US20020187952A1 - Rolling circle replicon expression vectors - Google Patents
Rolling circle replicon expression vectors Download PDFInfo
- Publication number
- US20020187952A1 US20020187952A1 US10/038,001 US3800101A US2002187952A1 US 20020187952 A1 US20020187952 A1 US 20020187952A1 US 3800101 A US3800101 A US 3800101A US 2002187952 A1 US2002187952 A1 US 2002187952A1
- Authority
- US
- United States
- Prior art keywords
- polynucleotide
- histone
- protein
- host
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 54
- 239000013604 expression vector Substances 0.000 title description 13
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 191
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 107
- 230000014509 gene expression Effects 0.000 claims abstract description 90
- 230000010076 replication Effects 0.000 claims abstract description 90
- 101150066583 rep gene Proteins 0.000 claims abstract description 32
- 206010021432 Immunisation reaction Diseases 0.000 claims abstract description 28
- 210000004027 cell Anatomy 0.000 claims description 127
- 102000040430 polynucleotide Human genes 0.000 claims description 115
- 108091033319 polynucleotide Proteins 0.000 claims description 115
- 239000002157 polynucleotide Substances 0.000 claims description 115
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 74
- 241000700605 Viruses Species 0.000 claims description 68
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 38
- 230000003612 virological effect Effects 0.000 claims description 38
- 229920001184 polypeptide Polymers 0.000 claims description 36
- 102000006947 Histones Human genes 0.000 claims description 33
- 108010033040 Histones Proteins 0.000 claims description 33
- 241001494793 Nanovirus Species 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 28
- 241000702463 Geminiviridae Species 0.000 claims description 26
- 230000008685 targeting Effects 0.000 claims description 22
- 241001533384 Circovirus Species 0.000 claims description 21
- 230000006870 function Effects 0.000 claims description 21
- 210000003855 cell nucleus Anatomy 0.000 claims description 16
- 210000001519 tissue Anatomy 0.000 claims description 13
- 241001533399 Circoviridae Species 0.000 claims description 10
- 102000017286 Histone H2A Human genes 0.000 claims description 9
- 108050005231 Histone H2A Proteins 0.000 claims description 9
- 101710103773 Histone H2B Proteins 0.000 claims description 9
- 102100021639 Histone H2B type 1-K Human genes 0.000 claims description 9
- 230000003053 immunization Effects 0.000 claims description 9
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 8
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 claims description 8
- 230000001965 increasing effect Effects 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000002671 adjuvant Substances 0.000 claims description 6
- 230000003389 potentiating effect Effects 0.000 claims description 5
- 241000701161 unidentified adenovirus Species 0.000 claims description 5
- 102000003777 Interleukin-1 beta Human genes 0.000 claims description 4
- 108090000193 Interleukin-1 beta Proteins 0.000 claims description 4
- 108700026244 Open Reading Frames Proteins 0.000 abstract description 25
- 210000003527 eukaryotic cell Anatomy 0.000 abstract description 25
- 230000035897 transcription Effects 0.000 abstract description 14
- 238000013518 transcription Methods 0.000 abstract description 14
- 238000010367 cloning Methods 0.000 abstract description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 abstract description 6
- 102000009572 RNA Polymerase II Human genes 0.000 abstract description 6
- 108010009460 RNA Polymerase II Proteins 0.000 abstract description 6
- 230000008488 polyadenylation Effects 0.000 abstract description 6
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 abstract description 6
- 230000005030 transcription termination Effects 0.000 abstract description 6
- 108020004414 DNA Proteins 0.000 description 121
- 241000202347 Porcine circovirus Species 0.000 description 59
- 238000001890 transfection Methods 0.000 description 45
- 239000013598 vector Substances 0.000 description 42
- 239000013612 plasmid Substances 0.000 description 36
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 30
- 102000053602 DNA Human genes 0.000 description 29
- 241000196324 Embryophyta Species 0.000 description 22
- 108010005774 beta-Galactosidase Proteins 0.000 description 21
- 239000000427 antigen Substances 0.000 description 18
- 150000007523 nucleic acids Chemical group 0.000 description 18
- 239000012634 fragment Substances 0.000 description 17
- 108020004682 Single-Stranded DNA Proteins 0.000 description 16
- 108091007433 antigens Proteins 0.000 description 16
- 102000036639 antigens Human genes 0.000 description 16
- 108090000331 Firefly luciferases Proteins 0.000 description 15
- 239000005090 green fluorescent protein Substances 0.000 description 14
- 102000039446 nucleic acids Human genes 0.000 description 14
- 108020004707 nucleic acids Proteins 0.000 description 14
- 230000001413 cellular effect Effects 0.000 description 13
- 108060001084 Luciferase Proteins 0.000 description 12
- 108091028043 Nucleic acid sequence Proteins 0.000 description 12
- 102000005936 beta-Galactosidase Human genes 0.000 description 12
- 108091029795 Intergenic region Proteins 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 230000003362 replicative effect Effects 0.000 description 11
- 241000206602 Eukaryota Species 0.000 description 10
- 239000005089 Luciferase Substances 0.000 description 10
- 241000699670 Mus sp. Species 0.000 description 10
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 10
- 230000002163 immunogen Effects 0.000 description 10
- 210000004962 mammalian cell Anatomy 0.000 description 10
- 239000002773 nucleotide Substances 0.000 description 10
- 125000003729 nucleotide group Chemical group 0.000 description 10
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 230000028993 immune response Effects 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 9
- 230000001404 mediated effect Effects 0.000 description 9
- 210000004940 nucleus Anatomy 0.000 description 8
- 230000002459 sustained effect Effects 0.000 description 8
- 241000282552 Chlorocebus aethiops Species 0.000 description 7
- 230000004543 DNA replication Effects 0.000 description 7
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 210000003292 kidney cell Anatomy 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000030648 nucleus localization Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 210000000130 stem cell Anatomy 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 6
- 238000002105 Southern blotting Methods 0.000 description 6
- 108010067390 Viral Proteins Proteins 0.000 description 6
- 210000000805 cytoplasm Anatomy 0.000 description 6
- 238000001415 gene therapy Methods 0.000 description 6
- 238000002649 immunization Methods 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 241000702451 Begomovirus Species 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 241000702459 Mastrevirus Species 0.000 description 5
- 101710088839 Replication initiation protein Proteins 0.000 description 5
- 101710203837 Replication-associated protein Proteins 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 239000013600 plasmid vector Substances 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 230000029812 viral genome replication Effects 0.000 description 5
- 241001302800 Beak and feather disease virus Species 0.000 description 4
- 101100297347 Caenorhabditis elegans pgl-3 gene Proteins 0.000 description 4
- 101710132601 Capsid protein Proteins 0.000 description 4
- 101710094648 Coat protein Proteins 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 4
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 4
- 101710125418 Major capsid protein Proteins 0.000 description 4
- 101710141454 Nucleoprotein Proteins 0.000 description 4
- 101710083689 Probable capsid protein Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000006180 TBST buffer Substances 0.000 description 4
- 108020005202 Viral DNA Proteins 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 230000002759 chromosomal effect Effects 0.000 description 4
- 239000013599 cloning vector Substances 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 230000005847 immunogenicity Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000012096 transfection reagent Substances 0.000 description 4
- 210000002845 virion Anatomy 0.000 description 4
- 108020004638 Circular DNA Proteins 0.000 description 3
- 241000699802 Cricetulus griseus Species 0.000 description 3
- 241000702461 Curtovirus Species 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102100039869 Histone H2B type F-S Human genes 0.000 description 3
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 description 3
- 101710128836 Large T antigen Proteins 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 101710195674 Replication initiator protein Proteins 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- -1 cationic lipid Chemical class 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000010415 tropism Effects 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 2
- 108090000565 Capsid Proteins Proteins 0.000 description 2
- 102100023321 Ceruloplasmin Human genes 0.000 description 2
- 108050006400 Cyclin Proteins 0.000 description 2
- 238000012270 DNA recombination Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 101150066002 GFP gene Proteins 0.000 description 2
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 2
- 108010017544 Glucosylceramidase Proteins 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- 108091092724 Noncoding DNA Proteins 0.000 description 2
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 108010039918 Polylysine Proteins 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 102100036691 Proliferating cell nuclear antigen Human genes 0.000 description 2
- 241000125945 Protoparvovirus Species 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 108091027544 Subgenomic mRNA Proteins 0.000 description 2
- 241000702295 Tomato golden mosaic virus Species 0.000 description 2
- 230000010632 Transcription Factor Activity Effects 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000007979 citrate buffer Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000004186 co-expression Effects 0.000 description 2
- 230000009918 complex formation Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001476 gene delivery Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000009851 immunogenic response Effects 0.000 description 2
- 230000016784 immunoglobulin production Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 102000013415 peroxidase activity proteins Human genes 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 229920000656 polylysine Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 241001147420 ssDNA viruses Species 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000037426 transcriptional repression Effects 0.000 description 2
- 238000003151 transfection method Methods 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 101710150351 DNA polymerase processivity factor Proteins 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 241000121256 Densovirinae Species 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 241000702315 Escherichia virus phiX174 Species 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- 102000004547 Glucosylceramidase Human genes 0.000 description 1
- 241000316868 Gyrovirus Species 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 102000003814 Interleukin-10 Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 241000702318 Microviridae Species 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 208000009869 Neu-Laxova syndrome Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 241000928435 Porcine circovirus 1 Species 0.000 description 1
- 241001673669 Porcine circovirus 2 Species 0.000 description 1
- 241001432873 Porcine circovirus 3 Species 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 101710090029 Replication-associated protein A Proteins 0.000 description 1
- 108050002653 Retinoblastoma protein Proteins 0.000 description 1
- 108010073443 Ribi adjuvant Proteins 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 241001515849 Satellite Viruses Species 0.000 description 1
- 101100289792 Squirrel monkey polyomavirus large T gene Proteins 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 108050006628 Viral movement proteins Proteins 0.000 description 1
- 108010084455 Zeocin Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 108091092356 cellular DNA Proteins 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000002230 centromere Anatomy 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229930183167 cerebroside Natural products 0.000 description 1
- RIZIAUKTHDLMQX-UHFFFAOYSA-N cerebroside D Natural products CCCCCCCCCCCCCCCCC(O)C(=O)NC(C(O)C=CCCC=C(C)CCCCCCCCC)COC1OC(CO)C(O)C(O)C1O RIZIAUKTHDLMQX-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000010502 episomal replication Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000001400 expression cloning Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 230000007412 host metabolism Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 229940027941 immunoglobulin g Drugs 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 1
- 210000001985 kidney epithelial cell Anatomy 0.000 description 1
- 210000001865 kupffer cell Anatomy 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 208000003154 papilloma Diseases 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- CWCMIVBLVUHDHK-ZSNHEYEWSA-N phleomycin D1 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC[C@@H](N=1)C=1SC=C(N=1)C(=O)NCCCCNC(N)=N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C CWCMIVBLVUHDHK-ZSNHEYEWSA-N 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 102000023888 sequence-specific DNA binding proteins Human genes 0.000 description 1
- 108091008420 sequence-specific DNA binding proteins Proteins 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000006490 viral transcription Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/00022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/12011—Geminiviridae
- C12N2750/12041—Use of virus, viral particle or viral elements as a vector
- C12N2750/12043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/108—Plasmid DNA episomal vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/42—Vector systems having a special element relevant for transcription being an intron or intervening sequence for splicing and/or stability of RNA
Definitions
- This invention relates to the field of single stranded circular DNA (ssDNA) viruses that infect eukaryotic hosts.
- ssDNA single stranded circular DNA
- this invention relates to viral vectors having utility in vaccine therapy by expressing a heterologous peptide or polypeptide, which is capable of eliciting an immunization reaction in an eukaryotic host.
- viruses in this field are the Geminiviruses, Nanoviruses, and Circoviruses.
- ssDNA viruses that infect eukaryotic hosts belong to several different virus taxonomic families (Van Regenmortel et al., 1999; Pringle, 1999). Circoviruses, Circinoviruses (Mushahwar et al., 1999), Gyroviruses and Parvoviruses infect vertebrates; some Parvoviruses (subfamily Densovirinae) also infect invertebrate hosts while Geminiviruses and viruses in the genus Nanovirus infect plants. There is recent evidence that the viruses currently classified as Circoviruses evolved from Nanoviruses and have switched from a plant to a vertebrate host (Gibbs and Weiller, 1999).
- Geminiviruses, Nanoviruses, and Circoviruses are all small circular ssDNA viruses that appear to be fairly closely related, in that they use the same basic rolling-circle mechanism of replication (RCR) and employ very similar life cycle strategies.
- RCR rolling-circle mechanism of replication
- Recently published data indicate that some plant RCR viruses—dicot-infecting begomoviruses and at least one Nanovirus genomic component even co-exist in some plant infections, with the geminiviral component of the infection presumably providing movement and propagation functions for the Nanovirus element, which functions as a sort of autonomously replicating satellite virus (Mansoor et al., 1999; Saunders and Stanley, 1999).
- the genomes of all of the plant RCR viruses, and related vertebrate-infecting Circoviruses are small, single-stranded and circular.
- the Geminiviruses have mono- or bi-partite genomes, with each genomic component between 2.5 and 3.0-kb.
- the Nanoviruses have multipartite genomes, generally with at least six, and up to ten, circular subgenomic ssDNAs, each of about 1.0-kb (Katul et al., 1998; Boevink et al., 1995; Bums et al., 1995).
- the Circoviruses PCV and BFDV have circular ssDNA genomes between 1.75- and 2.0-kb that encode at least two proteins.
- PCV and BFDV genomes evolved after a recombination event between at least two Nanovirus subgenomic component and a vertebrate RNA-infecting virus which contributed a small portion of the new virus's replication associated protein.
- viral transcription regulatory proteins down-regulate transcription of early genes, and stimulate transcription of the viral “late” genes, including the structural protein(s) and proteins required for dissemination of the viral genome.
- the “late” viral proteins sequester ssDNA produced during replication, move it out of the cell nucleus and ultimately out of the infected cell, either as a ssDNA-protein complex, or as assembled virions.
- the plant RCR viruses and their relatives the Circoviruses all encode a replication-associated protein (Rep) that is absolutely required for replication of the virus genomic components (Mankertz et al., 1998; Elmer et al., 1988; Hafner et al., 1997). All other proteins are dispensable for replication, and may be involved in such functions as: movement from cell-to-cell; encapsidation of the virus genome; shuttling of the virus genome between the nucleus and the cytoplasm of infected cells; transcriptional activation or repression of genes in the host or viral genome.
- Rep replication-associated protein
- the Rep proteins of these RCR viruses bear some distant relationship to replication initiator proteins of some ssDNA plasmids, as well as of members of the Microviridae, such as coliphage phiX174 (Ilyina and Koonin, 1992), and has led to speculation that the plant RCR viruses and Circoviruses evolved from prokaryotic ssDNA replicons.
- the Rep proteins of all of these replicons is a sequence specific DNA binding protein with site specific cleavage and joining activity. In all cases, Rep, probably in association with host enzymes and possibly other viral proteins (Castellano et al., 1999) binds RF DNA at specific sequences and nicks the plus strand at a specific point.
- this specific point occurs within a conserved nonanucleotide sequence that occurs in the loop of a stem-loop structure in the viral intergenic region.
- the sequence of this nonanucleotide sequence is well conserved between all RCR viruses of plants and Circoviruses: in Geminiviruses the sequence of the nonanucleotide origin of RCR is: TAATATTAC (Palmer and Rybicki, 1998; Hanley-Bowdoin et al., 1999); in Nanoviruses and Circoviruses the sequence is TANTATTAC (Meehan et al., 1997; Hamel et al, 1998; Morozov et al., 1998).
- the consensus sequence for nonanucleotide origin of replication for these viruses is TANTATTAC.
- the Rep protein-mediated cleavage of this nonanucleotide sequence occurs between positions 7 and 8.
- the minimum amount of sequences that are required to be present on a DNA molecule so that it can be replicated in a reaction mediated by an RCR virus Rep protein are referred to as the RCR virus's minimal origin of replication (minimal ori).
- the minimal origin of replication is empirically determined, and virus species-specific; the term “minimal ori” is used interchangeably with “ori”, and “origin of replication”.
- the minimal ori includes: (1) the viral stem-loop structure with TANTATTAC nonanucleotide sequence present in the loop; (2) generally, at least 90 base pairs 5′ to the start of the stem-loop structure and (3) generally, at least 10, but in many cases up to 100 bases, 3′ of the end of the stem-loop structure.
- the minimal ori is always contained within the main viral intergenic region.
- the main viral intergenic region (IR) is a non-coding DNA sequence that contains the stem-loop structure, TANTATTAC sequence, binding sites for the Rep protein, the minimal ori, and promoter sequences for driving transcription of viral genes in both orientations relative to the IR.
- the minimal ori is contained within the common region, a sequence within the IR that is common to both DNA A and DNA B genetic components since the sequence is required to be present in cis for replication of both components.
- the minimal ori of Nanoviruses is contained within the viral common region, present on all genome components.
- the minimal ori is contained within the IR, and Mastreviruses the minimal ori is within the Long IR, but sequences in the Short IR are also required for replication.
- Circoviruses the minimal ori is contained within the IR, and constitutes the stem-loop structure, TANTATTAC sequence and sequences flanking the stem-loop structure (Mankertz et al., 1997).
- Replication of the plant RCR viruses and Circoviruses is entirely dependent upon a single virally-encoded replication initiator protein (Rep).
- Rep proteins of these viruses all contain three conserved protein motifs which are also present in replication intiator proteins from prokaryotic RCR replicons (Ilyina and Koonin, 1992; Palmer and Rybicki, 1998; Mankertz et al., 1998; Meehan et al., 1997; Bassami et al., 1998; Gibbs and Weiller, 1999).
- motif I FTLNN in Circoviruses, FTLNY in Nanoviruses and FLTYP in Geminiviruses
- Motif II GXXXHLQGF in Circoviruses, GXXHLQGF in Nanoviruses and GXXHLH(A/V)L in Geminiviruses
- Motif III [(V/N)(R/K)XYXXK in all three groups] contains a conserved tyrosine residue that participates in phosphodiester bond cleavage and in the covalent linkage of Rep to the 5′ terminus of the nicked nonanucleotide motif at the origin of replication.
- the Rep proteins of these three groups of viruses also contains a fourth conserved motif, a nucleotide triphosphate-binding domain (GX 4 GKXXWARX 28-29 DD) that may indicate that these proteins possess helicase activity.
- Rb Retinoblastoma protein
- Rb belongs to a protein family that controls cell cycle progression by sequestering transcription factors necessary for entry of the cell cycle into S phase.
- Mastrevirus-derived vectors that contain the two genes (Rep and RepA) necessary for replication of the viral genome and expression of the viral late genes, together with the viral origins of replication can replicate in cells derived from monocotyledonous cereal plants (Palmer et al., 1997; Palmer et al., 1999).
- One aspect of this invention is a polynucleotide capable of rolling circle replication in an eukaryotic host.
- One aspect of this invention is a rolling circle DNA replicon (RCR replicon) which replicates in a host eukaryotic cell.
- Another aspect of the invention is a RCR replicon which has a truncated replication cycle.
- Another aspect of the invention is a polynucleotide or a RCR replicon which has the following elements, present on the same DNA molecule:
- Another aspect of the invention is a RCR replicon, which replicates in a host eukaryotic cell, and which has a promoter that can function in a host eukaryotic cell type of interest.
- Another aspect of the invention is a RCR replicon, which replicates in a host eukaryotic cell, and which has a promoter that has some tissue- or cell-type specificity.
- Another aspect of the invention is a RCR replicon for a host cell, which has a promoter that is inducible by chemical or other environmental induction.
- Another aspect of the invention is a RCR replicon which replicates in a host eukaryotic cell, and which has sequences that are required to be present in cis on the rolling circle DNA replicon in order that the Rep protein might promote replication of the rolling circle DNA replicon, said sequences derived from the group consisting of Nanoviruses, Circoviruses, begomoviruses and curtoviruses.
- Another aspect of the invention is an RCR replicon which replicates in a host eukaryotic cell, and which has sequences that are required to be present in cis on the rolling circle DNA replicon in order that Rep might promote the replication of the rolling circle DNA replicon. These sequences are:
- Another aspect of the invention is an RCR replicon derived from a Mastrevirus which replicates in a host eukaryotic cell, and which has sequences that are required to be present in cis on the rolling circle DNA replicon in order that Rep might promote the replication of the rolling circle DNA replicon. These sequences are:
- Another aspect of the invention is a RCR replicon which replicates in a host eukaryotic cell, and which has an expression cassette that: (a) functions in expression of an ancillary protein, and (b) which is redundant with the Rep gene expression cassette.
- Another aspect of the invention is a RCR replicon which replicates in a host eukaryotic cell, and which has an expression cassette for expression of an ancillary protein and an expression cassette driving the expression of a Rep ORF which expression cassette is from a different virus species from the group of Geminiviruses, Circoviruses and Nanoviruses.
- Another aspect of the invention is a method of making a rolling circle DNA replicon which replicates in a host eukaryotic cell, comprising combining:
- Rep gene ORF from a virus belonging to the viral taxonomic families Geminiviridae, Circoviridae or genus Nanovirus, said Rep gene open reading frame is placed under transcriptional control of a promoter, which promoter is placed 5′ of the gene;
- RNA polymerase II promoter at least one expression cassette with an RNA polymerase II promoter, a multiple cloning site, and transcription termination and polyadenylation signals suitable for transcription of RNA molecules not normally intrinsic to a geminiviral, circoviral or nanoviral genome.
- Another aspect of the invention is a method of making a rolling circle DNA replicon which replicates in a host eukaryotic cell which replicon has a truncated replication cycle, comprising combining:
- Rep gene open reading frame from a virus belonging to the viral taxonomic families Geminiviridae, Circoviridae or genus Nanovirus, said Rep gene open reading frame is placed under transcriptional control of a promoter, which promoter is placed 5′ of the gene;
- Another aspect of the invention is a method of discovering the function of a gene or gene segment in a host eukaryotic cell, the method comprising:
- Another aspect of this invention is a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication, whereby the expression of a polypeptide or peptide encoded by the polynucleotide is capable of eliciting an immunization reaction in a host eukaryote.
- Another aspect of this invention is a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication, whereby the immunization reaction to the expression of a polypeptide or peptide encoded by the polynucleotide in the host eukaryote is potentiated by an inserted nucleic acid sequence encoding an ancillary immunogenic protein.
- Another aspect of this invention is a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication, whereby the polynucleotide is targeted to a host eukaryotic cell nucleus, which may allow increased expression of a peptide or polypeptide encoded by the polynucleotide which is capable of eliciting an immunization reaction in a host eukaryote.
- Another aspect of the invention is a method of making a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication, whereby the expression of a polypeptide or peptide encoded by the polynucleotide is capable of eliciting an immunization reaction in a host eukaryote.
- Another aspect of the invention is a method of making a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication, whereby the immunization reaction to the expression of a polypeptide or peptide encoded by the polynucleotide in the host eukaryote is potentiated by an inserted nucleic acid sequence encoding an ancillary immunogenic protein.
- Another aspect of the invention is a method of making a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication, whereby the polynucleotide is targeted to a host eukaryotic cell nucleus, which may allow increased expression of a peptide or polypeptide encoded by the polynucleotide which is capable of eliciting an immunization reaction in a host eukaryote.
- Another aspect of the invention is a method of immunizing a eukaryotic host, whereby a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication is administered to a eukaryotic host, whereby said polynucleotide is capable of expression of an inserted nucleic acid sequence, the expression of said nucleic acid sequence capable of eliciting an immunization in a eukaryotic host.
- FIG. 1 shows a restriction and genetic map of Construct 1.
- the PCV Rep Promoter, the PCV Rep Gene with restriction sites, the PCV Ori and cloning vector are shown.
- FIG. 2 shows a restriction and genetic map of Construct 2 with pCMV, pCV Rep gene, PCV Ori, and SV40 terminator with G418/kanamycin resistance gene.
- FIG. 3 shows the restriction map and genetic map of Construct 6 (p TracerSV40 from Invitrogen Corp).
- Construct 6 is the backbone of Construct 7. It contains the same GFP-zeocin expression cassette that is present in Construct 7.
- the NotI—NsiI fragment from Construct 1 was excised and inserted into Construct 6, replacing the SV40 promoter with the PCV fragment to generate Construct 7.
- the pTracerTM-SV40 vector is available from Invitrogen Corp. (Carlsbad, Calif.).
- FIG. 4 shows a Southern blot of DNA isolated from cells transfected with PCV-containing constructs and control DNAs. Two and a half micrograms of total DNA from transfected cells was digested with an excess of DpnI restriction enzyme and electrophoresed in a 1.0% TAE agarose gel and stained with eithidium bromide. DNA was transferred to a nylon membrane by capilliary transfer. The Southern blot was hybridized with a probe prepared from construct 1, which has homology with all input plasmid DNAs.
- Lanes 1 to 9 contain DNA isolated from COS-7 cells transfected with the following plasmids: Lanes 1 and 2 (Construct 1, DNA isolated at day 2 and day 4 post-transfection); Lanes 3 and 4 (Construct 2, day 2 and day 4 post-transfection); Lanes 5 and 6 (Construct 4, day 2 and day 4 post-transfection); Lanes 7 and 8 (construct 6, day 2 and day 4 post-transfection); Lanes 9 and 11 contain DNA isolated from untransfected cells; Lane 10 contained a DNA molecular weight marker.
- Lanes 12 to 19 contain DNA isolated from CHO-K1 cells transfected with the following plasmids: lanes 12 & 13 (Construct 7, day 2 and day 4 post-transfection); Lanes 14 and 15 (Construct 2, day 2 and day 4 post-transfection); Lanes 16 and 17 (Construct 4, day 2 and day 4 post-transfection); Lanes 18 and 19 (Construct 6, day 2 and day 4 post-transfection); and, Lane 20 contains DNA isolated from PCV-positive cell line PK-15, used as a positive control for DNA hybridization. The hybridizing bands run at a significantly lower position, due to the virus's small size (1.8-kb) relative to the plasmid DNAs (greater than 4.0-kb).
- FIG. 5 shows the DNA sequence of Construct 1 (SEQ ID NO:1): 5285 bp. Composition: 1216 A; 1277 C; 1514 G; 1278 T; 0 other. Percentage: 23% A; 24% C; 29% G; 24% T; 0% other. Molecular Weight (kDa): ssDNA: 1636.28; dsDNA: 3258.4.
- FIG. 6 shows the DNA sequence of Construct 7 (SEQ ID NO:2): 5650 bp. Composition: 1372 A; 1333 C; 1516 G; 1429 T; 0 other. Percentage: 24% A; 24% C; 27% G; 25% T; 0% other. Molecular Weight (kDa): ssDNA: 1747.85; dsDNA: 3483.2.
- FIG. 7 shows the structure of plasmid pCI-PCV1-Luc.
- the PCV1 StuI fragment, the CMV promoter, the intron, the inserted firefly luciferase gene (F.Luc), and the BglII, NheI and EcoRI restriction sites and their nucleotide positions are shown.
- FIG. 8 shows the DNA sequence of pCI-PCV1-Luc: 7460 bp (SEQ ID NO:7).
- FIG. 9 show the structure of plasmid pGL3-PCV1-Luc.
- the PCV1 StuI fragment, the SV40 promoter, the inserted firefly luciferase gene (F.Luc), and the BglII, NheI and EcoRI restriction sites and their nucleotide positions are shown.
- FIG. 10A shows firefly luciferase activity in CHO cells transfected with CMV based vectors with and without the PCV1 genome at different times post-transfection.
- the y-axis depicts firefly luciferase units.
- the x-axis depicts in number of days post-transfection.
- the open columns are CHO cells with pCI and the hatched columns are CHO cells with pCI-PCV1-Luc.
- FIG. 10B shows firefly luciferase activity in CHO cells transfected with SV40 based vectors with and without the PCV1 genome at different times post-transfection.
- the y-axis depicts firefly luciferase units.
- the x-axis depicts in number of days post-transfection.
- the open columns are CHO cells with pGL3 and the hatched columns are CHO cells with pGL3-PCV1-Luc.
- FIG. 11A shows the structure of plasmid pCI luciferase or Beta-galactosidase.
- the ampicillin resistance, ColEI ori fragment, the SV40 terminator sequence, the CMV promoter, the inserted firefly luciferase (F.Luc) or Beta-galactosidase ( ⁇ -gal) are shown.
- FIG. 11B shows the structure of the plasmid pCI-PCV1 Beta-galactosidase ( ⁇ -gal).
- the PCV1 StuI fragment, the CMV promoter, the ColE1 ori fragment, the SV40 terminator sequence, the CMV promoter, and the inserted Beta-galactosidase ( ⁇ -gal) are shown.
- FIG. 12A and 12B shows the upregulation of IgG antibodies from immunization experiments in mice with pCI or pCI-PCV plasmids inserted with either the F.Luc (FIG. 12A) or ⁇ -gal (FIG. 12B) gene.
- the y-axis depicts the level of antibodies against firefly luciferase or beta-galactosidase detected, averaged from five mice.
- the x-axis depicts the treatment regimen employed.
- FIG. 13A and 13B shows the differential upregulation of IgG isotypes after immunization with pCI or PCI-PCV plasmids inserted with either the F.Luc (FIG. 13A) or ⁇ -gal (FIG. 13B) gene in mice.
- the y-axis depicts levels of antibodies against firefly luciferase or beta-galactosidase detected, pooled and averaged from five mice.
- the x-axis depicts the treatment regimen employed.
- “Ancillary immunogenic protein” means a protein which assists in potentiating an immunization reaction by a peptide or polypeptide. By potentiating, the ancillary immunogenic protein increases the immunization reaction to the peptide or polypeptide by at least 1.5- fold, preferably 2-fold or more.
- BFDV means beak and feather disease virus.
- PCV porcine Circovirus
- CHO cells means Chinese Hamster Ovary cells
- COS-7 cells means Cercopithecus aethiops (African Green Monkey) kidney cells, transformed with simian virus 40 (SV40).
- D-MEM means Dulbecco's Modified Eagle Medium.
- DpnI is a restriction endonuclease which cuts only dam-methylated DNA.
- Buffer EC means DNA condensation buffer
- Effectene is a transfection reagent, sold by Qiagen, Inc. (Valencia, Calif.).
- ⁇ -gal means beta-galactosidase, which is an enzyme derived from bacterial beta-galactosidase gene.
- GFP-zeocin is a fusion gene made by combining the genes for green fluorescent protein and zeocin.
- GM-CSF means Granulocyte-Macrophage Colony Stimulating Factor. GM-CSF may increase the immunogenicity of antigens by stimulating antibody production mechanisms.
- G418 resistance gene is a selectable marker gene.
- Heterologous means not derived or obtained from the same species.
- Histone H1 means Histone H1 protein, which contains nuclear localization sequences and may assist in condensing nucleic acid molecules and targeting associated molecules to the cell nucleus.
- Histone H2A means Histone H2A protein, which contains nuclear localization sequences and may assist in condensing nucleic acid molecules and targeting associated molecules to the cell nucleus.
- Histone H2B means Histone H2B protein, which contains nuclear localization sequences and may assist in condensing nucleic acid molecules and targeting associated molecules to the cell nucleus.
- Histone H3 means Histone H3 protein, which contains nuclear localization sequences and may assist in condensing nucleic acid molecules and targeting associated molecules to the cell nucleus.
- Histone H4 means Histone H4 protein, which contains nuclear localization sequences and may assist in condensing nucleic acid molecules and targeting associated molecules to the cell nucleus.
- “HUBEC” cell lines means human brain endothelial cell lines.
- IgG means Immunoglobulin-G.
- COS-7 The African Green Monkey Kidney cell line COS-7 contains a chromosomally-integrated SV40 virus that has a gene for the Large T antigen protein which is required for SV40 virus replication.
- COS-7 cells contain a chromosomally-integrated SV40 Large T antigen-expresisng gene that is sufficient for episomal replication of SV40 ori-containing plasmids in this cell line.
- Intergenic sequences The non-coding DNA sequences, wherein the viral origin of replication is situated, that are located between open reading frames of RCR viruses.
- IL-1 beta means Interleukin 1-beta, a protein which may increase the immunogenicity of antigens by stimulating antibody production mechanisms.
- Lipofectamine is a cationic lipid used for transfecting mammalian cells. Life Technologies, Inc supplies Lipofectamine.
- F.Luc means firefly luciferase. It is an enzyme derived from the firefly luciferase gene.
- nonanucleotide The sequence TANTATTAC, where “N” may be A or C or G or T. This sequence is contained within the loop of the stem-loop structure present in the origin of replication of all RCR viruses in the group of Geminiviruses, Circoviruses, and Nanoviruses.
- neomycin/G418 resistance gene A gene that confers to the G418 antibiotic resistance.
- Nuclear targeting proteins means proteins which target proteins or associated molecules to the cell nucleus.
- NsiI-NotI fragment is a restriction fragment from Construct 1 that is used to create Construct 7.
- ORF means Open Reading Frame of a gene.
- Passive episomal replicon inheritance Process where a replicon present in the nucleus of a cell is passively inherited by both daughter cells upon cell division; the replicons are not actively sequestered into each daughter cell since they do not contain a classical centromere structure, but are nevertheless inherited due to their high copy number in the original undivided cell.
- PMVC cell lines means porcine microvascular cell lines.
- PCV genome means the porcine Circovirus genome.
- pCI means mammalian expression cloning vector from Promega.
- PCV rep The replication associated protein gene of porcine Circovirus (PCV).
- PCV RCR plasmid A plasmid that contains the sequences derived from porcine Circovirus which allow the plasmid to replicate by rolling circle replication in a host cell.
- PK-15 cells Porcine Kidney cell line PK-15 or PK(15). Cell line derived from kidney epithelial cells of Sus scrofa . The PK-15 cell line is persistently infected with Porcine Circovirus, type 1 (PCV).
- PCV Porcine Circovirus, type 1
- pCMV-Script A mammalian cell expression vector obtained from Stratagene, Inc. (La Jolla, Calif.).
- pCR®-Blunt II-TOPO® vector a vector useful for cloning of PCR products sold by Invitrogen Corp. (Carlsbad, Calif.).
- PK-15SwaA and PK-15SwaB are PCR primers used to amplify the PCV genome.
- pTracerTMSV40 a mammalian cell expression vector that contains an expression cassette for expression of a GFP-zeocin resistance gene; obtained from Invitrogen Corporation.
- QIAamp DNA Mini Kit A DNA extraction kit useful for extraction of total DNA from blood and mammalian cells, sold by Qiagen, Inc (Valencia, Calif.)
- Rep means virally-encoded replication initiator protein.
- Rep gene means a gene from an RCR virus belonging to the group of viruses from the taxonomic families Geminiviridae or Circoviridae or from the genus Nanovirus, which is essential for viral replication and which possesses a nicking and joining activity specific for the TANTATTAC sequence present in the stem loop sequence in the viral origin of replication and which is able to promote replication of an RCR virus.
- Rep gene ORF is an open reading frame associated with a Rep gene.
- Rep protein means replication-associated protein, a plasmid-encoded protein that functions as an activator of replication of that plasmid.
- Replicon means any DNA sequence or molecule which possesses a replication origin and which is therefore potentially capable of being replicated in a suitable cell.
- RCR replicons are replicons or polynucleotides that reproduce by the rolling circle DNA replication mechanism.
- Rolling circle DNA replication is a mechanism for the replication of DNA wherein one strand of a parent dsDNA molecule is nicked, and DNA synthesis proceeds by elongation of the 3′-OH end (with progressive displacement of the 5′-end), the unbroken circular strand acting as the template.
- the partly replicated intermediate is thus a double-stranded circular DNA with a single-stranded displaced tail.
- RCR rolling-circle mechanism of DNA replication
- Rolling circle DNA replicon means a replicon that reproduces by the rolling circle DNA replication mechanism.
- Rolling Circle Replicon Expression Vectors means a vector that reproduces by means of the rolling circle DNA replication method.
- RCR vector means Rolling Circle Replicon Expression Vectors.
- RCR virus means Rolling Circle Replicon Expression virus.
- ssDNA viruses means single stranded circular DNA virus.
- SV40 promoter means simian virus 40 early promoter.
- Simian virus 40 is a virus of the genus Polyomavirus. SV 40 was originally isolated from kidney cells of the rhesus monkey, and is common (in latent form) in such cells.
- VLPs means virus-like particles.
- This invention provides methods for designing and creating a polynucleotide or a rolling circle DNA replicon for an eukaryotic host with elements from RCR viruses from the viral taxonomic families Geminiviridae and Circoviridae, and from the genus Nanovirus that is as yet unassigned to a taxonomic family.
- RCR viruses from the viral taxonomic families Geminiviridae and Circoviridae, and from the genus Nanovirus that is as yet unassigned to a taxonomic family.
- the RCR replicons are introduced into eukaryotic host cells as double stranded DNA molecules, and thus the form in which the replicon initially enters the host is not usual for the parental virus that normally infects new host cells in an encapsidated ssDNA form.
- the viral “late” genes that are involved in sequestration of ssDNA, movement of viral DNA out of the host cell nucleus and assembly of viral DNA into virions are inactivated or deleted in the RCR replicons of this invention.
- the invention provides for a polynucleotide capable of rolling circle replication in an eukaryotic host, said polynucleotide comprising:
- a first Rep gene encoding a first Rep protein from a first virus selected from the group of genera of family Geminiviridae, genera of family Circoviridae, and genus Nanovirus, wherein said first Rep gene is capable of being expressed in said eukaryotic host;
- the polynucleotide may lack one or more genes of said first virus.
- the polynucleotide may further comprise a second Rep gene encoding a second Rep protein from a second virus selected from the group of genera of family Geminiviridae, genera of family Circoviridae, and genus Nanovirus, wherein said second Rep gene is heterologous to the first Rep gene; such a polynucleotide in the ssDNA form may form the RF form and replicate in an eukaryotic host that the first virus cannot replicate in.
- RCR replicons have the following elements, present on the same DNA molecule or polynucleotide:
- This Rep gene ORF is placed under transcriptional control of a promoter, placed 5′ of the gene.
- This promoter is chosen to be one that can function in a cell type of interest, and may additionally have some tissue, or cell-type specificity, or may be induced by the addition of a chemical or by other some other environmental induction.
- An expression cassette for expression of an ancillary protein that is capable of creating a cellular environment permissive for replication of the RCR replicon in the host cell of interest may be redundant with the Rep gene expression cassette described above, or may be an expression cassette driving the expression of a Rep ORF from a different virus species from the group of Geminiviruses, Circoviruses and Nanoviruses.
- the invention also provides for a method of constructing a rolling circle DNA replicon or a polynucleotide which replicates in a eukaryotic host, comprising: combining unto a single polynucleotide:
- the invention also provides for a polynucleotide which replicates in a eukaryotic host, wherein said polynucleotide encodes a peptide or polypeptide which is capable of eliciting an immunization reaction in a eukaryotic host.
- the immunization reaction may be potentiated by the co-expression of an ancillary immunogenic protein, which increases the immunogenicity of the expressed heterologous protein or peptide.
- the polynucleotide may also be targeted to the nucleus of an eukaryotic host cell and/or condensed for transport into the eukaryotic host cell's cytoplasm by coating the polynucleotide with proteins. This may increase the expression of the encoded peptide or polypeptide inserted within the polynucleotide, thereby increasing the immunization reaction within the eukaryotic host.
- the invention also provides for a method of constructing a polynucleotide which replicates in a eukaryotic host, wherein said polynucleotide encodes a peptide or polypeptide which is capable of eliciting an immunization reaction in a eukaryotic host.
- a peptide or polypeptide may be utilized, peptides or polypeptides which are capable of eliciting an immunization reaction are preferable for use in conjunction with the present invention.
- Surface or exposed antigens are examples of a peptide or polypeptide which may be desirable for such applications.
- full length proteins may also be utilized in immunotherapy applications. Detailed structural and functional information about many proteins of interest are well known; this information may be used by one of ordinary skill in the art so as to provide for immunogens having the desired properties allowing the immunological recognition of a protein of interest.
- the peptide or polypeptide which is capable of eliciting an immunization reaction may be native or non-native to the eukaryotic host.
- the peptide or polypeptide is non-native to the eukaryotic host, and expression of said peptide or polypeptide elicits an immunization reaction to the expressed foreign antigen, producing an immune response which protects the eukaryotic host against subsequent exposures to organisms which express said foreign antigen in vivo.
- foreign antigens include antigens present on microbial pathogens or other pathogenic organisms.
- the peptide or polypeptide may be native to the eukaryotic host, wherein the expression of said peptide or polypeptide elicits an immunization reaction to a self-antigen, producing an immune response which protects the eukaryotic host against overexpression or abnormal expression of self-proteins.
- self-proteins where an immune response against the self-protein antigen may be desired include autoimmune diseases, such as arthritis, lupus erythremastosus or other disease states where the production of antibodies against self-antigens may be useful in combating the disease.
- the immunization reaction may be potentiated by the co-expression of an ancillary protein, which may increase the immunogenicity of the expressed heterologous protein or peptide.
- a preferred embodiment would be the use of proteins known to stimulate an immunological response to the presence of an antigen.
- Granulocyte macrophage colony stimulating factor (GM-CSF) and IL 1-beta are examples of proteins known to enhance the immunological response to an antigen when administered in the presence of an antigen.
- GM-CSF Granulocyte macrophage colony stimulating factor
- IL 1-beta are examples of proteins known to enhance the immunological response to an antigen when administered in the presence of an antigen.
- the ancillary protein may be co-expressed with the protein immunogen of interest by inserting a polynucleotide sequence encoding the ancillary protein within the polynucleotide vector comprising the polynucleotide encoding the peptide or polypeptide of interest, nucleic acid elements necessary to express the peptide or polypeptide of interest and elements of a viral genome capable of rolling circle replication.
- the polynucleotide may also be condensed and targeted to the nucleus of a eukaryotic host cell by coating the polynucleotide with nuclear localization and polynucleotide condensing proteins. Coating the polynucleotide with nuclear localization proteins may have the effect of targeting the polynucleotide to the nuclear structure, transporting the nucleic acid to the site where transcription of the vector template takes place. This may increase the expression of the encoded peptide or polypeptide inserted within the polynucleotide by lessening the opportunities for enzymatic degradation within the cytoplasm of the cell, thereby increasing the available template for transcription and increasing the immunization reaction within the eukaryotic host.
- Condensation of polynucleotides prior to immunological presentation may also potentiate an immunization response by efficiently packaging the polynucleotide for entry into the host eukaryote's cell cytoplasm.
- proteins which are capable of condensing nucleic acids are the histone proteins H2A, H2B, H3, H4 and H1.
- Compounds, such as polylysine and other polycations have also been shown to condense nucleic acids.
- Other non-mammalian proteins, such as the mu protein of adenovirus have been used to condense nucleic acid.
- Other proteins known to those of ordinary skill in the art which condense or target nucleic acids to the cell nucleus may also be used in conjunction with the present invention.
- a preferred embodiment of the invention is the use of Histone H1 for condensing and targeting expressed peptides or polypeptides of the invention to the nucleus.
- Histone H1 both condenses and targets polynucleotides to the cell nucleus by the presence of nuclear localization signals located within the histone H1 protein sequence. Coating of polynucleotides with histone H1 in amounts which condense the polynucleotide sufficiently such that condensation is observable is desired, whereby one of ordinary skill in the art will appreciate that larger-sized polynucleotides, or larger quantities of polynucleotides, will require more histone H1 for condensation of said polynucleotide.
- Alternative embodiments of the invention include the use of other dual purpose proteins, such as histone H2A, histone H2B, histone H3 or histone H4. Histones H2A, H2B, H3 and H4, like histone H1, condense polynucleotides and contain nuclear localization signal sequences.
- combination of proteins above may be used in condensing and targeting polynucleotides provided for in the present invention.
- combinations of the different histone proteins may be used.
- proteins which either condense or target coated polynucleotides may also be used in the practice of the invention.
- the mu protein of adenovirus or polycations such as polylysine, may be used to condense the polynucleotide for entry into the cell cytoplasm in the absence of any nuclear targeting protein.
- the polynucleotide expressing the polypeptide or peptide of interest may be administered to the host eukaryote in a variety of ways.
- the polynucleotide is injected into the host eukaryote for uptake and expression in cells.
- the polynucleotide may be injected in the presence or absence of an adjuvant capable of increasing the immunization reaction of said host eukaryote.
- adjuvants include Freund's adjuvant, Ribi adjuvant system, keyhole limpet hemocyanin, cytokines (IL-2, IL-4, IL-10 and IL-12), GM-CSF, microorganisms (e.g.
- lactobacillus preformed immune-stimulating complexes (IsCOMs), block co-polymers, cholera toxin, lipopolysaccharides, aluminum salt adjuvants and nitrocellulose-adsorbed antigens.
- IsCOMs immune-stimulating complexes
- block co-polymers cholera toxin, lipopolysaccharides, aluminum salt adjuvants and nitrocellulose-adsorbed antigens.
- cholera toxin cholera toxin
- lipopolysaccharides lipopolysaccharides
- aluminum salt adjuvants aluminum salt adjuvants
- nitrocellulose-adsorbed antigens nitrocellulose-adsorbed antigens.
- Other adjuvants known to those of skill in the art may also be utilized in combination with the present invention.
- the polynucleotide may be modified to increase the uptake of said polynucleotide into cells. This may include encapsulating said polynucleotide with liposomal agents or other agents which increase the uptake of polynucleotides into host eukaryotic cells.
- genes and open reading frames, encoding proteins can be expressed by having a promoter operatively linked 5′ to the gene or open reading frame (i.e., the promoter is at the 5′ end of the gene or open reading frame).
- the promoter is capable of expressing the gene or open reading frame in the eukaryotic host.
- the eukaryotic host may be an eukaryotic cell.
- the eukaryotic cell may be an animal or plant cell.
- the animal cell is preferably an insect cell, bird cell, or mammalian cell.
- the mammalian cell may be a CHO cell, COS-7 cell or African Green Monkey kidney cell.
- the eukaryotic cell may be part of a cell culture, tissue, tissue culture, or organ.
- the eukaryotic cell may also be part of a whole organism.
- the whole organism can be a plant or an animal.
- the animal is preferably an insect, bird, or mammal.
- the polynucleotides and RCR replicons of the present invention can also further comprise a prokaryotic selectable and a prokaryotic origin of replication so that the polynucleotide and RCR replicon can be propagated and amplified in a prokaryotic cell.
- the polynucleotides and RCR replicons of the present invention can also further comprise an eukaryotic selectable and an eukaryotic origin of replication so that the polynucleotide and RCR replicon can be propagated and amplified in an eukaryotic cell using a non-rolling circle replication mechanism.
- RCR replicons are useful for discovery of the function of genes in eukaryotic hosts.
- RCR replicons are useful for inducing or enhancing a function or trait in a host eukaryotic cell.
- RCR replicons are useful for down-regulating a gene in a plant or in mammalian cells and thereby altering or even eliminating the function of that gene.
- RCR replicons have several properties that will lead to the development of superior gene expression vector properties.
- the vector initiates a rapid replication cycle leading to earlier gene expression than standard plasmid vectors. This, coupled with its self-amplifying properties, will lead to sustained expression for longer periods of time as compared with standard plasmid vectors. These properties, coupled with the amplification of substrates for transcription by host machinery, will lead to greater levels and longer enduring levels of target gene expression as compared to standard plasmid vectors.
- the amplification of 100-1000 copies of the genome per transfected cell will lead to passive inheritance of the RCR replicon infection into daughter cells.
- vectors can be used as an alternative cellular expression vectors and perform superior to plasmid or virus-based vectors based on the following criteria: rapid replication coupled with expression driven by promoter of choice (affecting expression levels or regulation); sustained replication and passive inheritance; unlimited cellular host range; minimal host metabolism perturbation; and, low levels of viral protein accumulation.
- RCR replicons should have sustained replication properties yielding greater levels of substrate for sustained targeted gene expression in transfected cells.
- the accumulation of targeted immunogen in transfected antigen presenting cells will be greater than standard plasmid vectors.
- Advantages over virus vectors include: Non-pathogenic, minimal host perturbation, broad cell host range, no transmission of infection to non-primarily transfected cells due to lack of packaging.
- RCR vectors will prove to be excellent gene sequence delivery tools for mammalian genomic approaches. Uses include the expression of homologous or heterologous genes in a library or targeted manner for the detection of gain of function cellular phenotypes and expression of antisense or sense gene fragments for the inhibition of targeted gene expression for assay of loss of function phenotypes.
- the sustained episomal expression in specific tissues or cells transfected by RCR replicon can allow the delivery of therapeutic or complementing (functional gene copy to complement function of a dysfunctional chromosomal copy) gene products to organisms or cells.
- the coupling of this activity with the ability of porcine or human brain endothelial cell lines to amplify hemopoetic stem cells without differentiation may prove to be a powerful tool to repopulate a body with new cells containing functional gene copies lacking in native organism.
- the coupling of these technologies will enable gene therapy to really work.
- RCR replicon could be designed to express the glucocerebrosidase gene and transfect the hemopoetic stem cells of a patient suffering from Gaucher's disease.
- the transfected stem cells Once the transfected stem cells are amplified, they can be re-infused into the patient to engraft in the bone marrow. Once there, the cells will produce a range of hemopoetic cells including Kupffer cells that will be in the liver and responsible for cerebroside lipid degradation.
- the cells derived from stem cells transfected with the RCR vector will inherit the RCR expression replicon and now express glucocerebrosidase in the liver and now degrade the accumulating lipids that the native system is incapable of doing.
- packaging of RCR replicons in papillomavirus virus-like particles (VLPs) would give the replicon a mucosal targeting tropism at the receptor binding step and inherent replication properties of RCR replicons will allow them to amplify and express sequences in mucosal cells. This approach will allow gene delivery for therapeutic end or immunogen delivery for generation of immune response in mucosal tissues (e.g.
- RCR replicon DNA into adenovirus VLPs would grant pleural tropisms for delivery of genes to advance therapeutic treatment of cystic fibrosis or other diseases.
- VLPs containing RCR replicons containing therapeutic genes DNAse gene
- complimenting gene correct copies of genes causing the disease.
- transient doses of replicons can transfect tissues and deliver therapeutic genes to reverse disease progression. With pleural cell shedding, new transfections with RCR replicons will be necessary to maintain the functional state of pleural tissue.
- RCR vectors containing homologous or heterologous genes could be delivered to embryos of animals and the organism developing from the transfected embryo would be at least chimeric for the RCR encoded gene function or possibly homogeneous for its expression.
- This tool could be applied to determine gene function in the context of developing or adult organisms.
- this could be the ultimate gene therapy tool for complimenting chromosomal defects in organisms, such that the derived organism would continue to have a chromosomal defect in a gene, but it would be complemented by the persistent, episomal gene copy in the RCR vector.
- a 1.8-kb fragment was amplified with these primers (not shown), with total nucleic acid (100 ng) isolated from PK-15 cells used as the template for PCR.
- the PCR fragment was cloned into the pCRblunt-II TOPO vector, according to the manufacturer's instructions (Invitrogen Corp.).
- construct 1 construct 1 (FIG. 1).
- Construct 1 (deposited to ATCC on Feb. 16, 2000, accession no. PTA-1351) thus contained the whole PCV genome cloned into the Invitrogen cloning vector pCR®-Blunt II-TOPO® (Invitrogen Corp.). This construct contained the PCV rep gene under the transcriptional control of its own promoter, and has the putative coat protein inactivated by insertion of the bacterial cloning vector.
- PCV genome was amplified by PCR from total DNA isolated from PK-15 cells, using the following primers; nucleotides identical to the published sequence of PCV are underlined:
- a PCR product of approximately 1.8-kb was obtained after PCR amplification using these primers (not shown). This product was cloned into the vector pCMVScript according to the instructions supplied by the manufacturer (Stratagene, La Jolla, Calif.). Construct 2, Shown in FIG. 2, contained the PCV genome cloned into the Stratagene vector, pCMV-Script, such that the Rep gene was placed under the control of the cytomegalovirus immediate-early promoter (CMV promoter), with the PCV rep transcription termination and polyadenylation signal and origin of replication sequences upstream.
- CMV promoter cytomegalovirus immediate-early promoter
- This construct also contained a neomycin/G418 resistance gene with simian virus 40 early promoter (SV40 promoter) and origin of replication sequences, and thus should replicate episomally in COS-7 cells that have an integrated SV40 Large T antigen-expressing gene.
- SV40 promoter simian virus 40 early promoter
- the SV40 origin of replication will not, however, be functional in other cell types.
- Construct 4 contains the PCV genome amplified with primers PK-15SwaA and PK-15SwaB and cloned into the pCMVScript vector according to the instructions supplied by the manufacturer (Stratagene). This construct therefore contains the PCV Rep gene under the control of its own promoter in a vector which carries an SV40 origin of replication and a selectable marker gene (G418 resistance).
- Construct 6 is the Invitrogen pTracerSV40 (FIG. 3), which expresses a GFP-zeocin resistance gene fusion, useful because one can evaluate the success of transfection experiments by visualization of green fluorescent protein expression.
- Construct 7 (deposited in ATCC on Feb. 16, 2000, accession no. PTA-1352) was derived by deleting the SV40 promoter and origin of replication sequences from pTracer SV40 (FIG. 3). The NsiI-NotI fragment from construct 1 (FIG. 1) was then cloned into the vector.
- This construct therefore contains the PCV Rep gene under the control of its own promoter, together with the PCV origin of replication sequences, in the context of a vector that contains a selectable and screenable marker gene (GFP-zeocin resistance), but which cannot replicate in COS-7 cells because the SV40 origin of replication sequences have been deleted.
- GFP-zeocin resistance selectable and screenable marker gene
- the RCR vectors described herein may be introduced into eukaryotic cells by one of many different protocols that are available for direct transfer of DNA into cells, including, but not limited to: electroporation, cationic lipid-mediated transfection, calcium phophate transfection, Agrobacterium-mediated transfection, microprojectile bombardment, polyethylene glycol-mediated transfection.
- electroporation cationic lipid-mediated transfection
- calcium phophate transfection calcium phophate transfection
- Agrobacterium-mediated transfection Agrobacterium-mediated transfection
- microprojectile bombardment polyethylene glycol-mediated transfection.
- Constructs 1, 2, 4 and 6 were transfected into Cercopithecus aethiops (African Green Monkey) kidney cells, transformed with SV40 (COS-7 cells), according to the protocol supplied by the manufacturer of the transfection reagent (Lipofectamine, manufactured by Life Technologies, Inc.) of COS 7 cells.
- Solution A For each transfection, 2 ⁇ g DNA (plasmid) diluted in 375 ⁇ l serum-free D-MEM (containing nonessential amino acids).
- Solution B For each transfection, 6 ⁇ l LIPOFECTAMINE Reagent was diluted in 375 ⁇ l serum-free D-MEM.
- the restricted DNA was run on a 1% TAE agarose gel, stained with ethidium bromide.
- the DNA was transferred to a nylon membrane (Roche Molecular Biochemicals) by the standard alkaline capillary transfer Southern blot protocol (Sambrook et al., 1989).
- the RCR replicon DNAs were detected by Southern hybridization with a probe made from Construct 1, nonradioactively labeled with Digoxygenin by the random priming method, according to the protocol supplied by the manufacturer (Roche Molecular Biochemicals).
- FIG. 5 shows the results of the Southern Hybridization experiment.
- the probe DNA contains sequences (the ColE1 origin of replication) in common with all of the input plasmids, and should therefore hybridize with all replicating, and input plasmid DNAs.
- Digested, low molecular weight Dpn I-digested fragments of the input DNAs may be visible (less than 1.0-kb, indicated in FIG. 4); all replicating DNAs will remain undigested. All plasmids with SV40 ori sequences (constructs 2, 4, and 6) replicated in the COS-7 cells, as expected.
- Construct 1 (lanes 1 and 2) also appeared to be replicating in the COS-7 cells, indicating that the PCV RCR replicon was functioning, and replicating the linked non-viral DNA sequences. This shows that the PCV-derived RCR replicon can replicate in African Green Monkey kidney cells.
- Constructs 2, 4, 6 and 7 were transfected into Chinese Hamster Ovary (CHO) cells. Cells transfected with constructs 6 and 7 exhibited green fluorescence, indicating expression of the GFP fusion protein. Total DNA was isolated from these cells at 2 and 4 days post-transfection. Southern blot analysis showed that constructs 2, 4 and 7, which contain PCV Rep and origin of replication sequences were all replicating in the transfected cells, whereas construct 6, an SV40 replicon, was not replicating. This shows that PCV RCR replicons can replicate, and express genes linked to the replicon, in Chinese Hamster Ovary (CHO) cells.
- Constructs 1, 6 and 7 were transfected into COS-7 cells.
- the transfections were performed according to the methods suggested by the manufacturer of the transfection reagent (Effectene, from Qiagen). We used 1 ⁇ g of DNA, 8 ⁇ l of enhancer and 25 ⁇ l of Effectene per transfection.
- construct 7 PCV RCR plasmid
- construct 6 with functional SV40 origin of replication sequences
- construct 6 expresses linked genes at a higher level, earlier than the cognate SV40 replicon.
- Constructs 1, 6 and 7 were also transfected into CHO cells, with similar results one day post-transfection.
- Construct 3 non-replicating plasmid DNA, no GFP gene (DNA control)
- Construct 6 non-replicating plasmid DNA, GFP-zeocin fusion gene, should express GFP in transfected cells.
- Construct 7 plasmid DNA with PCV replicon and the same GFP-zeocin fusion gene
- Construct 6 may be capable of replication. TABLE 1 Dish # Construct Day 3 Observations Day 7 Observations 1 3 No GFP, cells look No GFP, cells growing well healthy 2 6 4 to 5% GFP + ve, Small number of GFP + ve low level expression cells 3 7 10% GFP + ve, low to Very many GFP + ve cells, moderate expression both dim and bright 5 No DNA No GFP; cells growing No GFP well
- PCV1 genome was amplified by PCR using the primer PCV BglStu (AAAGATCTAGGCCTGTGTGCTCGACATTG) (SEQ ID NO:8) and PCVBamStu (AAGGATCCAGGCCTCGGCTATGCGCTCC) (SEQ ID NO:9). These primers amplified the circular PCV1 genome from nucleotide 1130, the point of a unique StuI site, and also introduced a BglII and BamHI restriction site at the 5′ and 3′ end respectively.
- PCV BglStu AAAGATCTAGGCCTGTGTGCTCGACATTG
- PCVBamStu AAGGATCCAGGCCTCGGCTATGCGCTCC
- the PCR product was than digested with the restriction enzymes BglII and BamHI and introduced into the commercially available plasmids pGL3 (Genbank accession no. U47298) to generate pCI-PCV1-Luc (FIG. 7) and into the pCI mammalian expression vector (Genbank accession no. U47119) linearized at nucleotide 1 by a BglII digestion to generate pGL3-PCV1-Luc (FIG. 9).
- the Luciferase gene was already contained in the pGL3 construct and was added as an EcoRI-NheI fragment into the pCI and pCI-PCV1 construct.
- the DNA sequence of pCI-PCV1-Luc with the inserted luciferase gene is shown in FIG. 8.
- DNA from each construct was purified using a DNA maxiprep kit (Qiagen) and used for cell transfection experiments.
- CHO-K1 cells Choinese hamster ovary epithelial cells ATCC no. CCL-61 were maintained in F12K HAM media (Gibco BRL) supplemented with 10% Fetal Bovine Sera. 24 hours before transfection, cells were trypsinized and dispensed into a 24 well plate at 1 ⁇ 10 4 cells/well.
- the cells were lysed at different time post-transfection by a 15 minutes room temperature incubation of the cells with the passive lysis buffer included in the Luciferase assay kit (Promega).
- the Luciferase expression units were measured with a Luminometer (TD-20/20, Turner designs) with an integration period of 10 sec. The results are shown as an average of the total Firefly luciferase (F. Luc) units measured.
- Plasmid pCI-PCV1-Luc was described previously (FIG. 7; SEQ ID NO: 7).
- pCI-PCV1- ⁇ gal was constructed essentially as for pCI-PCV1-Luc as mentioned above in Example 2. Briefly, the PCV1 genome was amplified as above by PCR. The PCR product was then digested with the restriction enzymes BglII and BamHI and introduced into the commercially available pCI mammalian expression vector (Genbank accession no. U47119) linearized at nucleotide 1 by a BglII digestion. The luciferase gene was added as an EcoRI-NheI fragment into the pCI construct (FIG. 11A).
- the ⁇ -galactosidase gene was added as an insert fragment in a recombinase reaction to converted Gateway (LifeTechnologies/Invitrogen) pCI and pCI-PCV1 constructs to make pCI- ⁇ gal (FIG. 11A) and pCI-PCV1- ⁇ gal (FIG. 11B), respectively.
- DNA from each construct was purified using an endotoxin free DNA maxiprep kit (Qiagen).
- the eluted DNA was ethanol precipitated and resuspended in normal saline.
- Purified antigen (either firefly luciferase or beta-galactosidase, dependent upon the expression vector utilized) was bound to the surface of polystyrene ELISA plates, and washed extensively with TBST (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.05% Tween-20) to remove any excess protein. The plates were blocked with blocking buffer (2% bovine serum albumin in 50 mM Tris, pH 8.0, 0.02% Tween-20 (a non-ionic detergent compound)) and incubated with serial dilutions of pooled sera from mice injected with various treatments.
- blocking buffer 2% bovine serum albumin in 50 mM Tris, pH 8.0, 0.02% Tween-20 (a non-ionic detergent compound)
- the plates were then washed extensively with TBST and probed with peroxidase-conjugated anti-mouse IgG antibody (Southern Biotech).
- the plates were developed with the addition of o-phenylenediamine in citrate buffer containing 0.012% H 2 O 2 and the absorbance measured at 405 nm using a plate spectrophotometer (Molecular Devices).
- FIGS. 12A and 12B show that substantially higher levels of IgG antibody induction can be seen in mice injected with immunogenic protein insert linked to a rolling circle replicon cassette (pcv) versus immunogenic protein inserted into a non-rolling circle replicon mammalian expression vector (pci).
- pcv rolling circle replicon cassette
- pci non-rolling circle replicon mammalian expression vector
- FIGS. 13A and 13B show that mice injected with PCV-linked expression cassettes have sustained levels of IgG2a and IgG2b induction, versus IgG1. This indicates a T-cell mediated antibody response, more indicative of a long-term memory immunogenic reaction.
- Plant cells contain a novel member of the retinoblastoma family of plant growth regulatory proteins. EMBO J. 15: 4900-4968.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
A rolling circle DNA replicon which replicates in a host eukaryotic cell and is capable of eliciting an immunization reaction is disclosed. The rolling circle DNA replicon comprises a Rep gene open reading frame placed under transcriptional control of a promoter, which is placed 5′ of the gene. Any sequences that are required to be present in cis on the rolling circle DNA replicon in order that the Rep protein might promote replication of the rolling circle DNA replicon and elicit an immunization reaction are included. At least one expression cassette with an RNA polymerase II promoter, a multiple cloning site, and transcription termination and polyadenylation signals suitable for transcription of RNA molecules not normally intrinsic to a geminiviral, circoviral or nanoviral genome is also included.
Description
- This invention is a continuation-in part application of U.S. patent application Ser. No. 09/505,477, filed Feb. 16, 2000.
- This invention relates to the field of single stranded circular DNA (ssDNA) viruses that infect eukaryotic hosts. In particular this invention relates to viral vectors having utility in vaccine therapy by expressing a heterologous peptide or polypeptide, which is capable of eliciting an immunization reaction in an eukaryotic host. Among the viruses in this field are the Geminiviruses, Nanoviruses, and Circoviruses.
- The circular single stranded DNA (ssDNA) viruses that infect eukaryotic hosts belong to several different virus taxonomic families (Van Regenmortel et al., 1999; Pringle, 1999). Circoviruses, Circinoviruses (Mushahwar et al., 1999), Gyroviruses and Parvoviruses infect vertebrates; some Parvoviruses (subfamily Densovirinae) also infect invertebrate hosts while Geminiviruses and viruses in the genus Nanovirus infect plants. There is recent evidence that the viruses currently classified as Circoviruses evolved from Nanoviruses and have switched from a plant to a vertebrate host (Gibbs and Weiller, 1999).
- Geminiviruses, Nanoviruses, and Circoviruses are all small circular ssDNA viruses that appear to be fairly closely related, in that they use the same basic rolling-circle mechanism of replication (RCR) and employ very similar life cycle strategies. Recently published data indicate that some plant RCR viruses—dicot-infecting begomoviruses and at least one Nanovirus genomic component even co-exist in some plant infections, with the geminiviral component of the infection presumably providing movement and propagation functions for the Nanovirus element, which functions as a sort of autonomously replicating satellite virus (Mansoor et al., 1999; Saunders and Stanley, 1999). The genomes of all of the plant RCR viruses, and related vertebrate-infecting Circoviruses are small, single-stranded and circular. The Geminiviruses have mono- or bi-partite genomes, with each genomic component between 2.5 and 3.0-kb. The Nanoviruses have multipartite genomes, generally with at least six, and up to ten, circular subgenomic ssDNAs, each of about 1.0-kb (Katul et al., 1998; Boevink et al., 1995; Bums et al., 1995). The Circoviruses PCV and BFDV have circular ssDNA genomes between 1.75- and 2.0-kb that encode at least two proteins. It is hypothesized that the PCV and BFDV genomes evolved after a recombination event between at least two Nanovirus subgenomic component and a vertebrate RNA-infecting virus which contributed a small portion of the new virus's replication associated protein.
- The life cycle of the plant RCR viruses and Circoviruses consists of the following stages, (reviewed by Palmer and Rybicki, 1998; Hanley-Bowdoin et al., 1999):
- 1. Entry of the ssDNA of the virus into the cytoplasm of the host cell as virion or ssDNA-protein complex.
- 2. Entry of the ssDNA into the host cell nucleus. This could be a passive process, or may be mediated by the viral capsid protein and/or movement proteins (Lazarowitz, 1999)
- 3. Conversion of the ssDNA genome into dsDNA presumably mediated by the host DNA repair system. This conversion of the virion DNA into circular dsDNA is required for replication of all RCR replicons, as the “replicative form” (RF) dsDNA intermediate is the template for transcription of the viral genome and therefore expression of viral proteins. The RF DNA becomes associated with host histone proteins and exists as a minichromosome-like structure in the nucleus of infected cells (Abouzid et al., 1988).
- 4. Transcription of “early” genes—those required for viral replication—by the host RNA polymerase II complex. Production of the viral replication-associated protein (Rep) then results in initiation of RCR of the RF DNA.
- 5. When the viral RF form reaches a certain critical concentration level in the host cell nucleus, viral transcription regulatory proteins down-regulate transcription of early genes, and stimulate transcription of the viral “late” genes, including the structural protein(s) and proteins required for dissemination of the viral genome.
- 6. The “late” viral proteins sequester ssDNA produced during replication, move it out of the cell nucleus and ultimately out of the infected cell, either as a ssDNA-protein complex, or as assembled virions.
- The plant RCR viruses and their relatives the Circoviruses all encode a replication-associated protein (Rep) that is absolutely required for replication of the virus genomic components (Mankertz et al., 1998; Elmer et al., 1988; Hafner et al., 1997). All other proteins are dispensable for replication, and may be involved in such functions as: movement from cell-to-cell; encapsidation of the virus genome; shuttling of the virus genome between the nucleus and the cytoplasm of infected cells; transcriptional activation or repression of genes in the host or viral genome. The Rep proteins of these RCR viruses bear some distant relationship to replication initiator proteins of some ssDNA plasmids, as well as of members of the Microviridae, such as coliphage phiX174 (Ilyina and Koonin, 1992), and has led to speculation that the plant RCR viruses and Circoviruses evolved from prokaryotic ssDNA replicons. The Rep proteins of all of these replicons is a sequence specific DNA binding protein with site specific cleavage and joining activity. In all cases, Rep, probably in association with host enzymes and possibly other viral proteins (Castellano et al., 1999) binds RF DNA at specific sequences and nicks the plus strand at a specific point. In the plant RCR viruses and Circoviruses this specific point occurs within a conserved nonanucleotide sequence that occurs in the loop of a stem-loop structure in the viral intergenic region. The sequence of this nonanucleotide sequence is well conserved between all RCR viruses of plants and Circoviruses: in Geminiviruses the sequence of the nonanucleotide origin of RCR is: TAATATTAC (Palmer and Rybicki, 1998; Hanley-Bowdoin et al., 1999); in Nanoviruses and Circoviruses the sequence is TANTATTAC (Meehan et al., 1997; Hamel et al, 1998; Morozov et al., 1998). Thus, the consensus sequence for nonanucleotide origin of replication for these viruses is TANTATTAC. The Rep protein-mediated cleavage of this nonanucleotide sequence occurs between
7 and 8. The minimum amount of sequences that are required to be present on a DNA molecule so that it can be replicated in a reaction mediated by an RCR virus Rep protein are referred to as the RCR virus's minimal origin of replication (minimal ori). The minimal origin of replication is empirically determined, and virus species-specific; the term “minimal ori” is used interchangeably with “ori”, and “origin of replication”. In general, the minimal ori includes: (1) the viral stem-loop structure with TANTATTAC nonanucleotide sequence present in the loop; (2) generally, at least 90positions base pairs 5′ to the start of the stem-loop structure and (3) generally, at least 10, but in many cases up to 100 bases, 3′ of the end of the stem-loop structure. The minimal ori is always contained within the main viral intergenic region. The main viral intergenic region (IR) is a non-coding DNA sequence that contains the stem-loop structure, TANTATTAC sequence, binding sites for the Rep protein, the minimal ori, and promoter sequences for driving transcription of viral genes in both orientations relative to the IR. In Geminiviruses of genus Begomovirus, the minimal ori is contained within the common region, a sequence within the IR that is common to both DNA A and DNA B genetic components since the sequence is required to be present in cis for replication of both components. Likewise, the minimal ori of Nanoviruses is contained within the viral common region, present on all genome components. In Curtoviruses, the minimal ori is contained within the IR, and Mastreviruses the minimal ori is within the Long IR, but sequences in the Short IR are also required for replication. In Circoviruses the minimal ori is contained within the IR, and constitutes the stem-loop structure, TANTATTAC sequence and sequences flanking the stem-loop structure (Mankertz et al., 1997). - Replication of the plant RCR viruses and Circoviruses is entirely dependent upon a single virally-encoded replication initiator protein (Rep). Rep proteins of these viruses all contain three conserved protein motifs which are also present in replication intiator proteins from prokaryotic RCR replicons (Ilyina and Koonin, 1992; Palmer and Rybicki, 1998; Mankertz et al., 1998; Meehan et al., 1997; Bassami et al., 1998; Gibbs and Weiller, 1999). The function of motif I (FTLNN in Circoviruses, FTLNY in Nanoviruses and FLTYP in Geminiviruses), is unknown; Motif II (GXXXHLQGF in Circoviruses, GXXHLQGF in Nanoviruses and GXXHLH(A/V)L in Geminiviruses) is probably involved in metal ion coordination. Motif III [(V/N)(R/K)XYXXK in all three groups] contains a conserved tyrosine residue that participates in phosphodiester bond cleavage and in the covalent linkage of Rep to the 5′ terminus of the nicked nonanucleotide motif at the origin of replication. The Rep proteins of these three groups of viruses also contains a fourth conserved motif, a nucleotide triphosphate-binding domain (GX 4GKXXWARX28-29DD) that may indicate that these proteins possess helicase activity.
- Apart from their functions in RCR, Rep proteins and ancillary replication-associated “early” gene products also seem to have transcription factor activity, and are capable of controlling viral and perhaps also host gene expression. Geminivirus Rep proteins can interact with both mammalian and plant Retinoblastoma protein (Rb) homologues (Xie et al., 1995; 1996; Grafi et al., 1996; Xie et al., 1996; Ach et al., 1997). Rb belongs to a protein family that controls cell cycle progression by sequestering transcription factors necessary for entry of the cell cycle into S phase. There is also evidence that infection of plants with Geminiviruses such as tomato golden mosaic begomovirus (TGMV) is associated with an increase in the levels of proliferating cell nuclear antigen (PCNA), a DNA polymerase processivity factor required in cellular DNA replication (Nagar et al., 1995). These viruses thus appear to possess the ability to modify the host environment to one that allows viral DNA replication. At present, the exact mechanisms by which these viruses modify the host cell cycle are unclear. This could be achieved exclusively through interaction of viral proteins (such as Rep) with host proteins (such as Rb). It is also possible that transcriptional activation or repression of host genes mediated by the transcription factor activity of viral protein(s) may also be involved in resetting the cellular environment to one that is permissive for viral replication.
- Of this group of closely related RCR viruses, only Geminiviruses have been exploited as gene vectors in plant cells. Recombinant viral vectors that have a foreign gene inserted in place of a begomovirus coat protein can sometimes infect permissive dicotyledonous plant hosts and move systemically in infected plants (Ward et al., 1988; Hayes et al., 1988; Sudharsha et al., 1998). Vectors that contain part of the begomoviral genome, including at least three open reading frames (AC1 [=Rep], AC2 and AC3) driven by their own promoters, and containing the viral origin of replication, can replicate in transfected dicotyledonous plant cells (Palmer et al., 1997). Mastrevirus-derived vectors that contain the two genes (Rep and RepA) necessary for replication of the viral genome and expression of the viral late genes, together with the viral origins of replication, can replicate in cells derived from monocotyledonous cereal plants (Palmer et al., 1997; Palmer et al., 1999).
- One aspect of this invention is a polynucleotide capable of rolling circle replication in an eukaryotic host. One aspect of this invention is a rolling circle DNA replicon (RCR replicon) which replicates in a host eukaryotic cell. Another aspect of the invention is a RCR replicon which has a truncated replication cycle. Another aspect of the invention is a polynucleotide or a RCR replicon which has the following elements, present on the same DNA molecule: A Rep gene open reading frame (ORF) from a virus belonging to the viral taxonomic families Geminiviridae, Circoviridae or genus Nanovirus, said Rep gene open reading frame is placed under transcriptional control of a promoter, which promoter is placed 5′ of the gene; any sequences that are required to be present in cis on the rolling circle DNA replicon in order that the Rep protein might promote replication of the rolling circle DNA replicon; an expression cassette for expression of an ancillary protein that is capable of creating a cellular environment permissive for replication of the rolling circle DNA replicon in the host cell of interest; and at least one expression cassette with an RNA polymerase II promoter, a multiple cloning site, and transcription termination and polyadenylation signals suitable for transcription of RNA molecules not normally intrinsic to a geminiviral, circoviral or nanoviral genome.
- Another aspect of the invention is a RCR replicon, which replicates in a host eukaryotic cell, and which has a promoter that can function in a host eukaryotic cell type of interest.
- Another aspect of the invention is a RCR replicon, which replicates in a host eukaryotic cell, and which has a promoter that has some tissue- or cell-type specificity.
- Another aspect of the invention is a RCR replicon for a host cell, which has a promoter that is inducible by chemical or other environmental induction.
- Another aspect of the invention is a RCR replicon which replicates in a host eukaryotic cell, and which has sequences that are required to be present in cis on the rolling circle DNA replicon in order that the Rep protein might promote replication of the rolling circle DNA replicon, said sequences derived from the group consisting of Nanoviruses, Circoviruses, begomoviruses and curtoviruses.
- Another aspect of the invention is an RCR replicon which replicates in a host eukaryotic cell, and which has sequences that are required to be present in cis on the rolling circle DNA replicon in order that Rep might promote the replication of the rolling circle DNA replicon. These sequences are:
- (a) the origin of replication from the same virus from which the Rep protein gene was derived; said origin of replication containing the conserved stem-loop structure;
- (b) a TANTATTAC sequence, where “N” may be A or C or G or T;
- (c) sufficient stem-loop structure flanking sequences to provide the minimal origin of replication for the virus.
- Another aspect of the invention is an RCR replicon derived from a Mastrevirus which replicates in a host eukaryotic cell, and which has sequences that are required to be present in cis on the rolling circle DNA replicon in order that Rep might promote the replication of the rolling circle DNA replicon. These sequences are:
- (a) the origin of replication from the same virus from which the Rep protein gene was derived; said origin of replication containing the conserved stem-loop structure;
- (b) a TANTATTAC sequence, where “N” may be A or C or G or T;
- (c) sufficient stem-loop structure flanking sequences to provide the minimal origin of replication for the virus;
- (d) the Short intergenic region (SIR) derived from the same Mastrevirus that provided the Rep protein gene.
- Another aspect of the invention is a RCR replicon which replicates in a host eukaryotic cell, and which has an expression cassette that: (a) functions in expression of an ancillary protein, and (b) which is redundant with the Rep gene expression cassette.
- Another aspect of the invention is a RCR replicon which replicates in a host eukaryotic cell, and which has an expression cassette for expression of an ancillary protein and an expression cassette driving the expression of a Rep ORF which expression cassette is from a different virus species from the group of Geminiviruses, Circoviruses and Nanoviruses.
- Another aspect of the invention is a method of making a rolling circle DNA replicon which replicates in a host eukaryotic cell, comprising combining:
- (a) a Rep gene ORF from a virus belonging to the viral taxonomic families Geminiviridae, Circoviridae or genus Nanovirus, said Rep gene open reading frame is placed under transcriptional control of a promoter, which promoter is placed 5′ of the gene;
- (b) any sequences that are required to be present in cis on the rolling circle DNA replicon in order that the Rep protein might promote replication of the rolling circle DNA replicon;
- (c) an expression cassette for expression of an ancillary protein that is capable of creating a cellular environment permissive for replication of the rolling circle DNA replicon in the host cell of interest; and
- (d) at least one expression cassette with an RNA polymerase II promoter, a multiple cloning site, and transcription termination and polyadenylation signals suitable for transcription of RNA molecules not normally intrinsic to a geminiviral, circoviral or nanoviral genome.
- Another aspect of the invention is a method of making a rolling circle DNA replicon which replicates in a host eukaryotic cell which replicon has a truncated replication cycle, comprising combining:
- (a) a Rep gene open reading frame from a virus belonging to the viral taxonomic families Geminiviridae, Circoviridae or genus Nanovirus, said Rep gene open reading frame is placed under transcriptional control of a promoter, which promoter is placed 5′ of the gene;
- (b) any sequences that are required to be present in cis on the rolling circle DNA replicon in order that the Rep protein might promote replication of the rolling circle DNA replicon;
- (c) an expression cassette for expression of an ancillary protein that is capable of creating a cellular environment permissive for replication of the rolling circle DNA replicon in the host cell of interest; and
- (d) at least one expression cassette with an RNA polymerase II promoter, a multiple cloning site, and transcription termination and polyadenylation signals suitable for transcription of RNA molecules not normally intrinsic to a geminiviral, circoviral or nanoviral genome.
- Another aspect of the invention is a method of discovering the function of a gene or gene segment in a host eukaryotic cell, the method comprising:
- (a) inserting a gene or gene segment into the multiple cloning site of the above-mentioned expression cassette in the RCR vector, such that the RNA II polymerase promoter may promote the transcription of the inserted gene or gene segment;
- (b) inserting the rolling circle DNA replicon into a host eukaryotic cell; and
- (c) discovering a biochemical or phenotypic change in the host eukaryotic cell.
- Another aspect of this invention is a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication, whereby the expression of a polypeptide or peptide encoded by the polynucleotide is capable of eliciting an immunization reaction in a host eukaryote. Another aspect of this invention is a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication, whereby the immunization reaction to the expression of a polypeptide or peptide encoded by the polynucleotide in the host eukaryote is potentiated by an inserted nucleic acid sequence encoding an ancillary immunogenic protein. Another aspect of this invention is a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication, whereby the polynucleotide is targeted to a host eukaryotic cell nucleus, which may allow increased expression of a peptide or polypeptide encoded by the polynucleotide which is capable of eliciting an immunization reaction in a host eukaryote.
- Another aspect of the invention is a method of making a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication, whereby the expression of a polypeptide or peptide encoded by the polynucleotide is capable of eliciting an immunization reaction in a host eukaryote.
- Another aspect of the invention is a method of making a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication, whereby the immunization reaction to the expression of a polypeptide or peptide encoded by the polynucleotide in the host eukaryote is potentiated by an inserted nucleic acid sequence encoding an ancillary immunogenic protein.
- Another aspect of the invention is a method of making a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication, whereby the polynucleotide is targeted to a host eukaryotic cell nucleus, which may allow increased expression of a peptide or polypeptide encoded by the polynucleotide which is capable of eliciting an immunization reaction in a host eukaryote.
- Another aspect of the invention is a method of immunizing a eukaryotic host, whereby a polynucleotide comprising elements of a viral genome which is capable of rolling circle replication is administered to a eukaryotic host, whereby said polynucleotide is capable of expression of an inserted nucleic acid sequence, the expression of said nucleic acid sequence capable of eliciting an immunization in a eukaryotic host.
- FIG. 1 shows a restriction and genetic map of
Construct 1. The PCV Rep Promoter, the PCV Rep Gene with restriction sites, the PCV Ori and cloning vector are shown. - FIG. 2 shows a restriction and genetic map of
Construct 2 with pCMV, pCV Rep gene, PCV Ori, and SV40 terminator with G418/kanamycin resistance gene. - FIG. 3 shows the restriction map and genetic map of Construct 6 (p TracerSV40 from Invitrogen Corp).
Construct 6 is the backbone ofConstruct 7. It contains the same GFP-zeocin expression cassette that is present inConstruct 7. The NotI—NsiI fragment fromConstruct 1 was excised and inserted intoConstruct 6, replacing the SV40 promoter with the PCV fragment to generateConstruct 7. The pTracer™-SV40 vector is available from Invitrogen Corp. (Carlsbad, Calif.). - FIG. 4 shows a Southern blot of DNA isolated from cells transfected with PCV-containing constructs and control DNAs. Two and a half micrograms of total DNA from transfected cells was digested with an excess of DpnI restriction enzyme and electrophoresed in a 1.0% TAE agarose gel and stained with eithidium bromide. DNA was transferred to a nylon membrane by capilliary transfer. The Southern blot was hybridized with a probe prepared from
construct 1, which has homology with all input plasmid DNAs.Lanes 1 to 9 contain DNA isolated from COS-7 cells transfected with the following plasmids:Lanes 1 and 2 (Construct 1, DNA isolated atday 2 andday 4 post-transfection);Lanes 3 and 4 (Construct 2,day 2 andday 4 post-transfection);Lanes 5 and 6 (Construct 4,day 2 andday 4 post-transfection);Lanes 7 and 8 (construct 6,day 2 andday 4 post-transfection); 9 and 11 contain DNA isolated from untransfected cells;Lanes Lane 10 contained a DNA molecular weight marker.Lanes 12 to 19 contain DNA isolated from CHO-K1 cells transfected with the following plasmids:lanes 12 & 13 (Construct 7,day 2 andday 4 post-transfection);Lanes 14 and 15 (Construct 2,day 2 andday 4 post-transfection);Lanes 16 and 17 (Construct 4,day 2 andday 4 post-transfection);Lanes 18 and 19 (Construct 6,day 2 andday 4 post-transfection); and,Lane 20 contains DNA isolated from PCV-positive cell line PK-15, used as a positive control for DNA hybridization. The hybridizing bands run at a significantly lower position, due to the virus's small size (1.8-kb) relative to the plasmid DNAs (greater than 4.0-kb). - FIG. 5 shows the DNA sequence of Construct 1 (SEQ ID NO:1): 5285 bp. Composition: 1216 A; 1277 C; 1514 G; 1278 T; 0 other. Percentage: 23% A; 24% C; 29% G; 24% T; 0% other. Molecular Weight (kDa): ssDNA: 1636.28; dsDNA: 3258.4.
- FIG. 6 shows the DNA sequence of Construct 7 (SEQ ID NO:2): 5650 bp. Composition: 1372 A; 1333 C; 1516 G; 1429 T; 0 other. Percentage: 24% A; 24% C; 27% G; 25% T; 0% other. Molecular Weight (kDa): ssDNA: 1747.85; dsDNA: 3483.2.
- FIG. 7 shows the structure of plasmid pCI-PCV1-Luc. The PCV1 StuI fragment, the CMV promoter, the intron, the inserted firefly luciferase gene (F.Luc), and the BglII, NheI and EcoRI restriction sites and their nucleotide positions are shown.
- FIG. 8 shows the DNA sequence of pCI-PCV1-Luc: 7460 bp (SEQ ID NO:7).
- FIG. 9 show the structure of plasmid pGL3-PCV1-Luc. The PCV1 StuI fragment, the SV40 promoter, the inserted firefly luciferase gene (F.Luc), and the BglII, NheI and EcoRI restriction sites and their nucleotide positions are shown.
- FIG. 10A shows firefly luciferase activity in CHO cells transfected with CMV based vectors with and without the PCV1 genome at different times post-transfection. The y-axis depicts firefly luciferase units. The x-axis depicts in number of days post-transfection. The open columns are CHO cells with pCI and the hatched columns are CHO cells with pCI-PCV1-Luc. FIG. 10B shows firefly luciferase activity in CHO cells transfected with SV40 based vectors with and without the PCV1 genome at different times post-transfection. The y-axis depicts firefly luciferase units. The x-axis depicts in number of days post-transfection. The open columns are CHO cells with pGL3 and the hatched columns are CHO cells with pGL3-PCV1-Luc.
- FIG. 11A shows the structure of plasmid pCI luciferase or Beta-galactosidase. The ampicillin resistance, ColEI ori fragment, the SV40 terminator sequence, the CMV promoter, the inserted firefly luciferase (F.Luc) or Beta-galactosidase (β-gal) are shown. FIG. 11B shows the structure of the plasmid pCI-PCV1 Beta-galactosidase (β-gal). The PCV1 StuI fragment, the CMV promoter, the ColE1 ori fragment, the SV40 terminator sequence, the CMV promoter, and the inserted Beta-galactosidase (β-gal) are shown.
- FIG. 12A and 12B shows the upregulation of IgG antibodies from immunization experiments in mice with pCI or pCI-PCV plasmids inserted with either the F.Luc (FIG. 12A) or β-gal (FIG. 12B) gene. The y-axis depicts the level of antibodies against firefly luciferase or beta-galactosidase detected, averaged from five mice. The x-axis depicts the treatment regimen employed.
- FIG. 13A and 13B shows the differential upregulation of IgG isotypes after immunization with pCI or PCI-PCV plasmids inserted with either the F.Luc (FIG. 13A) or β-gal (FIG. 13B) gene in mice. The y-axis depicts levels of antibodies against firefly luciferase or beta-galactosidase detected, pooled and averaged from five mice. The x-axis depicts the treatment regimen employed.
- In order to facilitate understanding of the invention, certain terms used throughout are herein defined.
- “Ancillary immunogenic protein” means a protein which assists in potentiating an immunization reaction by a peptide or polypeptide. By potentiating, the ancillary immunogenic protein increases the immunization reaction to the peptide or polypeptide by at least 1.5- fold, preferably 2-fold or more.
- “BFDV” means beak and feather disease virus.
- “PCV” means porcine Circovirus.
- “CHO cells” means Chinese Hamster Ovary cells
- “COS-7 cells” means Cercopithecus aethiops (African Green Monkey) kidney cells, transformed with simian virus 40 (SV40).
- “D-MEM” means Dulbecco's Modified Eagle Medium.
- “DpnI” is a restriction endonuclease which cuts only dam-methylated DNA.
- “Buffer EC” means DNA condensation buffer.
- “Effectene” is a transfection reagent, sold by Qiagen, Inc. (Valencia, Calif.).
- “β-gal” means beta-galactosidase, which is an enzyme derived from bacterial beta-galactosidase gene.
- “GFP-zeocin” is a fusion gene made by combining the genes for green fluorescent protein and zeocin.
- “GM-CSF” means Granulocyte-Macrophage Colony Stimulating Factor. GM-CSF may increase the immunogenicity of antigens by stimulating antibody production mechanisms.
- “G418 resistance gene” is a selectable marker gene.
- “Heterologous” means not derived or obtained from the same species.
- “Histone H1” means Histone H1 protein, which contains nuclear localization sequences and may assist in condensing nucleic acid molecules and targeting associated molecules to the cell nucleus.
- “Histone H2A” means Histone H2A protein, which contains nuclear localization sequences and may assist in condensing nucleic acid molecules and targeting associated molecules to the cell nucleus.
- “Histone H2B” means Histone H2B protein, which contains nuclear localization sequences and may assist in condensing nucleic acid molecules and targeting associated molecules to the cell nucleus.
- “Histone H3” means Histone H3 protein, which contains nuclear localization sequences and may assist in condensing nucleic acid molecules and targeting associated molecules to the cell nucleus.
- “Histone H4” means Histone H4 protein, which contains nuclear localization sequences and may assist in condensing nucleic acid molecules and targeting associated molecules to the cell nucleus.
- “HUBEC” cell lines means human brain endothelial cell lines.
- “IgG” means Immunoglobulin-G.
- “Integrated SV40 Large T antigen-expressing gene”: The African Green Monkey Kidney cell line COS-7 contains a chromosomally-integrated SV40 virus that has a gene for the Large T antigen protein which is required for SV40 virus replication. Thus, COS-7 cells contain a chromosomally-integrated SV40 Large T antigen-expresisng gene that is sufficient for episomal replication of SV40 ori-containing plasmids in this cell line.
- “Intergenic sequences”: The non-coding DNA sequences, wherein the viral origin of replication is situated, that are located between open reading frames of RCR viruses.
- “IL-1 beta” means Interleukin 1-beta, a protein which may increase the immunogenicity of antigens by stimulating antibody production mechanisms.
- “Lipofectamine” is a cationic lipid used for transfecting mammalian cells. Life Technologies, Inc supplies Lipofectamine.
- “F.Luc” means firefly luciferase. It is an enzyme derived from the firefly luciferase gene.
- “nonanucleotide”: The sequence TANTATTAC, where “N” may be A or C or G or T. This sequence is contained within the loop of the stem-loop structure present in the origin of replication of all RCR viruses in the group of Geminiviruses, Circoviruses, and Nanoviruses.
- “neomycin/G418 resistance gene:” A gene that confers to the G418 antibiotic resistance.
- “Nuclear targeting proteins” means proteins which target proteins or associated molecules to the cell nucleus.
- “NsiI-NotI fragment” is a restriction fragment from
Construct 1 that is used to createConstruct 7. - “ORF” means Open Reading Frame of a gene.
- “Passive episomal replicon inheritance:” Process where a replicon present in the nucleus of a cell is passively inherited by both daughter cells upon cell division; the replicons are not actively sequestered into each daughter cell since they do not contain a classical centromere structure, but are nevertheless inherited due to their high copy number in the original undivided cell.
- “PMVC cell lines” means porcine microvascular cell lines.
- “PCV genome” means the porcine Circovirus genome.
- “pCI” means mammalian expression cloning vector from Promega.
- “PCV rep”: The replication associated protein gene of porcine Circovirus (PCV).
- “PCV RCR plasmid” A plasmid that contains the sequences derived from porcine Circovirus which allow the plasmid to replicate by rolling circle replication in a host cell.
- “PK-15 cells”: Porcine Kidney cell line PK-15 or PK(15). Cell line derived from kidney epithelial cells of Sus scrofa. The PK-15 cell line is persistently infected with Porcine Circovirus, type 1 (PCV).
- “pCMV-Script”: A mammalian cell expression vector obtained from Stratagene, Inc. (La Jolla, Calif.).
- “pCR®-Blunt II-TOPO® vector”: a vector useful for cloning of PCR products sold by Invitrogen Corp. (Carlsbad, Calif.).
- “PK-15SwaA and PK-15SwaB” are PCR primers used to amplify the PCV genome.
- “pTracer™SV40”: a mammalian cell expression vector that contains an expression cassette for expression of a GFP-zeocin resistance gene; obtained from Invitrogen Corporation.
- “QIAamp DNA Mini Kit” A DNA extraction kit useful for extraction of total DNA from blood and mammalian cells, sold by Qiagen, Inc (Valencia, Calif.)
- “Rep” means virally-encoded replication initiator protein.
- “Rep gene” means a gene from an RCR virus belonging to the group of viruses from the taxonomic families Geminiviridae or Circoviridae or from the genus Nanovirus, which is essential for viral replication and which possesses a nicking and joining activity specific for the TANTATTAC sequence present in the stem loop sequence in the viral origin of replication and which is able to promote replication of an RCR virus.
- “Rep gene ORF” is an open reading frame associated with a Rep gene.
- “Rep protein” means replication-associated protein, a plasmid-encoded protein that functions as an activator of replication of that plasmid.
- “Replicon” means any DNA sequence or molecule which possesses a replication origin and which is therefore potentially capable of being replicated in a suitable cell.
- “RCR replicons” are replicons or polynucleotides that reproduce by the rolling circle DNA replication mechanism.
- “Rolling circle DNA replication” is a mechanism for the replication of DNA wherein one strand of a parent dsDNA molecule is nicked, and DNA synthesis proceeds by elongation of the 3′-OH end (with progressive displacement of the 5′-end), the unbroken circular strand acting as the template. The partly replicated intermediate is thus a double-stranded circular DNA with a single-stranded displaced tail.
- “RCR” means rolling-circle mechanism of DNA replication.
- “Rolling circle DNA replicon” means a replicon that reproduces by the rolling circle DNA replication mechanism.
- “Rolling Circle Replicon Expression Vectors” means a vector that reproduces by means of the rolling circle DNA replication method.
- “RCR vector” means Rolling Circle Replicon Expression Vectors.
- “RCR virus” means Rolling Circle Replicon Expression virus.
- “ssDNA viruses” means single stranded circular DNA virus.
- “SV40 promoter” means simian virus 40 early promoter. Simian virus 40 is a virus of the genus Polyomavirus. SV 40 was originally isolated from kidney cells of the rhesus monkey, and is common (in latent form) in such cells.
- “VLPs” means virus-like particles.
- This invention provides methods for designing and creating a polynucleotide or a rolling circle DNA replicon for an eukaryotic host with elements from RCR viruses from the viral taxonomic families Geminiviridae and Circoviridae, and from the genus Nanovirus that is as yet unassigned to a taxonomic family. We disclose methods for manipulating the genomes of these viruses so that the RCR replicons described in this invention employ only part of the replication cycle of the virus or viruses from which they were originally derived. The RCR replicons are introduced into eukaryotic host cells as double stranded DNA molecules, and thus the form in which the replicon initially enters the host is not usual for the parental virus that normally infects new host cells in an encapsidated ssDNA form. The viral “late” genes that are involved in sequestration of ssDNA, movement of viral DNA out of the host cell nucleus and assembly of viral DNA into virions are inactivated or deleted in the RCR replicons of this invention.
- The invention provides for a polynucleotide capable of rolling circle replication in an eukaryotic host, said polynucleotide comprising:
- (a) a first Rep gene encoding a first Rep protein from a first virus selected from the group of genera of family Geminiviridae, genera of family Circoviridae, and genus Nanovirus, wherein said first Rep gene is capable of being expressed in said eukaryotic host;
- (b) sequences that are cis on the polynucleotide such that the first Rep protein can bring about rolling circle replication of the polynucleotide; and
- (c) an open reading frame encoding a protein of interest capable of being expressed in said eukaryotic host, wherein said protein of interest is heterologous to the first Rep protein.
- The polynucleotide may lack one or more genes of said first virus. The polynucleotide may further comprise a second Rep gene encoding a second Rep protein from a second virus selected from the group of genera of family Geminiviridae, genera of family Circoviridae, and genus Nanovirus, wherein said second Rep gene is heterologous to the first Rep gene; such a polynucleotide in the ssDNA form may form the RF form and replicate in an eukaryotic host that the first virus cannot replicate in.
- These RCR replicons have the following elements, present on the same DNA molecule or polynucleotide:
- 1. A Rep gene ORF from a virus belonging to the viral taxonomic families Geminiviridae, Circoviridae or genus Nanovirus. This Rep gene ORF is placed under transcriptional control of a promoter, placed 5′ of the gene. This promoter is chosen to be one that can function in a cell type of interest, and may additionally have some tissue, or cell-type specificity, or may be induced by the addition of a chemical or by other some other environmental induction.
- 2. The sequences that are required to be present in cis on the RCR replicon in order that the Rep protein might promote replication of the RCR replicon. For Nanoviruses, Circoviruses, begomoviruses and curtoviruses, this is the viral origin of replication that contains the conserved stem-loop structure, TANTATTAC nanonucleotide sequence, and flanking intergenic sequences. For mastreviruses, these include the long and short intergenic regions.
- 3. An expression cassette for expression of an ancillary protein that is capable of creating a cellular environment permissive for replication of the RCR replicon in the host cell of interest. This cassette may be redundant with the Rep gene expression cassette described above, or may be an expression cassette driving the expression of a Rep ORF from a different virus species from the group of Geminiviruses, Circoviruses and Nanoviruses.
- 4. At least one expression cassette with a RNA polymerase II promoter, a multiple cloning site, and transcription termination and polyadenylation signals suitable for transcription of RNA molecules not normally intrinsic to a geminiviral, circoviral or nanoviral genome.
- The invention also provides for a method of constructing a rolling circle DNA replicon or a polynucleotide which replicates in a eukaryotic host, comprising: combining unto a single polynucleotide:
- (a) a Rep gene encoding a Rep protein obtained from a virus selected from the group of genera of family Geminiviridae, genera of family Circoviridae, and genus Nanovirus, wherein a promoter is operatively linked 5′ to said Rep gene;
- (b) sequences that are cis on the polynucleotide such that the Rep protein can bring about rolling circle replication of the polynucleotide;
- (c) an expression cassette for expression of an ancillary protein that is capable of creating a cellular environment permissive for replication of the rolling circle DNA replicon in the host cell of interest; and
- (d) an open reading frame encoding a protein of interest capable of being expressed in said eukaryotic host, wherein said protein of interest is heterologous to the Rep protein.
- The invention also provides for a polynucleotide which replicates in a eukaryotic host, wherein said polynucleotide encodes a peptide or polypeptide which is capable of eliciting an immunization reaction in a eukaryotic host. The immunization reaction may be potentiated by the co-expression of an ancillary immunogenic protein, which increases the immunogenicity of the expressed heterologous protein or peptide. The polynucleotide may also be targeted to the nucleus of an eukaryotic host cell and/or condensed for transport into the eukaryotic host cell's cytoplasm by coating the polynucleotide with proteins. This may increase the expression of the encoded peptide or polypeptide inserted within the polynucleotide, thereby increasing the immunization reaction within the eukaryotic host.
- The invention also provides for a method of constructing a polynucleotide which replicates in a eukaryotic host, wherein said polynucleotide encodes a peptide or polypeptide which is capable of eliciting an immunization reaction in a eukaryotic host. Although any peptide or polypeptide may be utilized, peptides or polypeptides which are capable of eliciting an immunization reaction are preferable for use in conjunction with the present invention. Surface or exposed antigens are examples of a peptide or polypeptide which may be desirable for such applications. Alternatively, full length proteins may also be utilized in immunotherapy applications. Detailed structural and functional information about many proteins of interest are well known; this information may be used by one of ordinary skill in the art so as to provide for immunogens having the desired properties allowing the immunological recognition of a protein of interest.
- The peptide or polypeptide which is capable of eliciting an immunization reaction may be native or non-native to the eukaryotic host. Preferably, the peptide or polypeptide is non-native to the eukaryotic host, and expression of said peptide or polypeptide elicits an immunization reaction to the expressed foreign antigen, producing an immune response which protects the eukaryotic host against subsequent exposures to organisms which express said foreign antigen in vivo. Examples of foreign antigens include antigens present on microbial pathogens or other pathogenic organisms. Alternatively, the peptide or polypeptide may be native to the eukaryotic host, wherein the expression of said peptide or polypeptide elicits an immunization reaction to a self-antigen, producing an immune response which protects the eukaryotic host against overexpression or abnormal expression of self-proteins. Examples of self-proteins where an immune response against the self-protein antigen may be desired include autoimmune diseases, such as arthritis, lupus erythremastosus or other disease states where the production of antibodies against self-antigens may be useful in combating the disease.
- The immunization reaction may be potentiated by the co-expression of an ancillary protein, which may increase the immunogenicity of the expressed heterologous protein or peptide. A preferred embodiment would be the use of proteins known to stimulate an immunological response to the presence of an antigen. Granulocyte macrophage colony stimulating factor (GM-CSF) and IL 1-beta are examples of proteins known to enhance the immunological response to an antigen when administered in the presence of an antigen. The above is not meant to be limiting to the practice of the present invention, and a practitioner of ordinary skill in the art will recognize that any protein which is capable of stimulating or enhancing the immunological response to an antigen is contemplated within the scope of the present invention. The ancillary protein may be co-expressed with the protein immunogen of interest by inserting a polynucleotide sequence encoding the ancillary protein within the polynucleotide vector comprising the polynucleotide encoding the peptide or polypeptide of interest, nucleic acid elements necessary to express the peptide or polypeptide of interest and elements of a viral genome capable of rolling circle replication.
- The polynucleotide may also be condensed and targeted to the nucleus of a eukaryotic host cell by coating the polynucleotide with nuclear localization and polynucleotide condensing proteins. Coating the polynucleotide with nuclear localization proteins may have the effect of targeting the polynucleotide to the nuclear structure, transporting the nucleic acid to the site where transcription of the vector template takes place. This may increase the expression of the encoded peptide or polypeptide inserted within the polynucleotide by lessening the opportunities for enzymatic degradation within the cytoplasm of the cell, thereby increasing the available template for transcription and increasing the immunization reaction within the eukaryotic host. Condensation of polynucleotides prior to immunological presentation may also potentiate an immunization response by efficiently packaging the polynucleotide for entry into the host eukaryote's cell cytoplasm. Examples of proteins which are capable of condensing nucleic acids are the histone proteins H2A, H2B, H3, H4 and H1. Compounds, such as polylysine and other polycations, have also been shown to condense nucleic acids. Other non-mammalian proteins, such as the mu protein of adenovirus, have been used to condense nucleic acid. Other proteins known to those of ordinary skill in the art which condense or target nucleic acids to the cell nucleus may also be used in conjunction with the present invention.
- A preferred embodiment of the invention is the use of Histone H1 for condensing and targeting expressed peptides or polypeptides of the invention to the nucleus. Histone H1 both condenses and targets polynucleotides to the cell nucleus by the presence of nuclear localization signals located within the histone H1 protein sequence. Coating of polynucleotides with histone H1 in amounts which condense the polynucleotide sufficiently such that condensation is observable is desired, whereby one of ordinary skill in the art will appreciate that larger-sized polynucleotides, or larger quantities of polynucleotides, will require more histone H1 for condensation of said polynucleotide. Alternative embodiments of the invention include the use of other dual purpose proteins, such as histone H2A, histone H2B, histone H3 or histone H4. Histones H2A, H2B, H3 and H4, like histone H1, condense polynucleotides and contain nuclear localization signal sequences. In other embodiments, combination of proteins above may be used in condensing and targeting polynucleotides provided for in the present invention. For example, combinations of the different histone proteins may be used. In yet other alternative embodiments, proteins which either condense or target coated polynucleotides may also be used in the practice of the invention. For example, the mu protein of adenovirus or polycations such as polylysine, may be used to condense the polynucleotide for entry into the cell cytoplasm in the absence of any nuclear targeting protein.
- The polynucleotide expressing the polypeptide or peptide of interest may be administered to the host eukaryote in a variety of ways. Preferably, the polynucleotide is injected into the host eukaryote for uptake and expression in cells. The polynucleotide may be injected in the presence or absence of an adjuvant capable of increasing the immunization reaction of said host eukaryote. Examples of adjuvants include Freund's adjuvant, Ribi adjuvant system, keyhole limpet hemocyanin, cytokines (IL-2, IL-4, IL-10 and IL-12), GM-CSF, microorganisms (e.g. lactobacillus), preformed immune-stimulating complexes (IsCOMs), block co-polymers, cholera toxin, lipopolysaccharides, aluminum salt adjuvants and nitrocellulose-adsorbed antigens. Other adjuvants known to those of skill in the art may also be utilized in combination with the present invention.
- Alternatively, the polynucleotide may be modified to increase the uptake of said polynucleotide into cells. This may include encapsulating said polynucleotide with liposomal agents or other agents which increase the uptake of polynucleotides into host eukaryotic cells.
- All genes and open reading frames, encoding proteins, can be expressed by having a promoter operatively linked 5′ to the gene or open reading frame (i.e., the promoter is at the 5′ end of the gene or open reading frame). The promoter is capable of expressing the gene or open reading frame in the eukaryotic host.
- The eukaryotic host may be an eukaryotic cell. The eukaryotic cell may be an animal or plant cell. The animal cell is preferably an insect cell, bird cell, or mammalian cell. The mammalian cell may be a CHO cell, COS-7 cell or African Green Monkey kidney cell. The eukaryotic cell may be part of a cell culture, tissue, tissue culture, or organ. The eukaryotic cell may also be part of a whole organism. The whole organism can be a plant or an animal. The animal is preferably an insect, bird, or mammal.
- The polynucleotides and RCR replicons of the present invention can also further comprise a prokaryotic selectable and a prokaryotic origin of replication so that the polynucleotide and RCR replicon can be propagated and amplified in a prokaryotic cell. The polynucleotides and RCR replicons of the present invention can also further comprise an eukaryotic selectable and an eukaryotic origin of replication so that the polynucleotide and RCR replicon can be propagated and amplified in an eukaryotic cell using a non-rolling circle replication mechanism.
- Utilities:
- RCR replicons (or polynucleotides capable of rolling circle replication) are useful for discovery of the function of genes in eukaryotic hosts. RCR replicons are useful for inducing or enhancing a function or trait in a host eukaryotic cell. RCR replicons are useful for down-regulating a gene in a plant or in mammalian cells and thereby altering or even eliminating the function of that gene.
- RCR replicons have several properties that will lead to the development of superior gene expression vector properties. The vector initiates a rapid replication cycle leading to earlier gene expression than standard plasmid vectors. This, coupled with its self-amplifying properties, will lead to sustained expression for longer periods of time as compared with standard plasmid vectors. These properties, coupled with the amplification of substrates for transcription by host machinery, will lead to greater levels and longer enduring levels of target gene expression as compared to standard plasmid vectors. The amplification of 100-1000 copies of the genome per transfected cell will lead to passive inheritance of the RCR replicon infection into daughter cells. This will lead to the development of homogeneous populations of transfected cells, all containing RCR replicons and expressed sequences, with the need for little or no biochemical selection procedures. This sustained replication in original transfected cells and resulting daughter cells will allow for long term expression experiments and novel application not currently available with standard plasmid vectors or other virus-based vector systems. Due to the basic aspects of the host replication system that RCR replicons require, the replicons will have virtually unlimited host range with regards to cellular replication cycles. These replicons express very few protein products outside of targeted genes or sequences for overexpression and do not perturb host cell metabolism to the same degree that other virus vectors do. All these properties give RCR replicons superior performance and make way for novel utilities not available to other plasmid or virus expression systems. For examples of several utilities, see reduction to practice section.
- 1. Alternative cellular expression system.
- These vectors can be used as an alternative cellular expression vectors and perform superior to plasmid or virus-based vectors based on the following criteria: rapid replication coupled with expression driven by promoter of choice (affecting expression levels or regulation); sustained replication and passive inheritance; unlimited cellular host range; minimal host metabolism perturbation; and, low levels of viral protein accumulation.
- 2. Enhanced immune response in naked DNA or formulated DNA-based vaccines.
- RCR replicons should have sustained replication properties yielding greater levels of substrate for sustained targeted gene expression in transfected cells. The accumulation of targeted immunogen in transfected antigen presenting cells will be greater than standard plasmid vectors. Advantages over virus vectors include: Non-pathogenic, minimal host perturbation, broad cell host range, no transmission of infection to non-primarily transfected cells due to lack of packaging.
- 3. Mammalian-cell based genomics using RCR vectors for gene function discovery.
- RCR vectors will prove to be excellent gene sequence delivery tools for mammalian genomic approaches. Uses include the expression of homologous or heterologous genes in a library or targeted manner for the detection of gain of function cellular phenotypes and expression of antisense or sense gene fragments for the inhibition of targeted gene expression for assay of loss of function phenotypes.
- 4. Gene therapy applications
- The sustained episomal expression in specific tissues or cells transfected by RCR replicon can allow the delivery of therapeutic or complementing (functional gene copy to complement function of a dysfunctional chromosomal copy) gene products to organisms or cells. The coupling of this activity with the ability of porcine or human brain endothelial cell lines to amplify hemopoetic stem cells without differentiation may prove to be a powerful tool to repopulate a body with new cells containing functional gene copies lacking in native organism. The coupling of these technologies will enable gene therapy to really work. For example, RCR replicon could be designed to express the glucocerebrosidase gene and transfect the hemopoetic stem cells of a patient suffering from Gaucher's disease. Once the transfected stem cells are amplified, they can be re-infused into the patient to engraft in the bone marrow. Once there, the cells will produce a range of hemopoetic cells including Kupffer cells that will be in the liver and responsible for cerebroside lipid degradation. The cells derived from stem cells transfected with the RCR vector will inherit the RCR expression replicon and now express glucocerebrosidase in the liver and now degrade the accumulating lipids that the native system is incapable of doing.
- Other properties that are important in RCR vectors to succeed in gene therapy applications: sustained replication, passive episomal replicon inheritance, wide cellular and tissue host range.
- 5. Unique coupling of RCR vectors with tissue specific gene delivery modalities.
- Packaging of RCR replicon DNA in capsid proteins of viruses with specific cellular tropisms (bound by receptors on specific cell or tissue types) for targeted delivery of replicon to tissues in organisms to maximize correct immune response or therapeutic effect. For example, packaging of RCR replicons in papillomavirus virus-like particles (VLPs) would give the replicon a mucosal targeting tropism at the receptor binding step and inherent replication properties of RCR replicons will allow them to amplify and express sequences in mucosal cells. This approach will allow gene delivery for therapeutic end or immunogen delivery for generation of immune response in mucosal tissues (e.g. applications for papilloma, HIV, Herpes virus, Hepatitis B, microbial agents vaccine purposes). Likewise, integration of RCR replicon DNA into adenovirus VLPs would grant pleural tropisms for delivery of genes to advance therapeutic treatment of cystic fibrosis or other diseases. For example, following treatment of patients with DNAse, patients could receive regular treatments with VLPs containing RCR replicons containing therapeutic genes (DNAse gene) or complimenting gene (correct copies of genes causing the disease). In this manner, transient doses of replicons can transfect tissues and deliver therapeutic genes to reverse disease progression. With pleural cell shedding, new transfections with RCR replicons will be necessary to maintain the functional state of pleural tissue.
- 6. Whole animal genomics or gene therapy
- Due to persistent replication and expression and passive inheritance of replicons in daughter cells, it should be possible to transfect pluri-potent cell lineages with replicons containing targeted genes and expect resulting daughters cells and subsequent differentiated cells (or tissues derived from them) to maintain long term expression of the gene of interest. This would allow one to transfect CD34+, CD38− hemopoetic stem cells with RCR vectors in vitro, incubation cells with PMVC or HUBEC cell lines, capable of initiating stem cell cycling and division without inducing differentiation, and then re-infuse transfected cells (now expressing novel gene product) into adult animals. All derived cells from the transfected stem cells will continue to express this novel gene function. This would allow the activities of genes to be ascertained at the entire organismal level and in the context of a variety of cell types.
- Conversely, RCR vectors containing homologous or heterologous genes could be delivered to embryos of animals and the organism developing from the transfected embryo would be at least chimeric for the RCR encoded gene function or possibly homogeneous for its expression. This tool could be applied to determine gene function in the context of developing or adult organisms. Alternatively, this could be the ultimate gene therapy tool for complimenting chromosomal defects in organisms, such that the derived organism would continue to have a chromosomal defect in a gene, but it would be complemented by the persistent, episomal gene copy in the RCR vector.
- 7. Gene therapy through targeted gene repair.
- It should be possible to perform directed mutagenesis of a DNA sequence encoded by the host chromosomal genome by encouraging homologous recombination or directed point mutation of specific host DNA sequences homologous to DNA sequences carried on the RCR replicon. Virus infection may induce all necessary factors that are involved in DNA recombination. This coupled with the generation of high levels of homologous recombination substrates: single-stranded DNA during the replication cycle (thought to be more involved in DNA recombination than double stranded DNA) and high copy number of RCR genome in double-stranded DNA form, would be thought to enhance the recombinational frequencies between host chromosome and episomal replicon. For example, when Geminiviruses, containing mutations in the virus coat protein rendering the virus packaging and movement incompetent, are inoculated on transgenic plant hosts containing wild type coat protein ORF, they recombine with transgene locus to recreate a fully functional viral genome at a very high rate (Frischmuth and Stanley, 1998).
- The following examples further illustrate the present invention. These examples are intended merely to be illustrative of the present invention and are not to be considered as limiting.
- Construction of plasmids:
- We constructed several plasmids to test whether RCR plasmids carrying the Rep gene and origin of replication could replicate in different mammalian cell types.
- Cloning of the genome of PCV
- We designed PCR primers to amplify parts of the genome of PCV from the strain present in PK-15 cells (Mehan et al., 1997; Genbank accession no. U49186). For amplification of the whole genome of PCV, with one nucleotide mismatch from the published sequence, the following primers were used; nucleotides identical to the published sequence (Genbank accession no. U49186) are underlined:
- PK-15SwaA:
- TTTATTTAAATGGAGCCACAGCTGG (SEQ ID NO:3)
- PK-15SwaB:
- TTTATTTAA-TACCCACACCAATGTCG (SEQ ID NO:4)
- In PK-15SwaB, an A has been deleted at
position 9 relative to the homologous sequence in the published PCV sequence. - A 1.8-kb fragment was amplified with these primers (not shown), with total nucleic acid (100 ng) isolated from PK-15 cells used as the template for PCR. The PCR fragment was cloned into the pCRblunt-II TOPO vector, according to the manufacturer's instructions (Invitrogen Corp.). A clone containing the correct-sized insert was named construct 1 (FIG. 1).
- Construct 1 (deposited to ATCC on Feb. 16, 2000, accession no. PTA-1351) thus contained the whole PCV genome cloned into the Invitrogen cloning vector pCR®-Blunt II-TOPO® (Invitrogen Corp.). This construct contained the PCV rep gene under the transcriptional control of its own promoter, and has the putative coat protein inactivated by insertion of the bacterial cloning vector.
- For cloning of the PCV genome and expression of its Rep gene under the control of the cytomegalovirus immediate-early promoter (CMV promoter), the PCV genome was amplified by PCR from total DNA isolated from PK-15 cells, using the following primers; nucleotides identical to the published sequence of PCV are underlined:
- PCVwholerepA
- ACCATGCCAAGCAAGAAAAGCGGCCC (SEQ ID NO:5)
- PCVwholerepB
- TTTTCACTGACGCTGCCGAGGTG (SEQ ID NO:6)
- A PCR product of approximately 1.8-kb was obtained after PCR amplification using these primers (not shown). This product was cloned into the vector pCMVScript according to the instructions supplied by the manufacturer (Stratagene, La Jolla, Calif.).
Construct 2, Shown in FIG. 2, contained the PCV genome cloned into the Stratagene vector, pCMV-Script, such that the Rep gene was placed under the control of the cytomegalovirus immediate-early promoter (CMV promoter), with the PCV rep transcription termination and polyadenylation signal and origin of replication sequences upstream. This construct also contained a neomycin/G418 resistance gene with simian virus 40 early promoter (SV40 promoter) and origin of replication sequences, and thus should replicate episomally in COS-7 cells that have an integrated SV40 Large T antigen-expressing gene. The SV40 origin of replication will not, however, be functional in other cell types. -
Construct 4 contains the PCV genome amplified with primers PK-15SwaA and PK-15SwaB and cloned into the pCMVScript vector according to the instructions supplied by the manufacturer (Stratagene). This construct therefore contains the PCV Rep gene under the control of its own promoter in a vector which carries an SV40 origin of replication and a selectable marker gene (G418 resistance). -
Construct 6 is the Invitrogen pTracerSV40 (FIG. 3), which expresses a GFP-zeocin resistance gene fusion, useful because one can evaluate the success of transfection experiments by visualization of green fluorescent protein expression. - Construct 7 (deposited in ATCC on Feb. 16, 2000, accession no. PTA-1352) was derived by deleting the SV40 promoter and origin of replication sequences from pTracer SV40 (FIG. 3). The NsiI-NotI fragment from construct 1 (FIG. 1) was then cloned into the vector. This construct therefore contains the PCV Rep gene under the control of its own promoter, together with the PCV origin of replication sequences, in the context of a vector that contains a selectable and screenable marker gene (GFP-zeocin resistance), but which cannot replicate in COS-7 cells because the SV40 origin of replication sequences have been deleted.
- Transfection Experiments with PCV replicons
- The RCR vectors described herein may be introduced into eukaryotic cells by one of many different protocols that are available for direct transfer of DNA into cells, including, but not limited to: electroporation, cationic lipid-mediated transfection, calcium phophate transfection, Agrobacterium-mediated transfection, microprojectile bombardment, polyethylene glycol-mediated transfection. Several methods that are commonly used for introduction of DNA into mammalian cells are described in detail in “Current Protocols in Molecular Biology” by Ausubel et al. (1994-2000). John Wiley and Sons, Inc.
- Constructs 1, 2, 4 and 6 were transfected into Cercopithecus aethiops (African Green Monkey) kidney cells, transformed with SV40 (COS-7 cells), according to the protocol supplied by the manufacturer of the transfection reagent (Lipofectamine, manufactured by Life Technologies, Inc.) of
COS 7 cells. - Transfections were done in duplicate, i.e. two plates per construct.
- 1. In a 35 mm tissue culture plate, ˜2×10 5 cells were seeded in 2 ml D-MEM (Dulbecco's Modified Eagle Medium) containing 10% FBS (Fetal Bovine Serum) and nonessential amino acids (obtained from the ATCC, or from Life Technologies).
- 2. The cells were incubated at 37° C. in a CO 2 incubator until the cells were 70-80% confluent. This took 18-24 hours.
- 3. The following solutions were prepared in 12×75 mm sterile tubes: Solution A: For each transfection, 2 μg DNA (plasmid) diluted in 375 μl serum-free D-MEM (containing nonessential amino acids). Solution B: For each transfection, 6 μl LIPOFECTAMINE Reagent was diluted in 375 μl serum-free D-MEM.
- 4. The two solutions were combined, mixed gently, and incubated at room temperature for 30 min.
- 5. The cells were washed once with 2 ml serum-free D-MEM.
- 6. For each transfection, 750 μl serum-free D-MEM was added to each tube containing the lipid-DNA complexes. After gentle mixing, the diluted complex solution was added onto the washed cells.
- 7. The cells were incubated for 5 h at 37° C. in a CO 2 incubator.
- 8. 1.5 ml D-MEM with 20% FBS was added without removing the transfection mixture.
- 9. The medium was replaced at 18-24 h following start of transfection.
- Cells were harvested at 2 and 4 days post-transfection. Cells were scraped from the plates and pelleted by centrifugation in 1.5 ml microcentrifuge tubes. Pellets from the duplicate transfection experiments were pooled. We isolated total nucleic acids from these cells, at two and four days post-transfection using the QIAamp DNA Mini Kit, according to the manufacturer's instructions (Qiagen). Two and a half micrograms of total nucleic acids from each sample was digested with 20 units of DpnI, which cuts only dam-methylated DNA, i.e. the input plasmid DNA, at sequence GA*TC, where the A* is methylated (Sambrook et al., 1989). The restricted DNA was run on a 1% TAE agarose gel, stained with ethidium bromide. The DNA was transferred to a nylon membrane (Roche Molecular Biochemicals) by the standard alkaline capillary transfer Southern blot protocol (Sambrook et al., 1989). The RCR replicon DNAs were detected by Southern hybridization with a probe made from
Construct 1, nonradioactively labeled with Digoxygenin by the random priming method, according to the protocol supplied by the manufacturer (Roche Molecular Biochemicals). - FIG. 5 shows the results of the Southern Hybridization experiment. The probe DNA contains sequences (the ColE1 origin of replication) in common with all of the input plasmids, and should therefore hybridize with all replicating, and input plasmid DNAs. Digested, low molecular weight Dpn I-digested fragments of the input DNAs may be visible (less than 1.0-kb, indicated in FIG. 4); all replicating DNAs will remain undigested. All plasmids with SV40 ori sequences (constructs 2, 4, and 6) replicated in the COS-7 cells, as expected. Construct 1 (
lanes 1 and 2) also appeared to be replicating in the COS-7 cells, indicating that the PCV RCR replicon was functioning, and replicating the linked non-viral DNA sequences. This shows that the PCV-derived RCR replicon can replicate in African Green Monkey kidney cells. - Constructs 2, 4, 6 and 7 were transfected into Chinese Hamster Ovary (CHO) cells. Cells transfected with
6 and 7 exhibited green fluorescence, indicating expression of the GFP fusion protein. Total DNA was isolated from these cells at 2 and 4 days post-transfection. Southern blot analysis showed thatconstructs 2, 4 and 7, which contain PCV Rep and origin of replication sequences were all replicating in the transfected cells, whereasconstructs construct 6, an SV40 replicon, was not replicating. This shows that PCV RCR replicons can replicate, and express genes linked to the replicon, in Chinese Hamster Ovary (CHO) cells. - Constructs 1, 6 and 7 were transfected into COS-7 cells. The transfections were performed according to the methods suggested by the manufacturer of the transfection reagent (Effectene, from Qiagen). We used 1 μg of DNA, 8 μl of enhancer and 25 μl of Effectene per transfection.
- Analysis
- At one day post-transfection, cells transfected with construct 7 (PCV RCR plasmid) were clearly expressing the GFP-zeocin fusion gene, but cells transfected with construct 6 (with functional SV40 origin of replication sequences) were not. Thus, the PCV replicon expresses linked genes at a higher level, earlier than the cognate SV40 replicon.
1, 6 and 7 were also transfected into CHO cells, with similar results one day post-transfection.Constructs - In another experiment to evaluate GFP gene expression after transfection of CHO-K1 cells, we compared timing and relative intensity of GFP fluorescence after transfection of cells with constructs 6 (non-replicating, with no PCV sequences) and 7 (a PCV-derived construct). Cells were transfected in parallel by two different methods: with Effectene (Qiagen) and with a standard calcium phosphate precipitation protocol.
- Effectene transfection method
- For the effectene transfection method, one microgram of plasmid DNA was mixed with DNA condensation buffer (Buffer EC), to a total volume of 150 μl. Eight microlitres of Enhancer were added, and the DNA solution was mixed by vortexing for one second. The DNA mixture was incubated at room temperature for 5 minutes. Effectene transfection reagent (25 μl) was added to the DNA-enhancer mixture, and mixed by pipetting up and down five times. The samples were incubated at room temperature to allow complex formation.
- While complex formation was occurring, the growth medium was gently aspirated from the plates, and the cells were washed once with phosphate buffered saline (PBS). Four milliliters of fresh growth medium was then added to the cells.
- One milliliter of growth medium was added to the reaction tube containing the transfection complexes; the solution was then mixed and immediately added drop-wise onto the cells in 60-mm dishes. The dish was gently swirled to ensure uniform distribution of the complexes. The cells with transfection complexes were incubated at 37° C. and 5% CO 2 to allow for gene expression.
- The expression of GFP in transfected cells was observed at three and seven days post-transfection. The results from observation of cells transfected by the Effectene method are tabulated below (Table 1).
- Construct 3: non-replicating plasmid DNA, no GFP gene (DNA control)
- Construct 6: non-replicating plasmid DNA, GFP-zeocin fusion gene, should express GFP in transfected cells.
- Construct 7: plasmid DNA with PCV replicon and the same GFP-zeocin fusion gene
- Construct 6: may be capable of replication.
TABLE 1 Dish # Construct Day 3 Observations Day 7 Observations 1 3 No GFP, cells look No GFP, cells growing well healthy 2 6 4 to 5% GFP + ve, Small number of GFP + ve low level expression cells 3 7 10% GFP + ve, low to Very many GFP + ve cells, moderate expression both dim and bright 5 No DNA No GFP; cells growing No GFP well - We constructed plasmid pCI-PCV1-Luc (FIG. 7) that contained the Firefly luciferase gene as a reporter gene to obtain quantitative data on the expression-enhancing effect of PCV-based gene vectors (the nucleotide sequence is depicted in SEQ ID NO:7).
- Vector construction
- To measure the effect of the PCV1 genome on the stability and expression of a reporter gene, the PCV1 genome was amplified by PCR using the primer PCV BglStu (AAAGATCTAGGCCTGTGTGCTCGACATTG) (SEQ ID NO:8) and PCVBamStu (AAGGATCCAGGCCTCGGCTATGCGCTCC) (SEQ ID NO:9). These primers amplified the circular PCV1 genome from nucleotide 1130, the point of a unique StuI site, and also introduced a BglII and BamHI restriction site at the 5′ and 3′ end respectively. The PCR product was than digested with the restriction enzymes BglII and BamHI and introduced into the commercially available plasmids pGL3 (Genbank accession no. U47298) to generate pCI-PCV1-Luc (FIG. 7) and into the pCI mammalian expression vector (Genbank accession no. U47119) linearized at
nucleotide 1 by a BglII digestion to generate pGL3-PCV1-Luc (FIG. 9). The Luciferase gene was already contained in the pGL3 construct and was added as an EcoRI-NheI fragment into the pCI and pCI-PCV1 construct. The DNA sequence of pCI-PCV1-Luc with the inserted luciferase gene is shown in FIG. 8. - After sequence confirmation, the DNA from each construct was purified using a DNA maxiprep kit (Qiagen) and used for cell transfection experiments.
- Cell transfection
- CHO-K1 cells (Chinese hamster ovary epithelial cells ATCC no. CCL-61) were maintained in F12K HAM media (Gibco BRL) supplemented with 10% Fetal Bovine Sera. 24 hours before transfection, cells were trypsinized and dispensed into a 24 well plate at 1×10 4 cells/well.
- Before transfection, cells were washed with PBS and fresh media was added. Transfection was performed with the Effected kit (Qiagen). For each construct, 250 ng of DNA/well was used. A ratio of 8 μl of enhencer and 25 μl of effectene reagent per μg of DNA was used. For each construct duplicate experiments were performed. 24 hours after transfection the media was changed.
- To assess the Luciferase activity, the cells were lysed at different time post-transfection by a 15 minutes room temperature incubation of the cells with the passive lysis buffer included in the Luciferase assay kit (Promega). The Luciferase expression units were measured with a Luminometer (TD-20/20, Turner designs) with an integration period of 10 sec. The results are shown as an average of the total Firefly luciferase (F. Luc) units measured.
- The results show that substantially higher levels of luciferase expression are seen in cells transfected with a luciferase expression cassette linked to a PCV1 replicon. This phenomenon was independent of the promoter used to drive expression of the luciferase gene: that is, the cytomegalovirus immediate-early promoter (See FIG. 10A, compare pCI (no PCV sequences) with pCI-PCV1 (PCV sequences linked to the expression cassette) or the simian virus 40 promoter (see FIG. 10B, compare pGL3, with no PCV sequences linked to the SV40-luciferase expression cassette, vs pGL3-PCV1, with PCV sequences linked to the SV40-luciferase expression cassette).
- We constructed plasmids pCI-Luc and pCI-β gal (FIG. 11A) and pCI-PCV1-Luc (FIG. 7) and pCI-PCV1-β gal (FIG. 11B) to express either luciferase (F. Luc) or beta-galactosidase (β gal) in vivo, and quantitated IgG upregulation in injected mice.
- Vector construction
- To assess the immunizing ability of the rolling circle replicon vectors against foreign antigens, we constructed plasmids pCI-PCV1-β gal and pCI-Luc and pCI-β gal. Plasmid pCI-PCV1-Luc was described previously (FIG. 7; SEQ ID NO: 7).
- pCI-PCV1-β gal was constructed essentially as for pCI-PCV1-Luc as mentioned above in Example 2. Briefly, the PCV1 genome was amplified as above by PCR. The PCR product was then digested with the restriction enzymes BglII and BamHI and introduced into the commercially available pCI mammalian expression vector (Genbank accession no. U47119) linearized at
nucleotide 1 by a BglII digestion. The luciferase gene was added as an EcoRI-NheI fragment into the pCI construct (FIG. 11A). The β-galactosidase gene was added as an insert fragment in a recombinase reaction to converted Gateway (LifeTechnologies/Invitrogen) pCI and pCI-PCV1 constructs to make pCI-β gal (FIG. 11A) and pCI-PCV1-β gal (FIG. 11B), respectively. - After sequence confirmation, the DNA from each construct was purified using an endotoxin free DNA maxiprep kit (Qiagen). The eluted DNA was ethanol precipitated and resuspended in normal saline.
- DNA immunization
- 100 micrograms of DNA was injected intramuscularly in the thigh of each of five mice per group, once per week for three weeks. Sera were collected one week after each immunization, pooled, and analyzed for antibody titre using ELISA.
- Antibody titre measurements
- Purified antigen (either firefly luciferase or beta-galactosidase, dependent upon the expression vector utilized) was bound to the surface of polystyrene ELISA plates, and washed extensively with TBST (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.05% Tween-20) to remove any excess protein. The plates were blocked with blocking buffer (2% bovine serum albumin in 50 mM Tris, pH 8.0, 0.02% Tween-20 (a non-ionic detergent compound)) and incubated with serial dilutions of pooled sera from mice injected with various treatments. The plates were then washed extensively with TBST and probed with peroxidase-conjugated anti-mouse IgG antibody (Southern Biotech). The plates were developed with the addition of o-phenylenediamine in citrate buffer containing 0.012% H 2O2 and the absorbance measured at 405 nm using a plate spectrophotometer (Molecular Devices).
- Antibody isotype switching measurements
- Purified antigen (either firefly luciferase or beta-galactosidase, dependent upon the expression vector utilized) was bound to the surface of polystyrene ELISA plates as above, and washed extensively with TBST to remove any excess protein. The plates were blocked with blocking buffer (2% bovine serum albumin in 50 mM Tris, 0.02% Tween-20) and incubated with serial dilutions of pooled sera from mice injected with various treatments. The plates were washed extensively with TBST and probed with peroxidase-conjugated anti-mouse antibodies which specifically recognize either IgG1, IgG2a, or IgG2b (Southern Biotech). The plates were developed with the addition of o-phenylenediamine in citrate buffer containing 0.012% H 2O2 and the absorbance measured at 405 nm using a plate spectrophotometer (Molecular Devices).
- Results
- FIGS. 12A and 12B show that substantially higher levels of IgG antibody induction can be seen in mice injected with immunogenic protein insert linked to a rolling circle replicon cassette (pcv) versus immunogenic protein inserted into a non-rolling circle replicon mammalian expression vector (pci). Levels of IgG antibody through successive bleeds (b1=
week 1, b2=week 2, b3=week 3 and b4=week 4) were higher for both luciferase and β-galactosidase expression cassettes linked to a PCV cassette, as compared to non-rolling circle replicon linked vectors (pci) or injection with saline alone (pbs), vector without insert (vector), purified luciferase (luc) or β-galactosidase (bGal). This induction was independent of the promoter used to drive expression of the heterologous genes, that is, the cytomegalovirus immediate-early promoter (see FIGS. 12A and 12B, compare pci to pcv antibody induction). - This IgG antibody induction by PCV-linked expression vectors was selective for specific IgG isotypes, indicating the activation of a long-term versus short-term immunogenic response. FIGS. 13A and 13B show that mice injected with PCV-linked expression cassettes have sustained levels of IgG2a and IgG2b induction, versus IgG1. This indicates a T-cell mediated antibody response, more indicative of a long-term memory immunogenic reaction.
- Ach R A, Durfee T, Miller A B, Taranto P, Hanley-Bowdoin L, Zambryski P C, Gruissem W (1997) RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant-D-type cyclin and geminivirus replication proteins. Mol. Cellular Biol. 17: 5977-86.
- Abouzid A M, Frischmuth T, Jeske H (1988) A putative replicative form of abutilon mosaic virus (gemini group) in a chromatin-like structure. Mol. Gen. Genet. 212: 252-258
- Bassami M R, Berryman D, Wilcox G E, Raidal S R (1998) Psitticine beak and feather disease virus nucleotide sequence and analysis and its relationship to porcine Circoviruses, plant Circoviruses and chicken anaemia virus. Virol. 249: 453-459.
- Boevink P, Chu P W and Keese P (1995) Sequence of subterranean clover stunt virus DNA: affinities with the Geminiviruses. Virol. 207: 354-361.
- Burns T M, Harding R M, Dale J L (1995) The genome organization of banana bunch top virus: analysis of six ssDNA components. J. Gen. Virol. 76: 1471-1482
- Castellano M M, Sanz-Burgos A P, Gutierrez C (1999) Initiation of DNA replication in a eukaryotic rolling-circle replicon: identification of multiple DNA-protein complexes at the geminivirus origin. J. Mol. Biol. 290: 639-652.
- Elmer J S, Brand L, Sunter G, Gardiner W E, Bisaro D M, Rogers S G (1988) Genetic analysis of the tomato golden mosaic virus. II. The product of the AL1 coding sequence is required for replication. Nucl. Acids Res. 16: 7043-7060.
- Frischmuth T, Stanley J (1998) Recombination between viral DNA and transgenic coat protein gene of African cassava mosaic virus. J. Gen. Virol. 79: 1265-71.
- Gibbs M J, Weiller G F (1999) Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proc. Natl. Acad. Sci. USA 96: 8022-8027
- Grafi G et al. (1996) A maize cDNA encoding a member of the retinoblastoma protein family: involvement in endoreduplication. Proc. Natl. Acad. Sci. USA 93: 8962-8967.
- Hafner G J, Stafford M R, Wolter L C, Harding R M, Dale J L (1997) Nicking and joining activity of banana bunchy top virus replication protein in vitro. J. Gen. Virol. 78: 1795-1799
- Hanley-Bowdoin L, Settlage S B, Orozco B M, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Critical Reviews in Plant Sciences 18: 71-106.
- Hayes R J et al. (1988) Gene amplification and expression in plants by a replicating geminivirus vector. Nature 334: 179-182.
- Ilyina T V, Koonin E V (1992) Conserved sequence motifs in the initiator proteins for rolling circle replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucl. Acids Res. 20: 3279-3285
- Katul L, Timchenko T., Gronenbom B, Vetten H J (1998) Ten distinct circular ssDNA components, four of which encode putative replication-associated proteins, are associated with the faba bean necrotic yellows virus genome. J. Gen. Virol. 79: 3101-3109.
- Lazarowitz S G (1999) Probing plant cell structure and function with viral movement proteins. Current Opinion in Plant Biology 2: 332-338.
- Mankertz A, Mankertz J, Wolf K, Buhk H-J (1998) Identification of a protein essential for replication of porcine Circovirus. J. Gen. Virol. 79: 381-384.
- Mankertz A, Persson F, Mankertz J, Blasess G, Buhk H-J (1997) Mapping and characterization of the origin of DNA replication of porcine Circovirus. J. Virol. 71: 2562-2566
- Mankertz J, Buhk H-J, Blaess G, Mankertz A (1998) Transcription analysis of porcine Circovirus (PCV). Virus Genes 16: 267-276
- Mansoor S, Kahn S H, Bashir A, Saeed M, Zafar Y, Malik K A, Briddon R, Stanley J, Markham P G (1999) Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virol. 259: 190-199
- Meehan B M, Creelan J L, McNulty M S, Todd D (1997) Sequence of porcine Circovirus DNA: affinities with plant Circoviruses. J. Gen. Virol. 78: 221-227
- Meehan B M, McNeilly F, Todd D, Kennedy S, Jewhurst V A, Ellis J A, Hassard L E, Clark E G, Haines D M, Allan G M (1998) Characterization of novel Circoviruses associated with wasting syndromes of pigs. J. Gen. Virol. 79: 2171-2179
- Morozov I, Sirinarumitr T, Sorden S D, Halbur P G, Morgan M K, Yoon K-J, Paul P S (1998) Detection of a novel strain of porcine Circovirus in pigs with postweaning multisystemic wasting syndrome. J. Clin. Microbiol. 36: 2535-2541.
- Mushahwar I K, Erker J C, Muerhoff A S, Leary T P, Simons J N, Birkenmeyer L G, Chalmers M L, Pilot-Matias T J, Dexai S M (1999) Molecular and biophysical characterization of TT virus: evidence for a new virus family infecting humans. Proc. Natl. Acad. Sci. USA 96: 3177-3182
- Nagar S et al. (1995) A geminivirus induces expression of a host DNA synthesis protein in terminally differentiated plant cells. Plant Cell 7: 705-719.
- Palmer K E, Rybicki E P (1997) The use of Geminiviruses in biotechnology and plant molecular biology, with particular focus on Mastreviruses. Plant Science 129: 115-130
- Palmer K E, Rybicki E P (1998) The molecular biology of Mastreviruses. Adv. Virus Res. 50: 183-234
- Pringle C R (1999) Virus taxonomy—1999. The universal system of virus taxonomy, updated to include the new proposals ratified by the International Committee on Taxonomy of Viruses during 1998. Arch. Virol. 144: 421-429
- Saunders K, Stanley J (1999) A Nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant viruses. Virol. 264: 142-152.
- Timmermans M C P, Das O P, Messing J (1994) Geminiviruses and their uses as extrachromosomal replicons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 79-112.
- van Regenmortel M H V, C. M. Fauquet, D. H. L. Bishop, E. B. Carsten, M. K. Estes, S. M. Lemon,J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle, R. B. Wickner (1999) Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses. Springer Verlag: Wien.
- Ward A et al. (1988) Expression of a bacterial gene in plants mediated by infectious geminivirus DNA. EMBO J. 7:1583-1587.
- Xie Q et al. (1995) Identification and analysis of a retinoblastoma binding motif of the replication protein of a plant DNA virus: requirement for efficient viral replication. EMBO J. 14: 4073-4082.
- Xie Q et al. (1996) Plant cells contain a novel member of the retinoblastoma family of plant growth regulatory proteins. EMBO J. 15: 4900-4968.
- Xie Q, Sanz-Burgos A P, Guo H, Garcia J A, Gutierrez C (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol. Biol. 39: 647-656.
- Although the invention has been described with reference to the presently preferred embodiments, it should be understood that various modifications could be made without departing from the spirit of the invention.
-
1 9 1 5285 DNA Porcine circovirus 1 agcgcccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc 60 acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc 120 tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa 180 ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagctat 240 ttaggtgaca ctatagaata ctcaagctat gcatcaagct tggtaccgag ctcggatcca 300 ctagtaacgg ccgccagtgt gctggaattc gcccttattt aaatggagcc acagctggtt 360 tcttttatta tttgggtgga accaatcaat tgtttggtcc agctcaggtt tgggggtgaa 420 gtacctggag tggtaggtaa agggctgcct tatggtgtgg cgggaggagt agttaatata 480 ggggtcatag gccaagttgg tggagggggt tacaaagttg gcatccaaga taacaacagt 540 ggacccaaca cctctttgat tagaggtgat ggggtctctg gggtaaaatt catatttagc 600 ctttctaata cggtagtatt ggaaaggtag gggtaggggg ttggtgccgc ctgagggggg 660 gaggaactgg ccgatgttga atttgaggta gttaacattc caagatggct gcgagtatcc 720 tccttttatg gtgagtacaa attctgtaga aaggcgggaa ttgaagatac ccgtctttcg 780 gcgccatctg taacggtttc tgaaggcggg gtgtgccaaa tatggtcttc tccggaggat 840 gtttccaaga tggctgcggg ggcgggtcct tcttctgcgg taacgcctcc ttggccacgt 900 catcctataa aagtgaaaga agtgcgctgc tgtagtatta ccagcgcact tcggcagcgg 960 cagcacctcg gcagcgtcag tgaaaatgcc aagcaagaaa agcggcccgc aaccccataa 1020 gaggtgggtg ttcaccctta ataatccttc cgaggaggag aaaaacaaaa tacgggagct 1080 tccaatctcc ctttttgatt attttgtttg cggagaggaa ggtttggaag agggtagaac 1140 tcctcacctc caggggtttg cgaattttgc taagaagcag acttttaaca aggtgaagtg 1200 gtattttggt gcccgctgcc acatcgagaa agcgaaagga accgaccagc agaataaaga 1260 atactgcagt aaagaaggcc acatacttat cgagtgtgga gctccgcgga accaggggaa 1320 gcgcagcgac ctgtctactg ctgtgagtac ccttttggag acggggtctt tggtgactgt 1380 agccgagcag ttccctgtaa cgtatgtgag aaatttccgc gggctggctg aacttttgaa 1440 agtgagcggg aagatgcagc agcgtgattg gaagacagct gtacacgtca tagtgggccc 1500 gcccggttgt gggaagagcc agtgggcccg taattttgct gagcctaggg acacctactg 1560 gaagcctagt agaaataagt ggtgggatgg atatcatgga gaagaagttg ttgttttgga 1620 tgatttttat ggctggttac cttgggatga tctactgaga ctgtgtgacc ggtatccatt 1680 gactgtagag actaaagggg gtactgttcc ttttttggcc cgcagtattt tgattaccag 1740 caatcaggcc ccccaggaat ggtactcctc aactgctgtc ccagctgtag aagctctcta 1800 tcggaggatt actactttgc aattttggaa gactgctgga gaacaatcca cggaggtacc 1860 cgaaggccga tttgaagcag tggacccacc ctgtgccctt ttcccatata aaataaatta 1920 ctgagtcttt tttgttatca catcgtaatg gtttttattt ttatttattt agagggtctt 1980 ttaggataaa ttctctgaat tgtacataaa tagtcagcct taccacataa ttttgggctg 2040 tggctgcatt ttggagcgca tagccgaggc ctgtgtgctc gacattggtg tgggtattta 2100 aaaagggcga attctgcaga tatccatcac actggcggcc gctcgagcat gcatctagag 2160 ggcccaattc gccctatagt gagtcgtatt acaattcact ggccgtcgtt ttacaacgtc 2220 gtgactggga aaaccctggc gttacccaac ttaatcgcct tgcagcacat ccccctttcg 2280 ccagctggcg taatagcgaa gaggcccgca ccgatcgccc ttcccaacag ttgcgcagcc 2340 tatacgtacg gcagtttaag gtttacacct ataaaagaga gagccgttat cgtctgtttg 2400 tggatgtaca gagtgatatt attgacacgc cggggcgacg gatggtgatc cccctggcca 2460 gtgcacgtct gctgtcagat aaagtctccc gtgaacttta cccggtggtg catatcgggg 2520 atgaaagctg gcgcatgatg accaccgata tggccagtgt gccggtctcc gttatcgggg 2580 aagaagtggc tgatctcagc caccgcgaaa atgacatcaa aaacgccatt aacctgatgt 2640 tctggggaat ataaatgtca ggcatgagat tatcaaaaag gatcttcacc tagatccttt 2700 tcacgtagaa agccagtccg cagaaacggt gctgaccccg gatgaatgtc agctactggg 2760 ctatctggac aagggaaaac gcaagcgcaa agagaaagca ggtagcttgc agtgggctta 2820 catggcgata gctagactgg gcggttttat ggacagcaag cgaaccggaa ttgccagctg 2880 gggcgccctc tggtaaggtt gggaagccct gcaaagtaaa ctggatggct ttctcgccgc 2940 caaggatctg atggcgcagg ggatcaagct ctgatcaaga gacaggatga ggatcgtttc 3000 gcatgattga acaagatgga ttgcacgcag gttctccggc cgcttgggtg gagaggctat 3060 tcggctatga ctgggcacaa cagacaatcg gctgctctga tgccgccgtg ttccggctgt 3120 cagcgcaggg gcgcccggtt ctttttgtca agaccgacct gtccggtgcc ctgaatgaac 3180 tgcaagacga ggcagcgcgg ctatcgtggc tggccacgac gggcgttcct tgcgcagctg 3240 tgctcgacgt tgtcactgaa gcgggaaggg actggctgct attgggcgaa gtgccggggc 3300 aggatctcct gtcatctcac cttgctcctg ccgagaaagt atccatcatg gctgatgcaa 3360 tgcggcggct gcatacgctt gatccggcta cctgcccatt cgaccaccaa gcgaaacatc 3420 gcatcgagcg agcacgtact cggatggaag ccggtcttgt cgatcaggat gatctggacg 3480 aagagcatca ggggctcgcg ccagccgaac tgttcgccag gctcaaggcg agcatgcccg 3540 acggcgagga tgtcgtcgtg acccatggcg atgcctgctt gccgaatatc atggtggaaa 3600 atggccgctt ttctggattc atcgactgtg gccggctggg tgtggcggac cgctatcagg 3660 acatagcgtt ggctacccgt gatattgctg aagagcttgg cggcgaatgg gctgaccgct 3720 tcctcgtgct ttacggtatc gccgctcccg attcgcagcg catcgccttc tatcgccttc 3780 ttgacgagtt cttctgaatt attaacgctt acaatttcct gatgcggtat tttctcctta 3840 cgcatctgtg cggtatttca caccgcatac aggtggcact tttcggggaa atgtgcgcgg 3900 aacccctatt tgtttatttt tctaaataca ttcaaatatg tatccgctca tgagacaata 3960 accctgataa atgcttcaat aatagcacgt gaggagggcc accatggcca agttgaccag 4020 tgccgttccg gtgctcaccg cgcgcgacgt cgccggagcg gtcgagttct ggaccgaccg 4080 gctcgggttc tcccgggact tcgtggagga cgacttcgcc ggtgtggtcc gggacgacgt 4140 gaccctgttc atcagcgcgg tccaggacca ggtggtgccg gacaacaccc tggcctgggt 4200 gtgggtgcgc ggcctggacg agctgtacgc cgagtggtcg gaggtcgtgt ccacgaactt 4260 ccgggacgcc tccgggccgg ccatgaccga gatcggcgag cagccgtggg ggcgggagtt 4320 cgccctgcgc gacccggccg gcaactgcgt gcacttcgtg gccgaggagc aggactgaca 4380 cgtgctaaaa cttcattttt aatttaaaag gatctaggtg aagatccttt ttgataatct 4440 catgaccaaa atcccttaac gtgagttttc gttccactga gcgtcagacc ccgtagaaaa 4500 gatcaaagga tcttcttgag atcctttttt tctgcgcgta atctgctgct tgcaaacaaa 4560 aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa gagctaccaa ctctttttcc 4620 gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttctag tgtagccgta 4680 gttaggccac cacttcaaga actctgtagc accgcctaca tacctcgctc tgctaatcct 4740 gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg 4800 atagttaccg gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca cacagcccag 4860 cttggagcga acgacctaca ccgaactgag atacctacag cgtgagctat gagaaagcgc 4920 cacgcttccc gaagggagaa aggcggacag gtatccggta agcggcaggg tcggaacagg 4980 agagcgcacg agggagcttc cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt 5040 tcgccacctc tgacttgagc gtcgattttt gtgatgctcg tcaggggggc ggagcctatg 5100 gaaaaacgcc agcaacgcgg cctttttacg gttcctgggc ttttgctggc cttttgctca 5160 catgttcttt cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg 5220 agctgatacc gctcgccgca gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc 5280 ggaag 5285 2 5650 DNA Porcine circovirus 2 ggatcgatcc ggctgtggaa tgtgtgtcag ttagggtgtg gaaagtcccc aggctcccca 60 gcaggcagaa gtatgcaaag catgcatcaa gcttggtacc gagctcggat ccactagtaa 120 cggccgccag tgtgctggaa ttcgccctta tttaaatgga gccacagctg gtttctttta 180 ttatttgggt ggaaccaatc aattgtttgg tccagctcag gtttgggggt gaagtacctg 240 gagtggtagg taaagggctg ccttatggtg tggcgggagg agtagttaat ataggggtca 300 taggccaagt tggtggaggg ggttacaaag ttggcatcca agataacaac agtggaccca 360 acacctcttt gattagaggt gatggggtct ctggggtaaa attcatattt agcctttcta 420 atacggtagt attggaaagg taggggtagg gggttggtgc cgcctgaggg ggggaggaac 480 tggccgatgt tgaatttgag gtagttaaca ttccaagatg gctgcgagta tcctcctttt 540 atggtgagta caaattctgt agaaaggcgg gaattgaaga tacccgtctt tcggcgccat 600 ctgtaacggt ttctgaaggc ggggtgtgcc aaatatggtc ttctccggag gatgtttcca 660 agatggctgc gggggcgggt ccttcttctg cggtaacgcc tccttggcca cgtcatccta 720 taaaagtgaa agaagtgcgc tgctgtagta ttaccagcgc acttcggcag cggcagcacc 780 tcggcagcgt cagtgaaaat gccaagcaag aaaagcggcc cgcaacccca taagaggtgg 840 gtgttcaccc ttaataatcc ttccgaggag gagaaaaaca aaatacggga gcttccaatc 900 tccctttttg attattttgt ttgcggagag gaaggtttgg aagagggtag aactcctcac 960 ctccaggggt ttgcgaattt tgctaagaag cagactttta acaaggtgaa gtggtatttt 1020 ggtgcccgct gccacatcga gaaagcgaaa ggaaccgacc agcagaataa agaatactgc 1080 agtaaagaag gccacatact tatcgagtgt ggagctccgc ggaaccaggg gaagcgcagc 1140 gacctgtcta ctgctgtgag tacccttttg gagacggggt ctttggtgac tgtagccgag 1200 cagttccctg taacgtatgt gagaaatttc cgcgggctgg ctgaactttt gaaagtgagc 1260 gggaagatgc agcagcgtga ttggaagaca gctgtacacg tcatagtggg cccgcccggt 1320 tgtgggaaga gccagtgggc ccgtaatttt gctgagccta gggacaccta ctggaagcct 1380 agtagaaata agtggtggga tggatatcat ggagaagaag ttgttgtttt ggatgatttt 1440 tatggctggt taccttggga tgatctactg agactgtgtg accggtatcc attgactgta 1500 gagactaaag ggggtactgt tccttttttg gcccgcagta ttttgattac cagcaatcag 1560 gccccccagg aatggtactc ctcaactgct gtcccagctg tagaagctct ctatcggagg 1620 attactactt tgcaattttg gaagactgct ggagaacaat ccacggaggt acccgaaggc 1680 cgatttgaag cagtggaccc accctgtgcc cttttcccat ataaaataaa ttactgagtc 1740 ttttttgtta tcacatcgta atggttttta tttttattta tttagagggt cttttaggat 1800 aaattctctg aattgtacat aaatagtcag ccttaccaca taattttggg ctgtggctgc 1860 attttggagc gcatagccga ggcctgtgtg ctcgacattg gtgtgggtat ttaaataagg 1920 gcgaattctg cagatatcca tcacactggc ggccgctcga gtctagaggg cccgtttaaa 1980 cccgctgatc agcctcgact gtgccttcta gttgccagcc atctgttgtt tgcccctccc 2040 ccgtgccttc cttgaccctg gaaggtgcca ctcccactgt cctttcctaa taaaatgagg 2100 aaattgcatc gcattgtctg agtaggtgtc attctattct ggggggtggg gtggggcagg 2160 acagcaaggg ggaggattgg gaagacaata gcaggcatgc tggggatgcg gtgggctcta 2220 tggcttctga ggcggaaaga accagcatgt gagcaaaagg ccagcaaaag gccaggaacc 2280 gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg cccccctgac gagcatcaca 2340 aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt 2400 ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc 2460 tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc 2520 tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc 2580 ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact 2640 tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg 2700 ctacagagtt cttgaagtgg tggcctaact acggctacac tagaagaaca gtatttggta 2760 tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca 2820 aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa 2880 aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg 2940 aaaactcacg ttaagggatt ttggtcatga cattaaccta taaaaatagg cgtatcacga 3000 ggccctttcg tctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac atgcagctcc 3060 cggagacggt cacagcttgt ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg 3120 cgtcagcggg tgttggcggg tgtcggggct ggcttaacta tgcggcatca gagcagattg 3180 tactgagagt gcaccatatg cggtgtgaaa taccgcacag atgcgtaagg agaaaatacc 3240 gcatcaggac gcgccctgta gcggcgcatt aagcgcggcg ggtgtggtgg ttacgcgcag 3300 cgtgaccgct acacttgcca gcgccctagc gcccgctcct ttcgctttct tcccttcctt 3360 tctcgccacg ttcgccggct ttccccgtca agctctaaat cgggggctcc ctttagggtt 3420 ccgatttagt gctttacggc acctcgaccc caaaaaactt gattagggtg atggttcacg 3480 tagtgggcca tcgccctgat agacggtttt tcgccctttg acgttggagt ccacgttctt 3540 taatagtgga ctcttgttcc aaactggaac aacactcaac cctatctcgg tctattcttt 3600 tgatttataa gggattttgc cgatttcggc ctattggtta aaaaatgagc tgatttaaca 3660 aaaatttaac gcgaatttta acaaaatatt aacgcttaca atttccattc gccattcagg 3720 ctgaactaga tctagagtcc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 3780 ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag 3840 ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagtac 3900 atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg 3960 cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg 4020 tattagtcat cgctattacc atggtgatgc ggttttggca gtacatcaat gggcgtggat 4080 agcggtttga ctcacgggga tttccaagtc tccaccccat tgacgtcaat gggagtttgt 4140 tttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgcc ccattgacgc 4200 aaatgggcgg taggcgtgta cggtgggagg tctatataag cagagctcgt ttagtgaacc 4260 gtcagatcgc ctggagacgc catccacgct gttttgacct ccatagaaga caccgggacc 4320 gatccagcct ccgcggccgg gaacggtgca ttggaacgga ccgtgttgac aattaatcat 4380 cggcatagta tatcggcata gtataatacg acaaggtgag gaactaaacc atggctagca 4440 aaggagaaga acttttcact ggagttgtcc caattcttgt tgaattagat ggtgatgtta 4500 atgggcacaa attttctgtc agtggagagg gtgaaggtga tgctacatac ggaaagctta 4560 cccttaaatt tatttgcact actggaaaac tacctgttcc atggccaaca cttgtcacta 4620 ctttctctta tggtgttcaa tgcttttccc gttatccgga tcatatgaaa cggcatgact 4680 ttttcaagag tgccatgccc gaaggttatg tacaggaacg cactatatct ttcaaagatg 4740 acgggaacta caagacgcgt gctgaagtca agtttgaagg tgataccctt gttaatcgta 4800 tcgagttaaa aggtattgat tttaaagaag atggaaacat tctcggacac aaactcgagt 4860 acaactataa ctcacacaat gtatacatca cggcagacaa acaaaagaat ggaatcaaag 4920 ctaacttcaa aattcgccac aacattgaag atggatccgt tcaactagca gaccattatc 4980 aacaaaatac tccaattggc gatggccctg tccttttacc agacaaccat tacctgtcga 5040 cacaatctgc cctttcgaaa gatcccaacg aaaagcgtga ccacatggtc cttcttgagt 5100 ttgtaactgc tgctgggatt acacatggca tggatgccaa gttgaccagt gccgttccgg 5160 tgctcaccgc gcgcgacgtc gccggagcgg tcgagttctg gaccgaccgg ctcgggttct 5220 cccgggactt cgtggaggac gacttcgccg gtgtggtccg ggacgacgtg accctgttca 5280 tcagcgcggt ccaggaccag gtggtgccgg acaacaccct ggcctgggtg tgggtgcgcg 5340 gcctggacga gctgtacgcc gagtggtcgg aggtcgtgtc cacgaacttc cgggacgcct 5400 ccgggccggc catgaccgag atcggcgagc agccgtgggg gcgggagttc gccctgcgcg 5460 acccggccgg caactgcgtg cacttcgtgg ccgaggagca ggactgacac tcgacctcga 5520 aacttgttta ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca 5580 aataaagcat ttttttcact gcattctagt tgtggtttgt ccaaactcat caatgtatct 5640 tatcatgtct 5650 3 25 DNA Porcine circovirus 3 tttatttaaa tggagccaca gctgg 25 4 26 DNA Porcine circovirus 4 tttatttaat acccacacca atgtcg 26 5 26 DNA Porcine circovirus 5 accatgccaa gcaagaaaag cggccc 26 6 23 DNA Porcine circovirus 6 ttttcactga cgctgccgag gtg 23 7 7460 DNA Porcine circovirus 7 agatctaggc ctgtgtggtc gacattggtg tgggtattta aatggagcca cagctggttt 60 cttttattat ttggctggaa ccaatcaatt gtttggtcca gctcaggttt gggggtgaag 120 tacctggagt ggtaggtaaa gggctgcctt atggtgtggc gggaggagta gttaatatag 180 gggtcatagg ccaagttggt ggagggggtt acaaagttgg catccaagat aacagcagtg 240 gacccaacac ctctttgatt agaggtgatg gggtctctgg ggtaaaattc atatttagcc 300 tttctaatac ggtagtattg gaaaggtagg ggtagggggt tggtgccgcc tgaggggggg 360 aggaactggc cgatgttgaa tctgagctgg ttaacattcc aagatggctg cgagtgtcct 420 ccttctatgg tgagtacaaa ttctctagaa aggcggcaat tgaagatacc cgtctttcgg 480 cgccatctgt aacggtttct gaaggcgggg tgtgccaaat atggtcttct gcggaggatg 540 tttccaagat ggctgcgggg gcgggtcctt cttctgcggt aacgcctcct tggccacgtc 600 atcctataaa agtgaaagaa gtgcgctgct gtagtattac cagcgcactt cggcagcggc 660 agcacctcgg cagcgtcggt gaaaatgcca agcaagaaaa gcggcccgca accccataag 720 aggtgggtgt tcacccttaa taatccttcc gaggaggaga aaaacaaaat acgggagctt 780 ccaatctccc tttttgatta ttttgtttgc ggagaggaag gtttggaaga gggtagaact 840 cctcacctcc aggggtttgc gaattttgct aagaagcaga cttttaacaa ggtgaagtgg 900 tattttggtg cccgctgcca catcgagaaa gcgaaaggaa ccgaccagca gaataaagaa 960 tactgcagct gcagtaaaga aggccacata cttatcgagt gtggagctcc gcggaaccag 1020 gggaagcgca gcgacctgtc tactgctgtg agtacccttt tggagacggg gtctttggtg 1080 actgtagccg agcagttccc tgtaacgtat gtgagaaatt tccgcgggct ggctgaactt 1140 ttgaaagtga gcgggaagat gcagcagcgt gattggaaga cagctgtaca cgtcatagtg 1200 ggcccgcccg gttgtgggaa gagccagtgg gcccgtaatt ttgctgagcc tagcgacacc 1260 tactggaagc ctagtagaaa taagtggtgg gatggatatc atggagaaga agttgttgtt 1320 ttggatgatt tttatggctg gttaccttgg gatgatctac tgagactgtg tgaccggtat 1380 ccattgactg tagagactaa agggggtact gttccttttt tggcccgcag tattttgatt 1440 accagcaatc aggcccccca ggaatggtac tcctcaactg ctgtcccagc tgtagaagct 1500 ctctatcgga ggattactac tttgcaattt tggaagactg ctggagaaca atccacggag 1560 gtacccgaag gccgatttga agcagtggac ccaccctgtg cccttttccc atataaaata 1620 aattactgag tcttttttgt tatcacatcg taatggtttt tatttttatt catttagagg 1680 gtcttttagg ataaattctc tgaattgtac ataaatagtc agccttacca cataattttg 1740 ggctgtggct gcattttgga gcgcatagcc gaggcctgga tcttcaatat tggccattag 1800 ccatattatt cattggttat atagcataaa tcaatattgg ctattggcca ttgcatacgt 1860 tgtatctata tcataatatg tacatttata ttggctcatg tccaatatga ccgccatgtt 1920 ggcattgatt attgactagt tattaatagt aatcaattac ggggtcatta gttcatagcc 1980 catatatgga gttccgcgtt acataactta cggtaaatgg cccgcctggc tgaccgccca 2040 acgacccccg cccattgacg tcaataatga cgtatgttcc catagtaacg ccaataggga 2100 ctttccattg acgtcaatgg gtggagtatt tacggtaaac tgcccacttg gcagtacatc 2160 aagtgtatca tatgccaagt ccgcccccta ttgacgtcaa tgacggtaaa tggcccgcct 2220 ggcattatgc ccagtacatg accttacggg actttcctac ttggcagtac atctacgtat 2280 tagtcatcgc tattaccatg gtgatgcggt tttggcagta caccaatggg cgtggatagc 2340 ggtttgactc acggggattt ccaagtctcc accccattga cgtcaatggg agtttgtttt 2400 ggcaccaaaa tcaacgggac tttccaaaat gtcgtaataa ccccgccccg ttgacgcaaa 2460 tgggcggtag gcgtgtacgg tgggaggtct atataagcag agctcgttta gtgaaccgtc 2520 agatcactag aagctttatt gcggtagttt atcacagtta aattgctaac gcagtcagtg 2580 cttctgacac aacagtctcg aacttaagct gcagaagttg gtcgtgaggc actgggcagg 2640 taagtatcaa ggttacaaga caggtttaag gagaccaata gaaactgggc ttgtcgagac 2700 agagaagact cttgcgtttc tgataggcac ctattggtct tactgacatc cactttgcct 2760 ttctctccac aggtgtccac tcccagttca attacagctc ttaaggctag agtacttaat 2820 acgactcact ataggctagc aagatctcct aggaagcttt ccatggaaga cgccaaaaac 2880 ataaagaaag gcccggcgcc attctatccg ctggaagatg gaaccgctgg agagcaactg 2940 cataaggcta tgaagagata cgccctggtt cctggaacaa ttgcttttac agatgcacat 3000 atcgaggtgg acatcactta cgctgagtac ttcgaaatgt ccgttcggtt ggcagaagct 3060 atgaaacgat atgggctgaa tacaaatcac agaatcgtcg tatgcagtga aaactctctt 3120 caattcttta tgccggtgtt gggcgcgtta ttatcggagt ttgcagttgc gcccgcgaac 3180 gacatttata atgaacgtga attgctcaac agtatgggca tttcgcagcc taccgtggtg 3240 ttcgtttcca aaaaggggtt gcaaaaaatt ttgaacgtgc aaaaaaagct cccaatcatc 3300 caaaaaatta ttatcatgga ttctaaaacg gattaccagg gatttcagtc gatgtacacg 3360 ttcgtcacat ctcatctacc tcccggtttt aatgaatacg attttgtgcc agagtccttc 3420 gatagggaca agacaattgc actgatcatg aactcctctg gatctactgg tgtgcctaaa 3480 ggtgtcgctc tgcctcatag aactgcctgc gtgagattct cgcatgccag agatcctaat 3540 tttggcaatc aaatcattcc ggatactgcg attttaagtg ttgttccatt ccatcacggt 3600 tttggaatgt ttactacact cggatatttg atatgtggat ttcgagtcgt cttaatgtat 3660 agatttgaag aagagctgtt tctgaggagc cttcaggatt acaagattca aagtgcgctg 3720 ctggtgccaa ccctattctc cttcttcgcc aaaagcactc tgattgacaa atacgattta 3780 tctaatttac acgaaattgc ttctggtggc gctcccctct ctaaggaagt cggggaagcg 3840 gttgccaaga ggttccatct gccaggtatc aggcaaggat atgggctcac tgagactaca 3900 tcagctattc tgattacacc cgagggggat gataaaccgg gcgcggtcgg taaagttgtt 3960 ccattttttg aagcgaaggt tgtggatctg gataccggga aaacgctggg cgttaatcaa 4020 agaggcgaac tgtgtgtgag aggtcctatg attatgtccg gttatgtaaa caatccggaa 4080 gcgaccaacg ccttgattga caaggatgga tggctacatt ctggagacat agcttactgg 4140 gacgaagacg aacacttctt catcgttgac cgcctgaagt ctctgattaa gtacaaaggc 4200 tatcaggtgg ctcccgctga attggaatcc atcttgctcc aacaccccaa catcttcgac 4260 gcaggtgtcg caggtcttcc cgacgatgac gccggtgaac ttcccgccgc cgttgttgtt 4320 ttggagcacg gaaagacgat gacggaaaaa gagatcgtgg attacgtcgc cagtcaagta 4380 acaaccgcga aaaagttgcg cggaggagtt gtgtttgtgg acgaagtacc gaaaggtctt 4440 accggaaaac tcgacgcaag aaaaatcaga gagatcctca taaaggccaa gaagggcgga 4500 aagatcgccg tgtaattcta gagaattcac gcgtggtacc tctagagtcg acccgggcgg 4560 ccgcttcgag cagacatgat aagatacatt gatgagtttg gacaaaccac aactagaatg 4620 cagtgaaaaa aatgctttat ttgtgaaatt tgtgatgcta ttgctttatt tgtaaccatt 4680 ataagctgca ataaacaagt taacaacaac aattgcattc attttatgtt tcaggttcag 4740 ggggagatgt gggaggtttt ttaaagcaag taaaacctct acaaatgtgg taaaatcgat 4800 aaggatccgg gctggcgtaa tagcgaagag gcccgcaccg atcgcccttc ccaacacttg 4860 cgcagcctga atggcgaatg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg 4920 tggttacgcg cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt 4980 tcttcccttc ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc 5040 tccctttagg gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg 5100 gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg 5160 agtccacgtt ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct 5220 cggtctattc ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg 5280 agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgctt acaatttcct 5340 gatgcggtat tttctcctta cgcatctgtg cggtatttca caccgcatat ggtgcactct 5400 cagtacaatc tgctctgatg ccgcatagtt aagccagccc cgacacccgc caacacccgc 5460 tgacgcgccc tgacgggctt gtctgctccc ggcatccgct tacagacaag ctgtgaccgt 5520 ctccgggagc tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg cgagacgaaa 5580 gggcctcgtg atacgcctat ttttataggt taatgtcatg ataataatgg tttcttagac 5640 gtcaggtggc acttttcggg gaaatgtgcg cggaacccct atttgtttat ttttctaaat 5700 acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc aataatattg 5760 aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct tttttgcggc 5820 attttgcctt cctgtttttg ctcacccaga aacgctggtg aaagtaaaag atgctgaaga 5880 tcagttgggt gcacgagtgg gttacatgga actggatctc aacagcggta agatccttga 5940 gagttttcgc cccgaagaac gttttccaat gatgagcact tttaaagttc tgctatgtgg 6000 cgcggtatta tcccgtattg acgccgggca agagcaactc ggtcgccgca tacactattc 6060 tcagaatgac ttggttgagt actcaccagt cacagaaaag catcttacgg atggcatgac 6120 agtaagagaa ttatgcagtg ctgccataac catgagtgat aacactgcgg ccaacttact 6180 tctgacaacg atcggaggac cgaaggagct aaccgctttt ttgcacaaca tgggggatca 6240 tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa gccataccaa acgacgagcg 6300 tgacaccacg atgcctgtag caatggcaac aacgttgcgc aaactattaa ctggcgaact 6360 acttactcta gcttcccggc aacaattaat agactggatg gaggcggata aagttgcagg 6420 accacttctg cgctcggccc ttccggctgg ctggtttatt gctgataaat ctggagccgg 6480 tgagcgtggg tctcgcggta tcattgcagc actggggcca gatggtaagc cctcccgtat 6540 cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata gacagatcgc 6600 tgagataggt gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat 6660 actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt 6720 tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc 6780 cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt 6840 gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac 6900 tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg ttcttctagt 6960 gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct 7020 gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga 7080 ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac 7140 acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg 7200 agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt 7260 cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc 7320 tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg 7380 gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc 7440 ttttgctcac atggctcgac 7460 8 29 DNA Porcine circovirus 8 aaagatctag gcctgtgtgc tcgacattg 29 9 28 DNA Porcine circovirus 9 aaggatccag gcctcggcta tgcgctcc 28
Claims (29)
1) A polynucleotide capable of eliciting an immunization reaction in an eukaryotic host to a peptide or polypeptide wherein:
a. said polynucleotide encodes said peptide or polypeptide;
b. said polynucleotide contains elements of a viral genome which is capable of rolling circle replication; and
c. said peptide or polypeptide is capable of expression of said peptide or polypeptide in said eukaryotic host.
2) The polynucleotide according to claim 1 , wherein said peptide or polypeptide is non-native to said eukaryotic host.
3) The polynucleotide according to claim 1 , wherein said polynucleotide contains elements of a viral genome derived from Circoviruses, Geminiviruses or Nanoviruses.
4) The polynucleotide according to claim 3 , wherein said polynucleotide comprises:
a. a Rep gene encoding a Rep protein from a virus selected from the group of genera of family Geminiviridae, genera of family Circoviridae, and genus Nanovirus, wherein said Rep gene is capable of being expressed in said eukaryotic host; and
b. sequences that are cis on the polynucleotide such that the Rep protein can bring about rolling circle replication of the polynucleotide.
5) The polynucleotide according to claim 4 , wherein said first virus cannot replicate in said eukaryotic host.
6) The polynucleotide according to claim 4 , wherein said Rep gene is operatively linked 5′ to a promoter.
7) The polynucleotide according to claim 6 , wherein said promoter functions in a specified cell or tissue type of said eukaryotic host.
8) The polynucleotide according to claim 1 , wherein said polynucleotide encodes an ancillary protein capable of expression in said host.
9) The polynucleotide according to claim 8 , wherein expression of said ancillary protein is capable of increasing the immunization reaction in said host elicited by said peptide or polypeptide.
10) The polynucleotide according to claim 9 , wherein said ancillary protein is chosen from the group consisting of GM-CSF and IL-1 beta.
11) The polynucleotide according to claim 1 , wherein said polynucleotide is coated with at least one nuclear targeting protein capable of targeting said polynucleotide to the cell nucleus in said eukaryotic host.
12) The polynucleotide according to claim 11 , wherein the at least one nuclear targeting protein is selected from the group consisting of histone H1, histone H2A, histone H2B, histone H3 and histone H4.
13) The polynucleotide according to claim 1 , wherein said polynucleotide is coated with at least one condensing protein capable of condensing said polynucleotide.
14) The polynucleotide according to claim 13 , wherein the at least one condensing protein is selected from the group consisting of histone H1, histone H2A, histone H2B, histone H3, histone H4 and mu protein of adenovirus.
15) The polynucleotide according to claim 1 , wherein said polynucleotide is coated with at least one protein capable of condensing said polynucleotide and targeting said polynucleotide to the cell nucleus.
16) The polynucleotide of claim 15 , wherein the at least one condensing and nuclear targeting protein is selected from the group consisting of histone H1, histone H2A, histone H2B, histone H3 and histone H4.
17) A method of constructing a polynucleotide capable of eliciting an immunization reaction in a host comprising inserting a sequence encoding a peptide or polypeptide into said polynucleotide wherein said polynucleotide comprises elements of a viral genome which is capable of rolling circle replication.
18) The method according to claim 17 , wherein said peptide or polypeptide is non-native to said eukaryotic host.
19) The method according to claim 17 , further comprising inserting an ancillary protein into said polynucleotide, wherein expression of said ancillary protein is capable of potentiating an immunization reaction in said host elicited by said peptide or polypeptide.
20) The method according to claim 19 , wherein said ancillary protein is selected from the group consisting of GM-CSF and IL-1 beta.
21) The method according to claim 17 , further comprising coating said polynucleotide with at least one nuclear targeting protein capable of targeting said polynucleotide to the cell nucleus in said eukaryotic host.
22) The method according to claim 21 , whereby the at least one targeting protein is selected from the group consisting of histone H1, histone H2A, histone H2B, histone H3 and histone H4.
23) The method according to claim 17 , further comprising coating said polynucleotide with at least one condensing protein capable of condensing said polynucleotide.
24) The method according to claim 23 , wherein the at least one condensing protein is selected from the group consisting of histone H1, histone H2A, histone H2B, histone H3, histone H4 and the mu protein of adenovirus.
25) The method according to claim 17 , further comprising coating said polynucleotide with at least one condensing and nuclear targeting protein capable of condensing said polynucleotide and targeting said polynucleotide to the cell nucleus.
26) The method according to claim 25 , wherein the at least one condensing and nuclear targeting protein is selected from the group consisting of histone H1, histone H2A, histone H2B, histone H3 and histone H4.
27) A method of immunizing a host comprising administering a composition comprising said polynucleotide of claim 1 into said host.
28) The method according to claim 27 , wherein said polynucleotide encodes an ancillary protein capable of potentiating an immunization reaction in said host elicited by said peptide or polypeptide and is capable of expression of said ancillary protein in said host.
29) The method according to claim 27 , wherein said composition further comprises an adjuvant capable of increasing the immunization reaction in said host elicited by said peptide or polypeptide.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/038,001 US20020187952A1 (en) | 2000-02-16 | 2001-12-20 | Rolling circle replicon expression vectors |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US50547700A | 2000-02-16 | 2000-02-16 | |
| US10/038,001 US20020187952A1 (en) | 2000-02-16 | 2001-12-20 | Rolling circle replicon expression vectors |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US50547700A Continuation-In-Part | 2000-02-16 | 2000-02-16 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020187952A1 true US20020187952A1 (en) | 2002-12-12 |
Family
ID=24010463
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/038,001 Abandoned US20020187952A1 (en) | 2000-02-16 | 2001-12-20 | Rolling circle replicon expression vectors |
| US10/286,186 Expired - Fee Related US7049134B2 (en) | 2000-02-16 | 2002-11-01 | Rolling circle replicon expression vector |
| US11/231,725 Abandoned US20060024821A1 (en) | 2000-02-16 | 2005-09-20 | Rolling circle replicon expression vector |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/286,186 Expired - Fee Related US7049134B2 (en) | 2000-02-16 | 2002-11-01 | Rolling circle replicon expression vector |
| US11/231,725 Abandoned US20060024821A1 (en) | 2000-02-16 | 2005-09-20 | Rolling circle replicon expression vector |
Country Status (3)
| Country | Link |
|---|---|
| US (3) | US20020187952A1 (en) |
| AU (1) | AU2001238535A1 (en) |
| WO (1) | WO2001061024A2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100008939A1 (en) * | 2008-07-09 | 2010-01-14 | General Electric Company | Unprocessed rolling circle amplification product |
| US20110206728A1 (en) * | 2008-07-09 | 2011-08-25 | General Electric Company | Dna vaccines, uses for unprocessed rolling circle amplification product and methods for making the same |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080160040A1 (en) * | 2004-04-15 | 2008-07-03 | Ghim Shin-Je | Plant-produced compositions for treating papillomavirus infection and related methods |
| WO2007038145A2 (en) * | 2005-09-08 | 2007-04-05 | Large Scale Biology Corporation | Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications |
| BRPI0619665B1 (en) * | 2005-11-08 | 2022-04-12 | University Of Cape Town | Method for improving the expression of a transgene in a host cell in vitro, mammalian expression cassette, vector, DNA vaccine and pharmaceutical composition |
| CN104404069B (en) * | 2014-11-20 | 2018-02-16 | 苏州金唯智生物科技有限公司 | A kind of low-copy pTerm plasmids and its construction method and application |
| CN104480130B (en) * | 2014-11-20 | 2017-11-14 | 苏州金唯智生物科技有限公司 | A kind of pTerm SC plasmids and its construction method and application |
| WO2021072031A1 (en) * | 2019-10-11 | 2021-04-15 | Insideoutbio, Inc. | Methods and compositions for the manufacture and use of circular dna encoded therapeutics for genetic disorders and other diseases |
| GB202111290D0 (en) * | 2021-08-04 | 2021-09-15 | Univ Cape Town | Self-replicating DNA expression system and immunogen |
| WO2025111446A1 (en) * | 2023-11-21 | 2025-05-30 | The Wistar Institute Of Anatomy And Biology | Rolling circle amplified dna encoded antigens and methods of use thereof |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6287856B1 (en) * | 1998-03-13 | 2001-09-11 | University Of Georgia Research Foundation, Inc. | Vaccines against circovirus infections |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2772047B1 (en) | 1997-12-05 | 2004-04-09 | Ct Nat D Etudes Veterinaires E | GENOMIC SEQUENCE AND POLYPEPTIDES OF CIRCOVIRUS ASSOCIATED WITH PIGLET LOSS DISEASE (MAP), APPLICATIONS TO DIAGNOSIS AND TO PREVENTION AND / OR TREATMENT OF INFECTION |
| DK1997909T3 (en) * | 1998-03-25 | 2012-04-23 | Olink Ab | Rolling circle replication of circularized target nucleic acid fragments |
| EP0960940A1 (en) * | 1998-05-19 | 1999-12-01 | Centro de Investigacion y de Estudios Avanzados del I.P.N.( CINVESTAV) | Geminivirus inducible promoter sequences and the use thereof in geminivirus infected plants or plant cells |
-
2001
- 2001-02-15 WO PCT/US2001/005394 patent/WO2001061024A2/en not_active Ceased
- 2001-02-15 AU AU2001238535A patent/AU2001238535A1/en not_active Abandoned
- 2001-12-20 US US10/038,001 patent/US20020187952A1/en not_active Abandoned
-
2002
- 2002-11-01 US US10/286,186 patent/US7049134B2/en not_active Expired - Fee Related
-
2005
- 2005-09-20 US US11/231,725 patent/US20060024821A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6287856B1 (en) * | 1998-03-13 | 2001-09-11 | University Of Georgia Research Foundation, Inc. | Vaccines against circovirus infections |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100008939A1 (en) * | 2008-07-09 | 2010-01-14 | General Electric Company | Unprocessed rolling circle amplification product |
| US20110206728A1 (en) * | 2008-07-09 | 2011-08-25 | General Electric Company | Dna vaccines, uses for unprocessed rolling circle amplification product and methods for making the same |
| EP2307575A4 (en) * | 2008-07-09 | 2012-09-12 | Gen Electric | UNPROCESSED ROLLING CIRCLE AMPLIFICATION PRODUCT |
| US9125845B2 (en) * | 2008-07-09 | 2015-09-08 | General Electric Company | DNA vaccines, uses for unprocessed rolling circle amplification product and methods for making the same |
Also Published As
| Publication number | Publication date |
|---|---|
| US20030143741A1 (en) | 2003-07-31 |
| WO2001061024A2 (en) | 2001-08-23 |
| US20060024821A1 (en) | 2006-02-02 |
| AU2001238535A1 (en) | 2001-08-27 |
| WO2001061024A3 (en) | 2002-06-27 |
| US7049134B2 (en) | 2006-05-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110437317B (en) | Adeno-associated virus with mutated capsid protein and use thereof | |
| JP7560447B2 (en) | AAV triple plasmid system | |
| JP7463358B2 (en) | Adeno-associated viral vector producer cell lines | |
| ES2764453T3 (en) | Liver specific expression systems optimized for FVIII and FIX | |
| CN109295053B (en) | Method for regulating RNA splicing by inducing splice site base mutation or base substitution of polypyrimidine region | |
| CN112313334A (en) | Homologous directed repair template design and delivery to edit hemoglobin-related mutations | |
| US20040219516A1 (en) | Viral vectors containing recombination sites | |
| US20020187952A1 (en) | Rolling circle replicon expression vectors | |
| CN112480264A (en) | Chimeric antigen receptor taking TIGIT and PD-1 as targets, CAR-T cell and preparation method thereof | |
| CN116348607A (en) | Nucleic acid constructs for simultaneous gene activation | |
| IL296929B2 (en) | Composition and method for treating complement-mediated disease | |
| US20150218586A1 (en) | Minicircles with viral expression cassettes and their use in the transformation of cells for generating recombinant virus or viral gene vectors | |
| CN107849583A (en) | Tools and methods for controlling cell proliferation using cell division loci | |
| CN114008209A (en) | AAV-mediated maple syrup urine disease (MSUD) gene therapy | |
| WO2014063753A1 (en) | Hyper-active factor ix vectors for liver-directed gene therapy of hemophilia 'b' and methods and use thereof | |
| CN112153973A (en) | Compositions and methods for stem cell transplantation | |
| CN113423823A (en) | Method for producing genome-edited cell | |
| CN117795086A (en) | Gene therapy for BCAA modulation in maple diabetes (MSUD) | |
| CN116406425A (en) | Nucleic acid constructs for VA RNA transcription | |
| CN115298307A (en) | Novel combinations of nucleic acid regulatory elements and methods and uses thereof | |
| CN106755095A (en) | Drug screening cell model and its structure and application that targeting HBC dimers are formed | |
| KR20080030956A (en) | Treatment of Diseases Using an Improved Regulated Expression System | |
| CN116554278A (en) | Mutant adeno-associated viruses and their use in the treatment of disease | |
| CN114703203B (en) | Baculovirus vector and its use | |
| US20250295810A1 (en) | Erythroparvovirus with a modified capsid for gene therapy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |