZMPKG-REOHCLBHSA-N S-nitroso-L-cysteine Chemical compound OC(=O)[C@@H](N)CSN=O XOWVFANEOZMPKG-REOHCLBHSA-N 0.000 description 2
- HYHSBSXUHZOYLX-WDSKDSINSA-N S-nitrosoglutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CSN=O)C(=O)NCC(O)=O HYHSBSXUHZOYLX-WDSKDSINSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000000702 anti-platelet effect Effects 0.000 description 2
- 230000001028 anti-proliverative effect Effects 0.000 description 2
- 210000000702 aorta abdominal Anatomy 0.000 description 2
- 239000012237 artificial material Substances 0.000 description 2
- 125000005110 aryl thio group Chemical group 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 238000011888 autopsy Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 229940125691 blood product Drugs 0.000 description 2
- 125000001589 carboacyl group Chemical group 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 238000007675 cardiac surgery Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000009615 deamination Effects 0.000 description 2
- 238000006481 deamination reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 238000002523 gelfiltration Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 229960002591 hydroxyproline Drugs 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229960004184 ketamine hydrochloride Drugs 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- XLFWDASMENKTKL-UHFFFAOYSA-N molsidomine Chemical class O1C(N=C([O-])OCC)=C[N+](N2CCOCC2)=N1 XLFWDASMENKTKL-UHFFFAOYSA-N 0.000 description 2
- 230000003562 morphometric effect Effects 0.000 description 2
- 238000013425 morphometry Methods 0.000 description 2
- 210000002464 muscle smooth vascular Anatomy 0.000 description 2
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 2
- XKLJHFLUAHKGGU-UHFFFAOYSA-N nitrous amide Chemical class ON=N XKLJHFLUAHKGGU-UHFFFAOYSA-N 0.000 description 2
- 238000001543 one-way ANOVA Methods 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 229960001412 pentobarbital Drugs 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000002797 plasminogen activator inhibitor Substances 0.000 description 2
- 229920001432 poly(L-lactide) Polymers 0.000 description 2
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000009696 proliferative response Effects 0.000 description 2
- GMVPRGQOIOIIMI-DWKJAMRDSA-N prostaglandin E1 Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(O)=O GMVPRGQOIOIIMI-DWKJAMRDSA-N 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002094 self assembled monolayer Substances 0.000 description 2
- 239000013545 self-assembled monolayer Substances 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000015590 smooth muscle cell migration Effects 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 125000004354 sulfur functional group Chemical group 0.000 description 2
- 230000009469 supplementation Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 2
- 229940038773 trisodium citrate Drugs 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 230000000304 vasodilatating effect Effects 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- QTJKCQPXTOYYHJ-BYPYZUCNSA-N (2r)-2-acetamido-3-nitrososulfanylpropanoic acid Chemical compound CC(=O)N[C@H](C(O)=O)CSN=O QTJKCQPXTOYYHJ-BYPYZUCNSA-N 0.000 description 1
- HNIULCDUASSKOM-RQJHMYQMSA-N (2s)-1-[(2s)-2-methyl-3-nitrososulfanylpropanoyl]pyrrolidine-2-carboxylic acid Chemical compound O=NSC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O HNIULCDUASSKOM-RQJHMYQMSA-N 0.000 description 1
- QWPCKAAAWDCDCW-VKHMYHEASA-N (2s)-2-amino-4-nitrososulfanylbutanoic acid Chemical compound OC(=O)[C@@H](N)CCSN=O QWPCKAAAWDCDCW-VKHMYHEASA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- 238000004834 15N NMR spectroscopy Methods 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- BOFUZZAQNVYZFF-UHFFFAOYSA-N 2-(3-chlorophenyl)-3-methylmorpholine Chemical compound CC1NCCOC1C1=CC=CC(Cl)=C1 BOFUZZAQNVYZFF-UHFFFAOYSA-N 0.000 description 1
- QHQZEEGNGSZBOL-UHFFFAOYSA-N 2-(aminomethyl)-2-(hydroxymethyl)propane-1,3-diol Chemical compound NCC(CO)(CO)CO QHQZEEGNGSZBOL-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- IJRKANNOPXMZSG-SSPAHAAFSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC(=O)CC(O)(C(O)=O)CC(O)=O IJRKANNOPXMZSG-SSPAHAAFSA-N 0.000 description 1
- RSGFPIWWSCWCFJ-VAXZQHAWSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;phosphoric acid Chemical compound OP(O)(O)=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC(=O)CC(O)(C(O)=O)CC(O)=O RSGFPIWWSCWCFJ-VAXZQHAWSA-N 0.000 description 1
- FQRHOOHLUYHMGG-BTJKTKAUSA-N 3-(2-acetylphenothiazin-10-yl)propyl-dimethylazanium;(z)-4-hydroxy-4-oxobut-2-enoate Chemical compound OC(=O)\C=C/C(O)=O.C1=C(C(C)=O)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 FQRHOOHLUYHMGG-BTJKTKAUSA-N 0.000 description 1
- TYJOQICPGZGYDT-UHFFFAOYSA-N 4-methylsulfonylbenzenesulfonyl chloride Chemical compound CS(=O)(=O)C1=CC=C(S(Cl)(=O)=O)C=C1 TYJOQICPGZGYDT-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 102100034613 Annexin A2 Human genes 0.000 description 1
- 108090000668 Annexin A2 Proteins 0.000 description 1
- 206010003162 Arterial injury Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 150000004006 C-nitroso compounds Chemical class 0.000 description 1
- RAMOTOFYMYRPFO-CBMYTPLUSA-N CC(CCCCCc1ccccc1)(SO)[PH](O)(O)CC(=O)N1CC(C2CCCCC2)C[C@H]1C(=O)O.CC(CCCCCc1ccccc1)(SO)[PH](O)(O)CC(=O)N1CCC[C@H]1C(=O)O.CC(NO(O(C)(C)SO)S(=O)(=O)O)C(=O)N1CCC[C@H]1C(=O)O.CSO(Cc1ccccc1)(c1ccccc1)O(NC(C)C(=O)N1CCC[C@H]1C(=O)O)C(=O)O.CSO(c1ccccc1)(c1ccccc1)O(NC(C)C(=O)N1CCC[C@H]1C(=O)O)C(=O)O.O=C(OCO)C1CCC(SO)C1NO(O)C(=O)N1CCC[C@H]1C(=O)OC(O)(O)O.[H]C(Cc1ccccc1)(SC)O(NO(O)C(=O)N1C2CCCCC2C[C@H]1C(=O)O)C(=O)OCC.[H]C(SC)(c1ccccc1)O(NO(O)C(=O)N1C2CCCCC2C[C@H]1C(=O)O)C(=O)OCC Chemical compound CC(CCCCCc1ccccc1)(SO)[PH](O)(O)CC(=O)N1CC(C2CCCCC2)C[C@H]1C(=O)O.CC(CCCCCc1ccccc1)(SO)[PH](O)(O)CC(=O)N1CCC[C@H]1C(=O)O.CC(NO(O(C)(C)SO)S(=O)(=O)O)C(=O)N1CCC[C@H]1C(=O)O.CSO(Cc1ccccc1)(c1ccccc1)O(NC(C)C(=O)N1CCC[C@H]1C(=O)O)C(=O)O.CSO(c1ccccc1)(c1ccccc1)O(NC(C)C(=O)N1CCC[C@H]1C(=O)O)C(=O)O.O=C(OCO)C1CCC(SO)C1NO(O)C(=O)N1CCC[C@H]1C(=O)OC(O)(O)O.[H]C(Cc1ccccc1)(SC)O(NO(O)C(=O)N1C2CCCCC2C[C@H]1C(=O)O)C(=O)OCC.[H]C(SC)(c1ccccc1)O(NO(O)C(=O)N1C2CCCCC2C[C@H]1C(=O)O)C(=O)OCC RAMOTOFYMYRPFO-CBMYTPLUSA-N 0.000 description 1
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 1
- 208000020446 Cardiac disease Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102000004225 Cathepsin B Human genes 0.000 description 1
- 108090000712 Cathepsin B Proteins 0.000 description 1
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 1
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 1
- 206010008479 Chest Pain Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZSRSLWKGWFFVCM-WDSKDSINSA-N Cys-Pro Chemical compound SC[C@H](N)C(=O)N1CCC[C@H]1C(O)=O ZSRSLWKGWFFVCM-WDSKDSINSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 206010011878 Deafness Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 229920000544 Gore-Tex Polymers 0.000 description 1
- 108010078321 Guanylate Cyclase Proteins 0.000 description 1
- 102000014469 Guanylate cyclase Human genes 0.000 description 1
- 102000008015 Hemeproteins Human genes 0.000 description 1
- 108010089792 Hemeproteins Proteins 0.000 description 1
- 208000033892 Hyperhomocysteinemia Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- KLDXJTOLSGUMSJ-JGWLITMVSA-N Isosorbide Chemical compound O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 KLDXJTOLSGUMSJ-JGWLITMVSA-N 0.000 description 1
- ZTVZLYBCZNMWCF-WDSKDSINSA-N L,L-homocystine zwitterion Chemical group OC(=O)[C@@H](N)CCSSCC[C@H](N)C(O)=O ZTVZLYBCZNMWCF-WDSKDSINSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Natural products SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- 235000013878 L-cysteine Nutrition 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000009857 Microaneurysm Diseases 0.000 description 1
- 102000014962 Monocyte Chemoattractant Proteins Human genes 0.000 description 1
- 108010064136 Monocyte Chemoattractant Proteins Proteins 0.000 description 1
- 238000001367 Mood's median test Methods 0.000 description 1
- KCWZGJVSDFYRIX-YFKPBYRVSA-N N(gamma)-nitro-L-arginine methyl ester Chemical compound COC(=O)[C@@H](N)CCCN=C(N)N[N+]([O-])=O KCWZGJVSDFYRIX-YFKPBYRVSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- MZNYWPRCVDMOJG-UHFFFAOYSA-N N-(1-naphthyl)ethylenediamine dihydrochloride Chemical compound [Cl-].[Cl-].C1=CC=C2C([NH2+]CC[NH3+])=CC=CC2=C1 MZNYWPRCVDMOJG-UHFFFAOYSA-N 0.000 description 1
- NRFJZTXWLKPZAV-UHFFFAOYSA-N N-(2-oxo-3-thiolanyl)acetamide Chemical compound CC(=O)NC1CCSC1=O NRFJZTXWLKPZAV-UHFFFAOYSA-N 0.000 description 1
- 102000019040 Nuclear Antigens Human genes 0.000 description 1
- 108010051791 Nuclear Antigens Proteins 0.000 description 1
- ACPZDCSEZRTFEU-UHFFFAOYSA-N O=N[S+]1SCC=C1 Chemical class O=N[S+]1SCC=C1 ACPZDCSEZRTFEU-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 108091006006 PEGylated Proteins Proteins 0.000 description 1
- 206010033425 Pain in extremity Diseases 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 102000037602 Platelet Endothelial Cell Adhesion Molecule-1 Human genes 0.000 description 1
- 108010069381 Platelet Endothelial Cell Adhesion Molecule-1 Proteins 0.000 description 1
- 208000013544 Platelet disease Diseases 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 1
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 1
- 208000010378 Pulmonary Embolism Diseases 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229910006074 SO2NH2 Inorganic materials 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- HOBWAPHTEJGALG-JKCMADFCSA-N [(1r,5s)-8-methyl-8-azoniabicyclo[3.2.1]octan-3-yl] 3-hydroxy-2-phenylpropanoate;sulfate Chemical compound [O-]S([O-])(=O)=O.C([C@H]1CC[C@@H](C2)[NH+]1C)C2OC(=O)C(CO)C1=CC=CC=C1.C([C@H]1CC[C@@H](C2)[NH+]1C)C2OC(=O)C(CO)C1=CC=CC=C1 HOBWAPHTEJGALG-JKCMADFCSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229960001946 acepromazine maleate Drugs 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000002785 anti-thrombosis Effects 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000004872 arterial blood pressure Effects 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229960002028 atropine sulfate Drugs 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- DCDCJJSNSWFVBG-UHFFFAOYSA-N azanylidyneoxidanium;iron Chemical group [Fe].[O+]#N.[O+]#N DCDCJJSNSWFVBG-UHFFFAOYSA-N 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005518 carboxamido group Chemical group 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- FZFAMSAMCHXGEF-UHFFFAOYSA-N chloro formate Chemical compound ClOC=O FZFAMSAMCHXGEF-UHFFFAOYSA-N 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 1
- 229960001076 chlorpromazine Drugs 0.000 description 1
- 229960004753 citiolone Drugs 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- HSUGRBWQSSZJOP-RTWAWAEBSA-N diltiazem Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=CC=C2S1 HSUGRBWQSSZJOP-RTWAWAEBSA-N 0.000 description 1
- 229960004166 diltiazem Drugs 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- AZLYZRGJCVQKKK-UHFFFAOYSA-N dioxohydrazine Chemical class O=NN=O AZLYZRGJCVQKKK-UHFFFAOYSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 150000004662 dithiols Chemical class 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000003503 early effect Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000008753 endothelial function Effects 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229960000301 factor viii Drugs 0.000 description 1
- 210000003195 fascia Anatomy 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000004175 fluorobenzyl group Chemical group 0.000 description 1
- 125000003784 fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 201000006408 generalized atherosclerosis Diseases 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 description 1
- RQFCJASXJCIDSX-UUOKFMHZSA-N guanosine 5'-monophosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O RQFCJASXJCIDSX-UUOKFMHZSA-N 0.000 description 1
- 235000013928 guanylic acid Nutrition 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000009097 homeostatic mechanism Effects 0.000 description 1
- KIWQWJKWBHZMDT-UHFFFAOYSA-N homocysteine thiolactone Chemical compound NC1CCSC1=O KIWQWJKWBHZMDT-UHFFFAOYSA-N 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 125000006289 hydroxybenzyl group Chemical group 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 230000003225 hyperhomocysteinemia Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229960002479 isosorbide Drugs 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000023404 leukocyte cell-cell adhesion Effects 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229960004027 molsidomine Drugs 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 238000007491 morphometric analysis Methods 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000011587 new zealand white rabbit Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 108091005622 nitrosylated proteins Proteins 0.000 description 1
- 125000006574 non-aromatic ring group Chemical group 0.000 description 1
- 230000001453 nonthrombogenic effect Effects 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229940127216 oral anticoagulant drug Drugs 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 229940082615 organic nitrates used in cardiac disease Drugs 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000007427 paired t-test Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000002990 phenothiazines Chemical class 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 230000009805 platelet accumulation Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- ZUFQODAHGAHPFQ-UHFFFAOYSA-N pyridoxine hydrochloride Chemical compound Cl.CC1=NC=C(CO)C(CO)=C1O ZUFQODAHGAHPFQ-UHFFFAOYSA-N 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000033904 relaxation of vascular smooth muscle Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008458 response to injury Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 230000008477 smooth muscle tissue growth Effects 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 210000004514 sphincter of oddi Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- FDDDEECHVMSUSB-UHFFFAOYSA-N sulfanilamide Chemical compound NC1=CC=C(S(N)(=O)=O)C=C1 FDDDEECHVMSUSB-UHFFFAOYSA-N 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 125000000565 sulfonamide group Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- DBDCNCCRPKTRSD-UHFFFAOYSA-N thieno[3,2-b]pyridine Chemical compound C1=CC=C2SC=CC2=N1 DBDCNCCRPKTRSD-UHFFFAOYSA-N 0.000 description 1
- 229940125670 thienopyridine Drugs 0.000 description 1
- 239000002175 thienopyridine Substances 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 238000006177 thiolation reaction Methods 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 230000009424 thromboembolic effect Effects 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- ZEWQUBUPAILYHI-UHFFFAOYSA-N trifluoperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 ZEWQUBUPAILYHI-UHFFFAOYSA-N 0.000 description 1
- 229960002324 trifluoperazine Drugs 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000004951 trihalomethoxy group Chemical group 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 230000003966 vascular damage Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000008728 vascular permeability Effects 0.000 description 1
- 230000006442 vascular tone Effects 0.000 description 1
- 230000002227 vasoactive effect Effects 0.000 description 1
- 239000005526 vasoconstrictor agent Substances 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000001631 vena cava inferior Anatomy 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229960004175 xylazine hydrochloride Drugs 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/04—Nitro compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/095—Sulfur, selenium, or tellurium compounds, e.g. thiols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/275—Nitriles; Isonitriles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/28—Compounds containing heavy metals
- A61K31/295—Iron group metal compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4245—Oxadiazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/26—Iron; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/38—Albumins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/49—Urokinase; Tissue plasminogen activator
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/55—Protease inhibitors
- A61K38/556—Angiotensin converting enzyme inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/55—Protease inhibitors
- A61K38/57—Protease inhibitors from animals; from humans
- A61K38/58—Protease inhibitors from animals; from humans from leeches, e.g. hirudin, eglin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/52—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6957—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a device or a kit, e.g. stents or microdevices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L33/00—Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
- A61L33/0005—Use of materials characterised by their function or physical properties
- A61L33/0011—Anticoagulant, e.g. heparin, platelet aggregation inhibitor, fibrinolytic agent, other than enzymes, attached to the substrate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L33/00—Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
- A61L33/0076—Chemical modification of the substrate
- A61L33/0082—Chemical modification of the substrate by reacting with an organic compound other than heparin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/10—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
- A61L2300/114—Nitric oxide, i.e. NO
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
Definitions
- This invention relates to the use of medical devices and to the treatment of damaged vasculature. More particularly, the invention relates to the use of medical devices which are inserted into a patient wherein at least a portion of the device includes a surface which exposes and delivers a form of nitric oxide to vascular surfaces with which it comes in contact. Alternatively the invention relates to the field of preventing the adverse effects which result from medical procedures which involve the use of such a medical device and which include administering a source of nitric oxide to the cite of vasculature contact of such medical devices.
- EDRF endothelium-derived relaxing factor
- nitric oxide limits the proliferation of vascular smooth muscle cells (Garg et al., J. Clin. Invest., 83:1774-1777, 1986). Similarly, in animal models, suppression of platelet-derived mitogens decreases intimal proliferation (Fems et al., Science, 253:1129-1132, 1991).
- endothelium-derived nitric oxide in the control of arterial remodeling after injury is further supported by recent preliminary reports in humans suggesting that systemic NO donors reduce angiographic-restenosis six months after balloon angioplasty (The ACCORD Study Investigators, J. Am. Coll. Cardiol. 23:59A. (Abstr.), 1994).
- Endothelial cells initiate metabolic processes, like the secretion of prostacyclin and endothelium-derived relaxing factor (EDRF), which actively discourage platelet deposition and thrombus formation in vessel walls.
- EDRF endothelium-derived relaxing factor
- No material has been developed that matches the blood-compatible surface of the endothelium.
- artificial surfaces are an ideal setting for platelet deposition (Salzman et al., supra, 1981).
- Exposure of blood to an artificial surface initiates reactions that lead to clotting or platelet adhesion and aggregation. Within seconds of blood contact, the artificial surface becomes coated with a layer of plasma proteins which serves as a new surface to which platelets readily adhere, become activated, and greatly accelerate thrombus formation (Forbes et al., supra, 1978).
- thromboembolism is still the most serious complication following prosthetic heart valve implantation, despite changes in design and materials used.
- the incidence of detectable thromboembolism can be as high as 50%, depending on the valve design and construction (Forbes et al.).
- cardiopulmonary support systems used during cardiac surgery are responsible for many of the undesirable hemostatic consequences of such surgery (Bick, Semin. Thromb. Hemost. 3:59-82, 1976).
- Thrombosis is also a significant problem in the use of prosthetic blood vessels, arteriovenous shunts, and intravenous or intraarterial catheters.
- agents such as aspirin which depress platelet function by inhibiting cyclo-oxygenase, may block platelet aggregation, but they do not prevent the adhesion of platelets to artificial surfaces (Salzman et al., supra, 1981).
- Balloon arterial injury results in endothelial denudation and subsequent regrowth of dysfunctional endothelium (Saville, Analyst, 83:670-672, 1958) that may contribute to the local smooth muscle cell proliferation and extracellular matrix production that result in reocclusion of the arterial lumen.
- a process and product for preventing adverse effects associated with the use of a medical device in a patient wherein at least a portion of the device includes a nitric oxide adduct Such adverse effects include but are not limited to platelet adhesion and/or thrombus formation when the medical device is used in a blood vessel.
- platelet adhesion and subsequent platelet activation may result in the blockage of blood vessels particularly after procedures involving use of a medical device for removing blockages such as those often referred to as the phenomenon of restenosis.
- the medical device can be used elsewhere, such as for example, in patients having cancer of the gastrointestinal tract in the Sphincter of Oddi where indwelling stents (e.g., a Palmaz-Schatz stent, J&J, New Brunswick, N.J.) are placed to maintain patency of the lumen. They are also used in patients having cancer of the esophagus to support the airway opening.
- indwelling stents e.g., a Palmaz-Schatz stent, J&J, New Brunswick, N.J.
- the medical device or instrument of the invention can be, for example, a catheter, prosthetic heart valve, synthetic vessel graft, stent (e.g., Palmaz-Schatz stent), arteriovenous shunt, artificial heart, intubation tubes, airways and the like.
- stent e.g., Palmaz-Schatz stent
- arteriovenous shunt e.g., artificial heart, intubation tubes, airways and the like.
- the device is provided a nitric oxide adduct.
- a nitric oxide adduct for example, (i) all or a portion of the medical device may be coated with a nitric oxide adduct, either as the coating per se or in a coating matrix; (ii) all or a portion of the medical device may be produced from a material which includes a nitric oxide adduct, for example, a polymer which has admixed therewith a nitric oxide adduct or which includes as pendent groups or grafts one or more of such nitric oxide adducts; or (iii) all or a portion of the tissue-contracting surfaces of the medical device may be derivatized with the nitric oxide adduct.
- coatings can be of synthetic or natural matrices, e.g. fibrin or acetate-based polymers, mixtures of polymers or copolymers, respectively. Preferably they are bioresorbable or biodegradable matrices. Such matrices can also provide for metered or sustained release of the nitric oxide adduct.
- the device surfaces can be substituted with or the coating mixture can further include other medicaments, such as anticoagulants and the like.
- nitric oxide adducts are incorporated into the body of a device which is formed of a biodegradable or bioresorbable material.
- a device which is formed of a biodegradable or bioresorbable material.
- the artificial surfaces may be composed of organic materials or a composite of organic and inorganic materials.
- examples of such materials include but are not limited to synthetic polymers or copolymers containing nitric oxide adducts, gold or coated metal surfaces upon which a functionalized monolayer containing the nitric oxide adduct is adsorbed, or synthetic polymeric materials or proteins which are blended with nitric oxide adducts.
- Another principal aspect of the invention relates to a medical device comprising an instrument suitable for introduction into a patient of which at least a portion comprises a nitric oxide adduct.
- a medical device comprising an instrument suitable for introduction into a patient of which at least a portion comprises a nitric oxide adduct.
- all or a portion of the medical device may be coated with a nitric oxide adduct, either as the coating per se or in a coating matrix
- all or a portion of the medical device may be produced from a material which includes a nitric oxide adduct, for example, a polymer which has admixed therewith a nitric oxide adduct or which includes as pendent groups or grafts one or more of such nitric oxide adducts; or (iii) all or a portion of the tissue-contacting surfaces of the medical device may be derivatized with the nitric oxide adduct.
- the medical device or instrument of the invention can be, for example, a catheter, prosthetic heart valve, synthetic vessel graft, stent, arteriovenous shunt, artificial heart, intubation tube and airways and the like.
- Another principal aspect of the invention relates to a method for treating a damaged blood vessel surface or other injured tissue by locally administering a nitric oxide adduct to the site of the damaged blood vessel.
- damage may result from the use of a medical device in an invasive procedure.
- a medical device in an invasive procedure.
- damage can result to the blood vessel.
- Such damage may be treated by use of a nitric oxide adduct.
- such treatment can also be used to prevent and/or alleviate and/or delay reocclusions, for example. restenosis.
- nitric oxide adduct per se or in a pharmaceutically acceptable carrier or excipient which serves as a coating matrix.
- This coating matrix can be of a liquid, gel or semisolid consistency.
- the nitric oxide adduct can be applied in combination with other therapeutic agents, such as antithrombogenic agents.
- the carrier or matrix can be made of or include agents which provide for metered or sustained release of the therapeutic agents.
- Nitric oxide adducts which are preferred for use in this aspect are mono-or polynitrosylated proteins, particularly polynitrosated albumin or polymers or aggregates thereof.
- the albumin is preferably human or bovine, including humanized bovine serum albumin.
- nitric oxide adducts administered in a physiologically effective form is efficacious in diminishing, deterring or preventing vascular damage after or as a result of instrumental intervention, such as angioplasty, catheterization or the introduction of a stent (e.g., Palmaz-Schatz stent) or other indwelling medical device.
- a stent e.g., Palmaz-Schatz stent
- Typical nitric oxide adducts include nitroglycerin, sodium nitroprusside, S-nitroso-proteins, S-nitrosothiols, long carbon-chain lipophilic S-nitrosothiols, S-nitrosodithiols, iron-nitrosyl compounds, thionitrates, thionitrites, sydnonimines, furoxans, organic nitrates, and nitrosated amino acids.
- nitroso-proteins particularly those which do not elicit any significant immune response.
- An example of such a nitroso-protein which does not elicit any significant immune response is a mono- or polynitrosated albumin.
- nitrosylated albumins particularly the polynitrosylated albumins, can be present as polymeric chains or three dimensional aggregates where the polynitrosylated albumin is the monomeric unit.
- the albumin of one monomeric unit can be a functional subunit of full-length native albumin or can be an albumin to which has been attached an additional moiety, such as a polypeptide, which can aid, for example, in localization.
- the aggregates are multiple inter adherent monomeric units which can optionally be linked by disulfide bridges. Additionally devices which have been substituted or coated with nitroso-protein have the unique property that they can be dried and stored.
- An additional particularly unique aspect of the invention is that this contemplates “recharging” the coating that is applied to a device, such as a catheter or other tubing as considered above, by infusing a nitric oxide donor to a previously coated surface.
- a nitric oxide donor such as S-nitroso albumin
- the surface coating can be “recharged” by infusing an NO donor such as nitroprusside. This principal is demonstrated by the experiments reported in Example 2 in which nitroprusside is mixed with albumin engendering subsequent protection against platelet deposition.
- Another aspect of the invention is related to the derivatization of an artificial surface with a nitric oxide adduct for preventing the deposit of platelets and for preventing thrombus formation on the artificial surface.
- the artificial surfaces may be composed of organic materials or a composite of organic and inorganic materials. Examples of such materials include but are not limited to synthetic polymers or copolymers containing nitric oxide adducts, gold or gold coated metal surfaces upon which a functionalized monolayer containing the nitric oxide add It is adsorbed, or synthetic polymeric materials or proteins which are blended with nitric oxide adducts.
- the invention also relates to a method and product for administering a nitric oxide adduct in combination with one or more anti-thrombogenic agents.
- agents include heparin, warfarin, hirudin and its analogs, aspirin, indomethacin, dipyridamole, prostacyclin, prostaglandin E 1 , sulfinpyrazone, phenothiazines (such as chlorpromazine or trifluperazine) RGD (arginine-glycine-aspartic acid) peptide or RGD peptide mimetics, (See Nicholson et al., Thromb. Res., 62:567-578, 1991), agents that block platelet glycoprotein IIb-IIIa receptors (such as C-7E3), ticlopidine or the thienopyridine known as clopidogrel.
- Other therapeutic agents can also be included in the coating or linked to reactive sites in or on the body of the device.
- these include monoclonal antibodies directed towards certain epitopes/ligands such as platelet glycoprotein IIb/IIIa receptor or cell adhesion molecules such as the CD-18 complex of the integrins or PECAM-1; fragments of recombinant human proteins eg, albumin; pegylated proteins; anti-sense molecules; viral vectors designed as vehicles to deliver certain genes or nucleoside targeting drugs.
- FIG. 1A is a synthetic scheme for the preparation of a nitrosothiol incorporated on to the .epsilon.-amino group of a copolymer comprised of poly-L-lactic acid-co-lysine.
- FIG. 1B is a synthetic scheme for the preparation of a nitrosothiol incorporated on to the c-amino group of a copolymer comprised of poly-L-lactic acid-co-L-lysine.
- FIG. 2 is a synthetic scheme for the preparation of a nitrosothiol incorporated onto an amino derivatized self-assembled monolayer (SAMS) adsorbed to a gold surface.
- SAMS amino derivatized self-assembled monolayer
- FIG. 3 is a plot demonstrating ([ 125 I]-labeled S-nitroso-albumin ([ 125 I]-S-NO-BSA) binding to injured rabbit femoral artery as a function of the method of delivery.
- Rabbit femoral arteries were isolated and balloon-injured as described in Example 1 and [ 125 I]-S-NO-BSA applied either directly into the injured artery (local) or injected intraarterially via the opposite femoral artery (systemic).
- [ 125 I]-S-NO-BSA binding was determined by quantification of radioactivity after flow was reestablished for a period of 15 minutes.
- Non-specific [ 125 I]-S-NO-BSA binding was determined from uninjured carotid artery harvested simultaneously with femoral arteries. Data are presented as mean+/ ⁇ SEM per gram of wet tissue weight, and are derived from four animals. *P ⁇ 0.0.029, local vs. systemic delivery and +/+P ⁇ 0.05, systemic injured vs. sham.
- FIG. 4 is a plot demonstrating the effect of polythiolated S-nitroso-albumin (pS-NO-BSA) and polythiolated albumin (pS-BSA) on [ 111 In]-labeled platelet binding to injured rabbit femoral arteries.
- Femoral arteries were isolated and balloon injured as described in Example 1.
- [ 111 In]-labeled platelets were administered intravenously and allowed to circulate after flow was reestablished in the treated arteries.
- [ 111 In]-labeled platelet binding was determined by quantification of radioactivity after flow was re-established for a period of 15 minutes.
- Non-specific [ 111 In]-labeled platelet binding was determined from uninjured carotid artery harvested with femoral arteries. Data are presented as mean+/ ⁇ SEM per gram of wet tissue weight and are derived from six animals. *P ⁇ 0.05, PS-BSA vs. pS-NO-BSA.
- FIGS. 5 A- 5 B are plots demonstrating the effect of polythiolated S-nitroso-albumin (pS-NO-BSA) and polythiolated albumin (pS-BSA) on neointimal proliferation 14 days after balloon injury of rabbit femoral artery.
- Femoral arteries were isolated and balloon injured as described below.
- pS-BSA or pS-NO-BSA were applied in a paired fashion directly into the arterial lumen for 15 minutes and then blood flow was re-established.
- arteries were harvested, perfusion-fixed, stained, and subjected to morphometric analysis of intimal and medial areas. Neointimal proliferation is reported as the absolute neointimal area in FIG.
- FIG. 5A and as a ratio of neointimal/media in FIG. 5B in 4-6 segments from each artery.
- Data are expressed as mean+/ ⁇ SEM and are derived from 15 vessels in the BSA and S-NO-BSA groups, 11 vessels in the PS-BSA group, 7 vessels in the PS-NO-BSA and SHAM groups, and 5 in the SNP group.
- FIGS. 6 A- 6 B are plots demonstrating the relationship between neointimal proliferation and the quantity of displaceable No in preparations of S-nitrosylated albumin.
- Femoral arteries were isolated and balloon injured as described with reference to FIG. 5. Vessels were exposed to different preparations of S-nitrosylated albumin with different displaceable NO contents. After 14 days vessels were harvested and analyzed as described in FIG. 5. Data are expressed as mean+/ ⁇ SEM and are derived from 7-15 animals in each group. P ⁇ 0.001 for trend.
- FIG. 7 is a plot demonstrating the effect of polythiolated S-nitroso-albumin (pS-NO-BSA)- and polythiolated albumin (pS-BSA)-treated vessels on platelet cyclic 5′-3′ guanosine monophosphate (cGMP).
- pS-NO-BSA polythiolated S-nitroso-albumin
- pS-BSA polythiolated albumin
- cGMP platelet cyclic 5′-3′ guanosine monophosphate
- the rings were then immersed in 100 ⁇ l of latelet-rich plasma containing 10 ⁇ M 3-isobutyl-1-methylxanthine and were incubated for 1 minute ex-vivo. An equal volume of ice-cold 10% trichloroacetic acid was added to each aliquot and the sample vortexed. Platelet cGMP assay was then performed as described in “Methods.” Data are expressed as mean+/ ⁇ SEM. *P ⁇ 0.05.
- FIG. 8 is a flow chart illustrating the protocol of Example 4 which measured the effect on balloon-induced injury of pS-NO-BSA or pS-BSA in porcine coronary artery.
- FIG. 9 is a histogram which illustrates the diameter (mm) of the neointimal lumen of 14 normocholesterolemic pigs were subjected to a balloon angioplasty which induced injury of the right coronary artery. Thereafter, they received 1.5 ⁇ M pS-NO-BSA or pS-BSA as a control.
- FIG. 10 is a histogram which illustrates a degree of coronary stenosis observed at four weeks after angioplasty in pigs which received 1.5 ⁇ M pS-NO-BSA or pS-BSA as a control.
- FIG. 11 is a histogram which illustrates the extent of coronary spasm induced distal the site of injury as compared to the pre-existing base line in pigs which received 1.5 ⁇ M pS-NO-BSA or pS-BSA as a control.
- FIG. 12 is a histogram which illustrates the inner-diameter of-the lumen of the right coronary artery of pigs four weeks after they received 1.5 ⁇ M pS-NO-BSA or pS-BSA as a control.
- artificial surface refers to any synthetic material contained in a device or apparatus that is in contact with blood, blood products or components, vasculature, or other tissue.
- platelet adhesion refers to the contact of a platelet with a foreign surface, e.g. collagen, artificial surface or device.
- platelet aggregation refers to the adhesion of one or more platelets to each other. Platelet aggregation is commonly referred to in the context of generalized atherosclerosis, not with respect to platelet adhesion on vasculature damaged as a result of physical insult during a medical procedure.
- restenosis refers to the recurrent narrowing of a blood vessel, usually several months after an injurious insult and as a result of neointimal proliferation.
- passivation refers to the coating of a surface which thereby renders the surface non-reactive.
- reendothelialization refers to the proliferation, migration and spreading of endothelial cells over a surface area which is denuded of endothelial cells, e.g., the surface of a damaged blood vessel.
- platelet activation refers either to the change in conformation (shape) of a cell, expression of cell surface proteins (e.g., the IIb/IIa receptor complex, loss of GPIb surface protein), secretion of platelet derived factors (e.g., serotonin, growth factors).
- cell surface proteins e.g., the IIb/IIa receptor complex, loss of GPIb surface protein
- secretion of platelet derived factors e.g., serotonin, growth factors.
- lower alkyl refers to a branched or straight chain alkyl groups comprising one to ten carbon atoms, including methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, neopentyl and the like.
- alkoxy refers to R 20 O—, wherein R 20 is lower alkyl as defined above.
- Representative examples of alkoxy groups include methoxy, ethoxy, t-butoxy and the like.
- alkoxyalkyl refers to an alkoxy group as previously defined appended to an alkyl group as previously defined.
- alkoxyalkyl include, but are not limited to, methoxymethyl, methoxyethy, isopropoxymethyl and the like.
- amino refers to —NH 2 .
- dialkylamino refers to R 22 R 23 N— wherein R 22 and R 23 are independently selected from lower alkyl, for example dimethylamino, diethylamino, methyl propylamino and the like.
- nitro refers to the group —NO 2 .
- nitroso refers to the group —NO.
- hydroxyl or “hydroxy” as used herein refers to the group —OH.
- cyano refers to the group —CN.
- N,N-dialkylcarbomoyl refers to R 22 R 23 N—C(O)O— wherein R 22 and R 23 are independently selected from lower alkyl, for example dimethylamino, diethylamino, methyl propylamino, and the like.
- N-alkylcarbamoyl refers to R 22 HN—C(O)O— wherein R 22 is selected from lower alkyl, for example methylamino, ethylamino, propylamino, and the like.
- aryl refers to a mono- or bicyclic carbocyclic ring system having one or two aromatic rings including, but not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl, and the like.
- Aryl groups can be unsubstituted or substituted with one, two or three substituents independently selected from lower alkyl, haloalkyl, alkoxy, amino, alkylamino, dialkylamino, hydroxy, halo, and nitro.
- substituted aryl groups include tetrafluorophenyl and pentafluorophenyl.
- arylthio refers to R 24 S— wherein R 24 is selected from aryl.
- alkanoyl refers to R 22 C(O)— wherein R 22 is selected from lower alkyl.
- arylalkyl refers to a lower alkyl radical to which is appended an aryl group.
- Representative arylalkyl groups include benzyl, phenyl, hydroxybenzyl, fluorobenzyl, fluorophenylethyl and the like.
- cycloalkyl refers to an alicyclic group comprising from 3 to 7 carbon atoms including, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
- halogen or “halo” as used herein refers to I, Br, Cl, or F.
- haloalkyl refers to a lower alkyl radical, as defined above, bearing at least one halogen substituent, for example, chloromethyl, fluoroethyl or trifluoromethyl and the like.
- heteroaryl refers to a mono-bicyclic ring system containing one or two aromatic rings and containing at least one nitrogen, oxygen, or sulfur in an aromatic ring.
- Heteroaryl groups can be unsubstituted or substituted with one, two, or three substituents independently selected from lower alkyl, haloalkyl, alkoxy, amino, alkylamino, dialkylamino, hydroxy, halo and nitro.
- heteroaryl groups include not limited to pyridine, pyrazine, pyrimidine, pyridazine, pyrazole, triazole, thiazole, isothiazole, benzothiazole, benzoxazole, thiadiazole, oxazole, pyrrole, imidazole, and isoxazole.
- heterocyclic ring refers to any 3-, 4-, 5-, 6-, or 7-membered nonaromatic ring containing at least one nitrogen atom which is bonded to an atom which is not part of the heterocyclic ring.
- the heterocyclic ring may also contain a one additional hetero atom which may be nitrogen, oxygen, or sulfur.
- Compounds of the invention which have one or more asymmetric carbon atoms may exist as the optically pure enantiomers, pure diastereomers, mixtures of enantiomers, mixtures of diastereomers, racemic mixtures of enantiomers, diastereomeric racemates or mixtures of diastereomeric racemates. It is to be understood that the present invention anticipates and includes within its scope.
- the medical device or instrument may be made, such that at least in those portions of it which come into contact with blood, blood components or products, or vascular tissue, include a nitric oxide adduct.
- the nitric oxide adduct can directly or indirectly be linked to a synthetic material from which all or a portion of the device is formed.
- nylon polyethylene perthalate (Dacron), polytetrafluoroethylene (Gortex).
- the nitric oxide adduct can be incorporated into a natural or synthetic matrix which is then used to coat those same contact surfaces of the device.
- the matrix can be a liquid into which the nitric oxide adduct has been mixed, which is then coated onto the contact surfaces of the medical device or instrument and then allowed to “set”, dry, polymerize or otherwise become solid or semisolid.
- matrix materials include gel-forming materials such as are commonly used including hydrogels and starch-based semi-solid emulsions and dispersions.
- the materials can also be polymers or mixtures of polymers such as polylactic acid/polylysine copolymer.
- the matrix can be a natural or synthetic fibrous matrix which is impregnated with a liquid containing the nitric oxide adducts either before or after being applied to the artificial contact surface.
- natural fibrous matrix materials primarily include filter paper.
- synthetic fibrous matrix materials include three-dimensional lattices of synthetic polymers and copolymers.
- the matrix can also be a material such as nylon or plastic, such as polystyrene, that is directly or indirectly, i.e., through a linking group, derivatized with the nitric oxide adduct.
- the nitric oxide adduct is specifically intended to be delivered locally at the site of contact of the device or instrument with the blood, blood product or component, or vasculature, but need not be physically associated with the device or instrument.
- the nitric oxide adduct can be separately administered in a physiologically available form as a pharmaceutical preparation in a pharmaceutically acceptable carrier, such as are described in more detail below. This can be done by administration during or shortly before the contact or intervention.
- the device is, for example, a catheter, such as a cardiac catheter
- the nitric oxide adduct preparation can be administered by injection into the lumen of the catheter.
- nitric oxide and compounds that release nitric oxide or otherwise directly or indirectly deliver or transfer nitric oxide to a site of its activity, such as on a cell membrane, in vivo.
- nitric oxide encompasses uncharged nitric oxide (NO.) and charged nitric oxide species, particularly including nitrosonium ion (NO + ) and nitroxyl ion (NO ⁇ ).
- the reactive form of nitric oxide can be provided by gaseous nitric oxide. The nitric oxide releasing delivering or transferring.
- nitric oxide adducts encompasses any of such nitric oxide releasing, delivering or transferring compounds, including, for example, S-nitrosothiols, S-nitroso amino acids, S-nitroso-polypeptides, and nitrosoamines. It is contemplated that any or all of these “nitric oxide adducts” can be mono- or polynitrosylated at a variety of naturally susceptible or artificially provided binding sites for nitric oxide.
- S-nitrosothiols are compounds that include at least one —S—NO group.
- Such compounds include S-nitroso-polypeptides (the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); S-nitrosylated amino acids(including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); S-nitrosated sugars, S-nitrosated-modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and an S-nitrosated hydrocarbon where the hydrocarbon can be a branched or unbranched, and saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; S-nitroso hydrocarbons having one or more substituent groups in addition to the S-nitroso group; and heterocyclic compounds.
- One particularly preferred embodiment of this aspect relates to S-nitroso amino acids where the nitroso group is linked to a sulfur group of a sulfur-containing amino acid or derivative thereof.
- such compounds include the following: S-nitroso-N-acetylcysteine, S-nitroso-captopril, S-nitroso-homocysteine, S-nitroso-cysteine and S-nitroso-glutathione.
- Suitable S-nitrosylated proteins include thiol-containing proteins(where the NO group is attached to one or more sulfur group on an amino acid or amino acid derivative thereof) from various functional classes including enzymes, such as tissue-type plasminogen activator(TPA) and cathepsin B; transport proteins, such as lipoproteins, heme proteins such as hemoglobin and serum albumin; and biologically protective proteins, such as the immunoglobulins and the cytokines.
- TPA tissue-type plasminogen activator
- cathepsin B transport proteins, such as lipoproteins, heme proteins such as hemoglobin and serum albumin
- biologically protective proteins such as the immunoglobulins and the cytokines.
- nitrosylated proteins are described in PCT Publ. Applic. No. WO 93/09806, published May 27, 1993. Examples include polynitrosylated albumin where multiple thiol or other nucleophilic centers in the protein are modified.
- S-nitrosothiols include those having the structures: (i) CH 3 (CH 2 ) x SNO, wherein x equals 2 to 20; (ii) HS(CH 2 ) x SNO, wherein x equals 2 to 20; and (iii) ONS(CH 2 ) x Y, wherein x equals 2 to 20 and Y is selected from the group consisting of halo, alkoxy, cyano, carboxamido, cycloalkyl, arylalkoxy, lower alkylsulfinyl, arylthio, alkylamino, dialkylamino, hydroxy, carbamoyl, N-alkylcarbamoyl, N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl.
- S-nitroso-ACE inhibitors S-nitroso-angiotensin converting enzyme inhibitors
- S-nitroso-ACE inhibitors S-nitroso-angiotensin converting enzyme inhibitors
- R is hydroxy, NH 2 , NHR 4 , NR 4 R 5 , or lower alkoxy, wherein R 4 and R 5 are lower alkyl, or aryl, or arylalkyl;
- R 1 is hydrogen, lower alkyl, arylalkyl, amino, guanidino, NHR 6 , NHR 6 R 7 , wherein R 6 and R 7 are methyl or alkanoyl;
- R 2 is hydrogen, hydroxy, C 1 -C 4 alkoxy, phenoxy, or lower alkyl
- R 3 is hydrogen, lower alkyl or arylalkyl
- m is 1 to 3;
- n is 0 to 2.
- S-nitroso-ACE inhibitors include N-acetyl-S-nitroso-D-cysteinyl-L-proline, N-acetyl-S-nitroso-D,L-cysteinyl-L-proline, 1-[4-amino-2-(S-nitroso)mercaptomethyl butanoyl]-L-proline, 1-[2-hexanoyl]-L-proline, 1-[5-guanidino-2-(S-nitroso)mercaptomethyl-pentanoyl]-L-proline, 1-[5-amino-2-(S-nitroso) mercaptomethyl-pentanoyl]-4-hydroxy-L-proline, 1-[5-guanidino-2-(S-nitroso)mercaptomethyl-pentanoyl]-4-hydroxy-L-proline, 1-[2-aminomethyl-3(S-nitroso)-mercaptomethyl-pentanoyl
- S-nitroso-ACE inhibitors include those having structures (2-3):
- X is oxygen or sulfur
- —A 1 , —A 2 — is CH—NH or —C ⁇ N—;
- A is ON—S(R 3 )—CH 2 —CH—C( ⁇ O);
- R is selected from hydrogen, lower alkyl, arylalkyl, and salt forming ion;
- R 4 and R 5 are independently selected from hydrogen, alkyl, lower alkoxy, halo substituted lower alkyl, nitro, and SO 2 NH 2 ;
- Z is —C( ⁇ O)— or —S(O 2 )—
- R 6 is hydogen, lower alkyl, halo substituted lower alkyl, hydroxy substituted lower alkyl, —(CH. 2 ) q —N(lower alkyl) 2 or —(CH 2 ) q —NH 2 and q is one, two, three or four; and
- R 7 is hydrogen, lower alkyl, alkoxy, halogen or hydroxy and g is as defined above.
- the S-nitroso-ACE inhibitors can be prepared by various methods of synthesis.
- Acids which may be used for this purpose include aqueous sulfuric, acetic and hydrochloric acids.
- Thiol precursors are prepared as described in the following: U.S. Pat. No. 4,046,889 (1977); U.S. Pat. Nos. 4,052,511; 4,053,651; 4,113,751, 4,154,840, 4129,571 (1978), and U.S. Pat.
- Another group of such NO adducts are compounds that include at least one —O— NO group.
- Such compounds include O-nitroso-polypeptides (the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); O-nitrosylated amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); O-nitrosated sugars; O-nitrosated-modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and an O-nitrosated hydrocarbon where the hydrocarbon can be a branched or unbranched, saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; O-nitroso hydrocarbons having one or more substituent groups in addition to the O-nitroso group; and heterocyclic compounds.
- NO adducts Another group of such NO adducts is the nitrites which have an —O-NO group wherein R is a protein, polypeptide, amino acid, branched or unbranched and saturated or unsaturated alkyl, aryl or a heterocyclic.
- R is a protein, polypeptide, amino acid, branched or unbranched and saturated or unsaturated alkyl, aryl or a heterocyclic.
- a preferred example is the nitrosylated form of isosorbide.
- Compounds in this group form S-nitrosothiol intermediates in vivo in the recipient human or other animal to be treated and can therefore include any structurally analogous precursor R—O—NO of the S-nitrosothiols described above.
- N-nitrosoamines are compounds that include at least one —N—NO group.
- Such compounds include N-nitroso-polypeptides (the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); N-nitrosylated amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures); N-nitrosated sugars; N-nitrosated-modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and an N-nitrosated hydrocarbon where the hydrocarbon can be a branched or unbranched, and saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; N-nitroso hydrocarbons having one or more substituent groups in addition to the N-nitroso group; and heterocyclic compounds.
- C-nitroso compounds that include at least one —C—NO group.
- Such compounds include C-nitroso-polypeptides (the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); C-nitrosylated amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures); C-nitrosated sugars; C-nitrosated-modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and a C-nitrosated hydrocarbon where the hydrocarbon can be a branched or unbranched, and saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; C-nitroso hydrocarbons having one or more substituent groups in addition to the C-nitroso group; and heterocyclic compounds.
- polypeptides include proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); sugars; modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and a hydrocarbon where the hydrocarbon can be a branched or unbranched, and saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; hydrocarbons having one or more substituent groups; and heterocyclic compounds.
- a preferred example is nitroglycerin.
- R includes polypeptides(the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); sugars; modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and a hydrocarbon where the hydrocarbon can be a branched or unbranched, and saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; hydrocarbons having one or more substituent groups in addition to the A-nitroso group; and heterocyclic compounds.
- polypeptide includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); sugars; modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides
- A is S, O, or N
- n and x are each integers independently selected from 1, 2 and 3
- M is a metal, preferably a transition metal.
- Preferred metals include iron, copper, manganese, cobalt, selenium and lithium.
- N-nitrosylated metal centers such as nitroprusside.
- R includes polypeptides (the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); amino acids(including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); sugars; modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and a hydrocarbon where the hydrocarbon can be a branched or unbranched, and saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; hydrocarbons having one or more substituent groups; and heterocyclic compounds.
- R is preferably a nucleophilic (basic) moiety.
- M+ is a metal cation, such as, for example, a Group I metal cation.
- thionitrates which have the structure R—(S) x —NO wherein x is an integer of at least 2.
- R is as described above for the S-nitrosothiols.
- dithiols wherein x is 2.
- Particularly preferred are those compounds where R is a polypeptide or hydrocarbon and a pair or pairs of thiols are sufficiently structurally proximate, i.e. vicinal, that the pair of thiols will be reduced to a disulfide.
- Those compounds which form disulfide species release nitroxyl ion (NO) and uncharged nitric oxide (NO.).
- Those compounds where the thiol groups are not sufficiently close to form disulfide bridges generally only provide nitric oxide as the NO form not as the uncharged NO. form.
- Coating of a surface of a medical device with the nitric oxide adduct comprises contacting the surface with the adduct so as to cause the surface to be coated with the particular adduct.
- Coating of the artificial surface may be accomplished using the methods described in Example 1, infra, or other standard methods well known to those of ordinary skill in the art.
- coating a surface with nitric oxide adducts can be achieved by bathing the artificial surface, either by itself or within a device, in a solution containing the nitric oxide adduct.
- synthetic nitric oxide adducts may be coated onto an artificial surface by a variety of chemical techniques which are well known in the art.
- Such techniques include attaching the adduct to a nucleophilic center, metal, epoxide, lactone, an alpha- or beta-saturated carbon chain, alkyl halide, carbonyl group, or Schiff base, by way of the free thiol.
- artificial surfaces will vary depending on the nature of the surface, and such characteristics as contour, crystallinity, hydrophobicity, hydrophilicity, capacity for hydrogen bonding, and flexibility of the molecular backbone and polymers. Therefore, using routine methods, one of ordinary skill will be able to customize the coating technique by adjusting such parameters as the amount of adduct, length of treatment, temperature, diluents, and storage conditions, in order to provide optimal coating of each particular type of surface.
- the device or artificial material After the device or artificial material has been coated with the nitric oxide adduct, it will be suitable for its intended use, for example, implantation as a heart valve, insertion as a catheter, or for cardiopulmonary oxygenation or hemodialysis.
- the coated device or artificial surface will be suitable for use in conjunction with an animal, preferably mammals, including humans.
- T is an activated carbonyl-containing substituent selected from a group consisting of a mixed anhydride, a thioester, an acid chloride, an isocyanate, or a chloroformate
- P 1 is a sulfur protecting group
- E and d are defined as above to afford a compound of the formula 15 wherein b, c, E, d, and P 1 are defined as above.
- a variety of sulfur protecting groups which are compatible with this process along with methods for their incorporation and removal are described in T. H. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2nd edition, John Wiley & Sons, New York, 1991.
- the sulfur protecting groups in the compound of the formula 15 are removed to afford the compound of the formula 16 and the thiol moieties are nitrosated to afford a compound of the formula IA using a suitable mild nitrosating agent such as nitrosyl chloride or nitrosonium tetrafluoroborate in an inert organic solvent or mixture of inert solvents such as methylene chloride, chloroform, dimethyforamide (DMF), dimethylsulfoxide (DMSO), ethyl acetate, or acetonitrile.
- a suitable mild nitrosating agent such as nitrosyl chloride or nitrosonium tetrafluoroborate in an inert organic solvent or mixture of inert solvents such as methylene chloride, chloroform, dimethyforamide (DMF), dimethylsulfoxide (DMSO), ethyl acetate, or acetonitrile.
- the nitrosation may be performed in the presence or absence of
- the nitrosation of the compound of the formula 16 may be performed with nitrous acid generated in situ from sodium nitrite and hydrochloric acid in an aqueous or mixed aqueous and organic solvent system to afford a compound of the formula IA.
- the primary amino groups of the compound of the formula 13 wherein b and c are defined as above may be acylated with a compound of the formula 17 wherein Q is halogen, imidazolyl, or trihalomethoxy in a suitable inert solvent or mixture of solvents such as DMSO and methylene chloride to afford a compound of the formula 18.
- the compound of the formula 18 is then reacted with a compound of the formula 19 wherein D and a are as defined above to afford a compound of the formula 20.
- the compound of the formula 20 is then nitrosated to afford a compound of the formula 1B with a suitable mild nitrosating agent such as nitrosyl chloride or nitrosonium tetrafluoroborate in an inert organic solvent or mixture of inert solvents such as methylene chloride, chloroform, dimethyforamide (DMF), dimethylsulfoxide (DMSO), ethyl acetate, or acetonitrile.
- a suitable mild nitrosating agent such as nitrosyl chloride or nitrosonium tetrafluoroborate in an inert organic solvent or mixture of inert solvents such as methylene chloride, chloroform, dimethyforamide (DMF), dimethylsulfoxide (DMSO), ethyl acetate, or acetonitrile.
- the nitrosation may be performed in the presence or absence of an amine base such as pyridine or triethylamine.
- the nitrosation of the compound of the formula 20 may be performed with nitrous acid generated in situ from sodium nitrite and hydrochloric acid in an aqueous or mixed aqueous and organic solvent system to afford a compound of the formula 1B.
- nitric oxide adduct derived from a synthetic polymeric material is the modification of the L-cysteine amino acid residues immobilized to modified surface of poly(ethyleneterephalate) which has been activated by pretreatment with 3-aminopropyltriethoxysilane followed by glutaraldehyde as described by Bui et al., The Analyst, 118:463 (1993).
- the cysteine thiols may be nitrosated with a suitable nitrosating agent such as nitrous acid generated in situ from sodium nitrite and hydrochloric acid in an aqueous or mixed aqueous and organic solvent system or, alternatively, with nitric oxide gas or nitrosyl chloride in a suitable inert solvent to afford the polymer containing the nitric oxide adduct.
- a suitable nitrosating agent such as nitrous acid generated in situ from sodium nitrite and hydrochloric acid in an aqueous or mixed aqueous and organic solvent system or, alternatively, with nitric oxide gas or nitrosyl chloride in a suitable inert solvent to afford the polymer containing the nitric oxide adduct.
- a nitric oxide adduct pertains to the derivatization of a gold or gold coated surface with a self-assembled monolayer (SAMS) of an omega-substituted alkanethiolates or mixture of omega-substituted alkanethiolates or omega-substituted alkanethiolates and unsubstituted alkanethiolates.
- SAMS self-assembled monolayer
- Functionalized surfaces of SAMS terminating in carboxylic acids [Collison et al. Langmuir, 8:1247, 1992,; Leggett et al., Langmuir, 9:2356, 1993] or amines [Whitesell et al., Angew. Chem. Int. Ed. Engl., 33:871, 1994] have previously been prepared.
- These functionalized SAMS may be further derivatized with organic groups containing one or more nitric oxide adducts as depicted in FIG. 22.
- the amine groups of the SAMS surface composed of the compound of the formula 23 wherein e is an integer from 2 to 20 may be reacted with a compound of the formula 14 wherein T, E, d and P 1 are defined as above to afford a SAMS surface composed of a compound of the formula 24.
- the free thiol groups are nitrosated to afford a compound of the formula IIB using a suitable mild nitrosating agent such as nitrosyl chloride or nitrosonium tetrafluoroborate in an inert organic solvent or mixture of inert solvents such as methylene chloride, chloroform, dimethyformamide (DMF), dimethylsulfoxide (DMSO), ethyl acetate, or acetonitrile.
- a suitable mild nitrosating agent such as nitrosyl chloride or nitrosonium tetrafluoroborate in an inert organic solvent or mixture of inert solvents such as methylene chloride, chloroform, dimethyformamide (DMF), dimethylsulfoxide (DMSO), ethyl acetate, or acetonitrile.
- the nitrosation may be performed in the presence or absence of an amine base such as pyridine or triethylamine.
- nitrosation of the free thiol groups may be performed with nitrous acid generated in situ from sodium nitrite and hydrochloric acid in an aqueous or mixed aqueous and organic solvent system to afford a compound of the formula II.
- nitric oxide adducts are polynitrosylated peptides and proteins. Synthesis of polynitrosated peptides and proteins can be achieved in several ways. 1) Mono S-nitrosylation is best achieved by incubating peptides and proteins (in deionized water in an equimolar concentration of acidified nitrite (final concentration 0.5 N HCl) for a period of 1-30 minutes. The incubation time depends on the efficiency of nitrosation and the tolerance of the protein. Nitrosation can also be achieved with a variety of other nitrosating agents including compounds such as S-nitroso-cysteine, S-nitroso-glutathione and related alkyl nitrites. These compounds are to be used when the peptide or protein does not tolerate harsh acidic conditions, e.g. human hemoglobin.
- the peptide or protein is reduced in 100-1000 molar excess dithiothreitol for 30-60 minutes. This exposes intramolecular thiols. The peptide or protein is separated from dithiothreitol by gel filtration (G-25). The protein is then exposed to increasing concentrations of acidified nitrite (0.5 N HCl) in relative excess over protein. Complementary measurements of Saville indicate when S-nitrosation is complete. For example, with albumin, this procedure leads to approximately 20 intramolecular S—NO derivatives.
