[go: up one dir, main page]

US20030009031A1 - Novel hindered spiro-ketal nitroxides - Google Patents

Novel hindered spiro-ketal nitroxides Download PDF

Info

Publication number
US20030009031A1
US20030009031A1 US09/844,986 US84498601A US2003009031A1 US 20030009031 A1 US20030009031 A1 US 20030009031A1 US 84498601 A US84498601 A US 84498601A US 2003009031 A1 US2003009031 A1 US 2003009031A1
Authority
US
United States
Prior art keywords
ketal
spiro
nitroxides
tetramethylpiperidine
nitroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/844,986
Inventor
Mikolaj Jawosiuk
J. Michael Clumpner
Anthony O'Lenick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/844,986 priority Critical patent/US20030009031A1/en
Publication of US20030009031A1 publication Critical patent/US20030009031A1/en
Priority to US10/949,562 priority patent/US7132540B1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems

Definitions

  • the present invention relates to the composition of a series of novel hindered spiro-ketal nitroxides, prepared by the reaction of 1,3-propanediols with triacetoneamine to form ketal amines followed by oxidation of the ketal amine.
  • 4-Oxo-2,2,6,6-tetramethylpiperidine also known as 2,2,6,6-tetramethyl-4-piperidone or triacetoneamine, as produced commercially, is oxidized to produce 1-oxyl-4-oxo-2,2,6,6-tetramethylpiperidine, a nitroxide with poor stability, even at ambient temperatures. This nitroxide has achieved limited use due to its poor stability even though its cost is low.
  • 4-Hydroxy-2,2,6,6-tetramethylpiperidine is produced commercially by hydrogenation of 4-oxo 2,2,6,6-tetramethylpiperidine.
  • 1-Oxyl-4-hydroxy-2,2,6,6-tetramethylpiperidine is produced commercially by oxidation of 4-hydroxy-2,2,6,6-tetramethylpiperidine. It is used to prevent undesired free radical polymerization in styrene production and in refinery streams. This use is described in U.S. Pat. No. 5,254,760 and in Soviet Patent No. 1,558,888. A brief review of this subject is found in U.S. Pat. No. 6,117,276.
  • 2,2,6,6-Tetramethylpiperidine is made from 4-oxo-2,2,6,6-tetramethylpiperidine. It is used to produce the nitroxide, 1-oxyl-2,2,6,6-tetramethylpiperidine, also known as TEMPO. It is used primarily to prevent undesired free radical polymerization. It is also used experimentally for living polymerization and for selective oxidation. While this nitroxide has excellent stability, it has limited use because of the toxicity of the amine, its high volatility and its high cost.
  • This patent relates to the preparation of nitroxyl radicals by oxidation of 2,2,6,6-tetramethylpiperidine ketals obtained from the following alcohols and glycols: methanol, ethanol, propanol, isobutanol, and n-butanol, ethylene glycol, 1,2-propanediol (propylene glycol), and 2,2-dimethyl-1,3-propanediol (neopentyl glycol).
  • the latter three glycols, when reacted with 2,2,6,6-tetramethylpiperidine and then oxidized generate spiro-ketal nitroxides.
  • JP 04362632 A2 (Dec. 15, 1992) photochromic materials containing 7,7,9,9-tetramethyl -1,4-dioxa-8-azaspiro[4.5]dec-8-yloxy or 2-(hydroxymethyl)-7,7,9,9-tetramethyl-1,4-dioxa-8-azaspir [4.5]dec-8-yloxy spiro-ketal nitroxides were shown to have improved light resistance, transparency and evenness.
  • the object of this invention is to disclose new and unique spiro-ketal nitroxide compositions prepared from readily available 4-oxo-2,2,6,6-tetramethylpiperidine and 1,3-propanediols have properties useful for the inhibition of polymerization of a variety of vinyl and monomers during processing, purification and storage.
  • the present invention relates to a series of novel hindered spiro-ketal nitroxides prepared by oxidation of the parent hindered spiro-ketal amines. Another aspect of this invention is to demonstrate using these new and novel hindered spiro-ketal nitroxides as effective inhibitors of polymerization of unsaturated hydrocarbon, vinyl and acrylate monomers.
  • the compounds of the present invention are spiro-ketal nitroxide compounds and as such are unique in structure and function as free radical scavengers. These compounds display excellent (a) high-temperature stability, (b) oxidative stability, (c) hydrophobic behavior, (d) solubility in hydrocarbons and monomers and (e) inhibition of free radical reactions.
  • R is selected from the group consisting of hydrogen, methyl, ethyl , n-propyl , iso-propyl, n-butyl, 1-methylpropyl and iso-butyl.
  • R is selected from the group consisting of hydrogen and methyl.
  • the hindered spiro-ketal amine used in these examples was prepared by a classical ketalization reaction exemplified in U.S. Pat. No. 3,790,525, “4-Piperidone Ketal Derivatives, Their Preparation and Their Use as Stabilizers”.
  • the raw materials used to make 1,5-dioxa-9-aza-8,8,10,10-tetramethylspiro[5,5]undecane, the spiro-ketal amine were 4-oxo-2,2,6,6-tetramethylpiperidine and 1,3-propanediol.
  • 1,5-Dioxa-9-aza-8,8,10,10-tetramethylspiro[5,5]undecane was subjected to oxidation with hydrogen peroxide in the presence of sodium tungstate.
  • the initial oxidation was carried out in methanol in a standard fashion.
  • 1,5-Dioxa-9-aza-8,8,10,10-tetramethylspiro[5,5]undecane (8 g, 0.04mole) was dissolved in 150 ml of methanol in a 500 ml Erlenmeyer flask. To the resulting light brown solution 40 ml of 35% aqueous hydrogen peroxide was added in one portion followed by 0.4 g of sodium tungstate dihydrate. The mixture was left for 3 days at room temperature (about 25° C.). After one day the color changed to dark orange. No noticeable exotherm was observed.
  • Vinyl monomers acrylonitrile, vinyl acetate and methyl acrylate.
  • Inhibitors made using the procedures above: Example Description 1 1-oxyl-4-acetamido-2,2,6,6-tetramethylpiperidine 2 1-oxyl-4-benzoyloxy-2,2,6,6-piperidine 3 1-oxyl-4-methoxy-2,2,6,6-tetramethylpiperidine 4 1,5-dioxa-9-aza-8,8,10,10-tetramethylspiro[5,5]undec-9-yloxy 5 1-oxyl-2,2,6,6-tetramethylpiperidine 6 N-oxyl-di-t-butylamine Inhibitor Quantity Inhibition Time Polymerization of Acrylonitrile at 70° C. in the presence of Nitroxide Inhibitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrogenated Pyridines (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

The present invention discloses a series of novel hindered spiro-ketal nitroxides prepared by the ketalization reaction of 1,3-propanediols with triacetoneamine followed by oxidation.
This invention also shows that these novel spiro-nitroxides are capable of inhibiting vinyl and acrylate polymerizations using an effective inhibition concentration of the nitroxide of the present invention.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the composition of a series of novel hindered spiro-ketal nitroxides, prepared by the reaction of 1,3-propanediols with triacetoneamine to form ketal amines followed by oxidation of the ketal amine. [0001]
  • BACKGROUND OF THE INVENTION
  • Hindered nitroxides based on triacetoneamine, 4-oxo-2,2,6,6-tetramethylpiperidine have been known and used commercially for many years. These 4-substituted 1-oxyl-2,2,6,6-tetramethylpiperidines, generally produced in situ by oxidation of the parent amine, are used in polypropylene to prevent UV light degradation of the plastic. A good source of information of these uses is [0002] Oxidation Inhibition in Organic Materials, Volume II by Jan Pospisil and Peter P. Klemchuk, CRC Press, Inc., Boca Raton, Fla., 1990). When used in oxygen free atmospheres, the nitroxide itself is necessary to inhibit spurious free radical reactions. Consequently the pure nitroxyl compounds have been synthesized and offered commercially to inhibit polymerization of unsaturated hydrocarbon, vinyl and acrylic monomers during processing, distillation and storage.
  • 4-Oxo-2,2,6,6-tetramethylpiperidine also known as 2,2,6,6-tetramethyl-4-piperidone or triacetoneamine, as produced commercially, is oxidized to produce 1-oxyl-4-oxo-2,2,6,6-tetramethylpiperidine, a nitroxide with poor stability, even at ambient temperatures. This nitroxide has achieved limited use due to its poor stability even though its cost is low. [0003]
  • 4-Hydroxy-2,2,6,6-tetramethylpiperidine is produced commercially by hydrogenation of 4-oxo 2,2,6,6-tetramethylpiperidine. 1-Oxyl-4-hydroxy-2,2,6,6-tetramethylpiperidine is produced commercially by oxidation of 4-hydroxy-2,2,6,6-tetramethylpiperidine. It is used to prevent undesired free radical polymerization in styrene production and in refinery streams. This use is described in U.S. Pat. No. 5,254,760 and in Soviet Patent No. 1,558,888. A brief review of this subject is found in U.S. Pat. No. 6,117,276. [0004]
  • 2,2,6,6-Tetramethylpiperidine is made from 4-oxo-2,2,6,6-tetramethylpiperidine. It is used to produce the nitroxide, 1-oxyl-2,2,6,6-tetramethylpiperidine, also known as TEMPO. It is used primarily to prevent undesired free radical polymerization. It is also used experimentally for living polymerization and for selective oxidation. While this nitroxide has excellent stability, it has limited use because of the toxicity of the amine, its high volatility and its high cost. [0005]
  • 2,2,6,6-Tetramethylpiperidine based spiro-ketal nitroxides have been mentioned in the literature but there is no commercial supply available. A recent description of spiro-ketal nitroxyl radicals appeared in German Patent 42 19 471 A1 “N-Oxyl Derivatives of 2,2,6,6-Tetramethylpiperidine and Their Preparation” filed on Jun. 13, 1992. This patent relates to the preparation of nitroxyl radicals by oxidation of 2,2,6,6-tetramethylpiperidine ketals obtained from the following alcohols and glycols: methanol, ethanol, propanol, isobutanol, and n-butanol, ethylene glycol, 1,2-propanediol (propylene glycol), and 2,2-dimethyl-1,3-propanediol (neopentyl glycol). The latter three glycols, when reacted with 2,2,6,6-tetramethylpiperidine and then oxidized generate spiro-ketal nitroxides. [0006]
  • In U.S. Pat. No. 5631366 (5/20/97) 7,7,9,9-tetramethyl-1,4-dioxa-8-azaspiro[4.5]dec-8-yloxy, the spiro-ketal nitroxide derived from the reaction of ethylene glycol with 4-oxo-2,2,6,6-tetramethylpiperidine followed by oxidation, was used to convert an alcohol to an aldehyde is disclosed. [0007]
  • In JP 04362632 A2 (Dec. 15, 1992) photochromic materials containing 7,7,9,9-tetramethyl -1,4-dioxa-8-azaspiro[4.5]dec-8-yloxy or 2-(hydroxymethyl)-7,7,9,9-tetramethyl-1,4-dioxa-8-azaspir [4.5]dec-8-yloxy spiro-ketal nitroxides were shown to have improved light resistance, transparency and evenness. [0008]
  • Yoshikawa and Negishi in JP11286634 A2 (Oct. 19, 1999) have used 2-(hydroxymethyl)-7,7,9,9-tetramethyl- 1,4-dioxa-8-azaspiro[4.5]dec-8-yloxy and similar spiro-ketal nitroxides, in thermo setting polymeric coating compositions of superior light stability. [0009]
  • The spiro-ketal nitroxides resulting from commercially available 1,3-propanediol and 2-methyl-1,3-propanediol were not mentioned in any of the above prior art. [0010]
  • We have now found that by oxidizing the ketals produced from 4-oxo-2,2,6,6-tetramethylpiperidine and 1 ,3-propanediol or 2-monosubstituted 1 ,3-propanediols, unique spiro-ketal nitroxides result. These unique spiro-ketal nitroxides have useful properties displaying excellent (a) high-temperature stability, (b) oxidative stability, (c) hydrophobic character (d) solubility in hydrocarbons and monomers and (e) inhibition of free radical reactions. [0011]
  • THE INVENTION Objective of the Invention
  • The object of this invention is to disclose new and unique spiro-ketal nitroxide compositions prepared from readily available 4-oxo-2,2,6,6-tetramethylpiperidine and 1,3-propanediols have properties useful for the inhibition of polymerization of a variety of vinyl and monomers during processing, purification and storage. [0012]
  • Summary of the Invention
  • The present invention relates to a series of novel hindered spiro-ketal nitroxides prepared by oxidation of the parent hindered spiro-ketal amines. Another aspect of this invention is to demonstrate using these new and novel hindered spiro-ketal nitroxides as effective inhibitors of polymerization of unsaturated hydrocarbon, vinyl and acrylate monomers. [0013]
  • Detailed Description of the Invention
  • The compounds of the present invention are spiro-ketal nitroxide compounds and as such are unique in structure and function as free radical scavengers. These compounds display excellent (a) high-temperature stability, (b) oxidative stability, (c) hydrophobic behavior, (d) solubility in hydrocarbons and monomers and (e) inhibition of free radical reactions. [0014]
  • The compounds of the present invention conform to the following structure: [0015]
    Figure US20030009031A1-20030109-C00001
  • wherein; [0016]
  • R is selected from the group consisting of hydrogen, methyl, ethyl , n-propyl , iso-propyl, n-butyl, 1-methylpropyl and iso-butyl. [0017]
  • Preferred Embodiments
  • In the first set of preferred embodiments the compounds of the present invention conform to the following structure; wherein; [0018]
  • R is selected from the group consisting of hydrogen and methyl. [0019]
  • EXAMPLES Procedure
  • The hindered spiro-ketal amine used in these examples was prepared by a classical ketalization reaction exemplified in U.S. Pat. No. 3,790,525, “4-Piperidone Ketal Derivatives, Their Preparation and Their Use as Stabilizers”. The raw materials used to make 1,5-dioxa-9-aza-8,8,10,10-tetramethylspiro[5,5]undecane, the spiro-ketal amine, were 4-oxo-2,2,6,6-tetramethylpiperidine and 1,3-propanediol. [0020]
  • Preparation of Spiro-Ketal Nitroxides EXAMPLE 1 Preparation of 1,5-Dioxa-9-Aza-8,8,10,10-Tetramethylspiro[5,5]Undec-9-Yloxy
  • 1,5-Dioxa-9-aza-8,8,10,10-tetramethylspiro[5,5]undecane was subjected to oxidation with hydrogen peroxide in the presence of sodium tungstate. The initial oxidation was carried out in methanol in a standard fashion. [0021]
  • 1,5-Dioxa-9-aza-8,8,10,10-tetramethylspiro[5,5]undecane (8 g, 0.04mole) was dissolved in 150 ml of methanol in a 500 ml Erlenmeyer flask. To the resulting light brown solution 40 ml of 35% aqueous hydrogen peroxide was added in one portion followed by 0.4 g of sodium tungstate dihydrate. The mixture was left for 3 days at room temperature (about 25° C.). After one day the color changed to dark orange. No noticeable exotherm was observed. After 3 days the mixture was transferred to a 1-liter separatory funnel, diluted with 500 ml of water and extracted with three 50 ml portions of t-butyl methyl ether (MTBE). The extract was dried with anhydrous sodium sulfate, filtered and evaporated on a rotary evaporator to give a dark orange liquid, which quickly solidified to a dark orange solid product with m.p. 59-62° C. Yield 9 g. [0022]
  • EXAMPLE 2 Preparation of 1,5-Dioxa-9-Aza-8,8,10,10 Tetramethylspiro[5,5]Undec-9-Yloxy
  • Distilled ketal amine, 1,5-dioxa-9-aza-8,8,10,10-tetramethylspiro[5,5]undecane (21.3 g, 0.1 mole) was dissolved in 120 ml of methanol. To this solution 50 ml of 35% aqueous hydrogen peroxide was added in one portion followed by 0.4 g of sodium tungstate hydrate. The solution was left at room temperature for 3 days at room temperature (about 25° C.). The mixture was worked up in the same fashion as described in Example 1. Three extractions with 50 ml of MTBE afforded 19 g of the product. Two additional extractions with 50 ml produced an additional 4 g of the same product. Total yield 23 g. M.p. 59-70° C. [0023]
  • The product (17 g) was stirred with toluene (70 ml, 59 g). About one half of the material dissolved rapidly to form a dark orange solution. Another half was left as large solid yellow needles with m.p. 80-83° C. The yellow solid was filtered off and air dried (9 g). The toluene soluble material was evaporated to give 8 g of an orange solid with m.p. 52-65° C. [0024]
  • Both solids (yellow and orange) were analyzed by mass spectroscopy (chemical ionization). The resulting spectra were identical - consistent with the expected 1,5-dioxa-9-aza-8,8,10,10-tetramethylspiro[5,5]undec-9-yloxy. Both spectra contained the molecular ion M+1 at 229, M at 228 and M+1—CH3 at 214. [0025]
  • Inhibition Properties
  • Testing was done to determine the effectiveness of various nitroxides in inhibiting the polymerization of various vinyl monomers. Many of the nitroxyl radicals tested exhibited high thermal stability, however, the solubility of some of them in common monomers is low. [0026]
  • General Procedure
  • A sample of vinyl monomer (10 ml) was placed in an open 25 ml test tube. To each tube benzoyl peroxide (0.35 g) and 0.1 g of nitroxide inhibitor was added, then the tubes were in a water bath maintained by a thermostat at 70° C. The selected vinyl monomers polymerize under these conditions without nitroxide inhibitors within a few minutes. [0027]
  • Vinyl monomers: acrylonitrile, vinyl acetate and methyl acrylate. [0028]
  • Inhibitors (made using the procedures above): Example Description [0029]
    1 1-oxyl-4-acetamido-2,2,6,6-tetramethylpiperidine
    2 1-oxyl-4-benzoyloxy-2,2,6,6-piperidine
    3 1-oxyl-4-methoxy-2,2,6,6-tetramethylpiperidine
    4 1,5-dioxa-9-aza-8,8,10,10-tetramethylspiro[5,5]undec-9-yloxy
    5 1-oxyl-2,2,6,6-tetramethylpiperidine
    6 N-oxyl-di-t-butylamine
    Inhibitor Quantity Inhibition Time
    Polymerization of Acrylonitrile at 70° C. in the presence of Nitroxide
    Inhibitors.
    none 0.0 g  4 min
    1 0.1 g  40 min
    2 0.1 g  60 min
    3 0.1 g 305 min
    4 0.1 g 135 min
    5 0.1 g  60 min
    6 0.1 ml 180 min
    Polymerization of Vinyl Acetate at 70° C. in the presence of Nitroxide
    Inhibitors.
    none 0.0 g  8 min
    1 0.1 g 205 min
    2 0.1 g 145 min
    3 0.1 g >300 min  
    4 0.1 g 250 min
    5 0.1 g 385 min
    6 0.1 ml 130 min
    Polymerization of Methyl Acrylate at 70° C. in the presence of
    Nitroxide Inhibitors.
    none 0.0 g  10 min
    1 0.1 g 165 min
    2 0.1 g 166 min
    3 0.1 g >300 min  
    4 0.1 g 110 min
    5 0.1 g 180 min
    6 0.1 ml 320 min
  • These results indicate that the inhibitor of Example 4, the hindered spiro-ketal nitroxide, performed well in the tests. The presence of any of the nitroxide inhibitors allows one to stop the polymerization process for several hours. Note that polymerization takes place in 10 minutes or less when no inhibitor is present. [0030]
  • While the illustrative embodiments of the invention have been described with particularity, it will be understood that various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the spirit and scope of the invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the examples and descriptions set forth hereinabove but rather that the claims be construed as encompassing all the features of patentable novelty which reside in the present invention, including all features which would be treated as equivalents thereof by those skilled in the art to which the invention pertains. [0031]

Claims (9)

What is claimed
1. A compound conforming to the following structure:
Figure US20030009031A1-20030109-C00002
wherein;
R is selected from the group consisting of hydrogen, methyl, ethyl and n-propyl, isopropyl, n-butyl, isobutyl, and l-methylpropyl.
2. A compound of claim 1 wherein R is hydrogen.
3. A compound of claim 1 wherein R is methyl.
4. A compound of claim 1 wherein R is ethyl.
5. A compound of claim 1 wherein R is n-propyl.
6. A compound of claim 1 wherein R is isopropyl.
7. A compound of claim 1 wherein R is n butyl.
8. A compound of claim 1 wherein R is isobutyl.
9. A compound of claim 1 wherein R is 1-methylpropyl.
US09/844,986 2001-04-30 2001-04-30 Novel hindered spiro-ketal nitroxides Abandoned US20030009031A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/844,986 US20030009031A1 (en) 2001-04-30 2001-04-30 Novel hindered spiro-ketal nitroxides
US10/949,562 US7132540B1 (en) 2001-04-30 2004-09-27 Hindered spiro-ketal nitroxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/844,986 US20030009031A1 (en) 2001-04-30 2001-04-30 Novel hindered spiro-ketal nitroxides

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/949,562 Continuation-In-Part US7132540B1 (en) 2001-04-30 2004-09-27 Hindered spiro-ketal nitroxides

Publications (1)

Publication Number Publication Date
US20030009031A1 true US20030009031A1 (en) 2003-01-09

Family

ID=25294124

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/844,986 Abandoned US20030009031A1 (en) 2001-04-30 2001-04-30 Novel hindered spiro-ketal nitroxides
US10/949,562 Expired - Fee Related US7132540B1 (en) 2001-04-30 2004-09-27 Hindered spiro-ketal nitroxides

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/949,562 Expired - Fee Related US7132540B1 (en) 2001-04-30 2004-09-27 Hindered spiro-ketal nitroxides

Country Status (1)

Country Link
US (2) US20030009031A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686380B (en) 2014-10-14 2020-03-01 美商藝康美國公司 Reducing polymer fouling and agglomeration in acrylate/methacrylate processes
WO2016149433A1 (en) * 2015-03-18 2016-09-22 Ecolab Usa Inc. The use of stable lipophilic hydroxylamine compounds for inhibiting polymerization of vinyl monomers
US9957209B2 (en) 2015-03-31 2018-05-01 Ecolab Usa Inc. Use of quinone methides as antipolymerants for vinylic monomers
BR112017022431B1 (en) 2015-04-20 2023-03-28 Ecolab Usa Inc METHOD FOR INHIBITING POLYMERIZATION DURING REFINING, TRANSPORT OR STORAGE OF A HYDROCARBON STREAM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790525A (en) * 1972-01-21 1974-02-05 Sankyo Co 4-piperidone ketal derivatives,their preparation and their use as stabilizers
US4124564A (en) * 1976-02-18 1978-11-07 Argus Chemical Corporation Synthetic resin stabilizer comprising a 2,2,6,6-tetramethylpiperidine-4-alcohol ester and an oligomeric carbonate
US5010173A (en) * 1989-10-10 1991-04-23 Lce Partnership Free radical stabilized alkoxylates
US5254760A (en) * 1992-07-29 1993-10-19 Ciba-Geigy Corporation Inhibiting polymerization of vinyl aromatic monomers
US6117276A (en) * 1996-12-02 2000-09-12 Nalco/Exxon Energy Chemicals, L.P. Inhibiting polymerization of vinyl aromatic monomers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790525A (en) * 1972-01-21 1974-02-05 Sankyo Co 4-piperidone ketal derivatives,their preparation and their use as stabilizers
US4124564A (en) * 1976-02-18 1978-11-07 Argus Chemical Corporation Synthetic resin stabilizer comprising a 2,2,6,6-tetramethylpiperidine-4-alcohol ester and an oligomeric carbonate
US5010173A (en) * 1989-10-10 1991-04-23 Lce Partnership Free radical stabilized alkoxylates
US5254760A (en) * 1992-07-29 1993-10-19 Ciba-Geigy Corporation Inhibiting polymerization of vinyl aromatic monomers
US6117276A (en) * 1996-12-02 2000-09-12 Nalco/Exxon Energy Chemicals, L.P. Inhibiting polymerization of vinyl aromatic monomers

Also Published As

Publication number Publication date
US7132540B1 (en) 2006-11-07

Similar Documents

Publication Publication Date Title
Moad et al. Selectivity of the reaction of free radicals with styrene
DE69622910T2 (en) Inhibition of unsaturated monomers with 7-arylquinone methides
US6218536B1 (en) 1,2-bis-adducts of stable nitroxides with substituted ethylenes and stabilized compositions
Suarez et al. Synthesis and study of novel fulleropyrrolidines bearing biologically active 1, 4-dihydropyridines
Bojinov et al. Synthesis of polymerizable 1, 8-naphthalimide dyes containing hindered amine fragment
Skene et al. Rate constants for the trapping of various carbon-centered radicals by nitroxides: unimolecular initiators for living free radical polymerization
CA2379934C (en) Inhibition of polymerization of ethylenically unsaturated monomers
Moffat et al. Stable free radical polymerization process: kinetic and mechanistic study of the thermal decomposition of MB-TMP monitored by NMR and ESR spectroscopy
US20030009031A1 (en) Novel hindered spiro-ketal nitroxides
EP0421890B1 (en) Dihydropyridines with hindered amino groups
Braslau et al. The Synthesis and Evaluation of New α-Hydrogen Nitroxides for ‘Living’Free Radical Polymerization
Bojinov et al. Synthesis and application of new combined 2, 2, 6, 6-tetramethylpiperidine–2-hydroxybenzophenone 1, 3, 5-triazine derivatives as photostabilizers for polymer materials
EP0212115B1 (en) Aminoalkyl-3-t-butyl-4-hydroxyphenylpropion amide derivatives and an organic material stabilized by them
BRPI0618069B1 (en) catalytic process for the preparation of (meth) acrylates of n-hydroxyalkylated lactams from (meth) acrylic acid or (meth) acrylic esters and n-hydroxyalkylated lactams
EP2318454B1 (en) Stabilisers for inanimate organic materials
TW575560B (en) Recycle of nitroxyl-containing streams at low temperature
Danko et al. Photochemical stability and photostabilizing efficiency of anthracene/hindered amine stabilizers in polymer matrices
Okamoto The contribution by diffusion to the cycloaddition reactions of singlet oxygen with furans in solution under high pressure
EP1375457A1 (en) One-pot process for the preparation of functionalized alkoxyamines
Búcsiová et al. Preparation, photochemical stability and photostabilising efficiency of adducts of pyrene and hindered amine stabilisers in iPP matrix
Danko et al. Synthesis, photochemical stability and photo-stabilizing efficiency of probes based on benzothioxanthene chromophore and Hindered Amine Stabilizer
Hrdlovič et al. Spectral characteristics of bifunctional fluorescence probe based on naphthalene: comparison in solution and in polymer matrix
Kollár et al. Spectral properties of probes based on pyrene and piperazine: the singlet and triplet route of deactivation
NL8502481A (en) 2,2,6,6-TETRAMETHYLPIPERIDYLAMIDS OF SUBSTITUTED CARBONIC ACIDS AND LIGHT-STABLE, SO STABILIZED POLYMERIC COMPOSITIONS.
Nesvadba et al. Synthesis of new open‐chain alkoxyamines and their evaluation for nitroxide‐mediated radical polymerization

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION