US20020165324A1 - Contact lens material - Google Patents
Contact lens material Download PDFInfo
- Publication number
- US20020165324A1 US20020165324A1 US10/084,062 US8406202A US2002165324A1 US 20020165324 A1 US20020165324 A1 US 20020165324A1 US 8406202 A US8406202 A US 8406202A US 2002165324 A1 US2002165324 A1 US 2002165324A1
- Authority
- US
- United States
- Prior art keywords
- group
- groups
- alkyl
- formula
- valence bond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title claims abstract description 14
- 239000000178 monomer Substances 0.000 claims abstract description 83
- 229920001577 copolymer Polymers 0.000 claims abstract description 35
- 239000003085 diluting agent Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 10
- 230000007935 neutral effect Effects 0.000 claims abstract description 5
- 230000008569 process Effects 0.000 claims abstract description 5
- 230000001588 bifunctional effect Effects 0.000 claims abstract description 4
- 239000001257 hydrogen Substances 0.000 claims description 39
- 229910052739 hydrogen Inorganic materials 0.000 claims description 39
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 24
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 23
- 125000002947 alkylene group Chemical group 0.000 claims description 21
- 125000004432 carbon atom Chemical group C* 0.000 claims description 20
- 150000003839 salts Chemical class 0.000 claims description 20
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 19
- 229920000642 polymer Polymers 0.000 claims description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 16
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- 125000000217 alkyl group Chemical group 0.000 claims description 14
- 229940044192 2-hydroxyethyl methacrylate Drugs 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 9
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 7
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 7
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 5
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims description 5
- 229920002554 vinyl polymer Polymers 0.000 claims description 5
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical group C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 4
- IUHFWCGCSVTMPG-UHFFFAOYSA-N [C].[C] Chemical group [C].[C] IUHFWCGCSVTMPG-UHFFFAOYSA-N 0.000 claims description 4
- 150000001721 carbon Chemical group 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 150000003440 styrenes Chemical class 0.000 claims description 3
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 36
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 21
- VYFGDMAXYITNFT-UHFFFAOYSA-N ethyl phosphate;trimethylazanium Chemical compound C[NH+](C)C.C[NH+](C)C.CCOP([O-])([O-])=O VYFGDMAXYITNFT-UHFFFAOYSA-N 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 239000003999 initiator Substances 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 239000000017 hydrogel Substances 0.000 description 11
- -1 hydroxyalkyl methacrylate Chemical compound 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 10
- 239000012528 membrane Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- SBMUNILHNJLMBF-UHFFFAOYSA-N 2-chloro-1,3,2$l^{5}-dioxaphospholane 2-oxide Chemical compound ClP1(=O)OCCO1 SBMUNILHNJLMBF-UHFFFAOYSA-N 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 8
- 0 *C(=C)C(=O)*C.C=CC.C[K]c1ccccc1 Chemical compound *C(=C)C(=O)*C.C=CC.C[K]c1ccccc1 0.000 description 7
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 7
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- SUHOQUVVVLNYQR-MRVPVSSYSA-N choline alfoscerate Chemical compound C[N+](C)(C)CCOP([O-])(=O)OC[C@H](O)CO SUHOQUVVVLNYQR-MRVPVSSYSA-N 0.000 description 7
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- JIQCSWZUMQHUDD-UHFFFAOYSA-N 2-[(2-oxo-1,3,2$l^{5}-dioxaphospholan-2-yl)oxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOP1(=O)OCCO1 JIQCSWZUMQHUDD-UHFFFAOYSA-N 0.000 description 6
- MWNFTUZZKQCWFZ-UHFFFAOYSA-N 2-[4-[(4-ethenylphenyl)methoxy]butoxy]-1,3,2$l^{5}-dioxaphospholane 2-oxide Chemical compound C1=CC(C=C)=CC=C1COCCCCOP1(=O)OCCO1 MWNFTUZZKQCWFZ-UHFFFAOYSA-N 0.000 description 6
- ZCVDFTDKYCFDBG-UHFFFAOYSA-N 4-[(4-ethenylphenyl)methoxy]butan-1-ol Chemical compound OCCCCOCC1=CC=C(C=C)C=C1 ZCVDFTDKYCFDBG-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- 230000010933 acylation Effects 0.000 description 6
- 238000005917 acylation reaction Methods 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 239000012460 protein solution Substances 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- NOBYOEQUFMGXBP-UHFFFAOYSA-N (4-tert-butylcyclohexyl) (4-tert-butylcyclohexyl)oxycarbonyloxy carbonate Chemical compound C1CC(C(C)(C)C)CCC1OC(=O)OOC(=O)OC1CCC(C(C)(C)C)CC1 NOBYOEQUFMGXBP-UHFFFAOYSA-N 0.000 description 5
- OLSFRDLMFAOSIA-UHFFFAOYSA-N 2-chloro-1,3,2-dioxaphospholane Chemical compound ClP1OCCO1 OLSFRDLMFAOSIA-UHFFFAOYSA-N 0.000 description 5
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 5
- 239000008777 Glycerylphosphorylcholine Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 229960004956 glycerylphosphorylcholine Drugs 0.000 description 5
- 150000004820 halides Chemical class 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical class CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 150000008065 acid anhydrides Chemical class 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 239000011877 solvent mixture Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229940126062 Compound A Drugs 0.000 description 3
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000003926 acrylamides Chemical class 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 239000001273 butane Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- WIYVVIUBKNTNKG-UHFFFAOYSA-N 6,7-dimethoxy-3,4-dihydronaphthalene-2-carboxylic acid Chemical compound C1CC(C(O)=O)=CC2=C1C=C(OC)C(OC)=C2 WIYVVIUBKNTNKG-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- 239000004342 Benzoyl peroxide Substances 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- HXRIAIWBMXYXGV-UHFFFAOYSA-M CCCC(COC(=O)CC)OP(=O)([O-])OC Chemical compound CCCC(COC(=O)CC)OP(=O)([O-])OC HXRIAIWBMXYXGV-UHFFFAOYSA-M 0.000 description 2
- JHXHUTSDMHYXTD-UHFFFAOYSA-M CCCC(COP(=O)([O-])OCC)OC(=O)CC Chemical compound CCCC(COP(=O)([O-])OCC)OC(=O)CC JHXHUTSDMHYXTD-UHFFFAOYSA-M 0.000 description 2
- DZUGZLHQXICYOL-UHFFFAOYSA-M CCOP(=O)([O-])OCC(CC)COC(=O)CC Chemical compound CCOP(=O)([O-])OCC(CC)COC(=O)CC DZUGZLHQXICYOL-UHFFFAOYSA-M 0.000 description 2
- SMNZHEHSKZSQLM-UHFFFAOYSA-M CCP(=O)([O-])OC Chemical compound CCP(=O)([O-])OC SMNZHEHSKZSQLM-UHFFFAOYSA-M 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 102000016943 Muramidase Human genes 0.000 description 2
- 108010014251 Muramidase Proteins 0.000 description 2
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- 229960003328 benzoyl peroxide Drugs 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 229940093476 ethylene glycol Drugs 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000004325 lysozyme Substances 0.000 description 2
- 235000010335 lysozyme Nutrition 0.000 description 2
- 229960000274 lysozyme Drugs 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- DCUFMVPCXCSVNP-UHFFFAOYSA-N methacrylic anhydride Chemical compound CC(=C)C(=O)OC(=O)C(C)=C DCUFMVPCXCSVNP-UHFFFAOYSA-N 0.000 description 2
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 2
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- GWLJTAJEHRYMCA-UHFFFAOYSA-N phospholane Chemical compound C1CCPC1 GWLJTAJEHRYMCA-UHFFFAOYSA-N 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000002390 rotary evaporation Methods 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 2
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 2
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- WVAFEFUPWRPQSY-UHFFFAOYSA-N 1,2,3-tris(ethenyl)benzene Chemical class C=CC1=CC=CC(C=C)=C1C=C WVAFEFUPWRPQSY-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- BHKKSKOHRFHHIN-MRVPVSSYSA-N 1-[[2-[(1R)-1-aminoethyl]-4-chlorophenyl]methyl]-2-sulfanylidene-5H-pyrrolo[3,2-d]pyrimidin-4-one Chemical compound N[C@H](C)C1=C(CN2C(NC(C3=C2C=CN3)=O)=S)C=CC(=C1)Cl BHKKSKOHRFHHIN-MRVPVSSYSA-N 0.000 description 1
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- OLQFXOWPTQTLDP-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCO OLQFXOWPTQTLDP-UHFFFAOYSA-N 0.000 description 1
- MCWMYICYUGCRDY-UHFFFAOYSA-N 2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOCCO MCWMYICYUGCRDY-UHFFFAOYSA-N 0.000 description 1
- LTHJXDSHSVNJKG-UHFFFAOYSA-N 2-[2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOCCOC(=O)C(C)=C LTHJXDSHSVNJKG-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical class CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- QUOIKGVUMIIQMN-UHFFFAOYSA-N C.C=C(C)C(=O)OCCO.C=C(C)C(=O)OCCOP(=O)([O-])OCC[N+](C)(C)C.C=C(C)C(=O)OCCOP1(=O)OCCO1.ClP1OCCO1.O=P1(Cl)OCCO1.O=P1(Cl)OCCO1.OCCO Chemical compound C.C=C(C)C(=O)OCCO.C=C(C)C(=O)OCCOP(=O)([O-])OCC[N+](C)(C)C.C=C(C)C(=O)OCCOP1(=O)OCCO1.ClP1OCCO1.O=P1(Cl)OCCO1.O=P1(Cl)OCCO1.OCCO QUOIKGVUMIIQMN-UHFFFAOYSA-N 0.000 description 1
- PLJNDLBOZHULLC-UHFFFAOYSA-K C.CC.CCC(=O)OC(CC)COP(=O)([O-])O1CC1N(C)CC.CCCCN(C)(C)C.CCCOP(=O)([O-])OCC(C)COC(=O)CC.CCN(C)COP(=O)([O-])OC Chemical compound C.CC.CCC(=O)OC(CC)COP(=O)([O-])O1CC1N(C)CC.CCCCN(C)(C)C.CCCOP(=O)([O-])OCC(C)COC(=O)CC.CCN(C)COP(=O)([O-])OC PLJNDLBOZHULLC-UHFFFAOYSA-K 0.000 description 1
- VNLBWUZNBBUAAO-UHFFFAOYSA-M C=C(C)C(=O)O1CC1N(C)C.C=C(C)C(=O)O1CC1N(C)C.C=C(C)C(=O)OCC[N+](C)(C)C.C=C(C)C(=O)OCC[N+](C)(C)CCCS(=O)(=O)[O-].COS(=O)(=O)C(F)(F)F.O=S(=O)([O-])C(F)(F)F.O=S1(=O)CCCO1 Chemical compound C=C(C)C(=O)O1CC1N(C)C.C=C(C)C(=O)O1CC1N(C)C.C=C(C)C(=O)OCC[N+](C)(C)C.C=C(C)C(=O)OCC[N+](C)(C)CCCS(=O)(=O)[O-].COS(=O)(=O)C(F)(F)F.O=S(=O)([O-])C(F)(F)F.O=S1(=O)CCCO1 VNLBWUZNBBUAAO-UHFFFAOYSA-M 0.000 description 1
- DEZNBOOCKBLMTP-UHFFFAOYSA-H C=C(C)C(=O)OC(COC(=O)CC)COP(=O)([O-])OCC.C=C(C)C(=O)OCC(COP(=O)([O-])O1CC1N(C)CC)OC(=O)CC.C=C(C)C(=O)OCCN(C)(C)C.C=C(C)C(=O)OCCN(C)(C)CCCC.C=C(C)C(=O)OCCOP(=O)([O-])OCCN(C)(C)C.CN(C)C.CS(=O)(=O)[O-].[H]C(=C)C(=O)OC(COC(=O)CC)COP(=O)([O-])O1CC1N(C)CC.[H]C(=C)C(=O)OCC(COP(=O)([O-])OCCN(C)CC)OC(=O)CC Chemical compound C=C(C)C(=O)OC(COC(=O)CC)COP(=O)([O-])OCC.C=C(C)C(=O)OCC(COP(=O)([O-])O1CC1N(C)CC)OC(=O)CC.C=C(C)C(=O)OCCN(C)(C)C.C=C(C)C(=O)OCCN(C)(C)CCCC.C=C(C)C(=O)OCCOP(=O)([O-])OCCN(C)(C)C.CN(C)C.CS(=O)(=O)[O-].[H]C(=C)C(=O)OC(COC(=O)CC)COP(=O)([O-])O1CC1N(C)CC.[H]C(=C)C(=O)OCC(COP(=O)([O-])OCCN(C)CC)OC(=O)CC DEZNBOOCKBLMTP-UHFFFAOYSA-H 0.000 description 1
- UNUNHEWUFXUTMQ-UHFFFAOYSA-N C=CC.C=Cc1ccc(COC(CCC)OP(=O)([O-])OCC[NH2+]C)cc1.C=Cc1ccc(COCCCCO)cc1.C=Cc1ccc(COCCCCOP2(=O)OCCO2)cc1.CC.CN(C)C.ClCc1ccccc1.O=P1(Cl)OCCO1.OCCCCO Chemical compound C=CC.C=Cc1ccc(COC(CCC)OP(=O)([O-])OCC[NH2+]C)cc1.C=Cc1ccc(COCCCCO)cc1.C=Cc1ccc(COCCCCOP2(=O)OCCO2)cc1.CC.CN(C)C.ClCc1ccccc1.O=P1(Cl)OCCO1.OCCCCO UNUNHEWUFXUTMQ-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N CC Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- HLRIVDJUOZKWIV-UHFFFAOYSA-M CC1(C)OCC(CO)O1.CCO[P@](=O)([O-])OCC(O)CO.CP(=O)(Cl)Cl.CP(=O)(O)OCC(O)CO.O=P(Cl)(Cl)Cl.[OH3+] Chemical compound CC1(C)OCC(CO)O1.CCO[P@](=O)([O-])OCC(O)CO.CP(=O)(Cl)Cl.CP(=O)(O)OCC(O)CO.O=P(Cl)(Cl)Cl.[OH3+] HLRIVDJUOZKWIV-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 239000011837 N,N-methylenebisacrylamide Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000000991 chicken egg Anatomy 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 125000003963 dichloro group Chemical group Cl* 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- ZJXZSIYSNXKHEA-UHFFFAOYSA-L ethyl phosphate(2-) Chemical compound CCOP([O-])([O-])=O ZJXZSIYSNXKHEA-UHFFFAOYSA-L 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- CUILPNURFADTPE-UHFFFAOYSA-N hypobromous acid Chemical compound BrO CUILPNURFADTPE-UHFFFAOYSA-N 0.000 description 1
- 150000007928 imidazolide derivatives Chemical class 0.000 description 1
- 229910001412 inorganic anion Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000003951 lactams Chemical group 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 125000005395 methacrylic acid group Chemical class 0.000 description 1
- OIRDBPQYVWXNSJ-UHFFFAOYSA-N methyl trifluoromethansulfonate Chemical compound COS(=O)(=O)C(F)(F)F OIRDBPQYVWXNSJ-UHFFFAOYSA-N 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004262 preparative liquid chromatography Methods 0.000 description 1
- 125000000075 primary alcohol group Chemical group 0.000 description 1
- ARJOQCYCJMAIFR-UHFFFAOYSA-N prop-2-enoyl prop-2-enoate Chemical compound C=CC(=O)OC(=O)C=C ARJOQCYCJMAIFR-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- RNVYQYLELCKWAN-UHFFFAOYSA-N solketal Chemical compound CC1(C)OCC(CO)O1 RNVYQYLELCKWAN-UHFFFAOYSA-N 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 108010019783 tear proteins Proteins 0.000 description 1
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- XPDWGBQVDMORPB-UHFFFAOYSA-N trifluoromethane acid Natural products FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical group 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/09—Esters of phosphoric acids
- C07F9/091—Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6564—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
- C07F9/6571—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
- C07F9/6574—Esters of oxyacids of phosphorus
- C07F9/65742—Esters of oxyacids of phosphorus non-condensed with carbocyclic rings or heterocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/14—Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
- C08F212/16—Halogens
- C08F212/18—Chlorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F246/00—Copolymers in which the nature of only the monomers in minority is defined
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/34—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
- C08F220/36—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
Definitions
- the present invention relates to copolymers, in particular suitable for use in contact lenses.
- the water content of hydroxyalkyl methacrylate based gels can be further increased by the addition of vinyl lactams, methacrylic acids, acrylic acids, acrylamides and methacrylamides. Although the required degree of gel hydration can be achieved by the addition of anionic monomers, it is well known that these gels display high levels of protein deposition on and occasionally within the gel matrix.
- the present invention provides a crosslinked copolymer which is obtainable by polymerising a neutral diluent monomer or monomers, a monomer or monomers bearing a centre of permanent positive charge, and a bifunctional or trifunctional crosslinking agent.
- the crosslinked copolymers of the present invention therefore comprise residues of a diluent monomer or monomers, a monomer or monomers bearing a centre of permanent positive charge, and a bifunctional or trifunctional crosslinking agent.
- copolymers of the invention may be xerogels which do not contain any water. Alternatively, they may be in the form of hydrogels which do contain water.
- the invention also provides a process for producing such a crosslinked copolymer, a contact lens material comprising such a copolymer, a contact lens made from such a copolymer, and use of such a copolymer or contact lens material in the production of a contact lens.
- the diluent monomer can act as a solvent for the comonomers during copolymerisation to produce the copolymer if no additional solvent is present.
- a solvent can be used to aid mixing.
- diluent comonomers include alkyl (alk)acrylate preferably containing 1 to 12, more preferably 1 to 4, carbon atoms in the alkyl group of the ester moiety, such as a methyl (alk)acrylate and butyl (alk)acrylate; a dialkylamino alkyl (alk)acrylate, preferably containing 1 to 4 carbon atoms in each alkyl moiety of the amine and 1 to 4 carbon atoms in the alkylene chain, e.g.
- alk 2(dimethylamino)ethyl (alk)acrylate
- an alkyl (alk)acrylamide preferably containing 1 to 4 carbon atoms in the alkyl group of the amide moiety
- a hydroxyalkyl (alk)acrylate preferably containing from 1 to 4 carbon atoms in the hydroxy moiety, e.g.
- a 2-hydroxyethyl (alk)acrylate or a vinyl monomer such as an N-vinyl lactam, preferably containing from 5 to 7 atoms in the lactam ring for instance vinyl pyrrolidone; styrene or a styrene derivative which for example is substituted on the phenyl ring by one or more alkyl groups containing from 1 to 4 carbon atoms, and/or by one or more halogen, such as fluorine atoms.
- a vinyl monomer such as an N-vinyl lactam, preferably containing from 5 to 7 atoms in the lactam ring for instance vinyl pyrrolidone
- styrene or a styrene derivative which for example is substituted on the phenyl ring by one or more alkyl groups containing from 1 to 4 carbon atoms, and/or by one or more halogen, such as fluorine atoms.
- alkacrylate, (alk)acrylic and (alk)acrylamide mean acrylate or alkacrylate, acrylic or alkacrylic and acrylamide or alkacrylamide respectively.
- alkacrylate, alkacrylic and alkacrylamide groups contain from 1 to 4 carbon atoms in the alkyl group thereof and are most preferably methacrylate, methacrylic or methacrylamide groups.
- (meth)acrylate, (meth)acrylic and (meth)acrylamide shall be understood to mean acrylate or methacrylate, acrylic or methacrylic and acrylamide or methacrylamide respectively.
- the diluent monomer is selected from vinylpyrrolidone, 2-hydroxyethyl methacrylate, methyl methacrylate and mixtures thereof, most preferably 2-hydroxyethyl methacrylate, methyl methacrylate and mixtures thereof.
- diluent monomers are vinylpyrrolidone, 2-hydroxyethyl methacrylate and mixtures thereof.
- the comonomer bearing the centre of permanent positive charge can either be cationic or zwitterionic.
- the monomer includes within its structure not only a centre of permanent positive charge but also a centre of negative charge.
- the centre of permanent positive charge in both cationic and zwitterionic comonomers is provided by a quaternary nitrogen atom.
- B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain or if X contains a carbon-carbon chain between B and the centre of permanent positive charge or if Y contains a terminal carbon atom, a valence bond,
- X is a group bearing a centre of permanent positive charge
- Y is an ethylenically unsaturated polymerisable group selected from
- R is hydrogen or a C 1 -C 4 alkyl group
- A is —O— or —NR 1 — where R 1 is hydrogen or a C 1 -C 4 alkyl group or R 1 is —B—X where B and X are as defined above.
- K is a group —(CH 2 ) p OC(O)—, —(CH 2 ) p C(O)O—, —(CH 2 ) p OC(O)O—, —(CH 2 ) p NR 2 —, —(CH 2 ) p NR 2 C(O)—, —(CH 2 ) p C(O)NR 2 —, (CH 2 ) p NR 2 C(O)O—, —(CH 2 ) p OC(O)NR 2 —, —(CH 2 ) p NR 2 C(O)NR 2 — (in which the groups R 2 are the same or different), —(CH 2 ) p O—, —(CH 2 ) p SO 3 —, or, optionally in a combination with B, a valence bond, and p is from 1 to 12 and R 2 is hydrogen or a C 1 -C 4 alkyl group.
- Preferred monomers which bear a centre of positive charge are those of general formula (II) or (II).
- R. A, B and X are as defined with reference to formula (I).
- R is hydrogen, methyl, or ethyl, more preferably methyl, so that the monomer of formula (II) is an acrylic acid, methacrylic acid or ethacrylic acid derivative.
- K may be a valence bond and B a group
- K may be a group and B a valence bond
- both K and B may be groups or K and B may together be a valence bond
- B is a group where X is a valence bond.
- K is a group then preferably p is from 1 to 6, more preferably 1, 2 or 3 and most preferably p is 1.
- R 2 is preferably hydrogen, methyl or ethyl, more preferably hydrogen.
- B is:
- an oxaalkylene group such as alkoxyalkyl having 1 to 6 carbon atoms in each alkyl moiety, more preferably —CH 2 O(CH 2 ) 4 —;
- Preferred groups B include a valence bond and alkylene, oxaalkylene and oligo-oxaalkylene groups of up to 12 carbon atoms.
- Preferred groups X are the groups of formula (IVA), (IVB), (IVC), (IVD), (IVE) and (IVF) as defined below, of which the groups of formula (IVC) are particularly preferred.
- the groups R 5 are all the same. It is also preferable that at least one of the groups R 5 is methyl, and more preferable that all the groups R 5 are methyl.
- the counterion Z ⁇ present in the compounds of formula (II) or (III) containing a group of formula (IVA) is such that the compounds are neutral salts.
- the counterion may be exchanged with ions in physiological fluids and thus the specific nature of the counterion is not critical in the present invention.
- physiologically acceptable counterions are preferred. Suitable physiologically acceptable counterions include halide anions, such as chloride, bromide or fluoride ions, other inorganic anions such as sulphate, phosphate and phosphite and organic anions such as aliphatic mono-, di- or tri-carboxylate anions containing from 2 to 25 carbon atoms and optionally bearing one or more hydroxyl groups e.g. acetate, citrate and lactate.
- X is a group of formula (IVA)
- B is a group of formula —(CR 3 2 )— or —(CR 3 2 ) 2 —, eg. —(CH 2 )— or —(CH 2 CH 2 )—.
- the groups R 6 are the same. It is also preferable that at least one of the groups R 6 is methyl, and more preferable that the groups R 6 are both methyl.
- d is 2 or 3, more preferably 3.
- B is a group of formula —(CR 3 2 )— or —(CR 3 2 ) 2 —, eg. —(CH 2 )— or —(CH 2 CH 2 )—.
- the groups R 7 are the same. It is also preferable that at least one of the groups R 7 is methyl, and more preferable that the groups R 7 are all methyl.
- e is 2 or 3, more preferably 2.
- B is a group of formula —(CR 3 2 )— or —(CR 3 2 ) 2 —, eg. —(CH 2 )— or —(CH 2 CH 2 )—.
- R 8 are the same or different and each is hydrogen or C 1-4 alkyl
- B 1 is a valence bond or straight or branched alkylene, oxaalkylene or oligo-oxaalkalkylene group
- f is from 1 to 4 and if B is other than a valence bond
- Z is 1 and if B is a valence bond Z is 0 if X is directly bonded to an oxygen or nitrogen atom, and otherwise Z is 1.
- the groups R 8 are the same. It is also preferable that at least one of the groups R 8 is methyl, and more preferable that the groups R 8 are all methyl.
- f is 1 or 2, more preferably 2.
- B 1 is:
- an oxaalkylene group such as alkoxyalkyl having 1 to 6 carbon atoms in each alkyl moiety, more preferably —CH 2 O(CH 2 ) 4 —; or
- Preferred groups B 1 include a valence bond and alkylene, oxaalkylene and oligo-oxaalkylene groups of up to 24 carbon atoms.
- B and B 1 are the same.
- R 9 are the same or different and each is hydrogen or C 1 -C 4 alkyl
- B 2 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group
- g is from 1 to 4 and if B is other than a valence bond
- Z is 1 and if B is a valence bond Z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise Z is 1.
- the groups R 9 are the same. It is also preferable that at least one of the groups R 8 is methyl, and more preferable that the groups R 8 are all methyl.
- g is 1 or 2, more preferably 2.
- B 2 is:
- an alkylene group of formula (CR 3b 2 ) ab — wherein the groups —(CR 3b 2 )— are the same or different, and in each group —(CR 3b 2 )— the groups R 3b are the same of different and each group R 3b is hydrogen or C 1-4 alkyl, preferably hydrogen, and ab is from 1 to 24, preferably 6 to 18;
- an oxaalkylene group such as alkoxyalkyl having 1 to 6, carbon atoms in each alkyl moiety, more preferably 'CH 2 O(CH 2 ) 4 —; or
- Preferred groups B 2 include a valence bond and alkylene, oxaalkylene and oligo-oxaalkylene groups of up to 24 carbon atoms.
- B and B 2 are the same.
- R 10 are the same or different and each is hydrogen or C 1-4 alkyl
- B 3 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group
- h is from 1 to 4 if B is other than a valence bond
- Z is 1 and if B is a valence bond Z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise Z is 1.
- the groups R 10 are the same. It is also preferable that at least one of the groups R 10 is methyl, and more preferable that the groups R 10 are all methyl.
- h is 1 or 2, more preferably 2.
- B 3 is:
- an oxaalkylene group such as alkoxyalkyl having 1 to 6 carbon atoms in each alkyl moiety, more preferably —CH 2 O(CH 2 ) 4 —; or
- Preferred groups B 3 include a valence bond and alkylene, oxaalkylene and oligo-oxaalkylene groups of up to 24 carbon atoms.
- B and B 3 are the same.
- the monomer bearing a centre of permanent positive charge is a monomer of formula (V)
- BB is a straight or branched C 1 -C 6 alkylene chain optionally interrupted by one or more oxygen atoms
- nn is from 1 to 12
- R 11 is H or a C 1 -C 4 alkyl group
- YY is a group which includes a centre of positive charge. More preferably,
- YY is a group selected from:
- BB is a group selected from —CH 2 —, —C(R 12 ) 2 —, in which R 12 is C 1-4 alkyl, and —CH 2 —CH 2 —O—.
- R 11 is hydrogen or methyl.
- the group (BB) nn is preferably chosen to avoid steric hindrance in the vicinity of the adjacent —OC(O)— group, the reactivity of which could be adversely affected by such steric hindrance.
- Particular examples of preferred comonomers bearing a centre of permanent positive charge are 2(methacryloyloxy)ethyl-2′(trimethylammonium)ethyl phosphate inner salt [Compound C above] and 1[4(4′-vinylbenzyloxy)butane]-2′′(trimethylammonium)ethyl phosphate inner salt [a compound of formula (III)].
- Comonomers bearing a centre of permanent positive charge such as those of formulae (II) and (III), and comonomers of formula (V) may be prepared by conventional techniques using known reactions, for example using a suitable substituted alkyl (alk)acrylate, glycerophosphoryl choline or suitable substituted styrene as starting material.
- Examples of suitable substituted alkyl (alk)acrylates include dimethylaminoethyl(meth)acrylate and 2-hydroxyethyl(meth)acrylate.
- Comonomers of formula (II) or (III) containing a group of formula (IVA), (IVB) or (IVC) and comonomers of formula (V) including a group of formula (VIA), (VIB), and (VIC) may be prepared as described in Reference Examples 1 to 4 or by analogous known methods.
- Comonomers of formula (II) or (III) containing a group of formula (IVD) and comonomer of formula (V) including a group of formula (VID) may be prepared by selective acylation of glycerophosphorylcholine or analogues thereof at the primary hydroxyl group with an activated acid derivative such as an acid anhydride O[C(O)B 1 CH 3 ] 2 or an acid halide CH 3 B 1 COHal where B 1 is as defined above and Hal is halogen, followed by acylation of the secondary hydroxyl group with an appropriate acylating agent, for example methacryloyl chloride.
- an activated acid derivative such as an acid anhydride O[C(O)B 1 CH 3 ] 2 or an acid halide CH 3 B 1 COHal where B 1 is as defined above and Hal is halogen
- Suitable activated acid derivatives include acid anhydrides, acid halides, reactive esters and imidazolides.
- the acylations may be performed in a suitable anhydrous, aprotic solvent, for example N,N-dimethylformamide, optionally in the presence of a suitable non-nucleophilic base, for example triethylamine.
- the primary alcohol group in glycerophosphoryl choline or an analogue thereof may be blocked by reaction with a suitable protecting group reagent, for example t-butyldimethylsilyl chloride, under standard conditions and the secondary hydroxy group then treated with an acylating agent such as methacryloyl chloride.
- a suitable protecting group reagent for example t-butyldimethylsilyl chloride
- an acylating agent such as methacryloyl chloride.
- the t-butyldimethylsilyl protecting group may be removed by treatment with a dilute organic or mineral acid, for example p-toluene sulphonic acid, hydrochloric acid or with tetra-butylammonium fluoride.
- the deblocked primary hydroxyl group may then be treated with an activated acid derivative such as an acid anhydride O[C(O)B 1 CH 3 ] 2 or acid halide CH 3 B 1 COHal where B 1 is as defined above, and Hal is halogen.
- an activated acid derivative such as an acid anhydride O[C(O)B 1 CH 3 ] 2 or acid halide CH 3 B 1 COHal where B 1 is as defined above, and Hal is halogen.
- Analogues of glycerophosphorylcholine may be prepared by reaction of phosphorus oxychloride with a bromoalcohol in an inert aprotic solvent, such as dichloromethane, to give a bromoalkylphosphorodichloridate.
- the dichloro derivative thus produced may then be treated with 2,2-dimethyl 1,3-dioxolane-4-methanol in the presence of a base, for example triethylamine, followed by acid hydrolysis to give a bromoalkylphosphorogylcerol derivative.
- a base for example triethylamine
- R 8 is as defined above, for example trimethylamine
- R 8 and f are as defined in relation to groups of formula (IVD).
- Comonomers of formula (II) or (III) containing a group of formula (IVE) and comomers of formula (V) containing a group of formula (VIE) may be prepared by the selective acylation of glycerophosphorylcholine or an analogue thereof at the primary hydroxyl group with for example, methacryloyl chloride followed by reaction at the secondary hydroxyl group using an activated acid derivative, such as an acid halide O[C(O)B 2 CH 3 ] 2 or an acid halide CH 3 B 2 COHal, where B 2 is as defined above and Hal is halogen.
- the intermediates and final products may be purified, as necessary using column chromatography.
- protecting group strategy similar to that outlined above in relation to production of comonomers containing a group of formula (IVD), may be employed.
- Comonomers of formula (II) or (III) containing a group of formula (IVF) may be prepared in an analogous manner to comonomers containing groups of formula (IVD) or (IVE).
- the copolymers of the invention also comprise residues of difunctional and/or trifunctional comonomers. Such comonomers are capable of crosslinking the polymer during polymerisation. Conventional crosslinking agents may be used.
- crosslinking comonomers examples include alkane diol or triol di- or tri(alk)acrylates, eg (meth)acrylates, preferably containing 1 to 8 carbon atoms in the diol or triol residue; alkylene di- or tri-(alk)acrylamides, e.g. (meth)acrylamides, preferably containing 1 to 6 carbon atoms in the alkylene group and and di- or tri-vinyl compounds such as di- or tri-vinyl benzene compounds.
- crosslinking agents include ethyleneglycoldimethacrylate, tetraethyleneglycol dimethacrylate, trimethylolpropanetrimethacrylate and N,N-methylenebisacrylamide.
- the comonomer mixture used for polymerising the copolymer further comprises a gel swelling monomer such as an N-vinyl lactam, methacrylic acid or acrylic acid and where appropriate a bulking or solvating agent such as a solvent, for example, an alcohol or water.
- a gel swelling monomer such as an N-vinyl lactam, methacrylic acid or acrylic acid
- a bulking or solvating agent such as a solvent, for example, an alcohol or water.
- Polymers of the invention may be prepared by copolymerising monomers bearing a centre of permanent positive change, diluent monomers and crosslinking monomers usually by bulk polymerisation in an appropriate mould. Additionally a solvent or solvent mixture may be included to provide a suitable reaction medium for immiscible comonomers. Suitable solvents include water, halogenated organic solvents and non-halogenated organic solvents. Initiators and/or reagents to modify the bulk morphology of the final polymer may also be included. Any conventional technique may be used for the polymerisation, typically thermal polymerisation or ultraviolet polymerisation.
- the invention therefore further provides a method of preparing a crosslinked polymer which comprises copolymerising a monomer composition, such as a monomer solution, comprising a diluent monomer or monomers, a comonomer or comonomers including within its structure a centre of permanent positive charge, and a monomoner or monomers which will crosslink the resultant polymer.
- a monomer composition such as a monomer solution, comprising a diluent monomer or monomers, a comonomer or comonomers including within its structure a centre of permanent positive charge, and a monomoner or monomers which will crosslink the resultant polymer.
- the monomer composition further comprises a solvent or solvent mixture and a polymerisation initiator or initiators.
- the monomer composition which is subjected to polymerisation typically comprises at least 30%, preferably at least 60%, and up to 99.79% by weight of diluent monomer. It typically comprises at least 0.2% and up to 50% monomer or monomers which contain a centre of permanent positive charge and from 0.01% to 20% by weight of crosslinking monomer. Optionally up to 10% by weight of gel swelling monomer is included.
- the monomer composition which is subjected to polymerisation typically comprises at least 70%, preferably at least 80% by weight of the diluent monomer. It further comprises at least 0.2% and up to 20% of monomer or monomers which bear a centre of permanent positive charge and, optionally, up to 10% by weight of gel-swelling monomer or monomers.
- the monomer composition may comprise conventional further polymer ingredients such as cross-linking agents and polymerisation initiators. These further ingredients are in one embodiment used in a total amount from 0.1 to 5%, typically from 0.2 to 3% and preferably about 0.5% by weight relative to the weight of the monomer composition prior to polymerisation.
- the monomer composition comprises at least 0.01% and up to 10% of crosslinking monomer or monomers.
- initiators include bis(4-tertiarybutylcyclohexyl)-peroxydicarbonate, benzoylperoxide, 2,2′-azo-bis(2-methylpropionitrile) [i.e. azo-bis-isobutyro nitrile], 1-benzyl-2-hydroxy-2-dimethylethane-1-one and benzoin methylether.
- An initiator is generally used in a total amount from 0.1% to 5, typically from 0.2% to 3% and preferably about 0.5% by weight relative to the weight of the total monomer composition prior to polymerisation
- the monomer composition may have added to it a solvent or solvent mixture.
- suitable solvents are ethanol, methanol and water.
- solvent suitably comprises from 0.1 to 50 weight % of the total reaction mixture, preferably from 5 to 40 weight %.
- the polymer is prepared by dissolving the monomer or monomers bearing the centre of positive charge in the diluent monomer or monomers or diluent monomer/solvent mixture together with the crosslinking monomer or monomers and if present the polymerisation initiator or initiators.
- the solution thus formed is then purged with nitrogen, to remove any oxygen which may be present before the polymerisation process is begun.
- Polymerisation is carried out in a sheet-forming mould, a contact lens precursor button (thick round disc) mould, a contact lens mould or to provide a cylindrical polymer rod.
- the monomer solution may be injected between two spaced plates and then polymerised in situ to generate a polymer sheet.
- the copolymers of the invention will be produced by copolymerisation in the absence water. This produces a xerogel material which can be moulded into contact lenses directly or moulded to give contact lens buttons which can be lathe cut using methods known in the art to produce contact lenses.
- the xerogel material may be washed in water or in aqueous buffer to remove any excess monomer and initiator.
- the xerogel material can be subsequently hydrated to produce hydrogel with an equilibrium water content of up to 90%, and preferably from 30 to 80%.
- the polymers of the invention are both transparent and water swellable and therefore suitable for use as contact lens materials.
- the polymer may be suitable for use in contact lenses which are for example soft or gas permeable contact lenses.
- the invention further provides contact lenses made from polymers of the invention as hereinbefore defined.
- the solutions were then irradiated by a 100 W/inch medium pressure mercury vapour lamp for 2 minutes.
- the reaction was completed thermally at 70° C. in a vacuum oven for 24 hours.
- the ethanol was removed from these buttons by heating at 80° C. for 48 hours in a vacuum oven.
- the resulting buttons were machined to make contact lenses.
- a xerogel rod (1 cm diameter ⁇ 10 cm) was produced as follows:
- the monomer solution thus prepared was injected into a mould formed by two glass sheets covered by spray mounted polyethyleneterephthalate sheet and separated using a polytetrafluoroethylene spacer. Polymerisation was carried out in situ by heating the mould to 80° C. for 2 hours.
- the polymer sheet thus formed was removed from the mould and swollen with water or a borate buttered saline solution at pH 7.1 to form a hydrogel sheet.
- the starting formulation is suitable for the mould polymerisation of soft contact lenses.
- Example 5 The method of Example 5 was repeated just using 2(methacryloyloxyethyl)-2′(trimethylammonium)ethyl phosphate inner salt (compound C) (3.79 g), in 2-hydroxyethyl-methacrylate (8.39 g) together with methylmethacrylate (5.04 g), ethyleneglycoldimethacrylate (0.254 g) as crosslinking agent and azobisisobutyronitrile (0.15 g) as a polymerisation initiator.
- compound C 2(methacryloyloxyethyl)-2′(trimethylammonium)ethyl phosphate inner salt
- the resultant hydrogel sheet is similar to that obtained in Example 5.
- the starting formulation is suitable for the mould polymerisation of soft contact lenses.
- the monomer solution thus prepared was injected into a mould formed by two silylated glass plates separated by a teflon spacer. Polymerisation was carried out in situ by heating the mould to 70° C. and maintaining it at that temperature for 2 hours.
- the polymer sheet formed was removed from the mould and swollen with water or a saline solution to form a hydrogel sheet, which is a material suitable for forming into soft contact lenses.
- Example 6 The method of Example 6 was repeated using, respectively, each of compounds B and C and compound types D to G prepared as described in the Reference Examples in place of compound A.
- the hydrogel sheet formed in each case was suitable for forming into soft contact lenses.
- copolymer sheets and lenses produced may be swelled in appropriate aqueous solutions and then dehydrated by heating.
- the water content may be determined by weight.
- Tear strength measurement may be performed by Instrom analysis using appropriate ASTM procedures. Oxygen permeability may be determined with appropriate electrodes in accordance with appropriate ASTM standards. The absorption of tear proteins by the copolymers may be measured by standard spectrophotometic techniques.
- Buttons (as prepared in Example 1) were mounted using a low melting point wax and cut with a lathe speed of 2800 rpm to produce contact lenses. Cutting times were 1-2 seconds for 0.01 mm thickness reduction from the edge to the centre. Nitrogen may be used to cool the diamond button interface.
- the contact lenses produced were cleaned with petroleum ether (60-80) and polished with an oil based polish (SP2).
- membrane A (comparative) comprised of methacrylic acid (16.5 mole %), 2-hydroxyethylmethacrylate, (183.3 mole %) and ethyleneglycol dimethacrylate (0.2 mole %)
- membrane B according to the invention comprised of 2(methacryloyloxyethyl)-2′(trimethylammonium)ethyl phosphate inner salt (40% mole), methylmethacrylate (59 mole %) and ethylene glycol dimethacrylate (1%).
- Both membranes were cut into 0.9 mm discs and soaked in a buffered protein solution for 24 hours at 35° C. Control lenses were soaked in buffer solution for the same length of time.
- the buffer solution was the same as that of the buffered protein solution except that the bovine albumin and chicken lysozyme were not added.
- composition of the buffered protein solution was as follows: Sodium Chloride 0.85% Boric Acid 0.46% Sodium Borate (10 H 2 O) 0.04% Bovine Albumin 0.39% Chicken Egg Lysozyme 0.12% Water 98.4%
- the phospholane (3) (67.20 g; 0.285 mol was dissolved in 100 ml of dry acetonitrile, and placed in a heavy walled tissue culture bottle.
- the phospholane solution was then treated with a solution of anhydrous trimethylamine (25.74 g; 0.436 mol) in dry acetonitrile (100 ml).
- the vessel was then sealed, and placed in a water bath held at 50° C. for 30 hours. The vessel was opened, and the solution brought to the boil. The solution was filtered whilst hot, and then set aside for crystallisation.
- Glycerophosphorylcholine (0.01 mole), obtained by base hydrolysis of natural phosphatidylcholine, may be stirred with alkynoic acid anhydride (0.01 mole) and dimethylamino pyridine (0.01 mole) in dimethylsulphoxide (150 cm 3 ).
- 1,4-Butanediol (50.00 g) was dissolved in dry toluene (60 ml), para-choloromethylstyrene (15.62 g; 0.1 mol) was then added with stirring. A catalytic quantity of 18-crown-6 (0.3 g) was then added. The flask was stoppered, stirred at room temperature for 18 hours and for a further 4 hours at 45-60°. The resulting solution was then poured in to water (500 ml) and extracted with dichloromethane (3 ⁇ 75 ml).
- IR thin film
- TLC eluting with 10% MeOH/90% dichloromethane
- IR thin film
- Trimethylamine (2.00 g, 33.9 mmol) was distilled into a reaction vessel, and frozen with liquid nitrogen.
- Steps (a) to (d) correspond with the steps in Reference Example 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Eyeglasses (AREA)
- Contacts (AREA)
- Auxiliary Devices For And Details Of Packaging Control (AREA)
- Food-Manufacturing Devices (AREA)
- Materials For Medical Uses (AREA)
- Pens And Brushes (AREA)
Abstract
Cross-linked copolymers which are obtained by polymerising a neutral diluent monomer or monomers, a monomer or monomers bearing a center of permanent positive charge, and a bifunctional and/or trifunctional cross-linking agent, are suitable for use in contact lenses. Process for producing them by copolymerisation, contact lens material comprising them, contact lenses made of them and processes for producing contact lenses from them.
Description
- The present invention relates to copolymers, in particular suitable for use in contact lenses.
- The use of synthetic hydrogels for contact lenses was first demonstrated by Wichtecte and Lim in the 1960's. Early hydrogels employed 2-hydroxyethyl methacrylate (HEMA) as principal monomer, together with some of the homologous esters of the glycol monomethacrylate series such as diethylene glycol monomethacrylate and tetraethylene glycol monomethacrylate. It was later found that slightly crosslinked copolymers of the higher glycol monomethyacrylates and 2-hydroxyethyl methacrylate yielded transparent hydrogels that swelled in water to a higher hydration than the hydrogels of 2-hydroxyethyl methacrylate.
- The water content of hydroxyalkyl methacrylate based gels can be further increased by the addition of vinyl lactams, methacrylic acids, acrylic acids, acrylamides and methacrylamides. Although the required degree of gel hydration can be achieved by the addition of anionic monomers, it is well known that these gels display high levels of protein deposition on and occasionally within the gel matrix.
- It has now surprisingly been found that effective contact lens materials which have both good transparency and a high degree of water swellability are provided by copolymers which have a permanent positive charge built into them. Such polymers are formed by polymerising and crosslinking a neutral diluent monomer, for example HEMA, with a co-monomer bearing a centre of permanent positive charge. These formulations have been found to have a high level of protein resistance to tear component deposition and a reduction in lens water loss.
- Accordingly, the present invention provides a crosslinked copolymer which is obtainable by polymerising a neutral diluent monomer or monomers, a monomer or monomers bearing a centre of permanent positive charge, and a bifunctional or trifunctional crosslinking agent.
- The crosslinked copolymers of the present invention therefore comprise residues of a diluent monomer or monomers, a monomer or monomers bearing a centre of permanent positive charge, and a bifunctional or trifunctional crosslinking agent.
- The copolymers of the invention may be xerogels which do not contain any water. Alternatively, they may be in the form of hydrogels which do contain water.
- The invention also provides a process for producing such a crosslinked copolymer, a contact lens material comprising such a copolymer, a contact lens made from such a copolymer, and use of such a copolymer or contact lens material in the production of a contact lens.
- Diluent Comonomer
- The diluent monomer can act as a solvent for the comonomers during copolymerisation to produce the copolymer if no additional solvent is present. Where the diluent monomer and monomer bearing the centre of permanent positive charges are immiscible a solvent can be used to aid mixing.
- Particular examples of diluent comonomers include alkyl (alk)acrylate preferably containing 1 to 12, more preferably 1 to 4, carbon atoms in the alkyl group of the ester moiety, such as a methyl (alk)acrylate and butyl (alk)acrylate; a dialkylamino alkyl (alk)acrylate, preferably containing 1 to 4 carbon atoms in each alkyl moiety of the amine and 1 to 4 carbon atoms in the alkylene chain, e.g. 2(dimethylamino)ethyl (alk)acrylate; an alkyl (alk)acrylamide preferably containing 1 to 4 carbon atoms in the alkyl group of the amide moiety; a hydroxyalkyl (alk)acrylate preferably containing from 1 to 4 carbon atoms in the hydroxy moiety, e.g. a 2-hydroxyethyl (alk)acrylate; or a vinyl monomer such as an N-vinyl lactam, preferably containing from 5 to 7 atoms in the lactam ring for instance vinyl pyrrolidone; styrene or a styrene derivative which for example is substituted on the phenyl ring by one or more alkyl groups containing from 1 to 4 carbon atoms, and/or by one or more halogen, such as fluorine atoms.
- It is to be understood that throughout the specification (alk)acrylate, (alk)acrylic and (alk)acrylamide mean acrylate or alkacrylate, acrylic or alkacrylic and acrylamide or alkacrylamide respectively. Preferably alkacrylate, alkacrylic and alkacrylamide groups contain from 1 to 4 carbon atoms in the alkyl group thereof and are most preferably methacrylate, methacrylic or methacrylamide groups. Similarly (meth)acrylate, (meth)acrylic and (meth)acrylamide shall be understood to mean acrylate or methacrylate, acrylic or methacrylic and acrylamide or methacrylamide respectively.
- Preferably the diluent monomer is selected from vinylpyrrolidone, 2-hydroxyethyl methacrylate, methyl methacrylate and mixtures thereof, most preferably 2-hydroxyethyl methacrylate, methyl methacrylate and mixtures thereof. In one embodiment diluent monomers are vinylpyrrolidone, 2-hydroxyethyl methacrylate and mixtures thereof.
- Comonomers Bearing A Centre of Permanent Positive Charge
- The comonomer bearing the centre of permanent positive charge can either be cationic or zwitterionic. In the latter case the monomer includes within its structure not only a centre of permanent positive charge but also a centre of negative charge. Typically the centre of permanent positive charge in both cationic and zwitterionic comonomers is provided by a quaternary nitrogen atom.
- Preferred comonomers which bear a centre of positive charge are of general formula (I)
- Y—B—X (I)
- wherein B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain or if X contains a carbon-carbon chain between B and the centre of permanent positive charge or if Y contains a terminal carbon atom, a valence bond,
- X is a group bearing a centre of permanent positive charge and
-
- wherein:
- R is hydrogen or a C 1-C4 alkyl group;
- A is —O— or —NR 1— where R1 is hydrogen or a C1-C4 alkyl group or R1 is —B—X where B and X are as defined above.
- K is a group —(CH 2)pOC(O)—, —(CH2)pC(O)O—, —(CH2)pOC(O)O—, —(CH2)pNR2—, —(CH2)pNR2C(O)—, —(CH2)pC(O)NR2—, (CH2)pNR2C(O)O—, —(CH2)pOC(O)NR2—, —(CH2)pNR2C(O)NR2— (in which the groups R2 are the same or different), —(CH2)pO—, —(CH2)pSO3—, or, optionally in a combination with B, a valence bond, and p is from 1 to 12 and R2 is hydrogen or a C1-C4 alkyl group.
- The proviso on whether B may be a valence bond ensures that the centre of permanent positive charge in X is not directly bonded to a heteroatom, such as an oxygen or nitrogen atom in Y.
-
- where R. A, B and X are as defined with reference to formula (I).
- Preferably R is hydrogen, methyl, or ethyl, more preferably methyl, so that the monomer of formula (II) is an acrylic acid, methacrylic acid or ethacrylic acid derivative.
- In the compounds of formula (III) K may be a valence bond and B a group, K may be a group and B a valence bond, both K and B may be groups or K and B may together be a valence bond. Preferably B is a group where X is a valence bond. Where K is a group then preferably p is from 1 to 6, more preferably 1, 2 or 3 and most preferably p is 1. When K is a group —(CH 2)pNR2—, —(CH2)pNR2C(O)—, —(CH2)pC(O)NR2—, —(CH2)pNR2C(O)O—, —(CH2)pOCNR2— or —(CH2)pNR2C(O)NR2— then R2 is preferably hydrogen, methyl or ethyl, more preferably hydrogen.
- Preferably B is:
- an alkylene group of formula —(CR 3 2)a—, wherein the groups —(CR3 2)— are the same or different, and in each group —(CR3 2)— the groups R3 are the same or different and each group R3 is hydrogen or C1-4 alkyl, preferably hydrogen, and a is from 1 to 12, preferably 1 to 6;
- an oxaalkylene group such as alkoxyalkyl having 1 to 6 carbon atoms in each alkyl moiety, more preferably —CH 2O(CH2)4—;
- an oligo-oxaalkylene group of formula —[(CR 4 2)bO]c(CR4 2)b— where the groups —(CR4 2)— are the same or different and in each group —(CR4 2)— the groups R4 are the same or different and each group R4 is hydrogen or C1-4 alkyl, preferably hydrogen, and b is 2 or 3 and c is from 2 to 11, preferably 2 to 5;
- or a valence bond but only if X contains a carbon-carbon chain between B and the centre of positive charge, or if Y contains a terminal carbon atom.
- Preferred groups B include a valence bond and alkylene, oxaalkylene and oligo-oxaalkylene groups of up to 12 carbon atoms.
- Preferred groups X are the groups of formula (IVA), (IVB), (IVC), (IVD), (IVE) and (IVF) as defined below, of which the groups of formula (IVC) are particularly preferred.
-
- where the groups R 5 are the same or different and each is hydrogen or C1-4 alkyl and Z⊖ is a counterion.
- Preferably the groups R 5 are all the same. It is also preferable that at least one of the groups R5 is methyl, and more preferable that all the groups R5 are methyl.
- The counterion Z ⊖ present in the compounds of formula (II) or (III) containing a group of formula (IVA) is such that the compounds are neutral salts. The counterion may be exchanged with ions in physiological fluids and thus the specific nature of the counterion is not critical in the present invention. However, physiologically acceptable counterions are preferred. Suitable physiologically acceptable counterions include halide anions, such as chloride, bromide or fluoride ions, other inorganic anions such as sulphate, phosphate and phosphite and organic anions such as aliphatic mono-, di- or tri-carboxylate anions containing from 2 to 25 carbon atoms and optionally bearing one or more hydroxyl groups e.g. acetate, citrate and lactate.
- When X is a group of formula (IVA), preferably B is a group of formula —(CR 3 2)— or —(CR3 2)2—, eg. —(CH2)— or —(CH2CH2)—.
-
- where the groups R 6 are the same or different and each is hydrogen or C1-4 alkyl and d is from 2 to 4.
- Preferably the groups R 6 are the same. It is also preferable that at least one of the groups R6 is methyl, and more preferable that the groups R6 are both methyl.
- Preferably d is 2 or 3, more preferably 3.
- When X is a group of formula (IVB) preferably B is a group of formula —(CR 3 2)— or —(CR3 2)2—, eg. —(CH2)— or —(CH2CH2)—.
-
- where the groups R 7 are the same or different and each is hydrogen or C1-4 alkyl, and e is from 1 to 4.
- Preferably the groups R 7 are the same. It is also preferable that at least one of the groups R7 is methyl, and more preferable that the groups R7 are all methyl.
- Preferably e is 2 or 3, more preferably 2.
- When X is a group of formula (IVC) preferably B is a group of formula —(CR 3 2)— or —(CR3 2)2—, eg. —(CH2)— or —(CH2CH2)—.
-
- wherein the groups R 8 are the same or different and each is hydrogen or C1-4 alkyl, B1 is a valence bond or straight or branched alkylene, oxaalkylene or oligo-oxaalkalkylene group, f is from 1 to 4 and if B is other than a valence bond, Z is 1 and if B is a valence bond Z is 0 if X is directly bonded to an oxygen or nitrogen atom, and otherwise Z is 1.
- Preferably the groups R 8 are the same. It is also preferable that at least one of the groups R8 is methyl, and more preferable that the groups R8 are all methyl. Preferably f is 1 or 2, more preferably 2.
- Preferably B 1 is:
- a valence bond;
- an alkylene group of formula —(CR 3a 2)aa—, wherein the groups —(CR3a 2)— are the same or different, and in each group —(CR3a 2)— the groups R3a are the same or different and each group R3a is hydrogen or C1-4 alkyl, preferably hydrogen, and aa is from 1 to 24, preferably 6 to 18;
- an oxaalkylene group such as alkoxyalkyl having 1 to 6 carbon atoms in each alkyl moiety, more preferably —CH 2O(CH2)4—; or
- an oligo-oxaalkylene group of formula —[(CR 4a 2)baO]ca— where the groups —(CR4a 2)— are the same or different and in each group —(CR4a 2)— the groups R4a are the same or different and each group R4a is hydrogen or C1-4 alkyl, preferably hydrogen, and ba is 2 or 3 and ca is from 1 to 12, preferably 1 to 6.
- Preferred groups B 1 include a valence bond and alkylene, oxaalkylene and oligo-oxaalkylene groups of up to 24 carbon atoms.
- In one embodiment B and B 1 are the same.
-
- wherein the groups R 9 are the same or different and each is hydrogen or C1-C4 alkyl, B2 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, g is from 1 to 4 and if B is other than a valence bond, Z is 1 and if B is a valence bond Z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise Z is 1.
- Preferably the groups R 9 are the same. It is also preferable that at least one of the groups R8 is methyl, and more preferable that the groups R8 are all methyl. Preferably g is 1 or 2, more preferably 2.
- Preferably B 2 is:
- a valence bond;
- an alkylene group of formula (CR 3b 2)ab—, wherein the groups —(CR3b 2)— are the same or different, and in each group —(CR3b 2)— the groups R3b are the same of different and each group R3b is hydrogen or C1-4 alkyl, preferably hydrogen, and ab is from 1 to 24, preferably 6 to 18;
- an oxaalkylene group such as alkoxyalkyl having 1 to 6, carbon atoms in each alkyl moiety, more preferably 'CH 2O(CH2)4—; or
- an oligo-oxaalkylene group of formula —[(CR 4b 2)bbO]cb— where the groups —(CR4b 2)— are the same or different and in each group —(CR4 2b)— the groups R4b are the same or different and each group R4b is hydrogen or C1-4 alkyl, preferably hydrogen, and bb is 2 to 6 and cb is from 1 to 12, preferably 1 to 6.
- Preferred groups B 2 include a valence bond and alkylene, oxaalkylene and oligo-oxaalkylene groups of up to 24 carbon atoms.
- In one embodiment B and B 2 are the same.
-
- wherein the groups R 10 are the same or different and each is hydrogen or C1-4 alkyl, B3 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, h is from 1 to 4 if B is other than a valence bond, Z is 1 and if B is a valence bond Z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise Z is 1.
- Preferably the groups R 10 are the same. It is also preferable that at least one of the groups R10 is methyl, and more preferable that the groups R10 are all methyl.
- Preferably h is 1 or 2, more preferably 2.
- Preferably B 3 is:
- a valence bond;
- an alkylene group of formula —(CR 3c 2)ac—, wherein the groups —(CR3c 2)— are the same or different, and in each group —(CR3c 2)— the groups R3c are the same or different and each group R3c is hydrogen or C1-4 alkyl, preferably hydrogen, and ac is from 1 to 24, preferably 6 to 18;
- an oxaalkylene group such as alkoxyalkyl having 1 to 6 carbon atoms in each alkyl moiety, more preferably —CH 2O(CH2)4—; or
- an oligo-oxaalkylene group of formula —[(CR 4c 2)bcO]cc— where the groups —(CR4c 2)— are the same or different and in each group —(CR4c 2)— the groups R4c are the same or different and each group R4c is hydrogen or C1-4 alkyl, preferably hydrogen, and ba is 2 to 6 and cc is from 1 to 12, preferably 1 to 6.
- Preferred groups B 3 include a valence bond and alkylene, oxaalkylene and oligo-oxaalkylene groups of up to 24 carbon atoms.
- In one embodiment B and B 3 are the same.
-
- wherein BB is a straight or branched C 1-C6 alkylene chain optionally interrupted by one or more oxygen atoms;
- nn is from 1 to 12
- R 11 is H or a C1-C4 alkyl group; and
- YY is a group which includes a centre of positive charge. More preferably,
-
- the group BB in (VID) and (VIE) being a linear or branched alkylene chain as defined above and nn being as defined above.
- Preferably BB is a group selected from —CH 2—, —C(R12)2—, in which R12 is C1-4 alkyl, and —CH2—CH2—O—.
- Preferably in compounds of formula (V), R 11 is hydrogen or methyl.
- When X is a group as defined under (VID) or (VIE), the group (BB) nn is preferably chosen to avoid steric hindrance in the vicinity of the adjacent —OC(O)— group, the reactivity of which could be adversely affected by such steric hindrance.
-
- Particular examples of preferred comonomers bearing a centre of permanent positive charge are 2(methacryloyloxy)ethyl-2′(trimethylammonium)ethyl phosphate inner salt [Compound C above] and 1[4(4′-vinylbenzyloxy)butane]-2″(trimethylammonium)ethyl phosphate inner salt [a compound of formula (III)].
- Comonomers bearing a centre of permanent positive charge, such as those of formulae (II) and (III), and comonomers of formula (V) may be prepared by conventional techniques using known reactions, for example using a suitable substituted alkyl (alk)acrylate, glycerophosphoryl choline or suitable substituted styrene as starting material.
- Examples of suitable substituted alkyl (alk)acrylates include dimethylaminoethyl(meth)acrylate and 2-hydroxyethyl(meth)acrylate.
- Comonomers of formula (II) or (III) containing a group of formula (IVA), (IVB) or (IVC) and comonomers of formula (V) including a group of formula (VIA), (VIB), and (VIC) may be prepared as described in Reference Examples 1 to 4 or by analogous known methods.
- Comonomers of formula (II) or (III) containing a group of formula (IVD) and comonomer of formula (V) including a group of formula (VID) may be prepared by selective acylation of glycerophosphorylcholine or analogues thereof at the primary hydroxyl group with an activated acid derivative such as an acid anhydride O[C(O)B 1CH3]2 or an acid halide CH3B1COHal where B1 is as defined above and Hal is halogen, followed by acylation of the secondary hydroxyl group with an appropriate acylating agent, for example methacryloyl chloride. Purification, for example by column chromatography on a suitable support, may be performed after each acylation or after the second acylation only. Suitable activated acid derivatives include acid anhydrides, acid halides, reactive esters and imidazolides. The acylations may be performed in a suitable anhydrous, aprotic solvent, for example N,N-dimethylformamide, optionally in the presence of a suitable non-nucleophilic base, for example triethylamine.
- Alternatively, the primary alcohol group in glycerophosphoryl choline or an analogue thereof may be blocked by reaction with a suitable protecting group reagent, for example t-butyldimethylsilyl chloride, under standard conditions and the secondary hydroxy group then treated with an acylating agent such as methacryloyl chloride. The t-butyldimethylsilyl protecting group may be removed by treatment with a dilute organic or mineral acid, for example p-toluene sulphonic acid, hydrochloric acid or with tetra-butylammonium fluoride. The deblocked primary hydroxyl group may then be treated with an activated acid derivative such as an acid anhydride O[C(O)B 1CH3]2 or acid halide CH3B1COHal where B1 is as defined above, and Hal is halogen.
- Analogues of glycerophosphorylcholine may be prepared by reaction of phosphorus oxychloride with a bromoalcohol in an inert aprotic solvent, such as dichloromethane, to give a bromoalkylphosphorodichloridate. The dichloro derivative thus produced may then be treated with 2,2-dimethyl 1,3-dioxolane-4-methanol in the presence of a base, for example triethylamine, followed by acid hydrolysis to give a bromoalkylphosphorogylcerol derivative. This may then be treated with an amine NR 8 3, where R8 is as defined above, for example trimethylamine, to generate the glycerophosphorylcholine analogue. This preparation is depicted in the following scheme.
- where R 8 and f are as defined in relation to groups of formula (IVD).
- Comonomers of formula (II) or (III) containing a group of formula (IVE) and comomers of formula (V) containing a group of formula (VIE) may be prepared by the selective acylation of glycerophosphorylcholine or an analogue thereof at the primary hydroxyl group with for example, methacryloyl chloride followed by reaction at the secondary hydroxyl group using an activated acid derivative, such as an acid halide O[C(O)B 2CH3]2 or an acid halide CH3B2COHal, where B2 is as defined above and Hal is halogen. The intermediates and final products may be purified, as necessary using column chromatography. Optionally, protecting group strategy, similar to that outlined above in relation to production of comonomers containing a group of formula (IVD), may be employed.
- Comonomers of formula (II) or (III) containing a group of formula (IVF) may be prepared in an analogous manner to comonomers containing groups of formula (IVD) or (IVE).
- Crosslinking Comonomers
- The copolymers of the invention also comprise residues of difunctional and/or trifunctional comonomers. Such comonomers are capable of crosslinking the polymer during polymerisation. Conventional crosslinking agents may be used.
- Examples of suitable crosslinking comonomers include alkane diol or triol di- or tri(alk)acrylates, eg (meth)acrylates, preferably containing 1 to 8 carbon atoms in the diol or triol residue; alkylene di- or tri-(alk)acrylamides, e.g. (meth)acrylamides, preferably containing 1 to 6 carbon atoms in the alkylene group and and di- or tri-vinyl compounds such as di- or tri-vinyl benzene compounds. Particular examples of crosslinking agents include ethyleneglycoldimethacrylate, tetraethyleneglycol dimethacrylate, trimethylolpropanetrimethacrylate and N,N-methylenebisacrylamide.
- Optionally the comonomer mixture used for polymerising the copolymer further comprises a gel swelling monomer such as an N-vinyl lactam, methacrylic acid or acrylic acid and where appropriate a bulking or solvating agent such as a solvent, for example, an alcohol or water.
- Polymers of the invention may be prepared by copolymerising monomers bearing a centre of permanent positive change, diluent monomers and crosslinking monomers usually by bulk polymerisation in an appropriate mould. Additionally a solvent or solvent mixture may be included to provide a suitable reaction medium for immiscible comonomers. Suitable solvents include water, halogenated organic solvents and non-halogenated organic solvents. Initiators and/or reagents to modify the bulk morphology of the final polymer may also be included. Any conventional technique may be used for the polymerisation, typically thermal polymerisation or ultraviolet polymerisation.
- The invention therefore further provides a method of preparing a crosslinked polymer which comprises copolymerising a monomer composition, such as a monomer solution, comprising a diluent monomer or monomers, a comonomer or comonomers including within its structure a centre of permanent positive charge, and a monomoner or monomers which will crosslink the resultant polymer. Optionally, the monomer composition further comprises a solvent or solvent mixture and a polymerisation initiator or initiators.
- The monomer composition which is subjected to polymerisation typically comprises at least 30%, preferably at least 60%, and up to 99.79% by weight of diluent monomer. It typically comprises at least 0.2% and up to 50% monomer or monomers which contain a centre of permanent positive charge and from 0.01% to 20% by weight of crosslinking monomer. Optionally up to 10% by weight of gel swelling monomer is included.
- In one embodiment the monomer composition which is subjected to polymerisation typically comprises at least 70%, preferably at least 80% by weight of the diluent monomer. It further comprises at least 0.2% and up to 20% of monomer or monomers which bear a centre of permanent positive charge and, optionally, up to 10% by weight of gel-swelling monomer or monomers.
- The monomer composition may comprise conventional further polymer ingredients such as cross-linking agents and polymerisation initiators. These further ingredients are in one embodiment used in a total amount from 0.1 to 5%, typically from 0.2 to 3% and preferably about 0.5% by weight relative to the weight of the monomer composition prior to polymerisation.
- Preferably the monomer composition comprises at least 0.01% and up to 10% of crosslinking monomer or monomers.
- Examples of suitable initiators include bis(4-tertiarybutylcyclohexyl)-peroxydicarbonate, benzoylperoxide, 2,2′-azo-bis(2-methylpropionitrile) [i.e. azo-bis-isobutyro nitrile], 1-benzyl-2-hydroxy-2-dimethylethane-1-one and benzoin methylether. An initiator is generally used in a total amount from 0.1% to 5, typically from 0.2% to 3% and preferably about 0.5% by weight relative to the weight of the total monomer composition prior to polymerisation
- Additionally the monomer composition may have added to it a solvent or solvent mixture. Examples of suitable solvents are ethanol, methanol and water. When present, solvent suitably comprises from 0.1 to 50 weight % of the total reaction mixture, preferably from 5 to 40 weight %.
- The polymer is prepared by dissolving the monomer or monomers bearing the centre of positive charge in the diluent monomer or monomers or diluent monomer/solvent mixture together with the crosslinking monomer or monomers and if present the polymerisation initiator or initiators. The solution thus formed is then purged with nitrogen, to remove any oxygen which may be present before the polymerisation process is begun. Polymerisation is carried out in a sheet-forming mould, a contact lens precursor button (thick round disc) mould, a contact lens mould or to provide a cylindrical polymer rod. For example, when carried out in a sheet-forming mould the monomer solution may be injected between two spaced plates and then polymerised in situ to generate a polymer sheet.
- Generally the copolymers of the invention will be produced by copolymerisation in the absence water. This produces a xerogel material which can be moulded into contact lenses directly or moulded to give contact lens buttons which can be lathe cut using methods known in the art to produce contact lenses. The xerogel material may be washed in water or in aqueous buffer to remove any excess monomer and initiator. The xerogel material can be subsequently hydrated to produce hydrogel with an equilibrium water content of up to 90%, and preferably from 30 to 80%.
- The polymers of the invention are both transparent and water swellable and therefore suitable for use as contact lens materials. In particular, the polymer may be suitable for use in contact lenses which are for example soft or gas permeable contact lenses.
- The invention further provides contact lenses made from polymers of the invention as hereinbefore defined.
- The invention may be further illustrated by the following examples.
- 2(methacryloyloxyethyl)-2′(trimethylammonium)ethyl phosphate inner salt (compound C) (4.86 g) was dissolved in 2-hydroxyethylmethacrylate (14.8 g), together with ethyleneglycodimethacrylate (0.25 g) and bis(4-tertiarybutylcyclohexyl)-peroxydicarbonate (0.048 g). This solution was de-gassed with nitrogen gas and then pipetted into an open stainless steel contact lens button mould. The mould was placed in an oven in a nitrogen atmosphere at 50° C. for 1¼ hours. After this time the mould was removed. The buttons were pushed out of the mould and the reaction completed by heating at 70° C. in a vacuum oven for 24 hours. The buttons were optically clear and could be machined to make contact lenses.
- 2(methacryloyloxyethyl)-2′(trimethylammonium)ethyl phosphate inner salt (compound C) 5.00 g was dissolved in 2-hydroxyethylmethacrylate (14.2 g) together with ethyleneglycoldimethacrylate (0.2 g), 1-benzyl-2-hydroxy-2-dimethylethane-1-one (0.2 g) and bis(4-tertiarybutylcyclohexyl)-peroxydicarbonate (0.02 g). The solution was de-gassed with N 2 and then pipetted into an open stainless steel contact lens button mould. The monomer solutions were irradiated with a 100 w/inch medium pressure, mercury vapour lamp for 2 minutes. The reaction was completed thermally at 70° C. in a vacuum oven for 24 hours. The resulting buttons were machined to make contact lenses.
- 2(methacryloyloxyethyl)-2′(trimethylammonium)ethyl phosphate inner salt (5.76 g) was dissolved in ethanol (6.5 ml) and methylmethacrylate (7.5 g). Ethyleneglycoldimethyacrylate (0.21 g), 1-benzyl-2-hydroxy-2-dimethylethane-1-one (0.2 g) and bis(4-tertiarybutylcyclohexyl)-peroxydicarbonate (0.01 g) were added to the solution and dissolved. The resulting solution was degassed with the gas and poured into an open stainless steel contact lens button mould. The solutions were then irradiated by a 100 W/inch medium pressure mercury vapour lamp for 2 minutes. The reaction was completed thermally at 70° C. in a vacuum oven for 24 hours. The ethanol was removed from these buttons by heating at 80° C. for 48 hours in a vacuum oven. The resulting buttons were machined to make contact lenses.
- A xerogel rod (1 cm diameter×10 cm) was produced as follows:
- 2(methacryloyloxyethyl)-2′(trimethylammonium)ethyl phosphate inner salt (compound C) (5.77 g) was mixed with ethanol (6.5 g), methylmethacrylate (7.4 g), ethyleneglycoldimethacrylate (0.2 g) and bis(4-tertiarybutylcyclohexyl)-peroxydicarbonate (0.03 g). The mixture was added to a polypropylene tube (1 cm diameter×10 cm ) which was sealed at one end. N 2 gas was bubbled through the solution and then a cap placed over the end of the tube. The tube was then placed in an oven at 50° C. for 1.5 hours. After this time the gelled rod of polymer was removed from the tube.
- The reaction was completed at 70° C. for 24 hours. After this time the rod was cut into 1 cm cylinders. These cylinders were heated in a vacuum oven at 80° C. for 48 hours in order to removed the ethanol. The resulting buttons were machined into lenses.
- 2(methacryloxyethyl)-2(trimethylammonium)ethyl phosphate inner salt (compound C) (3.60 g) was dissolved in 2-hydroxyethylmethacrylate (6.27 g) together with ethyleneglycoldimethacrylate (0.12 g) as a crosslinking agent and azobisisobutyronitrile (0.2 g) as a polymerisation initiator. The resultant monomer solution was then deoxygenated by bubbling nitrogen through for 5 minutes.
- The monomer solution thus prepared was injected into a mould formed by two glass sheets covered by spray mounted polyethyleneterephthalate sheet and separated using a polytetrafluoroethylene spacer. Polymerisation was carried out in situ by heating the mould to 80° C. for 2 hours.
- The polymer sheet thus formed was removed from the mould and swollen with water or a borate buttered saline solution at pH 7.1 to form a hydrogel sheet. The starting formulation is suitable for the mould polymerisation of soft contact lenses.
- The method of Example 5 was repeated just using 2(methacryloyloxyethyl)-2′(trimethylammonium)ethyl phosphate inner salt (compound C) (3.79 g), in 2-hydroxyethyl-methacrylate (8.39 g) together with methylmethacrylate (5.04 g), ethyleneglycoldimethacrylate (0.254 g) as crosslinking agent and azobisisobutyronitrile (0.15 g) as a polymerisation initiator.
- The resultant hydrogel sheet is similar to that obtained in Example 5. The starting formulation is suitable for the mould polymerisation of soft contact lenses.
- 2-(trimethylammonium)ethyl methacrylate trifluoromethanesulphonate, compound A, (0.25 g) was dissolved in hydroxyethyl methacrylate (5 g) together with methylene bis-acrylamide (25 mg) as cross-linking agent and benzoyl peroxide (25 mg) as polymerisation initiator. The resulting monomer solution was then deoxygenated by bubbling nitrogen through for 5 minutes.
- The monomer solution thus prepared was injected into a mould formed by two silylated glass plates separated by a teflon spacer. Polymerisation was carried out in situ by heating the mould to 70° C. and maintaining it at that temperature for 2 hours.
- The polymer sheet formed was removed from the mould and swollen with water or a saline solution to form a hydrogel sheet, which is a material suitable for forming into soft contact lenses.
- Preparation of Further Copolymers
- The method of Example 6 was repeated using, respectively, each of compounds B and C and compound types D to G prepared as described in the Reference Examples in place of compound A. The hydrogel sheet formed in each case was suitable for forming into soft contact lenses.
- Mechanical Testing of Copolymers
- The copolymer sheets and lenses produced may be swelled in appropriate aqueous solutions and then dehydrated by heating. The water content may be determined by weight.
- Tear strength measurement may be performed by Instrom analysis using appropriate ASTM procedures. Oxygen permeability may be determined with appropriate electrodes in accordance with appropriate ASTM standards. The absorption of tear proteins by the copolymers may be measured by standard spectrophotometic techniques.
- Lathe Cutting to Produce Contact Lenses
- Buttons (as prepared in Example 1) were mounted using a low melting point wax and cut with a lathe speed of 2800 rpm to produce contact lenses. Cutting times were 1-2 seconds for 0.01 mm thickness reduction from the edge to the centre. Nitrogen may be used to cool the diamond button interface. The contact lenses produced were cleaned with petroleum ether (60-80) and polished with an oil based polish (SP2).
- Protein Adsorption and Equilibrium Water Content Study
- Two hydrogel membranes of comparable water content were prepared: membrane A (comparative) comprised of methacrylic acid (16.5 mole %), 2-hydroxyethylmethacrylate, (183.3 mole %) and ethyleneglycol dimethacrylate (0.2 mole %); membrane B according to the invention comprised of 2(methacryloyloxyethyl)-2′(trimethylammonium)ethyl phosphate inner salt (40% mole), methylmethacrylate (59 mole %) and ethylene glycol dimethacrylate (1%). Both membranes were cut into 0.9 mm discs and soaked in a buffered protein solution for 24 hours at 35° C. Control lenses were soaked in buffer solution for the same length of time. The buffer solution was the same as that of the buffered protein solution except that the bovine albumin and chicken lysozyme were not added.
- The composition of the buffered protein solution was as follows:
Sodium Chloride 0.85% Boric Acid 0.46% Sodium Borate (10 H2O) 0.04% Bovine Albumin 0.39% Chicken Egg Lysozyme 0.12% Water 98.4% - The conditions chosen mimic the occular environment and are equivalent to those experienced by a contact lens during 7 days wear. The equilibrium water content was measured thermogravitmetrically and the dry weights of the membranes compared after soaking in the buffer solution and the buffered protein solution.
- The equilibrium water content data and changes in dry weight equivalent to the adsorption of protein from the solution are shown below:
Increase in Dry Equilibrium Water Weight (g. Protein/g Membrane Content % Polymer A at 35° C. 79.4 ± 0.6 — A at 35° C. in 75.9 ± 0.9 0.13 ± 0.04 protein solution B At 35° C. 70.5 ± 0.4 — B At 35° C. in 71.1 ± 0.5 0.01 ± 0.05 protein solution - The membrane containing 2(methacryloyloxyethyl)-2′(trimethylammonium) ethyl phosphate inner salt was found to absorb significantly less protein than a membrane material of comparable water content. The equilibrium water content also remained unchanged.
- 2(Dimethylamino)ethylmethacrylate was vacuum distilled and then dissolved in 0.1M dichloromethane. Methyltrifluoromethyl sulphonate (one molar equivalent) was added slowly to the resulting solution, the temperature of the solution being maintained throughout at 40° C. or less. The product precipitated out slowly and was recovered by filtration and washed in cold dichloromethane. The synthesis is depicted in Reaction Scheme B.
- 2(Dimethylamino)ethylmethacrylate was vacuum distilled and then dissolved in 0.1M dichloromethane. To this solution was added an equimolar amount of propane sultone. The betaine slowly precipitated out of solution and was recovered by filtration and washed with cold dichloromethane. The reaction is shown in Reaction Scheme B.
- The preparation is illustrated by the reaction scheme C which follows.
- a) 2-Chloro-1,3-dioxaphospholane (1)
- In a flask fitted with a pressure equalising dropping funnel, reflux condenser (fitted with a CaCl 2 guard tube) and magnetic stirrer, was placed a solution of phosphorus trichloride (220 ml; 346.3 g; 2.52 mol) in dichloromethane (500 ml). Ethylene glycol (139 ml; 154.7 g, 2.49 mol) was then added dropwise via the dropping funnel at such a rate that the evolution of HCl did not become too excessive. On the addition of the ethylene glycol, the condenser was arranged for distillation, and the dichloromethane removed at atmospheric pressure. When the distillate temperature reached 60° C. the flask was arranged for vacuum distillation using a water pump, Distillation then gave 2-chloro-1,3-dioxaphospholane (158 ml; 224.5 g; 71.3%) as a colourless mobile liquid (which fumes in moist air) b.pt. 36-40° C./21 mm Hg. [cf 45.5-47° C./20 mm Hg, Lucas et al, J. Am. Chem. Soc., 72, 5491, (1950)].
- IR (cm −1, thin film) 2980, 2905, 1470, 1210, 1005, 930, 813, 770.
- b) 2-Chloro-2-oxo-1,3,2-dioxaphospholane (2)
- In a flask fitted with a magnetic stirrer, reflux condenser (fitted with a CaCl 2 guard tube) and sintered glass gas inlet tube, was placed a solution of 2-chloro-1,3-2-dioxaphospholane (100.8 g; 0.797 mol) in dry benzene (200 ml). The solution was stirred and a steady stream of oxygen was bubbled through the solution. The reaction was mildly exothermic, and temperature control was achieved by allowing the solvent to reflux. The oxygen was passed through the reaction mixture for 6 hours. The solvent was removed by rotary evaporation, and the colourless mobile residue distilled to give 2-chloro-2-oxo-1,3,2-dioxaphospholane (2) (87.41 g; 77%) as a colourless mobile liquid—b.pt 95-97° C./0.2 mbar [c.f. 102.5-105° C./1 mbar (Edmundson, Chem. Ind. (London)), 1828 (1962); 79° C./0.4 mbar (Umeda et al., Makromaol. Chem. Rapid Communo. 3, 457, (1982)].
- IR(cm −1, thin film) 2990, 2910, 1475, 1370, 1310, 1220, 1030, 930, 865, 830.
- c) 2(2-Oxo-1,3,2-dioxaphospholan-2-yloxy)ethyl methacrylate (3)
- In a flask fitted with a magnetic stirrer, low temperature thermometer, and a pressure equalising funnel fitted with a silica gel guard tube, was placed a solution of 2-hydroxyethylmethacrylate (20.00 g, 0.154 mol) and triethylamine (15.60 g; 0.154 mol ) in dry diethyl ether (300 ml). The solution was stirred and cooled to between −20° C. and −30° C. A solution of freshly distilled 2-chloro-2-oxo-1,3,2-dioxaphospholane(2) (21.9 g; 0.154 mol) in dry diethyl ether (20 ml) was then added dropwise over 30 minutes, the temperature being held at −20° C. during the addition. Stirring was continued at this temperature for a further 1 hour and then for a further hour as the reaction mixture was allowed to warm to room temperature. The precipitated triethylamine hydrochloride was removed by filtration, and was washed well with dry ether. The ether was removed from the combined filtrate and washings by rotary evaporation. The cloudy oil residue was then shaken for 5 minutes with dry diethyl ether (50 ml) to precipitate a further crop of triethylamine hydrochloride, which was again removed by filtration. Removal of the ether on the rotary evaporator gave (3) (34.18 g; 94.3%) as a colourless viscous oil.
- IR (cm −1 thin film) 1720, 1640, 1450, 1360, 1310, 1290, 1170, 1030, 930, 850.
- NMR (CDCl 3; 60 MHz, δ ppm) 1.95 (s,3H), 4.25-4.70 (m,8H), 5.70 (m, 1H), 6.25 (m, 1H).
- Rf (SiO 2, eluting with 10% MeOH:90% CH2Cl2 −0.9; spot visualised with molybdenum blue spray reagent (eg Sigma), and with iodine vapour).
- d) 2(Methyacryloyloxyethyl)-2(trimethylammonium)ethyl phosphate inner salt (4).
- The phospholane (3) (67.20 g; 0.285 mol was dissolved in 100 ml of dry acetonitrile, and placed in a heavy walled tissue culture bottle. The phospholane solution was then treated with a solution of anhydrous trimethylamine (25.74 g; 0.436 mol) in dry acetonitrile (100 ml). The vessel was then sealed, and placed in a water bath held at 50° C. for 30 hours. The vessel was opened, and the solution brought to the boil. The solution was filtered whilst hot, and then set aside for crystallisation.
- The product was collected by filtration, and most of the solvent removed by suction. The wet product was then washed thoroughly with anhydrous ether, then dried in vacuo, to give (4) as a white amorphous, hygroscopic solid (51.16 g; 61%). Evaporation of the mother liquor gave a very viscous oil (20.00 g; 23%), from which further product (4) crystallised on standing at −20° C. TLC (silica gel plates, eluting with MeOH/CH 2Cl2 (1:1 v/v)) showed one spot Rf 0.1, which was revealed with Dragendorffs reagent, Molybdenum blue spray reagent, and iodine vapour.
- IR(cm −1 1720, 1640, 1320, 1300, 1230, 1170, 970, 750. NMR (D2O; 60 MHz; δ ppm) 2.0 (s,3H), 3.27 (s,9H) 3.60-4.50 (m, 8H), 5.80, (m, 1H) and 6.25 (m, 1H). CHN Found: C, 42.98%; H, 7.88%; N, 4.42%; P, 10.51%. CHN Theory: C, 44.75%; H, 7.46%; N, 4.75%; P, 10.51%.
- (d1) 2-(Methacryloyloxyethyl)-2′-trimethylammonium)ethyl phosphate inner salt [Alternative Preparation]
- Into a glass pressure bottle (300 cm 3), were placed 2-(2-oxo-1,3,2-dioxaphospholan-2-yloxy)ethyl methacrylate (10.0 g, 42 mmol) prepared in step (c) and dry acetonitrile (60 cm3). The pressure bottle was cooled in cold water and then trimethylamine (2.5 g, 42 mmol) was rapidly added to the cold solution. The pressure bottle was closed and then shaken in a thermostat maintained at 55° C. for 2 hours. It was then allowed to come to room temperature and to stand overnight, and was shaken again at 55° C. for 13 hours. After the reaction it was cooled down in water to 10° C. It was rapidly filtered with filter paper. The filtrate was evaporated under reduced pressure with a stream of nitrogen for 2 hours to afford the product (12.3 g, 98%) as a colourless viscous liquid which crystallised on standing in a freezer. The product could be purified by preparative liquid chromatography.
- Glycerophosphorylcholine (0.01 mole), obtained by base hydrolysis of natural phosphatidylcholine, may be stirred with alkynoic acid anhydride (0.01 mole) and dimethylamino pyridine (0.01 mole) in dimethylsulphoxide (150 cm 3).
- At the conclusion of this reaction further dimethylamino pyridine (1 mole) together with methacrylic acid anhydride (1 mole) may be added. The resulting mixture may be stirred for 24 hours. The phosphatidylcholine formed may be purified by column chromatography on silica using a gradient elution procedure with chloroform:methanol:water.
- The synthesis is depicted in reaction scheme D in which R=CH 3.
- The procedure of Reference Example 4 may be repeated, but with acrylic acid anhydride (1 mole) being used in place of methacrylic acid anhydride. The synthesis is depicted in Reaction Scheme D in which R=H.
- The synthesis is depicted in Reaction Scheme E.
- 4-Hydroxy-1(4′-vinylbenzyloxy)butane (5)
- 1,4-Butanediol (50.00 g) was dissolved in dry toluene (60 ml), para-choloromethylstyrene (15.62 g; 0.1 mol) was then added with stirring. A catalytic quantity of 18-crown-6 (0.3 g) was then added. The flask was stoppered, stirred at room temperature for 18 hours and for a further 4 hours at 45-60°. The resulting solution was then poured in to water (500 ml) and extracted with dichloromethane (3×75 ml). The combined extracts were dried (MgSO 4) and evaporated (20°/21 mm ) to give a yellow oil, which was distilled to give a yellow oil (14.33 g; 69.6%).b.pt. 152-157°/1 mbar. NMR (60 MHz: CDCl3) 1.55 (m, 4H); 3.50 (m, 5H, 1H exch); 4.45, (s, 2H) 5.50 (dd, 2H), 6.75 (dd, 1H), 7.40 (m, 4H). IR (thin film), 3402, 2938, 2888, 1631, 1602, 1582, 1511, 1480, 1445, 1382, 1320, 1116, 1063, 920, 907, 827, 801, 716 and 667 cm−1.
- 4(2-Oxo-1,3,2-dioxaphospholane-2-yloxy)-1(4′-vinylbenyloxy)butane (6)
- 4-Hydroxy-1(4′-vinylbenzyloxy)butane (5) (10.03 g; 48.69 mmol) and dried triethylamine (4.92 g, 48.69 mmol) were dissolved in dry diethyl ether (150 ml) and the resulting solution placed in a rigorously dried flask. The solution was cooled to −30° and 2-chloro-2-oxo-1,3,2-dioxaphospholane (6.94 g; 48.69 mmol) added dropwise over 30 minutes, the temperature being held at −30°. The reaction mixture was then stirred for a further 2 hours, during which time the temperature was allowed to rise to 10°. The mixture was filtered and the precipitate washed with dry ether. The filtrate was evaporated (20°/21 mm ) to give a cloudy oil. The residue was shaken with 50 ml of dry ether and refiltered. Evaporation of the filtrate gave the product as a viscous yellow oil (13.73 g; 90.4%).
- TLC (eluting with 10% MeOH/90% dichloromethane) showed one major spot, which stained with acid molybdate reagent (Rf 0.61), IR (thin film) 3458, 2945, 2917, 2860, 1630, 1602, 1581, 1475, 1419, 1363, 1283, 1103, 1032, 820, 842, 807, 800, 715, 610 and 421 cm −1.
- 1[4(4′-Vinylbenzyloxy)butane]-2″(trimethylammonium)ethyl phosphate inner salt (7)
- Trimethylamine (2.00 g, 33.9 mmol) was distilled into a reaction vessel, and frozen with liquid nitrogen. A solution of the 4(2-oxo-1,3,2-dioxaphospholane-2-yloxy)-1-(4′-vinylbenyloxy)butane (6) (10.00 g, 32.1 mmol) in anhydrous acetonitrile (40 ml) was then added to the reaction vessel, which was then sealed and placed in a thermostatted water bath (50° for 50 hours). The reaction vessel was then cooled to room temperature, opened, and the reaction mixture evaporated to about half its original volume (21 mm pressure). The concentrated solution was then stirred at room temperature, whilst anhydrous ether (200 ml) was added dropwise to precipitate the product as a viscous oil. The mixture was then left for several hours at −10°. The product was collected by decanting off the supernatent solid. TLC (eluting with methanol/dichloromethane 1:1) showed one major spot at Rf 0.0-0.1 which stained with both Dragendorffs reagent and acid molybdate.
-
Claims (16)
1. A crosslinked copolymer which is obtainable by polymerising a neutral diluent monomer or monomers, a zwitterionic monomer or monomers and a bifunctional or trifunctional crosslinking agent.
2. A copolymer according to claim 1 in which the diluent monomer is selected from alkyl (alk)acrylates, dialkylamino alkyl (alk)acrylates, alkyl (alk)acrylamides hydroxyalkyl (alk)acrylates, N-vinyl lactams, styrene, substituted styrene derivatives; and mixtures thereof.
3. A copolymer according to claim 2 in which the diluent monomer is selected from vinylpyrrolidone, 2-hydroxyethylmethacrylate, methylmethacrylate and mixtures thereof.
4. A copolymer according to any one of the preceding claims in which the zwitterionic comonomer or comonomers bears a centre of positive charge provided by a quaternary nitrogen atom.
5. A copolymer according to any one of the preceding claims which is obtainable by copolymerising a zwitterionic monomer of formula (I)
Y—B—X (I)
wherein B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain or if X contains a carbon-carbon chain between B and the zwitterionic group or if Y contains a terminal carbon atom, a valence bond,
X is a zwitterionic group and
Y is an ethylenically unsaturated polymerisable group selected from
wherein:
R is hydrogen or a C1-C4 alkyl group;
A is —O— or —NR1— where R1 is hydrogen or a C1-C4 alkyl group or R1 is —B—X where B and X are as defined above; and
K is a group —(CH2)pOC(O)—, —(CH2)pC (O)O—, —(CH2)pOC(O)O—, —(CH2)pNR2—, —(CH2)pNR2C(O)—, —(CH2)pC(O)NR2—, (CH2)pNR2C(O)O—, —(CH2)pOC(O)NR2—, —(CH2)pNR2C(O)NR2— (in which the groups R2 are the same or different), —(CH2)pO—, —(CH2)pSO3—, or, optionally in a combination with B, a valence bond, and p is from 1 to 12 and R2 is hydrogen or a C1-C4 alkyl group.
6. A copolymer according to claim 5 in which B is an alkylene group of formula —(CR3 2)a—, wherein the groups —(CR3 2)— are the same or different, and in each group —(CR3 2)— the groups R3 are the same or different and each group R3 is hydrogen or C1-C4 alkyl, and a is from 1 to 12;
an oxaalkylene group such as alkoxyalkyl having 1 to 6 carbon atoms in each alkyl moiety,
an oligo-oxaalkylene group of formula —[(CR4 2)bO]c(CR4 2)b— where the groups —(CR4 2)— are the same or different and in each group —(CR4 2)— the groups R4 are the same or different and each group R4 is hydrogen or C1-C4 alkyl, and b is 2 or 3 and c is from 2 to 11,
or if X contains a carbon-carbon chain between B and the centre of positive charge, or if Y contains a terminal carbon atom, a valence bond.
7. A copolymer according to claim 5 or 6 in which X is a group of formula (IVB):
where the groups R6 are the same or different and each is hydrogen or C1-4 alkyl and d is from 2 to 4;
a group of formula (IVC):
where the groups R7 are the same or different and each is hydrogen or C1-4 alkyl, and e is from 1 to 4;
a group of formula (IVD):
wherein the groups R8 are the same or different and each is hydrogen or C1-4 alkyl, B1 is a valence bond or straight or branched alkylene, oxaalkylene or oligo-oxalkalkylene group, f is from 1 to 4 and if B is other than a valence bond, Z is 1 and if B is a valence bond Z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise Z is 1;
a group of formula (IVE):
wherein the groups R9 are the same or different and each is hydrogen or C1-4 alkyl, B2 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, g is from 1 to 4 and if B is other than a valence bond, Z is 1 and if B is a valence bond Z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise Z is 1; or
a group of formula (IVF):
wherein the groups R10 are the same or different and each is hydrogen or C1-4 alkyl, B3 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, h is from 1 to 4 if B is other than a valence bond, Z is 1 and if B is a valence bond Z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise Z is 1.
8. A copolymer according to claim 7 in which X is a group of formula (IVD), (IVE) or (IVF) and B1, B2 or B3 respectively contains up to 24 carbon atoms.
9. A copolymer according to claim 7 in which X is a group of formula (IVB) or (IVC).
10. A copolymer according to claim 9 , in which the group X is a group of formula (IVC).
11. A copolymer according to claim 10 wherein the groups R7 are all methyl.
12. A copolymer according to claim 11 which comprises residues of 2(methacryloyloxy)ethyl-2′-(trimethylammonium) ethyl phosphate inner salt.
13. A contact lens material comprising a copolymer according to any one of claims 1 to 12 .
14. A contact lens comprising a copolymer according to any one of claims 1 to 12 or a contact lens material according to claim 13 .
15. A process for producing a copolymer claimed in any one of claims 1 to 12 which comprises copolymerising a monomer composition comprising a diluent monomer or monomers, a comonomer or comonomers bearing a centre of permanent positive charge, and a monomer or monomers which will crosslink the resultant polymers.
16. Use of a copolymer according to any one of claims 1 to 12 or a contact lens material according to claim 13 in the production of a contact lens.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/084,062 US20020165324A1 (en) | 1990-10-29 | 2002-02-28 | Contact lens material |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB909023498A GB9023498D0 (en) | 1990-10-29 | 1990-10-29 | Soft contact lens material |
| GB9023498.0 | 1990-10-29 | ||
| US08/050,032 US6420453B1 (en) | 1990-10-29 | 1991-10-29 | Contact lens material |
| US10/084,062 US20020165324A1 (en) | 1990-10-29 | 2002-02-28 | Contact lens material |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/050,032 Division US6420453B1 (en) | 1990-10-29 | 1991-10-29 | Contact lens material |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020165324A1 true US20020165324A1 (en) | 2002-11-07 |
Family
ID=10684513
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/050,032 Expired - Fee Related US6420453B1 (en) | 1990-10-29 | 1991-10-29 | Contact lens material |
| US08/469,861 Expired - Fee Related US6423761B1 (en) | 1990-10-29 | 1995-06-06 | Contact lens material |
| US10/084,062 Abandoned US20020165324A1 (en) | 1990-10-29 | 2002-02-28 | Contact lens material |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/050,032 Expired - Fee Related US6420453B1 (en) | 1990-10-29 | 1991-10-29 | Contact lens material |
| US08/469,861 Expired - Fee Related US6423761B1 (en) | 1990-10-29 | 1995-06-06 | Contact lens material |
Country Status (12)
| Country | Link |
|---|---|
| US (3) | US6420453B1 (en) |
| EP (1) | EP0555295B1 (en) |
| JP (2) | JP2593993B2 (en) |
| AT (1) | ATE146488T1 (en) |
| DE (1) | DE69123756T2 (en) |
| DK (1) | DK0555295T3 (en) |
| ES (1) | ES2094824T3 (en) |
| GB (1) | GB9023498D0 (en) |
| GR (1) | GR3022397T3 (en) |
| HK (1) | HK53297A (en) |
| SG (1) | SG43188A1 (en) |
| WO (1) | WO1992007885A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008060249A1 (en) * | 2006-11-17 | 2008-05-22 | Agency For Science, Technology And Research | Porous polymeric material with cross-linkable wetting agent |
| US20090093596A1 (en) * | 2007-10-03 | 2009-04-09 | Salamone Joseph C | Use of silylated sulfonate monomers to improve contact lens wettability |
| US20130059926A1 (en) * | 2011-09-01 | 2013-03-07 | Michael Driver | Methods for producing biocompatible materials |
| US20130120708A1 (en) * | 2011-11-10 | 2013-05-16 | Michael Driver | Polymerisable material |
| US8513353B2 (en) | 2009-03-19 | 2013-08-20 | Agency For Science, Technology And Research | Forming copolymer from bicontinuous microemulsion comprising monomers of different hydrophilicity |
| US9006305B2 (en) | 2011-09-01 | 2015-04-14 | Vertellus Specialties Inc. | Biocompatible material |
| CN116621872A (en) * | 2023-05-24 | 2023-08-22 | 广东工业大学 | Acryloyloxy (2-hydroxypropyl) phosphorylcholine and its binary polymer, preparation method and application |
| CN118440240A (en) * | 2024-04-30 | 2024-08-06 | 无锡蕾明视康科技有限公司 | A blue light filtering intraocular lens device for resisting protein deposition and calcification deposition and a preparation method thereof |
Families Citing this family (96)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5270415A (en) * | 1990-12-21 | 1993-12-14 | Allergan Inc. | Balanced charge polymer and hydrophilic contact lens manufactured therefrom |
| US6743878B2 (en) | 1991-07-05 | 2004-06-01 | Biocompatibles Uk Limited | Polymeric surface coatings |
| US6225431B1 (en) | 1991-07-05 | 2001-05-01 | Biocompatibles Limited | Biocompatibilizing process |
| SG54134A1 (en) * | 1991-10-14 | 1998-11-16 | Nof Corp | Treating solution for contact lenses |
| TW228529B (en) * | 1992-12-23 | 1994-08-21 | Ciba Geigy | |
| GB9301701D0 (en) * | 1993-01-28 | 1993-03-17 | Biocompatibles Ltd | New zwitterionic materials |
| GB9301702D0 (en) * | 1993-01-28 | 1993-03-17 | Biocompatibles Ltd | New materials |
| US5256751A (en) * | 1993-02-08 | 1993-10-26 | Vistakon, Inc. | Ophthalmic lens polymer incorporating acyclic monomer |
| US5391667A (en) * | 1993-03-04 | 1995-02-21 | Isis Pharmaceuticals | Copolymers of N-vinyl-lactams suitable for oligomer solid phase synthesis |
| AU1073295A (en) * | 1993-11-23 | 1995-06-13 | Biocompatibles Limited | Ethylenically unsaturated compounds |
| GB9324033D0 (en) * | 1993-11-23 | 1994-01-12 | Biocompatibles Ltd | Ethylenically unsaturated compounds |
| GB9415926D0 (en) * | 1994-08-04 | 1994-09-28 | Biocompatibles Ltd | New materials |
| US5760100B1 (en) | 1994-09-06 | 2000-11-14 | Ciba Vision Corp | Extended wear ophthalmic lens |
| US7468398B2 (en) | 1994-09-06 | 2008-12-23 | Ciba Vision Corporation | Extended wear ophthalmic lens |
| GB9624130D0 (en) | 1996-11-20 | 1997-01-08 | Biocompatibles Ltd | Biocompatible compositions |
| FR2772033A1 (en) * | 1997-12-05 | 1999-06-04 | Essilor Int | PROCESS FOR PRODUCING A TRANSPARENT POLYMERIC MATERIAL RESISTANT TO THE DEPOSITION OF PROTEINS, MATERIAL OBTAINED BY THIS PROCESS, CONTACT LENSES AND INTRAOCULAR IMPLANTS MADE OF THIS MATERIAL |
| JP4772939B2 (en) * | 1998-09-29 | 2011-09-14 | 日油株式会社 | Polymerizable monomer composition and contact lens |
| AU756846B2 (en) * | 1998-12-11 | 2003-01-23 | Biocompatibles Uk Limited | Crosslinked polymers and refractive devices formed therefrom |
| SE9900935D0 (en) * | 1999-03-16 | 1999-03-16 | Pharmacia & Upjohn Bv | Macromolecular compounds |
| ATE303391T1 (en) | 2000-02-07 | 2005-09-15 | Biocompatibles Uk Ltd | SILICON CONTAINING COMPOUNDS PRODUCED BY MICHAEL-LIKE ADDITION REACTIONS AS MONOMERS AND MACROMERS |
| ATE266668T1 (en) | 2000-02-07 | 2004-05-15 | Biocompatibles Uk Ltd | SILICON CONTAINING COMPOUNDS PRODUCED BY MICHAEL ADDITION AS MONOMERS AND MACROMERS |
| JP4010831B2 (en) * | 2001-05-22 | 2007-11-21 | 株式会社資生堂 | Phosphorylcholine group-containing polymer and method for producing the same |
| JP4774989B2 (en) * | 2003-06-25 | 2011-09-21 | 日油株式会社 | Embryoid body formation container and embryoid body formation method |
| WO2006011062A2 (en) * | 2004-05-20 | 2006-02-02 | Albatros Technologies Gmbh & Co. Kg | Printable hydrogel for biosensors |
| EP2269580A3 (en) | 2004-09-07 | 2011-11-09 | Biocompatibles UK Limited | Compositions comprising camptothecins in microspheres |
| US20090169782A1 (en) * | 2004-11-22 | 2009-07-02 | Invista North America S Ar L | Process for crystallizing and solid state polymerizing polymers and the coated polymer |
| JP4665629B2 (en) * | 2005-06-30 | 2011-04-06 | 日油株式会社 | Monomer composition and contact lens |
| US7431969B2 (en) * | 2005-08-05 | 2008-10-07 | Massachusetts Institute Of Technology | Chemical vapor deposition of hydrogel films |
| US20070074980A1 (en) * | 2005-09-02 | 2007-04-05 | Bankoski Brian R | Implant rehydration packages and methods of use |
| JP5238514B2 (en) | 2006-02-10 | 2013-07-17 | バイオコンパティブルズ ユーケー リミテッド | Loading hydrophobic drugs into hydrophilic polymer delivery systems |
| US8231218B2 (en) | 2006-06-15 | 2012-07-31 | Coopervision International Holding Company, Lp | Wettable silicone hydrogel contact lenses and related compositions and methods |
| US7540609B2 (en) * | 2006-06-15 | 2009-06-02 | Coopervision International Holding Company, Lp | Wettable silicone hydrogel contact lenses and related compositions and methods |
| US7572841B2 (en) * | 2006-06-15 | 2009-08-11 | Coopervision International Holding Company, Lp | Wettable silicone hydrogel contact lenses and related compositions and methods |
| PL2178931T3 (en) * | 2007-07-19 | 2012-08-31 | Novartis Ag | High ion and metabolite flux lenses and materials |
| WO2009091728A2 (en) * | 2008-01-14 | 2009-07-23 | Coopervision International Holding Company, Lp | Polymerizable contact lens formulations and contact lenses obtained therefrom |
| EP2367535B1 (en) | 2008-12-02 | 2017-02-22 | Biocompatibles Uk Ltd. | Pancreatic tumour treatment |
| EP2443182A2 (en) | 2009-06-15 | 2012-04-25 | DSM IP Assets B.V. | Phosphorylcholine-based amphiphilic silicones for medical applications |
| KR101130951B1 (en) * | 2009-09-22 | 2012-06-13 | 쿠퍼비젼 인터내셔날 홀딩 캄파니, 엘피 | Wettable hydrogel materials for use in ophthalmic applications and methods |
| US8877103B2 (en) | 2010-04-13 | 2014-11-04 | Johnson & Johnson Vision Care, Inc. | Process for manufacture of a thermochromic contact lens material |
| US8697770B2 (en) | 2010-04-13 | 2014-04-15 | Johnson & Johnson Vision Care, Inc. | Pupil-only photochromic contact lenses displaying desirable optics and comfort |
| JP5392186B2 (en) * | 2010-05-31 | 2014-01-22 | 日油株式会社 | Phosphorylcholine group-containing (meth) acrylate |
| US10209534B2 (en) | 2012-03-27 | 2019-02-19 | Johnson & Johnson Vision Care, Inc. | Increased stiffness center optic in soft contact lenses for astigmatism correction |
| US9250357B2 (en) * | 2013-03-15 | 2016-02-02 | Johnson & Johnson Vision Care, Inc. | Silicone-containing contact lens having reduced amount of silicon on the surface |
| JP5646703B2 (en) * | 2013-07-12 | 2014-12-24 | 富士フイルム株式会社 | Biocompatible polymerizable compound, biocompatible polymer, and polymer particle |
| TWI588562B (en) * | 2015-12-31 | 2017-06-21 | 星歐光學股份有限公司 | Contact lens |
| TWI636297B (en) * | 2016-02-05 | 2018-09-21 | 逢甲大學 | Hydrogel film of contact lenses and manufacturing method thereof |
| KR101820710B1 (en) | 2016-06-27 | 2018-03-08 | (주)지오메디칼 | Hydrogel contact lens having high water content and inhibiting protein adsorption and method for preparing the same |
| US10370476B2 (en) | 2016-07-06 | 2019-08-06 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels comprising high levels of polyamides |
| US11125916B2 (en) | 2016-07-06 | 2021-09-21 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels comprising N-alkyl methacrylamides and contact lenses made thereof |
| SG11201811097XA (en) | 2016-07-06 | 2019-01-30 | Johnson & Johnson Vision Care | Increased stiffness center optic in soft contact lenses for astigmatism correction |
| US10371865B2 (en) | 2016-07-06 | 2019-08-06 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels comprising polyamides |
| US10676575B2 (en) | 2016-10-06 | 2020-06-09 | Johnson & Johnson Vision Care, Inc. | Tri-block prepolymers and their use in silicone hydrogels |
| US10752720B2 (en) | 2017-06-26 | 2020-08-25 | Johnson & Johnson Vision Care, Inc. | Polymerizable blockers of high energy light |
| US10723732B2 (en) | 2017-06-30 | 2020-07-28 | Johnson & Johnson Vision Care, Inc. | Hydroxyphenyl phenanthrolines as polymerizable blockers of high energy light |
| US10526296B2 (en) | 2017-06-30 | 2020-01-07 | Johnson & Johnson Vision Care, Inc. | Hydroxyphenyl naphthotriazoles as polymerizable blockers of high energy light |
| US11993037B1 (en) | 2018-03-02 | 2024-05-28 | Johnson & Johnson Vision Care, Inc. | Contact lens displaying improved vision attributes |
| US10935695B2 (en) | 2018-03-02 | 2021-03-02 | Johnson & Johnson Vision Care, Inc. | Polymerizable absorbers of UV and high energy visible light |
| US11543683B2 (en) | 2019-08-30 | 2023-01-03 | Johnson & Johnson Vision Care, Inc. | Multifocal contact lens displaying improved vision attributes |
| US10996491B2 (en) | 2018-03-23 | 2021-05-04 | Johnson & Johnson Vision Care, Inc. | Ink composition for cosmetic contact lenses |
| TWI813663B (en) | 2018-04-05 | 2023-09-01 | 日商日油股份有限公司 | Phosphocholine-containing polysiloxane monomer |
| US11046636B2 (en) | 2018-06-29 | 2021-06-29 | Johnson & Johnson Vision Care, Inc. | Polymerizable absorbers of UV and high energy visible light |
| US10932902B2 (en) | 2018-08-03 | 2021-03-02 | Johnson & Johnson Vision Care, Inc. | Dynamically tunable apodized multiple-focus opthalmic devices and methods |
| US12174465B2 (en) | 2018-08-03 | 2024-12-24 | Johnson & Johnson Vision Care, Inc. | Dynamically tunable apodized multiple-focus opthalmic devices and methods |
| US20200073145A1 (en) | 2018-09-05 | 2020-03-05 | Johnson & Johnson Vision Care, Inc. | Vision care kit |
| US11493668B2 (en) | 2018-09-26 | 2022-11-08 | Johnson & Johnson Vision Care, Inc. | Polymerizable absorbers of UV and high energy visible light |
| US11724471B2 (en) | 2019-03-28 | 2023-08-15 | Johnson & Johnson Vision Care, Inc. | Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby |
| US11578176B2 (en) | 2019-06-24 | 2023-02-14 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogel contact lenses having non-uniform morphology |
| US20200407324A1 (en) | 2019-06-28 | 2020-12-31 | Johnson & Johnson Vision Care, Inc. | Polymerizable fused tricyclic compounds as absorbers of uv and visible light |
| US11958824B2 (en) | 2019-06-28 | 2024-04-16 | Johnson & Johnson Vision Care, Inc. | Photostable mimics of macular pigment |
| US20210003754A1 (en) | 2019-07-02 | 2021-01-07 | Johnson & Johnson Vision Care, Inc. | Core-shell particles and methods of making and using thereof |
| JP7616541B2 (en) | 2019-08-30 | 2025-01-17 | ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド | Contact lenses exhibiting improved visual attributes - Patents.com |
| US11891526B2 (en) | 2019-09-12 | 2024-02-06 | Johnson & Johnson Vision Care, Inc. | Ink composition for cosmetic contact lenses |
| US11360240B2 (en) | 2019-12-19 | 2022-06-14 | Johnson & Johnson Vision Care, Inc. | Contact lens containing photosensitive chromophore and package therefor |
| US20210301088A1 (en) | 2020-03-18 | 2021-09-30 | Johnson & Johnson Vision Care, Inc. | Ophthalmic devices containing transition metal complexes as high energy visible light filters |
| US11853013B2 (en) | 2020-06-15 | 2023-12-26 | Johnson & Johnson Vision Care, Inc. | Systems and methods for indicating the time elapsed since the occurrence of a triggering event |
| US12116443B2 (en) | 2020-06-16 | 2024-10-15 | Johnson & Johnson Vision Care, Inc. | Amino acid-based polymerizable compounds and ophthalmic devices prepared therefrom |
| US12180318B2 (en) | 2020-06-16 | 2024-12-31 | Johnson & Johnson Vision Care, Inc. | Imidazolium zwitterion polymerizable compounds and ophthalmic devices incorporating them |
| US20220113558A1 (en) | 2020-10-13 | 2022-04-14 | Johnson & Johnson Vision Care, Inc. | Contact lens position and rotation control using the pressure of the eyelid margin |
| US20220194944A1 (en) | 2020-12-18 | 2022-06-23 | Johnson & Johnson Vision Care, Inc. | Photostable mimics of macular pigment |
| WO2022270486A1 (en) * | 2021-06-24 | 2022-12-29 | 日油株式会社 | Contact lens and production method for said lens |
| US12054499B2 (en) | 2021-06-30 | 2024-08-06 | Johnson & Johnson Vision Care, Inc. | Transition metal complexes as visible light absorbers |
| US12310474B2 (en) | 2021-10-08 | 2025-05-27 | Johnson & Johnson Vision Care, Inc. | Multi-material lens package |
| US20230296807A1 (en) | 2021-12-20 | 2023-09-21 | Johnson & Johnson Vision Care, Inc. | Contact lenses containing light absorbing regions and methods for their preparation |
| US20230348718A1 (en) | 2022-04-28 | 2023-11-02 | Johnson & Johnson Vision Care, Inc. | Light-filtering materials for biomaterial integration and methods thereof |
| US11971518B2 (en) | 2022-04-28 | 2024-04-30 | Johnson & Johnson Vision Care, Inc. | Shape engineering of particles to create a narrow spectral filter against a specific portion of the light spectrum |
| US11733440B1 (en) | 2022-04-28 | 2023-08-22 | Johnson & Johnson Vision Care, Inc. | Thermally stable nanoparticles and methods thereof |
| US20230350230A1 (en) | 2022-04-28 | 2023-11-02 | Johnson & Johnson Vision Care, Inc. | Using particles for light filtering |
| US20230348717A1 (en) | 2022-04-28 | 2023-11-02 | Johnson & Johnson Vision Care, Inc. | Particle surface modification to increase compatibility and stability in hydrogels |
| TW202419898A (en) | 2022-06-16 | 2024-05-16 | 美商壯生和壯生視覺關懷公司 | Ophthalmic devices containing photostable mimics of macular pigment and other visible light filters |
| US20240228466A1 (en) | 2022-12-15 | 2024-07-11 | Johnson & Johnson Vision Care, Inc. | Transition metal complexes as visible light absorbers |
| WO2024134383A1 (en) | 2022-12-21 | 2024-06-27 | Johnson & Johnson Vision Care, Inc. | Compositions for ophthalmologic devices |
| TW202430231A (en) | 2022-12-21 | 2024-08-01 | 美商壯生和壯生視覺關懷公司 | Compositions for ophthalmic devices |
| TW202434214A (en) | 2022-12-21 | 2024-09-01 | 美商壯生和壯生視覺關懷公司 | Compositions for ophthalmologic devices |
| TW202439971A (en) | 2022-12-21 | 2024-10-16 | 美商壯生和壯生視覺關懷公司 | Compositions for ophthalmologic devices |
| WO2025024631A1 (en) | 2023-07-27 | 2025-01-30 | Johnson & Johnson Vision Care, Inc. | Supervised machine learning curing systems |
| WO2025125986A1 (en) | 2023-12-12 | 2025-06-19 | Johnson & Johnson Vision Care, Inc. | Ophthalmic devices containing photostable mimics of macular pigment and other visible light filters |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5270415A (en) * | 1990-12-21 | 1993-12-14 | Allergan Inc. | Balanced charge polymer and hydrophilic contact lens manufactured therefrom |
Family Cites Families (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3671502A (en) | 1970-11-12 | 1972-06-20 | Kendall & Co | Betaine copolymers with hydroxyalkylacrylates and hydroxyalkylmethacrylates |
| US4038264A (en) * | 1974-01-07 | 1977-07-26 | National Patent Development Corporation | Hema copolymers having high oxygen permeability |
| US4071508A (en) * | 1975-02-11 | 1978-01-31 | Plastomedical Sciences, Inc. | Anionic hydrogels based on hydroxyalkyl acrylates and methacrylates |
| GB1593790A (en) * | 1976-12-09 | 1981-07-22 | Nippon Paint Co Ltd | Thermosetting paint composition comprising a thermosetting resin produced from an amphoionic monomer |
| US4152508A (en) | 1978-02-15 | 1979-05-01 | Polymer Technology Corporation | Silicone-containing hard contact lens material |
| EP0032443B1 (en) | 1980-01-10 | 1985-06-05 | CooperVision Inc. | Cross-linked polymers for contact lenses |
| DE3010185A1 (en) | 1980-03-17 | 1981-09-24 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen | POLYMERIZABLE PHOSPHOLIPIDS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR THE PRODUCTION OF POLYMER PHOSPHOLIPIDS |
| JPS5943342A (en) | 1982-09-06 | 1984-03-10 | Oki Electric Ind Co Ltd | Humidity sensor material |
| JPS6021599A (en) | 1983-07-15 | 1985-02-02 | 松下電工株式会社 | Method of producing multilayer wiring board |
| JPS6067489A (en) | 1983-09-22 | 1985-04-17 | Toyo Soda Mfg Co Ltd | Preparation of polymerizable phospholipid |
| US5380904A (en) | 1984-01-20 | 1995-01-10 | Biocompatibles Ltd. | Process for rendering a surface biocompatible, and articles containing the same |
| JPS60179408A (en) | 1984-02-24 | 1985-09-13 | Oki Electric Ind Co Ltd | Compound having phospholipid-like structure and its polymer and production thereof |
| JPS60204711A (en) * | 1984-03-30 | 1985-10-16 | Mitsubishi Chem Ind Ltd | Method for sustained release of pharmacologically active substances |
| US4737295A (en) | 1986-07-21 | 1988-04-12 | Venture Chemicals, Inc. | Organophilic polyphenolic acid adducts |
| US4786657A (en) * | 1987-07-02 | 1988-11-22 | Minnesota Mining And Manufacturing Company | Polyurethanes and polyurethane/polyureas crosslinked using 2-glyceryl acrylate or 2-glyceryl methacrylate |
| CA1332774C (en) | 1988-07-08 | 1994-10-25 | Jiri Vacik | Hydrophilic copolymer and the method for producing thereof |
| US4889664A (en) | 1988-11-25 | 1989-12-26 | Vistakon, Inc. | Method of forming shaped hydrogel articles including contact lenses |
| JP2890316B2 (en) | 1989-07-07 | 1999-05-10 | 科学技術振興事業団 | Materials for biocompatible medical devices |
| GB9004881D0 (en) | 1990-03-05 | 1990-05-02 | Biocompatibles Ltd | Method of improving the ocular of synthetic polymers haemo and biocompatibility |
| JP3030086B2 (en) * | 1991-07-05 | 2000-04-10 | バイオコンパテイブルズ・リミテツド | Polymer surface coating |
| GB9118597D0 (en) | 1991-08-30 | 1991-10-16 | Biocompatibles Ltd | Polymer treatments |
| SG54134A1 (en) * | 1991-10-14 | 1998-11-16 | Nof Corp | Treating solution for contact lenses |
| US5256751A (en) * | 1993-02-08 | 1993-10-26 | Vistakon, Inc. | Ophthalmic lens polymer incorporating acyclic monomer |
-
1990
- 1990-10-29 GB GB909023498A patent/GB9023498D0/en active Pending
-
1991
- 1991-10-29 ES ES91918819T patent/ES2094824T3/en not_active Expired - Lifetime
- 1991-10-29 JP JP3517136A patent/JP2593993B2/en not_active Expired - Lifetime
- 1991-10-29 US US08/050,032 patent/US6420453B1/en not_active Expired - Fee Related
- 1991-10-29 EP EP91918819A patent/EP0555295B1/en not_active Expired - Lifetime
- 1991-10-29 WO PCT/GB1991/001887 patent/WO1992007885A1/en not_active Ceased
- 1991-10-29 DK DK91918819.3T patent/DK0555295T3/en active
- 1991-10-29 DE DE69123756T patent/DE69123756T2/en not_active Expired - Lifetime
- 1991-10-29 AT AT91918819T patent/ATE146488T1/en not_active IP Right Cessation
- 1991-10-29 SG SG1996005164A patent/SG43188A1/en unknown
-
1995
- 1995-06-06 US US08/469,861 patent/US6423761B1/en not_active Expired - Fee Related
-
1996
- 1996-07-05 JP JP8194131A patent/JP3009356B2/en not_active Expired - Lifetime
-
1997
- 1997-01-29 GR GR960403461T patent/GR3022397T3/en unknown
- 1997-04-24 HK HK53297A patent/HK53297A/en not_active IP Right Cessation
-
2002
- 2002-02-28 US US10/084,062 patent/US20020165324A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5270415A (en) * | 1990-12-21 | 1993-12-14 | Allergan Inc. | Balanced charge polymer and hydrophilic contact lens manufactured therefrom |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008060249A1 (en) * | 2006-11-17 | 2008-05-22 | Agency For Science, Technology And Research | Porous polymeric material with cross-linkable wetting agent |
| US20090093596A1 (en) * | 2007-10-03 | 2009-04-09 | Salamone Joseph C | Use of silylated sulfonate monomers to improve contact lens wettability |
| US7732546B2 (en) * | 2007-10-03 | 2010-06-08 | Bausch & Lomb Incorporated | Use of silylated sulfonate monomers to improve contact lens wettability |
| US8513353B2 (en) | 2009-03-19 | 2013-08-20 | Agency For Science, Technology And Research | Forming copolymer from bicontinuous microemulsion comprising monomers of different hydrophilicity |
| US20130059926A1 (en) * | 2011-09-01 | 2013-03-07 | Michael Driver | Methods for producing biocompatible materials |
| US8980956B2 (en) * | 2011-09-01 | 2015-03-17 | Vertellus Specialities Inc. | Methods for producing biocompatible materials |
| US9006305B2 (en) | 2011-09-01 | 2015-04-14 | Vertellus Specialties Inc. | Biocompatible material |
| US20130120708A1 (en) * | 2011-11-10 | 2013-05-16 | Michael Driver | Polymerisable material |
| US8980972B2 (en) * | 2011-11-10 | 2015-03-17 | Vertellus Specialties Inc. | Polymerisable material |
| CN116621872A (en) * | 2023-05-24 | 2023-08-22 | 广东工业大学 | Acryloyloxy (2-hydroxypropyl) phosphorylcholine and its binary polymer, preparation method and application |
| CN118440240A (en) * | 2024-04-30 | 2024-08-06 | 无锡蕾明视康科技有限公司 | A blue light filtering intraocular lens device for resisting protein deposition and calcification deposition and a preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| SG43188A1 (en) | 1997-10-17 |
| US6423761B1 (en) | 2002-07-23 |
| GR3022397T3 (en) | 1997-04-30 |
| JPH06502200A (en) | 1994-03-10 |
| DE69123756T2 (en) | 1997-04-03 |
| ATE146488T1 (en) | 1997-01-15 |
| DE69123756D1 (en) | 1997-01-30 |
| EP0555295A1 (en) | 1993-08-18 |
| US6420453B1 (en) | 2002-07-16 |
| JP2593993B2 (en) | 1997-03-26 |
| JPH0920814A (en) | 1997-01-21 |
| DK0555295T3 (en) | 1997-06-16 |
| WO1992007885A1 (en) | 1992-05-14 |
| GB9023498D0 (en) | 1990-12-12 |
| EP0555295B1 (en) | 1996-12-18 |
| HK53297A (en) | 1997-05-02 |
| JP3009356B2 (en) | 2000-02-14 |
| ES2094824T3 (en) | 1997-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6420453B1 (en) | Contact lens material | |
| EP0593561B1 (en) | Polymeric surface coatings | |
| US5705583A (en) | Polymeric surface coatings | |
| US5739236A (en) | Biocompatible zwitterion polymers | |
| EP0124017B1 (en) | Polysiloxane composition with improved surface wetting characteristics and biomedical devices made thereof | |
| US6087462A (en) | Polymeric surface coatings | |
| US4242483A (en) | Oxygen permeable hard and semi-hard contact lens compositions, methods and articles of manufacture | |
| EP0810239B1 (en) | Polymeric surface coatings | |
| US4652622A (en) | Polysiloxane composition with improved surface wetting characteristics and biomedical devices made thereof | |
| US6225431B1 (en) | Biocompatibilizing process | |
| EP0818479B1 (en) | Polymeric surface coatings | |
| EP2751123B1 (en) | Biocompatible material | |
| AU697066B2 (en) | Polymeric surface coatings | |
| AU728822B2 (en) | Polymeric surface coatings | |
| NZ197407A (en) | Oxygen-permeable,hard and semi-hard contact lens material | |
| EP0067909A1 (en) | Oxygen permeable hard and semi-hard contact lens compositions, processes for their preparation, contact lenses and their manufacture from such compositions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BIOCOMPATIBLES UK LIMITED, ENGLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOCOMPATIBLES LIMITED;REEL/FRAME:013589/0504 Effective date: 20020404 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |