US20020164801A1 - Human and mammalian DNA replication origin consensus sequences - Google Patents
Human and mammalian DNA replication origin consensus sequences Download PDFInfo
- Publication number
- US20020164801A1 US20020164801A1 US10/092,140 US9214002A US2002164801A1 US 20020164801 A1 US20020164801 A1 US 20020164801A1 US 9214002 A US9214002 A US 9214002A US 2002164801 A1 US2002164801 A1 US 2002164801A1
- Authority
- US
- United States
- Prior art keywords
- dna
- sequence
- mammalian
- human
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108091035707 Consensus sequence Proteins 0.000 title claims abstract description 39
- 230000004543 DNA replication Effects 0.000 title claims abstract description 35
- 108020005091 Replication Origin Proteins 0.000 title claims abstract description 7
- 108020004414 DNA Proteins 0.000 claims abstract description 110
- 239000013598 vector Substances 0.000 claims abstract description 39
- 239000012634 fragment Substances 0.000 claims abstract description 33
- 238000000338 in vitro Methods 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 19
- 210000004962 mammalian cell Anatomy 0.000 claims abstract description 17
- 230000000977 initiatory effect Effects 0.000 claims abstract description 10
- 210000004027 cell Anatomy 0.000 claims description 112
- 239000013612 plasmid Substances 0.000 claims description 37
- 108090000623 proteins and genes Proteins 0.000 claims description 23
- 238000001890 transfection Methods 0.000 claims description 22
- 238000012423 maintenance Methods 0.000 claims description 12
- 238000001727 in vivo Methods 0.000 claims description 11
- 239000002773 nucleotide Substances 0.000 claims description 10
- 125000003729 nucleotide group Chemical group 0.000 claims description 10
- 102000004169 proteins and genes Human genes 0.000 claims description 10
- 210000000688 human artificial chromosome Anatomy 0.000 claims description 8
- 239000001506 calcium phosphate Substances 0.000 claims description 7
- 229910000389 calcium phosphate Inorganic materials 0.000 claims description 7
- 235000011010 calcium phosphates Nutrition 0.000 claims description 7
- 238000000975 co-precipitation Methods 0.000 claims description 7
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 5
- 210000000723 mammalian artificial chromosome Anatomy 0.000 claims description 5
- 238000001415 gene therapy Methods 0.000 claims description 4
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 230000002062 proliferating effect Effects 0.000 claims description 4
- 102000053602 DNA Human genes 0.000 claims description 3
- 238000010561 standard procedure Methods 0.000 claims description 3
- 238000004520 electroporation Methods 0.000 claims description 2
- 239000002502 liposome Substances 0.000 claims description 2
- 230000001404 mediated effect Effects 0.000 claims description 2
- 238000000520 microinjection Methods 0.000 claims description 2
- 239000013603 viral vector Substances 0.000 claims 1
- 230000010076 replication Effects 0.000 description 29
- 238000003556 assay Methods 0.000 description 22
- 108091034117 Oligonucleotide Proteins 0.000 description 18
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Inorganic materials [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 17
- 230000012010 growth Effects 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 16
- 108020004707 nucleic acids Proteins 0.000 description 15
- 102000039446 nucleic acids Human genes 0.000 description 15
- 150000007523 nucleic acids Chemical class 0.000 description 15
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 14
- 230000027455 binding Effects 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000003550 marker Substances 0.000 description 13
- 239000002609 medium Substances 0.000 description 13
- 210000002230 centromere Anatomy 0.000 description 12
- 210000005260 human cell Anatomy 0.000 description 12
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 10
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 10
- 229950004398 broxuridine Drugs 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 230000002759 chromosomal effect Effects 0.000 description 8
- 230000029087 digestion Effects 0.000 description 8
- 230000007774 longterm Effects 0.000 description 8
- 239000000872 buffer Substances 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 6
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 6
- 229960001714 calcium phosphate Drugs 0.000 description 6
- 210000000349 chromosome Anatomy 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 230000003362 replicative effect Effects 0.000 description 6
- 239000006152 selective media Substances 0.000 description 6
- 210000003411 telomere Anatomy 0.000 description 6
- 102000055501 telomere Human genes 0.000 description 6
- 108091035539 telomere Proteins 0.000 description 6
- 241001045988 Neogene Species 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 5
- 238000002372 labelling Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 101150091879 neo gene Proteins 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 108020004638 Circular DNA Proteins 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 229960005542 ethidium bromide Drugs 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 210000003917 human chromosome Anatomy 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000013641 positive control Substances 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 241000699800 Cricetinae Species 0.000 description 3
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 3
- 206010059866 Drug resistance Diseases 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 210000004507 artificial chromosome Anatomy 0.000 description 3
- 238000000326 densiometry Methods 0.000 description 3
- 108020001096 dihydrofolate reductase Proteins 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 239000013605 shuttle vector Substances 0.000 description 3
- 235000020183 skimmed milk Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 241000576133 Alphasatellites Species 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 241000282552 Chlorocebus aethiops Species 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 101710150114 Protein rep Proteins 0.000 description 2
- 101710152114 Replication protein Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 229960000789 guanidine hydrochloride Drugs 0.000 description 2
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 230000011278 mitosis Effects 0.000 description 2
- 230000000394 mitotic effect Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003153 stable transfection Methods 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000005199 ultracentrifugation Methods 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 102000055025 Adenosine deaminases Human genes 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 101100163849 Arabidopsis thaliana ARS1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 101000664418 Homo sapiens Secreted Ly-6/uPAR-related protein 1 Proteins 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical class CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- 101100059658 Mus musculus Cetn4 gene Proteins 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 101100097319 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ala1 gene Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 239000008049 TAE buffer Substances 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 241000223892 Tetrahymena Species 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HGEVZDLYZYVYHD-UHFFFAOYSA-N acetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound CC(O)=O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O HGEVZDLYZYVYHD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- -1 and centromere Proteins 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000007321 biological mechanism Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229960005069 calcium Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 108091092356 cellular DNA Proteins 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000002298 density-gradient ultracentrifugation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 108010011035 endodeoxyribonuclease DpnI Proteins 0.000 description 1
- 238000009585 enzyme analysis Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 230000010502 episomal replication Effects 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 102000049578 human SLURP1 Human genes 0.000 description 1
- 102000054999 human core Human genes 0.000 description 1
- 108700026469 human core Proteins 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 238000013493 large scale plasmid preparation Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000013492 plasmid preparation Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000001626 skin fibroblast Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011240 wet gel Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/108—Plasmid DNA episomal vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/20—Pseudochromosomes, minichrosomosomes
- C12N2800/206—Pseudochromosomes, minichrosomosomes of yeast origin, e.g. YAC, 2u
Definitions
- the invention relates to human and mammalian DNA replication origin consensus sequences; the use of consensus sequences for control of initiation of mammalian DNA replication; small sequences which will allow the maintenance of circular plasmid constructs which are capable of being replicated semiconservatively in proliferating mammalian cells; to small sequences suitable for use in human gene therapy; to small sequences suitable for inclusion in mammalian and human artificial chromosome vectors; to a protein binding to double-stranded DNA; to an anti-gene to DNA replication; and to a method of inhibiting DNA replication in vitro or in vivo.
- the first component required in such a “ground up” strategy for the assembly of a prototype human artificial chromosome is a functional human replication origin.
- Different techniques have permitted the identification of a limited but rapidly-increasing number of putative and proven mammalian origins of DNA replication (DePamphilis, M. L. (1993) Annu. Rev. Biochem. 62:29-63).
- One aim of the present invention is to provide consensus sequences for control of initiation of mammalian DNA replication.
- Another aim of the present invention is to provide small sequences which will allow the maintenance of circular plasmid constructs which are capable of being replicated semiconservatively in proliferating mammalian cells.
- Another aim of the present invention is to provide small sequences suitable for inclusion in mammalian and human artificial chromosome vectors.
- the alphaconsensus comprises the nucleotide sequence set forth as follows:
- the alphaconsensus sequence (36 bp) was derived from autonomously replicating sequences associated with alpha-satellite sequences from African Green Monkey CV-1 cells (ORS14 & ORS23 Landry, S. & Zannis-Hadjopoulos, M. (1991) Biochim. Biophys. Acta, 1088:234-244) and associated with alpha-satellite sequences from normal human skin fibroblasts (F5 and F20 Nielsen, T. et al. (1994) Mol. Gen. Genet. 242:280-288).
- the alphaconsensus is able to replicate DNA in BVDR incorporation assay using murine fibroblasts NIH 3T3 and murine embryonic carcinomas cells P19.
- the consensus is a functional variant thereof having a sequence with at least 70% homology with the alphaconsensus, such as Y.343 which is a natural occurring variant version of the alphaconsensus or a functional fragment thereof of at least 20 nucleotides which includes modifications and gap insertions of one to five nucleotides.
- Such variants which exhibit a 70% homology with the alphaconsensus include, without limitation, the following sequences with their respective homology being illustrated:
- the uniorsconsensus comprises the nucleotide sequence set forth as follows: AWMTWAAKRAWRWWKKDAVWWGAKRWWKWVWHRASSACMDWKAAKTWKGGWTWAR (SEQ ID NO:5). RYWKGRKMWWTWKAWSDATAKWWWKDAKWKMWRKTT
- the uniorsconsensus sequences (91 bp) was derived from autonomously replicating sequences of low copy or unique sequence from African Green Monkey CV-1 cells which include ORS8 (GenBank Accession M26221) (Kaufmann, G. et al. (1985) Mol. Cell. Biol., 5:721-727; Frappier, L. & Zannis-Hadjopoulos, M. (1987) Proc. Natl. Acad. Sci. USA, 84:6668-6672), and ORS13, ORS20, ORS24, and ORS25, (Landry, S. & Zannis-Hadjopoulos, M. (1991) Biochim. Biophys. Acta, 1088:234-244).
- the consensus Is a functional variant thereof having a sequence with at least 70% homology with the uniorsconsensus.
- step b) introducing the vector of step a) into mammalian cells en vitro.
- step b) the vector is introduced by a standard method selected from the group consisting of calcium phosphate co-precipitation transfection, electroporation, microinjection, and liposome-mediated transfection.
- a DNA sequence for the maintenance of circular plasmid constructs which are capable of being replicated semiconservatively in proliferating mammalian cells, which comprises at least one consensus sequence consisting of a sequence of the present invention.
- a DNA sequence suitable for inclusion in mammalian and human artificial chromosome vectors which comprises at least one consensus sequence consisting of a sequence of the present invention.
- a protein derived from LHeLa cell extracts which binds to double-stranded DNA, which is of about 150 kDa in a glycerol gradient and which consists in 2 subunits of approximately 86 and 70 kDa respectively.
- an anti-gene to DNA replication which comprises a doubled-stranded form of a consensus sequence of the present invention.
- a method of inhibiting DNA replication in vitro or in vivo which comprises administering a consensus sequence of the present invention in single-stranded or double-stranded form.
- FIG. 1 is a diagram of pYAneo vectors and cloned mammalian origin and consensus sequences
- FIG. 2 illustrates growth. curves of two representative HeLa clonal subpopulations, derived from transfections with mammalian origin-containing, modified pYACneo and pYACneo vectors;
- FIG. 3 illustrates PCR analysis of supercoiled episomal and linear genomic DNA fractions
- FIG. 4 illustrates mammalian in vitro DNA replication of a plasmid containing one version of the 36-bp consensus sequence, A3/4, with initiation of DNA replication occurring within the region containing the consensus sequence;
- FIGS. 5 A- 5 C illustrate bromodeoxyuridine in vivo labeling of individual alphaconsensus plasmid clones
- FIGS. 6 A- 6 B illustrate the isolation of episomal DNA from stable HeLa cell clones
- FIGS. 7 A- 7 B illustrate bromodeoxyuridine in vivo labeling and recovery of episomal DNA from stable HeLa cell clones
- FIG. 8A- 8 B illustrate a competition band-shift analysis of Ors Binding Activity protein binding
- FIG. 9 illustrates the effect of the double-strand A3/4 oligonucleotide sequence on the in vitro replication of p186.
- pYACneo a 15.8 kb plasmid, contains a bacterial origin, G418-resistance gene, and yeast ARS, CEN and Tetrahymena TEL elements (GenBank Accession number No. U13189).
- yeast ARS yeast ARS
- CEN Tetrahymena TEL elements
- HeLa cells passaged once since resurrection from frozen stocks, were seeded in T-25 flasks at 1 ⁇ 10 4 /cm 2 , and grown for two days (in ⁇ -MEM+10% FCS) before transfection with 20 ⁇ g pYACneo, YAC.S3, Y.343, Y.X24 or Y.A3/4 DNA by calcium phosphate coprecipitation. Two days post-transfection, cells were switched into medium containing 400 ⁇ p/mL G418, and a further two days later, T-25 flasks were trypsinized, counted, and 1 ⁇ 10 5 cells were seeded onto 60 mm dishes.
- the HeLa cells were cultured in G418 until 20 days post-transfection, when dishes were scored for visible growing drug-resistant colonies. Individual colonies were picked directly from the 60 mm dishes to isolate clonal subpopulations for further analysis. Cultures were maintained in 400 ⁇ g/mL G418 during this period, and had been actively growing for an estimated minimum of 45 doublings between the initial transfection and the subsequent analysis of the episomal versus integrated state of the transfected constructs.
- both T-80 flasks were trypsinized, counted, and diluted with either G418-containing or nonselective medium to final concentrations of 5 cells/mL. 200 ⁇ L aliquots were then distributed to each well of a 96 well plate (32 mm 2 /well). (Two plates were used for the case of cells which had been passaged in nonselective medium and were now being returned to G418). Eight days later, the number of wells containing a growing cell colony was scored under the microscope.
- HeLa cells were transiently transfected with Y.X24, by calcium phosphate coprecipitation, and harvested 48 h later.
- total DNA from approximately 5 ⁇ 10 6 cells was isolated from untransfected HeLa (negative control), transiently transfected HeLa, and the cloned transfectant cell lines to be tested.
- DNA preparations where mixed with 1 mg ethidium bromide and 75 ⁇ g of a carrier plasmid, in this case F9, a pBluescript clone containing a 0.5 kb human genomic insert (Nielsen, T. et al. (1994) Mol. Gen. Genet. 242:280-288).
- CsCl solution was added to a final density of 1.56 g/mL before ultracentrifugation in a VTi80TM rotor, 20 h at 67, 500 rpm.
- VTi80TM rotor 20 h at 67, 500 rpm.
- the two completely-resolved fractions were carefully removed by side puncture.
- Ethidium bromide was removed by two washes with CsCl-saturated isopropanol, and CsCl was removed by ethanol precipitation with two 70% ethanol washing steps.
- Acta, 1174:258-266) were used at 0.25 ⁇ M, with 1.5 U Taq, for 33 cycles (each 94° C., 60 sec; 50° C., 60 sec; 72° C., 60 sec) followed by a 5 min final extension. Products of both reactions were electrophoresed in a 1.6% agarose, 1 ⁇ TBE (0.089 M Tris, 0.089 M Boric acid, 0.002 M EDTA, pH 8.0) gel.
- pYACneo is a versatile plasmid shuttle vector (Traver, C. N. et al. (1989) Pro. Nat. Acad. Sci. USA 86:5898-5902). Because it includes the prokaryotic ColEl origin and an ampicillin resistance marker from pBR322, pYACneo can be grown in E. coli as a circular plasmid. Since this vector also contains the S. cerevisiae ARS1 replication origin and CEN4 centromere elements, it can alternatively be maintained as a circular yeast artificial chromosome, carrying the TRP1, URA3, and HIS3 selectable markers.
- pYACneo carries a gene conferring resistance to the drug G418, a trait which is selectable in mammalian cells.
- this vector can replicate in both E. coli and S. cerevisiae, and contains markers for the selection of stable bacterial, yeast, or mammalian cell transfectants.
- prokaryotic sequences are indicated by a thin gray line.
- Functional yeast cis-acting chromosomal components are shown as open boxes, while yeast marker genes are indicated b shaded boxes contained within the circular vector.
- the mammalian-selectable G418 resistance marker is in black.
- Two human (343, S3), one hamster (X24) and a version of the 36-bp consensus sequence (A3/4) contained within a total of 229 bp DNA, as origin-containing, autonomously replicating sequences were cloned into pYACneo vectors at the EcoRI site; restriction sites indicating the orientation of the inserts are presented.
- restriction mapping indicated an approximately 220 bp deletion in the region of one of the TEL elements.
- the pYACneo construct containing the A3/4 consensus sequence appears intact, with no deletions detected in the pYACneo vector.
- 343 is a 0.45 kb cDNA clone derived from a transcribed region on the long arm of human chromosome 6 (Shihab-El-Deen, A. et al. (1993) Somat. Cell Mol. Genet. 19:103-109), to which in vivo origin activity has been localized by nascent strand PCR mapping (Wu, C. et al. (1993b) Biochim. Biophys. Acta, 1174:258-266).
- S3 is a 1.1 kb human sequence isolated by anti-cruciform immunoaffinity purification of genomic DNA, followed by competitive selection for clones possessing strong autonomous replication activity by mass transfection and in vitro replication assays (Nielsen, T. et al. (1994) Mol. Gen. Genet. 242:280-288).
- X24 carries a 4.3 kb Xbal fragment from the hamster DHFR 3′ region, and includes the predominant initiation site ori ⁇ , as indicated by multiple techniques (Burhans, W. C. et al. (1990) Cell, 62:955-965; Zannis-Hadjopoulos, M. et al. (1994) Gene, 151:273-277).
- A3/4 is a 36-bp consensus sequence derived by sequence comparison of several mammalian ARS.
- Y.343, YAC.S3, Y.X24, and Y.A3/4 constructs remain relatively small in size (all less than 21 kb), they can be grown in bacteria, and pure preparations can be transfected by the relatively high-efficiency calcium-phosphate coprecipitation method, unlike YACs in the 0.1-1.0 Mb range, which necessitate the use of techniques such as yeast spheroplast fusion for transfecting mammalian cells.
- Calcium phosphatetreated, mock-transfected cells resulted in no G418-resistant colonies; pYACneo vector devoid of any mammalian origin gave 45 colonies per 10 5 cells plated.
- test constructs YAC.S3, Y.343, Y.X24, and Y.A3/4 gave 70-900% more stably transfected G418-resistant colonies than the vector alone, suggesting that the presence of a short, cloned origin-containing insert may facilitate the maintenance of the transfected neo trait in human cells.
- Isolated colonies were cloned and grown in G418 to select for maintenance of the transfected constructs, and spent a minimum of 67 days (and in some cases up to 96 days) in culture before testing for the presence and stability of episomal neo-containing DNA.
- a protocol based on the Luria-Delbrück fluctuation assay permits calculation of the stability of the drug resistance marker during cell growth in non-selective medium.
- Stable transformants obtained in the usual fashion, through integration of the transfected marker into the host genome, maintain the drug resistance trait even in the absence of selective pressure.
- episomally-replicating DNA which lacks a functional centromere will not partition accurately at mitosis and will display a characteristic loss rate per generation.
- test flasks Six days after seeding into nonselective medium, while the cells were still in. log phase, the test flasks were trypsinized, diluted, and replated to determine the proportion of cells that still retained the neo marker. Results are shown in Table 1, along with the calculated stability of the constructs in each of the subpopulations tested.
- Some of the tested cell lines (including among others, YAC.S3 clone 1, Y.343 clone 2 and Y.A3/4 clone 9) grew slightly more slowly in G418 than they did in nonselective medium. (For example, see FIG. 2).
- a reduced population growth rate in G418 may reflect the loss of the neo marker during some cell divisions, or could instead reflect poor transcription of the neo gene in particular integrated contexts. From a regression analysis of these exponential growth curves in nonselective medium, the number of doublings which took place during the fluctuation period was calculated.
- Any unrelated plasmid preparation which has accumulated 50% nicked and linear forms can serve as a visible guide to the position of the lower (supercoiled episomal) and upper (predominantly linear genomic) bands in the density gradient.
- DNA fractions prepared in this fashion from the HeLa subclones, as well as from positive and negative controls, were analyzed by PCR, using primers from the neo gene (FIG. 3).
- Total DNA from HeLa subcultures was fractionated by CsCl/EtBr ultracentrifugation., using a carrier plasmid as a guide to the position of the lower band (L) containing supercoiled circular DNA, and the upper band (U) containing linear and relaxed circular forms of DNA. Fractions were tested for the presence of the transfected constructs by PCR amplification using a primer pair directed against the nec marker and yielding a 131 bp product (positive control template is a pure Y.X24 plasmid sample).
- DNA from normal, untransfected HeLa cells did not yield a PCR product (only the carrier plasmid is visible) since these cells do not carry a neo gene.
- test clones yielded a product from only the lower, episomal DNA fraction, indicating that the transfected YAC.S3 and Y.343 constructs are being maintained, in these subcultures, as covalently closed circular episomes during long-term culture in selective medium (81 days for YAC.S3 clone 1; 96 days for Y.343 clone 2).
- the rightmost lanes show, through the use of primers directed at a unique genomic locus, that the linear genomic DNA segregates exclusively to the upper CsCl band.
- the lower band is free from contaminating genomic DNA. There appears to be no integrated copies, since the neo marker was not detected in the upper band fraction of DNA from those clones.
- HeLa cells were transfected with alphaconsensus clones and a uniorsconsensus clone as previously described (Wu, C. et al. (1993a) Biochim. Biophys. Acta, 1174:241-257), and then cells growing in log phase were pulsed with 40 ⁇ M bromodeoxyuridine for 48 hours before harvesting low molecular weight DNA by Hirt's extraction, and loading onto a neutral cesium chloride gradient. Approximately 200 ⁇ l fractions were collected, with fraction 1 representing the bottom of the gradient (abscissa).
- Refractive indices were measured using a refractometer (ordinate, Y2 axis), and samples from each fraction were loaded onto a dot blot manifold and hybridized with pYACneo probe. The total amount of DNA as quantified by Phosphoimage analysis is shown by the solid black bars (ordinate, Y1 axis).
- FIG. 5 demonstrates examples of the control of semiconservative DNA replication by alphaconsensus sequences and a uniorsconsensus sequence when placed in a plasmid, e.g. pCRscript.
- FIG. 5A is pCRscript containing alphaconsensus A3/4: CTCAAATGGTCTCCAATTTTCCTTT GGCAAATTCC (SEQ ID NO: 10);
- FIG. 5B is pCRscript containing alphaconsensus A16: CCTCGATGGGTTTGCAAATTC CCCTTAGCAAA TTCC (SEQ ID NO: 11);
- FIG. 5A is pCRscript containing alphaconsensus A3/4: CTCAAATGGTCTCCAATTTTCCTTT GGCAAATTCC (SEQ ID NO: 10);
- FIG. 5B is pCRscript containing alphaconsensus A16: CCTCGATGGGTTTGCAAATTC CCCTTAGCAAA TTCC (SEQ ID NO: 11
- 5C is pCRscript containing uniorsconsensus U22: ATATAAATGATAAAGTAAAA TGAGGATTAAATAAGGACCTTTAATTAGGGTTTAGATAGGGGATTTAAACGATA TTATTTATAGCAGTTT (SEQ ID NO: 12).
- FIG. 5A is particularly potent at controlling DNA replication in HeLa cells.
- Another version of the alphaconsensus, A16, FIG. 5B also acts a potent origin of DNA replication.
- FIG. 5C a lower but highly significant amount of DNA replication is controlled by the presence of a version of the uniorsconsensus sequence U22, acting as an origin of DNA replication.
- uncut represents uncut Y.343 plasmid DNA (FIG. 6A).
- the positions of migration of different forms of DNA are indicated at the left hand side with arrows.
- Linear represents Y.343 plasmid DNA which has been linearized by digestion with SalI;
- ⁇ represents molecular weight markers, the sizes of which are indicated at the right hand side with arrows (FIG. 6A).
- FIG. 6 illustrates the nature of Y.343 DNA as recovered from HeLa cells after 45 cell generations.
- lane 1 of Panel B is DNA obtained from HeLa cells of the Y.343 clone 11
- lane 2 is DNA obtained from HeLa cells of the Y.343 clone 20.
- lane 3 is 500 ng of pBluescript DNA for control of DNA digestion.
- the majority of DNA is in recovered as form II, relaxed circular, and it is resistant to extensive DpnI digestion. (Note complete disappearance of pBluescript DNA with only some small digestion products visible.)
- the Y.343 DNA can we recovered from these HeLa cell clones after extensive replication during at least 45 cell generations.
- FIG. 7 illustrates that the episomal DNA present in Y.343 clone 20 is semiconservatively replicated. Bromodeoxyuridine labeling of HeLa cell Y.343 clone 20 resulted in the recovery of single- and double-strand substituted Y.343 DNA after more than 170 cell generations after transfection. Restriction enzyme analysis of the Y.343 DNA, using three restriction enzyme did not indicate that there ha Keen any s significant rearrangements in three isolates (examples) of Y.343 DNA recovered from the HeLa cell Y.343 clone 20. The restriction fragment polymorphism was the same for each of the three isolates.
- ors8 plasmid was used as template in PCR reactions for amplification of the ors8 insert, which was then digested with NdeI and RsaI, as described previously (Todd, A. et al. (1995) J. Cell. Biochem. 58:221-236; Ruiz, M. T. et a!. (1995) J. Cell. Biochem. 58:221-236).
- a nonspecific competitor fragment, pBRfg (206 bp) was prepared by PCR amplification of pBR322 DNA, as previously described (Ruiz, M. T. et al. (1995) J. Cell. Biochem.
- Oligonucleotides containing the A3/4 sequence (36 nucleotides in length; 5′-CCTCAAATGGTCTCCAATTTTCCTTTGGCAAATTCC-3′ (SEQ ID NO: 10)) and a nonspecific competitor derived from pBR322 (16 nucleotides in length; 5′-TTCCGAATACCGCAAG-31′ (SEQ ID NO: 13)) were synthesized (Sheldon Biotechnology Centre, McGill University, Montreal), further purified by denaturing polyacrylamide gel electrophoresis (PAGE) and annealed as described by Wall et al. (Wall et al. (1988) Gene, 2:1089-1100).
- PAGE denaturing polyacrylamide gel electrophoresis
- the OBA-DNA complexes were then excised from the gel, the proteins and the DNA were eluted from the gel by Ofverstedt et al. (1994) Biochim. Biophys. Acta, 782:120-126) and then subjected to electrophoresis on 8% SDS- polyacrylamide gel under reducing conditions.
- the proteins were then transferred electrically to an ImmobilonTM-P membrane (Millipore, Bedford, Mass.) and subjected to Southeastern analysis.
- the membrane was incubated overnight (14-16 h) in blocking solution (buffer S: 25 mM Hepes-KOH, pH 7.7, 25 mM NaCl, 5 mM MgCl 2 , 1 mM DTT containing 5% skim milk and 0.05% NP-40).
- the membrane was subjected to a process of denaturation-renaturation, as follows: it was incubated for 10 min in a denaturing solution of 6 M guanidine hydrochloride in buffer S, followed by 10 min incubations in 3 M, 1.5 M, 0.75 M, 0.375 M and 0.187 M guanidine hydrochloride, respectively, diluted in buffer S; it was then washed twice for 10 min with buffer S, and incubated for 2 h in blocking buffer, followed by 1 h incubation in buffer S +1% skim milk.
- the membrane was then incubated overnight in hybridization solution (20 mM Hepes, pH 7.7, 75 mM KCl, 0.1 mM EDTA, 2.5 mM MgCl 2 , 1% skim milk, 0.05% NP-40) containing radioactively labeled A3/4 oligonucleotide (5.2 ng/ml, 2.6 ⁇ 106 cpm/ml) in the presence of poly dI-dC (50 mg/ml) and pBRfg DNA (454 ng/ml) as nonspecific competitors. Finally, the membrane was washed three times with hybridization solution and subsequently exposed for autoradiography. The entire procedure was carried out at 4° C. and the incubations were done on a rocking platform.
- the different subfragments of the 186 bp competed to different extents for OBA binding.
- the most efficient competitor was the 59 bp fragment, resulting from the digestion of the 186 bp with MslI and FokI (FIG. 8), which competed as efficiently as, or better than the 186 bp fragment itself.
- the 59 bp fragment contains sequence homologous (80%) to a DNA sequence (A3/4, 36 bp), also present with varying homology in several different ors (Kaufmann, G. et al. (1985) Mol. Cell. Biol., 5:721-727; Landry, S.
- the A3/4 sequence was tested as competitor for OBA binding to the 186 bp fragment in the band-shift assay, and it was able to compete at least as well as the 59 bp fragment for the binding of OBA (FIG. 8). Furthermore, the specificity of OBA binding to the A3/4 sequence was tested in a series of competition band-shift assays, using the A3/4 oligonucleotide as specific competitor, in increasing (50-2000 ⁇ ) molar fold amounts. Formation of the OBA-A3/4 complex decreased in the presence of 50-fold molar excess of cold A3/4 oligonucleotide competitor, and it was completely abolished at 500-fold molar excess of A3/4.
- FIG. 8 illustrates the competition band-shift analysis of OBA binding.
- band-shift reactions were performed, incubating constant amounts of both, protein (pool I; 200 ng) and radioactively labeled DNA (186 pb fragment; 0.1 ng).
- the various sub-fragments of the 186 bp sequence and the A3/4 (36 bp) sequence were used as cold competitors at the molar-fold excess level indicated.
- the shifted complexes were quantitated by densitometry and the results expressed as percent reduction in complex formation.
- FIG. 8B there is shown a restriction map of the 186 bp sequence of ors8 indicating the fragments used as competitors.
- the FokI site (arrow point) bisects the inverted repeat (> ⁇ ).
- the position of the A3/4 homologous sequence is indicated (*)
- DpnI-digested and one third of the undigested products were subjected to electrophoresis on 1% agarose gel in 1 ⁇ TAE buffer (16-20 h, 50-55 Volts). The gels were dried and exposed to DuPont reflection NEF-autoradiographic film. Quantification was performed on DpnI-digested products, as previously described (Todd, A. et al. (1995) J. Cell. Biochem. 58:221-236), by densitometric measurements using a PhosphoimagerTM analyzer (Fuji BAS 2000) or a Bio Image DensitometerTM (MillGen/Biosearch); both methods gave similar results.
- FIG. 9 show the effect of the A3/4 oligonucleotide sequence on the in vitro replication of p186.
- A. p186 plasmid 200 ng
- Increasing molar excess amounts (indicated) of the A3/4 (gray bars) or pBR322 (black bars) oligonucleotides to p186 template were used as specific and non-specific competitors, respectively.
- Mammalian origin sequences have been cloned into a versatile shuttle vector, capable of further modification and of growth in several host systems. These constructs remain small enough to be transfected into human cells by calcium phosphate coprecipitation, and are selected for using the nec marker.
- Genomics 17:267-278
- yeast spheroplast fusion to transfect mouse cells with a 660 kb YAC carrying a large, selectable human genomic insert (presumed to carry several replication origins), and observed transfected subpopulations which maintained otherwise unstable episomes under long-term selection.
- these episomes were the result of extensive recombination among yeast, mouse and human DNA and could not be fully characterized; in cell lines in which transfected DNA existed strictly in episomal form, much of the human DNA had apparently been lost.
- the modified YACs used here to transfect human cells are completely defined, can be grown in bacteria or yeast, can be transfected by calcium phosphate coprecipitation (which gives higher transformation efficiencies and does not cotransfect yeast genomic DNA), and both YAC.S3, Y.343 and Y.A3/4 have been demonstrated to be capable, in a G418-selected human cell system, of persisting for several months in a purely episomal form.
- constructs described here are sufficiently versatile to allow addition of cloned human telomeres and of large putative centromeric blocks with or without intrinsic replication origins; they can be manipulated as a small and easily-engineered bacterial plasmid, as a small or large circular or linear yeast artificial chromosome, or as an episomal genetic element in human cells which can be assayed for mitotic stability. Stability in nonselective medium would be expected to be enhanced, from about 80-90% to more than 99.99%, in larger constructs containing a centromere.
- Vectors capable of long-term persistence in mammalian cells have been constructed by others, but these rely on viral origins of DNA replication.
- examples include a murine plasmid based on a defective polyoma virus (Gassman, M. et al. (1995) Proc. Nat. Acad. Sci. USA, 92:1292-1296), and a “human artificial episomal chromosome” which carries the EBV latent origin, oriP (Sun, T. Q. et al. (1994) Nature Genet. 8:33-41).
- the consensus sequences were amplified by PCR using T7 and M13 reverse primers; the amplified products were cloned into the SnfI site of pCRscript (pCR-Script Amp SK (+) obtained from Stratagene) for individual variant sequence analyses.
- the ligated pool was directly transfected into HeLa cells and after three days, the low molecular weight fraction of DNA was isolated and digested with DpnI enzyme to remove unreplicated plasmid vector+consensus sequence inserts.
- the pool of variants subjected to DpnI digestion was then used to transform bacteria; undigested plasmid vector+consensus sequence insert DNA would have been replicated in human cells and thus contain consensus sequences essential to the initiation and control of DNA replication in mammalian cells.
- These functional assays were used to select the alphaconsensus and uniorsconsensus variants which were most efficient in allowing DNA replication in HeLa cells.
- DpnI resistance assays after replication in an in vitro mammalian DNA replication system using extracts of HeLa cells (Pearson, C. E. et al. (1991) Biochim. Biophys. Acta 1090:156-166), also demonstrated replication of circular episomes by human replication proteins.
- A3/4 alphaconsensus was cloned into pCRscript at the SnfI site.
- An earliest labeled fragment assay or preferential labeling assay for the A3/4 version of the alphaconsensus containing insert at early times of in vitro DNA replication was assessed at 4 and 8 minutes of reaction.
- the reaction mixture contained both 32p-labeled -dCTP and -dTTP to monitor DNA synthesis in the system.
- the products were digested with DdeI and PvuII before analysis by gel electrophoresis, radioautography and quantitative densitometry. The results were expressed in arbitrary units as relative incorporation per kilo-base for each fragment.
- A3/4 One form of the consensus noted as A3/4 has been cloned into pYACneo, yeast artificial chromosome cloning vector(Genbank Accession No. U13189, obtained from Clontech), at the EcoRI site.
- the A3/4 version of the consensus is: CCTCAAATGGTCTCCAATTTTCCTTTGGCAAATTCC (SEQ ID NO: 10).
- the resultant clone was transfected into HeLa cells with an efficiency approximately 10 times greater than the pYACneo vector alone.
- the Y.A3/4 containing HeLa cells were analyzed for stability of maintenance without G418 selection after 45 cell generations of selection. Changes in the population doubling time as affected by G418 selection, indicated that five out of seven clones had lengthened doubling times with selection The stability of maintenance of resistance to G418 selection for these clones was found to be between 0.8-0.9/cell/generation, suggesting the phenotype was maintained by extrachromosomal elements.
- Genomic DNA 1 15 36 base pairs nucleic acid single linear Genomic DNA 1 CCTMDAWKSG BYTSMAAWYW BCMYTTRSCA AATTCC 36 36 base pairs nucleic acid single linear Genomic DNA 2 CCTCAAAGCG CTTGAAAATC TCCACTTGCA AATTCC 36 30 base pairs nucleic acid single linear Genomic DNA 3 DAWKSGBYTS MAAWYWBCMY TTRSCAAATT 30 30 base pairs nucleic acid single linear Genomic DNA 4 TATGTGTTTT CATATTTTGT TTGGCATATT 30 91 base pairs nucleic acid single linear Genomic DNA 5 AWMTWAAKRA WRWWKKDAVW WGAKRWWKWV WHRASSACMD WKAAKTWKGG WTWARRYWKG 60 RKMWWTWKAW SDATAKWWWK DAKWKMWRKT T 91 19 base pairs nucleic acid single linear Genomic DNA 6 TCAGGACATA GCGTTGGCT 19 19 base pairs nucleic acid single linear Genomic DNA 7
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention relates to a human or mammalian DNA replication origin consensus sequence which consists of a sequence selected from the group consisting of CCTMDAWKSGBYTSMAAWYWBCMYTTRSCAAATTCC (SEQ ID NO: 1); and AWMTWAAKRAWRWWKKDAVWWGAKRWWKWVWHRASSACMDWKAAKTWKGGWTWARRYWKGRKMWWTWKAWSDATAKWWWKDAKWKMWRKTT (SEQ ID NO: 4). A method for the control of initiation of mammalian DNA replication which comprises the steps of: a) inserting a consensus sequence coding for a sequence of the present invention together with a DNA fragment to form a vector capable of expression of the DNA fragment; b) introducing the vector of step a) into mammalian cells in vitro.
Description
- 1. Field of the Invention
- The invention relates to human and mammalian DNA replication origin consensus sequences; the use of consensus sequences for control of initiation of mammalian DNA replication; small sequences which will allow the maintenance of circular plasmid constructs which are capable of being replicated semiconservatively in proliferating mammalian cells; to small sequences suitable for use in human gene therapy; to small sequences suitable for inclusion in mammalian and human artificial chromosome vectors; to a protein binding to double-stranded DNA; to an anti-gene to DNA replication; and to a method of inhibiting DNA replication in vitro or in vivo.
- 2. Description of Prior Art
- Building a human artificial chromosome would not only provide a valuable tool for addressing difficult questions about chromosome biology, but would also create an all-human transfection vector with the capacity to carry large chromosomal regions including complete transcriptional units, from even the largest genes, for the purpose of complementation mapping, or for gene therapy (Huxley, C. (1994) Gene Ther. 1:7-12).
- Artificial chromosomes require three cis-acting functional components: replication origins, telomeres, and a centromere. S. cerevisiae origin-containing yeast ARS (autonomously replicating sequence) plasmids provided the basis for the addition of telomeres, TEL, and centromere, CEN elements to complete the construction of stable yeast artificial chromosomes, or YACs (Murray, A. W. & Szostak J. W. (1983) Nature, 305, 189-193). A similar strategy proved successful for artificial chromosome assembly in the fission yeast Schizosaccharomyces pombe, in spite of the far more complicated structure of its centromeres (Hahnenberger, K. M. et al. (1989,) Froc. Nat. Acad. Sci. USA, 86:577-581).
- The first component required in such a “ground up” strategy for the assembly of a prototype human artificial chromosome is a functional human replication origin. Different techniques have permitted the identification of a limited but rapidly-increasing number of putative and proven mammalian origins of DNA replication (DePamphilis, M. L. (1993) Annu. Rev. Biochem. 62:29-63).
- Our group has been able to isolate large numbers of putative origins using such techniques as nascent strand extrusion (Kaufmann, G. et al. (1985) Mol. Cell. Biol., 5:721-727) and anti-cruciform immunoaffinity purification (Bell, D. et al. (1991) Biochim. Biophys. Acta, 1089:299-308); these sequences permit short-term autonomous replication of plasmids transfected into human cells, and can act as replication origins in their native chromosomal position (Wu, C. et al. (1993a) Biochim. Biophys. Acta, 1174:241-257).
- To use such isolated origin sequences for the construction of a first stage human artificial chromosome, they must be cloned into a circular vector which permits transfection into human cells and selection of transfected clonal subpopulations, and has the capacity for further modification to carry human-functional telomeres and putative centromere elements which could be hundreds of kilobases. In addition, methods are adapted and applied which demonstrate that these constructs are maintained in long-term culture as independent episomal elements, not integrated into a host chromosome.
- We have identified cDNA clones which contain ARS (Wu, C. et a!. (1993a) Biochim. Biophys. Acta, 1174:241-257) and demonstrated that
clone 343, located on chromosome 6q (Shihab-El-Deen, A. et al. (1993) Somat. Cell Mol. Genet. 19:103-109), can be mapped as a chromosomal origin in vivo (Wu, C. et al. (1993b) Biochim. Biophys. Acta, 1174:258-266). We have also demonstrated that the bi-directional origin (oriβ) of the dihydrofolate reductase, DHFR, locus from Chinese hamster), within small or large fragments, has ARS activity in vivo in DpnI resistance assays after transfection into HeLa cells, and in vitro with, our mammalian in vitro DNA replication system (Zannis-Hadjopoulos, M. et al. (1994) Gene, 151:273-277). (We also showed that the in vivo and in vitro replication assays of ARS and origin function give the same results, and initiation of replication in the plasmid constructs occurs within the oriβ containing insert). - We have also conducted the identification and characterization of an ors (origin enriched sequence) binding activity (now also referred to as origin binding activity) (OBA) partially purified from HeLa cell extracts that are used in our in vitro DNA replication system, co-purifying with known replication proteins (Ruiz, M. T. et al. (1995) J. Cell. Biochem. 58:221-236). The regulation of eukaryotic DNA replication is one of the most important biologic mechanisms. We have demonstrated the long-term maintenance as episomes of origin containing fragments (S3 (Nielsen, T. et al. (1994) Mol. Gen. Genet. 242:280-288) and 343) under selection in a YACneo plasmid, further demonstrating the functionality of small fragments containing ARS as origins.
- Although previous sequence analysis failed to reveal specific nucleotide consensus sequences, we have now had the opportunity to examine larger numbers of monkey and human ARS and to group small DNA fragments containing ARS activity in order to derive two putative minimal core ARS consensus sequences (36 bp and 91 bp). Preliminary analysis by in viva and n vitro replication assays indicates that both are capable of functioning as origins in these assays of episomal replication in mammalian cells. Furthermore, one specific sequence has been shown to bind to OBA and to be as effective of a competitor for binding as the fragments of the 186 bp minimal ARS of the ORS8 origin (Todd, A. et al. (1995) J. Cell. Biochem. 58:221-236).
- Because of the collective weight of our original work and resources, we are confident in the likelihood of identification of a mammalian minimal core ARS consensus sequence, which like the identification of the yeast minimal core ARS consensus should rapidly advance discoveries of the mechanism. of DNA. replication in mammalian cells.
- It would be highly desirable to be provided with a minimal consensus sequence from which versions of human core ARS could be used to create shuttle vector constructs for use in definition of essential mammalian chromosomal elements that are required for the maintenance of chromosome function, and for use in gene therapy.
- One aim of the present invention is to provide consensus sequences for control of initiation of mammalian DNA replication.
- Another aim of the present invention is to provide small sequences which will allow the maintenance of circular plasmid constructs which are capable of being replicated semiconservatively in proliferating mammalian cells.
- Another aim of the present invention is to provide small sequences suitable for inclusion in mammalian and human artificial chromosome vectors.
- In accordance with one embodiment of the present invention there is provided a specific 36-bp consensus sequence called ‘alphaconsensus’ and a specific 91-bp consensus sequence called ‘uniorsconsensus’.
- In accordance with another embodiment of the present invention the alphaconsensus comprises the nucleotide sequence set forth as follows:
- CCTMDAWKSGBYTSMAAWYWBCMYTTRSCAAATTCC (SEQ ID NO: 1).
- The alphaconsensus sequence (36 bp) was derived from autonomously replicating sequences associated with alpha-satellite sequences from African Green Monkey CV-1 cells (ORS14 & ORS23 Landry, S. & Zannis-Hadjopoulos, M. (1991) Biochim. Biophys. Acta, 1088:234-244) and associated with alpha-satellite sequences from normal human skin fibroblasts (F5 and F20 Nielsen, T. et al. (1994) Mol. Gen. Genet. 242:280-288).
- The alphaconsensus is able to replicate DNA in BVDR incorporation assay using murine fibroblasts NIH 3T3 and murine embryonic carcinomas cells P19.
- In accordance with another embodiment of the present invention the consensus is a functional variant thereof having a sequence with at least 70% homology with the alphaconsensus, such as Y.343 which is a natural occurring variant version of the alphaconsensus or a functional fragment thereof of at least 20 nucleotides which includes modifications and gap insertions of one to five nucleotides.
- Such variants which exhibit a 70% homology with the alphaconsensus include, without limitation, the following sequences with their respective homology being illustrated:
- 1 CCTMDAWKSGBYTSMAAWYWBCMYTTRSCAAATTCC 36 (SEQ ID NO: 1)
- 97 CCTCAAAGCGGCTTGAAAATCTCCACTTGCAAA.T,CC 132 (SEQ ID NO: 2)
- 5 DAWKSGBYTSMAAWYWBCMYTTRSCAAATT 34 (SEQ ID NO: 3)
- 78 TATGGTTTTCATATTTTGTTTGGCATATT 107 (SEQ ID NO: 4).
- In accordance with the present invention the uniorsconsensus comprises the nucleotide sequence set forth as follows:
AWMTWAAKRAWRWWKKDAVWWGAKRWWKWVWHRASSACMDWKAAKTWKGGWTWAR (SEQ ID NO:5). RYWKGRKMWWTWKAWSDATAKWWWKDAKWKMWRKTT - The uniorsconsensus sequences (91 bp) was derived from autonomously replicating sequences of low copy or unique sequence from African Green Monkey CV-1 cells which include ORS8 (GenBank Accession M26221) (Kaufmann, G. et al. (1985) Mol. Cell. Biol., 5:721-727; Frappier, L. & Zannis-Hadjopoulos, M. (1987) Proc. Natl. Acad. Sci. USA, 84:6668-6672), and ORS13, ORS20, ORS24, and ORS25, (Landry, S. & Zannis-Hadjopoulos, M. (1991) Biochim. Biophys. Acta, 1088:234-244).
- In accordance with another embodiment of the present invention the consensus Is a functional variant thereof having a sequence with at least 70% homology with the uniorsconsensus.
- In accordance with the present invention there is provided a method for the control of initiation of mammalian DNA replication which comprises the steps of:
- a) inserting a consensus sequence coding for a sequence of the present invention together with a DNA fragment to form a vector capable of expression of the DNA fragment;
- b) introducing the vector of step a) into mammalian cells en vitro.
- In step b), the vector is introduced by a standard method selected from the group consisting of calcium phosphate co-precipitation transfection, electroporation, microinjection, and liposome-mediated transfection.
- In accordance with the present invention there is provided a DNA sequence for the maintenance of circular plasmid constructs which are capable of being replicated semiconservatively in proliferating mammalian cells, which comprises at least one consensus sequence consisting of a sequence of the present invention.
- In accordance with the present invention there is provided a DNA sequence suitable for inclusion in mammalian and human artificial chromosome vectors, which comprises at least one consensus sequence consisting of a sequence of the present invention.
- In accordance with the present invention there is provided a protein derived from LHeLa cell extracts which binds to double-stranded DNA, which is of about 150 kDa in a glycerol gradient and which consists in 2 subunits of approximately 86 and 70 kDa respectively.
- In accordance with the present invention there is provided an anti-gene to DNA replication, which comprises a doubled-stranded form of a consensus sequence of the present invention.
- In accordance with the present invention there is provided a method of inhibiting DNA replication in vitro or in vivo, which comprises administering a consensus sequence of the present invention in single-stranded or double-stranded form.
- The abbreviations used herein for designating the nucleotides are as follows:
Code Group Nucleotide(s) A A adenine C C cytosine G G guanine T T thymine (in DNA) U U uracil (in RNA) Y C or T(U) pyrimidine R A or G purine M A or C amino K G or T(U) keto S G or C strong interaction (3 hydrogen bonds) W A or T(U) weak interaction (2 hydrogen bonds) H A or C or T(U) not-G B G or T(U) or C not-A V G or C or A not-T or not-U D G or A or T(U) not-C N G, A, C or T(U) any - FIG. 1 is a diagram of pYAneo vectors and cloned mammalian origin and consensus sequences;
- FIG. 2 illustrates growth. curves of two representative HeLa clonal subpopulations, derived from transfections with mammalian origin-containing, modified pYACneo and pYACneo vectors;
- FIG. 3 illustrates PCR analysis of supercoiled episomal and linear genomic DNA fractions;
- FIG. 4 illustrates mammalian in vitro DNA replication of a plasmid containing one version of the 36-bp consensus sequence, A3/4, with initiation of DNA replication occurring within the region containing the consensus sequence;
- FIGS. 5A-5C illustrate bromodeoxyuridine in vivo labeling of individual alphaconsensus plasmid clones;
- FIGS. 6A-6B illustrate the isolation of episomal DNA from stable HeLa cell clones;
- FIGS. 7A-7B illustrate bromodeoxyuridine in vivo labeling and recovery of episomal DNA from stable HeLa cell clones;
- FIG. 8A- 8B illustrate a competition band-shift analysis of Ors Binding Activity protein binding; and
- FIG. 9 illustrates the effect of the double-strand A3/4 oligonucleotide sequence on the in vitro replication of p186.
- pYACneo, a 15.8 kb plasmid, contains a bacterial origin, G418-resistance gene, and yeast ARS, CEN and Tetrahymena TEL elements (GenBank Accession number No. U13189). Four mammalian origins have been cloned into this circular vector: 343, a 448 bp chromosomal origin from a transcribed region of human chromosome 6q (Shihab-El-Deen, A. et al. (1993) Somat. Cell Mol. Genet. 19:103-109); X24, a 4.3 kb element containing the hamster DHFR origin of bidirectional replication (oriβ)(Zannis-Hadjopoulos, M. et al. (1994) Gene, 151:273-277), and S3, a 1.1 kb human anti-cruciform purified autonomously replicating Nielsen, T. et al. (1994) Mol. Gen. Genet. 242:280-288) and A3/4, a version of the 36-bp consensus sequence. The resulting constructs (Y.343, Y.X24, YAC.S3, Y.A3/4, respectively) have been transfected into HeLa cells, and G418-resistant subcultures were isolated. The Frequency of G418-resistant transformation was higher with origin-containing pYACneo than with vector alone. After >45 generations under G418 selection, the presence of episomal versus integrated constructs was assessed by fluctuation assay, and by PCR of supercoiled, circular and linear genomic cellular DNAs separated on EtBr-CsCl gradients. In stable G418-resistant subcultures which had been transfected with vector alone as well as in some subcultures transfected with circular origin-containing constructs, resistance was conferred by integration into the host genome. However, examples were found of G418-resistant transfectants maintaining the Y.343, YAC.S3 and Y.A3/4 circular constructs in a strictly episomal state after long-term culture in selective medium, with 70%-90% stability per cell division. Assays of some episomal constructs, as detected by PCR, found the constructs present in the supercoiled episomal and not the linear genomic CsCl fraction. These versatile constructs, containing mammalian origins, have the capacity for further modification with human telomere or large putative centromere elements, in an effort to move towards construction of a human artificial chromosome.
- Materials and Methods
- Molecular Cloning
- The pYACneo (Clontech) vectors were digested with EcoRI. The 1.1 kb EcoRI insert of plasmid S3 (Nielsen, T. et al. (1994) Mol. Gen. Genet. 242:280-288) was ligated directly into the dephosphorylated vector, whereas the 448 bp EcoRI/HincIl insert of pURHc34 (Wu, C. et al. (1993a) Biochim. Biophys. Acta, 1174:241-257) and the 4.3 kb XbaI fragment of pX24 (Burhans, W. C. et al. (1990) Cell, 62:955-965) were blunt-ended with T4 DNA polymerase before ligation into blunt-ended, dephosphorylated vector. A3/4, a version of the 36-bp consensus sequence contained in a 229 bp DNA fragment with suitable multicloning sites (e.g. NotI) and T3 primer and M13 reverse primer sequences, was ligated into EcoRI-digested, dephosphorylated pYACneo vectors. The resulting circular constructs are designated YAC.S3, Y.343, Y.X24 and Y.A3/4. Each was used to transform competent E. coli, and ampicillin-resistant colonies were grown for large scale plasmid preparation. The structures of the cloned constructs were then confirmed by restriction enzyme digestion.
- Transfection and Culturing Human Cells
- HeLa cells, passaged once since resurrection from frozen stocks, were seeded in T-25 flasks at 1×10 4/cm2, and grown for two days (in α-MEM+10% FCS) before transfection with 20 μg pYACneo, YAC.S3, Y.343, Y.X24 or Y.A3/4 DNA by calcium phosphate coprecipitation. Two days post-transfection, cells were switched into medium containing 400 μp/mL G418, and a further two days later, T-25 flasks were trypsinized, counted, and 1×105 cells were seeded onto 60 mm dishes. The HeLa cells were cultured in G418 until 20 days post-transfection, when dishes were scored for visible growing drug-resistant colonies. Individual colonies were picked directly from the 60 mm dishes to isolate clonal subpopulations for further analysis. Cultures were maintained in 400 μg/mL G418 during this period, and had been actively growing for an estimated minimum of 45 doublings between the initial transfection and the subsequent analysis of the episomal versus integrated state of the transfected constructs.
- Fluctuation Assay
- For each cloned transfectant cell line to be tested, cells which had been maintained in G418 were counted and 4×10 5 cells were plated into two T-80 flasks, one containing drug-free nonselective medium, and one used for maintaining the culture in G418-selective medium. In parallel, cells were seeded at a similar density onto two 24-well plates (200 mm2/well), to allow their growth curves to be followed both in the presence and absence of drug selection. Triplicate wells were trypsinized and counted daily with a Coulter Counter ZM™ apparatus. After six days of growth, both T-80 flasks were trypsinized, counted, and diluted with either G418-containing or nonselective medium to final concentrations of 5 cells/mL. 200 μL aliquots were then distributed to each well of a 96 well plate (32 mm2/well). (Two plates were used for the case of cells which had been passaged in nonselective medium and were now being returned to G418). Eight days later, the number of wells containing a growing cell colony was scored under the microscope.
- Demonstration of Episomal DNA
- As a positive control, HeLa cells were transiently transfected with Y.X24, by calcium phosphate coprecipitation, and harvested 48 h later. Using standard methods, total DNA from approximately 5×10 6 cells was isolated from untransfected HeLa (negative control), transiently transfected HeLa, and the cloned transfectant cell lines to be tested. DNA preparations where mixed with 1 mg ethidium bromide and 75 μg of a carrier plasmid, in this case F9, a pBluescript clone containing a 0.5 kb human genomic insert (Nielsen, T. et al. (1994) Mol. Gen. Genet. 242:280-288). CsCl solution was added to a final density of 1.56 g/mL before ultracentrifugation in a VTi80™ rotor, 20 h at 67, 500 rpm. Using the intact and nicked carrier plasmid bands as a visible guide to the position of supercoiled (lower band) and linear and relaxed circular (upper band) DNA, the two completely-resolved fractions were carefully removed by side puncture. Ethidium bromide was removed by two washes with CsCl-saturated isopropanol, and CsCl was removed by ethanol precipitation with two 70% ethanol washing steps.
- Aliquots representing one-eighth of the purified DNA were used as template in two separate 50 μL PCR reactions. To amplify a 131 bp region of the neo gene present in the transfected constructs, but not in the native HeLa genomic DNA,
primers 5′-TCA GGA CAT AGC GTT GGC T-3′ (SEQ ID NO: 6) and 5′-CGT CAA GAA GGC GAT AGA A-3′ (SEQ ID NO: 7), located n the neo gene, were used (at 0.4 μM) with a mixture of all four dNTP's (each at 0.2 mM), 1×Taq buffer, and 1 U Taq polymerase (Pharmacia). 28 cycles were performed, each 94° C., 20 sec denaturation; 50° C., 90 sec annealing; and 72° C., 30 sec extension; the first denaturation and the final extension steps were carried out for 5 min. To amplify a 423 bp unique region on the long arm ofhuman chromosome 6,primers 5′-TGT GTA TGG GAC GGT ACT CA-3′ (SEQ ID NO: 8) and 5′-GGA GCA AGG CAG AAC TAC TC-3′ (SEQ ID NO: 9) (Wu, C. et al. (1993b) Biochim. Biophys. Acta, 1174:258-266) were used at 0.25 μM, with 1.5 U Taq, for 33 cycles (each 94° C., 60 sec; 50° C., 60 sec; 72° C., 60 sec) followed by a 5 min final extension. Products of both reactions were electrophoresed in a 1.6% agarose, 1×TBE (0.089 M Tris, 0.089 M Boric acid, 0.002 M EDTA, pH 8.0) gel. - Results
- Cloning Mammalian Origins into a YAC Vector
- pYACneo is a versatile plasmid shuttle vector (Traver, C. N. et al. (1989) Pro. Nat. Acad. Sci. USA 86:5898-5902). Because it includes the prokaryotic ColEl origin and an ampicillin resistance marker from pBR322, pYACneo can be grown in E. coli as a circular plasmid. Since this vector also contains the S. cerevisiae ARS1 replication origin and CEN4 centromere elements, it can alternatively be maintained as a circular yeast artificial chromosome, carrying the TRP1, URA3, and HIS3 selectable markers. In addition, pYACneo carries a gene conferring resistance to the drug G418, a trait which is selectable in mammalian cells. Thus, this vector can replicate in both E. coli and S. cerevisiae, and contains markers for the selection of stable bacterial, yeast, or mammalian cell transfectants.
- Three mammalian sequences and a version of the 36-bp consensus sequence, A3/4, previously shown to permit autonomous replication in human cells have been cloned into pYACneo vectorsat the EcoRI site (FIG. 1).
- In the vector, prokaryotic sequences are indicated by a thin gray line. Functional yeast cis-acting chromosomal components are shown as open boxes, while yeast marker genes are indicated b shaded boxes contained within the circular vector. The mammalian-selectable G418 resistance marker is in black. Two human (343, S3), one hamster (X24) and a version of the 36-bp consensus sequence (A3/4) contained within a total of 229 bp DNA, as origin-containing, autonomously replicating sequences were cloned into pYACneo vectors at the EcoRI site; restriction sites indicating the orientation of the inserts are presented. In the pYACneo constructs containing X24, 343, and S3, restriction mapping indicated an approximately 220 bp deletion in the region of one of the TEL elements. The pYACneo construct containing the A3/4 consensus sequence appears intact, with no deletions detected in the pYACneo vector.
- 343 is a 0.45 kb cDNA clone derived from a transcribed region on the long arm of human chromosome 6 (Shihab-El-Deen, A. et al. (1993) Somat. Cell Mol. Genet. 19:103-109), to which in vivo origin activity has been localized by nascent strand PCR mapping (Wu, C. et al. (1993b) Biochim. Biophys. Acta, 1174:258-266). S3 is a 1.1 kb human sequence isolated by anti-cruciform immunoaffinity purification of genomic DNA, followed by competitive selection for clones possessing strong autonomous replication activity by mass transfection and in vitro replication assays (Nielsen, T. et al. (1994) Mol. Gen. Genet. 242:280-288). X24 carries a 4.3 kb Xbal fragment from the
hamster DHFR 3′ region, and includes the predominant initiation site oriβ, as indicated by multiple techniques (Burhans, W. C. et al. (1990) Cell, 62:955-965; Zannis-Hadjopoulos, M. et al. (1994) Gene, 151:273-277). Finally, A3/4 is a 36-bp consensus sequence derived by sequence comparison of several mammalian ARS. - HeLa Transfection Efficiency is Higher with Origin-containing Constructs
- Since the Y.343, YAC.S3, Y.X24, and Y.A3/4 constructs remain relatively small in size (all less than 21 kb), they can be grown in bacteria, and pure preparations can be transfected by the relatively high-efficiency calcium-phosphate coprecipitation method, unlike YACs in the 0.1-1.0 Mb range, which necessitate the use of techniques such as yeast spheroplast fusion for transfecting mammalian cells. Calcium phosphatetreated, mock-transfected cells resulted in no G418-resistant colonies; pYACneo vector devoid of any mammalian origin gave 45 colonies per 10 5 cells plated. Importantly, the test constructs YAC.S3, Y.343, Y.X24, and Y.A3/4 gave 70-900% more stably transfected G418-resistant colonies than the vector alone, suggesting that the presence of a short, cloned origin-containing insert may facilitate the maintenance of the transfected neo trait in human cells.
- Isolated colonies were cloned and grown in G418 to select for maintenance of the transfected constructs, and spent a minimum of 67 days (and in some cases up to 96 days) in culture before testing for the presence and stability of episomal neo-containing DNA.
- Stability of Transfected Constructs
- A protocol based on the Luria-Delbrück fluctuation assay permits calculation of the stability of the drug resistance marker during cell growth in non-selective medium. Stable transformants obtained in the usual fashion, through integration of the transfected marker into the host genome, maintain the drug resistance trait even in the absence of selective pressure. However, episomally-replicating DNA which lacks a functional centromere will not partition accurately at mitosis and will display a characteristic loss rate per generation.
- Examples of G418-resistant clonal cell populations initially transfected with circular pYACneo, YAC.S3, Y.343, or Y.X24, were tested by fluctuation assay. In essence, cells were passaged from G418 into nonselective medium and allowed to grow, while in parallel, cells were also seeded onto 24 well plates to allow daily monitoring of their growth rate. Examples of growth rates of individual clones are presented in FIG. 2.
- After plating Y.343
clone 2 and Y.A3/4clone 9 in 200 mm2 wells, cell number was determined by Coulter count; each plotted point represents the average of triplicate wells for each day during log-phase growth. Open squares denote natural logarithm of the cell number in nonselective medium, while filled diamonds track growth in the presence of 400 μg/mL G418. For Y.A3/4clone 9, the growth in selective medium was estimated from growth over 6 days (2 measurement points, at the beginning and 6 days after culture). Solid straight lines were derived by linear regression analysis, from which the population doubling time is determined; in all cases the curve fit correlation (R2) value was better than 0.98. - Six days after seeding into nonselective medium, while the cells were still in. log phase, the test flasks were trypsinized, diluted, and replated to determine the proportion of cells that still retained the neo marker. Results are shown in Table 1, along with the calculated stability of the constructs in each of the subpopulations tested.
- Some of the tested cell lines (including among others,
YAC.S3 clone 1, Y.343clone 2 and Y.A3/4 clone 9) grew slightly more slowly in G418 than they did in nonselective medium. (For example, see FIG. 2). A reduced population growth rate in G418 may reflect the loss of the neo marker during some cell divisions, or could instead reflect poor transcription of the neo gene in particular integrated contexts. From a regression analysis of these exponential growth curves in nonselective medium, the number of doublings which took place during the fluctuation period was calculated.TABLE 1 In vivo stability of transfected constructs by fluctuation assay # growing colonies on 96 well plates after number of fluctuation generations STABILITY Host Cell Transfection G418a non-selectiveb #genc per divisiond HeLa YACneo clone 1 57 44 3.2 1.0 HeLa YACneo clone 2 42 47 2.8 0.9 HeLa YACneo clone 3 58 69 2.8 0.9 HeLa YAC.S3 clone 136 64 2.9 0.8 HeLa YAC.S3 clone 226 28 3.0 1.0 HeLa Y.343 clone 120 14 3.2 1.0 HeLa Y.343 clone 226 56 3.4 0.8 HeLa Y.343 clone 1123 38 3.8 0.9 HeLa Y.343 clone 2028 59 6.3 0.9 HeLa Y.X24 clone 118 28 3.5 0.9 HeLa Y.A3/4 clone 962 79 6.8 0.9 S. cerevisiae circular ARS 0.7e plasmid S. cerevisiae linear ARS 0.8e plasmid S. cerevisiae CEN-containing 0.9-0.999e YAC S. pombe circular ars 0.7e plasmid S. pombe cen-containing 0.98-0.999e YAC Any host integrated DNA 1.0 cell - All HeLa clones carrying circular pYACneo vector maintained the neo marker with a stability of approximately 1, supporting the hypothesis that their transfection is the result of integration events. The same is true for several of the clones transfected with origin-containing constructs. However, for example, in one of two YAC.S3, one of two Y.343, and a Y.A3/4 HeLa cell clone(s), a significant proportion of the cells in each population lost the G418 resistance trait during the nonselective fluctuation period, strongly suggesting that these clonal lines carried only episomal forms of the transfected constructs. Indeed, their calculated stability of 0.8-0.9 per generation is similar to that obtained by others during construction S. cerevisiae and S. pombe yeast artificial chromosomes, using equivalent plasmids which carried a functional origin but lacked a centromere (Table 1). This reduced stability predicts that the trait would be lost in long-term nonselective culture; thus, to confirm the result from the six day fluctuation assay, the ultimate instability of the episomally-maintained neo marker in Y.343
clone 2 was tested by repeating the fluctuation assay, this time using a 46-day period of nonselective growth, with no G418-resistant colonies detectable. - HeLa Cells Maintain Human Origin-containing YACs as Episomes
- Initial attempts to different ate episomal from integrated DNA by Southern blots of low and high molecular weight Hirt lysate fractions were hampered by a poor detection threshold, inadequate separation of 20-kilobase episomes from genomic DNA, and the inability, following restriction digests, to distinguish episomal DNA from the product of head-to-head multimeric integration events. Nevertheless, results suggested that in Y.343
clone 1, and in 1 and 2, transfected constructs were integrated into the genome, whereas Y.343YACneo clones clone 2 carried intact Y.343 at a total copy number of approximately 30 per cell; other Southern analyses for copy number inYAC.S3 clone 1 were not sensitive enough to reliably detect significant copies/cell, and, therefore, the copy number was assumed to be much lower than in Y.343clone 2. Southern analyses of low molecular weight Hirt lysate fractions from Y.A3/4clone 9 HeLa cells, as well as other Y.A3/4 transfected HeLa cell clones, after approximately 45 cell generations indicated that Y.A3/4 episomes of approximately 16 kb had been maintained. Using an alkaline cell lysis technique (Sun, T. Q. et al. (1994) Nature Genet. 8:33-41), which select for covalently closed circular DNA, we found that Y.343 is present inclone 2 at 119 days after transfection, but only in the case where G418 selection was constantly maintained. Consistent with the results of the fluctuation assay, no pYACneo sequence of Y.343 was detected in the Y.343clone 2 cell population that had been passaged in non-selective medium between day 89 and lysis on day 119. - In an effort to confirm that the modified YAC plasmids containing human origins were indeed being maintained in episomal form, total DNA was isolated from HeLa subclones
YAC.S3 clone 1 and Y.343clone 2, which had demonstrated instability of the drug resistance marker during fluctuation assay. CsCl/ethidium bromide density gradient ultra-centrifugation was, in fact, originally developed as a means for separating episomal from genomic DNA in HeLa cells, and conveniently resolves covalently-closed circular DNA from linear DNA and nicked (form II) circular DNA, which intercalate more of the buoyant dye. Any unrelated plasmid preparation which has accumulated 50% nicked and linear forms can serve as a visible guide to the position of the lower (supercoiled episomal) and upper (predominantly linear genomic) bands in the density gradient. DNA fractions prepared in this fashion from the HeLa subclones, as well as from positive and negative controls, were analyzed by PCR, using primers from the neo gene (FIG. 3). - Total DNA from HeLa subcultures was fractionated by CsCl/EtBr ultracentrifugation., using a carrier plasmid as a guide to the position of the lower band (L) containing supercoiled circular DNA, and the upper band (U) containing linear and relaxed circular forms of DNA. Fractions were tested for the presence of the transfected constructs by PCR amplification using a primer pair directed against the nec marker and yielding a 131 bp product (positive control template is a pure Y.X24 plasmid sample). The position of linear genomic chromosomal DNA was confirmed in a separate amplification, shown in the three rightmost lanes, using primers that recognize a unique region (423 bp) on human chromosome 6 (positive control is total genomic DNA isolated from the ME180 human cell line, ATCC HTB 33).
- DNA from normal, untransfected HeLa cells did not yield a PCR product (only the carrier plasmid is visible) since these cells do not carry a neo gene. A polyclonal population of HeLa cells, transfected with Y.X24 48 h before DNA preparation, contained large quantities of PCR template in both the lower (intact circular) and upper (nicked or damaged circular, or integrated) CsCl gradient bands. However, the test clones yielded a product from only the lower, episomal DNA fraction, indicating that the transfected YAC.S3 and Y.343 constructs are being maintained, in these subcultures, as covalently closed circular episomes during long-term culture in selective medium (81 days for
YAC.S3 clone 1; 96 days for Y.343 clone 2). The rightmost lanes show, through the use of primers directed at a unique genomic locus, that the linear genomic DNA segregates exclusively to the upper CsCl band. The lower band is free from contaminating genomic DNA. There appears to be no integrated copies, since the neo marker was not detected in the upper band fraction of DNA from those clones. - Control of Semi conservative Replication by Origin Consensus Sequence
- HeLa cells were transfected with alphaconsensus clones and a uniorsconsensus clone as previously described (Wu, C. et al. (1993a) Biochim. Biophys. Acta, 1174:241-257), and then cells growing in log phase were pulsed with 40 μM bromodeoxyuridine for 48 hours before harvesting low molecular weight DNA by Hirt's extraction, and loading onto a neutral cesium chloride gradient. Approximately 200 μl fractions were collected, with
fraction 1 representing the bottom of the gradient (abscissa). Refractive indices were measured using a refractometer (ordinate, Y2 axis), and samples from each fraction were loaded onto a dot blot manifold and hybridized with pYACneo probe. The total amount of DNA as quantified by Phosphoimage analysis is shown by the solid black bars (ordinate, Y1 axis). - FIG. 5 demonstrates examples of the control of semiconservative DNA replication by alphaconsensus sequences and a uniorsconsensus sequence when placed in a plasmid, e.g. pCRscript. FIG. 5A is pCRscript containing alphaconsensus A3/4: CTCAAATGGTCTCCAATTTTCCTTT GGCAAATTCC (SEQ ID NO: 10); FIG. 5B is pCRscript containing alphaconsensus A16: CCTCGATGGGTTTGCAAATTC CCCTTAGCAAA TTCC (SEQ ID NO: 11); FIG. 5C is pCRscript containing uniorsconsensus U22: ATATAAATGATAAAGTAAAA TGAGGATTAAATAAGGACCTTTAATTAGGGTTTAGATAGGGGATTTAAACGATA TTATTTATAGCAGTTT (SEQ ID NO: 12).
- Both single- and double-strand substitution of bromodeoxyuridine are present in all cases. A3/4, FIG. 5A is particularly potent at controlling DNA replication in HeLa cells. Another version of the alphaconsensus, A16, FIG. 5B also acts a potent origin of DNA replication. In FIG. 5C, a lower but highly significant amount of DNA replication is controlled by the presence of a version of the uniorsconsensus sequence U22, acting as an origin of DNA replication.
- Y.343 DNA Clone which has 70% Homology with Alpha Consensus
- For agarose gel electrophoresis of Y.343 input DNA used to transfect HeLa cells, uncut represents uncut Y.343 plasmid DNA (FIG. 6A). The positions of migration of different forms of DNA are indicated at the left hand side with arrows. Linear represents Y.343 plasmid DNA which has been linearized by digestion with SalI; λ represents molecular weight markers, the sizes of which are indicated at the right hand side with arrows (FIG. 6A).
- Isolation and DpnI digestion of low molecular weight DNA from stable HeLa cell clones approximately 45 cell generations after transfection with Y.343. Low molecular weight DNA was extracted using Hirt's extraction method. 1 represents DNA from stable HeLa cell Y.343
clone 11; 2 represents DNA from stable HeLa cell Y.343clone 20; 3 represents pBluescript DNA (500 ng). The second panel represents the same DNAs, but digested with 1 unit of DpnI for 1 hour at 37° C. (FIG. 6B). - FIG. 6 illustrates the nature of Y.343 DNA as recovered from HeLa cells after 45 cell generations. In
lane 1 of Panel B is DNA obtained from HeLa cells of the Y.343clone 11, andlane 2 is DNA obtained from HeLa cells of the Y.343clone 20. Inlane 3 is 500 ng of pBluescript DNA for control of DNA digestion. In both clones, the majority of DNA is in recovered as form II, relaxed circular, and it is resistant to extensive DpnI digestion. (Note complete disappearance of pBluescript DNA with only some small digestion products visible.) The Y.343 DNA can we recovered from these HeLa cell clones after extensive replication during at least 45 cell generations. - For the bromodeoxyuridine incorporation into nascent DNA, cells growing in log phase were pulsed with 40 μM bromodeoxyuridine for 48 hours before harvesting low molecular weight DNA by Hirt's extraction, and loading onto a neutral cesium chloride gradient (FIG. 7A). Approximately 200 μl fractions were collected, with
fraction 1 representing the bottom of the gradient (abscissa). Refractive indices were measured using a refractometer (ordinate, Y2 axis), and samples from each fraction were loaded onto a dot blot manifold and hybridized with pYACneo probe. The total amount of DNA as quantified by Phosphoimage analysis is shown by the solid black bars (ordinate, Y1 axis). The relative positions of heavy-heavy (HH, both strands substituted with bromodeoxyuridine), heavy-line (HL, a single strand substituted with bromodeoxyuridine), and unsubstituted input light-light (LL) DNA are indicated. The signal obtained from dot blot analysis is indicated in the panel below the graph (FIG. 7A). - An ethidium bromide stained gel of plasmid DNA was obtained From bacteria transformed with episomal DNA isolated from stably transfected HeLa cell clone Y.343
clone 20, approximately 172 cell doublings after transfection (FIG. 7B). ‘I’ indicates the original input Y.343 plasmid DNA used to transfect the cells. Lanes 1-3 contain DNA from independent bacterial clones, digested with either HindIII, AvaI or BglII. Molecular weight sizes are indicated by the position of the markers in the far right lane (λ markers). Sizes are 23.1 kb, 9.4 kb, 6.6 kb, 4.4 kb, 2.3 kb, 2.0 kb and 0.6 kb. - FIG. 7 illustrates that the episomal DNA present in Y.343
clone 20 is semiconservatively replicated. Bromodeoxyuridine labeling of HeLa cell Y.343clone 20 resulted in the recovery of single- and double-strand substituted Y.343 DNA after more than 170 cell generations after transfection. Restriction enzyme analysis of the Y.343 DNA, using three restriction enzyme did not indicate that there ha Keen any s significant rearrangements in three isolates (examples) of Y.343 DNA recovered from the HeLa cell Y.343clone 20. The restriction fragment polymorphism was the same for each of the three isolates. - Specific Interaction Between OBA and the A3/4 DNA Consensus Sequence
- The map and sequence characteristics of the 186 bp fragment of ors8 were previously reported (Todd, A. et al. (1995) J. Cell. Biochem. 58:221-236; Ruiz, M. T. et al. (1995) J. Cell. Biochem. 58:221-236).
- In order to obtain the 186 bp fragment for band-shift experiments, ors8 plasmid was used as template in PCR reactions for amplification of the ors8 insert, which was then digested with NdeI and RsaI, as described previously (Todd, A. et al. (1995) J. Cell. Biochem. 58:221-236; Ruiz, M. T. et a!. (1995) J. Cell. Biochem. 58:221-236). A nonspecific competitor fragment, pBRfg (206 bp), was prepared by PCR amplification of pBR322 DNA, as previously described (Ruiz, M. T. et al. (1995) J. Cell. Biochem. 58:221-236). Oligonucleotides containing the A3/4 sequence (36 nucleotides in length; 5′-CCTCAAATGGTCTCCAATTTTCCTTTGGCAAATTCC-3′ (SEQ ID NO: 10)) and a nonspecific competitor derived from pBR322 (16 nucleotides in length; 5′-TTCCGAATACCGCAAG-31′ (SEQ ID NO: 13)) were synthesized (Sheldon Biotechnology Centre, McGill University, Montreal), further purified by denaturing polyacrylamide gel electrophoresis (PAGE) and annealed as described by Wall et al. (Wall et al. (1988) Gene, 2:1089-1100). 5′ end-labeling of the 186 bp fragment and A3/4 double-stranded oligonucleotide were performed as previously described (Ruiz, M. T. et al. (1995) J. Cell. Biochem. 58:221-236).
- Band-shift competition experiments were performed in order to localize the binding site of OBA in the 186 bp fragment (FIG. 8).
- Ten band-shift reactions were performed with radioactively labeled A3/4 DNA (10 ng/reaction) and 3.75 mg/reaction of protein from pool (Sephacryl™ S-300, activity pool of OBA separating at approximately 150-200 kDa, obtained after separation of pool E; Ruiz, M. T. et al. (1995) J. Cell. Biochem. 58:221-236), using the conditions described above. As a control, similar reactions were carried out in the absence of DNA. The band-shifts were analyzed by electrophoresis in a native 4% polyacrylamide gel, and the wet gel was exposed for 5h at 4° C. for autoradiography. The OBA-DNA complexes were then excised from the gel, the proteins and the DNA were eluted from the gel by Ofverstedt et al. (1994) Biochim. Biophys. Acta, 782:120-126) and then subjected to electrophoresis on 8% SDS- polyacrylamide gel under reducing conditions. The proteins were then transferred electrically to an Immobilon™-P membrane (Millipore, Bedford, Mass.) and subjected to Southwestern analysis. Briefly, the membrane was incubated overnight (14-16 h) in blocking solution (buffer S: 25 mM Hepes-KOH, pH 7.7, 25 mM NaCl, 5 mM MgCl2, 1 mM DTT containing 5% skim milk and 0.05% NP-40). The next day the membrane was subjected to a process of denaturation-renaturation, as follows: it was incubated for 10 min in a denaturing solution of 6 M guanidine hydrochloride in buffer S, followed by 10 min incubations in 3 M, 1.5 M, 0.75 M, 0.375 M and 0.187 M guanidine hydrochloride, respectively, diluted in buffer S; it was then washed twice for 10 min with buffer S, and incubated for 2 h in blocking buffer, followed by 1 h incubation in buffer S +1% skim milk. The membrane was then incubated overnight in hybridization solution (20 mM Hepes, pH 7.7, 75 mM KCl, 0.1 mM EDTA, 2.5 mM MgCl2, 1% skim milk, 0.05% NP-40) containing radioactively labeled A3/4 oligonucleotide (5.2 ng/ml, 2.6×106 cpm/ml) in the presence of poly dI-dC (50 mg/ml) and pBRfg DNA (454 ng/ml) as nonspecific competitors. Finally, the membrane was washed three times with hybridization solution and subsequently exposed for autoradiography. The entire procedure was carried out at 4° C. and the incubations were done on a rocking platform.
- In contrast to the nonspecific competitor, pBRfg, which did not compete, the different subfragments of the 186 bp competed to different extents for OBA binding. The most efficient competitor was the 59 bp fragment, resulting from the digestion of the 186 bp with MslI and FokI (FIG. 8), which competed as efficiently as, or better than the 186 bp fragment itself. The 59 bp fragment contains sequence homologous (80%) to a DNA sequence (A3/4, 36 bp), also present with varying homology in several different ors (Kaufmann, G. et al. (1985) Mol. Cell. Biol., 5:721-727; Landry, S. & Zannis-Hadjopoulos, M. (1991) Biochim. Biophys. Acta, 1088:234-244; Rao et al. (1990) Gene, 87:233-242) and other human replication origins isolated in our laboratory (Bell, D. et al. (1991) Biochim. Biophys. Acta, 1089:299-308; Wu, C. et al. (1993a) Biochim. Biophys. Acta, 1174:241-257; Nielsen, T. et al. (1994) Mol. Gen. Genet. 242:280-288). The A3/4 sequence was tested as competitor for OBA binding to the 186 bp fragment in the band-shift assay, and it was able to compete at least as well as the 59 bp fragment for the binding of OBA (FIG. 8). Furthermore, the specificity of OBA binding to the A3/4 sequence was tested in a series of competition band-shift assays, using the A3/4 oligonucleotide as specific competitor, in increasing (50-2000×) molar fold amounts. Formation of the OBA-A3/4 complex decreased in the presence of 50-fold molar excess of cold A3/4 oligonucleotide competitor, and it was completely abolished at 500-fold molar excess of A3/4. In contrast, when similar competition reactions were carried out using the two single-stranded oligonucleotides of the A3/4 sequence as competitors, neither was able to compete the OBA-A3/4 complex. A circular double-stranded plasmid containing the A3/4 consensus sequence was able, on the other hand, to compete for the OBA binding.
- FIG. 8 illustrates the competition band-shift analysis of OBA binding. For FIG. 8A, band-shift reactions were performed, incubating constant amounts of both, protein (pool I; 200 ng) and radioactively labeled DNA (186 pb fragment; 0.1 ng). The various sub-fragments of the 186 bp sequence and the A3/4 (36 bp) sequence were used as cold competitors at the molar-fold excess level indicated. The shifted complexes were quantitated by densitometry and the results expressed as percent reduction in complex formation. In FIG. 8B, there is shown a restriction map of the 186 bp sequence of ors8 indicating the fragments used as competitors. The FokI site (arrow point) bisects the inverted repeat (><). The position of the A3/4 homologous sequence is indicated (*)
- A3/4 Oligonucleotide Inhibits the in vitro DNA Replication of p186
- To investigate the effect of the A3/4 sequence on the in vitro replication of p186, in vitro reactions were performed using increasing molar excess amounts of either the A3/4 oligonucleotide or a pBR322-derived nonspecific oligonucleotide as competitors.
- In vitro replication was carried out as previously described (Pearson, C. E. et al. (1991) Biochim. Biophys. Acta 1090:156-166 Todd, A. et al. (1995) J. Cell. Biochem. 58:221-236), with slight modifications. In the experiments involving the addition of the A3/4 oligonucleotide, increasing molar excess amounts of either the A3/4 or pBR322 oligonucleotides were added relative to the pl86 (200 ng) input template DNA. A pre-incubation of the HeLa cell extracts with the oligonucleotides for 20 min on ice preceded the in vitro replication reaction, carried out as previously described (Pearson, C.E. et al. (1991) Biochim. Biophys. Acta 1090:156-166; Zannis-Hadjopoulos, M. et al. (1994) Gene, 151:273-277; Todd, A. et al. (1995) J. Cell. Biochem. 58:221-236). The reaction products were divided into three aliquots: one third was digested with DpnI (1 U; New England BioLabs), as previously described (Pearson, C. E. et al. (1991) Biochim. Biophys. Acta 1090:156-166 Todd, A. et al. (1995) J. Cell. Biochem. 58:221-236), and two thirds were kept undigested. The DpnI-digested and one third of the undigested products were subjected to electrophoresis on 1% agarose gel in 1×TAE buffer (16-20 h, 50-55 Volts). The gels were dried and exposed to DuPont reflection NEF-autoradiographic film. Quantification was performed on DpnI-digested products, as previously described (Todd, A. et al. (1995) J. Cell. Biochem. 58:221-236), by densitometric measurements using a Phosphoimager™ analyzer (Fuji BAS 2000) or a Bio Image Densitometer™ (MillGen/Biosearch); both methods gave similar results.
- While inclusion of the nonspecific oligonucleotide in the in vitro reaction did not affect the replication of p186, addition of increasing amounts of the A3/4 oligonucleotide strongly inhibited its replication in vitro, decreasing it by approximately 4-fold at 10×molar excess and by approximately 10-fold at 250×molar excess amounts to the p186 template (FIG. 9).
- FIG. 9 show the effect of the A3/4 oligonucleotide sequence on the in vitro replication of p186. A. p186 plasmid (200 ng), contain ng the 186 bp fragment of ors8, was used as template for in vitro replication. Increasing molar excess amounts (indicated) of the A3/4 (gray bars) or pBR322 (black bars) oligonucleotides to p186 template were used as specific and non-specific competitors, respectively.
- Discussion
- Mammalian origin sequences have been cloned into a versatile shuttle vector, capable of further modification and of growth in several host systems. These constructs remain small enough to be transfected into human cells by calcium phosphate coprecipitation, and are selected for using the nec marker.
- The efficiency of stable transfection is increased 1.7- to 10-times by the presence of an origin sequence, in line with previous observations using a cloned portion of the human 5′ o-myc (McWhinney, C. & Leffak, M. (1990) Nucl. Acids Res. 18:1233-1242). Attempts have been made to use YAC vectors to transfect large genomic regions (hundreds of kb) into mammalian cells (Forget, 1993), but again stable transfection required integration into the host genome. None. & Wahl (Nonet, G. H. & Wahl, G. M. (1993) Somat. Cell Mol. Genet. 19:171-192) cloned a 70 kb region including the
mouse 5′ adenosine deaminase origin into a YAC and transfected mouse cells by yeast spheroplast fusion. In this case, examples were found of stable transfectants harboring episomally-replicating circular constructs, but only in the presence of coexisting integrated copies. Featherstone & Huxley (Featherstone, T. et al. (1993) Genomics, 17:267-278) used yeast spheroplast fusion to transfect mouse cells with a 660 kb YAC carrying a large, selectable human genomic insert (presumed to carry several replication origins), and observed transfected subpopulations which maintained otherwise unstable episomes under long-term selection. However, these episomes were the result of extensive recombination among yeast, mouse and human DNA and could not be fully characterized; in cell lines in which transfected DNA existed strictly in episomal form, much of the human DNA had apparently been lost. The modified YACs used here to transfect human cells are completely defined, can be grown in bacteria or yeast, can be transfected by calcium phosphate coprecipitation (which gives higher transformation efficiencies and does not cotransfect yeast genomic DNA), and both YAC.S3, Y.343 and Y.A3/4 have been demonstrated to be capable, in a G418-selected human cell system, of persisting for several months in a purely episomal form. - However, cells which carry episomal neo grow more slowly in G418 than in nonselective medium, in contrast to cells in which integration has occurred, in which the growth in G418 is nearly identical to the growth in nonselective medium. This observation may help identify episomal cell lines, but it is not a specific test since a subset of integrated cell lines also exhibit slow growth in G418.
- The copy number (estimated as 30) of Y.343
clone 2 is similar to that observed in yeast harboring circular ARS plasmids (Murray, A. W. & Szostak J. W. (1983) Nature, 305, 189-193). This apparent amplification results from inaccurate partition of plasmids at mitosis, and reaches an equilibrium in long-term culture above some threshold value needed for sufficiently stable maintenance and cell growth under selection. High copy numbers cannot confer a mitotic stability greater than 80-90%, which requires the presence of an element (such as a centromere) directing accurate partition. - The overall stability of YAC.S3, Y.343 and Y.A3/4 episome maintenance during growth in nonselective medium is comparable to that obtained with autonomously replicating yeast plasmids (Table 1), which constituted the first step in the construction of yeast artificial chromosomes. It is likely that very large domains of DNA, tens to hundreds of kilobases will contain their own replication origins. However, the delimitation of a minimal human centromere through minichromosome analysis would require and benefit from the presence, in cis, of a separate, defined replication origin. The constructs described here are sufficiently versatile to allow addition of cloned human telomeres and of large putative centromeric blocks with or without intrinsic replication origins; they can be manipulated as a small and easily-engineered bacterial plasmid, as a small or large circular or linear yeast artificial chromosome, or as an episomal genetic element in human cells which can be assayed for mitotic stability. Stability in nonselective medium would be expected to be enhanced, from about 80-90% to more than 99.99%, in larger constructs containing a centromere.
- Vectors capable of long-term persistence in mammalian cells have been constructed by others, but these rely on viral origins of DNA replication. Examples include a murine plasmid based on a defective polyoma virus (Gassman, M. et al. (1995) Proc. Nat. Acad. Sci. USA, 92:1292-1296), and a “human artificial episomal chromosome” which carries the EBV latent origin, oriP (Sun, T. Q. et al. (1994) Nature Genet. 8:33-41). While capable of acting as excellent gene vectors in vitro, such constructs are not helpful for studying mammalian chromosomal origin biology, and require the presence of viral transactivating proteins for their replication. Attempts to create artificial chromosomes by deleting large blocks from native chromosomes still leave huge undefined regions. The potential of a mammalian artificial chromosome, not only as a gene vector, but also as a model for addressing questions about chromosomal biology, may be best reached through a “ground-up” assembly of the functional cis-acting components, origins, telomeres, and centromeres. Origins represent the logical first step.
- The present invention will be more readily understood by referring to the following example which is given to illustrate the invention rather than to limit its scope.
- Based upon the consensus sequences, a pool of oligonucleotides was synthesized. The sequences synthesized were:
AATTCCTGCAGCCCGGGGGATCCGCCCATTAACCCTCACTAAAGGGAACAAAAGC (SEQ ID NO:14). TGGGTACC-consensus sequences-TGAGCTCCAATTCACTGGCCGTCG TTTTACGGGCTAGAGCGGCCGCCACCGCGGTGGAGCTCCAGCTTTTGTTCCCTTT AGTGAGGGTTAATTGCGCGCTTGGCGTAATCATGGTCATAGCTGTTTCCGG - Then, the consensus sequences were amplified by PCR using T7 and M13 reverse primers; the amplified products were cloned into the SnfI site of pCRscript (pCR-Script Amp SK (+) obtained from Stratagene) for individual variant sequence analyses. The ligated pool was directly transfected into HeLa cells and after three days, the low molecular weight fraction of DNA was isolated and digested with DpnI enzyme to remove unreplicated plasmid vector+consensus sequence inserts. The pool of variants subjected to DpnI digestion was then used to transform bacteria; undigested plasmid vector+consensus sequence insert DNA would have been replicated in human cells and thus contain consensus sequences essential to the initiation and control of DNA replication in mammalian cells. These functional assays were used to select the alphaconsensus and uniorsconsensus variants which were most efficient in allowing DNA replication in HeLa cells.
- Both results indicated that variants of alphaconsensus and uniorsconsensus were effective in allowing DNA replication in mammalian cells of circular episomes.
- DpnI resistance assays after transfection of individual clones into HeLa cells demonstrated that a sample of the recovered variants could be replicated by human cells.
- DpnI resistance assays after replication in an in vitro mammalian DNA replication system, using extracts of HeLa cells (Pearson, C. E. et al. (1991) Biochim. Biophys. Acta 1090:156-166), also demonstrated replication of circular episomes by human replication proteins.
- Using the in vitro replication system, initiation of DNA replication was shown to occur within the alphaconsensus sequence. (See FIG. 4).
- A3/4 alphaconsensus was cloned into pCRscript at the SnfI site. An earliest labeled fragment assay or preferential labeling assay for the A3/4 version of the alphaconsensus containing insert at early times of in vitro DNA replication was assessed at 4 and 8 minutes of reaction. The reaction mixture contained both 32p-labeled -dCTP and -dTTP to monitor DNA synthesis in the system. After extraction and purification of DNA, the products were digested with DdeI and PvuII before analysis by gel electrophoresis, radioautography and quantitative densitometry. The results were expressed in arbitrary units as relative incorporation per kilo-base for each fragment.
- An activity previously characterized as OBA (Ruiz, M. T. et al. (1995) J. Cell. Biochem. 58:221-236), binds competitively with sequence from a monkey sequence with origin activity.
- One form of the consensus noted as A3/4 has been cloned into pYACneo, yeast artificial chromosome cloning vector(Genbank Accession No. U13189, obtained from Clontech), at the EcoRI site. The A3/4 version of the consensus is: CCTCAAATGGTCTCCAATTTTCCTTTGGCAAATTCC (SEQ ID NO: 10). The resultant clone was transfected into HeLa cells with an efficiency approximately 10 times greater than the pYACneo vector alone.
- The Y.A3/4 containing HeLa cells were analyzed for stability of maintenance without G418 selection after 45 cell generations of selection. Changes in the population doubling time as affected by G418 selection, indicated that five out of seven clones had lengthened doubling times with selection The stability of maintenance of resistance to G418 selection for these clones was found to be between 0.8-0.9/cell/generation, suggesting the phenotype was maintained by extrachromosomal elements.
- Southern blot analyses of low molecular weight DNA reveals the presence of episomal Y.A3/4 in cells after passage for 60-65 generations under selective pressure (G-418). Resistance to digestion with endonuclease DpnI indicates the episomes had been replicated in the mammalian cell host, HeLa cells. Incorporation of bromodeoxyuridine into Y.A3/4 episomes clones of HeLa cells transfected with Y.A3/4 indicates that Y.A3/4 is replicated semiconservatively.
- While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth, and as follows in the scope of the appended claims.
-
1 15 36 base pairs nucleic acid single linear Genomic DNA 1 CCTMDAWKSG BYTSMAAWYW BCMYTTRSCA AATTCC 36 36 base pairs nucleic acid single linear Genomic DNA 2 CCTCAAAGCG CTTGAAAATC TCCACTTGCA AATTCC 36 30 base pairs nucleic acid single linear Genomic DNA 3 DAWKSGBYTS MAAWYWBCMY TTRSCAAATT 3030 base pairs nucleic acid single linear Genomic DNA 4 TATGTGTTTT CATATTTTGT TTGGCATATT 3091 base pairs nucleic acid single linear Genomic DNA 5 AWMTWAAKRA WRWWKKDAVW WGAKRWWKWV WHRASSACMD WKAAKTWKGG WTWARRYWKG 60 RKMWWTWKAW SDATAKWWWK DAKWKMWRKT T 9119 base pairs nucleic acid single linear Genomic DNA 6 TCAGGACATA GCGTTGGCT 1919 base pairs nucleic acid single linear Genomic DNA 7 CGTCAAGAAG GCGATAGAA 1920 base pairs nucleic acid single linear Genomic DNA 8 TGTGTATGGG ACGGTAGTCA 2020 base pairs nucleic acid single linear Genomic DNA 9 GGAGCAAGGC AGAACTACTC 2036 base pairs nucleic acid single linear Genomic DNA 10 CCTCAAATGG TCTCCAATTT TCCTTTGGCA AATTCC 36 36 base pairs nucleic acid single linear Genomic DNA 11 CCTCGATGGG TTTGCAAATT CCCCTTAGCA AATTCC 36 91 base pairs nucleic acid single linear Genomic DNA 12 ATATAAATGA TAAAGTAAAA TGAGGATTAA ATAAGGACCT TTAATTAGGG TTTAGATAGG 60 GGATTTATAA CGATATTATT TATAGCAGTT T 9116 base pairs nucleic acid single linear Genomic DNA 13 TTCCGAATAC CGCAAG 16193 base pairs nucleic acid single linear Genomic DNA 14 AATTCCTGCA GCCCGGGGGA TCCGCCCATT AACCCTCACT AAAGGGAACA AAAGCTGGGT 60 ACCTGAGCTC CAATTCACTG GCCGTCGTTTTACGGGCTAG AGCGGCCGCC ACCGCGGTGG 120 AGCTCCAGCT TTTGTTCCCT TTAGTGAGGG TTAATTGCGC GCTTGGCGTA ATCATGGTCA 180 TAGCTGTTTC CGG 19336 base pairs nucleic acid single linear Genomic DNA 15 CCTCTAATGG CTTCCAAACA TCACTTGGCA AATTCC 036
Claims (10)
1. A human or mammalian DNA replication origin consensus sequence which consists of a sequence selected from the group consisting of: CCTMDAWKSGBYTSMAAWYWBCMYTTRSCAAATTCC (SEQ ID NO: 1), functional variants thereof having a sequence of at least 70% homology, functional fragments thereof of at least 20 nucleotides; AWMTWAAKRAWRWWKKDAVWWGAKRWW KWVWHRASSACMDWKAAKTWKGGWTWARRYWKGRKMWWTWKAWSDATAKWWWKDA KWKMWRKTT (SEQ ID NO: 4), and functional variants thereof having a sequence of at least 70% homology.
2. A method for the control of initiation of mammalian DNA replication which comprises the steps of:
a) inserting a consensus sequence according to claim 1 together with a DNA fragment to form a vector capable of expression of said DNA fragment;
b) introducing the vector of step a) into mammalian cells in vitro.
3. The method of claim 2 , wherein the vector may be selected from the group consisting of viral vectors.
4. The method of claim 2 , wherein introducing the vector of step b) is effected by a standard method selected from the group consisting of calcium phosphate co-precipitation transfection, electroporation, micro-injection, liposome-mediated transfection, and virally transmitted DNA.
5. A DNA sequence for the maintenance of circular plasmid constructs which are capable of being replicated semiconservatively in proliferating mammalian cells, which comprises at least one consensus sequence consisting of a sequence according to claim 1 .
6. A DNA sequence suitable for inclusion in mammalian and human artificial chromosome vectors or for gene therapy, which comprises at least one consensus sequence consisting of a sequence according to claim 1 .
7. A protein which binds double-stranded DNA, which protein is isolated from HeLa cells and comprises about 150 kDa and two subunits of about 86 and 70 kDa in a glycerol gradient.
8. An anti-gene to DNA replication, which comprises a doubled-stranded form of a sequence according to claim 1 .
9. A method of inhibiting DNA replication in vitro or in vivo, which comprises administering a sequence according to claim 1 in single-stranded or double-stranded form.
10. The use of a sequence according to claim 1 for inhibiting DNA replication in vitro or in vivo, wherein said sequence is in single-stranded or double-stranded form.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/092,140 US20020164801A1 (en) | 1996-12-16 | 2002-03-06 | Human and mammalian DNA replication origin consensus sequences |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US3337496P | 1996-12-16 | 1996-12-16 | |
| US4732297P | 1997-05-21 | 1997-05-21 | |
| PCT/CA1997/000972 WO1998027200A2 (en) | 1996-12-16 | 1997-12-12 | Human and mammalian dna replication origin consensus sequences |
| US09/328,750 US6410722B1 (en) | 1996-12-16 | 1999-06-09 | Human and mammalian data replication origin consensus sequences |
| US10/092,140 US20020164801A1 (en) | 1996-12-16 | 2002-03-06 | Human and mammalian DNA replication origin consensus sequences |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/328,750 Continuation US6410722B1 (en) | 1996-12-16 | 1999-06-09 | Human and mammalian data replication origin consensus sequences |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020164801A1 true US20020164801A1 (en) | 2002-11-07 |
Family
ID=26709619
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/328,750 Expired - Fee Related US6410722B1 (en) | 1996-12-16 | 1999-06-09 | Human and mammalian data replication origin consensus sequences |
| US10/092,140 Abandoned US20020164801A1 (en) | 1996-12-16 | 2002-03-06 | Human and mammalian DNA replication origin consensus sequences |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/328,750 Expired - Fee Related US6410722B1 (en) | 1996-12-16 | 1999-06-09 | Human and mammalian data replication origin consensus sequences |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US6410722B1 (en) |
| EP (1) | EP0948635A2 (en) |
| JP (1) | JP2001506498A (en) |
| AU (1) | AU734189B2 (en) |
| BR (1) | BR9714034A (en) |
| CA (1) | CA2274306A1 (en) |
| WO (1) | WO1998027200A2 (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB9821193D0 (en) * | 1998-09-30 | 1998-11-25 | Medical Res Council | Mammalian artificial chromosomes and uses thereof |
| DE19848017A1 (en) * | 1998-10-17 | 2000-04-20 | Multigene Biotech Gmbh | Episomally replicating vectors, useful in gene therapy, contain origins of replication and scaffold-matrix attached region sequences but no viral coding sequences |
| WO2006047603A2 (en) | 2004-10-22 | 2006-05-04 | Revivicor, Inc. | Ungulates with genetically modified immune systems |
| KR100959456B1 (en) * | 2004-11-18 | 2010-05-25 | 고쿠리츠다이가쿠호진 히로시마다이가쿠 | Methods, kits, and transformants for expressing proteins with suppressed expression from repeat sequences formed by gene amplification |
| ES2548377T3 (en) | 2008-10-27 | 2015-10-16 | Revivicor, Inc. | Immunosuppressed ungulates |
| US10131913B2 (en) | 2009-08-31 | 2018-11-20 | Centre National De La Recherche Scientifique | Purification process of nascent DNA |
| EP2473623B1 (en) | 2009-08-31 | 2015-07-08 | Centre National de la Recherche Scientifique (CNRS) | Purification process of nascent dna |
| CA3188076A1 (en) * | 2020-09-07 | 2022-03-10 | Centre National De La Recherche Scientifique | Eukaryotic dna replication origins, and vector containing the same |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU8904691A (en) * | 1990-10-17 | 1992-05-20 | Board Of Regents, The University Of Texas System | A eukaryotic episomal dna cloning and expression vector |
-
1997
- 1997-12-12 BR BR9714034-1A patent/BR9714034A/en not_active IP Right Cessation
- 1997-12-12 AU AU54715/98A patent/AU734189B2/en not_active Ceased
- 1997-12-12 JP JP52713798A patent/JP2001506498A/en active Pending
- 1997-12-12 CA CA002274306A patent/CA2274306A1/en not_active Abandoned
- 1997-12-12 WO PCT/CA1997/000972 patent/WO1998027200A2/en not_active Ceased
- 1997-12-12 EP EP97951016A patent/EP0948635A2/en not_active Withdrawn
-
1999
- 1999-06-09 US US09/328,750 patent/US6410722B1/en not_active Expired - Fee Related
-
2002
- 2002-03-06 US US10/092,140 patent/US20020164801A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| WO1998027200A2 (en) | 1998-06-25 |
| JP2001506498A (en) | 2001-05-22 |
| BR9714034A (en) | 2000-05-09 |
| AU5471598A (en) | 1998-07-15 |
| US6410722B1 (en) | 2002-06-25 |
| AU734189B2 (en) | 2001-06-07 |
| CA2274306A1 (en) | 1998-06-25 |
| WO1998027200A3 (en) | 1998-10-01 |
| EP0948635A2 (en) | 1999-10-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Walters et al. | Enhancers increase the probability but not the level of gene expression. | |
| Hanson et al. | Analysis of biological selections for high-efficiency gene targeting | |
| US5721118A (en) | Mammalian artificial chromosomes and methods of using same | |
| Kriegler et al. | Transformation mediated by the SV40 T antigens: separation of the overlapping SV40 early genes with a retroviral vector | |
| McWhinney et al. | Autonomous replication of a DNA fragment containing the chromosomal replication origin of the human c-myc gene | |
| Green et al. | Transcriptional activation of cloned human β-globin genes by viral immediate-early gene products | |
| Südhof et al. | Three direct repeats and a TATA-like sequence are required for regulated expression of the human low density lipoprotein receptor gene. | |
| Osborne et al. | 5′ end of HMG CoA reductase gene contains sequences responsible for cholesterol-mediated inhibition of transcription | |
| US6348353B1 (en) | Artificial mammalian chromosome | |
| WO1995003400A1 (en) | Recombinationally targeted cloning in yeast artificial chromosomes | |
| JP3654446B2 (en) | Homologous recombinant antibody expression system for mouse cells | |
| Hardison et al. | Comparative analysis of the locus control region of the rabbit β-like globin gene cluster: HS3 increases transient expression of an embryonic ε-globin gene | |
| US6410722B1 (en) | Human and mammalian data replication origin consensus sequences | |
| Dorin et al. | Selection for precise chromosomal targeting of a dominant marker by homologous recombination | |
| Wang et al. | Correction of a deletion mutant by gene targeting with an adenovirus vector | |
| Davis et al. | Investigation of coelectroporation as a method for introducing small mutations into embryonic stem cells | |
| Metzenberg et al. | Mitochondrial minicircle DNA supports plasmid replication and maintenance in nuclei of Trypanosoma brucei. | |
| Nielsen et al. | Circular YAC vectors containing short mammalian origin sequences are maintained under selection as HeLa episomes | |
| Ascenzioni et al. | Mammalian artificial chromosomes—vectors for somatic gene therapy | |
| EP0546333B1 (en) | Cloned DNA having enhancer activity, recombinant vector comprising the same and process for producing gene product using the same | |
| De Jonge et al. | Chromosome and DNA-mediated gene transfer in cultured mammalian cells | |
| Pelletier et al. | Deletion analysis of ors12, a centromeric, early activated, mammalian origin of DNA replication | |
| YAMAMOTO et al. | Glucocorticoid regulation of mammary tumor virus gene expression | |
| Ombra et al. | Effect of the AIR-1 locus on the activation of an enhancerless HLA-DQA1 promoter | |
| US5814493A (en) | Viruses and expression vectors containing LTR size variants |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |