US20030004349A1 - Work-up of the mother liquor obtained in the preparation of high-purity triethylenediamine - Google Patents
Work-up of the mother liquor obtained in the preparation of high-purity triethylenediamine Download PDFInfo
- Publication number
- US20030004349A1 US20030004349A1 US10/138,337 US13833702A US2003004349A1 US 20030004349 A1 US20030004349 A1 US 20030004349A1 US 13833702 A US13833702 A US 13833702A US 2003004349 A1 US2003004349 A1 US 2003004349A1
- Authority
- US
- United States
- Prior art keywords
- teda
- mother liquor
- solvent
- extractant
- extraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 title claims abstract description 293
- 239000012452 mother liquor Substances 0.000 title claims abstract description 43
- 238000010626 work up procedure Methods 0.000 title claims description 7
- 238000002360 preparation method Methods 0.000 title description 3
- 239000002904 solvent Substances 0.000 claims abstract description 64
- 238000000034 method Methods 0.000 claims abstract description 48
- 238000000605 extraction Methods 0.000 claims abstract description 23
- 239000007788 liquid Substances 0.000 claims abstract description 22
- 238000000746 purification Methods 0.000 claims abstract description 13
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical group CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 44
- 239000000203 mixture Substances 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 238000004821 distillation Methods 0.000 claims description 19
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 17
- 238000002425 crystallisation Methods 0.000 claims description 17
- 230000008025 crystallization Effects 0.000 claims description 17
- 239000003085 diluting agent Substances 0.000 claims description 15
- -1 acyclic hydrocarbons Chemical class 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- 150000001298 alcohols Chemical class 0.000 claims description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- 125000004122 cyclic group Chemical group 0.000 claims description 6
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 5
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 5
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 150000005846 sugar alcohols Polymers 0.000 claims description 2
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 28
- 239000006227 byproduct Substances 0.000 description 21
- 238000010791 quenching Methods 0.000 description 21
- 239000000047 product Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 7
- 239000007795 chemical reaction product Substances 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000011552 falling film Substances 0.000 description 5
- 230000008016 vaporization Effects 0.000 description 5
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- QWTDNUCVQCZILF-UHFFFAOYSA-N iso-pentane Natural products CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000003880 polar aprotic solvent Substances 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- BFIMMTCNYPIMRN-UHFFFAOYSA-N 1,2,3,5-tetramethylbenzene Chemical compound CC1=CC(C)=C(C)C(C)=C1 BFIMMTCNYPIMRN-UHFFFAOYSA-N 0.000 description 2
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- OJGMBLNIHDZDGS-UHFFFAOYSA-N N-Ethylaniline Chemical compound CCNC1=CC=CC=C1 OJGMBLNIHDZDGS-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- GGSUCNLOZRCGPQ-UHFFFAOYSA-N diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- UOHMMEJUHBCKEE-UHFFFAOYSA-N prehnitene Chemical compound CC1=CC=C(C)C(C)=C1C UOHMMEJUHBCKEE-UHFFFAOYSA-N 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- OQYNFBPKTVQOKO-UHFFFAOYSA-N 1,1-dichlorooctane Chemical compound CCCCCCCC(Cl)Cl OQYNFBPKTVQOKO-UHFFFAOYSA-N 0.000 description 1
- FILVIKOEJGORQS-UHFFFAOYSA-N 1,5-dimethylpyrrolidin-2-one Chemical compound CC1CCC(=O)N1C FILVIKOEJGORQS-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- CNDHHGUSRIZDSL-UHFFFAOYSA-N 1-chlorooctane Chemical compound CCCCCCCCCl CNDHHGUSRIZDSL-UHFFFAOYSA-N 0.000 description 1
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- KIAMPLQEZAMORJ-UHFFFAOYSA-N 1-ethoxy-2-[2-(2-ethoxyethoxy)ethoxy]ethane Chemical compound CCOCCOCCOCCOCC KIAMPLQEZAMORJ-UHFFFAOYSA-N 0.000 description 1
- GHELJWBGTIKZQW-UHFFFAOYSA-N 1-propan-2-ylpyrrolidin-2-one Chemical compound CC(C)N1CCCC1=O GHELJWBGTIKZQW-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- PAOXFRSJRCGJLV-UHFFFAOYSA-N 2-[4-(2-aminoethyl)piperazin-1-yl]ethanamine Chemical compound NCCN1CCN(CCN)CC1 PAOXFRSJRCGJLV-UHFFFAOYSA-N 0.000 description 1
- VARKIGWTYBUWNT-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanol Chemical compound OCCN1CCN(CCO)CC1 VARKIGWTYBUWNT-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 1
- WFCSWCVEJLETKA-UHFFFAOYSA-N 2-piperazin-1-ylethanol Chemical compound OCCN1CCNCC1 WFCSWCVEJLETKA-UHFFFAOYSA-N 0.000 description 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 229940073608 benzyl chloride Drugs 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- NNBZCPXTIHJBJL-AOOOYVTPSA-N cis-decalin Chemical compound C1CCC[C@H]2CCCC[C@H]21 NNBZCPXTIHJBJL-AOOOYVTPSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001944 continuous distillation Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- RCJVRSBWZCNNQT-UHFFFAOYSA-N dichloridooxygen Chemical class ClOCl RCJVRSBWZCNNQT-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- LDCRTTXIJACKKU-ONEGZZNKSA-N dimethyl fumarate Chemical compound COC(=O)\C=C\C(=O)OC LDCRTTXIJACKKU-ONEGZZNKSA-N 0.000 description 1
- 229960004419 dimethyl fumarate Drugs 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- KRIOVPPHQSLHCZ-UHFFFAOYSA-N propiophenone Chemical compound CCC(=O)C1=CC=CC=C1 KRIOVPPHQSLHCZ-UHFFFAOYSA-N 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- NNBZCPXTIHJBJL-UHFFFAOYSA-N trans-decahydronaphthalene Natural products C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 1
- NNBZCPXTIHJBJL-MGCOHNPYSA-N trans-decalin Chemical compound C1CCC[C@@H]2CCCC[C@H]21 NNBZCPXTIHJBJL-MGCOHNPYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical class [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/08—Bridged systems
Definitions
- the present invention relates to a process for working-up mother liquor obtained in the preparation of triethylenediamine (TEDA) which has been subjected to a particular purification process.
- This purification process comprises vaporizing TEDA, passing it in gaseous form into a liquid solvent and crystallizing the TEDA from the resulting solution.
- the mother liquor obtained after this crystallization step is then worked-up according to the present invention.
- TEDA is an important catalyst for the production of polyurethane foams.
- TEDA is solid at room temperature.
- Various methods are known for its preparation and purification, including the methods disclosed in the following publications:
- TEDA is comparatively difficult to handle without deterioration of the quality, in particular in respect of color and color stability, odor and purity, occurring.
- the application DE 101 00 943.7 of Jan. 10, 2001 by the Applicant describes a process for preparing a solution of pure TEDA, which comprises vaporizing TEDA from a mixture comprising a solvent or a diluent which has a boiling point at atmospheric pressure in the range from 175 to 250° C. and passing the gaseous TEDA into a liquid solvent. Subsequent crystallization of the TEDA from the resulting solution gives pure TEDA of high quality.
- the first step of the process of the present invention comprises the reaction steps of the purification of TEDA as described in the applications DE 199 33 850.7, 199 62 455.0 and DE 101 00 943.7 by the Applicant.
- the processes for purifying TEDA described in these applications are an integral part of the process of the present application and are hereby incorporated by reference. The processes will be briefly described again below.
- organic solvents are suitable for this TEDA quench.
- examples include aliphatic, cyclic or acyclic hydrocarbons, in particular cyclic and acylic, branched or unbranched alkanes or alkane mixtures, for example n-pentane, i-pentane, cyclopentane, hexane, cyclohexane, heptane, octane and petroleum ether, chlorinated aliphatic hydrocarbons, in particular chlorinated alkanes, for example dichloromethane, trichloromethane, dichloro ethers and trichloro ethers, aromatic hydrocarbons, for example benzene, toluene and xylenes, chlorinated aromatic hydrocarbons, for example chlorobenzene, alcohols, for example methanol, ethanol, ethylene glycol, 1,4-butanediol and polyether alcohols, in particular polyalkylene glycol
- the solvent used for the TEDA quench is preferably an aliphatic hydrocarbon or a polyalkylene glycol, in particular a saturated cyclic or acyclic, aliphatic hydrocarbon having from 5 to 8 carbon atoms, for example pentane, hexane, cyclohexane or heptane, or dipropylene glycol.
- the crystallization of the pure TEDA from the TEDA solution prepared according to the present invention can be carried out by methods known to those skilled in the art.
- the TEDA crystals obtained by a subsequent, multistage or preferably single-stage crystallization are highly pure.
- the gaseous TEDA is passed into the liquid solvent in a quenching apparatus, preferably a falling film condenser (thin film, trickle film or falling stream condenser) or in a nozzle apparatus.
- the gaseous TEDA can be conveyed in cocurrent or in countercurrent to the liquid solvent. It is advantageous to pass the gaseous TEDA into the quenching apparatus from above. Also advantageous is the tangential introduction of the liquid solvent at the top of the falling film condenser or introduction of the liquid solvent through one or more nozzles to achieve complete wetting of the inner wall of the quenching apparatus.
- the amount of solvent used is chosen according to practical considerations. In general, the amount used is such that, depending on the type of solvent, solutions having a TEDA content of from about 1 to 50% by weight, preferably from 20 to 40% by weight, are obtained.
- the temperature in the TEDA quench is set to from 20 to 100° C., preferably from 30 to 60° C., by heating/cooling the solvent used and/or the quenching apparatus.
- the absolute pressure in the TEDA quench is generally from 0.5 to 1.5 bar.
- the TEDA is, as described in DE 101 00 943.7, vaporized from a mixture with a solvent or diluent
- the solvent or diluent preferably has a boiling point at atmospheric pressure of from 180 to 250° C., in particular from 180 to 230° C., especially from 190 to 210° C.
- Particularly useful solvents or diluents which may be present in the mixture from which the TEDA is vaporized are inert
- polar aprotic solvents such as alkyl-2-pyrrolidones, for example N-methyl-2-pyrrolidone (NMP), 1-ethyl-2-pyrrolidone, 1,5-dimethyl-2-pyrrolidone, 1-isopropyl-2-pyrrolidone, ethers, for example diethylene glycol diethyl ether, triethylene glycol dimethyl ether and triethylene glycol diethyl ether, ketones, for example acetophenone and propiophenone, lactones, for example ⁇ -buyrolactone, sulfoxides, for example dimethyl sulfoxide, carboxylic esters, for example dimethyl fumarate, nitriles, for example benzonitrile, and ureas, for example 1,3-dimethylimidazolidin-2-one (DMEU) and tetramethylurea,
- NMP N-methyl-2-pyrrolidone
- 1-ethyl-2-pyrrolidone 1,5
- cyclic or acyclic hydrocarbons in particular saturated cyclic or acyclic hydrocarbons, for example undecane, dodecane, cis-decalin and trans-decalin,
- chlorinated aliphatic hydrocarbons for example 1-chlorooctane and 1,1-dichlorooctane,
- aromatic hydrocarbons for example naphthalene, n-butylbenzene, phenol, cresol, nitrobenzene and nitrophenol,
- chlorinated aromatic hydrocarbons for example 1,2-dichlorobenzene, benzyl chloride, 1,2,3,4-tetramethylbenzene and 1,2,3,5-tetramethylbenzene,
- alcohols for example benzyl alcohol, 2-ethylhexanol, 1-octanol, i-decanol, 1,2-propanediol, 1,3-propanediol, ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, neopentyl glycol, diethylene glycol monomethyl ether and dipropylene glycol,
- primary, secondary and tertiary amines for example tri-n-butylamine, benzylamine, aniline, N-ethylaniline, N,N-dimethylaniline and N,N-diethylaniline,
- N-alkylamides for example N-methylformamide and N-methylacetamide and mixtures thereof.
- polar aprotic solvents or diluents having an E N T of from 0.1 to 0.6, in particular from 0.2 to 0.5, especially from 0.3 to 0.45.
- Very particularly preferred solvents are NMP and ethylene glycol.
- the solvent or diluent present in the mixture from which the TEDA is vaporized is preferably added to the crude or still contaminated TEDA after the synthesis of the TEDA.
- the solvent or diluent can be used in a single pass or as a circulating solution after removal of the high boilers.
- the amount of solvent or diluent used is chosen according to practical considerations. In general, the amount used is such that, depending on the type of solvent or diluent, solutions or mixtures having a TEDA content of from about 1 to 90% by weight, preferably from 40 to 70% by weight, are obtained.
- the vaporization of the TEDA can be carried out by methods and under conditions with which those skilled in the art are familiar, e.g. in a distillation or rectification apparatus in which the TEDA is placed, optionally together with the solvent or diluent.
- the gaseous TEDA is preferably obtained at the top or at a side offtake of a distillation column.
- the gaseous TEDA in the process of the present invention generally has a purity of greater than 90% by weight, preferably greater than 95% by weight, in particular greater than 97% by weight.
- the temperature of the mixture is set to ⁇ 230° C., preferably from 190 to 210° C., by selection of the solvent or diluent to be used, the TEDA content of the mixture and/or the pressure.
- the absolute pressure is generally from 0.1 to 5 bar, preferably from 0.5 to 1.5 bar.
- the time between when the gaseous TEDA used in the process of the present invention is obtained and the TEDA quench is advantageously ⁇ 10 seconds.
- the TEDA to be purified can be obtained by known methods, e.g. by reaction of monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, diethylenetriamine, triethylenetetramine, piperazine, N-(2-hydroxyethyl)piperazine, N,N′-bis(2-hydroxyethyl)piperazine, N-(2-aminoethyl)piperazine, N,N′-bis(2-aminoethyl)piperazine, morpholine, or mixtures thereof over a catalyst, for example metal pyrophosphates, metal phosphates, e.g.
- the pressure is usually from 0.1 to 50 bar, in particular from 0.1 to 5 bar.
- the reaction can optionally be carried out in the presence of an inert polar aprotic solvent such as an N-alkylpyrrolidone, for example N-methylpyrrolidone, dioxane, THF, a dialkylformamide, for example dimethylformamide, a dialkylacetamide, for example dimethylacetamide, or an inert polar protic solvent, for example water, and an inert carrier gas, for example N 2 or Ar.
- an inert polar aprotic solvent such as an N-alkylpyrrolidone, for example N-methylpyrrolidone, dioxane, THF, a dialkylformamide, for example dimethylformamide, a dialkylacetamide, for example dimethylacetamide, or an inert polar protic solvent, for example water, and an inert carrier gas, for example N 2 or Ar.
- the TEDA is subsequently crystallized from the mother liquor and separated off by solid/liquid separation.
- the mother liquor obtained in this way is, according to the present invention, brought into intimate contact with an extractant in an extraction step. Mass transfer takes place in this step.
- the extractant is selected so that the TEDA is taken up by it.
- the by-products and decomposition products responsible for the reduction in the quality of the TEDA are likewise dissolved in the extractant.
- the mother liquor is thereby freed of these by-products and decomposition products and can be returned to the process.
- the solvent used as extractant advantageously has the following properties:
- the extractant should have a large miscibility gap with the solvent used in the crystallization step; the mutual solubility of extractant and solvent should be ⁇ 10% by weight, preferably ⁇ 1% by weight.
- TEDA should dissolve significantly better in the extractant than in the solvent which is used in the crystallization step.
- the extractant and the solvent used in the crystallization step should have a sufficient density difference. This aids separation of the extract phase and the raffinate phase.
- the density difference should preferably be >50 kg/m 3 , in particular>100 kg/m 3 .
- Solvents which are preferred according to the present invention as extractants are water and water-miscible solvents such as lower alcohols or dihydric or polyhydric alcohols.
- suitable alcohols include methanol, ethanol, n-propanol, i-propanol, ethylene glycol, polyethylene glycol and glycerol.
- the alcohols can be used individually or as mixtures, optionally also in admixture with water.
- the most preferred extractant is water.
- the work-up according to the present invention of the mother liquor by means of an extractant can be carried out by the methods and under the conditions with which those skilled in the art are familiar, e.g. in an extraction apparatus into which the mother liquor is introduced continuously or batchwise, in each case together with the extractant.
- the extraction according to the present invention reduces the amount of TEDA present in the mother liquor to values of ⁇ 10% by weight, preferably ⁇ 1% by weight, of the original value.
- the extract phase after the extraction according to the present invention accordingly contains >90% by weight, preferably >99% by weight, of the TEDA originally present in the mother liquor.
- solutions having a TEDA content of from about 1 to 40% by weight, preferably from 5 to 30% by weight, in particular 10-30% by weight, are obtained.
- the extract phase may if appropriate be recycled after the extraction according to the present invention has been carried out and be reused for the extraction.
- the degree of saturation of TEDA and by-products and intermediates in the extract phase will determine whether and how often the extract phase can be reused.
- the degree of saturation depends greatly on the nature of the solvent used as extractant and on the solubility of TEDA and the by-products and intermediates in this solvent.
- the extractant can also be taken from the process and worked up after a single extraction. This is done, in particular, when using water because of its ready availability.
- the solvent used for the extraction can no longer take up TEDA and by-product and can no longer be recirculated.
- This extract phase is then worked up and separated into the solvent used and TEDA, preferably by distillation.
- the solvent is then reused as extractant.
- TEDA of differing purity is obtained.
- this is then returned to the purification process, i.e. vaporized, optionally from a mixture with a solvent or diluent, and condensed by passing it into an organic solvent and crystallized from this.
- the purification process described can also be carried out directly in the work-up of the extract phase by distillation of the TEDA leaving the column.
- the process of the present invention allows the reuse of the solvent used in the crystallization of the TEDA and thus makes possible a reduction in the amount of fresh solvent required.
- the work-up of the extract phase and the recycling of the TEDA which is made possible in this way also increases the yield of TEDA compared to the way in which the process has been carried out hitherto.
- a solvent for example water
- a carrier gas e.g. N 2 or Ar
- the bottom product is pumped into a further distillation column having about 30 theoretical plates.
- a temperature at the top of from 140 to 160° C. and a pressure of from 500 mbar to 1.5 bar, piperazine is separated off at the top of this column and is optionally fed back into the synthesis reactor.
- the bottom product comprising TEDA and high boilers is pumped into a further distillation column having about 25 theoretical plates. At a pressure of from 500 mbar to 1.5 bar, the high boilers are discharged at the bottom of this column.
- TEDA having a purity of >95% by weight, in particular >97% by weight, is taken off in vapor form via a partial condenser and is directly quenched in a solvent, preferably pentane and/or cyclohexane, at from 30 to 100° C., preferably from 30 to 60° C., in a falling film condenser and is dissolved at the same time (TEDA quench).
- TEDA is crystallized from the solution in a crystallization step by vaporization of the solvent at from 10 to 100° C., preferably from 20 to 40° C., and a pressure of from 0.1 to 5 bar, preferably from 0.5 to 1.5 bar, or by cooling to a temperature of generally from ⁇ 10 to 40° C., preferably from 0 to 10° C.
- the suspension taken off from the crystallizer is separated into high-purity TEDA and mother liquor in a solid/liquid separation, e.g. in a centrifuge.
- the mother liquor, which still contains residual TEDA is then brought into intimate contact with an extractant, preferably water, at from 10 to 100° C., preferably from 20 to 40° C., and a pressure of from 0.1 to 5 bar, preferably from 0.5 to 1.5 bar, in an extraction step, for example in a mixer-settler or an extraction column.
- an extractant preferably water
- the extract phase leaving the extraction after mass transfer and phase separation which contains the major part of the TEDA and the undesirable by-products and decomposition products which lead to a reduction in the quality of the TEDA, is returned to the reactor or passed to a distillation.
- the TEDA obtained after distillation can be returned to the purification stage.
- the raffinate phase which contains only traces of TEDA, is returned to the TEDA quench.
- the experiments were carried out in a 41 (catalyst volume) salt bath reactor (shell-and-tube reactor containing 7 tubes, internal diameter 21 mm, length 2 m) made of stainless steel and heated by means of electric heating tapes.
- the pipes for the reactor feed, crude reaction product and the distillation section were partly configured as double-walled tubes and were oil-heated.
- the components of the plant were protectively heated and were individually matched to the temperature required in each case by use of different heating circuits.
- the catalyst used was a zeolite in the form of extrudates (diameter: about 2 mm, length: about 30 mm) (catalyst bed).
- the feed had the following composition (figures in % by weight): Ethylenediamine 30% Piperazine 20% Water 50%.
- the uncondensed material was, after a gas/liquid separator, conveyed to the distillation column.
- the low boilers (ammonia, ethylamine, water) were taken off in liquid form at the top of the column at atmospheric pressure and a temperature at the top of 96° C.
- the glass column having a diameter of 50 mm was equipped with 60 bubble cap trays.
- the reflux ratio was about 10:1.
- Piperazine was taken off in liquid form at the top of the column at atmospheric pressure and a temperature at the top of 150° C. and was recirculated to the reactor.
- the bottom product from the distillation column was pumped continuously at 185° C. into the next distillation column.
- the glass column having a diameter of 50 mm was equipped with 50 bubble cap trays.
- the reflux ratio was about 8:1.
- the high boilers were discharged continuously at 200° C. from the bottom of the column, and the temperature of the oil-heated vaporizer was 230° C.
- crystalline TEDA was separated from the mother liquor on a suction filter. TEDA was obtained in a purity of at least 99.5% by weight.
- the extract phase can be returned to the reactor and the raffinate phase can be recirculated together with the pentane obtained in the evaporative crystallization and 50 g/h of fresh pentane back to the TEDA quench.
- the recirculation enables the amount of fresh pentane to be reduced by about 75% and likewise enables the TEDA loss resulting from the bleeding-off of mother liquor to be reduced by about 75%.
- the extract phase can be returned to the reactor and the raffinate phase can be recirculated together with the pentane obtained in the evaporative crystallization and 50 g/h of fresh pentane back to the TEDA quench.
- the recirculation enables the amount of fresh pentane to be reduced by about 75% and likewise enables the TEDA loss resulting from the bleeding-off of mother liquor to be reduced by about 75%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
- The present invention relates to a process for working-up mother liquor obtained in the preparation of triethylenediamine (TEDA) which has been subjected to a particular purification process. This purification process comprises vaporizing TEDA, passing it in gaseous form into a liquid solvent and crystallizing the TEDA from the resulting solution. The mother liquor obtained after this crystallization step is then worked-up according to the present invention.
- TEDA is an important catalyst for the production of polyurethane foams. TEDA is solid at room temperature. Various methods are known for its preparation and purification, including the methods disclosed in the following publications:
- DT-A 24 42 929; U.S. Pat. No. 3,297,701; DE-A 36 34 258; DE-A 17 45 627; DE-A 37 18 395; EP-A 111 928; EP-A 382 055; EP-A 842 935, EP-A 842 936; EP-A 831 096; EP-A 952 152 and U.S. Pat. No. 5,741,906.
- The processes known hitherto for preparing TEDA lead to formation of product mixtures which comprise TEDA together with water, by-products such as piperazine and high molecular weight compounds and any solvent which may have been used in the reaction. TEDA is usually separated from these mixtures by batchwise or continuous distillation or rectification and is normally purified in a subsequent step by crystallization or recrystallization.
- TEDA is comparatively difficult to handle without deterioration of the quality, in particular in respect of color and color stability, odor and purity, occurring.
- The known, customary applications generally require a very pure, odorless and pure white TEDA. The following applications disclose processes which are said to give an appropriate TEDA quality:
- DT-A 26 11 069; DE-A 28 49 993 and JP-A 49 048 609.
- A disadvantage of these processes is that they do not give TEDA of the desired quality.
- The patent applications DE 199 33 850.7 of Jul. 23, 1999 and DE 199 62 455.0 of Dec. 22, 1999 by the Applicant relate to processes for preparing pure TEDA in which TEDA is vaporized and the gaseous TEDA is passed into a liquid solvent and the TEDA is crystallized from the solution.
- The application DE 101 00 943.7 of Jan. 10, 2001 by the Applicant describes a process for preparing a solution of pure TEDA, which comprises vaporizing TEDA from a mixture comprising a solvent or a diluent which has a boiling point at atmospheric pressure in the range from 175 to 250° C. and passing the gaseous TEDA into a liquid solvent. Subsequent crystallization of the TEDA from the resulting solution gives pure TEDA of high quality.
- After a solid/liquid separation of the crystalline TEDA from the solvent, a mother liquor comprising TEDA together with undesirable by-products and decomposition products is obtained in the last three processes. Owing to the impurities, the mother liquor cannot be reused in the process. Up to now, it has not been possible to work-up this mother liquor in such a way that it could be reused or the TEDA present in the mother liquor could be recovered at all. For this reason, the mother liquor was generally discarded. As a result, a large amount of solvent was necessary and the losses of TEDA remaining in the mother liquor were undesirably high.
- It is an object of the present invention to provide a process for the recovery of TEDA which comprises vaporizing the TEDA used as starting material, passing the gaseous TEDA into a solvent and crystallizing the TEDA from the solution and which allows at least part of the solvents used to be recycled to the process and may also allow the yield of TEDA to be increased.
- We have found that this object is achieved by a process for the purification of TEDA in which TEDA is vaporized and the gaseous TEDA is passed into a liquid solvent and is subsequently crystallized from this, wherein the mother liquor obtained after the TEDA has been crystallized is extracted with an extractant which is immiscible or only slightly miscible with the solvent of the mother liquor and in which TEDA is readily soluble, and the TEDA-depleted mother liquor obtained after extraction and/or the TEDA-enriched extractant which has been used for the extraction are/is returned to the process.
- The first step of the process of the present invention comprises the reaction steps of the purification of TEDA as described in the applications DE 199 33 850.7, 199 62 455.0 and DE 101 00 943.7 by the Applicant. The processes for purifying TEDA described in these applications are an integral part of the process of the present application and are hereby incorporated by reference. The processes will be briefly described again below.
- Passing the gaseous TEDA into a liquid solvent (TEDA quench) significantly reduces the formation of undesirable by-products which lead to a reduction in quality.
- Many organic solvents are suitable for this TEDA quench. Examples include aliphatic, cyclic or acyclic hydrocarbons, in particular cyclic and acylic, branched or unbranched alkanes or alkane mixtures, for example n-pentane, i-pentane, cyclopentane, hexane, cyclohexane, heptane, octane and petroleum ether, chlorinated aliphatic hydrocarbons, in particular chlorinated alkanes, for example dichloromethane, trichloromethane, dichloro ethers and trichloro ethers, aromatic hydrocarbons, for example benzene, toluene and xylenes, chlorinated aromatic hydrocarbons, for example chlorobenzene, alcohols, for example methanol, ethanol, ethylene glycol, 1,4-butanediol and polyether alcohols, in particular polyalkylene glycols, for example diethylene glycol, dipropylene glycol, monethylene glycol and 1,4-butane diol, ketones, in particular aliphatic ketones, for example acetone, methyl ethyl ketone and diethyl ketone, aliphatic carboxylic esters, for example methyl acetate and ethyl acetate, aliphatic nitriles, for example acetonitrile and propionitrile, ethers, for example dioxane, THF, diethyl ether and ethylene glycol dimethyl ether and also mixtures of the solvents listed.
- The solvent used for the TEDA quench is preferably an aliphatic hydrocarbon or a polyalkylene glycol, in particular a saturated cyclic or acyclic, aliphatic hydrocarbon having from 5 to 8 carbon atoms, for example pentane, hexane, cyclohexane or heptane, or dipropylene glycol. The crystallization of the pure TEDA from the TEDA solution prepared according to the present invention can be carried out by methods known to those skilled in the art. The TEDA crystals obtained by a subsequent, multistage or preferably single-stage crystallization are highly pure.
- The gaseous TEDA is passed into the liquid solvent in a quenching apparatus, preferably a falling film condenser (thin film, trickle film or falling stream condenser) or in a nozzle apparatus. The gaseous TEDA can be conveyed in cocurrent or in countercurrent to the liquid solvent. It is advantageous to pass the gaseous TEDA into the quenching apparatus from above. Also advantageous is the tangential introduction of the liquid solvent at the top of the falling film condenser or introduction of the liquid solvent through one or more nozzles to achieve complete wetting of the inner wall of the quenching apparatus.
- The amount of solvent used is chosen according to practical considerations. In general, the amount used is such that, depending on the type of solvent, solutions having a TEDA content of from about 1 to 50% by weight, preferably from 20 to 40% by weight, are obtained.
- In general, the temperature in the TEDA quench is set to from 20 to 100° C., preferably from 30 to 60° C., by heating/cooling the solvent used and/or the quenching apparatus.
- The absolute pressure in the TEDA quench is generally from 0.5 to 1.5 bar.
- If, in the purification of the TEDA, the TEDA is, as described in DE 101 00 943.7, vaporized from a mixture with a solvent or diluent, the solvent or diluent preferably has a boiling point at atmospheric pressure of from 180 to 250° C., in particular from 180 to 230° C., especially from 190 to 210° C.
- Particularly useful solvents or diluents which may be present in the mixture from which the TEDA is vaporized are inert
- polar aprotic solvents such as alkyl-2-pyrrolidones, for example N-methyl-2-pyrrolidone (NMP), 1-ethyl-2-pyrrolidone, 1,5-dimethyl-2-pyrrolidone, 1-isopropyl-2-pyrrolidone, ethers, for example diethylene glycol diethyl ether, triethylene glycol dimethyl ether and triethylene glycol diethyl ether, ketones, for example acetophenone and propiophenone, lactones, for example γ-buyrolactone, sulfoxides, for example dimethyl sulfoxide, carboxylic esters, for example dimethyl fumarate, nitriles, for example benzonitrile, and ureas, for example 1,3-dimethylimidazolidin-2-one (DMEU) and tetramethylurea,
- cyclic or acyclic hydrocarbons, in particular saturated cyclic or acyclic hydrocarbons, for example undecane, dodecane, cis-decalin and trans-decalin,
- chlorinated aliphatic hydrocarbons, for example 1-chlorooctane and 1,1-dichlorooctane,
- aromatic hydrocarbons, nitroaromatics and phenols, for example naphthalene, n-butylbenzene, phenol, cresol, nitrobenzene and nitrophenol,
- chlorinated aromatic hydrocarbons, for example 1,2-dichlorobenzene, benzyl chloride, 1,2,3,4-tetramethylbenzene and 1,2,3,5-tetramethylbenzene,
- alcohols, for example benzyl alcohol, 2-ethylhexanol, 1-octanol, i-decanol, 1,2-propanediol, 1,3-propanediol, ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, neopentyl glycol, diethylene glycol monomethyl ether and dipropylene glycol,
- primary, secondary and tertiary amines, for example tri-n-butylamine, benzylamine, aniline, N-ethylaniline, N,N-dimethylaniline and N,N-diethylaniline,
- N-alkylamides, for example N-methylformamide and N-methylacetamide and mixtures thereof.
- Particular preference is given to polar aprotic solvents or diluents having an E N T of from 0.1 to 0.6, in particular from 0.2 to 0.5, especially from 0.3 to 0.45.
- (For the definition of E N T, see Ch. Reichardt, Solvents and solvent effects in organic chemistry, 2nd Edition, VCH 1988).
- Very particularly preferred solvents are NMP and ethylene glycol.
- The solvent or diluent present in the mixture from which the TEDA is vaporized is preferably added to the crude or still contaminated TEDA after the synthesis of the TEDA.
- The solvent or diluent can be used in a single pass or as a circulating solution after removal of the high boilers.
- The amount of solvent or diluent used is chosen according to practical considerations. In general, the amount used is such that, depending on the type of solvent or diluent, solutions or mixtures having a TEDA content of from about 1 to 90% by weight, preferably from 40 to 70% by weight, are obtained.
- The vaporization of the TEDA, optionally from a mixture of this with a solvent or diluent, can be carried out by methods and under conditions with which those skilled in the art are familiar, e.g. in a distillation or rectification apparatus in which the TEDA is placed, optionally together with the solvent or diluent.
- The gaseous TEDA is preferably obtained at the top or at a side offtake of a distillation column. The gaseous TEDA in the process of the present invention generally has a purity of greater than 90% by weight, preferably greater than 95% by weight, in particular greater than 97% by weight.
- If a mixture comprising TEDA and the solvent or diluent from which the TEDA is vaporized according to the present invention (e.g. the bottoms from the TEDA distillation column) is used, the temperature of the mixture is set to ≦230° C., preferably from 190 to 210° C., by selection of the solvent or diluent to be used, the TEDA content of the mixture and/or the pressure. The absolute pressure is generally from 0.1 to 5 bar, preferably from 0.5 to 1.5 bar.
- The time between when the gaseous TEDA used in the process of the present invention is obtained and the TEDA quench is advantageously ≦10 seconds.
- The TEDA to be purified can be obtained by known methods, e.g. by reaction of monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, diethylenetriamine, triethylenetetramine, piperazine, N-(2-hydroxyethyl)piperazine, N,N′-bis(2-hydroxyethyl)piperazine, N-(2-aminoethyl)piperazine, N,N′-bis(2-aminoethyl)piperazine, morpholine, or mixtures thereof over a catalyst, for example metal pyrophosphates, metal phosphates, e.g. alkaline earth metal monohydrogen phosphate, zeolites, zirconium phosphates, Al 2O3, SiO2, phosphorus-containing TiO2 or ZrO2, at elevated temperature, generally from 250 to 450° C. The pressure is usually from 0.1 to 50 bar, in particular from 0.1 to 5 bar. The reaction can optionally be carried out in the presence of an inert polar aprotic solvent such as an N-alkylpyrrolidone, for example N-methylpyrrolidone, dioxane, THF, a dialkylformamide, for example dimethylformamide, a dialkylacetamide, for example dimethylacetamide, or an inert polar protic solvent, for example water, and an inert carrier gas, for example N2 or Ar.
- The TEDA is subsequently crystallized from the mother liquor and separated off by solid/liquid separation. The mother liquor obtained in this way is, according to the present invention, brought into intimate contact with an extractant in an extraction step. Mass transfer takes place in this step. The extractant is selected so that the TEDA is taken up by it. The by-products and decomposition products responsible for the reduction in the quality of the TEDA are likewise dissolved in the extractant. The mother liquor is thereby freed of these by-products and decomposition products and can be returned to the process.
- After mass transfer is complete, the mother liquor which has been depleted in TEDA, by-products and decomposition products (raffinate phase) and the extractant which has been enriched in TEDA (extract phase) are separated.
- The solvent used as extractant advantageously has the following properties:
- The extractant should have a large miscibility gap with the solvent used in the crystallization step; the mutual solubility of extractant and solvent should be <10% by weight, preferably <1% by weight. TEDA should dissolve significantly better in the extractant than in the solvent which is used in the crystallization step. Furthermore, the extractant and the solvent used in the crystallization step should have a sufficient density difference. This aids separation of the extract phase and the raffinate phase. The density difference should preferably be >50 kg/m 3, in particular>100 kg/m3.
- Solvents which are preferred according to the present invention as extractants are water and water-miscible solvents such as lower alcohols or dihydric or polyhydric alcohols. Examples of suitable alcohols include methanol, ethanol, n-propanol, i-propanol, ethylene glycol, polyethylene glycol and glycerol. The alcohols can be used individually or as mixtures, optionally also in admixture with water. The most preferred extractant is water.
- Since not only the TEDA but also the by-products and decomposition products formed in its synthesis and purification go into the extract phase during the extraction, this extraction gives a mother liquor (raffinate phase) which is free of TEDA and the undesirable by-products. The mother liquor can be recycled and reused as organic solvent into which gaseous TEDA is passed and from which it is subsequently crystallized. Such recycling is not possible in the case of a mother liquor which has not been worked up according to the present invention, since the impurities present in the mother liquor reduce the quality of the TEDA obtained.
- The work-up according to the present invention of the mother liquor by means of an extractant can be carried out by the methods and under the conditions with which those skilled in the art are familiar, e.g. in an extraction apparatus into which the mother liquor is introduced continuously or batchwise, in each case together with the extractant.
- The extraction according to the present invention reduces the amount of TEDA present in the mother liquor to values of <10% by weight, preferably <1% by weight, of the original value. The extract phase after the extraction according to the present invention accordingly contains >90% by weight, preferably >99% by weight, of the TEDA originally present in the mother liquor. Depending on the type of extractant used, solutions having a TEDA content of from about 1 to 40% by weight, preferably from 5 to 30% by weight, in particular 10-30% by weight, are obtained.
- The extract phase, too, may if appropriate be recycled after the extraction according to the present invention has been carried out and be reused for the extraction. The degree of saturation of TEDA and by-products and intermediates in the extract phase will determine whether and how often the extract phase can be reused. Of course, the degree of saturation depends greatly on the nature of the solvent used as extractant and on the solubility of TEDA and the by-products and intermediates in this solvent. However, the extractant can also be taken from the process and worked up after a single extraction. This is done, in particular, when using water because of its ready availability.
- When a certain degree of saturation has been reached, the solvent used for the extraction can no longer take up TEDA and by-product and can no longer be recirculated. This extract phase is then worked up and separated into the solvent used and TEDA, preferably by distillation. The solvent is then reused as extractant. Depending on the type and manner of work-up, TEDA of differing purity is obtained. In general, this is then returned to the purification process, i.e. vaporized, optionally from a mixture with a solvent or diluent, and condensed by passing it into an organic solvent and crystallized from this. The purification process described can also be carried out directly in the work-up of the extract phase by distillation of the TEDA leaving the column.
- The process of the present invention allows the reuse of the solvent used in the crystallization of the TEDA and thus makes possible a reduction in the amount of fresh solvent required. The work-up of the extract phase and the recycling of the TEDA which is made possible in this way also increases the yield of TEDA compared to the way in which the process has been carried out hitherto.
- In a preferred embodiment, the process of the present invention can be carried out as follows:
- A TEDA-containing mixture which has been obtained, for example, as crude reaction product from a continuous process in which ethylenediamine and piperazine are reacted in a gas-phase reactor at from 320 to 420° C. and from 0.5 to 1.5 bar in the presence of a solvent (for example water), a carrier gas (e.g. N 2 or Ar) and a zeolite catalyst is fed into a distillation apparatus comprising a distillation column having about 15 theoretical plates. In this column, low boilers (for example ammonia, ethylamine, water) are separated off at a temperature at the top of from 95 to 120° C. and a pressure of generally from 500 mbar to 1.5 bar. The bottom product is pumped into a further distillation column having about 30 theoretical plates. At a temperature at the top of from 140 to 160° C. and a pressure of from 500 mbar to 1.5 bar, piperazine is separated off at the top of this column and is optionally fed back into the synthesis reactor.
- The bottom product comprising TEDA and high boilers is pumped into a further distillation column having about 25 theoretical plates. At a pressure of from 500 mbar to 1.5 bar, the high boilers are discharged at the bottom of this column. At the top of the column, TEDA having a purity of >95% by weight, in particular >97% by weight, is taken off in vapor form via a partial condenser and is directly quenched in a solvent, preferably pentane and/or cyclohexane, at from 30 to 100° C., preferably from 30 to 60° C., in a falling film condenser and is dissolved at the same time (TEDA quench).
- After the TEDA quench, TEDA is crystallized from the solution in a crystallization step by vaporization of the solvent at from 10 to 100° C., preferably from 20 to 40° C., and a pressure of from 0.1 to 5 bar, preferably from 0.5 to 1.5 bar, or by cooling to a temperature of generally from −10 to 40° C., preferably from 0 to 10° C.
- The suspension taken off from the crystallizer is separated into high-purity TEDA and mother liquor in a solid/liquid separation, e.g. in a centrifuge. The mother liquor, which still contains residual TEDA, is then brought into intimate contact with an extractant, preferably water, at from 10 to 100° C., preferably from 20 to 40° C., and a pressure of from 0.1 to 5 bar, preferably from 0.5 to 1.5 bar, in an extraction step, for example in a mixer-settler or an extraction column.
- The extract phase leaving the extraction after mass transfer and phase separation, which contains the major part of the TEDA and the undesirable by-products and decomposition products which lead to a reduction in the quality of the TEDA, is returned to the reactor or passed to a distillation. The TEDA obtained after distillation can be returned to the purification stage. The raffinate phase, which contains only traces of TEDA, is returned to the TEDA quench.
- The invention is illustrated by the following examples.
- The experiments were carried out in a 41 (catalyst volume) salt bath reactor (shell-and-tube reactor containing 7 tubes, internal diameter 21 mm, length 2 m) made of stainless steel and heated by means of electric heating tapes. The pipes for the reactor feed, crude reaction product and the distillation section were partly configured as double-walled tubes and were oil-heated. The components of the plant were protectively heated and were individually matched to the temperature required in each case by use of different heating circuits. The catalyst used was a zeolite in the form of extrudates (diameter: about 2 mm, length: about 30 mm) (catalyst bed).
- The feed of 1300 g/h together with 3 standard l/h (standard l=standard liters=volume at STP) of nitrogen were introduced at atmospheric pressure into the salt bath reactor heated to 350° C. (WHSV over the catalyst: 1 kg of feed per l of cat. (bed volume) and per h).
- The feed had the following composition (figures in % by weight):
Ethylenediamine 30% Piperazine 20% Water 50%. - The gaseous reaction product was condensed at 80° C. in a quench using circulated liquid which consisted of liquid reaction product which had been obtained previously (=reaction product quench).
- Analysis of the condensate indicated the following composition (figures in % by weight):
Ammonia 3% Piperazine 17% Triethylenediamine 23% Water 54% Remainder high boilers and other by - products. - The uncondensed material was, after a gas/liquid separator, conveyed to the distillation column.
- Part of the liquid reaction product was cooled and used as circulated liquid (for the reaction product quench), while another part was pumped continuously to a distillation column by means of a pump. The glass column having a diameter of 50 mm was equipped with 30 bubble cap trays. The reflux ratio was about 1:1.
- The low boilers (ammonia, ethylamine, water) were taken off in liquid form at the top of the column at atmospheric pressure and a temperature at the top of 96° C.
- The bottom product from the distillation column was pumped continuously at 155° C. into a downstream distillation column.
- The glass column having a diameter of 50 mm was equipped with 60 bubble cap trays. The reflux ratio was about 10:1. Piperazine was taken off in liquid form at the top of the column at atmospheric pressure and a temperature at the top of 150° C. and was recirculated to the reactor.
- 200 g/h of N-methyl-2-pyrrolidone were fed into the bottom of the column.
- Analysis of the bottom product indicated the following composition (figures in % by weight):
Piperazine 0.03% Triethylenediamine 53% N-methyl-2-pyrrolidone 43% Remainder high boilers and other by - products. - The bottom product from the distillation column was pumped continuously at 185° C. into the next distillation column. The glass column having a diameter of 50 mm was equipped with 50 bubble cap trays. The reflux ratio was about 8:1. The high boilers were discharged continuously at 200° C. from the bottom of the column, and the temperature of the oil-heated vaporizer was 230° C. At the top of the column, TEDA was taken off in vapor form and quenched at about 30° C. in pentane as solvent (mixture of 80% by weight of n-pentane and 20% by weight of isopentane) and simultaneously dissolved (=TEDA quench). For the TEDA quench, use was made of a falling film condenser (trickle film condenser or falling stream condenser) into which gaseous TEDA was introduced from the top. Pentane was fed in tangentially at the top of the falling film condenser. The resulting solution had the following composition (figures in % by weight):
Pentane 94% Piperazine 0.01% Triethylenediamine 5% Remainder by-products. - After the partial removal of pentane by evaporative crystallization at 25° C. and a pressure of 570 mbar, crystalline TEDA was separated from the mother liquor on a suction filter. TEDA was obtained in a purity of at least 99.5% by weight.
- Part of the mother liquor was recirculated together with the pentane obtained in the evaporative crystallization and 200 g/h of fresh pentane back to the TEDA quench. To prevent accumulation of undesirable by-products and decomposition products which lead to a reduction in the quality of the TEDA, about 200 g/h of mother liquor were bled off from the circuit.
- Analysis of the mother liquor bled off indicated the following composition (figures in % by weight):
Pentane 95% Piperazine 0.02% Triethylenediamine 4.7% Remainder by-products. - The experiment was carried out as described in example 1, but the mother liquor was mixed with water in a ratio of about 1:1, shaken and, after separation of the phases, analyzed.
- Analysis of the extract phase indicated the following composition (figures in % by weight):
Pentane <0.01% Piperazine 0.02% Triethylenediamine 4.4% Water 95.5% Remainder by-products. - Analysis of the raffinate phase indicated the following composition (figures in % by weight):
Pentane 99.95% Piperazine <0.001% Triethylenediamine 0.02% Water 0.02% Remainder by-products. - The extract phase can be returned to the reactor and the raffinate phase can be recirculated together with the pentane obtained in the evaporative crystallization and 50 g/h of fresh pentane back to the TEDA quench.
- The recirculation enables the amount of fresh pentane to be reduced by about 75% and likewise enables the TEDA loss resulting from the bleeding-off of mother liquor to be reduced by about 75%.
- The experiment was carried out as described in example 1, but the mother liquor was mixed with water in a ratio of about 1:4, shaken and, after separation of the phases, analyzed.
- Analysis of the extract phase indicated the following composition (figures in % by weight):
Pentane <0.01% Piperazine 0.2% Triethylenediamine 23.6% Water 71.7% Remainder by-products. - Analysis of the raffinate phase indicated the following composition (figures in % by weight):
Pentane 99.92% Piperazine >0.001% Triethylenediamine 0.04% Water 0.01% Remainder by-products. - The extract phase can be returned to the reactor and the raffinate phase can be recirculated together with the pentane obtained in the evaporative crystallization and 50 g/h of fresh pentane back to the TEDA quench.
- The recirculation enables the amount of fresh pentane to be reduced by about 75% and likewise enables the TEDA loss resulting from the bleeding-off of mother liquor to be reduced by about 75%.
Claims (17)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10122502 | 2001-05-10 | ||
| DE10122502A DE10122502A1 (en) | 2001-05-10 | 2001-05-10 | Purification of triethylene diamine, useful as a catalyst for the production of polyurethane foam, comprises crystallization and extraction of the resulting mother liquor with an extraction agent |
| DE10122502.4 | 2001-05-10 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20030004349A1 true US20030004349A1 (en) | 2003-01-02 |
| US7345173B2 US7345173B2 (en) | 2008-03-18 |
Family
ID=7684141
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/138,337 Expired - Fee Related US7345173B2 (en) | 2001-05-10 | 2002-05-06 | Work-up of the mother liquor obtained in the preparation of high-purity triethylenediamine |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US7345173B2 (en) |
| EP (1) | EP1258485B1 (en) |
| JP (1) | JP2002363181A (en) |
| KR (1) | KR20020086267A (en) |
| CN (1) | CN1266153C (en) |
| AT (1) | ATE298340T1 (en) |
| DE (2) | DE10122502A1 (en) |
| ES (1) | ES2243619T3 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080021218A1 (en) * | 2004-05-15 | 2008-01-24 | Basf Aktiengesellschaft | Method for Producing a Solution of Pure Triethylenediamine (Teda) |
| US20080312439A1 (en) * | 2005-12-23 | 2008-12-18 | Basf Aktiengesellschaft | Work-Up in the Preparation of High-Purity Triethylenediamine |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10303696A1 (en) * | 2003-01-30 | 2004-08-12 | Basf Ag | Decolorization and color stabilization of TEDA solution |
| DE102009027791B4 (en) | 2009-07-17 | 2013-02-21 | Basf Se | Composition containing triethylenediamine, monethyleneglycol and borohydride |
| CN102030755B (en) * | 2010-11-24 | 2012-05-30 | 西安近代化学研究所 | Method for preparing high-purity triethylene diamine |
| CN103664964B (en) * | 2013-12-18 | 2016-03-02 | 西安近代化学研究所 | The absorption process of triethylene diamine production rectifying gas and device |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6627756B1 (en) * | 1999-07-23 | 2003-09-30 | Basf Aktiengesellschaft | Preparation of pure triethylenediamine |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3123607A (en) | 1964-03-03 | Recovery of diazabicyclo-octane | ||
| US902073A (en) | 1908-08-12 | 1908-10-27 | Charles H Gueritey | Amusement apparatus. |
| US2937176A (en) | 1956-12-17 | 1960-05-17 | Houdry Process Corp | Preparation of diazabicyclo-octane |
| GB902073A (en) | 1958-05-09 | 1962-07-25 | Houdry Process Corp | Separation and purification of triethylene diamine |
| DE1745627B1 (en) | 1958-05-24 | 1970-05-14 | Air Prod & Chem | Process for the preparation of 1,4-diazabicyclo-2,2,2-octane and piperazine |
| US3297701A (en) | 1962-03-23 | 1967-01-10 | Jefferson Chem Co Inc | Synthesis of diazabicyclo-(2, 2, 2)-octane and derivatives |
| US3400129A (en) * | 1965-10-15 | 1968-09-03 | Jefferson Chem Co Inc | Purification of 2-methyltriethylenediamine by solvent extraction and azeotropic distillation |
| JPS4948609A (en) | 1972-09-13 | 1974-05-11 | ||
| DE2442929C3 (en) | 1974-09-07 | 1978-07-06 | Basf Ag, 6700 Ludwigshafen | Process for the preparation of 1,4-diazabicyclo [2,2,2 square brackets to octane |
| US3993651A (en) | 1975-03-17 | 1976-11-23 | Texaco Development Corporation | Triethylenediamine recovery |
| JPS6036439B2 (en) | 1977-11-22 | 1985-08-20 | 東ソー株式会社 | Separation and recovery method for triethylenediamine |
| US4182864A (en) | 1978-09-21 | 1980-01-08 | Texaco Development Corporation | Triethylenediamine process |
| DE2846813A1 (en) | 1978-10-27 | 1980-05-08 | Bayer Ag | METHOD FOR PRODUCING 1,4-DIAZABICYCLO- (2,2,2) -OCTANE |
| US4233447A (en) | 1978-12-21 | 1980-11-11 | Texaco Development Corp. | Process for purifying triethylenediamine |
| GB2080283B (en) | 1980-07-15 | 1984-04-18 | Texaco Development Corp | Process for purifying triethylenediamine |
| EP0111928A1 (en) | 1982-12-20 | 1984-06-27 | Air Products And Chemicals, Inc. | Catalysis of condensation reactions |
| US4757143A (en) | 1986-06-09 | 1988-07-12 | Texaco Inc. | Catalytic method for the manufacture of triethylenediamine |
| US4804758A (en) | 1986-10-08 | 1989-02-14 | Basf Aktiengesellschaft | Preparation of 1,4-diazabicyclo[2.2.2]octanes |
| DE3634258A1 (en) | 1986-10-08 | 1988-04-21 | Basf Ag | Process for the preparation of 1,4-diazabicyclo[2.2.2]octanes |
| DE3903622A1 (en) | 1989-02-08 | 1990-08-09 | Basf Ag | METHOD FOR PRODUCING 1,4-DIAZABICYCLO-2,2,2-OCTANE |
| US5756741A (en) | 1996-11-15 | 1998-05-26 | Air Products And Chemicals, Inc. | Process for the production of triethylenediamine |
| US5741906A (en) | 1996-11-15 | 1998-04-21 | Air Products And Chemicals, Inc. | Production of triethylenediamine using surface acidity deactivated zeolite catalysts |
| DE19962455A1 (en) | 1999-12-22 | 2001-06-28 | Basf Ag | Preparation of pure triethylenediamine solution and crystals, useful as catalyst for polyurethane foam production, comprises vaporization, passing vapor into liquid solvent and crystallization from solution |
| DE19933850A1 (en) | 1999-07-23 | 2001-01-25 | Basf Ag | Preparation of pure triethylenediamine solution and crystals, useful as catalyst for polyurethane foam production, comprises vaporization, passing vapor into liquid solvent and crystallization from solution |
| DE10100943A1 (en) | 2001-01-10 | 2002-07-11 | Basf Ag | Production of a solution of pure triethylenediamine comprises evaporation from a mixture comprising a solvent or a diluent having a specified boiling point at normal pressure |
| DE10145117A1 (en) | 2001-09-13 | 2003-04-03 | Basf Ag | Process for the preparation of high-purity triethylenediamine by introducing the triethylenediamine into a solvent after the high boilers have been separated off beforehand |
-
2001
- 2001-05-10 DE DE10122502A patent/DE10122502A1/en not_active Withdrawn
-
2002
- 2002-05-06 US US10/138,337 patent/US7345173B2/en not_active Expired - Fee Related
- 2002-05-09 KR KR1020020025499A patent/KR20020086267A/en not_active Withdrawn
- 2002-05-10 EP EP02010129A patent/EP1258485B1/en not_active Expired - Lifetime
- 2002-05-10 JP JP2002136221A patent/JP2002363181A/en active Pending
- 2002-05-10 CN CNB021176523A patent/CN1266153C/en not_active Expired - Fee Related
- 2002-05-10 ES ES02010129T patent/ES2243619T3/en not_active Expired - Lifetime
- 2002-05-10 AT AT02010129T patent/ATE298340T1/en not_active IP Right Cessation
- 2002-05-10 DE DE50203442T patent/DE50203442D1/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6627756B1 (en) * | 1999-07-23 | 2003-09-30 | Basf Aktiengesellschaft | Preparation of pure triethylenediamine |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080021218A1 (en) * | 2004-05-15 | 2008-01-24 | Basf Aktiengesellschaft | Method for Producing a Solution of Pure Triethylenediamine (Teda) |
| US7872131B2 (en) | 2004-05-15 | 2011-01-18 | Basf Se | Method for producing a solution of pure triethylenediamine (TEDA) |
| US20080312439A1 (en) * | 2005-12-23 | 2008-12-18 | Basf Aktiengesellschaft | Work-Up in the Preparation of High-Purity Triethylenediamine |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1258485B1 (en) | 2005-06-22 |
| DE50203442D1 (en) | 2005-07-28 |
| CN1266153C (en) | 2006-07-26 |
| EP1258485A1 (en) | 2002-11-20 |
| ES2243619T3 (en) | 2005-12-01 |
| US7345173B2 (en) | 2008-03-18 |
| KR20020086267A (en) | 2002-11-18 |
| DE10122502A1 (en) | 2002-11-14 |
| ATE298340T1 (en) | 2005-07-15 |
| JP2002363181A (en) | 2002-12-18 |
| CN1385430A (en) | 2002-12-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6552194B2 (en) | Process for the preparation of pure triethylenediamine (TEDA) | |
| US7345173B2 (en) | Work-up of the mother liquor obtained in the preparation of high-purity triethylenediamine | |
| US6627756B1 (en) | Preparation of pure triethylenediamine | |
| US7872131B2 (en) | Method for producing a solution of pure triethylenediamine (TEDA) | |
| JP4436673B2 (en) | Process for producing high purity triethylenediamine | |
| US7074926B2 (en) | Decoloration and color stabilization of TEDA solution | |
| US20080312439A1 (en) | Work-Up in the Preparation of High-Purity Triethylenediamine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BASF AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LANG, ORTMUND;FUNHOFF, DIRK;RUMPF, BERND;AND OTHERS;REEL/FRAME:012866/0538 Effective date: 20020225 |
|
| AS | Assignment |
Owner name: BASF SE, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:BASF AKTIENGESELLSCHAFT;REEL/FRAME:020519/0594 Effective date: 20080114 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200318 |