- the protein can be treated with thiolating agent such as homocysteine thiolactone. This tends to add homocystine groups to exposed amine residues in proteins.
- the derivatized protein can then be S-nitrosated by exposure to acidified nitrite. Exposure to increasing concentrations of nitrite with complementary measurements of Saville can be used to ascertain when S-nitrosation is maximal.
- thiol groups can be quantified on the protein using standard methodologies and then the protein treated with a stoichiometric concentration of acidified nitrite (0.5 N HCl).
- nucleophilic functional groups other than thiol
- polynitrosation of nucleophilic functional groups can be achieved when proteins are incubated with excess acidified nitrite.
- the order of protein reactivity is tyrosine followed by amines on residues such as trytophan. Amide linkages are probably less reactive.
- NO groups can be added to proteins by simply incubating the protein with high excess acidified nitrite. For example, exposure of albumin to 1000 fold excess nitrite leads to approximately 200 moles of NO/mole protein.
- nitrosation can be achieved by exposure to authentic nitric oxide gas under anaerobic conditions.
- nitrosation proteins should be incubated in at least 5 atmospheres of NO gas for several hours. Incubation time is protein specific. This can lead to NO attachment to a variety of protein bases. Best characterized reactions involve primary amines. This mechanism provides a pathway to sustain N-nitrosation reactions without deamination. Specifically, exposure to acidified nitrite would otherwise lead to deamination of primary amines whereas this method leads to formation of N-hydroxynitrosamines with potent bioactivity. Similar substitutions at other basic centers also occur.
- the method of the invention provides significant advantages over current attempts to reduce platelet deposition on artificial surfaces.
- a surface can be coated with nitric oxide adducts using simple, effective methods.
- the coated surfaces may be used immediately, or stored and used at a later date.
- this method eliminates the need for systemic administration of anti-thrombogenic agents which are often ineffective, have serious adverse side effects, or are unsuitable for use in certain patients.
- the inhibition of platelet deposition provided by the invention is completely and immediately reversible, a need which is especially important in patients with cardiac or vascular disease.
- the invention is also useful in preventing serious vascular complications associated with the use of medical devices. These complications occur as a result of increased platelet deposition, activation, and thrombus formation or consumption of platelets and coagulation proteins. Such complications are well known to those of ordinary skill in the medical arts and include myocardial infarction, pulmonary thromboembolism, cerebral thromboembolism, thrombophlebitis, thrombocytopenia, bleeding disorders and any additional complication which occurs either directly or indirectly as a result of the foregoing disorders.
- the invention relates to a method for preventing the deposition of platelets on a surface comprising contacting the surface with a nitric oxide adduct in combination with at least one additional anti-thrombogenic agent.
- anti-thrombogenic agent refers to any compound which alters platelet function, or interferes with other mechanisms involved in blood clotting, such as fibrin formation. Examples of such compounds include, but are not limited to, heparin, warfarin, aspirin, indomethacin, dipyridamole prostacyclin, prostaglandin-E 1 or sulfinpyrazone.
- This method for coating a surface with a nitric oxide adduct in combination with another anti-thrombogenic agent will be accomplished using the methods described previously for coating a surface with a nitric oxide adduct alone, and are suitable for any and all types of natural tissue and artificial surfaces.
- the appropriate coating concentration of the other anti-thrombogenic compound is determined using routine methods similar to those described previously.
- the coated surfaces may be used in the same manner described for those surfaces coated with nitric oxide adducts alone.
- a surface with a nitric oxide adduct in combination with at least one other anti-thrombogenic agent By coating a surface with a nitric oxide adduct in combination with at least one other anti-thrombogenic agent, one will be able to not only prevent-platelet deposition, which is the initial event in thrombus formation, but also to limit fibrin formation directly, by inhibiting factor VIII, and platelet granule secretion, and indirectly, by inhibiting plasminogen activator inhibitor (PAI-1) release from platelets.
- PAI-1 plasminogen activator inhibitor
- the invention relates to a method for preventing thrombus formation on a damaged vascular surface in an animal, comprising applying a nitric oxide adduct directly to the damaged surface.
- damaged vascular surface refers to any portion of the interior surface of a blood vessel in which damage to the endothelium or subendothelium, narrowing or stenosis of the vessel has occurred.
- the invention is especially suitable for use in coronary arteries, but is beneficial in other damaged arteries and also in veins including particularly those used in arterial or venous bypass replacement where they are susceptible to damage from the typically higher arterial pressures to which they are unaccustomed.
- the nitric oxide adduct is applied directly to the damaged vascular surface by using an intraarterial or intravenous catheter, suitable for delivery of the adduct to the desired location.
- the location of damaged arterial surfaces is determined by conventional diagnostic methods, such as X-ray angiography, performed using routine and well-known methods available to those of skill within the medical arts.
- administration of the nitric oxide adduct using an intraarterial or intravenous catheter is performed using routine methods well known to those in the art.
- the preparation is delivered to the site of angioplasty through the same catheter used for the primary procedure, usually introduced to the carotid or coronary artery at the time of angioplasty balloon inflation.
- the compounds of this invention can be employed in combination with conventional excipients, i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for parenteral application which do not deleteriously react with the active compounds.
- suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohol, vegetable oils, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, petroethral fatty acid esters, hydroxymethylcellulose, polyvinylpyrrolidone, etc.
- the pharmaceutical preparations can be sterilized and if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds.
- auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds.
- auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds.
- particularly suitable vehicles consist of solutions
- the term “therapeutically effective amount,” for the purposes of the invention, refers to the amount of the nitric oxide adduct which is effective to achieve its intended purpose. While individual needs vary, determination of optimal ranges for effective amounts of each nitric oxide adduct is within the skill of the art. Generally, the dosage required to provide an effective amount of the composition, and which can be adjusted by one of ordinary skill in the art will vary, depending on the age, health physical condition, sex, weight, extent of disease of the recipient, frequency of treatment and the nature and scope of the desired effect.
- the preparations which are suitable for treatment of artificial surfaces, such as of a medical device, and endothelium are used in concentrations of about 500-700 mM of adduct delivered by drip infusion sterile in a physiological liquid over 2-3 minute periods in amounts of 2-3 ml per 25 kg body weight.
- One of the best ways to demonstrate that an artificial surface exposed to blood has been made less thrombogenic is to measure or quantitate the number of blood platelets that collect on that surface.
- This method requires the removal of platelets from an animal or human subject.
- the platelets are labeled with a radioactive material such as Indium 111 , which emits gamma rays, detectable by a gamma counter placed 3 to 6 inches away from the source of radioactive platelets.
- the labeled platelets are either reinjected into the animal or human in vivo, or contacted with the artificial surface in viva. Platelets will adhere to artificial surfaces or acutely damaged arterial surfaces.
- the number of normal platelets and radioactive platelets which stick to the surface is an indication of the thrombogenicity of the surface.
- nitric oxide adducts decrease the thrombogenicity of an artificial surface or a damaged natural arterial surface.
- the following experiments demonstrate that coating artificial surfaces, such as synthetic vascular graft material, with a nitric oxide adduct, decreases platelet deposition and makes the surface significantly less thrombogenic than previously used agents such as albumin alone.
- the experiments demonstrate that polyvinyl chloride (PVC) tubing, which is used extensively in artificial kidney and heart-lung machines, can be coated with an nitric oxide adduct such as S-nitroso-albumin, to make it less thrombogenic.
- PVC polyvinyl chloride
- Indium 111 -labeled platelets are very useful in detecting platelet accumulation on vascular grafts. Therefore, Indium 111 -labeled platelets were prepared according to standard methods described in Heyns “Method for Labeling Platelets with In 111 -oxine”. In: Platelet Kinetics and, Imaging Vol. II, Editors Heyns et al., CRC Press, 1985; and Sheffel et al., J. Nucl. Med., 20: 524-531, 1979, and injected prior to insertion of the grafts. Following graft insertion, the dogs were observed for two hours, then both grafts were removed, rinsed, and weighed. The grafts were then placed in a Nal gamma well counter and counted for four minutes.
- the three grafts coated with BSA alone had an average of 654,000+/ ⁇ 89,000 counts/4 minutes.
- the three grafts coated with S-nitroso-BSA had an average of 278,000+/57,000 counts/4 minutes (P ⁇ 0.005).
- the average percent increase in weight for the three grafts due to thrombus formation on the luminal surface with BSA alone, was 410%+/ ⁇ 97%, while the percent increase in weight for the three grafts incubated with nitroso-BSA was 196%+/ ⁇ 71% (P ⁇ 0.005).
- PVC polyvinyl chloride
- nitric oxide-donating compounds such as sodium nitroprusside and S-nitroso-BSA
- sodium nitroprusside and S-nitroso-BSA can be applied directly to damaged arterial or venous surfaces (blood vessels) to inhibit platelet deposition and thrombus formation.
- the inventors developed an animal model which allows them to mimic a patient with narrowing of the coronary or other arteries and arterial damage caused by atherosclerosis or after angioplasty, atherectomy or other procedure.
- the model uses anesthetized dogs with open chest and exposed heart. Briefly, an electromagnetic flow probe is placed on the coronary artery to continuously measure blood flow through the artery. Then the arterial wall is damaged (intima and media) by clamping the artery several times with a surgical clamp. In the area of arterial damage, a plastic encircling cylinder is placed around the outside of the coronary artery to produce a 70% narrowing or reduction in the lumen gradually diameter. This mimics atherosclerotic narrowing of arteries in patients.
- CFRs cyclic flow reductions
- CFRs represent an interaction between platelets and the clotting system, and damaged endothelial cells in narrowed or stenosed arterial walls.
- CFRs occur in human arteries which are narrowed by atherosclerosis, and the resulting periodic clot formation can cause chest pain or leg pain in patients with atherosclerotic narrowing of coronary or leg arteries.
- the CFRs due to platelet-mediated clotting can be exacerbated by further damage to the arterial wall.
- nitric oxide-donating compounds such as sodium nitroprusside and S-nitroso-BSA can be applied directly to damaged arterial surfaces (blood vessels) to inhibit platelet deposition and thrombus formation.
- BSA-NO nitric oxide-bovine serum albumin adduct
- Citrate-phosphate-dextrose anticoagulant solution contained 10 mM citric acid, 90 mM trisodium citrate, 15 mM NaH 2 PO 4 H 2 O, and 142 mM dextrose, pH 7.35.
- Tris-buffered saline consisted of 10 mM tris[hydroxymethyl]aminoethane, pH 7.4, and 150 mM NaCl.
- Acid-citrate-dextrose contained 100 mM trisodium citrate and 142 mM dextrose, pH 6.5.
- Phosphate-buffered saline contained 10 mM sodium phosphate and 150 mM NaCl, pH 7.4.
- S-NO-BSA was synthesized as previously described. Fatty acid-free bovine serum albumin (200 mg/ml) was exposed to a 1.4 molar-fold excess of NaNO 2 in 0.5 N HCl for 30 minutes at room temperature and neutralized with an equal volume of TBS and 0.5 N NaOH. Thiolated bovine serum albumin (pS-BSA) was prepared after Benesch and Benesch. Briefly, essential fatty acid-free bovine serum albumin (50 mg/ml) was dissolved in water with N-acetyl-homocysteine thiolactone (35 mM) and 0.05% polyethylenesorbitan monolaurate.
- pS-BSA Thiolated bovine serum albumin
- [0174] Preparation of [ 125 I]-labeled S-NO-BSA and [ 111 In] labeled platelets BSA (0.1 mg/ml) was combined with two IODO-BEADS and 0.1 mCi of Na[ 125 I]. The solution was incubated for 45 minutes and unincorporated Na[ 125 I] was removed by gel filtration with Sephadex G25 equilibrated with TBS containing 0.1 mg/ml BSA. [ 125 I] BSA had a specific activity of 5.7 ⁇ 10 6 cpm/ ⁇ g and was S-nitrosylated as described for unlabelled BSA to achieve a final specific activity of 4 ⁇ 10 4 cpm/mg BSA. [ 111 In]-labeling of platelets was performed after the method of Wistow and colleagues.
- IM ketamine hydrochloride Fort Dodge Laboratories, Fort Dodge, Iowa
- IM acepromazine maleate Aveco Company, Inc., Fort Dodge, Iowa
- Additional doses of ketamine hydrochloride were administered as necessary to maintain anesthesia.
- 100,000 U penicillin G (Apothecon of Bristol-Myers Squibb, Princeton, N.J.), was administered IM perioperatively.
- the skin over the femoral arteries was next infiltrated with 1% lidocaine (Astra Pharmaceuticals, Inc., Westborough, Mass.) and the common femoral arteries were exposed from the inguinal ligament to the superficial femoral artery.
- a 20 g angiocath was then inserted in the arteriotomy and 1 ml of 25.8 mg/ml PS-NO-BSA or 49.2 mg/ml S-NO-BSA was administered over 15 minutes.
- the contralateral femoral artery was prepared identically and an appropriate control (25.8 mg/ml pS-BSA, 49.2 mg/ml BSA or 0.66 mg/ml sodium nitroprusside) was administered.
- an appropriate control 25.8 mg/ml pS-BSA, 49.2 mg/ml BSA or 0.66 mg/ml sodium nitroprusside
- 0.5 ml of [ 125 I]-labeled nitrosylated albumin or control was administered. Following administration of the agent, the superficial femoral artery was ligated and flow reestablished.
- Sham-operated animals underwent surgical exposure and sidebranch ligation, but no balloon injury was performed or local delivery administered.
- the area of balloon injury was marked by surgical staples in the adjacent muscle fascia.
- the incision was closed with subcuticular absorbable suture and the animals allowed to recover.
- blood was allowed to circulate through the treated areas for 15 minutes prior to vessel harvest.
- a distant control vessel, the right carotid artery was isolated and harvested without any other manipulation.
- cGMP analysis Whole blood was obtained from fasting human volunteers and platelet-rich plasma (PRP) was prepared by centrifugation. Platelet counts were determined using a Coulter counter model ZM (Coulter Diagnostics, Hileah, Fla.). After balloon injury and treatment with pS-NO-BSA or PS-BSA, arterial segments were harvested and 2-mm segments were incubated with 100 ⁇ l of PRP containing 10 ⁇ M isobutylmethylxanthine. After 1 minute, an equal volume of ice-cold 10% trichloroacetic acid was added to each aliquot and the sample vortexed. Enzyme-linked immunoassay of cGMP was then performed (Cayman Chemical Company, Ann Arbor, Mich.). Separate 2 mm vessel segments were also assayed for tissue cGMP after treatment with ice-cold 10% trichloroacetic acid and sonication (Heat Systems-Utrasonics, Inc., Plainview, N.Y.).
- Tissue processing and analysis On the 14th postoperative day, animals were euthanized with 120 mg/kg intravenous sodium pentobarbital (Anpro Pharmaceuticals, Arcadia, Calif.), and the abdominal aorta and inferior vena cava interrupted by silk ties. A 7F plastic cannula was inserted into the abdominal aorta and the vessels perfused clear with saline followed by fixation at 100 mm Hg pressure with 10% buffered formalin. The vessels were stored in 10% buffered formalin and the samples paraffin-embedded and microtome-sectioned. Six sections were made along the length of each injured segment of vessel and stained with Verhoeff s stain for elastic tissue.
- the areas within the lumen, internal elastic membrane, and external elastic membrane were measured by a blinded observer using computerized digital planimetry (Zeiss, West Germany). The areas within the lumen, internal elastic membrane and external elastic membrane were analyzed. Sections with obstructive thrombus impairing analysis were discarded.
- vessels were perfusion-fixed with 10% buffered formalin seven days after injury and processed for analysis of proliferating cells within 12 hours as described above. Sections were stained for proliferating cell nuclear antigen and adjacent sections were stained with hematoxylin and eosin. Five representative sections from each segment were examined. Total nuclei were counted from the hematoxylin and eosin slides and percent PCNA positive cells were defined as the number of PCUA-positive nuclei divided by the total number of nuclei multiplied by 100.
- [0179] [ 111 In]-labeled platelet studies Animals were prepared and treated with pS-NO-BSA or pS-BSA as described above. Five minutes prior to the release of the vascular clamps, autologous [ 111 In]-labeled platelets were infused via the femoral vein, and the blood was allowed to recirculate for 15 minutes prior to harvest. Platelet adhesion was quantified with a gamma counter (Capintec Instruments, Inc., Pittsburgh, Pa.) and normalized to tissue wet weight.
- a gamma counter Capintec Instruments, Inc., Pittsburgh, Pa.
- Local delivery consisted of 1 ml of either S-nitrosylated protein or control solution instilled in the lumen of the femoral artery.
- pS-NO-BSA effect on platelet binding to injured vessel Since platelet adhesion to the injured arterial surface is important in the proliferative response to injury, we investigated the effects of pS-NO-BSA on platelet deposition after balloon injury, the results of which are shown in FIG. 4.
- S-NO-BSA and pS-NO-BSA effects on neointimal proliferation were evaluated by comparing absolute neointimal area and neointima/media ratios, and are shown in FIGS. 5A and 5B, respectively.
- the administration of S-NO-BSA (containing 0.3 ⁇ 0.1 moles displaceable NO per mole albumin) did not significantly reduce neointimal area (2.54+/ ⁇ 0.33 ⁇ 10 5 ⁇ m 2 vs.
- pS-NO-BSA containing 3.2 ⁇ 1.3 moles displaceable NO per mole albumin
- displaceable NO content did reduce neointimal area and neointima/media ratio by 81% (2.24+/ ⁇ 0.328 ⁇ 10 5 ⁇ m 2 vs.
- Displaceable NO effect on neointimal proliferation Since S-NO-BSA exhibited a trend toward inhibition and pS-NO-BSA reduced neointimal proliferation, we examined the relationship between the amount of displaceable NO and the extent of neointimal response following vascular injury, and the results are presented in FIGS. 6A and 6B. There was a significant inverse relationship between displaceable NO and neointimal proliferation as quantified by absolute neointimal area (P ⁇ 0.001) (FIG. 6A) and the neointima/media area ratio (P ⁇ 0.001) (FIG. 6B).
- pS-NO-BSA treated vessel effect on platelet cGMP and vessel cGMP NO inhibits platelets and relaxes smooth muscle cells through a cGMP-mediated mechanism.
- NO inhibits platelets and relaxes smooth muscle cells through a cGMP-mediated mechanism.
- the endothelium is essential for vascular integrity, control of thrombosis, (Clowes et al., Lab. Invest. 49:327-333, 1983); (Rees et al., Proc. Natl. Acad. Sci. USA. 86:3375-3378, 1989) and the regulation of intimal growth (Kubes et al., Proc. Nati. Acad. Sci. USA, 88:4651-4655, 1991).
- the endothelium serves these functions by the production of locally active effector molecules including EDRF, a compound that has been identified as NO or a closely related molecule.
- EDRF is responsible, in part, for many biologic actions via the activation of guanylyl cyclase, including relaxation of vascular smooth muscle, (Myers et al., Nature (Lond.), 345:161-163, 1990); (Kubes and Granger, Am. J. Physiol. 262:H611-H615, 1993) inhibition of platelets, (Radomski et al., Br. J Pharmacol, 92:181-187, 1987) control of leukocyte adhesion to the subendothelium, (Reidy, Lab.
- L-arginine a precursor of endothelium-derived nitric oxide
- intimal hyperplasia in rabbit thoracic aorta (Cayatte et al., Arterioscler. Thromb., 14:753-9, 1994) and the rat carotid artery (von der Leven et al., Clin. Res., 42: 180A. (Abstr.), 1994).
- administration of an inhibitor of NO synthase, N G -nitro-L-arginine methyl ester accelerated neointimal formation in the setting of balloon injury (Taubman, wall injury., Thromb. Haemost., 70:180-183, 1993).
- pS-NO-BSA could also exert its effect by modulating leukocytes though downregulated expression of either monocyte chemoattractant protein-I (Hanke et al., Circ. Res., 67:651-659, 1990) or adhesion molecules (Lefer et al., Circulation, 88:1-565. (Abstr.), 1993).
- monocyte chemoattractant protein-I Hakocyte chemoattractant protein-I
- adhesion molecules Lefer et al., Circulation, 88:1-565. (Abstr.), 1993.
- Pigs were subjected to coronary balloon-injury using standard methods, in accordance with the protocol illustrated in FIG. 8.
- a perforated drug delivery balloon catheter was used at the time of balloon injury for infusion of polythiolated, polynitrosated albumin and with albumin control, each of which were infused at a concentration of 1.5 ⁇ M for a period of 15 minutes.
- the balloon of the catheter was then deflated and the catheter was removed. Thereafter, another angiogram was performed to determine, at 30 minutes after injury, the degree of spasm. Then all catheters were removed and the incision sites were repaired. The animals were awakened and maintained with normal chow diets over the next four weeks.
- the animals were again sedated, underwent coronary angiography to determine coronary stenoses at the site of angioplasty, after which they were euthanized by an overdose of pentobarbital.
- Their coronary arteries perfusion fixed with 100 mm Hg of perfusion pressure. They were fixed with formalin, harvested and sectioned for quantitative morphometric assessment of the lumen diameter, the neointimal dimension and cross-section, as well as the neointimal area. The arteries were stained with hematoxylin and eosin. The neointima to lumen diameter ratio was determined and is illustrated by comparison in FIG. 9.
- FIG. 9 is a histogram which illustrates the diameter (mm) of the neointimal lumen of 14 normocholesterolemic pigs which were subjected to a balloon angioplasty which induced injury of the right coronary artery. Thereafter, they received 1.5 ⁇ M pS-NO-BSA or pS-BSA as a control.
- FIG. 10 is a histogram which illustrates a degree of coronary stenosis observed at four weeks after angioplasty in pigs which received 1.5 ⁇ M pS-NO-BSA or pS-BSA as a control.
- FIG. 11 is a histogram which illustrates the extent of coronary spasm induced distal the site of injury as compared to the pre-existing base line in pigs which received 1.5 ⁇ M pS-NO-BSA or pS-BSA as a control.
- FIG. 12 is a histogram which illustrates the inner-diameter of the lumen of the right coronary artery of pigs four weeks after they received 1.5 ⁇ M pS-NO-BSA or pS-BSA as a control.
- Palmaz-Schatz stents were dip-coated in 800-1000 ⁇ M SNO-BSA three times for 10 minutes followed by 10 minutes of air drying time. Then, one week later, three coated stents were immersed in platelet rich plasma (PRP) for 2 minutes. A control uncoated stent was also immersed in another aliquot of the same PRP.
- PRP platelet rich plasma
- a coated and an uncoated stent were placed in the carotid arteries of pigs, one in each carotid artery. Then Indium 111 labeled platelets were circulated for four hours. At the end of the four hours, the arteries containing the stents were removed and placed in a Gamma counter well. The counts on stents indicate the degree of platelet deposition on each stent. The data is shown in Table 2.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biomedical Technology (AREA)
- Inorganic Chemistry (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Hematology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Materials Engineering (AREA)
- Vascular Medicine (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Emergency Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Diabetes (AREA)
- Marine Sciences & Fisheries (AREA)
- Dermatology (AREA)
- Composite Materials (AREA)
- Transplantation (AREA)
Abstract
A method for preventing adverse effects associated with the use of a medical device in a patient by introducing into the patient a device of which at least a portion includes a prophylactic or therapeutic amount of a nitric oxide adduct. The nitric oxide adduct can be present in a matrix coating on a surface of the medical device; can be coated per se on a surface of the medical device; can be directly or indirectly bound to reactive sites on a surface of the medical device; or at least a portion of the medical device can be formed of a material, such as a polymer, which includes the nitric oxide adduct. Also disclosed is a method for preventing adverse effects associated with the use of a medical device in a patient by introducing the device during a medical procedure and before or during said procedure locally administering a nitric oxide adduct to the site of contact of said device with any internal tissue.
Description
- This application is a continuation of U.S. application Ser. No. 09/621,610 filed Jul. 21, 2000, issued as U.S. Pat. No. 6,471,978, which is a continuation of U.S. application Ser. No. 09/433,550 filed Nov. 4, 1999, issued as U.S. Pat. No. 6,174,539, which is a continuation of U.S. application Ser. No. 08/460,465 filed Jun. 2, 1995, issued as U.S. Pat. No. 6,087,479, which is a continuation-in-part of U.S. application Ser. No. 08/123,331 filed Sep. 17, 1993, abandoned. This application is also related to U.S. Pat. Nos. 6,255,277 and 6,352,709.
- This invention relates to the use of medical devices and to the treatment of damaged vasculature. More particularly, the invention relates to the use of medical devices which are inserted into a patient wherein at least a portion of the device includes a surface which exposes and delivers a form of nitric oxide to vascular surfaces with which it comes in contact. Alternatively the invention relates to the field of preventing the adverse effects which result from medical procedures which involve the use of such a medical device and which include administering a source of nitric oxide to the cite of vasculature contact of such medical devices.
- The vascular endothelium participates in many homeostatic mechanisms important for the regulation of vascular tone and the prevention of thrombosis. A primary mediator of these functions is endothelium-derived relaxing factor (EDRF). First described in 1980 by Furchgott and Zawadzki (Furchgott and Zawadzki, Nature (Lond.). 288:373-376, 1980) EDRF is either nitric oxide (Moncada et al., Pharmacol Rev. 43:109-142, 1991.) (NO) or a closely related No-containing molecule (Myers et al., Nature (Lond.), 345:161-163, 1990).
- Removal of the endothelium is a potent stimulus for neointimal proliferation, a common mechanism underlying the restenosis of atherosclerotic vessels after balloon angioplasty. (Liu et al., Circulation, 79:1374-1387, 1989); (Fems et al., Science, 253:1129-1132, 1991). Nitric oxide dilates blood vessels (Vallance et al., Lancet, 2:997-1000, 1989) inhibits platelet activation and adhesion (Radomski et al., Br. J Pharmacol, 92:181-187, 1987) and, in vitro, nitric oxide limits the proliferation of vascular smooth muscle cells (Garg et al., J. Clin. Invest., 83:1774-1777, 1986). Similarly, in animal models, suppression of platelet-derived mitogens decreases intimal proliferation (Fems et al., Science, 253:1129-1132, 1991). The potential importance of endothelium-derived nitric oxide in the control of arterial remodeling after injury is further supported by recent preliminary reports in humans suggesting that systemic NO donors reduce angiographic-restenosis six months after balloon angioplasty (The ACCORD Study Investigators, J. Am. Coll. Cardiol. 23:59A. (Abstr.), 1994).
- Biologic thiols react readily with NO (probably as N 2O3 or NO) under physiologic conditions to form stable, biologically active S-nitrosothiol species (Stamler et al., Proc. Natl. Acad. Sci. U S A., 89:444-448, 1992). S-nitrosothiols exhibit EDRF-like activity in vitro and in vivo, including vasodilation (Myers et al., Nature (Lond.), 345:161-163, 1990) and platelet inhibition via a cyclic 3′,5′-guanosine monophosphate (cGMP)-dependent mechanism (Loscalzo, J. Clin. Invest., 76:703-708, 1985); (Keaney et al., J. Clin. Invest., 91:1582-1589, 1993).
- Over the past two decades, much research effort has been directed towards the development of medical devices and machines that are used in a wide variety of clinical settings to maintain the vital physiological functions of a patient. For example, such devices as catheters, prosthetic heart valves, arteriovenous shunts and stents are used extensively in the treatment of cardiac and other diseases.
- However, platelet deposition on artificial surfaces severely limits the clinical usefulness of such devices. Forbes et al., Brit. Med. Bull. 34(2):201-207, 1978; Sheppeck et al., Blood, 78(3):673-680, 1991. For example, exposure of blood to artificial surfaces frequently leads to serious thromboembolic complications in patients with artificial heart valves, synthetic grafts and other prosthetic devices, and in patients undergoing external circulation, including cardiopulmonary bypass and hemodialysis. Salzman, Phil. Trans. R. Soc. Lond., B294:389-398, 1981.
- The normal endothelium which lines blood vessels is uniquely and completely compatible with blood. Endothelial cells initiate metabolic processes, like the secretion of prostacyclin and endothelium-derived relaxing factor (EDRF), which actively discourage platelet deposition and thrombus formation in vessel walls. No material has been developed that matches the blood-compatible surface of the endothelium. In fact, in the presence of blood and plasma proteins; artificial surfaces are an ideal setting for platelet deposition (Salzman et al., supra, 1981). Exposure of blood to an artificial surface initiates reactions that lead to clotting or platelet adhesion and aggregation. Within seconds of blood contact, the artificial surface becomes coated with a layer of plasma proteins which serves as a new surface to which platelets readily adhere, become activated, and greatly accelerate thrombus formation (Forbes et al., supra, 1978).
- This creates problems in the use of artificial materials at the microvascular level, where the ratio of vessel surface area to blood volume is high (Sheppeck et al., supra). For example, thromboembolism is still the most serious complication following prosthetic heart valve implantation, despite changes in design and materials used. In fact, the incidence of detectable thromboembolism can be as high as 50%, depending on the valve design and construction (Forbes et al.). Further, cardiopulmonary support systems used during cardiac surgery are responsible for many of the undesirable hemostatic consequences of such surgery (Bick, Semin. Thromb. Hemost. 3:59-82, 1976). Thrombosis is also a significant problem in the use of prosthetic blood vessels, arteriovenous shunts, and intravenous or intraarterial catheters.
- Conventional methods for preventing thrombus formation on artificial surfaces have a limited effect on the interaction between blood and artificial surfaces. For example, in cardiopulmonary bypass and hemodialysis heparin has little effect, and the only platelet reactions inhibited by anticoagulants are those induced by thrombin. In fact, it seems that heparin actually enhances the aggregation of platelets (Salzman et al., J. Clin. Invest., 65:64, 1980). To further complicate matters, heparin when given systemically, can accelerate hemorrhage, already a frequent complication of cardiac surgery.
- Attempts to inhibit platelet deposit on artificial surfaces involve systemic administration of aspirin, dipyridamole, and sulfinpyrazone. While these have some effect in preventing thromboembolism when given with oral anticoagulants, serious adverse effects can result. Blood loss is significantly increased in bypass or hemodialysis patients following administration of aspirin (Torosian et al., Ann. Intern. Med. 89:325-328, 1978). In addition, the effect of aspirin and similarly acting drugs is not promptly reversible, which is essential during cardiopulmonary bypass. Finally, agents such as aspirin, which depress platelet function by inhibiting cyclo-oxygenase, may block platelet aggregation, but they do not prevent the adhesion of platelets to artificial surfaces (Salzman et al., supra, 1981).
- Despite considerable efforts to develop non-thrombogenic materials, no synthetic material has been created that is free from this effect. In addition, the use of anticoagulant and platelet-inhibiting agents has been less than satisfactory in preventing adverse consequences resulting from the interaction between blood and artificial surfaces. Consequently, a significant need exists for the development of additional methods for preventing platelet deposition and thrombus formation on artificial surfaces.
- In the same manner as artificial surfaces, damaged arterial surfaces within the vascular system are also highly susceptible to thrombus formation. The normal, undamaged endothelium prevents thrombus formation by secreting a number of protective substances, such as endothelium-derived relaxing factor (EDRF), which prevents blood clotting primarily by inhibiting the activity of platelets. Disease states such as atherosclerosis and hyperhomocysteinemia cause damage to the endothelial lining, resulting in vascular obstruction and a reduction in the substances necessary to inhibit blood clotting. Thus, abnormal platelet deposition resulting in thrombosis is much more likely to occur in vessels in which endothelial damage has occurred. While systemic agents have been used to prevent coagulation and inhibit platelet function, a need exists for a means by which a damaged vessel can be treated directly to prevent thrombus formation.
- Balloon arterial injury results in endothelial denudation and subsequent regrowth of dysfunctional endothelium (Saville, Analyst, 83:670-672, 1958) that may contribute to the local smooth muscle cell proliferation and extracellular matrix production that result in reocclusion of the arterial lumen.
- Reported work on platelet aggregation has demonstrated the effect of nitric oxide adducts on the inhibition of platelet-to-platelet aggregation as a specific stage in clot formation that relates to their common interaction with each other.
- Toward arriving at the present invention, the inventors hypothesized that local delivery of an EDRF-like species to restore or replace the deficiency in EDRF noted with dysfunctional endothelium will modulate the effects of vascular injury and reduce intimal proliferation following injury. The observations that form the basis of this invention relate to the active deposition of platelets on non-platelet tissue beds rather than platelet-to-platelet aggregation.
- In accordance with an aspect of the present invention, there is provided a process and product for preventing adverse effects associated with the use of a medical device in a patient wherein at least a portion of the device includes a nitric oxide adduct. Such adverse effects include but are not limited to platelet adhesion and/or thrombus formation when the medical device is used in a blood vessel. As known in the art, platelet adhesion and subsequent platelet activation may result in the blockage of blood vessels particularly after procedures involving use of a medical device for removing blockages such as those often referred to as the phenomenon of restenosis. The medical device can be used elsewhere, such as for example, in patients having cancer of the gastrointestinal tract in the Sphincter of Oddi where indwelling stents (e.g., a Palmaz-Schatz stent, J&J, New Brunswick, N.J.) are placed to maintain patency of the lumen. They are also used in patients having cancer of the esophagus to support the airway opening.
- The medical device or instrument of the invention can be, for example, a catheter, prosthetic heart valve, synthetic vessel graft, stent (e.g., Palmaz-Schatz stent), arteriovenous shunt, artificial heart, intubation tubes, airways and the like.
- As noted above, in this aspect the device is provided a nitric oxide adduct. Thus, for example, (i) all or a portion of the medical device may be coated with a nitric oxide adduct, either as the coating per se or in a coating matrix; (ii) all or a portion of the medical device may be produced from a material which includes a nitric oxide adduct, for example, a polymer which has admixed therewith a nitric oxide adduct or which includes as pendent groups or grafts one or more of such nitric oxide adducts; or (iii) all or a portion of the tissue-contracting surfaces of the medical device may be derivatized with the nitric oxide adduct.
- In the first embodiment of the above aspect, coatings can be of synthetic or natural matrices, e.g. fibrin or acetate-based polymers, mixtures of polymers or copolymers, respectively. Preferably they are bioresorbable or biodegradable matrices. Such matrices can also provide for metered or sustained release of the nitric oxide adduct. The device surfaces can be substituted with or the coating mixture can further include other medicaments, such as anticoagulants and the like.
- In the next embodiment of this aspect, nitric oxide adducts are incorporated into the body of a device which is formed of a biodegradable or bioresorbable material. Thus, intact nitric oxide adduct is released over a sustained period of the resorption or degradation of the body of the device.
- In the embodiment relating to the derivatization of an artificial surface, such as of a medical device or instrument with a nitric oxide adduct, the artificial surfaces may be composed of organic materials or a composite of organic and inorganic materials. Examples of such materials include but are not limited to synthetic polymers or copolymers containing nitric oxide adducts, gold or coated metal surfaces upon which a functionalized monolayer containing the nitric oxide adduct is adsorbed, or synthetic polymeric materials or proteins which are blended with nitric oxide adducts.
- Another principal aspect of the invention relates to a medical device comprising an instrument suitable for introduction into a patient of which at least a portion comprises a nitric oxide adduct. As with respect to the above method, (i) all or a portion of the medical device may be coated with a nitric oxide adduct, either as the coating per se or in a coating matrix (ii) all or a portion of the medical device may be produced from a material which includes a nitric oxide adduct, for example, a polymer which has admixed therewith a nitric oxide adduct or which includes as pendent groups or grafts one or more of such nitric oxide adducts; or (iii) all or a portion of the tissue-contacting surfaces of the medical device may be derivatized with the nitric oxide adduct.
- Again, the medical device or instrument of the invention can be, for example, a catheter, prosthetic heart valve, synthetic vessel graft, stent, arteriovenous shunt, artificial heart, intubation tube and airways and the like.
- Another principal aspect of the invention relates to a method for treating a damaged blood vessel surface or other injured tissue by locally administering a nitric oxide adduct to the site of the damaged blood vessel. Such damage may result from the use of a medical device in an invasive procedure. Thus, for example, in treating vasculature blocked, for example by angioplasty, damage can result to the blood vessel. Such damage may be treated by use of a nitric oxide adduct. In addition to repair of the damaged tissue, such treatment can also be used to prevent and/or alleviate and/or delay reocclusions, for example. restenosis. Preferably, all or most of the damaged area is coated with the nitric oxide adduct per se or in a pharmaceutically acceptable carrier or excipient which serves as a coating matrix. This coating matrix can be of a liquid, gel or semisolid consistency. The nitric oxide adduct can be applied in combination with other therapeutic agents, such as antithrombogenic agents. The carrier or matrix can be made of or include agents which provide for metered or sustained release of the therapeutic agents. Nitric oxide adducts which are preferred for use in this aspect are mono-or polynitrosylated proteins, particularly polynitrosated albumin or polymers or aggregates thereof. The albumin is preferably human or bovine, including humanized bovine serum albumin.
- The localized, time-related, presence of nitric oxide adducts administered in a physiologically effective form is efficacious in diminishing, deterring or preventing vascular damage after or as a result of instrumental intervention, such as angioplasty, catheterization or the introduction of a stent (e.g., Palmaz-Schatz stent) or other indwelling medical device.
- Local administration of a stable nitric oxide adduct inhibits neointimal proliferation and platelet deposition following vascular arterial balloon injury. This strategy for the local delivery of a long-lived NO adduct is useful for the treatment of vascular injury following angioplasty.
- Typical nitric oxide adducts include nitroglycerin, sodium nitroprusside, S-nitroso-proteins, S-nitrosothiols, long carbon-chain lipophilic S-nitrosothiols, S-nitrosodithiols, iron-nitrosyl compounds, thionitrates, thionitrites, sydnonimines, furoxans, organic nitrates, and nitrosated amino acids.
- Particularly preferred is the localized use of nitroso-proteins, particularly those which do not elicit any significant immune response. An example of such a nitroso-protein which does not elicit any significant immune response is a mono- or polynitrosated albumin. Such nitrosylated albumins, particularly the polynitrosylated albumins, can be present as polymeric chains or three dimensional aggregates where the polynitrosylated albumin is the monomeric unit. The albumin of one monomeric unit can be a functional subunit of full-length native albumin or can be an albumin to which has been attached an additional moiety, such as a polypeptide, which can aid, for example, in localization. The aggregates are multiple inter adherent monomeric units which can optionally be linked by disulfide bridges. Additionally devices which have been substituted or coated with nitroso-protein have the unique property that they can be dried and stored.
- An additional particularly unique aspect of the invention is that this contemplates “recharging” the coating that is applied to a device, such as a catheter or other tubing as considered above, by infusing a nitric oxide donor to a previously coated surface. For example, an S-nitroso-protein such as S-nitroso albumin will lose its potency in vivo as the No group is metabolized, leaving underivatized albumin. However, it has been recognized by the inventors that the surface coating can be “recharged” by infusing an NO donor such as nitroprusside. This principal is demonstrated by the experiments reported in Example 2 in which nitroprusside is mixed with albumin engendering subsequent protection against platelet deposition.
- Another aspect of the invention is related to the derivatization of an artificial surface with a nitric oxide adduct for preventing the deposit of platelets and for preventing thrombus formation on the artificial surface. The artificial surfaces may be composed of organic materials or a composite of organic and inorganic materials. Examples of such materials include but are not limited to synthetic polymers or copolymers containing nitric oxide adducts, gold or gold coated metal surfaces upon which a functionalized monolayer containing the nitric oxide add It is adsorbed, or synthetic polymeric materials or proteins which are blended with nitric oxide adducts.
- The invention also relates to a method and product for administering a nitric oxide adduct in combination with one or more anti-thrombogenic agents. Such agents include heparin, warfarin, hirudin and its analogs, aspirin, indomethacin, dipyridamole, prostacyclin, prostaglandin E 1, sulfinpyrazone, phenothiazines (such as chlorpromazine or trifluperazine) RGD (arginine-glycine-aspartic acid) peptide or RGD peptide mimetics, (See Nicholson et al., Thromb. Res., 62:567-578, 1991), agents that block platelet glycoprotein IIb-IIIa receptors (such as C-7E3), ticlopidine or the thienopyridine known as clopidogrel.
- Other therapeutic agents can also be included in the coating or linked to reactive sites in or on the body of the device. Examples of these include monoclonal antibodies directed towards certain epitopes/ligands such as platelet glycoprotein IIb/IIIa receptor or cell adhesion molecules such as the CD-18 complex of the integrins or PECAM-1; fragments of recombinant human proteins eg, albumin; pegylated proteins; anti-sense molecules; viral vectors designed as vehicles to deliver certain genes or nucleoside targeting drugs.
- The invention will now be further described by reference to a brief description of each of the Figures, but in no way are a limitation of the scope of the invention.
- FIG. 1A is a synthetic scheme for the preparation of a nitrosothiol incorporated on to the .epsilon.-amino group of a copolymer comprised of poly-L-lactic acid-co-lysine.
- FIG. 1B is a synthetic scheme for the preparation of a nitrosothiol incorporated on to the c-amino group of a copolymer comprised of poly-L-lactic acid-co-L-lysine.
- FIG. 2 is a synthetic scheme for the preparation of a nitrosothiol incorporated onto an amino derivatized self-assembled monolayer (SAMS) adsorbed to a gold surface.
- FIG. 3 is a plot demonstrating ([ 125I]-labeled S-nitroso-albumin ([125I]-S-NO-BSA) binding to injured rabbit femoral artery as a function of the method of delivery. Rabbit femoral arteries were isolated and balloon-injured as described in Example 1 and [125I]-S-NO-BSA applied either directly into the injured artery (local) or injected intraarterially via the opposite femoral artery (systemic). [125I]-S-NO-BSA binding was determined by quantification of radioactivity after flow was reestablished for a period of 15 minutes. Non-specific [125I]-S-NO-BSA binding (sham) was determined from uninjured carotid artery harvested simultaneously with femoral arteries. Data are presented as mean+/−SEM per gram of wet tissue weight, and are derived from four animals. *P<0.0.029, local vs. systemic delivery and +/+P<0.05, systemic injured vs. sham.
- FIG. 4 is a plot demonstrating the effect of polythiolated S-nitroso-albumin (pS-NO-BSA) and polythiolated albumin (pS-BSA) on [ 111In]-labeled platelet binding to injured rabbit femoral arteries. Femoral arteries were isolated and balloon injured as described in Example 1. During paired local administration of polythiolated S-nitroso-albumin and polythiolated albumin, [111In]-labeled platelets were administered intravenously and allowed to circulate after flow was reestablished in the treated arteries. ([111In]-labeled platelet binding was determined by quantification of radioactivity after flow was re-established for a period of 15 minutes. Non-specific [111In]-labeled platelet binding (Uninjured Carotid Artery) was determined from uninjured carotid artery harvested with femoral arteries. Data are presented as mean+/−SEM per gram of wet tissue weight and are derived from six animals. *P<0.05, PS-BSA vs. pS-NO-BSA.
- FIGS. 5A-5B are plots demonstrating the effect of polythiolated S-nitroso-albumin (pS-NO-BSA) and polythiolated albumin (pS-BSA) on
neointimal proliferation 14 days after balloon injury of rabbit femoral artery. Femoral arteries were isolated and balloon injured as described below. pS-BSA or pS-NO-BSA were applied in a paired fashion directly into the arterial lumen for 15 minutes and then blood flow was re-established. After 14 days, arteries were harvested, perfusion-fixed, stained, and subjected to morphometric analysis of intimal and medial areas. Neointimal proliferation is reported as the absolute neointimal area in FIG. 5A and as a ratio of neointimal/media in FIG. 5B in 4-6 segments from each artery. Data are expressed as mean+/−SEM and are derived from 15 vessels in the BSA and S-NO-BSA groups, 11 vessels in the PS-BSA group, 7 vessels in the PS-NO-BSA and SHAM groups, and 5 in the SNP group. *P<0.05, pS-NO-BSA vs. PS-BSA. +/+P<0.05 Sodium nitroprusside vs. pS-BSA for both FIGS. 5A and 5B. - FIGS. 6A-6B are plots demonstrating the relationship between neointimal proliferation and the quantity of displaceable No in preparations of S-nitrosylated albumin. Femoral arteries were isolated and balloon injured as described with reference to FIG. 5. Vessels were exposed to different preparations of S-nitrosylated albumin with different displaceable NO contents. After 14 days vessels were harvested and analyzed as described in FIG. 5. Data are expressed as mean+/−SEM and are derived from 7-15 animals in each group. P<0.001 for trend.
- FIG. 7 is a plot demonstrating the effect of polythiolated S-nitroso-albumin (pS-NO-BSA)- and polythiolated albumin (pS-BSA)-treated vessels on platelet cyclic 5′-3′ guanosine monophosphate (cGMP). Rabbit femoral arteries were isolated and balloon-injured as described with reference to FIG. 4. After paired local administration of polythiolated S-nitroso-albumin and polythiolated albumin for 15 minutes, the vessels ere harvested and divided into 2 mm rings. The rings were then immersed in 100 μl of latelet-rich plasma containing 10 μM 3-isobutyl-1-methylxanthine and were incubated for 1 minute ex-vivo. An equal volume of ice-cold 10% trichloroacetic acid was added to each aliquot and the sample vortexed. Platelet cGMP assay was then performed as described in “Methods.” Data are expressed as mean+/−SEM. *P<0.05.
- FIG. 8 is a flow chart illustrating the protocol of Example 4 which measured the effect on balloon-induced injury of pS-NO-BSA or pS-BSA in porcine coronary artery.
- FIG. 9 is a histogram which illustrates the diameter (mm) of the neointimal lumen of 14 normocholesterolemic pigs were subjected to a balloon angioplasty which induced injury of the right coronary artery. Thereafter, they received 1.5 μM pS-NO-BSA or pS-BSA as a control.
- FIG. 10 is a histogram which illustrates a degree of coronary stenosis observed at four weeks after angioplasty in pigs which received 1.5 μM pS-NO-BSA or pS-BSA as a control.
- FIG. 11 is a histogram which illustrates the extent of coronary spasm induced distal the site of injury as compared to the pre-existing base line in pigs which received 1.5 μM pS-NO-BSA or pS-BSA as a control.
- FIG. 12 is a histogram which illustrates the inner-diameter of-the lumen of the right coronary artery of pigs four weeks after they received 1.5 μM pS-NO-BSA or pS-BSA as a control.
- The invention will now be described in more detail with respect to numerous embodiments and examples in support thereof.
- The term “artificial surface” refers to any synthetic material contained in a device or apparatus that is in contact with blood, blood products or components, vasculature, or other tissue.
- The term “platelet adhesion” refers to the contact of a platelet with a foreign surface, e.g. collagen, artificial surface or device.
- The term “platelet aggregation” refers to the adhesion of one or more platelets to each other. Platelet aggregation is commonly referred to in the context of generalized atherosclerosis, not with respect to platelet adhesion on vasculature damaged as a result of physical insult during a medical procedure.
- The term “restenosis” refers to the recurrent narrowing of a blood vessel, usually several months after an injurious insult and as a result of neointimal proliferation.
- The term “passivation” refers to the coating of a surface which thereby renders the surface non-reactive.
- The term “reendothelialization” refers to the proliferation, migration and spreading of endothelial cells over a surface area which is denuded of endothelial cells, e.g., the surface of a damaged blood vessel.
- The term “platelet activation” refers either to the change in conformation (shape) of a cell, expression of cell surface proteins (e.g., the IIb/IIa receptor complex, loss of GPIb surface protein), secretion of platelet derived factors (e.g., serotonin, growth factors).
- The term “lower alkyl” as used herein refers to a branched or straight chain alkyl groups comprising one to ten carbon atoms, including methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, neopentyl and the like.
- The term “alkoxy” as used herein refers to R 20O—, wherein R20 is lower alkyl as defined above. Representative examples of alkoxy groups include methoxy, ethoxy, t-butoxy and the like.
- The term “alkoxyalkyl” as used herein refers to an alkoxy group as previously defined appended to an alkyl group as previously defined. Examples of alkoxyalkyl include, but are not limited to, methoxymethyl, methoxyethy, isopropoxymethyl and the like.
- The term “amino” as used herein refers to —NH 2.
- The term “dialkylamino” as used herein refers to R 22R23N— wherein R22 and R23 are independently selected from lower alkyl, for example dimethylamino, diethylamino, methyl propylamino and the like.
- The term “nitro” as used herein refers to the group —NO 2.
- The term “nitroso” as used herein refers to the group —NO.
- The term “hydroxyl” or “hydroxy” as used herein refers to the group —OH.
- The term “cyano” as used herein refers to the group —CN.
- The term “carbomoyl” as used herein refers to H 2N—C(O)O—.
- The term N,N-dialkylcarbomoyl as used herein refers to R 22R23N—C(O)O— wherein R22 and R23 are independently selected from lower alkyl, for example dimethylamino, diethylamino, methyl propylamino, and the like.
- The term N-alkylcarbamoyl as used herein refers to R 22HN—C(O)O— wherein R22 is selected from lower alkyl, for example methylamino, ethylamino, propylamino, and the like.
- The term “aryl” as used herein refers to a mono- or bicyclic carbocyclic ring system having one or two aromatic rings including, but not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl, and the like. Aryl groups (including bicyclic aryl groups) can be unsubstituted or substituted with one, two or three substituents independently selected from lower alkyl, haloalkyl, alkoxy, amino, alkylamino, dialkylamino, hydroxy, halo, and nitro. In addition, substituted aryl groups include tetrafluorophenyl and pentafluorophenyl.
- The term “arylthio” as used herein refers to R 24S— wherein R24 is selected from aryl.
- The term “alkanoyl” as used herein refers to R 22C(O)— wherein R22 is selected from lower alkyl.
- The term “carboxyl” as used herein refers to —COOH.
- The term “guanidino” as used herein refers to H 2N—C(═NH)NH—.
- The term “arylalkyl” as used herein refers to a lower alkyl radical to which is appended an aryl group. Representative arylalkyl groups include benzyl, phenyl, hydroxybenzyl, fluorobenzyl, fluorophenylethyl and the like.
- The term “cycloalkyl” as used herein refers to an alicyclic group comprising from 3 to 7 carbon atoms including, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
- The term “halogen” or “halo” as used herein refers to I, Br, Cl, or F. The term “haloalkyl” as used herein refers to a lower alkyl radical, as defined above, bearing at least one halogen substituent, for example, chloromethyl, fluoroethyl or trifluoromethyl and the like.
- The term “heteroaryl” as used herein refers to a mono-bicyclic ring system containing one or two aromatic rings and containing at least one nitrogen, oxygen, or sulfur in an aromatic ring. Heteroaryl groups (including bicyclic heteroaryl groups) can be unsubstituted or substituted with one, two, or three substituents independently selected from lower alkyl, haloalkyl, alkoxy, amino, alkylamino, dialkylamino, hydroxy, halo and nitro. Examples of heteroaryl groups include not limited to pyridine, pyrazine, pyrimidine, pyridazine, pyrazole, triazole, thiazole, isothiazole, benzothiazole, benzoxazole, thiadiazole, oxazole, pyrrole, imidazole, and isoxazole.
- The term “heterocyclic ring” refers to any 3-, 4-, 5-, 6-, or 7-membered nonaromatic ring containing at least one nitrogen atom which is bonded to an atom which is not part of the heterocyclic ring. In addition, the heterocyclic ring may also contain a one additional hetero atom which may be nitrogen, oxygen, or sulfur.
- Compounds of the invention which have one or more asymmetric carbon atoms may exist as the optically pure enantiomers, pure diastereomers, mixtures of enantiomers, mixtures of diastereomers, racemic mixtures of enantiomers, diastereomeric racemates or mixtures of diastereomeric racemates. It is to be understood that the present invention anticipates and includes within its scope.
- As mentioned above, the medical device or instrument may be made, such that at least in those portions of it which come into contact with blood, blood components or products, or vascular tissue, include a nitric oxide adduct. The nitric oxide adduct can directly or indirectly be linked to a synthetic material from which all or a portion of the device is formed. As representative examples, there may be mentioned: nylon, polyethylene perthalate (Dacron), polytetrafluoroethylene (Gortex).
- In another embodiment mentioned above, the nitric oxide adduct can be incorporated into a natural or synthetic matrix which is then used to coat those same contact surfaces of the device. The matrix can be a liquid into which the nitric oxide adduct has been mixed, which is then coated onto the contact surfaces of the medical device or instrument and then allowed to “set”, dry, polymerize or otherwise become solid or semisolid. Examples of such matrix materials include gel-forming materials such as are commonly used including hydrogels and starch-based semi-solid emulsions and dispersions.
- The materials can also be polymers or mixtures of polymers such as polylactic acid/polylysine copolymer. Alternatively, the matrix can be a natural or synthetic fibrous matrix which is impregnated with a liquid containing the nitric oxide adducts either before or after being applied to the artificial contact surface. Examples of such natural fibrous matrix materials primarily include filter paper. Examples of such synthetic fibrous matrix materials include three-dimensional lattices of synthetic polymers and copolymers.
- The matrix can also be a material such as nylon or plastic, such as polystyrene, that is directly or indirectly, i.e., through a linking group, derivatized with the nitric oxide adduct.
- As mentioned above the nitric oxide adduct is specifically intended to be delivered locally at the site of contact of the device or instrument with the blood, blood product or component, or vasculature, but need not be physically associated with the device or instrument. For example, the nitric oxide adduct can be separately administered in a physiologically available form as a pharmaceutical preparation in a pharmaceutically acceptable carrier, such as are described in more detail below. This can be done by administration during or shortly before the contact or intervention. Where the device is, for example, a catheter, such as a cardiac catheter, the nitric oxide adduct preparation can be administered by injection into the lumen of the catheter.
- Compounds contemplated for use in the invention are nitric oxide and compounds that release nitric oxide or otherwise directly or indirectly deliver or transfer nitric oxide to a site of its activity, such as on a cell membrane, in vivo. As used here, the term “nitric oxide” encompasses uncharged nitric oxide (NO.) and charged nitric oxide species, particularly including nitrosonium ion (NO +) and nitroxyl ion (NO−). The reactive form of nitric oxide can be provided by gaseous nitric oxide. The nitric oxide releasing delivering or transferring. Compounds, having the structure X—NO wherein X is a nitric oxide releasing, delivering or transferring moiety, include any and all such compounds which provide nitric oxide to its intended site of action in a form active for their intended purpose. As used here, the term “nitric oxide adducts” encompasses any of such nitric oxide releasing, delivering or transferring compounds, including, for example, S-nitrosothiols, S-nitroso amino acids, S-nitroso-polypeptides, and nitrosoamines. It is contemplated that any or all of these “nitric oxide adducts” can be mono- or polynitrosylated at a variety of naturally susceptible or artificially provided binding sites for nitric oxide.
- One group of such nitric oxide adducts is the S-nitrosothiols, which are compounds that include at least one —S—NO group. Such compounds include S-nitroso-polypeptides (the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); S-nitrosylated amino acids(including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); S-nitrosated sugars, S-nitrosated-modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and an S-nitrosated hydrocarbon where the hydrocarbon can be a branched or unbranched, and saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; S-nitroso hydrocarbons having one or more substituent groups in addition to the S-nitroso group; and heterocyclic compounds. S-nitrosothiols and the methods for preparing them are described in U.S. patent application Ser. No. 07/943,834, filed Sep. 14, 1992, Oae et al., Org. Prep. Proc. Int., 15(3):165-198, 1983; Loscalzo et al., J. Pharmacol. Exp. Ther., 249(3):726729, 1989, and Kowaluk et al., J. Pharmacol. E. Ther., 256:1256-1264, 1990, all of which are incorporated in their entirety by reference.
- One particularly preferred embodiment of this aspect relates to S-nitroso amino acids where the nitroso group is linked to a sulfur group of a sulfur-containing amino acid or derivative thereof. For example, such compounds include the following: S-nitroso-N-acetylcysteine, S-nitroso-captopril, S-nitroso-homocysteine, S-nitroso-cysteine and S-nitroso-glutathione.
- Suitable S-nitrosylated proteins include thiol-containing proteins(where the NO group is attached to one or more sulfur group on an amino acid or amino acid derivative thereof) from various functional classes including enzymes, such as tissue-type plasminogen activator(TPA) and cathepsin B; transport proteins, such as lipoproteins, heme proteins such as hemoglobin and serum albumin; and biologically protective proteins, such as the immunoglobulins and the cytokines. Such nitrosylated proteins are described in PCT Publ. Applic. No. WO 93/09806, published May 27, 1993. Examples include polynitrosylated albumin where multiple thiol or other nucleophilic centers in the protein are modified.
- Further examples of suitable S-nitrosothiols include those having the structures: (i) CH 3(CH2)xSNO, wherein x equals 2 to 20; (ii) HS(CH2)xSNO, wherein x equals 2 to 20; and (iii) ONS(CH2)xY, wherein x equals 2 to 20 and Y is selected from the group consisting of halo, alkoxy, cyano, carboxamido, cycloalkyl, arylalkoxy, lower alkylsulfinyl, arylthio, alkylamino, dialkylamino, hydroxy, carbamoyl, N-alkylcarbamoyl, N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl.
- Other suitable S-nitrosothiols that are S-nitroso-angiotensin converting enzyme inhibitors (hereinafter referred to as S-nitroso-ACE inhibitors) are described in Loscalzo, U.S. Pat. No. 5,002,964 (1991) and Loscalzo et al., U.S. Pat. No. 5,025,001 (1991) both of which are incorporated in their entirety by reference. Examples of such S-nitroso-ACE inhibitors include compounds having structure (1):
- wherein
- R is hydroxy, NH 2, NHR4, NR4R5, or lower alkoxy, wherein R4 and R5 are lower alkyl, or aryl, or arylalkyl;
- R 1 is hydrogen, lower alkyl, arylalkyl, amino, guanidino, NHR6, NHR6R7, wherein R6 and R7 are methyl or alkanoyl;
- R 2 is hydrogen, hydroxy, C1-C4 alkoxy, phenoxy, or lower alkyl;
- R 3 is hydrogen, lower alkyl or arylalkyl;
- m is 1 to 3; and
- n is 0 to 2.
- Other suitable S-nitroso-ACE inhibitors include N-acetyl-S-nitroso-D-cysteinyl-L-proline, N-acetyl-S-nitroso-D,L-cysteinyl-L-proline, 1-[4-amino-2-(S-nitroso)mercaptomethyl butanoyl]-L-proline, 1-[2-hexanoyl]-L-proline, 1-[5-guanidino-2-(S-nitroso)mercaptomethyl-pentanoyl]-L-proline, 1-[5-amino-2-(S-nitroso) mercaptomethyl-pentanoyl]-4-hydroxy-L-proline, 1-[5-guanidino-2-(S-nitroso)mercaptomethyl-pentanoyl]-4-hydroxy-L-proline, 1-[2-aminomethyl-3(S-nitroso)-mercaptomethyl-pentanoyl-L-proline, and S-nitroso-L-cysteinyl-L-proline.
-
- wherein
- X is oxygen or sulfur;
- —A 1, —A2— is CH—NH or —C═N—;
- A is ON—S(R 3)—CH2—CH—C(═O);
- R is selected from hydrogen, lower alkyl, arylalkyl, and salt forming ion;
- R 4 and R5 are independently selected from hydrogen, alkyl, lower alkoxy, halo substituted lower alkyl, nitro, and SO2NH2;
- Z is —C(═O)— or —S(O 2)—
-
- wherein R 7 is hydrogen, lower alkyl, alkoxy, halogen or hydroxy and g is as defined above.
-
- The S-nitroso-ACE inhibitors can be prepared by various methods of synthesis. In general, the thiol precursor is prepared first, then converted to the S-nitrosothiol derivative by nitrosation of the thiol group with NaNO 2 under acidic conditions (pH=1 to 5) which yields the S-nitroso derivative. Acids which may be used for this purpose include aqueous sulfuric, acetic and hydrochloric acids. Thiol precursors are prepared as described in the following: U.S. Pat. No. 4,046,889 (1977); U.S. Pat. Nos. 4,052,511; 4,053,651; 4,113,751, 4,154,840, 4129,571 (1978), and U.S. Pat. No. 4,154,960 (1979) to Ondetti et al.; U.S. Pat. No. 4,626,545 (1986) to Taub; and U.S. Pat. No. 4,692,458 (1987) and U.S. Pat. No. 4,692,459 (1987) to Ryan et al., Quadro, U.S. Pat. No. 4,447,419 (1984); Haugwitz et al.; U.S. Pat. No. 4,681,886 (1987), Bush et al., U.S. Pat. No. 4,568,675 (1986), Bennion et al., U.S. Pat. No. 4,748,160 (1988), Portlock, U.S. Pat. No. 4,461,896 (1984), Hoefle et al., European Patent Application Publication No. 0 088 341 (1983), Huange et al., U.S. Pat. No. 4,585,758 (1986), European Patent application Publication No. 0 237 239, European Patent application Publication No. 0 174 162, published in 1986, European Patent application Publication No. 0 257 485, published in 1988, all of which are incorporated by reference herein.
- Another group of such NO adducts are compounds that include at least one —O— NO group. Such compounds include O-nitroso-polypeptides (the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); O-nitrosylated amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); O-nitrosated sugars; O-nitrosated-modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and an O-nitrosated hydrocarbon where the hydrocarbon can be a branched or unbranched, saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; O-nitroso hydrocarbons having one or more substituent groups in addition to the O-nitroso group; and heterocyclic compounds.
- Another group of such NO adducts is the nitrites which have an —O-NO group wherein R is a protein, polypeptide, amino acid, branched or unbranched and saturated or unsaturated alkyl, aryl or a heterocyclic. A preferred example is the nitrosylated form of isosorbide. Compounds in this group form S-nitrosothiol intermediates in vivo in the recipient human or other animal to be treated and can therefore include any structurally analogous precursor R—O—NO of the S-nitrosothiols described above.
- Another group of such NO adducts is the N-nitrosoamines, which are compounds that include at least one —N—NO group. Such compounds include N-nitroso-polypeptides (the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); N-nitrosylated amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures); N-nitrosated sugars; N-nitrosated-modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and an N-nitrosated hydrocarbon where the hydrocarbon can be a branched or unbranched, and saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; N-nitroso hydrocarbons having one or more substituent groups in addition to the N-nitroso group; and heterocyclic compounds.
- Another group of such NO adducts is the C-nitroso compounds that include at least one —C—NO group. Such compounds include C-nitroso-polypeptides (the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); C-nitrosylated amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures); C-nitrosated sugars; C-nitrosated-modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and a C-nitrosated hydrocarbon where the hydrocarbon can be a branched or unbranched, and saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; C-nitroso hydrocarbons having one or more substituent groups in addition to the C-nitroso group; and heterocyclic compounds.
- Another group of such NO adducts is the nitrates which have at least one —O—NO 2 group. Such compounds include polypeptides (the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); sugars; modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and a hydrocarbon where the hydrocarbon can be a branched or unbranched, and saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; hydrocarbons having one or more substituent groups; and heterocyclic compounds. A preferred example is nitroglycerin.
- Another group of such NO adducts is the nitroso-metal compounds which have the structure (R) n—A—M—(NO)x. R includes polypeptides(the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); sugars; modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and a hydrocarbon where the hydrocarbon can be a branched or unbranched, and saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; hydrocarbons having one or more substituent groups in addition to the A-nitroso group; and heterocyclic compounds. A is S, O, or N, n and x are each integers independently selected from 1, 2 and 3, and M is a metal, preferably a transition metal. Preferred metals include iron, copper, manganese, cobalt, selenium and lithium. Also contemplated are N-nitrosylated metal centers such as nitroprusside.
- Another group of such NO adducts is the N-oxo-N-nitrosoamines which have an R—N(O −M+)—NO group or an R—NO—NO-group. R includes polypeptides (the term “polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); amino acids(including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); sugars; modified and unmodified oligonucleotides (preferably of at least 5, and more particularly 5-200, nucleotides); and a hydrocarbon where the hydrocarbon can be a branched or unbranched, and saturated or unsaturated aliphatic hydrocarbon, or an aromatic hydrocarbon; hydrocarbons having one or more substituent groups; and heterocyclic compounds. R is preferably a nucleophilic (basic) moiety. M+ is a metal cation, such as, for example, a Group I metal cation.
- Another group of such NO adducts is the thionitrates which have the structure R—(S) x—NO wherein x is an integer of at least 2. R is as described above for the S-nitrosothiols. Preferred are the dithiols wherein x is 2. Particularly preferred are those compounds where R is a polypeptide or hydrocarbon and a pair or pairs of thiols are sufficiently structurally proximate, i.e. vicinal, that the pair of thiols will be reduced to a disulfide. Those compounds which form disulfide species release nitroxyl ion (NO) and uncharged nitric oxide (NO.). Those compounds where the thiol groups are not sufficiently close to form disulfide bridges generally only provide nitric oxide as the NO form not as the uncharged NO. form.
- Coating of a surface of a medical device with the nitric oxide adduct comprises contacting the surface with the adduct so as to cause the surface to be coated with the particular adduct. Coating of the artificial surface may be accomplished using the methods described in Example 1, infra, or other standard methods well known to those of ordinary skill in the art. For example, coating a surface with nitric oxide adducts can be achieved by bathing the artificial surface, either by itself or within a device, in a solution containing the nitric oxide adduct. In addition, synthetic nitric oxide adducts may be coated onto an artificial surface by a variety of chemical techniques which are well known in the art. Such techniques include attaching the adduct to a nucleophilic center, metal, epoxide, lactone, an alpha- or beta-saturated carbon chain, alkyl halide, carbonyl group, or Schiff base, by way of the free thiol.
- In order to optimize the coating techniques further, standard methods may be used to determine the amount of platelet deposition on a sample of the treated artificial surface. Such methods include the use of 51Cr-labeled platelets or Indium111-labeled platelets. Other well known techniques for evaluating platelet deposition on artificial surfaces are described in Forbes et al. (1978), and Salzman et al. (1981).
- It is also contemplated that artificial surfaces will vary depending on the nature of the surface, and such characteristics as contour, crystallinity, hydrophobicity, hydrophilicity, capacity for hydrogen bonding, and flexibility of the molecular backbone and polymers. Therefore, using routine methods, one of ordinary skill will be able to customize the coating technique by adjusting such parameters as the amount of adduct, length of treatment, temperature, diluents, and storage conditions, in order to provide optimal coating of each particular type of surface.
- After the device or artificial material has been coated with the nitric oxide adduct, it will be suitable for its intended use, for example, implantation as a heart valve, insertion as a catheter, or for cardiopulmonary oxygenation or hemodialysis. The coated device or artificial surface will be suitable for use in conjunction with an animal, preferably mammals, including humans.
- Another embodiment of a nitric oxide adduct pertains to the derivatization of synthetically derived polymeric materials. Nitric oxide adducts of the formula IA wherein b is an integer from 270 to 500, c is an integer of 1 to 2, d is an integer from 1 to 6, E is a covalent bond, S, N, O, or C—N—C(O)—R 0, in which R0 is H. lower alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclic ring system may be prepared according to the reaction scheme depicted in FIG. 7A, in which the biodegradable poly L-lactic acid/poly-L-lysine copolymer prepared as described by Berrera et al., J. Am. Chem. Soc., 115:11010, 1993) is representative of the synthetic polymeric materials defined above. The primary amino groups of the compound of
formula 13 are reacted with a compound offormula 14, wherein T is an activated carbonyl-containing substituent selected from a group consisting of a mixed anhydride, a thioester, an acid chloride, an isocyanate, or a chloroformate, P1 is a sulfur protecting group, and E and d are defined as above to afford a compound of theformula 15 wherein b, c, E, d, and P1 are defined as above. A variety of sulfur protecting groups which are compatible with this process along with methods for their incorporation and removal are described in T. H. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2nd edition, John Wiley & Sons, New York, 1991. The sulfur protecting groups in the compound of theformula 15 are removed to afford the compound of theformula 16 and the thiol moieties are nitrosated to afford a compound of the formula IA using a suitable mild nitrosating agent such as nitrosyl chloride or nitrosonium tetrafluoroborate in an inert organic solvent or mixture of inert solvents such as methylene chloride, chloroform, dimethyforamide (DMF), dimethylsulfoxide (DMSO), ethyl acetate, or acetonitrile. In addition, the nitrosation may be performed in the presence or absence of an amine base such as pyridine or triethylamine. Alternatively, the nitrosation of the compound of theformula 16 may be performed with nitrous acid generated in situ from sodium nitrite and hydrochloric acid in an aqueous or mixed aqueous and organic solvent system to afford a compound of the formula IA. - Nitric oxide adducts of the formula 1B wherein b is an integer from 270 to 500, c is an integer of 1 to 2, D is a thiol containing amino acid or peptide of 1 to 10 amino acids containing 1 to 10 thiols or a thiol containing carboxylic acid containing 1 to 10 thiol groups, a is an integer from 1 to 10, and b and c are defined as above may be prepared according to the reaction scheme depicted in FIG. 1B, in which the biodegradable poly L-lactic acid/poly-L-lysine copolymer prepared as described by Berrera et al. is representative of the synthetic polymeric materials defined above. The primary amino groups of the compound of the
formula 13 wherein b and c are defined as above may be acylated with a compound of theformula 17 wherein Q is halogen, imidazolyl, or trihalomethoxy in a suitable inert solvent or mixture of solvents such as DMSO and methylene chloride to afford a compound of theformula 18. The compound of theformula 18 is then reacted with a compound of the formula 19 wherein D and a are as defined above to afford a compound of theformula 20. The compound of theformula 20 is then nitrosated to afford a compound of the formula 1B with a suitable mild nitrosating agent such as nitrosyl chloride or nitrosonium tetrafluoroborate in an inert organic solvent or mixture of inert solvents such as methylene chloride, chloroform, dimethyforamide (DMF), dimethylsulfoxide (DMSO), ethyl acetate, or acetonitrile. In addition, the nitrosation may be performed in the presence or absence of an amine base such as pyridine or triethylamine. Alternatively, the nitrosation of the compound of theformula 20 may be performed with nitrous acid generated in situ from sodium nitrite and hydrochloric acid in an aqueous or mixed aqueous and organic solvent system to afford a compound of the formula 1B. - Another example of a nitric oxide adduct derived from a synthetic polymeric material is the modification of the L-cysteine amino acid residues immobilized to modified surface of poly(ethyleneterephalate) which has been activated by pretreatment with 3-aminopropyltriethoxysilane followed by glutaraldehyde as described by Bui et al., The Analyst, 118:463 (1993). The cysteine thiols may be nitrosated with a suitable nitrosating agent such as nitrous acid generated in situ from sodium nitrite and hydrochloric acid in an aqueous or mixed aqueous and organic solvent system or, alternatively, with nitric oxide gas or nitrosyl chloride in a suitable inert solvent to afford the polymer containing the nitric oxide adduct.
- Yet another embodiment of a nitric oxide adduct pertains to the derivatization of a gold or gold coated surface with a self-assembled monolayer (SAMS) of an omega-substituted alkanethiolates or mixture of omega-substituted alkanethiolates or omega-substituted alkanethiolates and unsubstituted alkanethiolates. Functionalized surfaces of SAMS terminating in carboxylic acids [Collison et al. Langmuir, 8:1247, 1992,; Leggett et al., Langmuir, 9:2356, 1993] or amines [Whitesell et al., Angew. Chem. Int. Ed. Engl., 33:871, 1994] have previously been prepared. These functionalized SAMS may be further derivatized with organic groups containing one or more nitric oxide adducts as depicted in FIG. 22.
- For example, the amine groups of the SAMS surface composed of the compound of the
formula 23 wherein e is an integer from 2 to 20 may be reacted with a compound of theformula 14 wherein T, E, d and P1 are defined as above to afford a SAMS surface composed of a compound of theformula 24. After deprotection of the thiol moieties of the compound of theformula 24, the free thiol groups are nitrosated to afford a compound of the formula IIB using a suitable mild nitrosating agent such as nitrosyl chloride or nitrosonium tetrafluoroborate in an inert organic solvent or mixture of inert solvents such as methylene chloride, chloroform, dimethyformamide (DMF), dimethylsulfoxide (DMSO), ethyl acetate, or acetonitrile. In addition, the nitrosation may be performed in the presence or absence of an amine base such as pyridine or triethylamine. Alternatively, the nitrosation of the free thiol groups may be performed with nitrous acid generated in situ from sodium nitrite and hydrochloric acid in an aqueous or mixed aqueous and organic solvent system to afford a compound of the formula II. - Particularly preferred nitric oxide adducts are polynitrosylated peptides and proteins. Synthesis of polynitrosated peptides and proteins can be achieved in several ways. 1) Mono S-nitrosylation is best achieved by incubating peptides and proteins (in deionized water in an equimolar concentration of acidified nitrite (final concentration 0.5 N HCl) for a period of 1-30 minutes. The incubation time depends on the efficiency of nitrosation and the tolerance of the protein. Nitrosation can also be achieved with a variety of other nitrosating agents including compounds such as S-nitroso-cysteine, S-nitroso-glutathione and related alkyl nitrites. These compounds are to be used when the peptide or protein does not tolerate harsh acidic conditions, e.g. human hemoglobin.
- There are two principal ways of achieving poly S-nitrosation. In the first, the peptide or protein is reduced in 100-1000 molar excess dithiothreitol for 30-60 minutes. This exposes intramolecular thiols. The peptide or protein is separated from dithiothreitol by gel filtration (G-25). The protein is then exposed to increasing concentrations of acidified nitrite (0.5 N HCl) in relative excess over protein. Complementary measurements of Saville indicate when S-nitrosation is complete. For example, with albumin, this procedure leads to approximately 20 intramolecular S—NO derivatives.
- Alternatively, the protein can be treated with thiolating agent such as homocysteine thiolactone. This tends to add homocystine groups to exposed amine residues in proteins. The derivatized protein can then be S-nitrosated by exposure to acidified nitrite. Exposure to increasing concentrations of nitrite with complementary measurements of Saville can be used to ascertain when S-nitrosation is maximal. Alternatively, thiol groups can be quantified on the protein using standard methodologies and then the protein treated with a stoichiometric concentration of acidified nitrite (0.5 N HCl).
- Polynitrosation of nucleophilic functional groups (other than thiol) can be achieved when proteins are incubated with excess acidified nitrite. The order of protein reactivity is tyrosine followed by amines on residues such as trytophan. Amide linkages are probably less reactive. Accordingly, many NO groups can be added to proteins by simply incubating the protein with high excess acidified nitrite. For example, exposure of albumin to 1000 fold excess nitrite leads to approximately 200 moles of NO/mole protein. These experiments are performed in 0.5 normal HCl with incubations for approximately one hour. 15N NMR can be used to determine where the addition (or substitution) by NO takes place.
- Finally, nitrosation can be achieved by exposure to authentic nitric oxide gas under anaerobic conditions. For successful nitrosation proteins should be incubated in at least 5 atmospheres of NO gas for several hours. Incubation time is protein specific. This can lead to NO attachment to a variety of protein bases. Best characterized reactions involve primary amines. This mechanism provides a pathway to sustain N-nitrosation reactions without deamination. Specifically, exposure to acidified nitrite would otherwise lead to deamination of primary amines whereas this method leads to formation of N-hydroxynitrosamines with potent bioactivity. Similar substitutions at other basic centers also occur.
- The method of the invention provides significant advantages over current attempts to reduce platelet deposition on artificial surfaces. As demonstrated by the inventors, a surface can be coated with nitric oxide adducts using simple, effective methods. The coated surfaces may be used immediately, or stored and used at a later date. In addition, by coating the surface itself, this method eliminates the need for systemic administration of anti-thrombogenic agents which are often ineffective, have serious adverse side effects, or are unsuitable for use in certain patients. Also, the inhibition of platelet deposition provided by the invention is completely and immediately reversible, a need which is especially important in patients with cardiac or vascular disease.
- By preventing platelet deposition or thrombus formation, the invention is also useful in preventing serious vascular complications associated with the use of medical devices. These complications occur as a result of increased platelet deposition, activation, and thrombus formation or consumption of platelets and coagulation proteins. Such complications are well known to those of ordinary skill in the medical arts and include myocardial infarction, pulmonary thromboembolism, cerebral thromboembolism, thrombophlebitis, thrombocytopenia, bleeding disorders and any additional complication which occurs either directly or indirectly as a result of the foregoing disorders.
- In another embodiment, the invention relates to a method for preventing the deposition of platelets on a surface comprising contacting the surface with a nitric oxide adduct in combination with at least one additional anti-thrombogenic agent. The term “anti-thrombogenic” agent refers to any compound which alters platelet function, or interferes with other mechanisms involved in blood clotting, such as fibrin formation. Examples of such compounds include, but are not limited to, heparin, warfarin, aspirin, indomethacin, dipyridamole prostacyclin, prostaglandin-E 1 or sulfinpyrazone.
- This method for coating a surface with a nitric oxide adduct in combination with another anti-thrombogenic agent will be accomplished using the methods described previously for coating a surface with a nitric oxide adduct alone, and are suitable for any and all types of natural tissue and artificial surfaces. The appropriate coating concentration of the other anti-thrombogenic compound is determined using routine methods similar to those described previously. The coated surfaces may be used in the same manner described for those surfaces coated with nitric oxide adducts alone.
- By coating a surface with a nitric oxide adduct in combination with at least one other anti-thrombogenic agent, one will be able to not only prevent-platelet deposition, which is the initial event in thrombus formation, but also to limit fibrin formation directly, by inhibiting factor VIII, and platelet granule secretion, and indirectly, by inhibiting plasminogen activator inhibitor (PAI-1) release from platelets. Thus, by coating a surface with agents that both prevent platelet deposition and interfere with other platelet functions which contribute to coagulation, the invention provides a further means for preventing thrombus formation.
- In a further embodiment, the invention relates to a method for preventing thrombus formation on a damaged vascular surface in an animal, comprising applying a nitric oxide adduct directly to the damaged surface. The term “damaged vascular surface” refers to any portion of the interior surface of a blood vessel in which damage to the endothelium or subendothelium, narrowing or stenosis of the vessel has occurred. The invention is especially suitable for use in coronary arteries, but is beneficial in other damaged arteries and also in veins including particularly those used in arterial or venous bypass replacement where they are susceptible to damage from the typically higher arterial pressures to which they are unaccustomed.
- The nitric oxide adduct is applied directly to the damaged vascular surface by using an intraarterial or intravenous catheter, suitable for delivery of the adduct to the desired location. The location of damaged arterial surfaces is determined by conventional diagnostic methods, such as X-ray angiography, performed using routine and well-known methods available to those of skill within the medical arts. In addition, administration of the nitric oxide adduct using an intraarterial or intravenous catheter is performed using routine methods well known to those in the art. Typically, the preparation is delivered to the site of angioplasty through the same catheter used for the primary procedure, usually introduced to the carotid or coronary artery at the time of angioplasty balloon inflation.
- The compounds of this invention can be employed in combination with conventional excipients, i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for parenteral application which do not deleteriously react with the active compounds. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohol, vegetable oils, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, petroethral fatty acid esters, hydroxymethylcellulose, polyvinylpyrrolidone, etc. The pharmaceutical preparations can be sterilized and if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds. For parenteral application, particularly suitable vehicles consist of solutions preferably oily or aqueous solutions, as well as suspensions, emulsions, or implants. Aqueous suspensions may contain substances which increase the viscosity of the suspension and include, for example, sodium carboxymethyl cellulose, sorbitol, and/or dextran. optionally, the suspension may also contain stabilizers.
- The term “therapeutically effective amount,” for the purposes of the invention, refers to the amount of the nitric oxide adduct which is effective to achieve its intended purpose. While individual needs vary, determination of optimal ranges for effective amounts of each nitric oxide adduct is within the skill of the art. Generally, the dosage required to provide an effective amount of the composition, and which can be adjusted by one of ordinary skill in the art will vary, depending on the age, health physical condition, sex, weight, extent of disease of the recipient, frequency of treatment and the nature and scope of the desired effect. The preparations, which are suitable for treatment of artificial surfaces, such as of a medical device, and endothelium are used in concentrations of about 500-700 mM of adduct delivered by drip infusion sterile in a physiological liquid over 2-3 minute periods in amounts of 2-3 ml per 25 kg body weight.
- As demonstrated by the inventors, direct application of a nitric oxide adduct to a damaged vascular surface, coats the surface, thereby decreasing the thrombogenicity of the surface. As further demonstrated by the inventors, local application of the nitric oxide adduct to the damaged vascular surface can be accomplished at doses much lower than those required to exert a systemic effect. Thus, this method provides a significant and an unexpected advantage over the use of systemic anti-thrombogenic agents to prevent thrombus formation in damaged vessels.
- NO Adducts Make Artificial Surfaces Less Thrombogenic
- One of the best ways to demonstrate that an artificial surface exposed to blood has been made less thrombogenic is to measure or quantitate the number of blood platelets that collect on that surface. This method requires the removal of platelets from an animal or human subject. The platelets are labeled with a radioactive material such as Indium 111, which emits gamma rays, detectable by a gamma counter placed 3 to 6 inches away from the source of radioactive platelets. The labeled platelets are either reinjected into the animal or human in vivo, or contacted with the artificial surface in viva. Platelets will adhere to artificial surfaces or acutely damaged arterial surfaces. Thus, the number of normal platelets and radioactive platelets which stick to the surface is an indication of the thrombogenicity of the surface.
- The inventors have used this methodology in experiments to demonstrate that nitric oxide adducts decrease the thrombogenicity of an artificial surface or a damaged natural arterial surface. The following experiments demonstrate that coating artificial surfaces, such as synthetic vascular graft material, with a nitric oxide adduct, decreases platelet deposition and makes the surface significantly less thrombogenic than previously used agents such as albumin alone. In addition, the experiments demonstrate that polyvinyl chloride (PVC) tubing, which is used extensively in artificial kidney and heart-lung machines, can be coated with an nitric oxide adduct such as S-nitroso-albumin, to make it less thrombogenic.
- Protection of Synthetic Vascular Grafts
- First, the inventors coated dacron grafts and cardiac catheters with S-nitroso-bovine serum albumin (BSA). In three separate experiments, an identical pair of 6 mm (internal diameter) knitted dacron grafts, 5 cm. in length, were prepared for surgical placement in the transected carotid arteries of three anesthetized dogs. No heparin was given. One graft was soaked in 5% BSA and the other graft was soaked in 5% BSA combined with 0.5 mM nitric oxide (producing S-nitroso-BSA) for one hour prior to insertion, and then rinsed in saline. The grafts were sutured in place with a continuous 6-0 proline suture.
- Indium-labeled Platelets
- Indium 111-labeled platelets are very useful in detecting platelet accumulation on vascular grafts. Therefore, Indium111-labeled platelets were prepared according to standard methods described in Heyns “Method for Labeling Platelets with In111-oxine”. In: Platelet Kinetics and, Imaging Vol. II, Editors Heyns et al., CRC Press, 1985; and Sheffel et al., J. Nucl. Med., 20: 524-531, 1979, and injected prior to insertion of the grafts. Following graft insertion, the dogs were observed for two hours, then both grafts were removed, rinsed, and weighed. The grafts were then placed in a Nal gamma well counter and counted for four minutes.
- The three grafts coated with BSA alone had an average of 654,000+/−89,000 counts/4 minutes. In contrast, the three grafts coated with S-nitroso-BSA had an average of 278,000+/57,000 counts/4 minutes (P<0.005). The average percent increase in weight for the three grafts due to thrombus formation on the luminal surface with BSA alone, was 410%+/−97%, while the percent increase in weight for the three grafts incubated with nitroso-BSA was 196%+/−71% (P<0.005).
- These data show that during exposure of the graft to circulating blood over a period of two hours, there was considerably less platelet deposition and clotting on the synthetic grafts treated with S-nitroso-BSA. Thus the results demonstrate that S-nitroso-BSA coating of synthetic vascular grafts provides protection against early platelet deposition.
- In addition, three pairs of 5 FR USCl catheters were studied. One catheter was soaked in 5% BSA, while the other catheter was soaked in a mixture of S-nitroso BSA for one hour. The catheters were rinsed with saline and one each was inserted into the right or left femoral arteries of the dogs described above, and left for two hours. Each catheter was flushed with normal saline every one-half hour, but no heparin was given. The catheters were then removed and rinsed with saline. Equal lengths of the catheters were cut from the distal ends and each one was placed in a Nal gamma counter and the radioactivity was counted for four minutes.
- The counts for the three catheters coated with BSA alone had an average count of 9,000±1,100. In contrast, the three catheters coated with 5% BSA+0.5 Mm nitric oxide had only 2,850±800 counts. Thus, there were significantly fewer platelets deposited on the catheters coated with S-nitroso-BSA, than those coated with BSA alone. These experiments demonstrate that synthetic vascular grafts coated with S-nitroso-BSA and immediately implanted, are significantly less thrombogenic than grafts coated with BSA alone.
- The inventors conducted an additional experiment to investigate whether S-nitroso-BSA can be used to coat a surface such as polyvinyl chloride (PVC), and in addition, whether such surfaces can be treated at one time, and used at a later time. In this experiment, three pieces of PVC, 3 mm in internal diameter and 2 cm. in length were soaked in BSA for 4 hours, allowed to dry, and placed in a dark place. Three identical pieces of PVC tubing were soaked in an S-nitroso-BSA solution for 4 hours, dried, and also placed in the dark. The lengths of PVC tubing were kept in the dark to minimize potential inactivation of the nitric oxide-donating compounds caused by exposure to light.
- Three days after coating, a pair of PVC tubing pieces, one coated with BSA, and one coated with S-nitroso-BSA, were placed as a shunt in each of the two femoral arteries of a dog. The dog was injected with Indium 111 labeled platelets as previously described. Two hours after the PVC shunts were placed in the circulation with radioactive platelets, they were removed and placed in the Nal gamma counter.
- The counts on the BSA coated shunt were 200,870/4 minutes, whereas on the S-nitroso-BSA coated graft, the counts were only 97,510/4 minutes. Thus, the shunts coated with S-nitroso-BSA have significantly fewer platelets deposited on its internal surface than the one coated with nitroso-BSA.
- Na Nitroprusside Coated Damaged Arterial Surfaces are Less Thrombogenic
- The following experiments demonstrate that nitric oxide-donating compounds, such as sodium nitroprusside and S-nitroso-BSA, can be applied directly to damaged arterial or venous surfaces (blood vessels) to inhibit platelet deposition and thrombus formation.
- The inventors developed an animal model which allows them to mimic a patient with narrowing of the coronary or other arteries and arterial damage caused by atherosclerosis or after angioplasty, atherectomy or other procedure. The model uses anesthetized dogs with open chest and exposed heart. Briefly, an electromagnetic flow probe is placed on the coronary artery to continuously measure blood flow through the artery. Then the arterial wall is damaged (intima and media) by clamping the artery several times with a surgical clamp. In the area of arterial damage, a plastic encircling cylinder is placed around the outside of the coronary artery to produce a 70% narrowing or reduction in the lumen gradually diameter. This mimics atherosclerotic narrowing of arteries in patients. Platelet-mediated thrombi periodically form in the stenosed lumen, gradually cutting off the coronary blood flow. Subsequently, the thrombi embolize distally and blood flow is restored. This process, which occurs periodically, produces cyclical reductions in flow, hereinafter referred to as “cyclic flow reductions” (CFRs). If no action is taken to prevent platelet interaction with the damaged arterial wall, these CFRs will continue to occur for many hours.
- The inventors have determined that CFRs represent an interaction between platelets and the clotting system, and damaged endothelial cells in narrowed or stenosed arterial walls. In addition, CFRs occur in human arteries which are narrowed by atherosclerosis, and the resulting periodic clot formation can cause chest pain or leg pain in patients with atherosclerotic narrowing of coronary or leg arteries. Finally, the CFRs due to platelet-mediated clotting can be exacerbated by further damage to the arterial wall.
- During the course of this study it was observed that when arterial wall was damaged initially by clamping the artery with a surgical clamp, platelet thrombi formed, and CFRs were produced. As a result of this observation, the following experiments were conducted to determine if direct infusion of an NO donor such as sodium nitroprusside can make a damaged arterial wall less thrombogenic.
- The following experiments demonstrate that nitric oxide-donating compounds, such as sodium nitroprusside and S-nitroso-BSA can be applied directly to damaged arterial surfaces (blood vessels) to inhibit platelet deposition and thrombus formation.
- In five anesthetized dogs, both carotid arteries were exposed. Two 3 FR USCl catheters were prepared for arterial implantation. One catheter was soaked in a 5% BSA solution for 12 hours, while the other was soaked in a 5% BSA solution which also contained 1 mg/ml of sodium nitroprusside. One each of the two coated catheters was placed randomly in the right or left carotid artery of the dog through a small incision sealed with a 6-0 proline suture. The catheters were advanced for 5 cm into the arterial lumen. The dogs were not given any heparin. The catheters were removed 6-8 hours later and examined for clotting on the catheter wall and at the site where the catheter entered the carotid wall. There was considerably more clotting on the BSA-coated catheter compared to the catheter coated with BSA plus sodium nitroprusside.
- In five open-chested anesthetized dogs, the coronary artery was dissected out and instrumented for measuring CFRs as previously described. The inventors observed that intravenous infusion of sodium nitroprusside directly into the artery (at a dose of between 4 and 10 μg/kg/min. for up to 30 minutes) resulted in a decrease in vivo platelet activity and CFRs were abolished. In addition, the circulating nitroprusside appeared to coat the damaged arterial wall, thus making it less thrombogenic. The CFRs were observed to continue until the sodium nitroprusside infusion had been given for 15 minutes. Then, the CFRs ceased, which suggests that the platelets were no longer adhering to the arterial wall. The sodium nitroprusside intravenous infusion was then stopped. The direct in vivo inhibition of circulating platelets normally stops within 10-15 minutes. However, after the in vivo inhibition of the platelets by the presence of circulating sodium nitroprusside was gone, the CFRs did not return. This indicates that the previously circulating sodium nitroprusside left a protective coating on the previously damaged arterial surface. The inventors have termed this protective coating process “passivation.”
- The inventors then showed that if one gently rolls the artery between the fingers, the CFRs return immediately. This suggests that the protective coating provided by sodium nitroprusside, has been removed from the internal surface of the previously damaged artery, thus, allowing platelets to resume interaction with the unprotected arterial wall and produce CFRS. In order to demonstrate that this was a local phenomenon affecting the damaged artery, and not due to a systemic effect inhibiting all the circulating platelets, the following experiments were performed.
- Open-chest anesthetized dogs were studied. In the dog, and also in humans, the two major branches of the main left coronary artery which are approximately equal in size, are called the left circumflex (circ) and the left anterior descending (LAD), coronary arteries. In the experiments, both branches were instrumented with a flow measuring device, were given equal arterial wall damage (endothelial and medial damage), and had encircling plastic cylinders placed on them to produce equal amounts of narrowing or stenosis.
- Following the induction of damage in both coronary arterial branches, CFRs were observed in both the LAD branch and the circumflex branches of the left coronary artery, indicating that the circulating platelets were adhering to both the narrowed part of the damaged circumflex artery and also to the damaged LAD artery. Sodium nitroprusside (10 mg/kg) was then infused directly into the circumflex coronary artery over 30 seconds. Following the infusion, the CFRs in the circ disappeared while they continued in the LAD coronary artery. This demonstrates that the sodium nitroprusside had a local protective effect on the damaged circ, and that the dose of sodium nitroprusside was not high enough to affect circulating platelets or, after recirculation dilution, to protect the damaged LAD wall.
- CFRs due to platelets adhering and aggregating on the damaged arterial walls were observed in both arteries, each independent of the other. Therefore, by injecting the sodium nitroprusside into the circumflex branch, the inventors were able to coat this damaged artery directly. In addition, the circulating concentration of sodium nitroprusside remaining after local infusion appears to be too low to have a systemic effect on platelets. Thus, the inventors demonstrated that the protective effect exerted by localized application of sodium nitroprusside is a local effect, and can be applied directly to protect particular segments of a damaged artery.
- Experiments identical to those described above were repeated using a nitric oxide-bovine serum albumin adduct (BSA-NO) (with approximately 0.5 mM NO concentration) given selectively into the circumflex coronary artery. The inventors show that using BSA-NO as the NO adduct provides better passivation and the effect lasts longer. When the protective BSA-NO coating has been on the damaged arterial wall for 4 to 5 hours, the BSA can be recharged with new NO molecules by infusing sodium nitroprusside intravenously (5-10 μg/kg for 20 minutes) or directly into the coronary artery (10 mg/kg for 30 seconds).
- pS-NO-BSA Treats Vascular Injury
- Materials: Sulfanilamide and N-(1-naphthyl) ethylenediamine dihydrochloride were purchased from Aldrich Chemical Co., Milwaukee, Wis. Sodium bicarbonate, sodium chloride, sodium phosphate, sodium nitrite, potassium phosphate-monobasic, 40% formaldehyde solution and sucrose were purchased from Fischer Scientific, Fairlawn, N.J. Sephadex G25 was purchased from Pharmacia, Piscataway, N.J., IODO-BEADS were purchased from Pierce, Rockford, Ill. and Na[ 125I] from New England Nuclear, Boston, Mass. [111In] oxine was purchased from Amersham, Arlington Heights, Ill. Monoclonal mouse anti-proliferating cell nuclear antigen was purchased from Dako A/S, Denmark. All other chemicals were purchased from Sigma Chemical Co., St. Louis, Mo.
- Citrate-phosphate-dextrose anticoagulant solution (CPD) contained 10 mM citric acid, 90 mM trisodium citrate, 15 mM NaH 2PO4H2O, and 142 mM dextrose, pH 7.35. Tris-buffered saline consisted of 10 mM tris[hydroxymethyl]aminoethane, pH 7.4, and 150 mM NaCl. Acid-citrate-dextrose contained 100 mM trisodium citrate and 142 mM dextrose, pH 6.5. Phosphate-buffered saline contained 10 mM sodium phosphate and 150 mM NaCl, pH 7.4.
- Synthesis of S-nitroso-species: S-NO-BSA was synthesized as previously described. Fatty acid-free bovine serum albumin (200 mg/ml) was exposed to a 1.4 molar-fold excess of NaNO 2 in 0.5 N HCl for 30 minutes at room temperature and neutralized with an equal volume of TBS and 0.5 N NaOH. Thiolated bovine serum albumin (pS-BSA) was prepared after Benesch and Benesch. Briefly, essential fatty acid-free bovine serum albumin (50 mg/ml) was dissolved in water with N-acetyl-homocysteine thiolactone (35 mM) and 0.05% polyethylenesorbitan monolaurate. Equimolar silver nitrate was slowly added at room temperature over 90 minutes at pH 8.5. Excess thiourea (70 mM) was added and the pH lowered to 2.5. Excess silver nitrate was removed by
Dowex 50 chromatography with the mobile phase consisting of 1 M thiourea, pH 2.5, and excess thiourea was removed by Sephadex G-25 chromatography. pS-BSA was prepared within two days of nitrosylation and stored at 4″C. Nitrosylation of PS-BSA was accomplished with 3.6 mM NaNO2 in 0.5 HCl for 30 minutes at room temperature. The solution was adjusted to pH 4.0 with 0.5 NAOH after nitrosylation. In platelet binding studies, 0.1 mM EDTA was added to pS-BSA prior to nitrosylation. - The content of S-nitrosothiol was determined by the method of Saville (Wistow et al., J. Nuci. Med. 19:483-487, 1978). Protein content was determined using the method of Lowry and colleagues (Marcus Salier, FASEB.J., 7:516-522, 1993).
- Preparation of [ 125I]-labeled S-NO-BSA and [111In] labeled platelets: BSA (0.1 mg/ml) was combined with two IODO-BEADS and 0.1 mCi of Na[125I]. The solution was incubated for 45 minutes and unincorporated Na[125I] was removed by gel filtration with Sephadex G25 equilibrated with TBS containing 0.1 mg/ml BSA. [125I] BSA had a specific activity of 5.7×106 cpm/μg and was S-nitrosylated as described for unlabelled BSA to achieve a final specific activity of 4×104 cpm/mg BSA. [111In]-labeling of platelets was performed after the method of Wistow and colleagues.
- Animal Preparation: All animal preparations were performed within the institutional guidelines of the Brockton/West Roxbury Department of Veteran Affairs Medical Center and Boston University Medical Center, and in accordance with the guiding principles of the American Physiological Society. New Zealand white rabbits (3.5-4.2 kg) of either sex were premedicated with 5 mg/kg intramuscular (IM) xylazine hydrochloride (Miles Pharmaceuticals, Shawnee Mission, Kans.), and 0.1 mg/kg subcutaneous (SC) atropine sulfate (Lyphomed, Deerfield, Ill.) fifteen minutes prior to the induction of anesthesia. Anesthesia was induced with 40 mg/kg IM ketamine hydrochloride (Fort Dodge Laboratories, Fort Dodge, Iowa) and 5 mg/kg IM acepromazine maleate (Aveco Company, Inc., Fort Dodge, Iowa). Additional doses of ketamine hydrochloride were administered as necessary to maintain anesthesia. For survival studies, 100,000 U penicillin G (Apothecon of Bristol-Myers Squibb, Princeton, N.J.), was administered IM perioperatively. The skin over the femoral arteries was next infiltrated with 1% lidocaine (Astra Pharmaceuticals, Inc., Westborough, Mass.) and the common femoral arteries were exposed from the inguinal ligament to the superficial femoral artery. Arteries were cleared of connective tissue, side branches were ligated, and the superficial femoral artery was suspended with silk ties. A 1.5-to-2.0 cm length of femoral artery was isolated from the circulation proximally and distally with neurosurgical microaneurysm clips. The superficial femoral artery was cannulated with a 2 F Fogarty balloon catheter (American Edwards Laboratories, Santa Ana, Calif.) that was passed into the isolated segment of femoral artery. The balloon was inflated with sufficient air to generate slight resistance and withdrawn three times. A 20 g angiocath was then inserted in the arteriotomy and 1 ml of 25.8 mg/ml PS-NO-BSA or 49.2 mg/ml S-NO-BSA was administered over 15 minutes. The contralateral femoral artery was prepared identically and an appropriate control (25.8 mg/ml pS-BSA, 49.2 mg/ml BSA or 0.66 mg/ml sodium nitroprusside) was administered. For binding studies, 0.5 ml of [ 125I]-labeled nitrosylated albumin or control was administered. Following administration of the agent, the superficial femoral artery was ligated and flow reestablished. Sham-operated animals underwent surgical exposure and sidebranch ligation, but no balloon injury was performed or local delivery administered. The area of balloon injury was marked by surgical staples in the adjacent muscle fascia. For chronic studies, the incision was closed with subcuticular absorbable suture and the animals allowed to recover. For acute studies, blood was allowed to circulate through the treated areas for 15 minutes prior to vessel harvest. In some experiments, a distant control vessel, the right carotid artery, was isolated and harvested without any other manipulation.
- cGMP analysis: Whole blood was obtained from fasting human volunteers and platelet-rich plasma (PRP) was prepared by centrifugation. Platelet counts were determined using a Coulter counter model ZM (Coulter Diagnostics, Hileah, Fla.). After balloon injury and treatment with pS-NO-BSA or PS-BSA, arterial segments were harvested and 2-mm segments were incubated with 100 μl of PRP containing 10 μM isobutylmethylxanthine. After 1 minute, an equal volume of ice-cold 10% trichloroacetic acid was added to each aliquot and the sample vortexed. Enzyme-linked immunoassay of cGMP was then performed (Cayman Chemical Company, Ann Arbor, Mich.). Separate 2 mm vessel segments were also assayed for tissue cGMP after treatment with ice-cold 10% trichloroacetic acid and sonication (Heat Systems-Utrasonics, Inc., Plainview, N.Y.).
- Tissue processing and analysis: On the 14th postoperative day, animals were euthanized with 120 mg/kg intravenous sodium pentobarbital (Anpro Pharmaceuticals, Arcadia, Calif.), and the abdominal aorta and inferior vena cava interrupted by silk ties. A 7F plastic cannula was inserted into the abdominal aorta and the vessels perfused clear with saline followed by fixation at 100 mm Hg pressure with 10% buffered formalin. The vessels were stored in 10% buffered formalin and the samples paraffin-embedded and microtome-sectioned. Six sections were made along the length of each injured segment of vessel and stained with Verhoeff s stain for elastic tissue. The areas within the lumen, internal elastic membrane, and external elastic membrane were measured by a blinded observer using computerized digital planimetry (Zeiss, West Germany). The areas within the lumen, internal elastic membrane and external elastic membrane were analyzed. Sections with obstructive thrombus impairing analysis were discarded.
- In a separate set of animals, vessels were perfusion-fixed with 10% buffered formalin seven days after injury and processed for analysis of proliferating cells within 12 hours as described above. Sections were stained for proliferating cell nuclear antigen and adjacent sections were stained with hematoxylin and eosin. Five representative sections from each segment were examined. Total nuclei were counted from the hematoxylin and eosin slides and percent PCNA positive cells were defined as the number of PCUA-positive nuclei divided by the total number of nuclei multiplied by 100.
- [ 111In]-labeled platelet studies: Animals were prepared and treated with pS-NO-BSA or pS-BSA as described above. Five minutes prior to the release of the vascular clamps, autologous [111In]-labeled platelets were infused via the femoral vein, and the blood was allowed to recirculate for 15 minutes prior to harvest. Platelet adhesion was quantified with a gamma counter (Capintec Instruments, Inc., Pittsburgh, Pa.) and normalized to tissue wet weight.
- Statistics. Data are presented as mean+/−SEM. Treatments were administered in a paired fashion with one femoral artery receiving S-nitrosylated protein and the contralateral artery receiving the appropriate non-nitrosylated control. Sodium nitroprusside was given to a separate set of animals. Data were tested for normality using the Kolmogorov-Smimov algorithm and for equal variance with the Levene Median test. Normally distributed variables were compared using the paired t-test and non-normally distributed variables using the Wilcoxon sign-ranks. test or the Mann-Whitney rank-sum test. Non-paired data were compared using an independent t-test. Statistical analysis of dose-response was performed by one-way analysis of variance. Statistical analysis of dose-response was performed by one-way analysis of variance. Statistical significance was accepted if the null hypothesis was rejected with P<0.05.
- Results
- NO content of S-nitrosothiol species: The synthesis of S-NO-BSA resulted in a final protein concentration of 755 μM (49.2 mg/ml) and yielded a displaceable NO content of 230±60 μM, yielding a stoichiometry of 0.3±0.08 moles NO/mole albumin (n=11). Thiolation and S-nitrosylation of BSA produced a final protein concentration of 391 μM (25.8 mg/ml, n=8) and yielded a 5.9-fold increase in displaceable NO content with a maximum content of 2300 μM displaceable NO as compared to S-NO-BSA. Local delivery consisted of 1 ml of either S-nitrosylated protein or control solution instilled in the lumen of the femoral artery.
- S-NO-BSA binding: The binding of locally and systemically delivered [ 125I]-labeled S-NO-BSA to balloon-injured rabbit femoral artery is shown in FIG. 3. Compared with systemic administration to an injured artery, local delivery of [121I]-S-NO-BSA to the site of injury was associated with a 26-fold increase in binding (140.4+/−3.9×103 cpm/gm vs. 5.4+/−0.9×103 cpm/gm, n=4; P=0.029). Endothelial denudation facilitated S-NO-BSA binding as systemic administration of [121I]-S-NO-BSA resulted in significant deposition at the site of balloon injury compared to an uninjured control vessel exposed to systemically delivered [125I]-S-NO-BSA (5.4±0.9×103 cpm/gm vs. 3.0+/−0.3 cpm/gm, n=4; P=0.038).
- pS-NO-BSA effect on platelet binding to injured vessel: Since platelet adhesion to the injured arterial surface is important in the proliferative response to injury, we investigated the effects of pS-NO-BSA on platelet deposition after balloon injury, the results of which are shown in FIG. 4. The local administration of pS-NO-BSA reduced the adhesion of [ 111In]-labeled platelets to the injured vessels over four-fold compared to control (71.3+/−40.4×103 cpm/gm, n=6, vs. 16.3+/−6.2×103 cpm/gm, n=6, P=0.031).
- S-NO-BSA and pS-NO-BSA effects on neointimal proliferation: Neointimal proliferation after local delivery of S-nitrosylated proteins and appropriate controls were evaluated by comparing absolute neointimal area and neointima/media ratios, and are shown in FIGS. 5A and 5B, respectively. The administration of S-NO-BSA (containing 0.3±0.1 moles displaceable NO per mole albumin) did not significantly reduce neointimal area (2.54+/−0.33×10 5 μm2 vs. 1.83+/−0.18×105 μm2, n=15) or neointima/media ratio (1.07+/−0.167 vs. 0.72+/−0.084, n=15) 14 days after balloon injury, although a trend was noted. By contrast, the administration of pS-NO-BSA (containing 3.2±1.3 moles displaceable NO per mole albumin) with a greater displaceable NO content did reduce neointimal area and neointima/media ratio by 81% (2.24+/−0.328×105 μm2 vs. 0.41+/−0.11×105 μm2, n=7, P=0.022) and 77% (0.85+/−0.122 vs. 0.196+/−0.66, n=7, P=0.025), respectively. The neointimal area (0.23+/−0.07×105 μm2) and neointima/media ratio (0.116+/−0.041, n=7) in the sham operated animals were comparable to those of the vessels treated with pS-NO-BSA. Using relatively high concentrations of a conventional No donor, SNP (2300 .mu.M), we noted a trend towards inhibition of neointimal proliferation in both neointimal area (1.47+/−4.15×105 μM2, P=0.056) and neointima/media ratio (0.603+/−0.19, n=5, P=0.11) compared to control.
- pS-NO-BSA effects on cellular proliferation: Mouse monoclonal antibody staining against PCNA was used to assay the degree of SI-phase activity at 7 days after injury. At this time, no difference in the percent of proliferating cells was noted between vessels treated with pSBSA (30.1%+/−5.9, n=5) and vessels treated with pS-NO-BSA (37.8%+/−5.9, n=6). Similarly, no significant difference was noted in the neointimal proliferation of the pS-NO-BSA-treated vessels compared to the pS-BSA-treated controls (neointimal area: 0.124±0.06×10 5 μM2 vs. 0.258+/−0.19×105 μM2, n=5, P=0.54, and neointima/media ratio: 0.032+/−0.005 vs. 0.068+/−0.027, n=5, P=0.15).
- Displaceable NO effect on neointimal proliferation: Since S-NO-BSA exhibited a trend toward inhibition and pS-NO-BSA reduced neointimal proliferation, we examined the relationship between the amount of displaceable NO and the extent of neointimal response following vascular injury, and the results are presented in FIGS. 6A and 6B. There was a significant inverse relationship between displaceable NO and neointimal proliferation as quantified by absolute neointimal area (P<0.001) (FIG. 6A) and the neointima/media area ratio (P<0.001) (FIG. 6B).
- pS-NO-BSA treated vessel effect on platelet cGMP and vessel cGMP: NO inhibits platelets and relaxes smooth muscle cells through a cGMP-mediated mechanism. We tested the ability of pS-NO-BSA-treated vessels to deliver No to platelets, and these results are shown in FIG. 7. Platelet cGMP was significantly increased after a one-minute exposure to pS-NO-BSA-treated vessels compared to PS-BSA controls (19.9+/−3.3 vs 4.11+/−0.9
pmol 108 platelets, n=14, P<0.001). In addition, vessel CGMP levels were also elevated after treatment with pS-NO-BSA compared to PS-BSA control (0.48+/−0.46 vs 0.283+/−0.23 pmol/mg protein, n=3) suggesting a direct effect on vascular smooth muscle cells, as well. - Discussion
- We have previously demonstrated that No combines with protein sulfhydryl groups to form stable, biologically active molecules with cGMP-dependent vasodilatory and antiplatelet properties, both in vitro and in vivo (Stamler et al., Proc. Natl. Acad. Sci. U S A., 89:444-448, 1992); (Weldinger et al., Circulation, 81:1667-1679, 1990). The data presented here demonstrate that serum albumin, after S-nitrosylation, can bind avidly to balloon-injured femoral arteries and inhibit neointimal proliferation. This phenomenon is associated with diminished platelet deposition at the site of injury through a cGMP-dependent mechanism. Moreover, the extent of inhibition of neointima formation is directly related to the quantity of displaceable No carried by albumin.
- The endothelium is essential for vascular integrity, control of thrombosis, (Clowes et al., Lab. Invest. 49:327-333, 1983); (Rees et al., Proc. Natl. Acad. Sci. USA. 86:3375-3378, 1989) and the regulation of intimal growth (Kubes et al., Proc. Nati. Acad. Sci. USA, 88:4651-4655, 1991). The endothelium serves these functions by the production of locally active effector molecules including EDRF, a compound that has been identified as NO or a closely related molecule. EDRF is responsible, in part, for many biologic actions via the activation of guanylyl cyclase, including relaxation of vascular smooth muscle, (Myers et al., Nature (Lond.), 345:161-163, 1990); (Kubes and Granger, Am. J. Physiol. 262:H611-H615, 1993) inhibition of platelets, (Radomski et al., Br. J Pharmacol, 92:181-187, 1987) control of leukocyte adhesion to the subendothelium, (Reidy, Lab. Invest., 5:513-520, 1985) modulation of vascular permeability, (Groves et al., Circulation, 87:590-597, 1993) and, perhaps, local control of vascular smooth muscle growth. Since balloon angioplasty removes the endothelium from arterial smooth muscle, these endothelial functions are lost during the procedure. In particular, removal of the endothelium and damage to the smooth muscle cells are associated with intimal proliferation (McNamara et al., Biochem. Biophys. Res. Commun., 193:291-296, 1993). The mechanism for this response is complex and involves platelet deposition and activation, cytokine elaboration, smooth muscle cell migration and proliferation, and extra-cellular matrix production. After balloon injury, the endothelium regenerates. rapidly but is often dysfunctional, and presumably unable to maintain an adequate antithrombotic, vasodilating, and antiproliferative phenotype (Saville, Analyst 83:670-672, 1958).
- NO donors have been used with some success in the setting of balloon injury to produce decreases in intimal proliferation and in platelet deposition. In the porcine carotid model, Groves and colleagues (Kubes and Granger, Am. J. Physiol. 262:H611-H615, 1993) demonstrated reduced platelet adhesion and thrombus formation locally after systemic administration of SIN-1, a spontaneous NO donor and metabolite of molsidomine. These authors showed a 2.3-fold reduction in platelet deposition without any significant hemodynamic changes. Because administration of this agent was associated with an increase in template bleeding time and in platelet cGMP, it is possible that SIN-1 exerted its effects through systemic platelet inhibition. A preliminary report from the ACCORD trial also suggests that NO donors might be effective adjuncts for balloon angioplasty in humans (The ACCORD Study Investigators, J. Am. Coll. Cardiol. 23:59A. (Abstr.), 1994). This multicenter study evaluated SIN-1 acutely and molsidomine chronically over six months with diltiazem treatment as a control arm in patients undergoing balloon angioplasty. The loss index and binary restenosis rate were significantly improved in the NO treatment group, although the rate loss was not significantly different between groups. Chronic supplementation with L-arginine, a precursor of endothelium-derived nitric oxide, has been shown to reduce intimal hyperplasia in rabbit thoracic aorta (Cayatte et al., Arterioscler. Thromb., 14:753-9, 1994) and the rat carotid artery (von der Leven et al., Clin. Res., 42: 180A. (Abstr.), 1994). By contrast, administration of an inhibitor of NO synthase, N G-nitro-L-arginine methyl ester, accelerated neointimal formation in the setting of balloon injury (Taubman, wall injury., Thromb. Haemost., 70:180-183, 1993).
- von der Leven and Dzau recently reported (Zeiher et al., Circulation, 88:1-367. (Abstr.), 1993) successful transfection of the constitutive endothelial-type nitric oxide synthase (eNOS) gene in a rat carotid injury model. In that preliminary study, eNOS incorporation and NO production were demonstrable four days after transfection, and neointimal proliferation was partially inhibited two weeks after injury and transfection. In our study, S-nitrosylated albumin was administered acutely and, given its half-life of 12 hours, (Benesch and Benesch, Proc. Natl. Acad. Sci. USA, 44:848-853, 1958 it is unlikely that significant amounts of displaceable NO were still present four days after injury. The effectiveness of both early and late administration of NO suggests that NO may influence the complex response to injury by multiple mechanisms. In addition to modifying the development of platelet thrombus and the release of growth factors from platelets, local delivery of S-nitrosothiols could modulate gene transcription in vascular smooth muscle cells (Lefer et al., Circulation, 88:1-565. (Abstr.), 1993) as well as smooth muscle metabolism following injury.
- Our data demonstrate a profound limitation of neointimal proliferation after a single, local administration of a durable, potent S-nitrosothiol. Antiplatelet activity may explain these findings, in part, since we observed a four-fold reduction in platelet deposition to injured arterial segments after treatment with pS-NO-BSA. Similarly, we also demonstrated direct platelet inhibition by the pS-NO-BSA-treated vessel rings. Inhibition of platelet binding would result in many effects that are likely to reduce the proliferative response after injury. For example, platelet adhesion and aggregation is. associated with the release of PDGF, basic fibroblast growth factor, epidermal growth factor, and transforming growth factor-beta, potent stimuli for smooth muscle cell proliferation and matrix production. pS-NO-BSA could also exert its effect by modulating leukocytes though downregulated expression of either monocyte chemoattractant protein-I (Hanke et al., Circ. Res., 67:651-659, 1990) or adhesion molecules (Lefer et al., Circulation, 88:1-565. (Abstr.), 1993). We cannot exclude a direct inhibitory effect of NO on vascular smooth muscle gene expression, migration, proliferation or synthesis of extracellular matrix.
- The demonstration of unaltered PCNA-positive cells in vessels treated with pS-NO-BSA compared to control vessels is intriguing. Hanke demonstrated significant DNA synthesis in the neointima and media of a rabbit carotid model using electrical stimulation. Maximal DNA synthesis occurred at approximately seven days (Hanke et al., Circ. Res., 67:651-659, 1990) and lasted until at least fourteen days. Our observations suggest a mechanism other than the inhibition of local cell replication by which to explain the inhibition of neointimal proliferation in the rabbit injury model. Such mechanisms could include an early effect on vascular smooth muscle cell migration, transient inhibition of DNA synthesis which is not evident on day seven after injury, inhibition of extracellular matrix production, or inhibition of another factor(s) required for neointima formation.
- These findings have several implications for the treatment of human disease. Mechanical removal of the endothelium abolishes the vasodilator responses to endothelium-dependent vasoactive stimuli, while leaving the vasoconstrictor effects of agonists to smooth muscle unopposed (Furchgott Zawadzki, Nature (Lond.). 288-373-376, 1980). This process occurs with balloon angioplasty especially at sites where platelet thrombus is noted (Uchida et al., Am. Heart. J., 117:769-776, 1989); (Steele et al., Circ. Res., 57:105-112, 1985). The strategy of local replacement of an important endothelial product as therapy for acute thrombotic phenomena and restenosis following angioplasty is, thus, suggested by our study.
- In summary, our results demonstrate that a stable NO adduct of serum albumin binds avidly to balloon-injured subendothelium when delivered locally. When modified to carry multiple NO groups, pS-NO-BSA markedly decreases neointimal proliferation after balloon injury. Local delivery of this molecule decreases platelet adhesion to the injured subendothelium and directly inhibits the platelet, interrupting a common pathway through which growth responses are initiated. These results support the hypothesis that local supplementation of a long-acting NO donor can favorably modulate vascular injury. The implications of these findings suggest that local delivery of S-nitrosothiols may be an effective treatment for disease states marked by abnormal or absent endothelium, including restenosis after angioplasty.
- Porcine Angiographic Stenosis Model
- Pigs were subjected to coronary balloon-injury using standard methods, in accordance with the protocol illustrated in FIG. 8. A perforated drug delivery balloon catheter was used at the time of balloon injury for infusion of polythiolated, polynitrosated albumin and with albumin control, each of which were infused at a concentration of 1.5 μM for a period of 15 minutes. The balloon of the catheter was then deflated and the catheter was removed. Thereafter, another angiogram was performed to determine, at 30 minutes after injury, the degree of spasm. Then all catheters were removed and the incision sites were repaired. The animals were awakened and maintained with normal chow diets over the next four weeks. At the end of that period of time, the animals were again sedated, underwent coronary angiography to determine coronary stenoses at the site of angioplasty, after which they were euthanized by an overdose of pentobarbital. Their coronary arteries perfusion fixed with 100 mm Hg of perfusion pressure. They were fixed with formalin, harvested and sectioned for quantitative morphometric assessment of the lumen diameter, the neointimal dimension and cross-section, as well as the neointimal area. The arteries were stained with hematoxylin and eosin. The neointima to lumen diameter ratio was determined and is illustrated by comparison in FIG. 9.
- In this study, a number of normal cholesterolomic pigs were subjected to angioplasty and the effect on their coronary artery was evaluated in groups which received pS-NO-BSA and which received pS-BSA as a control or placebo. Four weeks after angioplasty, the animals were sacrificed, their coronary arteries were recovered with perfusion fixation of the artery at autopsy.
- FIG. 9 is a histogram which illustrates the diameter (mm) of the neointimal lumen of 14 normocholesterolemic pigs which were subjected to a balloon angioplasty which induced injury of the right coronary artery. Thereafter, they received 1.5 μM pS-NO-BSA or pS-BSA as a control.
- This measurement was made at four weeks into the protocol by coronary angiography. The animals were sedated, catheters were placed in the coronary ostea and radiocontrast fluid was infused. The angiograms were recorded and subsequently processed by a computer-driven quantitative coronary angiography algorithm to determine precisely the lumen diameter. The degree of stenosis represents the percentage reduction in the lumen diameter compared with a reference segment proximal to the area of stenosis using standard methods. The results of this are illustrated in FIG. 10.
- FIG. 10 is a histogram which illustrates a degree of coronary stenosis observed at four weeks after angioplasty in pigs which received 1.5 μM pS-NO-BSA or pS-BSA as a control.
- This measurement was made during the initial balloon injury procedure. Within 30 minutes following the procedure, the animals underwent coronary angiography, coronary catheters were placed in the coronary ostea, radiocontrast was infused into the coronary arteries and measurements were made of the degree of so-called “recoil spasm” that existed at the point of angioplasty. The degree of spasm or recoil was defined quantitatively, again using the computer-driven quantitative coronary angiography algorithm that compared the segment at the site of balloon injury with a proximal segment that was uninjured as a reference standard. The results are illustrated graphically in FIG. 11.
- FIG. 11 is a histogram which illustrates the extent of coronary spasm induced distal the site of injury as compared to the pre-existing base line in pigs which received 1.5 μM pS-NO-BSA or pS-BSA as a control.
- Next, a quantitative measurement was made by morphometric assessment following autopsy and after perfusion fixation of the vessel to determine lumen diameter at four weeks. The results are illustrated in FIG. 12.
- FIG. 12 is a histogram which illustrates the inner-diameter of the lumen of the right coronary artery of pigs four weeks after they received 1.5 μM pS-NO-BSA or pS-BSA as a control.
- Coating Palniaz-Schatz Stents with pS NO-BSA
- The experiments recorded here were performed in order to determine: whether this pS NO-BSA would adhere to the metallic surface of a Palmaz-Schatz stent; whether there would be enough nitric oxide available to inhibit platelet adhesion and aggregation near the metallic surface; whether coating of a Palmaz-Schatz stent with pS NO-BSA would significantly reduce the deposition of Indiumn 111 labeled platelets when placed in the carotid arteries of pigs; whether coating a Palmaz-Schatz stent would decrease the degree of anticoagulation needed to maintain patency; and whether the coating would reduce the degree and severity of neointimal hyperplasia leading to restenosis.
- Palmaz-Schatz stents were dip-coated in 800-1000 μM SNO-BSA three times for 10 minutes followed by 10 minutes of air drying time. Then, one week later, three coated stents were immersed in platelet rich plasma (PRP) for 2 minutes. A control uncoated stent was also immersed in another aliquot of the same PRP.
- The increase in platelet cyclic GMP levels was determined and is shown in Table 1
TABLE 1 Cyclic GMP Levels in PRP Exposed for 2 Minutes to pS NO-BSA Coated and Uncoated Palmaz-Schatz Stents (P moles CGMP/108 platelets) Conc of NO (Saville Rx) A B C D 500 μM 7.2 6.8 6.9 6.3 7.0 6.0 6.8 4.6 2.8 2.8 2.4 1.7 800 μM 5.8 5.6 5.9 3.9 10.4 11.0 10.8 8.5 1000 μM 4.6 4.9 5.7 1.9 6.6 5.9 6.3 3.0 5.9 5.1 5.7 2.9 - The three columns on the left (columns A through C) show the levels of cGMP in the platelets which were exposed to a coated stent and the column on the right (Column D) shows the level of cyclic GMP in the same PRP which was exposed to the uncoated stent.
- A coated and an uncoated stent were placed in the carotid arteries of pigs, one in each carotid artery. Then Indium 111 labeled platelets were circulated for four hours. At the end of the four hours, the arteries containing the stents were removed and placed in a Gamma counter well. The counts on stents indicate the degree of platelet deposition on each stent. The data is shown in Table 2.
TABLE 2 IndiumIII Labeled Platelet Counts on S-No-BSA Coated Versus Uncoated Palmaz-Schatz Stents P S NO-BSA Coated Uncoated Ratio 59,760 1,076,300 18 94,000 246,000 2.6 126,400 868,600 6.0 61,500 347,400 5.7 120,000 684,000 5.6 88,600 264,462 3.0 135,000 590,000 4.1 14,160 43,900 3.2 - One coated and one uncoated stent was placed in each of the two carotid arteries under sterile conditions in 10 pigs. They will be followed for 28 days and then the stented carotid arteries will be removed. They will be examined histologically for the degree of neointimal hyperplasia.
Claims (56)
1. A method for preventing or inhibiting platelet deposition or for alleviating restenosis in a patient in need thereof comprising administering at least one nitric oxide adduct to a damaged vascular surface, wherein the damaged vascular surface is the interior surface of a blood vessel in which damage to the endothelium or subendothelium, narrowing or stenosis of the vessel has occurred, and wherein the nitric oxide adduct is a sodium nitroprusside, a nitrosothiol, a nitrate, a nitrite, a nitrosated amino acid, a iron-nitrosyl compound, a sydnonimine, or a furoxan.
2. The method of claim 1 , wherein the nitric oxide adduct is administered via a medical device.
3. The method of claim 1 , wherein the medical device comprises a catheter, a prosthetic heart valve, a synthetic heart valve, a stent, an intubation tube, an arteriovenous shunt or an artificial valve.
4. The method of claim 1 , wherein the nitric oxide adduct is administered to the damaged vascular surface by local administration.
5. The method of claim 1 , wherein the nitric oxide adduct is administered to the damaged vascular surface through the lumen of an intraarterial or intravenous catheter.
6. The method of claim 2 , wherein the nitric oxide adduct is coated on all or a portion of the medical device.
7. The method of claim 6 , wherein the medical device comprises a polymer matrix and the nitric oxide adduct is bound to or admixed with the polymer matrix, wherein the polymer is nylon, polyethylene perthalate or polytetrafluoroethylene.
8. The method of claim 7 , wherein the polymer matrix provides for sustained release of the nitric oxide adduct.
9. The method of claim 1 , further comprising administering at least one anti-thrombogenic compound or a therapeutic agent.
10. The method of claim 9 , wherein the anti-thrombogenic compound is heparin, hirudin, an analog of hirudin, warfarin, aspirin, indomethacin, dipyridamole, prostacyclin, prostaglandin-E, a sulfinpyrazone, a phenothiazine, a RGD peptide, a RDG peptide mimetic, an agent that blocks platelet glycoprotein IIb-IIIa receptors, ticlopidine or clopidogrel.
11. The method of claim 9 , wherein the therapeutic agent is a monoclonal antibody, a fragment of recombinant human protein, a viral vector or an anti-sense molecule.
12. The method of claim 1 , wherein the nitric oxide adduct delivers at least one of a nitrosonium ion or a nitroxyl ion under physiological conditions.
13. The method of claim 1 , wherein the nitrosothiol is a nitrosodithiol or a long carbon chain lipophilic nitrosothiol.
14. The method of claim 1 , wherein the nitrate is a thionitrate.
15. The method of claim 1 , wherein the nitrite is a thionitrite.
16. The method of claim 1 , wherein the nitrate is an organic nitrate.
17. The method of claim 16 , wherein the organic nitrate is nitroglycerin.
18. The method of claim 1 , wherein the nitrosated amino acid is a nitroso-protein.
19. The method of claim 18 , wherein the nitroso-protein comprises at least one thiol group.
20. The method of claim 18 , wherein the nitroso-protein is a nitroso-enzyme, a nitroso-transport protein, a nitroso-heme protein or a biologically protective nitroso-protein.
21. The method of claim 18 , wherein the nitroso-protein is a S-nitroso-tissue-type plasminogen activator, a S-nitroso-cathepsin, a S-nitroso-lipoprotein, a S-nitroso-hemoglobin, a S-nitroso-albumin, a S-nitroso-immunoglobulin or a S-nitroso-cytokine.
22. The method of claim 18 , wherein the nitroso-protein is polynitrosated.
23. The method of claim 18 , wherein the nitroso-protein is mononitrosated.
24. The method of claim 18 , wherein the nitroso-protein is S-nitroso-albumin.
25. The method of claim 24 , wherein the S-nitroso-albumin is polynitrosated.
26. The method of claim 24 , wherein the S-nitroso-albumin is mononitrosated.
27. The method of claim 24 , wherein the S-nitroso-albumin is S-nitroso-bovine serum albumin.
28. The method of claim 24 , wherein the S-nitroso-albumin is S-nitroso-human serum albumin.
29. A method for treating or preventing a myocardial infarction, thrombophlebitis, thrombocytopenia or a bleeding disorder in a patient in need thereof comprising administering at least one nitric oxide adduct to a damaged vascular surface, wherein the damaged vascular surface is the interior surface of a blood vessel in which damage to the endothelium or subendothelium, narrowing or stenosis of the vessel has occurred, and wherein the nitric oxide adduct is a sodium nitroprusside, a nitrosothiol, a nitrate, a nitrite, a nitrosated amino acid, a iron-nitrosyl compound, a sydnonimine, or a furoxan.
30. The method of claim 29 , wherein the nitric oxide adduct is administered via a medical device.
31. The method of claim 30 , wherein the medical device comprises a catheter, a prosthetic heart valve, a synthetic heart valve, a stent, an intubation tube, an arteriovenous shunt or an artificial valve.
32. The method of claim 29 , wherein the nitric oxide adduct is administered to the damaged vascular surface by local administration.
33. The method of claim 29 , wherein the nitric oxide adduct is administered to the damaged vascular surface through the lumen of an intraarterial or intravenous catheter.
34. The method of claim 30 , wherein the nitric oxide adduct is coated on all or a portion of the medical device.
35. The method of claim 34 , wherein the medical device comprises a polymer matrix and the nitric oxide adduct is bound to or admixed with the polymer matrix, wherein the polymer is nylon, polyethylene perthalate or polytetrafluoroethylene.
36. The method of claim 35 , wherein the polymer matrix provides for sustained release of the nitric oxide adduct.
37. The method of claim 29 , further comprising administering at least one anti-thrombogenic compound or a therapeutic agent.
38. The method of claim 37 , wherein the anti-thrombogenic compound is heparin, hirudin, an analog of hirudin, warfarin, aspirin, indomethacin, dipyridamole, prostacyclin, prostaglandin-E, a sulfinpyrazone, a phenothiazine, a RGD peptide, a RDG peptide mimetic, an agent that blocks platelet glycoprotein IIb-IIIa receptors, ticlopidine or clopidogrel.
39. The method of claim 37 , wherein the therapeutic agent is a monoclonal antibody, a fragment of recombinant human protein, a viral vector or an anti-sense molecule.
40. The method of claim 29 , wherein the nitric oxide adduct delivers at least one of a nitrosonium ion or a nitroxyl ion under physiological conditions.
41. The method of claim 29 , wherein the nitrosothiol is a nitrosodithiol or a long carbon chain lipophilic nitrosothiol.
42. The method of claim 29 , wherein the nitrate is a thionitrate.
43. The method of claim 29 , wherein the nitrite is a thionitrite.
45. The method of claim 29 , wherein the nitrate is an organic nitrate.
45. The method of claim 45 , wherein the organic nitrate is nitroglycerin.
46. The method of claim 29 , wherein the nitrosated amino acid is a nitroso-protein.
47. The method of claim 46 , wherein the nitroso-protein comprises at least one thiol group.
48. The method of claim 46 , wherein the nitroso-protein is a nitroso-enzyme, a nitroso-transport protein, a nitroso-heme protein or a biologically protective nitroso-protein.
49. The method of claim 46 , wherein the nitroso-protein is a S-nitroso-tissue-type plasminogen activator, a S-nitroso-cathepsin, a S-nitroso-lipoprotein, a S-nitroso-hemoglobin, a S-nitroso-albumin, a S-nitroso-immunoglobulin or a S-nitroso-cytokine.
50. The method of claim 46 , wherein the nitroso-protein is polynitrosated.
51. The method of claim 46 , wherein the nitroso-protein is mononitrosated.
52. The method of claim 46 , wherein the nitroso-protein is S-nitroso-albumin.
53. The method of claim 52 , wherein the S-nitroso-albumin is polynitrosated.
54. The method of claim 52 , wherein the S-nitroso-albumin is mononitrosated.
55. The method of claim 52 , wherein the S-nitroso-albumin is S-nitroso-bovine serum albumin.
56. The method of claim 52 , wherein the S-nitroso-albumin is S-nitroso-human serum albumin.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/253,977 US20030072783A1 (en) | 1993-09-17 | 2002-09-25 | Localized use of nitric oxide-adducts to prevent internal tissue damage |
| US10/646,713 US20040037836A1 (en) | 1993-09-17 | 2003-08-25 | Use of nitric oxide adducts |
| US11/819,513 US20070248676A1 (en) | 1993-09-17 | 2007-06-27 | Use of nitric oxide adducts |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12333193A | 1993-09-17 | 1993-09-17 | |
| US08/460,465 US6087479A (en) | 1993-09-17 | 1995-06-02 | Localized use of nitric oxide-adducts to prevent internal tissue damage |
| US09/433,550 US6174539B1 (en) | 1993-09-17 | 1999-11-04 | Localized use of nitric oxide adducts to prevent internal tissue damage |
| US09/621,610 US6471978B1 (en) | 1993-09-17 | 2000-07-21 | Localized use of nitric oxide-adducts to prevent internal tissue damage |
| US10/253,977 US20030072783A1 (en) | 1993-09-17 | 2002-09-25 | Localized use of nitric oxide-adducts to prevent internal tissue damage |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/621,610 Continuation US6471978B1 (en) | 1993-09-17 | 2000-07-21 | Localized use of nitric oxide-adducts to prevent internal tissue damage |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/646,713 Continuation US20040037836A1 (en) | 1993-09-17 | 2003-08-25 | Use of nitric oxide adducts |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030072783A1 true US20030072783A1 (en) | 2003-04-17 |
Family
ID=23828821
Family Applications (7)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/460,465 Expired - Lifetime US6087479A (en) | 1993-09-17 | 1995-06-02 | Localized use of nitric oxide-adducts to prevent internal tissue damage |
| US09/433,550 Expired - Fee Related US6174539B1 (en) | 1993-09-17 | 1999-11-04 | Localized use of nitric oxide adducts to prevent internal tissue damage |
| US09/621,610 Expired - Fee Related US6471978B1 (en) | 1993-09-17 | 2000-07-21 | Localized use of nitric oxide-adducts to prevent internal tissue damage |
| US09/661,190 Expired - Fee Related US6352709B1 (en) | 1993-09-17 | 2000-09-13 | Localized use of nitric oxide-adducts to prevent internal tissue damage |
| US10/253,977 Abandoned US20030072783A1 (en) | 1993-09-17 | 2002-09-25 | Localized use of nitric oxide-adducts to prevent internal tissue damage |
| US10/646,713 Abandoned US20040037836A1 (en) | 1993-09-17 | 2003-08-25 | Use of nitric oxide adducts |
| US11/819,513 Abandoned US20070248676A1 (en) | 1993-09-17 | 2007-06-27 | Use of nitric oxide adducts |
Family Applications Before (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/460,465 Expired - Lifetime US6087479A (en) | 1993-09-17 | 1995-06-02 | Localized use of nitric oxide-adducts to prevent internal tissue damage |
| US09/433,550 Expired - Fee Related US6174539B1 (en) | 1993-09-17 | 1999-11-04 | Localized use of nitric oxide adducts to prevent internal tissue damage |
| US09/621,610 Expired - Fee Related US6471978B1 (en) | 1993-09-17 | 2000-07-21 | Localized use of nitric oxide-adducts to prevent internal tissue damage |
| US09/661,190 Expired - Fee Related US6352709B1 (en) | 1993-09-17 | 2000-09-13 | Localized use of nitric oxide-adducts to prevent internal tissue damage |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/646,713 Abandoned US20040037836A1 (en) | 1993-09-17 | 2003-08-25 | Use of nitric oxide adducts |
| US11/819,513 Abandoned US20070248676A1 (en) | 1993-09-17 | 2007-06-27 | Use of nitric oxide adducts |
Country Status (3)
| Country | Link |
|---|---|
| US (7) | US6087479A (en) |
| AU (1) | AU6025096A (en) |
| WO (1) | WO1996038136A1 (en) |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040132638A1 (en) * | 1995-09-15 | 2004-07-08 | Duke University | No-modified hemoglobins and uses therefor |
| US6911427B1 (en) * | 1995-09-15 | 2005-06-28 | Duke University | No-modified hemoglobins and uses therefore |
| US20060189910A1 (en) * | 2001-02-16 | 2006-08-24 | Kci Licensing, Inc. | Biocompatible wound dressing |
| US20070232996A1 (en) * | 2004-04-29 | 2007-10-04 | Cube Medical A/S | Balloon for Use in Angioplasty with an Outer Layer of Nanofibers |
| US7700819B2 (en) | 2001-02-16 | 2010-04-20 | Kci Licensing, Inc. | Biocompatible wound dressing |
| US8282967B2 (en) | 2005-05-27 | 2012-10-09 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
| US8449901B2 (en) * | 2003-03-28 | 2013-05-28 | Innovational Holdings, Llc | Implantable medical device with beneficial agent concentration gradient |
| US8591876B2 (en) | 2010-12-15 | 2013-11-26 | Novan, Inc. | Methods of decreasing sebum production in the skin |
| US8981139B2 (en) | 2011-02-28 | 2015-03-17 | The University Of North Carolina At Chapel Hill | Tertiary S-nitrosothiol-modified nitric—oxide-releasing xerogels and methods of using the same |
| US9526738B2 (en) | 2009-08-21 | 2016-12-27 | Novan, Inc. | Topical gels and methods of using the same |
| US9919072B2 (en) | 2009-08-21 | 2018-03-20 | Novan, Inc. | Wound dressings, methods of using the same and methods of forming the same |
| US11160932B2 (en) | 2008-06-19 | 2021-11-02 | Excelsior Medical Corporation | Antiseptic cap that releases a gas such as nitric oxide |
| US11173235B2 (en) | 2016-07-15 | 2021-11-16 | Cook Regentec Llc | Nitrite eluting devices and methods of use thereof |
| US11229746B2 (en) | 2006-06-22 | 2022-01-25 | Excelsior Medical Corporation | Antiseptic cap |
| US11351353B2 (en) | 2008-10-27 | 2022-06-07 | Icu Medical, Inc. | Packaging container for antimicrobial caps |
| US11389634B2 (en) | 2011-07-12 | 2022-07-19 | Icu Medical, Inc. | Device for delivery of antimicrobial agent into trans-dermal catheter |
| US11400195B2 (en) | 2018-11-07 | 2022-08-02 | Icu Medical, Inc. | Peritoneal dialysis transfer set with antimicrobial properties |
| US11433215B2 (en) | 2018-11-21 | 2022-09-06 | Icu Medical, Inc. | Antimicrobial device comprising a cap with ring and insert |
| US11497904B2 (en) | 2016-10-14 | 2022-11-15 | Icu Medical, Inc. | Sanitizing caps for medical connectors |
| US11517733B2 (en) | 2017-05-01 | 2022-12-06 | Icu Medical, Inc. | Medical fluid connectors and methods for providing additives in medical fluid lines |
| US11517732B2 (en) | 2018-11-07 | 2022-12-06 | Icu Medical, Inc. | Syringe with antimicrobial properties |
| US11534595B2 (en) | 2018-11-07 | 2022-12-27 | Icu Medical, Inc. | Device for delivering an antimicrobial composition into an infusion device |
| US11541221B2 (en) | 2018-11-07 | 2023-01-03 | Icu Medical, Inc. | Tubing set with antimicrobial properties |
| US11541220B2 (en) | 2018-11-07 | 2023-01-03 | Icu Medical, Inc. | Needleless connector with antimicrobial properties |
| US11559467B2 (en) | 2015-05-08 | 2023-01-24 | Icu Medical, Inc. | Medical connectors configured to receive emitters of therapeutic agents |
| US11944776B2 (en) | 2020-12-07 | 2024-04-02 | Icu Medical, Inc. | Peritoneal dialysis caps, systems and methods |
| US11998715B2 (en) | 2014-05-02 | 2024-06-04 | Excelsior Medical Corporation | Strip package for antiseptic cap |
| US12076521B2 (en) | 2011-05-23 | 2024-09-03 | Excelsior Medical Corporation | Antiseptic cap |
Families Citing this family (127)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5811447A (en) * | 1993-01-28 | 1998-09-22 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
| US6515009B1 (en) * | 1991-09-27 | 2003-02-04 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
| US5981568A (en) | 1993-01-28 | 1999-11-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
| US6087479A (en) * | 1993-09-17 | 2000-07-11 | Nitromed, Inc. | Localized use of nitric oxide-adducts to prevent internal tissue damage |
| US6855691B1 (en) | 1995-09-15 | 2005-02-15 | Duke University | Methods for producing and using S-nitrosohemoglobins |
| US6197745B1 (en) | 1995-09-15 | 2001-03-06 | Duke University | Methods for producing nitrosated hemoglobins and therapeutic uses therefor |
| US6232434B1 (en) | 1996-08-02 | 2001-05-15 | Duke University Medical Center | Polymers for delivering nitric oxide in vivo |
| US5797887A (en) * | 1996-08-27 | 1998-08-25 | Novovasc Llc | Medical device with a surface adapted for exposure to a blood stream which is coated with a polymer containing a nitrosyl-containing organo-metallic compound which releases nitric oxide from the coating to mediate platelet aggregation |
| US20030093143A1 (en) * | 1999-03-01 | 2003-05-15 | Yiju Zhao | Medical device having surface depressions containing nitric oxide releasing compound |
| TW499412B (en) | 1996-11-26 | 2002-08-21 | Dimensional Pharm Inc | Aminoguanidines and alkoxyguanidines as protease inhibitors |
| US7985415B2 (en) * | 1997-09-10 | 2011-07-26 | Rutgers, The State University Of New Jersey | Medical devices employing novel polymers |
| US7208011B2 (en) | 2001-08-20 | 2007-04-24 | Conor Medsystems, Inc. | Implantable medical device with drug filled holes |
| US7208010B2 (en) | 2000-10-16 | 2007-04-24 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
| US6241762B1 (en) * | 1998-03-30 | 2001-06-05 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
| US6344486B1 (en) | 1998-04-03 | 2002-02-05 | 3-Dimensional Pharmaceuticals, Inc. | Benzamide and sulfonamide substituted aminoguanidines and alkoxyguanidines as protease inhibitors |
| AU750561B2 (en) | 1998-04-24 | 2002-07-25 | 3-Dimensional Pharmaceuticals, Inc. | Amino acid amidinohydrazones, alkoxyguanidines and aminoguanidines as protease inhibitors |
| IL139867A0 (en) | 1998-06-11 | 2002-02-10 | Dimensional Pharm Inc | Pyrazinone derivatives and pharmaceutical compositions containing the same |
| US6290673B1 (en) | 1999-05-20 | 2001-09-18 | Conor Medsystems, Inc. | Expandable medical device delivery system and method |
| US6326492B1 (en) | 1999-05-27 | 2001-12-04 | 3-Dimensional Pharmaceuticals, Inc. | Heterocyclic protease inhibitors |
| CA2379416A1 (en) | 1999-07-09 | 2001-01-18 | 3-Dimensional Pharmaceuticals, Inc. | Heteroaryl protease inhibitors and diagnostic imaging agents |
| EP1207811A4 (en) * | 1999-08-04 | 2007-03-07 | Bard Inc C R | Nitric oxide releasing medical devices |
| US6660260B1 (en) * | 1999-09-21 | 2003-12-09 | Mayo Foundation For Medical Education And Research | Bioprosthetic heart valves |
| US6613432B2 (en) * | 1999-12-22 | 2003-09-02 | Biosurface Engineering Technologies, Inc. | Plasma-deposited coatings, devices and methods |
| WO2002006248A2 (en) | 2000-07-17 | 2002-01-24 | 3-Dimensional Pharmaceuticals, Inc. | Cyclic oxyguanidine pyrazinones as protease inhibitors |
| JP2004505956A (en) | 2000-08-04 | 2004-02-26 | 3−ディメンショナル ファーマシューティカルズ, インコーポレイテッド | Cyclic oxyguanidine protease inhibitor |
| US6764507B2 (en) | 2000-10-16 | 2004-07-20 | Conor Medsystems, Inc. | Expandable medical device with improved spatial distribution |
| DE60142131D1 (en) | 2000-10-16 | 2010-06-24 | Conor Medsystems Inc | Expandable medical device for releasing a remedy |
| US6780849B2 (en) * | 2000-12-21 | 2004-08-24 | Scimed Life Systems, Inc. | Lipid-based nitric oxide donors |
| US6398806B1 (en) | 2000-12-26 | 2002-06-04 | Scimed Life Systems, Inc. | Monolayer modification to gold coated stents to reduce adsorption of protein |
| US6706274B2 (en) * | 2001-01-18 | 2004-03-16 | Scimed Life Systems, Inc. | Differential delivery of nitric oxide |
| US20040073294A1 (en) | 2002-09-20 | 2004-04-15 | Conor Medsystems, Inc. | Method and apparatus for loading a beneficial agent into an expandable medical device |
| US20040204756A1 (en) * | 2004-02-11 | 2004-10-14 | Diaz Stephen Hunter | Absorbent article with improved liquid acquisition capacity |
| US6964680B2 (en) * | 2001-02-05 | 2005-11-15 | Conor Medsystems, Inc. | Expandable medical device with tapered hinge |
| US6613083B2 (en) | 2001-05-02 | 2003-09-02 | Eckhard Alt | Stent device and method |
| WO2003015677A1 (en) * | 2001-07-23 | 2003-02-27 | Novovascular, Inc. | Nitric oxide releasing eptfe coated medical device sandwich |
| SE523216C2 (en) * | 2001-07-27 | 2004-04-06 | Zoucas Kirurgkonsult Ab | heparin stent |
| US7056338B2 (en) | 2003-03-28 | 2006-06-06 | Conor Medsystems, Inc. | Therapeutic agent delivery device with controlled therapeutic agent release rates |
| US7842083B2 (en) | 2001-08-20 | 2010-11-30 | Innovational Holdings, Llc. | Expandable medical device with improved spatial distribution |
| US7135189B2 (en) * | 2001-08-23 | 2006-11-14 | Boston Scientific Scimed, Inc. | Compositions and techniques for localized therapy |
| AU2002336761A1 (en) * | 2001-09-26 | 2003-04-07 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health A | Nitric oxide-releasing coated medical devices and method of preparing same |
| GB0125222D0 (en) * | 2001-10-19 | 2001-12-12 | Barts & London Nhs Trust | Composition for the treatment of microbial infections |
| US20040093079A1 (en) * | 2001-11-30 | 2004-05-13 | Tulis David A. | Compositions and methods for the reduction of post-angioplasty stenosis |
| KR20040086267A (en) * | 2002-01-11 | 2004-10-08 | 데이비드 알. 휘트록 | Compositions Including Ammonia Oxidizing Bacteria and Methods of Using Same |
| US7326245B2 (en) * | 2002-01-31 | 2008-02-05 | Boston Scientific Scimed, Inc. | Medical device for delivering biologically active material |
| US7445629B2 (en) * | 2002-01-31 | 2008-11-04 | Boston Scientific Scimed, Inc. | Medical device for delivering biologically active material |
| US7291165B2 (en) | 2002-01-31 | 2007-11-06 | Boston Scientific Scimed, Inc. | Medical device for delivering biologically active material |
| WO2004012874A1 (en) | 2002-08-02 | 2004-02-12 | The Government Of The United States Of America, Represented By The Secretary, Dept. Of Health And Human Services | Cross-linked nitric oxide-releasing polyamine coated substrates, compositions comprising same and method of making same |
| US20040127976A1 (en) * | 2002-09-20 | 2004-07-01 | Conor Medsystems, Inc. | Method and apparatus for loading a beneficial agent into an expandable medical device |
| AU2003274039A1 (en) * | 2002-10-23 | 2004-05-13 | Michael Szardenings | Method for modulating the surface characteristics of a device |
| WO2004043511A1 (en) * | 2002-11-08 | 2004-05-27 | Conor Medsystems, Inc. | Method and apparatus for treating vulnerable artherosclerotic plaque |
| US20040142014A1 (en) * | 2002-11-08 | 2004-07-22 | Conor Medsystems, Inc. | Method and apparatus for reducing tissue damage after ischemic injury |
| DK1572154T3 (en) * | 2002-11-18 | 2012-05-14 | Univ Rutgers | Medical devices using new polymers |
| US20050010170A1 (en) * | 2004-02-11 | 2005-01-13 | Shanley John F | Implantable medical device with beneficial agent concentration gradient |
| US7550474B2 (en) | 2003-04-10 | 2009-06-23 | Johnson & Johnson Pharmaceuticals Research & Development, L.L.C. | Substituted phenyl acetamides and their use as protease inhibitors |
| US7169179B2 (en) | 2003-06-05 | 2007-01-30 | Conor Medsystems, Inc. | Drug delivery device and method for bi-directional drug delivery |
| US7972137B2 (en) * | 2003-06-30 | 2011-07-05 | Rosen Gerald M | Anti-microbial dental formulations for the prevention and treatment of oral mucosal disease |
| JP5564157B2 (en) * | 2003-07-09 | 2014-07-30 | ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ アズ リプレゼンテッド バイ ザ セクレタリー オブ ザ デパートメント オブ ヘルス アンド ヒューマン サービシーズ | Use of nitrite for the treatment of cardiovascular conditions |
| US7785653B2 (en) | 2003-09-22 | 2010-08-31 | Innovational Holdings Llc | Method and apparatus for loading a beneficial agent into an expandable medical device |
| CA2539974A1 (en) * | 2003-09-26 | 2005-04-07 | David R. Whitlock | Methods of using ammonia oxidizing bacteria |
| EP1691856A2 (en) * | 2003-10-14 | 2006-08-23 | Cube Medical A/S | Medical device with electrospun nanofibers |
| US8741402B2 (en) | 2004-04-02 | 2014-06-03 | Curwood, Inc. | Webs with synergists that promote or preserve the desirable color of meat |
| US8029893B2 (en) | 2004-04-02 | 2011-10-04 | Curwood, Inc. | Myoglobin blooming agent, films, packages and methods for packaging |
| US8545950B2 (en) | 2004-04-02 | 2013-10-01 | Curwood, Inc. | Method for distributing a myoglobin-containing food product |
| US8470417B2 (en) | 2004-04-02 | 2013-06-25 | Curwood, Inc. | Packaging inserts with myoglobin blooming agents, packages and methods for packaging |
| US8110259B2 (en) | 2004-04-02 | 2012-02-07 | Curwood, Inc. | Packaging articles, films and methods that promote or preserve the desirable color of meat |
| US7867531B2 (en) | 2005-04-04 | 2011-01-11 | Curwood, Inc. | Myoglobin blooming agent containing shrink films, packages and methods for packaging |
| US8053047B2 (en) | 2004-04-02 | 2011-11-08 | Curwood, Inc. | Packaging method that causes and maintains the preferred red color of fresh meat |
| US20050234545A1 (en) * | 2004-04-19 | 2005-10-20 | Yea-Yang Su | Amorphous oxide surface film for metallic implantable devices and method for production thereof |
| USD516723S1 (en) | 2004-07-06 | 2006-03-07 | Conor Medsystems, Inc. | Stent wall structure |
| US7362274B1 (en) * | 2004-07-09 | 2008-04-22 | Huan-Cheng Lien | Coupled feed-in butterfly shaped left/right hand circularly polarized microstrip antenna |
| US20060039950A1 (en) * | 2004-08-23 | 2006-02-23 | Zhengrong Zhou | Multi-functional biocompatible coatings for intravascular devices |
| SE0402221D0 (en) * | 2004-09-14 | 2004-09-14 | Aerocrine Ab | Treatment of insufficient perfusion |
| US7637941B1 (en) | 2005-05-11 | 2009-12-29 | Advanced Cardiovascular Systems, Inc. | Endothelial cell binding coatings for rapid encapsulation of bioerodable stents |
| WO2006125123A2 (en) * | 2005-05-19 | 2006-11-23 | University Of Cincinnati | Methods for treating bacterial respiratory tract infections in an individual using acidified nitrite |
| CA2613108A1 (en) * | 2005-06-30 | 2007-01-11 | Mc3, Inc. | Nitric oxide coatings for medical devices |
| WO2007005758A2 (en) * | 2005-06-30 | 2007-01-11 | Mc3, Inc. | Methods , compositions and devices for promoting angiogenesis |
| US20080262330A1 (en) * | 2005-06-30 | 2008-10-23 | Reynolds Melissa M | Analyte Sensors and Compositions for Use Therein |
| WO2007019478A2 (en) * | 2005-08-08 | 2007-02-15 | Board Of Regents, The University Of Texas System | Drug delivery from implants using self-assembled monolayers - therapeutic sams |
| WO2007024501A2 (en) | 2005-08-25 | 2007-03-01 | Medtronic Vascular, Inc. | Nitric oxide-releasing biodegradable polymers useful as medical devices and coatings therefore |
| EP1954685A4 (en) * | 2005-11-16 | 2009-11-11 | Nitromed Inc | Furoxan compounds, compositions and methods of use |
| CA2632224A1 (en) * | 2005-12-02 | 2007-06-07 | The Regents Of The University Of Michigan | Polymer compositions, coatings and devices, and methods of making and using the same |
| AU2007225489A1 (en) | 2006-03-14 | 2007-09-20 | Lars E Gustafsson | New method for the manufacture of therapeutic compounds and compositions, compounds and compositions produced therewhith, and their use |
| WO2007109459A2 (en) | 2006-03-21 | 2007-09-27 | Janssen Pharmaceutica, Nv | Pyridines and pyridine n-oxides as modulators of thrombin |
| US8241619B2 (en) * | 2006-05-15 | 2012-08-14 | Medtronic Vascular, Inc. | Hindered amine nitric oxide donating polymers for coating medical devices |
| US20090258028A1 (en) * | 2006-06-05 | 2009-10-15 | Abbott Cardiovascular Systems Inc. | Methods Of Forming Coatings For Implantable Medical Devices For Controlled Release Of A Peptide And A Hydrophobic Drug |
| US8703167B2 (en) * | 2006-06-05 | 2014-04-22 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug |
| US8323676B2 (en) * | 2008-06-30 | 2012-12-04 | Abbott Cardiovascular Systems Inc. | Poly(ester-amide) and poly(amide) coatings for implantable medical devices for controlled release of a protein or peptide and a hydrophobic drug |
| US8114150B2 (en) | 2006-06-14 | 2012-02-14 | Advanced Cardiovascular Systems, Inc. | RGD peptide attached to bioabsorbable stents |
| GB0616350D0 (en) * | 2006-08-17 | 2006-09-27 | Univ St Andrews | Adsorption and release of nitric oxide in metal organic frameworks |
| US7811600B2 (en) * | 2007-03-08 | 2010-10-12 | Medtronic Vascular, Inc. | Nitric oxide donating medical devices and methods of making same |
| US8273828B2 (en) | 2007-07-24 | 2012-09-25 | Medtronic Vascular, Inc. | Methods for introducing reactive secondary amines pendant to polymers backbones that are useful for diazeniumdiolation |
| US20090170933A1 (en) * | 2007-12-26 | 2009-07-02 | Cook Incorporated | Method for removing a medical device from a spasmodic constriction in a bodily passageway |
| US20090196930A1 (en) * | 2007-12-27 | 2009-08-06 | Aires Pharmaceuticals, Inc. | Aerosolized nitrite and nitric oxide -donating compounds and uses thereof |
| US8626299B2 (en) | 2008-01-31 | 2014-01-07 | Enopace Biomedical Ltd. | Thoracic aorta and vagus nerve stimulation |
| US8538535B2 (en) | 2010-08-05 | 2013-09-17 | Rainbow Medical Ltd. | Enhancing perfusion by contraction |
| US8626290B2 (en) | 2008-01-31 | 2014-01-07 | Enopace Biomedical Ltd. | Acute myocardial infarction treatment by electrical stimulation of the thoracic aorta |
| US9005106B2 (en) * | 2008-01-31 | 2015-04-14 | Enopace Biomedical Ltd | Intra-aortic electrical counterpulsation |
| US20090198271A1 (en) * | 2008-01-31 | 2009-08-06 | Rainbow Medical Ltd. | Electrode based filter |
| US20090222088A1 (en) * | 2008-02-29 | 2009-09-03 | Medtronic Vascular, Inc. | Secondary Amine Containing Nitric Oxide Releasing Polymer Composition |
| US20090232863A1 (en) * | 2008-03-17 | 2009-09-17 | Medtronic Vascular, Inc. | Biodegradable Carbon Diazeniumdiolate Based Nitric Oxide Donating Polymers |
| US20090232868A1 (en) * | 2008-03-17 | 2009-09-17 | Medtronic Vascular, Inc. | Nitric Oxide Releasing Polymer Composition |
| US8765162B2 (en) * | 2008-06-30 | 2014-07-01 | Abbott Cardiovascular Systems Inc. | Poly(amide) and poly(ester-amide) polymers and drug delivery particles and coatings containing same |
| WO2010044875A2 (en) * | 2008-10-16 | 2010-04-22 | Novan, Inc. | Nitric oxide releasing particles for oral care applications |
| US8158187B2 (en) * | 2008-12-19 | 2012-04-17 | Medtronic Vascular, Inc. | Dry diazeniumdiolation methods for producing nitric oxide releasing medical devices |
| US11219706B2 (en) | 2009-03-11 | 2022-01-11 | Arrow International Llc | Enhanced formulations for coating medical devices |
| US20100233288A1 (en) * | 2009-03-11 | 2010-09-16 | Teleflex Medical Incorporated | Medical devices containing nitroprusside and antimicrobial agents |
| US8709465B2 (en) | 2009-04-13 | 2014-04-29 | Medtronic Vascular, Inc. | Diazeniumdiolated phosphorylcholine polymers for nitric oxide release |
| US9265633B2 (en) | 2009-05-20 | 2016-02-23 | 480 Biomedical, Inc. | Drug-eluting medical implants |
| US20110319987A1 (en) | 2009-05-20 | 2011-12-29 | Arsenal Medical | Medical implant |
| US8888840B2 (en) * | 2009-05-20 | 2014-11-18 | Boston Scientific Scimed, Inc. | Drug eluting medical implant |
| US8992601B2 (en) | 2009-05-20 | 2015-03-31 | 480 Biomedical, Inc. | Medical implants |
| JP5820370B2 (en) | 2009-05-20 | 2015-11-24 | アーセナル メディカル, インコーポレイテッド | Medical implant |
| US9309347B2 (en) | 2009-05-20 | 2016-04-12 | Biomedical, Inc. | Bioresorbable thermoset polyester/urethane elastomers |
| US8372133B2 (en) * | 2009-10-05 | 2013-02-12 | 480 Biomedical, Inc. | Polymeric implant delivery system |
| CN102782056A (en) * | 2009-10-13 | 2012-11-14 | 诺万公司 | Nitric oxide-releasing coatings |
| US20110202108A1 (en) * | 2010-02-18 | 2011-08-18 | Rainbow Medical Ltd. | Electrical menorrhagia treatment |
| EP2547322A2 (en) * | 2010-03-15 | 2013-01-23 | Ulrich Dietz | Use of nitrocarboxylic acids for the treatment, diagnosis and prophylaxis of aggressive healing patterns |
| US8649863B2 (en) | 2010-12-20 | 2014-02-11 | Rainbow Medical Ltd. | Pacemaker with no production |
| US20130046375A1 (en) * | 2011-08-17 | 2013-02-21 | Meng Chen | Plasma modified medical devices and methods |
| US8855783B2 (en) | 2011-09-09 | 2014-10-07 | Enopace Biomedical Ltd. | Detector-based arterial stimulation |
| EP2872070B1 (en) | 2011-09-09 | 2018-02-07 | Enopace Biomedical Ltd. | Wireless endovascular stent-based electrodes |
| US9386991B2 (en) | 2012-02-02 | 2016-07-12 | Rainbow Medical Ltd. | Pressure-enhanced blood flow treatment |
| US10779965B2 (en) | 2013-11-06 | 2020-09-22 | Enopace Biomedical Ltd. | Posts with compliant junctions |
| US10456483B2 (en) * | 2014-12-03 | 2019-10-29 | University Of Cincinnati | Gas-encapsulated acoustically responsive stabilized microbubbles and methods for treating cardiovascular disease |
| AU2018338194B2 (en) | 2017-09-22 | 2021-07-08 | Becton, Dickinson And Company | 4% trisodium citrate solution for use as a catheter lock solution |
| US11400299B1 (en) | 2021-09-14 | 2022-08-02 | Rainbow Medical Ltd. | Flexible antenna for stimulator |
| WO2024258612A1 (en) * | 2023-06-15 | 2024-12-19 | The Regents Of The University Of Michigan | Nitric oxide generating devices and methods of making the same |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6087479A (en) * | 1993-09-17 | 2000-07-11 | Nitromed, Inc. | Localized use of nitric oxide-adducts to prevent internal tissue damage |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4734097A (en) * | 1981-09-25 | 1988-03-29 | Nippon Oil Company, Ltd. | Medical material of polyvinyl alcohol and process of making |
| US5071649A (en) * | 1986-05-15 | 1991-12-10 | Emory University | Method of preventing blockage in catheters |
| US5025001A (en) * | 1988-06-15 | 1991-06-18 | Brigham And Women's Hospital | S-nitroso derivatives of ACE inhibitors and the use thereof |
| US5002964A (en) * | 1988-06-15 | 1991-03-26 | Brigham & Women's Hospital | S-nitrosocaptopril compounds and the use thereof |
| US4900719A (en) * | 1988-08-05 | 1990-02-13 | The Ohio State University | Nitrosothiols as hypotensive agents |
| US4954526A (en) * | 1989-02-28 | 1990-09-04 | The United States Of America As Represented By The Department Of Health And Human Services | Stabilized nitric oxide - primary amine complexes useful as cardiovascular agents |
| US5004461A (en) * | 1989-03-23 | 1991-04-02 | Wilson Joseph E | Methods for rendering plastics thromboresistant and product |
| US5536241A (en) | 1990-12-05 | 1996-07-16 | The General Hospital Corporation | Methods and devices for relaxing smooth muscle contractions |
| US5385937A (en) * | 1991-04-10 | 1995-01-31 | Brigham & Women's Hospital | Nitrosation of homocysteine as a method for treating homocysteinemia |
| US5525357A (en) * | 1992-08-24 | 1996-06-11 | The United States Of America As Represented By The Department Of Health And Human Services | Polymer-bound nitric oxide/nucleophile adduct compositions, pharmaceutical compositions incorporating same and methods of treating biological disorders using same |
| US5405919A (en) * | 1992-08-24 | 1995-04-11 | The United States Of America As Represented By The Secretary Of Health And Human Services | Polymer-bound nitric oxide/nucleophile adduct compositions, pharmaceutical compositions and methods of treating biological disorders |
| CA2106105C (en) | 1993-09-14 | 2008-03-18 | Larry K. Keefer | Polymer-bound nitric oxide/nucleophile adduct compositions, pharmaceutical compositions incorporating same and methods of treating biological disorders using same |
| US6255277B1 (en) * | 1993-09-17 | 2001-07-03 | Brigham And Women's Hospital | Localized use of nitric oxide-adducts to prevent internal tissue damage |
| US5482925A (en) * | 1994-03-17 | 1996-01-09 | Comedicus Incorporated | Complexes of nitric oxide with cardiovascular amines as dual acting cardiovascular agents |
| MX9703988A (en) | 1994-12-12 | 1998-02-28 | Omeros Med Sys Inc | SOLUTION AND IRRIGATION METHOD FOR THE INHIBITION OF PAIN, INFLAMMATION AND IT IS SPASM. |
| US5665077A (en) * | 1995-04-24 | 1997-09-09 | Nitrosci Pharmaceuticals Llc | Nitric oxide-releasing nitroso compositions and methods and intravascular devices for using them to prevent restenosis |
| US6171232B1 (en) * | 1997-06-26 | 2001-01-09 | Cordis Corporation | Method for targeting in vivo nitric oxide release |
-
1995
- 1995-06-02 US US08/460,465 patent/US6087479A/en not_active Expired - Lifetime
-
1996
- 1996-05-31 WO PCT/US1996/007852 patent/WO1996038136A1/en not_active Ceased
- 1996-05-31 AU AU60250/96A patent/AU6025096A/en not_active Withdrawn
-
1999
- 1999-11-04 US US09/433,550 patent/US6174539B1/en not_active Expired - Fee Related
-
2000
- 2000-07-21 US US09/621,610 patent/US6471978B1/en not_active Expired - Fee Related
- 2000-09-13 US US09/661,190 patent/US6352709B1/en not_active Expired - Fee Related
-
2002
- 2002-09-25 US US10/253,977 patent/US20030072783A1/en not_active Abandoned
-
2003
- 2003-08-25 US US10/646,713 patent/US20040037836A1/en not_active Abandoned
-
2007
- 2007-06-27 US US11/819,513 patent/US20070248676A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6087479A (en) * | 1993-09-17 | 2000-07-11 | Nitromed, Inc. | Localized use of nitric oxide-adducts to prevent internal tissue damage |
| US6174539B1 (en) * | 1993-09-17 | 2001-01-16 | Nitromed, Inc. | Localized use of nitric oxide adducts to prevent internal tissue damage |
| US6471978B1 (en) * | 1993-09-17 | 2002-10-29 | Brigham And Women's Hospital | Localized use of nitric oxide-adducts to prevent internal tissue damage |
Cited By (52)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090253615A1 (en) * | 1995-09-15 | 2009-10-08 | Duke University | No-modified hemoglobins and uses therefor |
| US6911427B1 (en) * | 1995-09-15 | 2005-06-28 | Duke University | No-modified hemoglobins and uses therefore |
| US20040132638A1 (en) * | 1995-09-15 | 2004-07-08 | Duke University | No-modified hemoglobins and uses therefor |
| US7202340B2 (en) | 1995-09-15 | 2007-04-10 | Duke University | No-modified hemoglobins and uses therefor |
| US8163974B2 (en) | 2001-02-16 | 2012-04-24 | Kci Licensing, Inc. | Biocompatible wound dressing |
| US8735644B2 (en) | 2001-02-16 | 2014-05-27 | Kci Licensing, Inc. | Biocompatible wound dressing |
| US7700819B2 (en) | 2001-02-16 | 2010-04-20 | Kci Licensing, Inc. | Biocompatible wound dressing |
| US7763769B2 (en) | 2001-02-16 | 2010-07-27 | Kci Licensing, Inc. | Biocompatible wound dressing |
| US20100268176A1 (en) * | 2001-02-16 | 2010-10-21 | Royce Johnson | Biocompatible wound dressing |
| US8084664B2 (en) | 2001-02-16 | 2011-12-27 | Kci Licensing, Inc. | Biocompatible wound dressing |
| US20060189910A1 (en) * | 2001-02-16 | 2006-08-24 | Kci Licensing, Inc. | Biocompatible wound dressing |
| US8449901B2 (en) * | 2003-03-28 | 2013-05-28 | Innovational Holdings, Llc | Implantable medical device with beneficial agent concentration gradient |
| US20070232996A1 (en) * | 2004-04-29 | 2007-10-04 | Cube Medical A/S | Balloon for Use in Angioplasty with an Outer Layer of Nanofibers |
| US11691995B2 (en) | 2005-05-27 | 2023-07-04 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
| US8956658B2 (en) | 2005-05-27 | 2015-02-17 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
| US8962029B2 (en) | 2005-05-27 | 2015-02-24 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
| US8282967B2 (en) | 2005-05-27 | 2012-10-09 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
| US9403852B2 (en) | 2005-05-27 | 2016-08-02 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
| US9403851B2 (en) | 2005-05-27 | 2016-08-02 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
| US12042640B2 (en) | 2006-06-22 | 2024-07-23 | Excelsior Medical Corporation | Antiseptic cap that releases a gas such as nitric oxide |
| US11684720B2 (en) | 2006-06-22 | 2023-06-27 | Excelsior Medical Corporation | Antiseptic cap that releases a gas such as nitric oxide |
| US11229746B2 (en) | 2006-06-22 | 2022-01-25 | Excelsior Medical Corporation | Antiseptic cap |
| US11160932B2 (en) | 2008-06-19 | 2021-11-02 | Excelsior Medical Corporation | Antiseptic cap that releases a gas such as nitric oxide |
| US11351353B2 (en) | 2008-10-27 | 2022-06-07 | Icu Medical, Inc. | Packaging container for antimicrobial caps |
| US10376538B2 (en) | 2009-08-21 | 2019-08-13 | Novan, Inc. | Topical gels and methods of using the same |
| US9737561B2 (en) | 2009-08-21 | 2017-08-22 | Novan, Inc. | Topical gels and methods of using the same |
| US9526738B2 (en) | 2009-08-21 | 2016-12-27 | Novan, Inc. | Topical gels and methods of using the same |
| US9919072B2 (en) | 2009-08-21 | 2018-03-20 | Novan, Inc. | Wound dressings, methods of using the same and methods of forming the same |
| US11583608B2 (en) | 2009-08-21 | 2023-02-21 | Novan, Inc. | Wound dressings, methods of using the same and methods of forming the same |
| US8591876B2 (en) | 2010-12-15 | 2013-11-26 | Novan, Inc. | Methods of decreasing sebum production in the skin |
| US8981139B2 (en) | 2011-02-28 | 2015-03-17 | The University Of North Carolina At Chapel Hill | Tertiary S-nitrosothiol-modified nitric—oxide-releasing xerogels and methods of using the same |
| US9713652B2 (en) | 2011-02-28 | 2017-07-25 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing S-nitrosothiol-modified silica particles and methods of making the same |
| US12076521B2 (en) | 2011-05-23 | 2024-09-03 | Excelsior Medical Corporation | Antiseptic cap |
| US12186520B2 (en) | 2011-07-12 | 2025-01-07 | Icu Medical, Inc. | Device for delivery of antimicrobial agent into a medical device |
| US11826539B2 (en) | 2011-07-12 | 2023-11-28 | Icu Medical, Inc. | Device for delivery of antimicrobial agent into a medical device |
| US11389634B2 (en) | 2011-07-12 | 2022-07-19 | Icu Medical, Inc. | Device for delivery of antimicrobial agent into trans-dermal catheter |
| US11998715B2 (en) | 2014-05-02 | 2024-06-04 | Excelsior Medical Corporation | Strip package for antiseptic cap |
| US12485264B2 (en) | 2014-05-02 | 2025-12-02 | Excelsior Medical Corporation | Strip package for antiseptic cap |
| US11559467B2 (en) | 2015-05-08 | 2023-01-24 | Icu Medical, Inc. | Medical connectors configured to receive emitters of therapeutic agents |
| US11173235B2 (en) | 2016-07-15 | 2021-11-16 | Cook Regentec Llc | Nitrite eluting devices and methods of use thereof |
| US11497904B2 (en) | 2016-10-14 | 2022-11-15 | Icu Medical, Inc. | Sanitizing caps for medical connectors |
| US11517733B2 (en) | 2017-05-01 | 2022-12-06 | Icu Medical, Inc. | Medical fluid connectors and methods for providing additives in medical fluid lines |
| US11400195B2 (en) | 2018-11-07 | 2022-08-02 | Icu Medical, Inc. | Peritoneal dialysis transfer set with antimicrobial properties |
| US11541220B2 (en) | 2018-11-07 | 2023-01-03 | Icu Medical, Inc. | Needleless connector with antimicrobial properties |
| US11541221B2 (en) | 2018-11-07 | 2023-01-03 | Icu Medical, Inc. | Tubing set with antimicrobial properties |
| US11534595B2 (en) | 2018-11-07 | 2022-12-27 | Icu Medical, Inc. | Device for delivering an antimicrobial composition into an infusion device |
| US11517732B2 (en) | 2018-11-07 | 2022-12-06 | Icu Medical, Inc. | Syringe with antimicrobial properties |
| US12201760B2 (en) | 2018-11-07 | 2025-01-21 | Icu Medical, Inc | Medical device with antimicrobial properties |
| US12485263B2 (en) | 2018-11-07 | 2025-12-02 | Icu Medical, Inc | Device for delivering an antimicrobial composition into a medical device |
| US12109365B2 (en) | 2018-11-21 | 2024-10-08 | Icu Medical, Inc | Antimicrobial device comprising a cap with ring and insert |
| US11433215B2 (en) | 2018-11-21 | 2022-09-06 | Icu Medical, Inc. | Antimicrobial device comprising a cap with ring and insert |
| US11944776B2 (en) | 2020-12-07 | 2024-04-02 | Icu Medical, Inc. | Peritoneal dialysis caps, systems and methods |
Also Published As
| Publication number | Publication date |
|---|---|
| WO1996038136A1 (en) | 1996-12-05 |
| US6471978B1 (en) | 2002-10-29 |
| US6174539B1 (en) | 2001-01-16 |
| US6352709B1 (en) | 2002-03-05 |
| US6087479A (en) | 2000-07-11 |
| AU6025096A (en) | 1996-12-18 |
| US20070248676A1 (en) | 2007-10-25 |
| US20040037836A1 (en) | 2004-02-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6471978B1 (en) | Localized use of nitric oxide-adducts to prevent internal tissue damage | |
| US6255277B1 (en) | Localized use of nitric oxide-adducts to prevent internal tissue damage | |
| AU698748B2 (en) | Use of nitric oxide-adducts to prevent thrombosis on artificial and vascular surfaces | |
| Marks et al. | Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. | |
| US5482925A (en) | Complexes of nitric oxide with cardiovascular amines as dual acting cardiovascular agents | |
| CA2446083C (en) | Composition and methods for treatment of hyperplasia | |
| US7709019B2 (en) | Method for treatment directed to agent retention in biological tissues | |
| Cox et al. | Effect of local delivery of heparin and methotrexate on neointimal proliferation in stented porcine coronary arteries | |
| US10925852B2 (en) | Talc-bound compositions and uses thereof | |
| US20250129184A1 (en) | Targeted anticoagulant | |
| US20040131700A1 (en) | Implantable medical devices using zinc | |
| JP2007508912A (en) | Dissolvable surface coating | |
| Lin et al. | Carotid stenting using heparin-coated balloon-expandable stent reduces intimal hyperplasia in a baboon model | |
| WO1999049907A1 (en) | Medical devices treated to discourage blood coagulation | |
| KR100907971B1 (en) | Anti-vascular restenosis drugs and intravascular implantation device coated with these drugs | |
| WO2004037120A2 (en) | Implantable medical devices using zinc | |
| Aggarwal | The antithrombotic properties of polymer-coated, drug eluting coronary stents |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |