US20030044972A1 - Maize chloroplast protein synthesis elongation factors and methods of use for same - Google Patents
Maize chloroplast protein synthesis elongation factors and methods of use for same Download PDFInfo
- Publication number
- US20030044972A1 US20030044972A1 US09/810,764 US81076401A US2003044972A1 US 20030044972 A1 US20030044972 A1 US 20030044972A1 US 81076401 A US81076401 A US 81076401A US 2003044972 A1 US2003044972 A1 US 2003044972A1
- Authority
- US
- United States
- Prior art keywords
- plant
- heat
- protein
- chloroplast
- expression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 240000008042 Zea mays Species 0.000 title claims description 90
- 235000002017 Zea mays subsp mays Nutrition 0.000 title description 82
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 title description 78
- 235000009973 maize Nutrition 0.000 title description 78
- 230000014616 translation Effects 0.000 title description 37
- 238000001243 protein synthesis Methods 0.000 title description 35
- 108010049994 Chloroplast Proteins Proteins 0.000 title description 19
- 210000003763 chloroplast Anatomy 0.000 claims abstract description 155
- 108010049977 Peptide Elongation Factor Tu Proteins 0.000 claims abstract description 137
- 230000014509 gene expression Effects 0.000 claims abstract description 52
- 230000009261 transgenic effect Effects 0.000 claims abstract description 27
- 230000035939 shock Effects 0.000 claims abstract description 17
- 210000000056 organ Anatomy 0.000 claims abstract description 6
- 102000008153 Peptide Elongation Factor Tu Human genes 0.000 claims abstract 10
- 241000196324 Embryophyta Species 0.000 claims description 272
- 108090000623 proteins and genes Proteins 0.000 claims description 138
- 102000004169 proteins and genes Human genes 0.000 claims description 68
- 210000004027 cell Anatomy 0.000 claims description 67
- 108020004414 DNA Proteins 0.000 claims description 26
- 230000001965 increasing effect Effects 0.000 claims description 24
- 239000002773 nucleotide Substances 0.000 claims description 24
- 125000003729 nucleotide group Chemical group 0.000 claims description 24
- 239000013598 vector Substances 0.000 claims description 19
- 230000001105 regulatory effect Effects 0.000 claims description 17
- 241000588724 Escherichia coli Species 0.000 claims description 14
- 239000003550 marker Substances 0.000 claims description 14
- 230000001939 inductive effect Effects 0.000 claims description 12
- 230000002068 genetic effect Effects 0.000 claims description 9
- 238000011161 development Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 6
- 230000007613 environmental effect Effects 0.000 claims description 6
- 238000012216 screening Methods 0.000 claims description 6
- 230000019522 cellular metabolic process Effects 0.000 claims description 5
- 230000008121 plant development Effects 0.000 claims description 3
- 239000013612 plasmid Substances 0.000 claims description 3
- 108091026890 Coding region Proteins 0.000 claims description 2
- 108020004511 Recombinant DNA Proteins 0.000 claims description 2
- 230000002411 adverse Effects 0.000 claims description 2
- 230000008635 plant growth Effects 0.000 claims description 2
- 241000208125 Nicotiana Species 0.000 claims 3
- 102000034356 gene-regulatory proteins Human genes 0.000 claims 3
- 108091006104 gene-regulatory proteins Proteins 0.000 claims 3
- 230000001172 regenerating effect Effects 0.000 claims 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 230000011712 cell development Effects 0.000 claims 1
- 230000010261 cell growth Effects 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 claims 1
- 230000003612 virological effect Effects 0.000 claims 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 abstract description 67
- 102000002812 Heat-Shock Proteins Human genes 0.000 abstract description 67
- 210000001519 tissue Anatomy 0.000 abstract description 35
- 230000002123 temporal effect Effects 0.000 abstract description 11
- 238000009395 breeding Methods 0.000 abstract description 6
- 230000001488 breeding effect Effects 0.000 abstract description 6
- 230000024346 drought recovery Effects 0.000 abstract description 6
- 244000038559 crop plants Species 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000001850 reproductive effect Effects 0.000 abstract description 3
- 230000002708 enhancing effect Effects 0.000 abstract description 2
- 102100030801 Elongation factor 1-alpha 1 Human genes 0.000 description 115
- 235000018102 proteins Nutrition 0.000 description 58
- 230000035882 stress Effects 0.000 description 56
- 108090000765 processed proteins & peptides Proteins 0.000 description 52
- 102000004196 processed proteins & peptides Human genes 0.000 description 50
- 229920001184 polypeptide Polymers 0.000 description 48
- 239000012528 membrane Substances 0.000 description 35
- 230000008642 heat stress Effects 0.000 description 31
- 230000015572 biosynthetic process Effects 0.000 description 23
- 230000009466 transformation Effects 0.000 description 23
- 150000001413 amino acids Chemical group 0.000 description 21
- 238000003786 synthesis reaction Methods 0.000 description 21
- 230000000694 effects Effects 0.000 description 19
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 18
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 18
- 230000006378 damage Effects 0.000 description 18
- 108091028043 Nucleic acid sequence Proteins 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000013604 expression vector Substances 0.000 description 15
- 238000011084 recovery Methods 0.000 description 13
- 239000002689 soil Substances 0.000 description 13
- 208000005156 Dehydration Diseases 0.000 description 12
- 239000002299 complementary DNA Substances 0.000 description 11
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 11
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 11
- 210000002377 thylakoid Anatomy 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- JLIDBLDQVAYHNE-YKALOCIXSA-N Abscisic acid Natural products OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 10
- 230000001580 bacterial effect Effects 0.000 description 10
- 210000000172 cytosol Anatomy 0.000 description 10
- 230000018044 dehydration Effects 0.000 description 10
- 238000006297 dehydration reaction Methods 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 108010006519 Molecular Chaperones Proteins 0.000 description 9
- 239000000499 gel Substances 0.000 description 9
- 108020004999 messenger RNA Proteins 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 241000589158 Agrobacterium Species 0.000 description 8
- 240000005979 Hordeum vulgare Species 0.000 description 8
- 235000007340 Hordeum vulgare Nutrition 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 230000001086 cytosolic effect Effects 0.000 description 8
- 230000008641 drought stress Effects 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 150000002632 lipids Chemical class 0.000 description 8
- 238000009825 accumulation Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 108091033319 polynucleotide Proteins 0.000 description 7
- 102000040430 polynucleotide Human genes 0.000 description 7
- 239000002157 polynucleotide Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical class CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 244000098338 Triticum aestivum Species 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 210000001768 subcellular fraction Anatomy 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 108010060309 Glucuronidase Proteins 0.000 description 5
- 102000053187 Glucuronidase Human genes 0.000 description 5
- 102000005431 Molecular Chaperones Human genes 0.000 description 5
- 238000000636 Northern blotting Methods 0.000 description 5
- 108700008625 Reporter Genes Proteins 0.000 description 5
- 235000007244 Zea mays Nutrition 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 235000013339 cereals Nutrition 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 238000001502 gel electrophoresis Methods 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 230000002438 mitochondrial effect Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 230000010152 pollination Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 210000001938 protoplast Anatomy 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 238000004627 transmission electron microscopy Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 241000206602 Eukaryota Species 0.000 description 4
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 4
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- 108060001084 Luciferase Proteins 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 4
- 235000005822 corn Nutrition 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000005090 green fluorescent protein Substances 0.000 description 4
- 239000004009 herbicide Substances 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 230000008520 organization Effects 0.000 description 4
- 230000000243 photosynthetic effect Effects 0.000 description 4
- 238000000734 protein sequencing Methods 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 230000004960 subcellular localization Effects 0.000 description 4
- 230000035899 viability Effects 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 3
- 241000219195 Arabidopsis thaliana Species 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 240000000047 Gossypium barbadense Species 0.000 description 3
- 244000299507 Gossypium hirsutum Species 0.000 description 3
- 206010020649 Hyperkeratosis Diseases 0.000 description 3
- 239000005089 Luciferase Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 244000061176 Nicotiana tabacum Species 0.000 description 3
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 3
- 244000046052 Phaseolus vulgaris Species 0.000 description 3
- 240000004713 Pisum sativum Species 0.000 description 3
- 235000010582 Pisum sativum Nutrition 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 239000012722 SDS sample buffer Substances 0.000 description 3
- 235000021307 Triticum Nutrition 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 229960005091 chloramphenicol Drugs 0.000 description 3
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 239000013599 cloning vector Substances 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 235000019688 fish Nutrition 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000002363 herbicidal effect Effects 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000002262 irrigation Effects 0.000 description 3
- 238000003973 irrigation Methods 0.000 description 3
- 238000001155 isoelectric focusing Methods 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 238000000751 protein extraction Methods 0.000 description 3
- 238000004153 renaturation Methods 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 3
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 3
- LWTDZKXXJRRKDG-KXBFYZLASA-N (-)-phaseollin Chemical compound C1OC2=CC(O)=CC=C2[C@H]2[C@@H]1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-KXBFYZLASA-N 0.000 description 2
- 102100038222 60 kDa heat shock protein, mitochondrial Human genes 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 241000589156 Agrobacterium rhizogenes Species 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- 241000219194 Arabidopsis Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 2
- 240000002791 Brassica napus Species 0.000 description 2
- 235000011293 Brassica napus Nutrition 0.000 description 2
- 241000195597 Chlamydomonas reinhardtii Species 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 239000003298 DNA probe Substances 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108010068370 Glutens Proteins 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 235000009429 Gossypium barbadense Nutrition 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108020001027 Ribosomal DNA Proteins 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 241001136583 Solanum pennellii Species 0.000 description 2
- 235000019104 Solanum pennellii var pennellii Nutrition 0.000 description 2
- 240000006394 Sorghum bicolor Species 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 108010050181 aleurone Proteins 0.000 description 2
- 125000000266 alpha-aminoacyl group Chemical group 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229930002875 chlorophyll Natural products 0.000 description 2
- 235000019804 chlorophyll Nutrition 0.000 description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 108010050792 glutenin Proteins 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 210000000473 mesophyll cell Anatomy 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 239000003415 peat Substances 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 238000003976 plant breeding Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000012846 protein folding Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000012250 transgenic expression Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 108020005087 unfolded proteins Proteins 0.000 description 2
- 102100024341 10 kDa heat shock protein, mitochondrial Human genes 0.000 description 1
- 108020004463 18S ribosomal RNA Proteins 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid Chemical compound CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- 108010030844 2-methylcitrate synthase Proteins 0.000 description 1
- 101710140048 2S seed storage protein Proteins 0.000 description 1
- UPMXNNIRAGDFEH-UHFFFAOYSA-N 3,5-dibromo-4-hydroxybenzonitrile Chemical compound OC1=C(Br)C=C(C#N)C=C1Br UPMXNNIRAGDFEH-UHFFFAOYSA-N 0.000 description 1
- 108010020183 3-phosphoshikimate 1-carboxyvinyltransferase Proteins 0.000 description 1
- HKJKONMZMPUGHJ-UHFFFAOYSA-N 4-amino-5-hydroxy-3-[(4-nitrophenyl)diazenyl]-6-phenyldiazenylnaphthalene-2,7-disulfonic acid Chemical compound OS(=O)(=O)C1=CC2=CC(S(O)(=O)=O)=C(N=NC=3C=CC=CC=3)C(O)=C2C(N)=C1N=NC1=CC=C([N+]([O-])=O)C=C1 HKJKONMZMPUGHJ-UHFFFAOYSA-N 0.000 description 1
- 101710154868 60 kDa heat shock protein, mitochondrial Proteins 0.000 description 1
- 241000208146 Acer platanoides Species 0.000 description 1
- 108010000700 Acetolactate synthase Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 241000743339 Agrostis Species 0.000 description 1
- 241000024188 Andala Species 0.000 description 1
- 101001004809 Arabidopsis thaliana Leucine-rich repeat extensin-like protein 1 Proteins 0.000 description 1
- 101001004810 Arabidopsis thaliana Leucine-rich repeat extensin-like protein 2 Proteins 0.000 description 1
- 101001004812 Arabidopsis thaliana Leucine-rich repeat extensin-like protein 3 Proteins 0.000 description 1
- 101001004814 Arabidopsis thaliana Leucine-rich repeat extensin-like protein 4 Proteins 0.000 description 1
- 101001004816 Arabidopsis thaliana Leucine-rich repeat extensin-like protein 5 Proteins 0.000 description 1
- 101001004818 Arabidopsis thaliana Leucine-rich repeat extensin-like protein 6 Proteins 0.000 description 1
- 101001004820 Arabidopsis thaliana Leucine-rich repeat extensin-like protein 7 Proteins 0.000 description 1
- 101001067239 Arabidopsis thaliana Pollen-specific leucine-rich repeat extensin-like protein 1 Proteins 0.000 description 1
- 101001067237 Arabidopsis thaliana Pollen-specific leucine-rich repeat extensin-like protein 2 Proteins 0.000 description 1
- 101001067254 Arabidopsis thaliana Pollen-specific leucine-rich repeat extensin-like protein 3 Proteins 0.000 description 1
- 101001067253 Arabidopsis thaliana Pollen-specific leucine-rich repeat extensin-like protein 4 Proteins 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- KHBQMWCZKVMBLN-UHFFFAOYSA-N Benzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=CC=C1 KHBQMWCZKVMBLN-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 101100268056 Caenorhabditis elegans zag-1 gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 101100507655 Canis lupus familiaris HSPA1 gene Proteins 0.000 description 1
- 108010059013 Chaperonin 10 Proteins 0.000 description 1
- 108010058432 Chaperonin 60 Proteins 0.000 description 1
- 235000010521 Cicer Nutrition 0.000 description 1
- 241000220455 Cicer Species 0.000 description 1
- 108010071536 Citrate (Si)-synthase Proteins 0.000 description 1
- 102000006732 Citrate synthase Human genes 0.000 description 1
- 241001112695 Clostridiales Species 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- 101710091838 Convicilin Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 108010092674 Enkephalins Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 108010061711 Gliadin Proteins 0.000 description 1
- 239000005561 Glufosinate Substances 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 235000009432 Gossypium hirsutum Nutrition 0.000 description 1
- 102100023737 GrpE protein homolog 1, mitochondrial Human genes 0.000 description 1
- 102000004447 HSP40 Heat-Shock Proteins Human genes 0.000 description 1
- 108010042283 HSP40 Heat-Shock Proteins Proteins 0.000 description 1
- 102100034051 Heat shock protein HSP 90-alpha Human genes 0.000 description 1
- 240000008669 Hedera helix Species 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 108700005087 Homeobox Genes Proteins 0.000 description 1
- 101000829489 Homo sapiens GrpE protein homolog 1, mitochondrial Proteins 0.000 description 1
- 101001016865 Homo sapiens Heat shock protein HSP 90-alpha Proteins 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 101150058089 LTP2 gene Proteins 0.000 description 1
- 101710138460 Leaf protein Proteins 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 101710094902 Legumin Proteins 0.000 description 1
- 102100025532 Male-enhanced antigen 1 Human genes 0.000 description 1
- 102100024295 Maltase-glucoamylase Human genes 0.000 description 1
- 241000539716 Mea Species 0.000 description 1
- 102000006404 Mitochondrial Proteins Human genes 0.000 description 1
- 108010058682 Mitochondrial Proteins Proteins 0.000 description 1
- 101000966481 Mus musculus Dihydrofolate reductase Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 101000875535 Nicotiana tabacum Extensin Proteins 0.000 description 1
- 108090000913 Nitrate Reductases Proteins 0.000 description 1
- MLBYBBUZURKHAW-MISYRCLQSA-N Palustric acid Chemical compound C([C@@]12C)CC[C@@](C)(C(O)=O)[C@@H]1CCC1=C2CCC(C(C)C)=C1 MLBYBBUZURKHAW-MISYRCLQSA-N 0.000 description 1
- 241001579678 Panthea coenobita Species 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 101710091688 Patatin Proteins 0.000 description 1
- 102100038824 Peroxisome proliferator-activated receptor delta Human genes 0.000 description 1
- 101710117029 Peroxisome proliferator-activated receptor delta Proteins 0.000 description 1
- 101710163504 Phaseolin Proteins 0.000 description 1
- 108010060806 Photosystem II Protein Complex Proteins 0.000 description 1
- 108010047620 Phytohemagglutinins Proteins 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 102000008063 Small Heat-Shock Proteins Human genes 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 235000007230 Sorghum bicolor Nutrition 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 241001250603 Talbotia elegans Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 241000592342 Tracheophyta Species 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 101710196023 Vicilin Proteins 0.000 description 1
- 241001672648 Vieira Species 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 108010028144 alpha-Glucosidases Proteins 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 229930002877 anthocyanin Natural products 0.000 description 1
- 235000010208 anthocyanin Nutrition 0.000 description 1
- 239000004410 anthocyanin Substances 0.000 description 1
- 150000004636 anthocyanins Chemical class 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- HOQPTLCRWVZIQZ-UHFFFAOYSA-H bis[[2-(5-hydroxy-4,7-dioxo-1,3,2$l^{2}-dioxaplumbepan-5-yl)acetyl]oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HOQPTLCRWVZIQZ-UHFFFAOYSA-H 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 108010083912 bleomycin N-acetyltransferase Proteins 0.000 description 1
- HOZOZZFCZRXYEK-GSWUYBTGSA-M butylscopolamine bromide Chemical compound [Br-].C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3[N+]([C@H](C2)[C@@H]2[C@H]3O2)(C)CCCC)=CC=CC=C1 HOZOZZFCZRXYEK-GSWUYBTGSA-M 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001876 chaperonelike Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- NEKNNCABDXGBEN-UHFFFAOYSA-L disodium;4-(4-chloro-2-methylphenoxy)butanoate;4-(2,4-dichlorophenoxy)butanoate Chemical compound [Na+].[Na+].CC1=CC(Cl)=CC=C1OCCCC([O-])=O.[O-]C(=O)CCCOC1=CC=C(Cl)C=C1Cl NEKNNCABDXGBEN-UHFFFAOYSA-L 0.000 description 1
- 238000002635 electroconvulsive therapy Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000012248 genetic selection Methods 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 108010083391 glycinin Proteins 0.000 description 1
- 210000004397 glyoxysome Anatomy 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 108010002685 hygromycin-B kinase Proteins 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000005213 imbibition Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 210000005061 intracellular organelle Anatomy 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- -1 many grana Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000442 meristematic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000022886 mitochondrial translation Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 150000007523 nucleic acids Chemical group 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 101150113864 pat gene Proteins 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 210000002824 peroxisome Anatomy 0.000 description 1
- 238000002135 phase contrast microscopy Methods 0.000 description 1
- LWTDZKXXJRRKDG-UHFFFAOYSA-N phaseollin Natural products C1OC2=CC(O)=CC=C2C2C1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000003567 photophosphorylation Effects 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000001885 phytohemagglutinin Effects 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 230000004260 plant-type cell wall biogenesis Effects 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 108010055896 polyornithine Proteins 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000020978 protein processing Effects 0.000 description 1
- 230000030788 protein refolding Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000029054 response to nutrient Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 230000025469 response to water deprivation Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000008117 seed development Effects 0.000 description 1
- 230000005562 seed maturation Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 108091052270 small heat shock protein (HSP20) family Proteins 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- GNBVPFITFYNRCN-UHFFFAOYSA-M sodium thioglycolate Chemical compound [Na+].[O-]C(=O)CS GNBVPFITFYNRCN-UHFFFAOYSA-M 0.000 description 1
- 229940046307 sodium thioglycolate Drugs 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 108010008664 streptomycin 3''-kinase Proteins 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 108700020534 tetracycline resistance-encoding transposon repressor Proteins 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 230000008542 thermal sensitivity Effects 0.000 description 1
- 230000006032 tissue transformation Effects 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000005068 transpiration Effects 0.000 description 1
- 230000005074 turgor pressure Effects 0.000 description 1
- 238000000539 two dimensional gel electrophoresis Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 241001478887 unidentified soil bacteria Species 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0008—Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
Definitions
- This invention relates generally to the field of plant molecular biology. More specifically, this invention relates to the characterization of a novel maize chloroplast protein synthesis elongation factor (EF-Tu) protein and the use of the same for the temporal and spatial expression of genes that enhance tolerance to heat and drought conditions in plants, especially transgenic plants, to increase yield and health of plants in general as well as during periods of stress.
- EF-Tu chloroplast protein synthesis elongation factor
- Drought is one of the most widespread environmental variables affecting growth and development of plants.
- drought stress modifies cellular ultrastructure, including injuries to membranes.
- Temperature also plays an important role in the physiological processes of plants. Increased temperatures that rise to the level of heat shock or heat stress affect cell metabolism, causing changes in the rates of biochemical reactions. Elevated temperatures further reduce photosystem II activity, photophosphorylation, photosynthetic enzyme activity, dark respiration, protein synthesis, and ion uptake. Increased temperatures also cause injuries to cellular membranes. The molecular bases of such injuries are denaturation and aggregation of proteins and formation of hexagonal II, a non-bilayer lipid phase.
- a rise in temperature above a certain level may result in the death of the plant.
- Levitt recognized the so-called heat-killing temperature as the temperature at which 50% of the plant is killed.
- plants exposed to sublethal high temperatures have been shown to acquire thermotolerance to otherwise lethal high temperatures.
- a temperature shift of 8-10° C. above the normal growing temperature induces the synthesis of a set of new proteins, known as heat-shock proteins (HSPs).
- HSPs heat-shock proteins
- Protein synthesis elongation factor (EF-Tu) has been intensely studied for many years in relation to its role in which peptides are elongated on ribosomes.
- EF-Tu is a protein of 45 kD which is involved in the elongation of polypeptides during the translational process of protein synthesis.
- Riis et al. (1990) Eukaryotic protein elongation factors, TIBS 15:420-424.
- EF-Tu is involved in the binding and transport of the appropriate codon-specified aminoacyl-tRNA to the aminoacyl site of the ribosome.
- EF-Tu is one of the most abundant proteins in rapidly growing Escherichia coli cells, with approximately 5-6 copies per ribosome. Kudlicki, W. (1997), Renaturation of Rhondanese by Translational Elongation Factor (EF) Tu, J Biol Chem 272:32206-32210.
- Bacterial EF-Tu has been reported to interact with unfolded and denatured proteins in a manner similar to molecular chaperones that are involved in protein folding and protein renaturation after stress. Caldas, T. (1998), Chaperone Properties of Bacterial Elongation Factor EF-Tu, J Biol Chem 273:11478-11482.
- the major classes of bacterial chaperones comprise DnaK/Hsp70 (and its assistants DnaJ and GrpE), GroEL/Hsp60 (and its assistant GroES), HtpG/Hsp90, and the heat shock proteins.
- the present inventors purified and isolated a novel maize EF-Tu protein and have surprisingly discovered an association between the synthesis of increased levels of EF-Tu and increased tolerance to drought and heat in maize.
- This chloroplast EF-Tu has been found to play a role in the development of drought and heat resistance in maize by increasing heat stability of chloroplasts. This discovery may be used in the creation of new varieties of crop plants which display increased tolerance to heat stress.
- the present invention comprises the isolation and characterization of a novel EF-Tu protein from maize.
- the invention also comprises the spatial and temporal expression of a nucleotide sequence which encodes this novel protein to increase stability of plant chloroplasts under both soil drying and heat conditions and heat conditions alone.
- this invention relates to the use of a novel chloroplast protein synthesis elongation factor, EF-Tu, in the creation of new varieties of crop and ornamental plants which display increased tolerance to heat and drought stress.
- new plant varieties are achieved by genetically engineering plants using a novel gene from a heat tolerant maize line, or other nucleotide sequence that encodes the EF-Tu polypeptide.
- the invention comprises a genetic construct which upon expression in plant cells provides a DNA sequence encoding a gene product useful for increasing the production of protective EF-Tu in plant or plant tissue.
- the invention comprises a genetic construct which provides a DNA sequence encoding a gene product useful for affecting the content of EF-Tu in a plant or plant tissue.
- Synthesis of polynucleotides which encode chloroplast protein synthesis elongation factor EF-Tu stabilizes plants during stress caused by heat and drought by increasing the refolding of unfolded proteins, protecting proteins against thermal denaturation, and by forming complexes with unfolded proteins.
- the creation of such genetically engineered plants with increased heat tolerance will significantly reduce the costs of crop and ornamental plant production.
- FIG. 1 is an autoradiograph showing subcellular distribution of 45 kD HSPs (EF-Tu) in the leaves of ZPBL 1304 maize line (analyzed by 1-dimensional gel electrophoresis of [ 35 -S]-labeled proteins).
- A Lanes 1-2, proteins isolated directly from the leaves of control (lane 1) and heat-shocked (lane 2) plants. Arrows indicate the 45 kD HSPs.
- B Lanes 1-4, pattern of HSPs in various subcellular fractions isolated from heat-stressed leaves. Lane 1, cytosolic fraction; lane 2, mitochondrial pellet; lane 3, purified chloroplasts; lane 4, chloroplast-enriched pellet.
- the 45 kD HSPs are shown by arrows. The 45 kD HSPs were most prevalent in the chloroplast fraction. Approximate molecular mass markers (in kilodaltons) are shown on the left side of the autoradiograph.
- FIG. 2 is an autoradiograph of chloroplast proteins (A) and cytosolic proteins (B) from heat-shocked plants (analyzed by 2-dimensional gel electrophoresis of [ ⁇ -S]-labeled proteins).
- the 45 kD HSPs (EF-Tu) are indicated by arrows (numbered 1-5) and the dominant proteins are marked with thick arrows.
- the 45 kD HSPs were not observed in control chloroplasts (C). Approximate molecular mass markers (in kilodaltons) are shown on the left side of the autoradiograph.
- FIG. 3 is an autoradiograph showing protein synthesis by isolated chloroplasts of ZPBL 1304 at 45° C. (lane 1-6) and 25° C. (lane 7).
- Lane 1 protein synthesis in the dark in presence 1 mM ATP; lane 2, light (1000 ⁇ mol m ⁇ 2 s ⁇ 1 ); lane 3, light+1 mM ATP; lane 4, light+100 ⁇ M cycloheximide; lane 5, light+100 ⁇ M Streptomycin; lane 6, light+100 ⁇ Chloramphenicol; lane 7, light+ATP at 25° C.
- Arrows indicate proteins synthesized by isolated chloroplasts.
- St standard molecular markers. Note that the 45 kD HSPs were not synthesized by isolated chloroplasts. Approximate molecular mass markers (in kilodaltons) are shown on the left side of the autoradiograph.
- FIG. 4 is a Northern blot analysis of total RNA from the control and heat stressed plants of the ZPBL 1304 maize line.
- Leaf tissue 1.0 g collected from the control and heat stressed plants was ground in liquid nitrogen and total RNA was extracted using RNAgents®, (Promega Corporation, U.S.A.). RNA was separated in 1% agarose gels followed by transfer to a Nylon membrane. The blots were probed using [ 32 P]dCTP labeled DNA probes for EF-Tu and 18S ribosomal RNA.
- A Northern blots showing the steady-state levels of EF-Tu mRNA in control plants (grown at 25° C.), and heat-stressed plants (at 35° C. and 38° C.).
- B The same blot (as in A) re-probed with 18 s ribosomal DNA used as a positive control.
- C Northern blots showing heat-stress induced increase in the steady-state levels of EF-Tu mRNA at 25° C. (control), 41° C., and at various time duration at 45° C. (0 min, 15 min, 30 min, 60 min, and 90 min). Rec, RNA isolated from the leaves of heat-treated plants after 2 hours of recovery at 25° C.
- D The same blot (as in C) re-probed with 18s ribosomal DNA used as a positive control.
- FIG. 5 is a depiction of the viability of E. coli transformants for maize EF-Tu subjected to 55° C. treatment. Culture samples were taken after 0 and 60 min of exposure to high temperature. Following high temperature treatment, samples were plated onto agarose growth medium and incubated overnight at 37° C. Colonies were counted, and cell viability (survival) was plotted as the percentage of colony-forming units relative to the starting number of colonies at time 0. Means of 4 independent experiments are shown. Bars indicate standard errors. Note that cells over-expressing maize EF-Tu (induced) show higher viability compared to cells not over-expressing EF-Tu (non-induced).
- D Western blot showing heat-induced accumulation of EF-Tu (C, control plants; HS, heat-stressed plants). EF-Tu bands (indicated by arrows) were scanned and the band volume of heat-stressed plants was calculated as % of control and plotted in “A”.
- FIG. 7 is the full length cDNA sequence of EF-Tu gene (SEQ ID NO:6).
- the present invention is based on the isolation and characterization of several isoforms of chloroplast protein synthesis elongation factor EF-Tu from a heat tolerance maize.
- the proteins of the invention comprise 45 kD heat shock polypeptides which may be isolated and purified according to the teachings herein. At least three 45 kD heat shock proteins have been identified and which exhibit sequence homology to protein elongation factor EF-Tu with the following sequences: AXNKFERLKPHVNIGXIGHV (hs 2, SEQ ID NO:1), ARGKFERTKPHVNIGTIXHV (hs 4, SEQ ID NO:2) and RGKFERTKPGVNIGTIXXV (hs 5, SEQ ID NO:3). Another protein was also isolated, AVKVTINGFGRIGTNFLTEA which bears sequence homology to Glyceraldehyde 3-phosphate dehydrogenase. This invention involves the isolation and characterization of these novel proteins as well as their substantial equivalents.
- EF-Tu shall be intended to include any of the family of 45 kD heat shock proteins including SEQ ID NOS:1-3, expressed upon heat and drought stress conditions described herein and as exemplified by the maize line ZPBL 1304, and those sequences substantially equivalent thereto.
- substantially equivalent means that the peptide is a substance having an amino acid sequence with at least 30%-50% homology with at least one form of the protein as disclosed herein. 80% homology is preferred and 90% homology is most preferred especially including conservative substitutions. With respect to a nucleotide sequence the term substantially equivalent means that the sequence will encode a protein or peptide that is substantially equivalent.
- Homology is calculated by standard methods which involve aligning two sequences to be compared so that maximum matching occurs, and calculating the percentage of matches.
- Substantially equivalent substances to these include those wherein one or more of the residues of the native sequence is deleted, substituted for, or inserted by a different amino acid or acids.
- substitutions are those which are conservative, i.e., wherein a residue is replaced by another of the same general type.
- naturally occurring amino acids can be sub classified as acidic, basic, neutral and polar, or neutral and nonpolar.
- three of the encoded amino acids are aromatic. It is generally preferred that peptides differing from the native MEA sequence contain substitutions which are from the same group as that of the amino acid replaced.
- the basic amino acids Lys and Arg are interchangeable; the acidic amino acids aspartic and glutamic are interchangeable; the neutral polar amino acids Ser, Thr, Cys, Gln, and Asn are interchangeable; the nonpolar aliphatic acids Gly, Ala, Val, Ile, and Leu are conservative with respect to each other (but because of size, Gly and Ala are more closely related and Val, Ile and Leu are more closely related), and the aromatic amino acids Phe, Trp, and Tyr are interchangeable. While proline is a nonpolar neutral amino acid, it represents difficulties because of its effects on conformation, and substitutions by or for proline are not preferred, except when the same or similar conformational results can be obtained.
- Polar amino acids which represent conservative changes include Ser, Thr, Gln, Asn; and to a lesser extent, Met.
- Ala, Gly, and Ser seem to be interchangeable, and Cys additionally fits into this group, or may be classified with the polar neutral amino acids.
- a “structural gene” is a DNA sequence that is transcribed into messenger RNA (mRNA) which is then translated into a sequence of amino acids characteristic of a specific polypeptide.
- an “antisense oligonucleotide” is a molecule of at least 6 contiguous nucleotides, preferably complementary to DNA (antigene) or RNA (antisense), which interferes with the process of transcription or translation of endogenous proteins so that gene products are inhibited.
- a “promoter” is a DNA sequence that directs the transcription of a structural gene. Typically, a promoter is located in the 5′ region of a gene, proximal to the transcriptional start site of a structural gene.
- expression refers to biosynthesis of a gene product. Structural gene expression involves transcription of the structural gene into mRNA and then translation of the mRNA into one or more polypeptides.
- co-suppression is a method of inhibiting gene expression in plants wherein a construct is introduced to a plant.
- the construct has one or more copies of sequence which is identical to or which shares nucleotide homology with a resident gene.
- “Homologous recombination” is another method of inhibiting gene function by introducing a disruption construct to a plant cell under conditions which facilitate recombination of endogenous genetic material with the construct.
- a “cloning vector” is a DNA molecule such as a plasmid, cosmid, or bacterial phage that has the capability of replicating autonomously in a host cell.
- Cloning vectors typically contain one or a small number of restriction endonuclease recognition sites at which foreign DNA sequences can be inserted in a determinable fashion without loss of essential biological function of the vector, as well as a marker gene that is suitable for use in the identification and selection of cells transformed with the cloning vector. Marker genes typically include genes that provide tetracycline resistance or ampicillin resistance.
- An “expression vector” is a DNA molecule comprising a gene that is expressed in a host cell. Typically, gene expression is placed under the control of certain regulatory elements including promoters, tissue specific regulatory elements, and enhancers. Such a gene is said to be “operably linked to” the regulatory elements.
- a “recombinant host” may be any prokaryotic or eukaryotic cell that contains either a cloning vector or an expression vector. This term also includes those prokaryotic or eukaryotic cells that have been genetically engineered to contain the clone genes in the chromosome or genome of the host cell.
- a “transgenic plant” is a plant having one or more plant cells that contain an expression vector.
- Plant tissue includes differentiated and undifferentiated tissues or plants, including but not limited to roots, stems, shoots, leaves, pollen, seeds, tumor tissue, and various forms of cells and culture such as single cells, protoplast, embryos, and callus tissue.
- the plant tissue may be in plant or in organ, tissue, or cell culture.
- These proteins can be used in techniques described herein as molecular markers in breeding to identify and/or select plants with improved heat and drought tolerance similar to maize line ZPBL 1304, as these proteins were shown to be missing in drought and heat sensitive lines.
- the term “substantially tolerant” refers to the fact that the transformed and transgenic plants of this invention have tolerance to heat and/or drought conditions that adversely affects cell metabolism, plant growth, and/or development in the corresponding non-transgenic or non-transformed plant.
- the term “excess heat” refers to a temperature shift of 8-10° C. above the normal growing temperature.
- the term “drought” refers to a decrease in water availability to a plant.
- ear shall not be limited to maize and shall include any developing female inflorescence from a plant.
- kernel shall also not be limited to maize but shall include grain, or seed within a fruit.
- stringency shall mean conditions of hybridization equivalent to the following: hybridized for 12 hours at 42° C. in a buffer containing 50% formamide, 5 ⁇ SSPE, 2% SDS, 10 ⁇ Denhardt's solution, and 100 ⁇ g/ml salmon sperm DNA, and washing with 0.1 ⁇ SSC, 0.1% SDS at 55° C. and exposed to Kodak X-Omat AR film for 4 days at ⁇ 700° C.
- HSP heat-shock protein
- nucleotide sequence encoding the EF-Tu polypeptides may be used in accordance with the present invention. Methods for identifying these and other polynucleotides are known to those of skill in the art and will typically be based on screening for other plants with heat and drought tolerance which express EF-Tu during stress. Nucleotide sequences encoding this protein are easily ascertainable to those of skill in the art through Genbank or the use of plant protein codon optimization techniques known to those of skill in the art and disclosed in the references disclosed herein (for example see EPO publication number 0682115A1 and Murray et al., 1989, Nuc Acid Res., Vol. 17 No. 2, pp 447-498, “Codon Usage in Plant Genes”.
- the maize optimized coding sequences most preferably those identified from the heat tolerant maize line ZPBL 1304. These sequences can be used not only in transgenic protocols but as tags for marker-assisted selection in plant breeding programs.
- the invention further contemplates the identification and use in transgenic protocols of the regulatory elements associated with these sequences. For example an EF-Tu promoter could be used for spatial and temporal control of other structural genes to induce expression during periods of stress. Methods of identifying gene regulatory regions are known to those of skill in the art and are disclosed in the references incorporated herein.
- transgenic expression of the nucleotide that encodes EF-Tu can be accomplished at an appropriate time to increase the levels of the protein in selected tissues at critical times such as during periods of high temperatures and/or drought, thereby increasing the stress tolerance of the plant.
- transgenic expression of a nucleotide encoding EF-Tu is used to engineer plants with improved drought and stress tolerance.
- Expression of EF-Tu may also be timed and spatially directed through the use of regulatory elements to increase tolerance at critical periods.
- the invention contemplates in one embodiment the expression of 45 kD heat shock EF-Tu encoding nucleotide sequences during vulnerable periods primarily those involved with stress, where yield is most significantly affected by heat and drought stress during any time in plant development.
- stress shall include any period in plant development where yield may be more significantly impacted by stress such as heat, drought, over-crowding, etc. This can include the exponential growth phase of the ear during which biomass is accumulated and the lag phase of kernel development as more fully described herein and in the following references. Set and Flower Synchrony within the Ear of Maize II. Plant Population Effects”, Crop Science, 37: 448-455 (March-April 1997); and Shaw, Robert “Climate Requirement”, Corn Improvement, 3 rd ed., Chapter 10, pp. 609-638).
- a genetic construct which causes expression of heat shock EF-Tu nucleotide sequence at a time and location to maximize plant tolerance to heat and drought conditions, typically during very vulnerable periods primarily such as stress.
- the spatial and temporal expression of EF-Tu can be achieved using different types of promoters. Promoters useful for the invention are promoters which would cause the temporal and spatial expression of a gene product during periods of stress, primarily during stress as defined herein and can be constitutive, inducible, or tissue specific.
- seed specific promoters can be used to cause EF-Tu expression during seed development
- pre-pollination promoters can also be used or stress inducible promoters can be used to cause EF-Tu expression during periods of stress.
- stress inducible promoters can be used to cause EF-Tu expression during periods of stress.
- leaf specific promoters can be used. Examples include as the AS-1 promoter disclosed in U.S. Pat. No. 5,256,558 to Coruzzi and the RBCS-3A promoter isolated from pea the RBCS-3A gene disclosed in U.S. Pat. No. 5,023,179 to Lam et al.
- one embodiment of the invention comprises a nucleotide construct comprising an EF-Tu-encoding nucleotide sequence, a regulatory promoter to regulate temporal tissue and spatial expression during periods of stress, and termination sequences operably linked to said nucleotide sequence.
- Identification of other polynucleotides which may be useful in the invention will typically be based on screening procaryotic or eukaryotic organisms which produce isoforms of EF-Tu under heat shock conditions.
- EF-Tu is highly conserved among different species, and a large number of EF-Tu prokaryotic and eukaryotic sequences have already been determined by cDNA cloning.
- polynucleotides useful in the invention can be formed from a variety of different polynucleotides (e.g., genomic or cDNA, RNA, synthetic oligonucleotides, and polynucleotides), as well as by a variety of different techniques.
- a polynucleotide is a sequence of either eukaryotic or prokaryotic synthetic invention.
- the invention comprises the use of the nucleotide sequence which encodes hs proteins, 2, 3, or 4 from inbred maize line ZPBL 1304 encoding EF-Tu. This can allow for hybrid plant or seed production, once transgenic inbred parental lines have been established.
- the invention is not limited to any plant type and can be used for any crop or ornamental plant species for which it is desirable to increase yield.
- the methods of the invention may be applicable to any species of plant to enhance heat and drought tolerance by affecting the stability of chloroplasts.
- nucleotide constructs of the present invention will share similar elements, which are well known in the art of plant molecular biology.
- the DNA sequences of interest will preferably be operably linked (i.e., positioned to ensure the functioning of) to a promoter which allows the DNA to be transcribed (into an RNA transcript) and will comprise a vector which includes a replication system.
- the DNA sequence of interest will be of exogenous origin in an effort to prevent co-suppression of the endogenous genes.
- Promoters may be heterologous (i.e., not naturally operably linked to a DNA sequence from the same organism). Promoters useful for expression in plants are known in the art and can be inducible, constitutive, tissue-specific, derived from eukaryotes, prokaryotes or viruses, or have various combinations of these characteristics.
- tissue-specific or developmentally regulated promoter is a DNA sequence which regulates the expression of a DNA sequence selectively in the cells/tissues of a plant critical to seed set and/or function and/or limits the expression of such a DNA sequence to the period of seed maturation in the plant.
- Any identifiable promoter may be used in the methods of the present invention which causes expression during stress as defined herein. It may also be advantageous to use a stress inducible promoter to provide expression of the construct during periods of stress.
- ZAG1 the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Schmidt, R. J.; Veit, B.; Mandel, M. A.; Mena, M.; Hake, S.; Yanofsky, M. F. Rockville, Md.: American Society of Plant Physiologists, c1989-; July 1993 The Plant Cell v. 5(7): p 729-737; July 1993 includes references.
- Zag2 transcripts can be detected 5 days prior to pollination to 7 to 8 DAP, and directs expression in the carpel of developing female inflorescences and Cim1 which is specific to the nucleus of developing maize kernels. Cim1 transcript is detected 4 to 5 days before pollination to 6 to 8 DAP.
- Other useful promoters include any promoter which can be derived from a gene whose expression is maternally associated with developing female florets.
- DAP days after pollination.
- TABLE 1 Promoter Expression Summary Promoter Source Primary Tissue Temporal ltp2 barley aleurone ⁇ 6-24+ DAP cDNA cim1 maize pericarp (under silk 0-12+ DAP EST scar) nuc1-c barley nucellus, pedicel forming 1-12+ DAP cDNA region mze40-2 maize gloom, pericarp, pedicel ⁇ 4-28+ DAP [maize EST forming region, low in B22e] scutellum b22e barley aleurone, embryo ⁇ 5-30+ DAP genomic scutellum, pedicel forming region zag2 maize, floret, ovule ⁇ 0-22 DAP EST endl maize, endosperm transfer cells 6-14 DAP cDNA betl1 maize, end
- a construct useful for the present invention might include a maize gene encoding EF-Tu operably linked to the B22e promoter for increased heat and drought stability 5 to 28 days after pollination.
- promoters which are seed or embryo specific and may be useful in the invention include patatin (potato tubers) (Rocha-Sosa, M., et al. (1989) EMBO J. 8:23-29), convicilin, vicilin, and legumin (pea cotyledons) (Rerie, W. G., et al. (1991) Mol. Gen. Genet. 259:149-157; Newbigin, E. J., et al. (1990) Planta 180:461-470; Higgins, T. J. V., et al. (1988) Plant. Mol. Biol.
- Promoters of seed-specific genes operably linked to heterologous coding regions in chimeric gene constructions maintain their temporal and spatial expression pattern in transgenic plants.
- Such examples include Arabidopsis thaliana 2S seed storage protein gene promoter to express enkephalin peptides in Arabidopsis and Brassica napus seeds (Vanderkerckhove et al., Bio/Technology 7:L929-932 (1989)), been lectin and bean ⁇ -phaseolin promoters to express luciferase (Riggs et al., Plant Sci. 63:47-57 (1989)), and wheat glutenin promoters to express chloramphenicol acetyl transferase (Colot et al., EMBO J 6:3559-3564 (1987)).
- any inducible promoter can be used in the instant invention. See Ward et al. Plant Mol. Biol. 22: 361-366 (1993).
- Exemplary inducible promoters include, but are not limited to, that from the ACEl system which responds to copper (Mett et al. PNAS 90: 4567-4571 (1993)); In2 gene from maize which responds to benzenesulfonamide herbicide safeners (Hershey et al., Mol. Gen. Genetics 227: 229-237 (1991) and Gatz et al., Mol. Gen. Genetics 243: 32-38 (1994)) or Tet repressor from Tn10 (Gatz et al., Mol. Gen. Genet.
- a particularly preferred inducible promoter is a promoter that responds to an inducing agent to which plants do not normally respond.
- An exemplary inducible promoter is the inducible promoter from a steroid hormone gene, the transcriptional activity of which is induced by a glucocorticosteroid hormone. Schena et al., Proc. Natl. Acad. Sci. U.S.A. 88: 0421 (1991).
- constitutive promoters include, but are not limited to, the promoters from plant viruses such as the 35S promoter from CaMV (Odell et al., Nature 313: 810-812 (1985) and the promoters from such genes as rice actin (McElroy et al., Plant Cell 2: 163-171 (1990)); ubiquitin (Christensen et al., Plant Mol. Biol 12: 619-632 (1989) and Christensen et al., Plant Mol. Biol. 18: 675-689 (1992)): pEMU (Last et al., Theor. Appl. Genet.
- plant viruses such as the 35S promoter from CaMV (Odell et al., Nature 313: 810-812 (1985) and the promoters from such genes as rice actin (McElroy et al., Plant Cell 2: 163-171 (1990)); ubiquitin (Christensen et al., Plant Mol.
- the ALS promoter a Xbal/Ncol fragment 51 to the Brassica napus ALS3 structural gene (or a nucleotide sequence that has substantial sequence similarity to said Xbal/Ncol fragment), represents a particularly useful constitutive promoter. See PCT application W096/30530.
- Transport of protein produced by transgenes to a subcellular compartment such as the chloroplast, vacuole, peroxisome, glyoxysome, cell wall or mitochondrion, or for secretion into the apoplast is accomplished by means of operably linking the nucleotide sequence encoding a signal sequence to the 5′ and/or 3′ region of a gene encoding the protein of interest.
- Targeting sequences at the 5′ and/or 3′ end of the structural gene may determine, during protein synthesis and processing, where the encoded protein is ultimately compartmentalized.
- the presence of a signal sequence directs a polypeptide to either an intracellular organelle or subcellular compartment or for secretion to the apoplast.
- Many signal sequences are known in the art.
- an expression vector contains (1) prokaryotic DNA elements encoding for a bacterial replication origin and an antibiotic resistance marker to provide for the growth and selection of the expression vector in a bacterial host; (2) DNA elements that control initiation of transcription, such as a promoter; (3) DNA elements that control the processing of transcripts such as transcription termination/polyadenylation sequences; and (4) a reporter gene.
- Useful reporter genes include ⁇ -glucuronidase, ⁇ -galactosidase, chloramphenicol acetyltransferase, luciferase, kanamycin or the herbicide resistance genes PAT and BAR.
- the reporter gene is kanamycin or the herbicide resistance genes PAT and BAR.
- the BAR or PAT gene is used with the selecting agent Bialaphos, and is used as a preferred selection marker gene for plant transformation (Spencer, et al. (1990) J. Thero. Appl'd Genetics 79:625-631).
- nptll neomycin phosphotransferase II
- nptll neomycin phosphotransferase II
- Another commonly used selectable marker gene is the hygromycin phosphotransferase gene which confers resistance to the antibiotic hygromycin. Vanden Elzen et al., Plant Mol. Biol., 5: 299 (1985).
- Additional selectable marker genes of bacterial origin that confer resistance to antibiotics include gentamycin acetyl transferase, streptomycin phosphotransferase, aminoglycoside-3′-adenyl transferase, the bleomycin resistance determinant. Hayford et al., Plant Physiol. 86: 1216 (1988), Jones et al., Mol. Gen. Genet., 210: 86 (1987), Svab et al., Plant Mol. Biol. 14: 197 (1990), Hille et al., Plant Mol. Biol. 7: 171 (1986).
- Other selectable marker genes confer resistance to herbicides such as glyphosate, glufosinate or broxynil. Comai et al., Nature 317: 741-744 (1985), Gordon-Kamm et al., Plant Cell 2: 603-618 (1990) and Stalker et al., Science 242: 419-423 (1988).
- selectable marker genes for plant transformation are not of bacterial origin. These genes include, for example, mouse dihydrofolate reductase, plant 5-enolpyruvylshikimate-3-phosphate synthase and plant acetolactate synthase. Eichholtz et al., Somatic Cell Mol. Genet. 13: 67 (1987), Shah et al., Science 233: 478 (1986), Charest et al., Plant Cell Rep. 8: 643 (1990).
- Another class of marker genes for plant transformation require screening of presumptively transformed plant cells rather than direct genetic selection of transformed cells for resistance to a toxic substance such as an antibiotic. These genes are particularly useful to quantify or visualize the spatial pattern of expression of a gene in specific tissues and are frequently referred to as reporter genes because they can be fused to a gene or gene regulatory sequence for the investigation of gene expression. Commonly used genes for screening presumptively transformed cells include ⁇ -glucuronidase (GUS), ⁇ -galactosidase, luciferase and chloramphenicol acetyltransferase. Jefferson, R. A., Plant Mol. Biol. Rep. 5: 387 (1987)., Teeri et al., EMBO J.
- GUS ⁇ -glucuronidase
- luciferase luciferase
- chloramphenicol acetyltransferase Jefferson, R. A., Plant Mol. Biol. Rep. 5: 387 (1987)., Te
- GFP Green Fluorescent Protein
- Genes included in expression vectors must be driven by a nucleotide sequence comprising a regulatory element, for example, a promoter.
- a regulatory element for example, a promoter.
- Several types of promoters are now well known in the transformation arts, as are other regulatory elements that can be used alone or in combination with promoters.
- Expression vectors containing genomic or synthetic fragments can be introduced into protoplast or into intact tissues or isolated cells. Preferably, expression vectors are introduced into intact tissue.
- General methods of culturing plant tissues are provided for example by Maki, et al. (Maki, et al. (1993) Procedures for Introducing Foreign DNA into Plants: In: Methods in Plant Molecular Biology & Biotechnology; Glich et al. eds. (CRC Press), pp. 67-88; Philips, et al. (1988) Cell-Tissue Culture and In Vitro Manipulation. In Corn & Corn Improvement, 3 rd ed. Sprague, et al. eds. (American Society of Agronomy Inc.), pp. 345-387).
- Methods of introducing expression vectors into plant tissue include the direct transfection or co-cultivation of plant cell with Agrobacterium tumefaciens (Horsch et al. (1985) Science, 227:1229). Descriptions of Agrobacterium vector systems and methods for Agrobacterium-mediated gene transfer are provided by Gruber et al. (supra).
- A. tumefaciens and A. rhizogenes are plant pathogenic soil bacteria which genetically transform plant cells.
- the Ti and Ri plasmids of A. tumefaciens and A. rhizogenes, respectively, carry genes responsible for genetic transformation of the plant. See, for example, Kado, C. I., Crit. Rev. Plant. Sci.10: 1 (1991).
- a generally applicable method of plant transformation is microprojectile-mediated transformation wherein DNA is carried on the surface of microprojectiles measuring 1 to 4 mm.
- the expression vector is introduced into plant tissues with a biolistic device that accelerates the microprojectiles to speeds of 300 to 600 m/s which is sufficient to penetrate plant cell walls and membranes.
- a biolistic device that accelerates the microprojectiles to speeds of 300 to 600 m/s which is sufficient to penetrate plant cell walls and membranes.
- plant cells or plants transformed with the desired DNA sequences integrated into the genome can be selected by appropriate phenotypic markers.
- Phenotypic markers are known in the art and may be used in this invention.
- Transformed plants can be screened by biochemical, molecular biological, and other assays.
- Various assays may be used to determine whether a particular plant, plant part, or a transformed cell shows an increase in enzyme activity or carbohydrate content.
- the change in expression or activity of a transformed plant will be compared to levels found in wild type (e.g., untransformed) plants of the same type.
- the effect of the introduced construct on the level of expression or activity of the endogenous gene will be established from a comparison of sibling plants with and without the construct.
- EF-Tu levels can be measured, for example, by Northern blotting, primer extension, quantitative or semi-quantitative PCR (polymerase chain reaction), and other methods well known in the art (See, e.g., Sambrook, et al. (1989). Molecular Cloning, A Laboratory Manual, second edition (Cold Spring Harbor Laboratory Press), Vols. 1-3). Protein can be measured in a number of ways including immunological methods (e.g., by Elisa or Western blotting). EF-Tu activity can be measured in various assays as described in Smith (Smith, A. M. (1990). In: Methods in Plant Biochemistry, Vol. 3, (Academic Press, New York), pp. 93-102).
- regeneration means growing a whole plant from a plant cell, a group of plant cells, a plant part, or a plant piece (e.g., from a protoplast, callus, or a tissue part).
- transgenic inbred lines could then be crossed, with another (non-transformed or transformed) inbred line, in order to produce a transgenic hybrid maize plant.
- a genetic trait which has been engineered into a particular maize line using the foregoing transformation techniques could be moved into another line using traditional backcrossing techniques that are well known in the plant breeding arts.
- a backcrossing approach could be used to move an engineered trait from a public, non-elite line into an elite line, or from a hybrid maize plant containing a foreign gene in its genome into a line or lines which do not contain that gene.
- crossing can refer to a simple X by Y cross, or the process of backcrossing, depending on the context.
- Various plants will be suitable targets for enhancing sink strength in female reproductive organs with the acid invertase and AGPase genes.
- the methods of the invention described herein may be applicable to any crop species including but not limited to barley, sorghum, wheat, maize, soybean, and rice.
- Parts obtained from the regenerated plant such as flowers, pods, seeds, leaves, branches, fruit, and the like are covered by the invention, provided that these parts comprise cells which have been so transformed. Progeny and variants, and mutants of the regenerated plants are also included within the scope of this invention, provided that these parts comprise the introduced DNA sequences.
- EF-Tu levels and the activity of EF-Tu are preferably determined as set forth in the examples.
- transgenic plant Once a transgenic plant is produced having a desired characteristic, it will be useful to propagate the plant and, in some cases, to cross to inbred lines to produce useful hybrids.
- mature transgenic plants may be self crossed to produce a homozygous inbred plant.
- the inbred plant produces seed containing the genes for the newly introduce trait. These seeds can be grown to produce plants that will produce the selected phenotype.
- Maize line ZPBL 1304 and maize line ZPL 389 were analyzed. In order to compare lines at similar developmental stages, lines that have the same time to flowering were selected.
- the stress tolerant ABA line ZPBL 1304. Chloroplasts from the control plants were well developed, with distinctive envelopes and grana. Exposure to stress conditions did not affect their structure. Chloroplast-envelope membranes and grana were well defined. In addition, the frequency of plastoglobuli appeared to be similar between chloroplasts from the control and the treated plants. Chloroplast structure in recovered plants did not differ from that in controls.
- ZPBL 1304. In control plants the chloroplasts had normal structure. In plants exposed to stress, four groups of chloroplasts were observed. In the first group, chloroplast structure was similar to that in the control plants. In the second group, chloroplasts were also similar to those in unstressed plants, but their shape was irregular. In chloroplasts from the third group, envelope membranes were broken and not distinct, but granule structure appeared unaffected. Chloroplasts from the fourth group had distinct chloroplast envelopes, even though they were occasionally broken. Their internal organization, however, was affected by stress conditions to a high degree. There were swollen thylakoid membranes and numerous internal vesicles.
- chloroplast envelopes and grana were distinct. Some of the chloroplasts, however, seemed to be still in the process of recovery. A structure that has a distinct envelope and many internal vesicles was interpreted as a chloroplast that underwent structural modification during the stress treatment; the internal vesicles likely represent swollen thylakoids. During the recovery process, these vesicles reassemble and form grana. In the final stage almost all the thylakoids reassembled, forming grana, even though some of them were swollen. The chloroplast envelope in some chloroplasts, however, was incomplete; occasionally it was broken and swollen.
- chloroplasts appeared normal after a 6-day recovery period. Only a few chloroplasts remained in the process of recovery. In these chloroplasts, distinct chloroplast-envelope membranes, many grana, and starch grains were observed, but internal vesicles were still present.
- ZPL 389 Chloroplasts from the control plants were normal in their structure. After exposure to 7-day soil drying followed by 45 C., chloroplast structure was severely disrupted. Chloroplast-envelope membranes were not visible, and grana were barely recognizable. The shape of the chloroplasts was also irregular, and huge, darkly stained plastoglobuli were visible in many of them.
- Chloroplasts from ZPL 389 were not restored after the 3-day recovery period. On the contrary, their structure was even more disrupted than in chloroplasts observed immediately after the stress. They were darkly stained and had many lipid droplets and poorly organized membranes. Six days after recovery, chloroplast structure was barely different from that after the 3-day recovery. Although some chloroplasts had granal structure again, none had intact envelope membranes.
- the results on chloroplast structure agree with the results on leaf physiological characteristics in ZPBL 1304 and ZPL 389 after exposure to soil drying and high-temperature (45° C.) stress conditions (see Introduction). Furthermore, the results on chloroplast structure also agree with the results on the pattern of synthesis of heat-shock proteins (HSPs) in ZPBL 1304 and ZPL 389 (Ristic et al. 1991). A unique band of HSPs at approximately 45 kD was found in the heated (45° C.) plants of ZPBL 1304 that was not observed in the heated (45° C.) plants of ZPL 389.
- HSPs heat-shock proteins
- HSPs Although the function of HSPs is not clear, it is possible that the pattern of HSP synthesis in lines ZPBL 1304 and ZPL 389 had an impact on the stability of chloroplast membranes in these two lines since in maize a subset of HSPs has been shown to be internalized by the chloroplasts (Vierling et al. 1986).
- the steady state levels of ZPBL 1304 EF-Tu mRNA were measured using Northern blot analysis.
- Total leaf RNA was isolated from control and heat-stressed plants of ZPBL 1304, using a commercial RNA isolation kit (Ambion).
- the RNA was fractionated using 1% agarose gel electrophoresis and transferred onto positively charged nylon membrane. Cross linking was achieved by baking the membrane at 80° C. for 2 h.
- a maize EF-Tu EST was used as a DNA probe for hybridization of the RNA blots.
- Seeds of ZPBL 1304 ( Zea mays L.) were washed with autoclaved distilled water and germinated in the dark on a single layer of moist germination paper. After three days, the seedlings were planted in pots (4 seedlings per pot) containing a mixture of soil:peat:sand (3:1:1, v/v/v). Plants were maintained in a growth chamber at 25/20° C. day/night temperature, 12 h photoperiod with 280 ⁇ mol m ⁇ 2 S ⁇ 1 light, 70% humidity and regular watering (Bhadula et al., 1998).
- the IEF gels were removed from the tubes, washed in SDS-sample buffer (Laemmli, 1975) and mounted on top of a 10% (w/v) acrylamide gel.
- the gel running conditions were the same as described earlier (Bhadula et al., 1998).
- the proteins from the 2-dimensional gel were transferred onto PVDF membranes (BioRad Laboratories, Calif.) using CAPS transfer buffer (Dunbar et al., 1997) at 900 mA for 3.5 h.
- the membranes were stained with 0.1% (w/v) amido black solution [prepared in 40% (v/v) methanol and 1% (v/v) acetic acid].
- the 45 kD polypeptides were identified and their position was further confirmed by exposing the membranes to Kodak X-OMAT AR film.
- the 45 HSPs were clearly visible on the film and were matched with the stained membranes to confirm their position.
- the individual 45 kD polypeptide spots were cut from the blots and subjected to protein sequencing using automatic Edman degradation in a Procise 494 protein sequencer (Applied Biosystems Instruments). Proteins were sequenced at two facilities (protein sequencing facility at the University of Kansas, Lincoln, Nebr., and Iowa State University, Ames, Iowa).
- the leaves were labeled with [ 35 S]methionine as described above. After labeling, the leaves were harvested and washed with sterile distilled water. The leaf blades were cut into small pieces and homogenized in chloroplast grinding medium (Fish and Jagendorf, 1982). The homogenate was passed through eight layers of cheesecloth and centrifuged at 200 g for 3 min using a Sorvall HB4 rotor. The resulting supernatant was centrifuged at 1500 g for 5 min. The pellet was suspended in a small volume of “suspend medium” (Fish and Jagendorf, 1982) and marked as “chloroplast-enriched fraction”. Phase contrast microscopy revealed that this fraction contained mostly chloroplasts and some starch grains. The supernatant was marked as “1500 g supernatant.”
- Intact chloroplasts were purified from the chloroplast-enriched fraction according to the method of Fish and Jagendorf (1982) and examined with the phase contrast microscope. The purified chloroplasts appeared to be intact (phase bright) and free of any contamination. A small volume of chloroplast preparations was used for protein extraction and analysis. The chloroplasts were lysed by osmotic shock using distilled water in the presence of a protease inhibitor (1 mM phenylmethylsulfony fluoride) and also, by ultrasonication.
- a protease inhibitor (1 mM phenylmethylsulfony fluoride
- the “1500 g supernatant” was further centrifuged at 6,000 g for 10 min.
- the pellet containing broken chloroplasts, other cellular membranes and contaminating particulate fraction did not show the presence of 45 HSPs in 1-dimensional gels and was discarded.
- the 6,000 g supernatant was then centrifuged at 25,000 g for 15 min and the resulting pellet was re-suspended in a small volume of sterile distilled water containing 1 mM protease inhibitor and marked as “mitochondrial pellet.”
- the 12,500 RPM supernatant was used as the “soluble fraction”.
- each fraction was used for protein quantification and trichloroacetic acid (TCA) counting according to the methods of Bradford (1976) and Mans and Novelli (1960), respectively.
- TCA trichloroacetic acid
- the remaining volume of the subcellular fractions was treated with SDS-sample buffer (1:1, v/v) (Laemmli, 1975), heated at 95° C. for 3 min, quickly cooled, and stored at ⁇ 80° C. until used.
- Chloroplasts were isolated as described above except that the leaves were not labeled with [ 35 S]methionine and no heat shock treatment was given to the plants. Chloroplasts were isolated and purified under sterile conditions. The purified chloroplasts were suspended in suspend buffer and divided into two lots (“control” and “heat shock”). The “control” lot was incubated in a protein synthesis mixture at 25° C. whereas the “heat shock” lot was incubated at 45° C. for 45 min. The incubation mixture contained 40 ⁇ L of the chloroplast preparation, 100 ⁇ L of suspend buffer, 5 ⁇ L of [ 35 S]-methionine and ATP (1 mM).
- cycloheximide inhibitor of cytosolic protein synthesis
- chloramphenicol inhibitor of chloroplast and mitochondrial protein synthesis
- streptomycin inhibitor of chloroplast protein synthesis
- the chloroplasts were illuminated at 1000 ⁇ Mol m ⁇ 2 s ⁇ 1 .
- a proper control was incubated either in the dark or in the absence of ATP and inhibitors. After incubation, the chloroplasts were collected by centrifugation at 1500 g and washed twice with cold suspend buffer. The chloroplasts were then collected by centrifugation, lysed by osmotic shock and used for protein extraction, protein quantification, TCA counting and electrophoresis as described above.
- polypeptides of the 45 HSP family were isolated for protein sequencing, and four of them [polypeptides 2, 3, 4, and 5 (Ristic et al., 1998a)] yielded reproducible amino acid sequences (Table 2).
- Polypeptides 2, 4 and 5 had sequences similar to protein elongation factor EF-Tu of prokaryotes, lower eukaryotes, and chloroplast EF-Tu of higher plants.
- the sequence homology of the polypeptide 2 (from amino acids 4 to 20) varied from 88 to 82% with the EF-Tu of Chlamydomonas reinhardtii and E.
- polypeptide 3 N-terminal as well as internal sequence analysis of polypeptide 3 showed more than 80% homology with chloroplast glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from various lower organisms and higher plants including Zea mays (Gowri and Campbell, 1989) and Arabidopsis thaliana (Shih et al., 1991). This polypeptide also exhibited high homology (75%) with GAPDH precursor from Chlamydomonas reinhardtii (Kersanach et al., 1994).
- GAPDH chloroplast glyceraldehyde 3-phosphate dehydrogenase
- FIG. 1A and 1B The pattern of HSP synthesis in total leaf extracts and sub-cellular fractions is shown in FIG. 1A and 1B, respectively.
- Control leaves did not synthesize the 45 kD proteins (FIG. 1A, lane 1).
- Heat-shock induced the synthesis of several high molecular mass (HMM, molecular mass>60 kD) and low molecular mass (LMM, molecular mass ( ⁇ 30 kD) and the 45 HSPs (FIG. 1A, lane 2).
- HMM high molecular mass
- LMM low molecular mass
- the pattern of protein synthesis in various subcellular fractions of control leaf extracts is not included since the 45 HSPs were not detected in the control leaves (FIG. 1A, lane 1).
- the chloroplast fraction of the heat stressed leaves contained the majority of the 45 HSPs (FIG. 2B, lanes 3 and 4, indicated by arrows), with the purified chloroplast fraction enriched in these proteins (FIG. 1B, lane 3). Some LMM HSPs were also prominent in the purified chloroplast fraction (FIG. 1B, lane 3). Small amounts of the 45 HSPs were also detected in the cytosolic fraction (FIG. 1B, lane 1). The mitochondrial fraction, on the other hand, did not appear to contain proteins of 45 kD (FIG. 1B, lane 2). Instead, this fraction was enriched in some HMM and LMM HSPs (FIG. 1B, lane 2).
- Cytosolic fraction also contained polypeptide 4, which was not observed in the chloroplasts. Polypeptides 1, 2 and 3 were hardly detectable in the cytosolic fraction. Chloroplasts isolated from the leaves of control plants did not show the accumulation of proteins of 45 kD (FIG. 2C).
- FIG. 3 The pattern of protein synthesis in isolated control (incubated at 25° C.) and heat-shocked (incubated at 45° C.) chloroplasts is shown in FIG. 3 (lanes 1-6: heat shocked chloroplasts; lane 7: control chloroplasts) .
- lanes 1-6 heat shocked chloroplasts
- lane 7 control chloroplasts
- protein synthesis in the chloroplasts incubated in the dark was initiated by the addition of ATP, and within 15 min of incubation, the synthesis of several polypeptides was observed (FIG. 3, lane 1) indicating that the process of protein synthesis in isolated chloroplasts was energy-dependent.
- the study has revealed the synthesis of three heat-induced polypeptides with high sequence homology to the chloroplast elongation factor, EF-Tu.
- the molecular mass of the polypeptides identified as EF-Tu (45 kD) is similar to the molecular mass of EF-Tu from higher plants and other organisms (Jacobson and Rosenbusch, 1976; Young and Bernlohr, 1991; Berchtold et al., 1993; Ursin et al., 1993).
- EF-Tu polypeptides 4 and 5 may also suggest a possible role of these polypeptides in the cytosol or in the organelles other than chloroplasts and mitochondria.
- EF-Tu has been shown to be associated with plasma membrane in E. coli where it plays a structural role (Jacobson and Rosenbusch, 1976).
- EF-Tu is a highly conserved protein and plays a role in polypeptide elongation during protein synthesis (Riis et al., 1990). It is a GTP binding protein (Young and Bernlohr, 1991) and functions in the binding and transport of codon-specific tRNA at the aminoacyl site on the ribosome (Brot, 1977). EF-Tu has been shown to have other functions in addition to its role in polypeptide elongation (Travers et al., 1970; Jacobson and Rosenbusch, 1976; Young and Bernlohr, 1991). One of these functions is implicated in thermotolerance. Kudlicki et al.
- chloroplast EF-Tu in the ZPBL maize line may be related to the stability of chloroplast membranes at high temperatures and may also stabilize chloroplast protein synthesis.
- chloroplasts from the heat tolerant line of maize (ZPBL 1304) that synthesizes EF-Tu during heat stress have been found to be more heat stable than the chloroplasts from the line that does not synthesize EF-Tu (heat sensitive line, ZPL 389) (Ristic and Cass, 1992, 1993).
- isolated chloroplasts of the heat tolerant line (ZPBL 1304) were able to synthesize all the proteins that were observed in control chloroplasts (FIG. 3).
- Seedlings from the inbred B73 were established in soil and droughted for 10-days. Seedlings were then heat shocked for 24 hrs and allowed to recover. The aerial plant material was harvested, frozen in liquid N, and RNA was extracted from this tissue and used to create the cDNA library (P0018).
- Maize CDNA for EF-Tu was cloned into an E. coli expression vector, pTrcHis2 (promoter, TRC). E. coli transformats for maize EF-Tu were then grown at 37° C. and subsequently diluted with a fresh LB medium supplemented with ampicillin (100 ⁇ g mL ⁇ 1 ) and IPTG to a final concentration of 1 mM. Two hours after induction, cultures were diluted, and 1 mL samples were exposed to 55° C. for 1 h. Aliquots were taken at 0 and 1 h, and dilutions were plated in triplicate onto agar growth medium containing ampicillin. Plated cells were incubated overnight at 37° C., and cell viability was assessed by counting the number of colonies after incubation.
- E. coli over-expressing maize EF-Tu displayed increased viability after exposure to heat stress (FIG. 5).
- the relative amount of EF-Tu was estimated by determining band volume, using Molecular Analyst (BioRad) (Bhadula et al., Heat-stress induced synthesis of chloroplast protein synthesis elongation factor (EF-Tu) in a heat-tolerant maize line, Planta (2000a) (in press). Plant heat tolerance was accessed by examining damage to the thylakoid membranes estimated using chlorophyll ⁇ fluorescence after 5-d recovery (Ristic et al. 1998).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention discloses a novel heat shock protein with high homology to chloroplast elongation factor EF-Tu. Also disclosed is a transgenic method for enhancing tolerance to heat and drought in female reproductive organs. It involves the temporal and spatial expression of novel heat shock EF-Tu in a plant organ or plant tissue. The invention also includes expression constructs, and methods for the production of crop plants with heritable phenotypes which are useful in breeding programs designed to increase heat and drought tolerance.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/190,175, filed Mar. 17, 2000.
- This invention relates generally to the field of plant molecular biology. More specifically, this invention relates to the characterization of a novel maize chloroplast protein synthesis elongation factor (EF-Tu) protein and the use of the same for the temporal and spatial expression of genes that enhance tolerance to heat and drought conditions in plants, especially transgenic plants, to increase yield and health of plants in general as well as during periods of stress.
- Plants are often simultaneously exposed to soil drying (drought) and high-temperature stress conditions. Drought is one of the most widespread environmental variables affecting growth and development of plants. Among the prominent effects of drought stress on plant physiology and metabolism are reductions of photosynthesis, photosynthate translocation, transpiration, protein synthesis, and cell wall synthesis. Changes in gene expression also occur in response to drought stress. In addition, drought stress modifies cellular ultrastructure, including injuries to membranes.
- Temperature also plays an important role in the physiological processes of plants. Increased temperatures that rise to the level of heat shock or heat stress affect cell metabolism, causing changes in the rates of biochemical reactions. Elevated temperatures further reduce photosystem II activity, photophosphorylation, photosynthetic enzyme activity, dark respiration, protein synthesis, and ion uptake. Increased temperatures also cause injuries to cellular membranes. The molecular bases of such injuries are denaturation and aggregation of proteins and formation of hexagonal II, a non-bilayer lipid phase.
- The reduction in photosynthetic activity in plants associated with heat and drought stress is primarily attributable to chloroplast damage. Leaf dehydration and high temperatures can severely disrupt the ultrastructure of chloroplasts. The main damage to the chloroplast caused by water stress includes structural changes resulting from excessive swelling, distortion of the intergranal and granal lamellae, and the appearance of lipid droplets. [Poljakoff-Mayber, A (1981) Ultrastructural consequences of drought, pp. 389-403 in L. G. Paleg, ed. The physiology and biochemistry of drought resistance. Bot. Gaz. 152:186-194.] Damage to the chloroplast caused by high temperature mostly comes from detrimental effects on chloroplast envelope membranes and thylakoid membranes.
- Drought and high temperatures are major limiting factors to plant productivity, often causing significant economic losses to U.S. agriculture. According to the American Association of Nurserymen, 30% of all one- and two-year-old field grown plants were lost in the Midwestern states. Cosgrove T (1988b) The industry's year in review. American Nurseryman 169:31-37. Numerous growers who were without irrigation lost 50% or more of their crops. Even those with on-site irrigation were unable to counter the relentless, record-breaking heat.
- Indirect costs of high-temperature stresses are also noted in the costs associated with the installation and use of irrigation equipment on high value crops. Virtually all climatologists agree that high-temperature stresses will intensify due to the “greenhouse effect”. Cosgrove T (1988c) Summer droughts and the “greenhouse effect”. American Nurseryman 168:23-33. Consequently there is an increasing need in the art for new cultivars that have increased tolerance to heat stress and drought conditions to improve crop yields.
- Traditional methods of improving plant heat tolerance have centered around breeding techniques. While improvements have been achieved, breeding techniques are laborious and slow. Further breeding strategies have been hampered since plant heat tolerance is a complex characteristic that is difficult to evaluate, which limits selection procedures. Thus, it would be desirable to utilize recombinant DNA technology to produce new plant varieties and cultivars in a controlled and predictable manner. To increase yield it would be especially desirable to produce crop and ornamental plants with improved tolerance to stress over a range of environmental conditions.
- It can be seen from the foregoing that a need exists in the art for a transgenic method of increasing yield potential in crop and ornamental plants by improving tolerance to stresses caused by heat and drought conditions.
- A rise in temperature above a certain level may result in the death of the plant. Levitt recognized the so-called heat-killing temperature as the temperature at which 50% of the plant is killed. Levitt J. (1980) Responses of Plants to Environmental Stress. Water, radiation, salt, and other stresses, 2. Academic Press, New York. However, plants exposed to sublethal high temperatures have been shown to acquire thermotolerance to otherwise lethal high temperatures. Chen H H, et al. (1982) Crop Sci 22:43-47. Specifically, a temperature shift of 8-10° C. above the normal growing temperature induces the synthesis of a set of new proteins, known as heat-shock proteins (HSPs). Lindquist S (1986) Ann Rev Biochem 55:1151-1191. The synthesis of HSPs has been observed in a variety of plant species, and the general phenotype of the heat shock response is highly conserved in all organisms. Id.
- The conservative nature of HSPs and their synthesis under elevated temperatures suggest their involvement in heat resistance. Correlations between heat resistance acquired from heat pretreatments and synthesis of HSPs have been found in many species. Altschuler M., et al. (1982), Plant Mol Biol 1:103-115. In addition, recent studies have shown that specific HSPs are absolutely required for the establishment of heat resistance. Lee Y R J, et al. (1994), Plant Cell 6:1889-1897. It is generally thought that HSPs play an important role in the development of heat resistance by acting as molecular chaperones. Ellis J. (1987), Nature 328:378-379. Molecular chaperones are involved in the stabilization of proteins in a particular state of folding.
- Several studies have revealed qualitative differences in the synthesis of HSPs between genotypes that differ in drought and/or heat tolerance. The heat-tolerant Triticum aestivum L. cv. Mustang synthesized unique HSPs that were absent in the heat-sensitive T. aestivum cv. Sturdy (Krishnan et al., 1989). Qualitative differences in the synthesis of HSPs have also been observed between the heat-tolerant Gossypium barbadense and heat-sensitive G. hirsutum (Fender and O'Connell, 1989). Differences in the profile of HSPs were also found between drought tolerant Lycopersicon pennellii and drought susceptible L. esculentum (Fender and O'Connell, 1990).
- A recent study has revealed a genetic relationship between heat tolerance and the synthesis of specific HSPs (Park et al., 1996). A heat tolerant variant of Agrostis palustric Huds. synthesized heat shock polypeptides of 25 kb (HSP25) which were absent in a heat sensitive variant. Analysis of the F1 progeny from these variants revealed a positive correlation between the ability to synthesize HSP25 and thermotolerance.
- Few other genetic studies have been undertaken to investigate possible associations of HSPs with drought and/or heat tolerance. Further, the studies that have been conducted have not demonstrated an association between the HSPs tested and drought and/or heat tolerance. For example, when the heat-tolerant Gossypium barbadense was crossed to heat-sensitive G. hirsutum, the unique HSPs of G. barbadense did not associate with the heat-tolerant phenotype (Fender and O'Connell, 1989). Similarly, an interspecific cross between drought tolerant Lycopersicon pennellii and drought susceptible L. esculentum showed no association of HSPs with drought tolerance (Fender and O'Connell, 1990).
- The failure of previous experiments to demonstrate association of HSPs with drought and/or heat tolerance is not surprising. Drought and heat tolerance are complex characteristics, and many factors can affect the plant's ability to tolerate stress (Levitt, 1980a, 1980b). Inability of a plant to synthesize one or few specific HSPs might be compensated by other factors that are involved in the tolerance to drought and/or heat stress.
- Protein synthesis elongation factor (EF-Tu) has been intensely studied for many years in relation to its role in which peptides are elongated on ribosomes. EF-Tu is a protein of 45 kD which is involved in the elongation of polypeptides during the translational process of protein synthesis. Riis et al. (1990), Eukaryotic protein elongation factors, TIBS 15:420-424. EF-Tu is involved in the binding and transport of the appropriate codon-specified aminoacyl-tRNA to the aminoacyl site of the ribosome. EF-Tu is one of the most abundant proteins in rapidly growing Escherichia coli cells, with approximately 5-6 copies per ribosome. Kudlicki, W. (1997), Renaturation of Rhondanese by Translational Elongation Factor (EF) Tu, J Biol Chem 272:32206-32210.
- Bacterial EF-Tu has been reported to interact with unfolded and denatured proteins in a manner similar to molecular chaperones that are involved in protein folding and protein renaturation after stress. Caldas, T. (1998), Chaperone Properties of Bacterial Elongation Factor EF-Tu, J Biol Chem 273:11478-11482. The major classes of bacterial chaperones comprise DnaK/Hsp70 (and its assistants DnaJ and GrpE), GroEL/Hsp60 (and its assistant GroES), HtpG/Hsp90, and the heat shock proteins.
- The present inventors purified and isolated a novel maize EF-Tu protein and have surprisingly discovered an association between the synthesis of increased levels of EF-Tu and increased tolerance to drought and heat in maize. This chloroplast EF-Tu has been found to play a role in the development of drought and heat resistance in maize by increasing heat stability of chloroplasts. This discovery may be used in the creation of new varieties of crop plants which display increased tolerance to heat stress.
- It is therefore an object of the present invention to provide a novel isolated, purified and characterized EF-Tu protein from maize. It is a further object to provide expression constructs which provide for temporal and spatial expression of EF-Tu in a transgenic plant, to increase resistance to stress through heat stability of chloroplasts.
- It is yet another object of this invention to provide transgenic plant lines with heritable phenotypes which are useful in breeding programs designed to increase heat and drought tolerance in crop plants over a range of environmental conditions.
- It is yet another object of this invention to produce seed which will produce plants with increased yield tolerance to heat and drought stress.
- It is yet another object of this invention to provide plants, plant cells, and plant tissues containing the expression constructs of the invention.
- Other objects of the invention will become apparent from the description of the invention which follows.
- The present invention comprises the isolation and characterization of a novel EF-Tu protein from maize. The invention also comprises the spatial and temporal expression of a nucleotide sequence which encodes this novel protein to increase stability of plant chloroplasts under both soil drying and heat conditions and heat conditions alone. In particular, this invention relates to the use of a novel chloroplast protein synthesis elongation factor, EF-Tu, in the creation of new varieties of crop and ornamental plants which display increased tolerance to heat and drought stress.
- In this invention, new plant varieties are achieved by genetically engineering plants using a novel gene from a heat tolerant maize line, or other nucleotide sequence that encodes the EF-Tu polypeptide. In one embodiment, the invention comprises a genetic construct which upon expression in plant cells provides a DNA sequence encoding a gene product useful for increasing the production of protective EF-Tu in plant or plant tissue. In another embodiment, the invention comprises a genetic construct which provides a DNA sequence encoding a gene product useful for affecting the content of EF-Tu in a plant or plant tissue.
- Synthesis of polynucleotides which encode chloroplast protein synthesis elongation factor EF-Tu stabilizes plants during stress caused by heat and drought by increasing the refolding of unfolded proteins, protecting proteins against thermal denaturation, and by forming complexes with unfolded proteins. The creation of such genetically engineered plants with increased heat tolerance will significantly reduce the costs of crop and ornamental plant production.
- FIG. 1 is an autoradiograph showing subcellular distribution of 45 kD HSPs (EF-Tu) in the leaves of ZPBL 1304 maize line (analyzed by 1-dimensional gel electrophoresis of [ 35-S]-labeled proteins). (A), Lanes 1-2, proteins isolated directly from the leaves of control (lane 1) and heat-shocked (lane 2) plants. Arrows indicate the 45 kD HSPs. (B), Lanes 1-4, pattern of HSPs in various subcellular fractions isolated from heat-stressed leaves.
Lane 1, cytosolic fraction;lane 2, mitochondrial pellet;lane 3, purified chloroplasts;lane 4, chloroplast-enriched pellet. The 45 kD HSPs are shown by arrows. The 45 kD HSPs were most prevalent in the chloroplast fraction. Approximate molecular mass markers (in kilodaltons) are shown on the left side of the autoradiograph. - FIG. 2 is an autoradiograph of chloroplast proteins (A) and cytosolic proteins (B) from heat-shocked plants (analyzed by 2-dimensional gel electrophoresis of [ ±-S]-labeled proteins). The 45 kD HSPs (EF-Tu) are indicated by arrows (numbered 1-5) and the dominant proteins are marked with thick arrows. The 45 kD HSPs were not observed in control chloroplasts (C). Approximate molecular mass markers (in kilodaltons) are shown on the left side of the autoradiograph.
- FIG. 3 is an autoradiograph showing protein synthesis by isolated chloroplasts of ZPBL 1304 at 45° C. (lane 1-6) and 25° C. (lane 7).
Lane 1, protein synthesis in the dark inpresence 1 mM ATP;lane 2, light (1000 μmol m−2s−1);lane 3, light+1 mM ATP;lane 4, light+100 μM cycloheximide;lane 5, light+100 μM Streptomycin;lane 6, light+100 μ Chloramphenicol;lane 7, light+ATP at 25° C. Arrows indicate proteins synthesized by isolated chloroplasts. St, standard molecular markers. Note that the 45 kD HSPs were not synthesized by isolated chloroplasts. Approximate molecular mass markers (in kilodaltons) are shown on the left side of the autoradiograph. - FIG. 4 is a Northern blot analysis of total RNA from the control and heat stressed plants of the ZPBL 1304 maize line. Leaf tissue (1.0 g) collected from the control and heat stressed plants was ground in liquid nitrogen and total RNA was extracted using RNAgents®, (Promega Corporation, U.S.A.). RNA was separated in 1% agarose gels followed by transfer to a Nylon membrane. The blots were probed using [ 32P]dCTP labeled DNA probes for EF-Tu and 18S ribosomal RNA. (A) Northern blots showing the steady-state levels of EF-Tu mRNA in control plants (grown at 25° C.), and heat-stressed plants (at 35° C. and 38° C.). (B) The same blot (as in A) re-probed with 18 s ribosomal DNA used as a positive control. (C) Northern blots showing heat-stress induced increase in the steady-state levels of EF-Tu mRNA at 25° C. (control), 41° C., and at various time duration at 45° C. (0 min, 15 min, 30 min, 60 min, and 90 min). Rec, RNA isolated from the leaves of heat-treated plants after 2 hours of recovery at 25° C. (D) The same blot (as in C) re-probed with 18s ribosomal DNA used as a positive control.
- FIG. 5 is a depiction of the viability of E. coli transformants for maize EF-Tu subjected to 55° C. treatment. Culture samples were taken after 0 and 60 min of exposure to high temperature. Following high temperature treatment, samples were plated onto agarose growth medium and incubated overnight at 37° C. Colonies were counted, and cell viability (survival) was plotted as the percentage of colony-forming units relative to the starting number of colonies at
time 0. Means of 4 independent experiments are shown. Bars indicate standard errors. Note that cells over-expressing maize EF-Tu (induced) show higher viability compared to cells not over-expressing EF-Tu (non-induced). - FIG. 6 is a depiction of the heat-induced accumulation of maize EF-Tu (A and D), and damage to the thylakoid (B) membranes in maize hybrids with contrasting heat tolerance. Damage to thylakoid membranes was estimated by measuring chlorophyll α fluorescence and calculating the ratio of constant fluorescence (O) and the peak of variable fluorescence (P). The increase in O/P ratio indicates damage to thylakoid membranes (Ristic et al., 1998). Bars indicate standard errors (n=5). D, Western blot showing heat-induced accumulation of EF-Tu (C, control plants; HS, heat-stressed plants). EF-Tu bands (indicated by arrows) were scanned and the band volume of heat-stressed plants was calculated as % of control and plotted in “A”.
- FIG. 7 is the full length cDNA sequence of EF-Tu gene (SEQ ID NO:6).
- The present invention is based on the isolation and characterization of several isoforms of chloroplast protein synthesis elongation factor EF-Tu from a heat tolerance maize.
- The proteins of the invention comprise 45 kD heat shock polypeptides which may be isolated and purified according to the teachings herein. At least three 45 kD heat shock proteins have been identified and which exhibit sequence homology to protein elongation factor EF-Tu with the following sequences: AXNKFERLKPHVNIGXIGHV (
hs 2, SEQ ID NO:1), ARGKFERTKPHVNIGTIXHV (hs 4, SEQ ID NO:2) and RGKFERTKPGVNIGTIXXV (hs 5, SEQ ID NO:3). Another protein was also isolated, AVKVTINGFGRIGTNFLTEA which bears sequence homology to Glyceraldehyde 3-phosphate dehydrogenase. This invention involves the isolation and characterization of these novel proteins as well as their substantial equivalents. - As used herein the term “EF-Tu” shall be intended to include any of the family of 45 kD heat shock proteins including SEQ ID NOS:1-3, expressed upon heat and drought stress conditions described herein and as exemplified by the maize line ZPBL 1304, and those sequences substantially equivalent thereto.
- The term “substantially equivalent” as used herein means that the peptide is a substance having an amino acid sequence with at least 30%-50% homology with at least one form of the protein as disclosed herein. 80% homology is preferred and 90% homology is most preferred especially including conservative substitutions. With respect to a nucleotide sequence the term substantially equivalent means that the sequence will encode a protein or peptide that is substantially equivalent.
- Homology is calculated by standard methods which involve aligning two sequences to be compared so that maximum matching occurs, and calculating the percentage of matches. Substantially equivalent substances to these include those wherein one or more of the residues of the native sequence is deleted, substituted for, or inserted by a different amino acid or acids.
- Preferred substitutions are those which are conservative, i.e., wherein a residue is replaced by another of the same general type. As is well understood, naturally occurring amino acids can be sub classified as acidic, basic, neutral and polar, or neutral and nonpolar. Furthermore, three of the encoded amino acids are aromatic. It is generally preferred that peptides differing from the native MEA sequence contain substitutions which are from the same group as that of the amino acid replaced. Thus, in general, the basic amino acids Lys and Arg are interchangeable; the acidic amino acids aspartic and glutamic are interchangeable; the neutral polar amino acids Ser, Thr, Cys, Gln, and Asn are interchangeable; the nonpolar aliphatic acids Gly, Ala, Val, Ile, and Leu are conservative with respect to each other (but because of size, Gly and Ala are more closely related and Val, Ile and Leu are more closely related), and the aromatic amino acids Phe, Trp, and Tyr are interchangeable. While proline is a nonpolar neutral amino acid, it represents difficulties because of its effects on conformation, and substitutions by or for proline are not preferred, except when the same or similar conformational results can be obtained. Polar amino acids which represent conservative changes include Ser, Thr, Gln, Asn; and to a lesser extent, Met. In addition, although classified in different categories, Ala, Gly, and Ser seem to be interchangeable, and Cys additionally fits into this group, or may be classified with the polar neutral amino acids.
- In general, whatever substitutions are made are such that the functional properties of the intact proteinaceous molecule is retained and ancillary properties, such as non-toxicity are not substantially disturbed.
- A “structural gene” is a DNA sequence that is transcribed into messenger RNA (mRNA) which is then translated into a sequence of amino acids characteristic of a specific polypeptide.
- An “antisense oligonucleotide” is a molecule of at least 6 contiguous nucleotides, preferably complementary to DNA (antigene) or RNA (antisense), which interferes with the process of transcription or translation of endogenous proteins so that gene products are inhibited.
- A “promoter” is a DNA sequence that directs the transcription of a structural gene. Typically, a promoter is located in the 5′ region of a gene, proximal to the transcriptional start site of a structural gene.
- The term “expression” refers to biosynthesis of a gene product. Structural gene expression involves transcription of the structural gene into mRNA and then translation of the mRNA into one or more polypeptides.
- The term “co-suppression” is a method of inhibiting gene expression in plants wherein a construct is introduced to a plant. The construct has one or more copies of sequence which is identical to or which shares nucleotide homology with a resident gene.
- “Homologous recombination” is another method of inhibiting gene function by introducing a disruption construct to a plant cell under conditions which facilitate recombination of endogenous genetic material with the construct.
- A “cloning vector” is a DNA molecule such as a plasmid, cosmid, or bacterial phage that has the capability of replicating autonomously in a host cell. Cloning vectors typically contain one or a small number of restriction endonuclease recognition sites at which foreign DNA sequences can be inserted in a determinable fashion without loss of essential biological function of the vector, as well as a marker gene that is suitable for use in the identification and selection of cells transformed with the cloning vector. Marker genes typically include genes that provide tetracycline resistance or ampicillin resistance.
- An “expression vector” is a DNA molecule comprising a gene that is expressed in a host cell. Typically, gene expression is placed under the control of certain regulatory elements including promoters, tissue specific regulatory elements, and enhancers. Such a gene is said to be “operably linked to” the regulatory elements.
- A “recombinant host” may be any prokaryotic or eukaryotic cell that contains either a cloning vector or an expression vector. This term also includes those prokaryotic or eukaryotic cells that have been genetically engineered to contain the clone genes in the chromosome or genome of the host cell.
- A “transgenic plant” is a plant having one or more plant cells that contain an expression vector. Plant tissue includes differentiated and undifferentiated tissues or plants, including but not limited to roots, stems, shoots, leaves, pollen, seeds, tumor tissue, and various forms of cells and culture such as single cells, protoplast, embryos, and callus tissue. The plant tissue may be in plant or in organ, tissue, or cell culture. These proteins can be used in techniques described herein as molecular markers in breeding to identify and/or select plants with improved heat and drought tolerance similar to maize line ZPBL 1304, as these proteins were shown to be missing in drought and heat sensitive lines.
- As used herein the term “substantially tolerant” refers to the fact that the transformed and transgenic plants of this invention have tolerance to heat and/or drought conditions that adversely affects cell metabolism, plant growth, and/or development in the corresponding non-transgenic or non-transformed plant.
- As used herein the term “excess heat” refers to a temperature shift of 8-10° C. above the normal growing temperature.
- As used herein the term “drought” refers to a decrease in water availability to a plant.
- As used herein the term “ear” shall not be limited to maize and shall include any developing female inflorescence from a plant.
- As used herein the term “kernel” shall also not be limited to maize but shall include grain, or seed within a fruit.
- As used herein the term “stringency” shall mean conditions of hybridization equivalent to the following: hybridized for 12 hours at 42° C. in a buffer containing 50% formamide, 5×SSPE, 2% SDS, 10×Denhardt's solution, and 100 μg/ml salmon sperm DNA, and washing with 0.1×SSC, 0.1% SDS at 55° C. and exposed to Kodak X-Omat AR film for 4 days at −700° C.
- Recent studies identified the extremely drought and heat tolerance inbred line of maize, ZPBL 1304. This line was shown to be capable of withstanding severe drought and heat (45° C.) conditions without suffering severe damage. (Ristic et al. 1991). A cross made between this line, and a drought and heat sensitive line resulted in segregation of the trait in the F 2, indicating heritability. Moreover, the ZPBL 1304 line produced unique HSPs of 45 kD (45 HSPs) (EF-Tu) under both soil drying and heat conditions, and heat conditions alone. Similar HSPs were not produced in a drought and heat-sensitive line, ZPL 389. In addition, the 45 HSPs have not been previously found in maize, and are not common in plants.
- Although differences in heat-shock protein (HSP) patterns and differences in heritable drought and/or heat tolerance have been previously documented, until now there has been no genetic evidence of an association of drought and/or heat tolerance with specific alterations in HSP expression in crop plants. According to the invention applicants have further demonstrated an association between increased levels of chloroplast protein synthesis elongation factor EF-Tu and drought and/or heat tolerance in plants. This invention further contemplates the use of EF-Tu proteins in the alteration of plants to control the expression of EF-Tu to increase plant tolerance to heat and drought conditions.
- Any nucleotide sequence encoding the EF-Tu polypeptides may be used in accordance with the present invention. Methods for identifying these and other polynucleotides are known to those of skill in the art and will typically be based on screening for other plants with heat and drought tolerance which express EF-Tu during stress. Nucleotide sequences encoding this protein are easily ascertainable to those of skill in the art through Genbank or the use of plant protein codon optimization techniques known to those of skill in the art and disclosed in the references disclosed herein (for example see EPO publication number 0682115A1 and Murray et al., 1989, Nuc Acid Res., Vol. 17 No. 2, pp 447-498, “Codon Usage in Plant Genes”. It is preferred to use the maize optimized coding sequences, most preferably those identified from the heat tolerant maize line ZPBL 1304. These sequences can be used not only in transgenic protocols but as tags for marker-assisted selection in plant breeding programs. The invention further contemplates the identification and use in transgenic protocols of the regulatory elements associated with these sequences. For example an EF-Tu promoter could be used for spatial and temporal control of other structural genes to induce expression during periods of stress. Methods of identifying gene regulatory regions are known to those of skill in the art and are disclosed in the references incorporated herein.
- The role of these EF-Tu proteins can be exploited to engineer plants with improved stress tolerance. For example, transgenic expression of the nucleotide that encodes EF-Tu can be accomplished at an appropriate time to increase the levels of the protein in selected tissues at critical times such as during periods of high temperatures and/or drought, thereby increasing the stress tolerance of the plant. According to the invention, transgenic expression of a nucleotide encoding EF-Tu is used to engineer plants with improved drought and stress tolerance. Expression of EF-Tu may also be timed and spatially directed through the use of regulatory elements to increase tolerance at critical periods.
- Thus, the invention contemplates in one embodiment the expression of 45 kD heat shock EF-Tu encoding nucleotide sequences during vulnerable periods primarily those involved with stress, where yield is most significantly affected by heat and drought stress during any time in plant development.
- As used herein the term “stress” shall include any period in plant development where yield may be more significantly impacted by stress such as heat, drought, over-crowding, etc. This can include the exponential growth phase of the ear during which biomass is accumulated and the lag phase of kernel development as more fully described herein and in the following references. Set and Flower Synchrony within the Ear of Maize II. Plant Population Effects”, Crop Science, 37: 448-455 (March-April 1997); and Shaw, Robert “Climate Requirement”, Corn Improvement, 3 rd ed., Chapter 10, pp. 609-638).
- The examples and discussion herein may specifically reference maize, however the teachings herein are equally applicable to any other grain or flowering crop.
- According to the invention, a genetic construct is disclosed which causes expression of heat shock EF-Tu nucleotide sequence at a time and location to maximize plant tolerance to heat and drought conditions, typically during very vulnerable periods primarily such as stress. The spatial and temporal expression of EF-Tu can be achieved using different types of promoters. Promoters useful for the invention are promoters which would cause the temporal and spatial expression of a gene product during periods of stress, primarily during stress as defined herein and can be constitutive, inducible, or tissue specific.
- For example, seed specific promoters can be used to cause EF-Tu expression during seed development, pre-pollination promoters can also be used or stress inducible promoters can be used to cause EF-Tu expression during periods of stress. The optimization of promoters to achieve the objectives of the invention is considered routine and easily ascertainable by those of skill in the art and is intended to be within the scope of the invention.
- In another preferred embodiment leaf specific promoters can be used. Examples include as the AS-1 promoter disclosed in U.S. Pat. No. 5,256,558 to Coruzzi and the RBCS-3A promoter isolated from pea the RBCS-3A gene disclosed in U.S. Pat. No. 5,023,179 to Lam et al.
- At its simplest, one embodiment of the invention comprises a nucleotide construct comprising an EF-Tu-encoding nucleotide sequence, a regulatory promoter to regulate temporal tissue and spatial expression during periods of stress, and termination sequences operably linked to said nucleotide sequence.
- Identification of other polynucleotides which may be useful in the invention will typically be based on screening procaryotic or eukaryotic organisms which produce isoforms of EF-Tu under heat shock conditions. EF-Tu is highly conserved among different species, and a large number of EF-Tu prokaryotic and eukaryotic sequences have already been determined by cDNA cloning.
- The polynucleotides useful in the invention can be formed from a variety of different polynucleotides (e.g., genomic or cDNA, RNA, synthetic oligonucleotides, and polynucleotides), as well as by a variety of different techniques. As used herein, a polynucleotide is a sequence of either eukaryotic or prokaryotic synthetic invention.
- In a preferred embodiment, the invention comprises the use of the nucleotide sequence which encodes hs proteins, 2, 3, or 4 from inbred maize line ZPBL 1304 encoding EF-Tu. This can allow for hybrid plant or seed production, once transgenic inbred parental lines have been established.
- The invention is not limited to any plant type and can be used for any crop or ornamental plant species for which it is desirable to increase yield. The methods of the invention may be applicable to any species of plant to enhance heat and drought tolerance by affecting the stability of chloroplasts.
- The nucleotide constructs of the present invention will share similar elements, which are well known in the art of plant molecular biology. For example, in each construct the DNA sequences of interest will preferably be operably linked (i.e., positioned to ensure the functioning of) to a promoter which allows the DNA to be transcribed (into an RNA transcript) and will comprise a vector which includes a replication system. In preferred embodiments, the DNA sequence of interest will be of exogenous origin in an effort to prevent co-suppression of the endogenous genes.
- Promoters (and other regulatory elements) may be heterologous (i.e., not naturally operably linked to a DNA sequence from the same organism). Promoters useful for expression in plants are known in the art and can be inducible, constitutive, tissue-specific, derived from eukaryotes, prokaryotes or viruses, or have various combinations of these characteristics.
- In choosing a promoter to use in the methods of the invention, it may be desirable to use a tissue-specific or developmentally regulated promoter. A tissue-specific or developmentally regulated promoter is a DNA sequence which regulates the expression of a DNA sequence selectively in the cells/tissues of a plant critical to seed set and/or function and/or limits the expression of such a DNA sequence to the period of seed maturation in the plant. Any identifiable promoter may be used in the methods of the present invention which causes expression during stress as defined herein. It may also be advantageous to use a stress inducible promoter to provide expression of the construct during periods of stress.
- Differential screening techniques can be used to isolate promoters expressed in developing female reproductive organs prior to, and immediately after, flowering (0-10 DAP). Promoters identified in this manner include NUC1 which is expressed in the nucleus prior to fertilization (Doan, D. N. P., et al. (1996) Plant Mol. Biol. 31:877-886, which is incorporated herein by reference).
- Promoters which are preferred for the invention and would be acceptably timed to stress follow. These and other such promoters are known and accessible through sources such as Genbank: barley promoter B22E: 69 NAL Call No. 442.8 Z34 “Primary Structure of a Novel Barley Gene Differentially Expressed in Immature Alleurone Layers,” Klemsdae, S. S. et al., Springer Int'l 1991 Aug., Molecular and General Genetics, Vol. 228(1/2) p. 9-16, 1991. Expression of B22E is specific to the pedicel in developing maize kernels, Zag2: 134 NAL Call. No.: QK725.P532 Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Schmidt, R. J.; Veit, B.; Mandel, M. A.; Mena, M.; Hake, S.; Yanofsky, M. F. Rockville, Md.: American Society of Plant Physiologists, c1989-; July 1993 The Plant Cell v. 5(7): p 729-737; July 1993 includes references. Zag2 transcripts can be detected 5 days prior to pollination to 7 to 8 DAP, and directs expression in the carpel of developing female inflorescences and Cim1 which is specific to the nucleus of developing maize kernels. Cim1 transcript is detected 4 to 5 days before pollination to 6 to 8 DAP. Other useful promoters include any promoter which can be derived from a gene whose expression is maternally associated with developing female florets.
- Table 1 shows a list of preferred promoters including their timing of expression (DAP=days after pollination).
TABLE 1 Promoter Expression Summary Promoter Source Primary Tissue Temporal ltp2 barley aleurone <6-24+ DAP cDNA cim1 maize pericarp (under silk 0-12+ DAP EST scar) nuc1-c barley nucellus, pedicel forming 1-12+ DAP cDNA region mze40-2 maize gloom, pericarp, pedicel <4-28+ DAP [maize EST forming region, low in B22e] scutellum b22e barley aleurone, embryo <5-30+ DAP genomic scutellum, pedicel forming region zag2 maize, floret, ovule <0-22 DAP EST endl maize, endosperm transfer cells 6-14 DAP cDNA betl1 maize, endosperm transfer cells 8-30+ DAP cDNA - For example, a construct useful for the present invention might include a maize gene encoding EF-Tu operably linked to the B22e promoter for increased heat and
drought stability 5 to 28 days after pollination. - Other promoters which are seed or embryo specific and may be useful in the invention include patatin (potato tubers) (Rocha-Sosa, M., et al. (1989) EMBO J. 8:23-29), convicilin, vicilin, and legumin (pea cotyledons) (Rerie, W. G., et al. (1991) Mol. Gen. Genet. 259:149-157; Newbigin, E. J., et al. (1990) Planta 180:461-470; Higgins, T. J. V., et al. (1988) Plant. Mol. Biol. 11:683-695), zein (maize endosperm) (Schemthaner, J. P., et al. (1988) EMBO J. 7:1249-1255), phaseolin (bean cotyledon) (Segupta-Gopalan, C., et al. (1985) Proc. Natl. Acad. Sci. U.S.A. 82:3320-3324), phytohemagglutinin (bean cotyledon) (Voelker, T. et al. (1987) EMBO J. 6:3571-3577), B-conglycinin and glycinin (soybean cotyledon) (Chen, Z-L, et al. (1988) EMBO J. 7:297-302), glutelin (rice endosperm), hordein (barley endosperm) (Marris, C., et al. (1988) Plant Mol. Biol. 10:359-366), glutenin and gliadin (wheat endosperm) (Colot, V., et al. (1987) EMBO J. 6:3559-3564), and sporamin (sweet potato tuberous root) (Hattori, T., et al. (1990) Plant Mol. Biol. 14:595-604). Promoters of seed-specific genes operably linked to heterologous coding regions in chimeric gene constructions maintain their temporal and spatial expression pattern in transgenic plants. Such examples include Arabidopsis thaliana 2S seed storage protein gene promoter to express enkephalin peptides in Arabidopsis and Brassica napus seeds (Vanderkerckhove et al., Bio/Technology 7:L929-932 (1989)), been lectin and bean β-phaseolin promoters to express luciferase (Riggs et al., Plant Sci. 63:47-57 (1989)), and wheat glutenin promoters to express chloramphenicol acetyl transferase (Colot et al., EMBO J 6:3559-3564 (1987)).
- Any inducible promoter can be used in the instant invention. See Ward et al. Plant Mol. Biol.22: 361-366 (1993). Exemplary inducible promoters include, but are not limited to, that from the ACEl system which responds to copper (Mett et al. PNAS 90: 4567-4571 (1993)); In2 gene from maize which responds to benzenesulfonamide herbicide safeners (Hershey et al., Mol. Gen. Genetics 227: 229-237 (1991) and Gatz et al., Mol. Gen. Genetics 243: 32-38 (1994)) or Tet repressor from Tn10 (Gatz et al., Mol. Gen. Genet. 227: 229-237 (1991). A particularly preferred inducible promoter is a promoter that responds to an inducing agent to which plants do not normally respond. An exemplary inducible promoter is the inducible promoter from a steroid hormone gene, the transcriptional activity of which is induced by a glucocorticosteroid hormone. Schena et al., Proc. Natl. Acad. Sci. U.S.A. 88: 0421 (1991).
- Many different constitutive promoters can be utilized in the instant invention. Exemplary constitutive promoters include, but are not limited to, the promoters from plant viruses such as the 35S promoter from CaMV (Odell et al., Nature 313: 810-812 (1985) and the promoters from such genes as rice actin (McElroy et al., Plant Cell 2: 163-171 (1990)); ubiquitin (Christensen et al., Plant Mol. Biol 12: 619-632 (1989) and Christensen et al., Plant Mol. Biol. 18: 675-689 (1992)): pEMU (Last et al., Theor. Appl. Genet. 81: 581-588 (1991)); MAS (Velten et al., EMBO J. 3: 2723-2730 (1984)) and maize H3 histone (Lepetit et al., Mol. Gen. Genet. 231: 276-285 (1992) and Atanassova et al., Plant Journal 2 (3): 291-300 (1992)).
- The ALS promoter, a Xbal/Ncol fragment 51 to the Brassica napus ALS3 structural gene (or a nucleotide sequence that has substantial sequence similarity to said Xbal/Ncol fragment), represents a particularly useful constitutive promoter. See PCT application W096/30530.
- Transport of protein produced by transgenes to a subcellular compartment such as the chloroplast, vacuole, peroxisome, glyoxysome, cell wall or mitochondrion, or for secretion into the apoplast, is accomplished by means of operably linking the nucleotide sequence encoding a signal sequence to the 5′ and/or 3′ region of a gene encoding the protein of interest. Targeting sequences at the 5′ and/or 3′ end of the structural gene may determine, during protein synthesis and processing, where the encoded protein is ultimately compartmentalized. The presence of a signal sequence directs a polypeptide to either an intracellular organelle or subcellular compartment or for secretion to the apoplast. Many signal sequences are known in the art. See, for example, Sullivan, T., “Analysis of Maize Brittle-1 Alleles and a Defective Suppressor-Mutator-Induced Mutable Allele”, The Plant Cell, 3:1337-1348 (1991), Becker et al., Plant Mol. Biol.20: 49 (1992), Close, P. S., Master's Thesis, Iowa State University (1993), Knox, C., et al., “Structure and Organization of Two Divergent Alpha-Amylase Genes From Barley”, Plant Mol.Biol. 9: 3-17 (1987), Lerner et al., Plant Physiol.91: 124-129 (1989), Fontes et al.,Plant Cell 3: 483-496 (1991), Matsuoka et al., Proc. Natl. Acad. Sci. 88: 834 (1991), Gould et al., J. Cell Biol 108: 1657 (1989), Creissen et al., Plant J. 2: 129 (1991), Kalderon, D., Robers, B., Richardson, W., and Smith A., “A short amino acid sequence able to specify nuclear location”, Cell 39: 499-509 (1984), Stiefel, V., Ruiz-Avila, L., Raz R., Valles M., Gomez J., Pages M., Martinez-Izquierdo J., Ludevid M., Landale J., Nelson T., and Puigdomenech P., “Expression of a maize cell wall hydroxyproline-rich glycoprotein gene in early leaf and root vascular differentiation”, Plant Cell 2: 785-793 (1990).
- Selection of an appropriate vector is relatively simple, as the constraints are minimal. The minimal traits of the vector are that the desired nucleic acid sequence be introduced in a relatively intact state. Thus, any vector which will produce a plant carrying the introduced DNA sequence should be sufficient. Typically, an expression vector contains (1) prokaryotic DNA elements encoding for a bacterial replication origin and an antibiotic resistance marker to provide for the growth and selection of the expression vector in a bacterial host; (2) DNA elements that control initiation of transcription, such as a promoter; (3) DNA elements that control the processing of transcripts such as transcription termination/polyadenylation sequences; and (4) a reporter gene. Useful reporter genes include β-glucuronidase, β-galactosidase, chloramphenicol acetyltransferase, luciferase, kanamycin or the herbicide resistance genes PAT and BAR. Preferably, the reporter gene is kanamycin or the herbicide resistance genes PAT and BAR. The BAR or PAT gene is used with the selecting agent Bialaphos, and is used as a preferred selection marker gene for plant transformation (Spencer, et al. (1990) J. Thero. Appl'd Genetics 79:625-631).
- One commonly used selectable marker gene for plant transformation is the neomycin phosphotransferase II (nptll) gene, isolated from transposon Tn5, which when placed under the control of plant regulatory signals confers resistance to kanamycin. Fraley et al., Proc. Natl. Acad. Sci. U.S.A., 80: 4803 (1983). Another commonly used selectable marker gene is the hygromycin phosphotransferase gene which confers resistance to the antibiotic hygromycin. Vanden Elzen et al., Plant Mol. Biol., 5: 299 (1985).
- Additional selectable marker genes of bacterial origin that confer resistance to antibiotics include gentamycin acetyl transferase, streptomycin phosphotransferase, aminoglycoside-3′-adenyl transferase, the bleomycin resistance determinant. Hayford et al., Plant Physiol. 86: 1216 (1988), Jones et al., Mol. Gen. Genet., 210: 86 (1987), Svab et al., Plant Mol. Biol. 14: 197 (1990), Hille et al., Plant Mol. Biol. 7: 171 (1986). Other selectable marker genes confer resistance to herbicides such as glyphosate, glufosinate or broxynil. Comai et al., Nature 317: 741-744 (1985), Gordon-Kamm et al., Plant Cell 2: 603-618 (1990) and Stalker et al., Science 242: 419-423 (1988).
- Other selectable marker genes for plant transformation are not of bacterial origin. These genes include, for example, mouse dihydrofolate reductase, plant 5-enolpyruvylshikimate-3-phosphate synthase and plant acetolactate synthase. Eichholtz et al., Somatic Cell Mol. Genet. 13: 67 (1987), Shah et al., Science 233: 478 (1986), Charest et al., Plant Cell Rep. 8: 643 (1990).
- Another class of marker genes for plant transformation require screening of presumptively transformed plant cells rather than direct genetic selection of transformed cells for resistance to a toxic substance such as an antibiotic. These genes are particularly useful to quantify or visualize the spatial pattern of expression of a gene in specific tissues and are frequently referred to as reporter genes because they can be fused to a gene or gene regulatory sequence for the investigation of gene expression. Commonly used genes for screening presumptively transformed cells include β-glucuronidase (GUS), β-galactosidase, luciferase and chloramphenicol acetyltransferase. Jefferson, R. A., Plant Mol. Biol. Rep. 5: 387 (1987)., Teeri et al., EMBO J. 8: 343 (1989), Koncz et al., Proc. Natl. Acad. Sci. U.S.A. 84:131 (1987), De Block et al., EMBO J. 3: 1681 (1984). Another approach to the identification of relatively rare transformation events has been use of a gene that encodes a dominant constitutive regulator of the Zea mays anthocyanin pigmentation pathway. Ludwig et al., Science 247: 449 (1990).
- Recently, in vivo methods for visualizing GUS activity that do not require destruction of plant tissue have been made available. Molecular Probes Publication 2908, Imagene Green, p. 1-4 (1993) and Naleway et al., J. Cell Biol.115: 151a (1991). However, these in vivo methods for visualizing GUS activity have not proven useful for recovery of transformed cells because of low sensitivity, high fluorescent backgrounds, and limitations associated with the use of luciferase genes as selectable markers.
- More recently, a gene encoding Green Fluorescent Protein (GFP) has been utilized as a marker for gene expression in prokaryotic and eukaryotic cells. Chalfie et al., Science 263: 802 (1994). GFP and mutants of GFP may be used as screenable markers.
- Genes included in expression vectors must be driven by a nucleotide sequence comprising a regulatory element, for example, a promoter. Several types of promoters are now well known in the transformation arts, as are other regulatory elements that can be used alone or in combination with promoters.
- A general description of plant expression vectors and reporter genes can be found in Gruber, et al. (Gruber et al. (1993) Vectors for Plant Transformation. In: Methods in Plant Molecular Biology and Biotechnology. Glich et al., eds. (CRC Press), pp. 89-119.
- Expression vectors containing genomic or synthetic fragments can be introduced into protoplast or into intact tissues or isolated cells. Preferably, expression vectors are introduced into intact tissue. General methods of culturing plant tissues are provided for example by Maki, et al. (Maki, et al. (1993) Procedures for Introducing Foreign DNA into Plants: In: Methods in Plant Molecular Biology & Biotechnology; Glich et al. eds. (CRC Press), pp. 67-88; Philips, et al. (1988) Cell-Tissue Culture and In Vitro Manipulation. In Corn & Corn Improvement, 3 rd ed. Sprague, et al. eds. (American Society of Agronomy Inc.), pp. 345-387).
- Methods of introducing expression vectors into plant tissue include the direct transfection or co-cultivation of plant cell with Agrobacterium tumefaciens (Horsch et al. (1985) Science, 227:1229). Descriptions of Agrobacterium vector systems and methods for Agrobacterium-mediated gene transfer are provided by Gruber et al. (supra).
- Numerous methods for plant transformation have been developed, including biological and physical, plant transformation protocols. See, for example, Miki et al., “Procedures for Introducing Foreign DNA into Plants” in Methods in Plant Molecular Biology and Biotechnology, Glick, B. R. and Thompson, J. E. Eds. (CRC Press, Inc., Boca Raton, 1993) pages 67-88. In addition, expression vectors and in vitro culture methods for plant cell or tissue transformation and regeneration of plants are available. See, for example, Gruber et al., “Vectors for Plant Transformation” in Methods in Plant Molecular Biology and Biotechnology, Glick, B. R. and Thompson, J. E. Eds. (CRC Press, Inc., Boca Raton, 1993) pages 89-119.
- Agrobacterium-mediated Transformation
- One method for introducing an expression vector into plants is based on the natural transformation system of Agrobacterium. See, for example, Horsch et al., Science 227: 1229 (1985). A. tumefaciens and A. rhizogenes are plant pathogenic soil bacteria which genetically transform plant cells. The Ti and Ri plasmids of A. tumefaciens and A. rhizogenes, respectively, carry genes responsible for genetic transformation of the plant. See, for example, Kado, C. I., Crit. Rev. Plant. Sci.10: 1 (1991). Descriptions of Agrobacterium vector systems and methods for Agrobacterium-mediated gene transfer are provided by Gruber et al., supra, Miki et al., supra, and Moloney et al., Plant Cell Reports 8: 238 (1989). See also, U.S. Pat. No. 5,591,616, issued Jan. 7, 1997.
- Direct Gene Transfer
- Despite the fact the host range for Agrobacterium-mediated transformation is broad, some major cereal crop species and gymnosperms have generally been recalcitrant to this mode of gene transfer, even though some success has recently been achieved in rice and maize. Hiei et al., The Plant Journal 6: 271-282 (1994); U.S. Pat. No. 5,591,616, issued Jan. 7, 1997. Several methods of plant transformation, collectively referred to as direct gene transfer, have been developed as an alternative to Agrobacterium-mediated transformation.
- A generally applicable method of plant transformation is microprojectile-mediated transformation wherein DNA is carried on the surface of microprojectiles measuring 1 to 4 mm. The expression vector is introduced into plant tissues with a biolistic device that accelerates the microprojectiles to speeds of 300 to 600 m/s which is sufficient to penetrate plant cell walls and membranes. Sanford et al., Part. Sci. Technol. 5: 27 (1987), Sanford, J. C., Trends Biotech. 6: 299 (1988), Klein et al., Bio/Technology 6: 559-563 (1988), Sanford, J. C., Physiol Plant 79: 206 (1990), Klein et al., Biotechnology 10: 268 (1992). In maize, several target tissues can be bombarded with DNA-coated microprojectiles in order to produce transgenic plants, including, for example, callus (Type I or Type II), immature embryos, and meristematic tissue.
- Another method for physical delivery of DNA to plants is sonication of target cells. Zhang et al., Bio/Technology 9: 996 (1991). Alternatively, liposome or spheroplast fusion have been used to introduce expression vectors into plants. Deshayes et al., EMBO J., 4: 2731 (1985), Christou et al., Proc Natl. Acad. Sci. U.S.A. 84: 3962 (1987). Direct uptake of DNA into protoplasts using CaCl2 precipitation, polyvinyl alcohol or poly-L-ornithine have also been reported. Hain et al., Mol. Gen. Genet.199: 161 (1985) and Draper et al., Plant Cell Physiol.23: 451 (1982). Electroporation of protoplasts and whole cells and tissues have also been described. Donn et al., In Abstracts of VIIth International Congress on Plant Cell and Tissue Culture IAPTC, A2-38, p 53 (1990); D'Halluin et al., Plant Cell 4: 1495-1505 (1992) and Spencer et al., Plant Mol. Biol. 24: 51-61 (1994).
- Following transformation of maize target tissues, expression of the above-described selectable marker genes allows for preferential selection of transformed cells, tissues and/or plants, using regeneration and selection methods now well known in the art.
- After transformation of a plant cell or plant, plant cells or plants transformed with the desired DNA sequences integrated into the genome can be selected by appropriate phenotypic markers. Phenotypic markers are known in the art and may be used in this invention.
- Confirmation of transgenic plants will typically be based on an assay or assays or by simply measuring stress response. Transformed plants can be screened by biochemical, molecular biological, and other assays. Various assays may be used to determine whether a particular plant, plant part, or a transformed cell shows an increase in enzyme activity or carbohydrate content. Typically, the change in expression or activity of a transformed plant will be compared to levels found in wild type (e.g., untransformed) plants of the same type. Preferably, the effect of the introduced construct on the level of expression or activity of the endogenous gene will be established from a comparison of sibling plants with and without the construct. EF-Tu levels can be measured, for example, by Northern blotting, primer extension, quantitative or semi-quantitative PCR (polymerase chain reaction), and other methods well known in the art (See, e.g., Sambrook, et al. (1989). Molecular Cloning, A Laboratory Manual, second edition (Cold Spring Harbor Laboratory Press), Vols. 1-3). Protein can be measured in a number of ways including immunological methods (e.g., by Elisa or Western blotting). EF-Tu activity can be measured in various assays as described in Smith (Smith, A. M. (1990). In: Methods in Plant Biochemistry, Vol. 3, (Academic Press, New York), pp. 93-102).
- Normally, regeneration will be involved in obtaining a whole plant from a transformation process. The term “regeneration” as used herein, means growing a whole plant from a plant cell, a group of plant cells, a plant part, or a plant piece (e.g., from a protoplast, callus, or a tissue part).
- The foregoing methods for transformation would typically be used for producing transgenic inbred lines. Transgenic inbred lines could then be crossed, with another (non-transformed or transformed) inbred line, in order to produce a transgenic hybrid maize plant. Alternatively, a genetic trait which has been engineered into a particular maize line using the foregoing transformation techniques could be moved into another line using traditional backcrossing techniques that are well known in the plant breeding arts. For example, a backcrossing approach could be used to move an engineered trait from a public, non-elite line into an elite line, or from a hybrid maize plant containing a foreign gene in its genome into a line or lines which do not contain that gene. As used herein, “crossing” can refer to a simple X by Y cross, or the process of backcrossing, depending on the context.
- Various plants will be suitable targets for enhancing sink strength in female reproductive organs with the acid invertase and AGPase genes. In particular, the methods of the invention described herein may be applicable to any crop species including but not limited to barley, sorghum, wheat, maize, soybean, and rice.
- Parts obtained from the regenerated plant, such as flowers, pods, seeds, leaves, branches, fruit, and the like are covered by the invention, provided that these parts comprise cells which have been so transformed. Progeny and variants, and mutants of the regenerated plants are also included within the scope of this invention, provided that these parts comprise the introduced DNA sequences.
- EF-Tu levels and the activity of EF-Tu are preferably determined as set forth in the examples.
- Once a transgenic plant is produced having a desired characteristic, it will be useful to propagate the plant and, in some cases, to cross to inbred lines to produce useful hybrids.
- In seed propagated crops, mature transgenic plants may be self crossed to produce a homozygous inbred plant. The inbred plant produces seed containing the genes for the newly introduce trait. These seeds can be grown to produce plants that will produce the selected phenotype.
- The following examples are offered to illustrate but not limit the invention. Thus, they are presented with the understanding that various formulation modifications as well as method of delivery modifications may be made and still be within the spirit of the invention.
- Materials and Methods
- Maize line ZPBL 1304 and maize line ZPL 389 were analyzed. In order to compare lines at similar developmental stages, lines that have the same time to flowering were selected.
- Experimental Setup and Growth Conditions
- Experimental setup and growth conditions were similar to those described by Ristic et al. (1991). In two experiments, experiment A had six replicates, and experiment B had five replicates. Experimental setup and growth conditions were identical for both experiments unless otherwise stated. For each replicate, 11 kernels of each line were sown in each of two pots (pot diameters at the top and the bottom were 20.5 cm and 14 cm, respectively; pot height, 20 cm) containing a mixture of soil: peat: sand (3:1:1, v/v/v). Plants were grown under controlled environmental conditions—12-h photoperiod, 280 μmol m- −2 sec−1 PPFD, 24 C./18 C. day/night temperature, and 70% relative humidity day and night—and were watered daily up to the second leaf stage, for 13 d. Subsequently the plants were divided into control and experimental groups, one pot per group. The control group was watered daily until the end of the experiment. The experimental group was not watered for 7 d followed by exposure to high temperature (45 C.) for 6 h and 24 h, in experiments A and B, respectively. Treated plants were then rewatered and allowed to recover for 6 d. Leaf samples for relative water content (RWC) and transmission electron microscopy (TEM) were obtained from the second leaf blades from one randomly selected plant from each group. Data from the control and the experimental group were collected at the same time. The third leaf blades were expanded in plants of both lines at the time when samples for RWC and TEM were collected.
- Relative Water Content and Transmission Electron Microscopy
- Relative water content was determined after exposure to high temperature and on the third and the sixth day of recovery. Relative water content was determined according to Henson et al. (1980). Relative water content was calculated as RWC=(fresh weight−dry weight)/(turgid weight−dry weight)×100. Turgid weight was determined after imbibition of leaf blades in distilled water in sealed glass tubes for 4 h at room temperature followed by overnight storage at 5° C., and dry weight was determined after 48 h at 80° C.
- Leaf samples for TEM (about 1 mm 2) were fixed in 4% glutaraldehyde and 4% paraformaldehyde, in 0.1 M phosphate buffer (pH 7), for 2 h at 4° C. Postfixation with 2% osmium tetroxide in the above buffer was for 2 h at room temperature. Specimens were dehydrated in a graded series of acetone (30%, 50%, 70%, 80%, 90%, 100%) and left, first in a mixture of Spurr embedding medium (Spurr 1969) and 100% acetone (1:1, v/v) for 2 h at room temperature and then in pure epoxy resin overnight at 4 C. The embedding was completed in 24 h at 60° C. Thin sections (60-99 nm) were cut on a Reichert Ultracut E ultramicrotome, using a diamond knife. Sections were double-stained, first with 4% uranyl acetate in 70% ethanol for 45-60 min and then with 0.2% aqueous lead citrate (Venable and Coggeshall 1965) for 2-3 min. Specimens were viewed with a Philips 201 TEM at 60 kV, equipped with a 35-mm camera. For each plant an average of 120-150 randomly chosen mesophyll cells were examined.
- Results
- Chloroplast Structure After Exposure To 7-day Soil Drying Followed by 6-h High-Temperature (45 C.) Stress
- The stress tolerant ABA line ZPBL 1304.—Chloroplasts from the control plants were well developed, with distinctive envelopes and grana. Exposure to stress conditions did not affect their structure. Chloroplast-envelope membranes and grana were well defined. In addition, the frequency of plastoglobuli appeared to be similar between chloroplasts from the control and the treated plants. Chloroplast structure in recovered plants did not differ from that in controls.
- The stress sensitive ABA line ZPL 389.—Chloroplast structure in well-watered plants was similar to that in the control group of ZPBL 1304. Stress conditions affected chloroplast structure to a great extent, although some of the chloroplasts appeared normal. In affected chloroplasts, envelope membranes were broken and not distinctive. In many grana, swelling of thylakoids occurred; consequently, the intrathylakoid space was increased and numerous vesicles were formed.
- Three days after rewatering, most of the chloroplasts appeared normal. However, some were not fully recovered even though their envelope membranes were distinct; in these chloroplasts, chloroplast internal organization was not repaired completely, and many vesicles were still present. After a 6-day recovery period, all of the chloroplasts had recovered, and their structure was similar to that in the control plants.
- Chloroplast Structure After Exposure To 7-day Soil Drying Followed by 24-h High-Temperature (45 C.) Stress
- ZPBL 1304.—In control plants the chloroplasts had normal structure. In plants exposed to stress, four groups of chloroplasts were observed. In the first group, chloroplast structure was similar to that in the control plants. In the second group, chloroplasts were also similar to those in unstressed plants, but their shape was irregular. In chloroplasts from the third group, envelope membranes were broken and not distinct, but granule structure appeared unaffected. Chloroplasts from the fourth group had distinct chloroplast envelopes, even though they were occasionally broken. Their internal organization, however, was affected by stress conditions to a high degree. There were swollen thylakoid membranes and numerous internal vesicles.
- Three days after rewatering, the majority of chloroplasts had recovered. Chloroplast envelopes and grana were distinct. Some of the chloroplasts, however, seemed to be still in the process of recovery. A structure that has a distinct envelope and many internal vesicles was interpreted as a chloroplast that underwent structural modification during the stress treatment; the internal vesicles likely represent swollen thylakoids. During the recovery process, these vesicles reassemble and form grana. In the final stage almost all the thylakoids reassembled, forming grana, even though some of them were swollen. The chloroplast envelope in some chloroplasts, however, was incomplete; occasionally it was broken and swollen.
- The structural organization of chloroplasts appeared normal after a 6-day recovery period. Only a few chloroplasts remained in the process of recovery. In these chloroplasts, distinct chloroplast-envelope membranes, many grana, and starch grains were observed, but internal vesicles were still present.
- ZPL 389.—Chloroplasts from the control plants were normal in their structure. After exposure to 7-day soil drying followed by 45 C., chloroplast structure was severely disrupted. Chloroplast-envelope membranes were not visible, and grana were barely recognizable. The shape of the chloroplasts was also irregular, and huge, darkly stained plastoglobuli were visible in many of them.
- Chloroplasts from ZPL 389 were not restored after the 3-day recovery period. On the contrary, their structure was even more disrupted than in chloroplasts observed immediately after the stress. They were darkly stained and had many lipid droplets and poorly organized membranes. Six days after recovery, chloroplast structure was barely different from that after the 3-day recovery. Although some chloroplasts had granal structure again, none had intact envelope membranes.
- Discussion
- Water shortage and high-temperature stress caused alterations in the structure of chloroplasts from leaf mesophyll cells in the stress tolerant line of maize ZPBL 1304 and the stress sensitive line ZPL 389. Comparable results under water stress have been reported in chloroplast structure from the Zea mays cultivar Wisconsin 575 (Giles et al. 1974), Sorghum bicolor Moench (Giles et al. 1976), Gossypium hirsutum L. (Vieira da Silva et al. 1974; Ackerson and Hebert 1981), Cicer arientinum (Alieva et al. 1971), and Talbotia elegans Balf. (Hallam and Luf 1980). Similar modifications in chloroplast structure under soil drying and high-temperature stress conditions have been found in two maize lines (Polj 17 and F-2) that differ in endogenous levels of ABA and drought resistance (Ristic and Cass 1991a).
- It is likely that chloroplast damage in ZPBL 1304 and ZPL 389 was partly a result of leaf dehydration (Ristic and Cass, unpub. data). Dehydration in ZPBL 1304 was negligible (RWC=97%±2% SE) after heating for 6 h, and 52% after heating for 24 h. Leaves of ZPL 389 suffered dehydration of 44% after exposure to 6-h high-temperature stress, and 89% after exposure to 24-h high-temperature stress. Leaf dehydration was reversible in 6-h heated plants of ZPL 389 and 24-h heated plants of ZPBL 1304, and irreversible in 24-h heated plants of ZPL 389. A similar pattern of leaf dehydration in these two lines under stress conditions was indicated by changes in leaf turgor and water potential; leaves of 13-day water-stressed plants of lines ZPBL 1304 and ZPL 389 had turgor pressures of −0.01 MPa and −0.17 MPa, and water potentials of −1.18 MPa and −1.37 MPa, respectively (Pekic and Quarrie 1987).
- In addition to dehydration, high temperature per se seems to be operative in damaging the chloroplasts, since high temperatures are known to have detrimental effects on chloroplast membranes (Krause and Santarius 1975; Bauer and Senser 1979; Armond et al. 1980; McCain et al. 1989). Heat-induced damage to chloroplasts has been reported in intact plants of Hedera helix L. (Bauer and Senser 1979), leaves of Acer platanoides L. (McCain et al. 1989), and isolated chloroplasts of Spinacia oleracea L. (Krause and Santarius 1975) and Vicia faba L. (Gounaris et al. 1983).
- Although stress affected both lines of maize, there were clear differences in chloroplast structure under stress conditions between ZPBL 1304 and ZPL 389. Chloroplasts in ZPBL 1304 were less affected by stress conditions than those in ZPL 389, and this was apparent after both stress treatments. It can be argued that these differences do not reflect differences in the stability of chloroplast membranes between the two genotypes, since the two lines were not dehydrated to a similar extent. However, when dehydration in ZPBL 1304 (RWC=48%±4% SE) reached a level similar to that in ZPL 389 (RWC=56%±8% SE) (Ristic and Cass, unpub. data) chloroplasts in ZPBL 1304 were affected less than those from ZPL 389. Comparison of chloroplasts in ZPL 389 after 7-day soil drying followed by 6-h heat stress and chloroplasts in ZPBL 1304 after 7-day soil drying followed by 24-h heat stress illustrated this point.
- The results on chloroplast structure agree with the results on leaf physiological characteristics in ZPBL 1304 and ZPL 389 after exposure to soil drying and high-temperature (45° C.) stress conditions (see Introduction). Furthermore, the results on chloroplast structure also agree with the results on the pattern of synthesis of heat-shock proteins (HSPs) in ZPBL 1304 and ZPL 389 (Ristic et al. 1991). A unique band of HSPs at approximately 45 kD was found in the heated (45° C.) plants of ZPBL 1304 that was not observed in the heated (45° C.) plants of ZPL 389. Although the function of HSPs is not clear, it is possible that the pattern of HSP synthesis in lines ZPBL 1304 and ZPL 389 had an impact on the stability of chloroplast membranes in these two lines since in maize a subset of HSPs has been shown to be internalized by the chloroplasts (Vierling et al. 1986).
- It has been reported that ABA has destructive effects on ultrastructural features of chloroplasts in Triticum aestivum L., Avena sativa L. (Wellburn and Wellburn 1973), and Pisum sativum L. (Krendeleva et al. 1988). This might indicate that increased ABA levels could have negative effects on chloroplast structure. The results of this study did not show this. It is possible that if there were any effects of ABA on chloroplast structure in line ZPBL 1304 (high-ABA line), they would have been much less than the negative effects of stress conditions on chloroplast structure in line ZPL 389 (low-ABA line).
- It is hypothesized that the differences in the structure of stress-damaged chloroplasts between ZPBL 1304 and ZPL 389 were partly the result of genotypic differences in the thermal sensitivity of chloroplast membranes. Photosynthetic membranes of vascular plants contain a high proportion of polyunsaturated lipids, and the thermal stability of chloroplast membranes depends to a great extent on the level of poly-unsaturated lipids. Thomas et al. (1986) suggested that decreased lipid unsaturation increases the temperature at which changes in the structure of chloroplast membranes occur. Even though the lipid composition of photosynthetic membranes in these maize lines is not known, it is possible that the differences in chloroplast structure between lines ZPBL 1304 and ZPL 389 under stress conditions were partly the result of differences in the lipid composition of their membranes.
- Materials and Methods
- The steady state levels of ZPBL 1304 EF-Tu mRNA were measured using Northern blot analysis. Total leaf RNA was isolated from control and heat-stressed plants of ZPBL 1304, using a commercial RNA isolation kit (Ambion). The RNA was fractionated using 1% agarose gel electrophoresis and transferred onto positively charged nylon membrane. Cross linking was achieved by baking the membrane at 80° C. for 2 h. A maize EF-Tu EST was used as a DNA probe for hybridization of the RNA blots.
- Results and Conclusions
- The results show increased levels of EF-Tu mRNA during early stages of heat stress. Compared to control, a significant increase in the intensity of the hybridization band was observed at 41° C. and 45° C. (FIG. 4). The results suggest that during heat stress the synthesis of chloroplast protein synthesis elongation factor EF-Tu in ZPBL 1304 may be regulated at the level of transcription.
- Materials and Methods
- Plant Material and Growth Conditions
- Seeds of ZPBL 1304 ( Zea mays L.) were washed with autoclaved distilled water and germinated in the dark on a single layer of moist germination paper. After three days, the seedlings were planted in pots (4 seedlings per pot) containing a mixture of soil:peat:sand (3:1:1, v/v/v). Plants were maintained in a growth chamber at 25/20° C. day/night temperature, 12 h photoperiod with 280 μmol m−2 S−1 light, 70% humidity and regular watering (Bhadula et al., 1998).
- Isolation, Purification, and Sequencing of 45 HSPs
- Three-week old plants were used for the isolation and purification of the 45 kD polypeptides. Plants were exposed to 45° C. heat stress for 3 h (Bhadula et al., 1998). Two hours after the beginning heat stress, the second leaf blades were labeled with 10 μL of [ 35S]methionine (370 MBq/mL; specific activity 37 TBq/mmol, Amersham, Canada) for 1 h (Ristic et al., 1991). Control plants, maintained at 25° C., were simultaneously labeled. Following labeling, the leaves were harvested and used for protein extraction as described by Bhadula et al. (1998).
- For sequencing, proteins were separated using 2-dimensional gel electrophoresis following the method of O'Farrell (1975) with some modifications (Bhadula et al., 1998). Isoelectric focusing (IEF) was carried out at 9,000 volt hours in glass tubes using 2% (v/v) Resolytes, pH 4-8 (BDH), 4% (w/v) acrylamide and 9 M urea. Sodium thioglycolate (100 μM) and 50 μM glutathione were added to the gel mixture to avoid the accumulation of free radicals (Dunbar et al., 1998). The IEF gels were removed from the tubes, washed in SDS-sample buffer (Laemmli, 1975) and mounted on top of a 10% (w/v) acrylamide gel. The gel running conditions were the same as described earlier (Bhadula et al., 1998). The proteins from the 2-dimensional gel were transferred onto PVDF membranes (BioRad Laboratories, Calif.) using CAPS transfer buffer (Dunbar et al., 1997) at 900 mA for 3.5 h. The membranes were stained with 0.1% (w/v) amido black solution [prepared in 40% (v/v) methanol and 1% (v/v) acetic acid]. The 45 kD polypeptides were identified and their position was further confirmed by exposing the membranes to Kodak X-OMAT AR film. The 45 HSPs were clearly visible on the film and were matched with the stained membranes to confirm their position. The individual 45 kD polypeptide spots were cut from the blots and subjected to protein sequencing using automatic Edman degradation in a Procise 494 protein sequencer (Applied Biosystems Instruments). Proteins were sequenced at two facilities (protein sequencing facility at the University of Nebraska, Lincoln, Nebr., and Iowa State University, Ames, Iowa).
- Sub-cellular Fractionation
- The leaves were labeled with [ 35S]methionine as described above. After labeling, the leaves were harvested and washed with sterile distilled water. The leaf blades were cut into small pieces and homogenized in chloroplast grinding medium (Fish and Jagendorf, 1982). The homogenate was passed through eight layers of cheesecloth and centrifuged at 200 g for 3 min using a Sorvall HB4 rotor. The resulting supernatant was centrifuged at 1500 g for 5 min. The pellet was suspended in a small volume of “suspend medium” (Fish and Jagendorf, 1982) and marked as “chloroplast-enriched fraction”. Phase contrast microscopy revealed that this fraction contained mostly chloroplasts and some starch grains. The supernatant was marked as “1500 g supernatant.”
- Intact chloroplasts were purified from the chloroplast-enriched fraction according to the method of Fish and Jagendorf (1982) and examined with the phase contrast microscope. The purified chloroplasts appeared to be intact (phase bright) and free of any contamination. A small volume of chloroplast preparations was used for protein extraction and analysis. The chloroplasts were lysed by osmotic shock using distilled water in the presence of a protease inhibitor (1 mM phenylmethylsulfony fluoride) and also, by ultrasonication.
- The “1500 g supernatant” was further centrifuged at 6,000 g for 10 min. The pellet containing broken chloroplasts, other cellular membranes and contaminating particulate fraction did not show the presence of 45 HSPs in 1-dimensional gels and was discarded. The 6,000 g supernatant was then centrifuged at 25,000 g for 15 min and the resulting pellet was re-suspended in a small volume of sterile distilled water containing 1 mM protease inhibitor and marked as “mitochondrial pellet.” The 12,500 RPM supernatant was used as the “soluble fraction”. A small volume of each fraction (chloroplast enriched fraction, purified chloroplasts, mitochondrial pellet and the soluble fraction) was used for protein quantification and trichloroacetic acid (TCA) counting according to the methods of Bradford (1976) and Mans and Novelli (1960), respectively. For electrophoresis, the remaining volume of the subcellular fractions was treated with SDS-sample buffer (1:1, v/v) (Laemmli, 1975), heated at 95° C. for 3 min, quickly cooled, and stored at −80° C. until used.
- The protein samples from sub-cellular fractions were analyzed using 1-dimensional SDS-PAGE and autoradiography (Bhadula et al., 1998). Because we observed the 45 HSPs in the chloroplast and soluble fractions, these fractions were also analyzed using 2-dimensional gel electrophoresis and autoradiography (Bhadula et al., 1998). For comparison of protein synthesis patterns of subcellular fractions with total leaf proteins, [ 35S]-labeled ‘control’ and ‘heat-shocked’ leaves were homogenized in SDS-sample buffer and the protein extracts were analyzed using 1-dimensional gel electrophoresis as described above.
- Protein Synthesis by Isolated Chloroplasts
- Chloroplasts were isolated as described above except that the leaves were not labeled with [ 35S]methionine and no heat shock treatment was given to the plants. Chloroplasts were isolated and purified under sterile conditions. The purified chloroplasts were suspended in suspend buffer and divided into two lots (“control” and “heat shock”). The “control” lot was incubated in a protein synthesis mixture at 25° C. whereas the “heat shock” lot was incubated at 45° C. for 45 min. The incubation mixture contained 40 μL of the chloroplast preparation, 100 μL of suspend buffer, 5 μL of [35S]-methionine and ATP (1 mM). Three inhibitors of protein synthesis, namely, cycloheximide (inhibitor of cytosolic protein synthesis), chloramphenicol (inhibitor of chloroplast and mitochondrial protein synthesis) and streptomycin (inhibitor of chloroplast protein synthesis) were also used separately (100 μM each), to find out if there was any contamination and subsequent protein synthesis by total cellular or mitochondrial fractions. The chloroplasts were illuminated at 1000 μMol m−2s−1. For each treatment, a proper control was incubated either in the dark or in the absence of ATP and inhibitors. After incubation, the chloroplasts were collected by centrifugation at 1500 g and washed twice with cold suspend buffer. The chloroplasts were then collected by centrifugation, lysed by osmotic shock and used for protein extraction, protein quantification, TCA counting and electrophoresis as described above.
- Results
- N-terminal Sequence of 45 HSPs
- Five polypeptides of the 45 HSP family were isolated for protein sequencing, and four of them [
2, 3, 4, and 5 (Ristic et al., 1998a)] yielded reproducible amino acid sequences (Table 2).polypeptides 2, 4 and 5 (Ristic et al., 1998a) had sequences similar to protein elongation factor EF-Tu of prokaryotes, lower eukaryotes, and chloroplast EF-Tu of higher plants. The sequence homology of the polypeptide 2 (fromPolypeptides amino acids 4 to 20) varied from 88 to 82% with the EF-Tu of Chlamydomonas reinhardtii and E. coli, respectively (Jones et al., 1980; Baldauf and Palmer, 1990). The overall sequence of this polypeptide (20 amino acid stretch) showed 80% similarity with the chloroplast EF-Tu of several higher plants including Arabidopsis thaliana (Baldauf and Palmer, 1990). The 4 and 5 were similar, and they showed 80 to 90% homology with EF-Tu from various prokaryotes, lower eukaryotes and chloroplast EF-Tu of higher plants (Jones et al., 1980; Baldauf and Palmer, 1990). N-terminal as well as internal sequence analysis ofpolypeptides polypeptide 3 showed more than 80% homology with chloroplast glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from various lower organisms and higher plants including Zea mays (Gowri and Campbell, 1989) and Arabidopsis thaliana (Shih et al., 1991). This polypeptide also exhibited high homology (75%) with GAPDH precursor from Chlamydomonas reinhardtii (Kersanach et al., 1994). - Subcellular Localization of 45 HSPs
- The pattern of HSP synthesis in total leaf extracts and sub-cellular fractions is shown in FIG. 1A and 1B, respectively. Control leaves did not synthesize the 45 kD proteins (FIG. 1A, lane 1). Heat-shock induced the synthesis of several high molecular mass (HMM, molecular mass>60 kD) and low molecular mass (LMM, molecular mass (<30 kD) and the 45 HSPs (FIG. 1A, lane 2). The pattern of protein synthesis in various subcellular fractions of control leaf extracts is not included since the 45 HSPs were not detected in the control leaves (FIG. 1A, lane 1).
- The chloroplast fraction of the heat stressed leaves contained the majority of the 45 HSPs (FIG. 2B,
3 and 4, indicated by arrows), with the purified chloroplast fraction enriched in these proteins (FIG. 1B, lane 3). Some LMM HSPs were also prominent in the purified chloroplast fraction (FIG. 1B, lane 3). Small amounts of the 45 HSPs were also detected in the cytosolic fraction (FIG. 1B, lane 1). The mitochondrial fraction, on the other hand, did not appear to contain proteins of 45 kD (FIG. 1B, lane 2). Instead, this fraction was enriched in some HMM and LMM HSPs (FIG. 1B, lane 2).lanes - Two-dimensional gel analysis of purified chloroplast proteins revealed that several HSPs (LMM and HMM) including 45 HSPs were present in this fraction (FIG. 2A). Of the five 45 kD polypeptides (Ristic et al., 1998), three (
1, 2, and 3) were localized in the chloroplasts and the polypeptide 2 [major 45 kD polypeptide (Ristic et al., 1998a)] appeared to be the most abundant (FIG. 2A, thick arrow). In addition,polypeptides polypeptide 5, which was more prominent in the cytosolic fraction (FIG. 2B, thick arrow) was also detected in chloroplasts (FIG. 2A). Cytosolic fraction also containedpolypeptide 4, which was not observed in the chloroplasts. 1, 2 and 3 were hardly detectable in the cytosolic fraction. Chloroplasts isolated from the leaves of control plants did not show the accumulation of proteins of 45 kD (FIG. 2C).Polypeptides - Protein Synthesis by Isolated Chloroplasts
- The pattern of protein synthesis in isolated control (incubated at 25° C.) and heat-shocked (incubated at 45° C.) chloroplasts is shown in FIG. 3 (lanes 1-6: heat shocked chloroplasts; lane 7: control chloroplasts) . In both heat-shocked and control chloroplasts, no incorporation of the label into proteins was observed in the dark (not shown). However, protein synthesis in the chloroplasts incubated in the dark was initiated by the addition of ATP, and within 15 min of incubation, the synthesis of several polypeptides was observed (FIG. 3, lane 1) indicating that the process of protein synthesis in isolated chloroplasts was energy-dependent. Illumination of chloroplasts (1000 μMol m −2 s−1) at 45° C. resulted in the synthesis of several polypeptides (FIG. 2, lane 2). Addition of ATP to the illuminated chloroplasts did not cause a significant increase in the accumulation of proteins (FIG. 3, lane 3) suggesting that isolated chloroplasts were able to generate sufficient ATP. As a general rule, protein synthesis in isolated chloroplasts was sensitive to both, chloramphenicol and streptomycin, but not to cycloheximide (FIG. 3, lanes 4-6). This further confirms the purity of chloroplasts used in this study. The pattern of protein synthesis in the chloroplasts incubated at 25° C. (FIG. 3, lane 7) was similar to that observed for chloroplasts incubated at 45° C. (FIG. 3, lane 2) indicating that isolated chloroplasts did not synthesize any HSPs including the 45 HSPs.
- Discussion
- Identification of proteins using N-terminal sequencing and determination of their subcellular origin and distribution is a primary step towards developing an understanding of their physiological function. In this study, the identity, subcellular localization, and origin of the 45 kD heat-shock polypeptides (polypeptides 1-5, Ristic et al., 1998) from the drought and heat tolerant maize line ZPBL 1304 were investigated. N-terminal sequence analysis revealed that the major 45
kD polypeptide 2, and 4 and 5 had amino acid sequences similar to chloroplast protein elongation factor EF-Tu, andpolypeptides polypeptide 3 matched the sequence of chloroplast GAPDH. The study on sub-cellular localization showed that the 1, 2, 3, and 5, were localized in the chloroplasts, althoughpolypeptides polypeptide 5 was also present in the cytosol.Polypeptide 4 was detected only in the cytosol. The study on protein origin revealed that chloroplast polypeptides of 45 kD were synthesized in the cytosol. The results on subcellular localization and origin of 45 kD polypeptides are, thus, consistent with the sequence data. Combined, they suggest that major fraction of 45 kD proteins is chloroplast protein synthesis elongation factor (EF-Tu) and a minor fraction is chloroplast GAPDH. - The study has revealed the synthesis of three heat-induced polypeptides with high sequence homology to the chloroplast elongation factor, EF-Tu. The molecular mass of the polypeptides identified as EF-Tu (45 kD) is similar to the molecular mass of EF-Tu from higher plants and other organisms (Jacobson and Rosenbusch, 1976; Young and Bernlohr, 1991; Berchtold et al., 1993; Ursin et al., 1993). The appearance of three polypeptides of 45 kD with high sequence homology to the chloroplast EF-Tu indicates that there may be a polymorphism in the EF-Tu genes which may be related to spatial and/or temporal regulation of the cell metabolism under heat stress. Ursin et al., (1993) have reported two copies of EF-Tu gene in tobacco.
- Whereas the major 45 kD polypeptide (polypeptide 2) showing EF-Tu sequence was clearly chloroplastic, two other EF-Tu polypeptides (
polypeptides 4 and 5) were detected in the cytosol. The presence of 45 kD polypeptides in the cytosol is not surprising since chloroplast EF-Tu is known to be encoded by nuclear genes and synthesized in the cytosol (Baldauf and Palmer, 1990). Furthermore, nuclear-encoded chloroplast proteins can also be found in the cytosol. For example, Heckathon et al. (1998) reported the accumulation of nuclear-encoded chloroplast proteins in the cytosol during severe heat stress. The presence of EF- 4 and 5 in the cytosolic fractions may also suggest a possible role of these polypeptides in the cytosol or in the organelles other than chloroplasts and mitochondria. EF-Tu has been shown to be associated with plasma membrane in E. coli where it plays a structural role (Jacobson and Rosenbusch, 1976).Tu polypeptides - EF-Tu is a highly conserved protein and plays a role in polypeptide elongation during protein synthesis (Riis et al., 1990). It is a GTP binding protein (Young and Bernlohr, 1991) and functions in the binding and transport of codon-specific tRNA at the aminoacyl site on the ribosome (Brot, 1977). EF-Tu has been shown to have other functions in addition to its role in polypeptide elongation (Travers et al., 1970; Jacobson and Rosenbusch, 1976; Young and Bernlohr, 1991). One of these functions is implicated in thermotolerance. Kudlicki et al. (1997) reported a chaperone-like property of bacterial EF-Tu in the refolding of denatured rhodanese. Similarly, Caldas et al. (1998) described the chaperone properties of prokaryotic EF-Tu and found that like other molecular chaperones, E. coli EF-Tu interacts with unfolded and denatured proteins and forms stable complexes. Prokaryotic EF-Tu was also found to protect citrate synthase and α-glucosidase from thermal aggregation, and the chaperone properties of EF-Tu were shown to occur at very low levels (20-fold lower than cellular concentrations) (Caldas et al., 1998). Prokaryotic and eukaryotic EF-Tu are strikingly similar (Riis et al., 1990), and it is possible that maize EF-Tu may have chaperone activity similar to prokaryotic EF-Tu.
- Since heat stress is known to cause significant damage to chloroplast membranes, it is possible that increased synthesis of chloroplast EF-Tu in the ZPBL maize line may be related to the stability of chloroplast membranes at high temperatures and may also stabilize chloroplast protein synthesis. Indeed, chloroplasts from the heat tolerant line of maize (ZPBL 1304), that synthesizes EF-Tu during heat stress have been found to be more heat stable than the chloroplasts from the line that does not synthesize EF-Tu (heat sensitive line, ZPL 389) (Ristic and Cass, 1992, 1993). Furthermore, under heat shock conditions, isolated chloroplasts of the heat tolerant line (ZPBL 1304) were able to synthesize all the proteins that were observed in control chloroplasts (FIG. 3).
- The involvement of EF-Tu with thermotolerance in eukaryotes including higher plants has not been reported. The results of our study show that in the ZPBL 1304 maize line, EF-Tu is induced during heat-shock.
TABLE 2 Amino acid sequences of four polypeptides of the 45 kD HSP family. ‘X’ indicates unidentified amino acid. Homology of these sequences with proteins from various organisms is described in the text. GAPDH: Glyceraldehyde 3-phosphate dehydrogenase. The sequence in parenthesis shows internal sequence of the GAPDH polypeptide. NO.* Sequence SEQ ID NUMBERS Homology 2 AXNKFERLKPHVNIGXIGHV (SEQ ID NO:1) Protein elongation factor (EF-Tu) 3 AVKVTINGFGRIGTNFLTEA (SEQ ID NO:2) GAPDH (VVAWYDNEXGYS) (SEQ ID NO:3) 4 ARGKFERTKPHVNIGTIXHV (SEQ ID NO:4) Protein elongation factor (EF-Tu) 5 RGKFERTKPHVNIGTIXXV (SEQ ID NO:5) Protein elongation factor (EF-Tu) - We obtained EF-Tu peptide sequence from protein spots showing differential abundance on 2-D gels. The inventors then used this sequence and blasted it against our maize EST database. Multiple ESTs had translated homology with the protein sequence. Upon blasting these ESTs against the public database, it was found that they matched various EF-Tu genes. We selected one clone (CHSTG79R) that had high homology (BLAST Score=333) with a tobacco chloroplast elongation factor. This EST came from a cDNA library that was constructed from B73 seedlings that were drought and heat stressed.
- Details of cDNA Library
- Seedlings from the inbred B73 were established in soil and droughted for 10-days. Seedlings were then heat shocked for 24 hrs and allowed to recover. The aerial plant material was harvested, frozen in liquid N, and RNA was extracted from this tissue and used to create the cDNA library (P0018).
- Sequencing of CHSTG79R
- The CHSTG79R clone appeared to be full length (˜1.4 kb), and the DNA Core Facility sequenced the insert (SEQ ID NO:6, FIG. 7).
- Materials and Methods
- Maize CDNA for EF-Tu was cloned into an E. coli expression vector, pTrcHis2 (promoter, TRC). E. coli transformats for maize EF-Tu were then grown at 37° C. and subsequently diluted with a fresh LB medium supplemented with ampicillin (100 μg mL−1) and IPTG to a final concentration of 1 mM. Two hours after induction, cultures were diluted, and 1 mL samples were exposed to 55° C. for 1 h. Aliquots were taken at 0 and 1 h, and dilutions were plated in triplicate onto agar growth medium containing ampicillin. Plated cells were incubated overnight at 37° C., and cell viability was assessed by counting the number of colonies after incubation.
- Results and Conclusion
- The results showed that E. coli over-expressing maize EF-Tu displayed increased viability after exposure to heat stress (FIG. 5). The number of E. coli colonies, that grew at 37° V. following heat stress, was 18% higher (P<0.038) in induced cells (cells producing maize EF-Tu) than in non-induced cells (cells not producing maize EF-Tu). The results strongly suggest that maize EF-Tu plays an important role in protection against heat injury.
- We investigated the correlation between the levels of EF-Tu and the plant ability to withstand heat stress. Three more heat tolerant and four less heat tolerant maize hybrids were used (Ristic et al., 1998). Two-week growth-chamber grown plants were exposed to 45° C. for 24 h followed by 5-d recovery. For EF-Tu analysis, leaf samples were collected after 3 h of exposure to heat stress. Proteins were extracted and analyzed using western blotting. The relative amount of EF-Tu was estimated by determining band volume, using Molecular Analyst (BioRad) (Bhadula et al., Heat-stress induced synthesis of chloroplast protein synthesis elongation factor (EF-Tu) in a heat-tolerant maize line, Planta (2000a) (in press). Plant heat tolerance was accessed by examining damage to the thylakoid membranes estimated using chlorophyll α fluorescence after 5-d recovery (Ristic et al. 1998).
- Western blots revealed that the hybrids that better withstand heat stress also show higher accumulation of the EF-Tu under heat stress conditions (FIG. 6). More heat tolerant hybrids (
3162, 3163, 3165) had higher EF-Tu band volume (FIG. 6A and D) and lower damage to the thylakoid membranes (FIG. 6B) than less heat tolerant hybrids (hybrids 3343, 3346, 3733, 3739). The results strongly support the hypothesis that maize EF-Tu plays a role in the development of heat tolerance.hybrids - All articles cited herein and in the following list are hereby expressly incorporated in their entirety by reference.
- Bauldauf et al. (1990) Evolutionary transfer of the chloroplast tufa gene to the nucleus. Nature 344:262
- 265.
- Bhadula et al. (1998) Synthesis of a family of 45 ku heat shock proteins in a drought and heat resistant line of maize under controlled and field conditions. J. Plant Physiol 152:104-111.
- Bhadula et al. (1999) Plant Biology 99:559.
- Bhadula et al. (2000a) Heat-stress induced synthesis of chloroplast protein synthesis elongation factor (EF-Tu) in a heat-tolerant maize line. Planta (in press).
- Berchtold et al. (1993) Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365:126-132.
- Bradford, M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.
- Brot, N. (1977) Translation. In H. Weissbach and S. Pestka, eds, Molecular Mechanisms of Protein Synthesis, Academic Press, New York, pp. 374-411.
- Caldas et al. (1998) Chaperone properties of bacterial elongation factor. J Biol Chem 273:11478-11482.
- Dunbar et al. (1997) Identification of plant mitochondrial proteins: a procedure linking two-dimensional gel electrophoresis of protein sequencing from PVDF membranes using a fastblot cycle. Plant Mol Biol Rep 15:46-61.
- Fish et al. (1982) High rates of protein synthesis by isolated chloroplasts. Plant Physiol 70:1107-1114.
- Gowri et al. (1989) cDNA clones for corn leaf NADH:nitrate reductase and chloroplast NAD(P)+: glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol 90:792-798.
- Heckathorn et al. (1998) Nuclear-encoded chloroplast proteins accumulate in the cytosol during severe heat stress. International J Plant Sci 159:39-45.
- Jacobson et al. (1976) Abundance and membrane association of elongation factor Tu in E. coli. Nature 261:23-26.
- Jones et al. (1980) The complete amino-acid sequence of elongation factor Tu in Escherlchia coli. Eur J Biochem 108:507-526.
- Kersenach et al. (1994) Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature 367:387-389.
- Kudlicki et al. (1997) Renaturation of rhodanses by translational elongation factor (EF) Tu:Protein refolding by EF-Tu flexing. J Biol Chem 272:32206-32210.
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophase T4. Nature 227:680-685.
- Lindquist, S. (1986) The heat shock response. Ann Rev Biochem. 55:1151-1191.
- Mans et al. (1960) A convenient, rapid and sensitive method for measuring the incorporation of radioactive amino acids into protein. Biochem Biophys Res Comm 3:540-543.
- O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of protein. J Biol Chem 250:4007-4021.
- Riis et al. (1990) Eukaryotic protein elongation factors. TIBS 15:420-424.
- Ristic et al. (1991) Heat shock proteins in two lines of Zea mays L. that differ in drought and heat resistance.
Plant Physiol 97, 1430-1434. - Ristic et al. (1992) Chloroplast structure after water and high-temperature stress in two lines of maize that differ in endogenous levels of abscisic acid. International J. Plant Sci. 153:186-196.
- Ristic et al. (1993) Dehydration avoidance and damage to the plasma and thylakoid membranes in lines of maize differing in endogenous levels of abscisic acid. J. Plant Physiol. 142:759-764.
- Ristic et al. (1996) Dehydration, damage to cellular membranes and heat-shock proteins in maize hybrids from different climates. J. Plant Physiol 149:424-432.
- Ristic et al. (1998a) Two-dimensional gel analysis of 45 ku heat shock proteins from a drought and heat resistant maize line. J. Plant Physiol. 154:264-268.
- Ristic et al. (1998b) Evidence of association between specific heat-shock protein(s) and the drought and heat tolerance phenotype in maize. J. Plant Physiol 153:497-505.
- Travers et al. (1970) Factor necessary for ribosomal RNA synthesis. Nature 228:748-751.
- Ursin et al. (1993) Cloning and nucleotide sequence of tobacco chloroplast translational elongation factor, EF-Tu. Plant Physiol 101:333-334.
- Vierling, E. (1991) The roles of heat shock proteins in plants. Ann Rev Plant Physiol Plant Mol Biol 42:579-620.
- Waters et al. (1996) Evolution, structure and function of the small heat shock proteins in plants. J Expt Bot 47:325-338.
- Young et al. (1991) Elongation factor Tu is methylated in response to nutrient deprivation in Escherichia coli. J Bacteriol 173:3096-3100.
Claims (31)
1. A purified and isolated nucleotide sequence which encodes upon expression a regulatory protein characterized by the following:
(a) is approximately 45 kD;
(b) is expressed primarily under heat shock conditions;
(c) is localized in chloroplasts;
(d) has high homology to chloroplast elongation factor EF-Tu, from E. coli or tobacco;
said nucleotide sequence being capable of hybridizing under conditions of high stringency to SEQ ID NO:6 (putative coding sequence).
2. The nucleotide sequence of claim 1 wherein said sequence is SEQ ID NO:5.
3. An expression construct comprising:
a nucleotide sequence according to claim 1 , operatively linked to a regulatory region capable of directing expression of a protein in a plant cell.
4. A vector capable of transforming or transfecting a host cell, said vector comprising an expression construct according to claim 3 .
5. The vector of claim 4 wherein said vector is a plasmid based vector.
6. The vector of claim 4 wherein said vector is a viral based vector.
7. A prokaryotic or eukaryotic host cell transformed or transfected with a vector according to claim 4 .
8. The host cell of claim 7 wherein said cell is a plant cell.
9. A regulatory protein which exhibits the following characteristics:
(a) is approximately 45 kD;
(b) is expressed primarily under heat shock conditions;
(c) is localized in plant chloroplasts;
(d) has high homology (80% or greater) to chloroplast elongation factor EF-Tu, from E coli or tobacco and comprises at least 80% amino acid sequence homology to SEQ ID NOS:1, 2, 3 or 4.
10. The protein of claim 9 wherein said protein comprises SEQ ID NO:1.
11. The protein of claim 9 wherein said protein comprises SEQ ID NO:2.
12. The protein of claim 9 wherein said protein comprises SEQ ID NO:3.
13. The protein of claim 9 wherein said protein comprises SEQ ID NO:4.
14. A method for increasing plant tolerance to heat and drought comprising:
introducing to a plant cell a genetic construct comprising:
a nucleotide sequence which encodes a regulatory protein characterized by the following:
(a) is approximately 45 kD;
(b) is expressed primarily under heat shock conditions;
(c) is localized in chloroplasts;
(d) has high homology to chloroplast elongation factor EF-Tu, from E. coli or tobacco;
said nucleotide sequence being operably linked to promoter and regulatory regions capable of inducing expression in a plant.
15. The method of claim 14 wherein said expression construct elements cause expression during stress.
16. The method of claim 14 wherein said promoter is selected from the group consisting of: a constitutive, an inducible, and an organ specific promoter.
17. The method of claim 14 further comprising the step of:
selecting plants which are transformed with said construct.
18. The method of claim 14 wherein said expression construct further comprises a selectable marker gene.
19. A method of identifying heat shock EF-Tu genes in plant species comprising:
screening the genome of said plant species for a sequence that is homologous to SEQ ID NO:5 or a region of at least 100 bases thereof.
20. A transformed plant, which plant is substantially tolerant or resistant to one or more environmental conditions selected from the group consisting of excess heat and drought, wherein the cells of the plant comprise a recombinant DNA segment encoding EF-Tu, and wherein the EF-Tu is expressed so as to confer tolerance to the transformed plant to one or more of the environmental conditions that adversely affect cell metabolism, plant growth, or development of the corresponding untransformed plant.
21. A transgenic plant containing a DNA construct encoding EF-Tu wherein said DNA construct is expressed so that the plant exhibits tolerance to one or more conditions selected from the group consisting of excess heat and drought, wherein said resistance is not present in a corresponding plant not containing the DNA construct.
22. A transgenic plant according to claim 21 wherein the DNA construct comprises a promoter.
23. A seed produced by the transgenic plant of claim 21 which comprises the DNA construct.
24. A progeny transgenic plant derived from the transgenic plant of claim 21 wherein said progeny plant expresses said DNA construct so that the progeny plant exhibits said tolerance.
25. A transgenic plant according to claim 21 wherein the plant is a maize plant.
26. A seed derived from the progeny plant of claim 24 wherein said seed comprises the DNA construct.
27. A transgenic plant according to claim 21 wherein the plant is obtainable by a process comprising the steps of:
bombarding intact regenerable plant cells with microprojectiles coated with the DNA construct;
identifying or selecting a population of transformed cells; and
regenerating a transgenic plant therefrom.
28. A method of increasing the tolerance of a plant to heat or drought, comprising:
introducing into cells of a plant an expression cassette comprising a preselected DNA segment encoding EF-Tu, to yield transformed plant cells; and
regenerating a plant from said transformed cells, wherein the EF-Tu is expressed in the cells o f the plant so as to render the transformed plant substantially tolerant to drought or excess heat that inhibits the cell metabolism, growth, or development of an untransformed plant.
29. A method according to claim 28 further including the step of:
obtaining progeny from the transformed plant which comprise the DNA construct.
30. A method according to claim 29 wherein the progeny are obtained by crossing the transformed plant with an inbred line.
31. A method according to claim 29 further including the step of:
obtaining seed from the progeny and obtaining further progeny plants comprising the DNA construct from the seed.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/810,764 US20030044972A1 (en) | 2000-03-17 | 2001-03-16 | Maize chloroplast protein synthesis elongation factors and methods of use for same |
| US11/005,896 US7388125B2 (en) | 2000-03-17 | 2004-12-07 | Maize chloroplast protein synthesis elongation factors and methods of use for same |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US19017500P | 2000-03-17 | 2000-03-17 | |
| US20320400P | 2000-05-11 | 2000-05-11 | |
| US09/810,764 US20030044972A1 (en) | 2000-03-17 | 2001-03-16 | Maize chloroplast protein synthesis elongation factors and methods of use for same |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/005,896 Continuation US7388125B2 (en) | 2000-03-17 | 2004-12-07 | Maize chloroplast protein synthesis elongation factors and methods of use for same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030044972A1 true US20030044972A1 (en) | 2003-03-06 |
Family
ID=27392695
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/810,764 Abandoned US20030044972A1 (en) | 2000-03-17 | 2001-03-16 | Maize chloroplast protein synthesis elongation factors and methods of use for same |
| US11/005,896 Expired - Fee Related US7388125B2 (en) | 2000-03-17 | 2004-12-07 | Maize chloroplast protein synthesis elongation factors and methods of use for same |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/005,896 Expired - Fee Related US7388125B2 (en) | 2000-03-17 | 2004-12-07 | Maize chloroplast protein synthesis elongation factors and methods of use for same |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20030044972A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006067232A3 (en) * | 2004-12-24 | 2006-09-21 | Cropdesign Nv | Plants having increased yield and method for making the same |
| US20070294782A1 (en) * | 2004-12-21 | 2007-12-20 | Mark Abad | Transgenic plants with enhanced agronomic traits |
| US20090126039A1 (en) * | 2004-12-24 | 2009-05-14 | Cropdesign N.V. | Plants Having Increased Yield And Method For Making The Same |
| US20180223823A1 (en) * | 2017-02-07 | 2018-08-09 | Emerson Climate Technologies, Inc. | Compressor Discharge Valve Assembly |
| CN113957082A (en) * | 2021-12-07 | 2022-01-21 | 南京农业大学 | Gene TSA for protecting rice chloroplast development at low temperature and encoded protein and application thereof |
| CN114136930A (en) * | 2021-01-14 | 2022-03-04 | 北京林业大学 | A method for rapid identification of plant chloroplast integrity |
| CN114689841A (en) * | 2022-02-23 | 2022-07-01 | 北京林业大学 | Chloroplast protein immunofluorescence staining method based on tissue disruption |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005116252A2 (en) * | 2004-05-26 | 2005-12-08 | Anima Cell Metrology | Methods for evaluating ribonucleotide sequences |
| CA2702007C (en) * | 2007-10-09 | 2017-03-21 | Anima Cell Metrology, Inc. | Systems and methods for measuring translation activity in viable cells |
| CA2775231C (en) * | 2009-09-24 | 2018-06-05 | Anima Cell Metrology, Inc. | Systems and methods for measuring translation of target proteins in cells |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NZ230375A (en) | 1988-09-09 | 1991-07-26 | Lubrizol Genetics Inc | Synthetic gene encoding b. thuringiensis insecticidal protein |
-
2001
- 2001-03-16 US US09/810,764 patent/US20030044972A1/en not_active Abandoned
-
2004
- 2004-12-07 US US11/005,896 patent/US7388125B2/en not_active Expired - Fee Related
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007044043A3 (en) * | 2004-12-21 | 2011-04-21 | Monsanto Technology, Llc | Transgenic plants with enhanced agronomic traits |
| US20070294782A1 (en) * | 2004-12-21 | 2007-12-20 | Mark Abad | Transgenic plants with enhanced agronomic traits |
| US9862959B2 (en) | 2004-12-21 | 2018-01-09 | Monsanto Technology Llc | Transgenic plants with enhanced agronomic traits |
| US20090126039A1 (en) * | 2004-12-24 | 2009-05-14 | Cropdesign N.V. | Plants Having Increased Yield And Method For Making The Same |
| US7872173B2 (en) | 2004-12-24 | 2011-01-18 | Cropdesign N.V. | Plants having increased yield and method for making the same |
| WO2006067232A3 (en) * | 2004-12-24 | 2006-09-21 | Cropdesign Nv | Plants having increased yield and method for making the same |
| AU2005318108B2 (en) * | 2004-12-24 | 2011-05-19 | Cropdesign N.V. | Plants having increased yield and method for making the same |
| US20110179527A1 (en) * | 2004-12-24 | 2011-07-21 | Cropdesign N.V. | Plants Having Increased Yield and Method for Making the Same |
| AU2005318108B9 (en) * | 2004-12-24 | 2011-10-06 | Cropdesign N.V. | Plants having increased yield and method for making the same |
| US20080115239A1 (en) * | 2004-12-24 | 2008-05-15 | Crop Design N.N. | Plants Having Increased Yield And Method For Making The Same |
| US20180223823A1 (en) * | 2017-02-07 | 2018-08-09 | Emerson Climate Technologies, Inc. | Compressor Discharge Valve Assembly |
| CN114136930A (en) * | 2021-01-14 | 2022-03-04 | 北京林业大学 | A method for rapid identification of plant chloroplast integrity |
| CN113957082A (en) * | 2021-12-07 | 2022-01-21 | 南京农业大学 | Gene TSA for protecting rice chloroplast development at low temperature and encoded protein and application thereof |
| CN114689841A (en) * | 2022-02-23 | 2022-07-01 | 北京林业大学 | Chloroplast protein immunofluorescence staining method based on tissue disruption |
Also Published As
| Publication number | Publication date |
|---|---|
| US7388125B2 (en) | 2008-06-17 |
| US20050081265A1 (en) | 2005-04-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7598429B2 (en) | Transcription factor sequences for conferring advantageous properties to plants | |
| US10093942B2 (en) | Transcription factor sequences for conferring advantageous properties to plants | |
| CA2456979C (en) | Yield-related polynucleotides and polypeptides in plants | |
| US7511190B2 (en) | Polynucleotides and polypeptides in plants | |
| EP3078749B1 (en) | Transgenic plants with enhanced agronomic traits | |
| US10913954B2 (en) | Abiotic stress tolerant plants and methods | |
| US10443069B2 (en) | Plants and methods to improve agronomic characteristics under abioticstress conditions | |
| US20220396804A1 (en) | Methods of improving seed size and quality | |
| CA2573987A1 (en) | Plant polynucleotides for improved yield and quality | |
| US10465203B2 (en) | Plants having altered agronomic characteristics under abiotic stress conditions and related constructs and methods involving abiotic stress tolerance genes | |
| CN104981481A (en) | Transcriptional regulation for improved plant productivity | |
| WO2011109661A1 (en) | Transcription regulators for improving plant performance | |
| US20170121730A1 (en) | Plants having altered agronomic characteristics under abiotic conditions and related constructs and methods involving abiotic tolerance genes | |
| WO2005122751A1 (en) | Nucleic acid molecules and their use in plant male sterility | |
| US7388125B2 (en) | Maize chloroplast protein synthesis elongation factors and methods of use for same | |
| CN108192920B (en) | Method for improving plant disease resistance by using NDR1 gene | |
| US10400248B2 (en) | Drought tolerant plants and related compositions and methods involving genes encoding DN-DTP1 polypeptide | |
| CN102348803A (en) | Drought tolerant plants and methods involving genes encoding type c3hc4 ring finger zinc-finger family polypeptides | |
| US20070107082A1 (en) | Transgenic monocotyledonous plants overexpressing a nhx protein and having improved growth characteristics and a method for making the same | |
| US20230210073A1 (en) | Gene-edited basil plants resistant to downy mildew | |
| Ristic et al. | United States Patent Application Publication: MAIZE CHLOROPLAST PROTEIN SYNTHESIS ELONGATION FACTORS AND METHODS OF USE FOR SAME | |
| KR101874192B1 (en) | OsTat1 gene enhancing plant disease and uses thereof | |
| MX2011004443A (en) | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt6 polypeptides and homologs thereof. | |
| WO2005037863A9 (en) | Alternative splicing factors polynucleotides, polypeptides and uses thereof | |
| MXPA05010675A (en) | Modulation of cytokinin activity in plants |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |