US20020164631A1 - Methods for stool sample preparation - Google Patents
Methods for stool sample preparation Download PDFInfo
- Publication number
- US20020164631A1 US20020164631A1 US10/105,877 US10587702A US2002164631A1 US 20020164631 A1 US20020164631 A1 US 20020164631A1 US 10587702 A US10587702 A US 10587702A US 2002164631 A1 US2002164631 A1 US 2002164631A1
- Authority
- US
- United States
- Prior art keywords
- sample
- dna
- stool
- allele
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 99
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 206010009944 Colon cancer Diseases 0.000 claims abstract description 21
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims abstract description 21
- 230000003902 lesion Effects 0.000 claims abstract description 12
- 238000012216 screening Methods 0.000 claims abstract description 8
- 239000000523 sample Substances 0.000 claims description 136
- 108020004414 DNA Proteins 0.000 claims description 110
- 239000002904 solvent Substances 0.000 claims description 47
- 150000007523 nucleic acids Chemical group 0.000 claims description 31
- 239000000872 buffer Substances 0.000 claims description 24
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 22
- 108700028369 Alleles Proteins 0.000 claims description 20
- 241000282414 Homo sapiens Species 0.000 claims description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 16
- 108020005187 Oligonucleotide Probes Proteins 0.000 claims description 15
- 201000010099 disease Diseases 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 239000002751 oligonucleotide probe Substances 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 14
- 239000011780 sodium chloride Substances 0.000 claims description 14
- 102000053602 DNA Human genes 0.000 claims description 11
- 230000035772 mutation Effects 0.000 claims description 9
- 239000002773 nucleotide Substances 0.000 claims description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 7
- 239000007983 Tris buffer Substances 0.000 claims description 7
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 7
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 6
- YQOKLYTXVFAUCW-UHFFFAOYSA-N guanidine;isothiocyanic acid Chemical compound N=C=S.NC(N)=N YQOKLYTXVFAUCW-UHFFFAOYSA-N 0.000 claims description 6
- 239000003599 detergent Substances 0.000 claims description 5
- 238000003752 polymerase chain reaction Methods 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 4
- 230000037430 deletion Effects 0.000 claims description 4
- 238000012217 deletion Methods 0.000 claims description 4
- 108091033319 polynucleotide Proteins 0.000 claims description 4
- 102000040430 polynucleotide Human genes 0.000 claims description 4
- 239000002157 polynucleotide Substances 0.000 claims description 4
- 206010028980 Neoplasm Diseases 0.000 claims description 3
- 108091005804 Peptidases Proteins 0.000 claims description 3
- 102000035195 Peptidases Human genes 0.000 claims description 3
- 201000011510 cancer Diseases 0.000 claims description 3
- 235000019833 protease Nutrition 0.000 claims description 3
- 108020004711 Nucleic Acid Probes Proteins 0.000 claims description 2
- 108020004682 Single-Stranded DNA Proteins 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000002853 nucleic acid probe Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims 8
- 230000008774 maternal effect Effects 0.000 claims 4
- 230000008775 paternal effect Effects 0.000 claims 4
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 claims 3
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 claims 3
- 239000005546 dideoxynucleotide Substances 0.000 claims 3
- 239000002777 nucleoside Substances 0.000 claims 3
- -1 nucleoside triphosphates Chemical class 0.000 claims 3
- 235000011178 triphosphate Nutrition 0.000 claims 3
- 239000001226 triphosphate Substances 0.000 claims 3
- 239000006249 magnetic particle Substances 0.000 claims 2
- 238000005406 washing Methods 0.000 claims 2
- 208000032818 Microsatellite Instability Diseases 0.000 claims 1
- 239000003086 colorant Substances 0.000 claims 1
- 238000009396 hybridization Methods 0.000 claims 1
- 108020004707 nucleic acids Proteins 0.000 description 28
- 102000039446 nucleic acids Human genes 0.000 description 28
- 238000004458 analytical method Methods 0.000 description 18
- 101150105104 Kras gene Proteins 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 239000011324 bead Substances 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 238000002955 isolation Methods 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 108010067770 Endopeptidase K Proteins 0.000 description 3
- 102000006382 Ribonucleases Human genes 0.000 description 3
- 108010083644 Ribonucleases Proteins 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 210000000981 epithelium Anatomy 0.000 description 3
- 238000001502 gel electrophoresis Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 230000000112 colonic effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000011534 wash buffer Substances 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 102000012406 Carcinoembryonic Antigen Human genes 0.000 description 1
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 1
- 206010052360 Colorectal adenocarcinoma Diseases 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 230000009946 DNA mutation Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- YTRQFSDWAXHJCC-UHFFFAOYSA-N chloroform;phenol Chemical compound ClC(Cl)Cl.OC1=CC=CC=C1 YTRQFSDWAXHJCC-UHFFFAOYSA-N 0.000 description 1
- 210000004922 colonic epithelial cell Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 208000001118 melena Diseases 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000005309 stochastic process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Definitions
- This invention relates to methods for the early detection of colon cancer in patients, and more particularly to methods for preparing stool samples in order to increase the yield of nucleic acids.
- Stool samples frequently must be prepared for medical diagnostic analysis. Stool samples may be analyzed for diagnosis of medical conditions ranging from parasitic, bacterial or viral infections to inflammatory bowel disease and colorectal cancer.
- Colorectal cancer is a leading cause of death in Western society. However, if diagnosed early, it may be treated effectively by removal of the cancerous tissue. Colorectal cancers originate in the colorectal epithelium and typically are not extensively vascularized (and therefore not invasive) during the early stages of development. Colorectal cancer is thought to result from the clonal expansion of a single mutant cell in the epithelial lining of the colon or rectum. The transition to a highly vascularized, invasive and ultimately metastatic cancer which spreads throughout the body commonly takes ten years or longer. If the cancer is detected prior to invasion, surgical removal of the cancerous tissue is an-effective cure.
- colonrectal cancer is often detected only upon manifestation of clinical symptoms, such as pain and black tarry stool. Generally, such symptoms are present only when the disease is well established, and often after metastasis has occurred. Early detection of colorectal cancer therefore is important in order to significantly reduce its morbidity.
- Invasive diagnostic methods such as endoscopic examination allow for direct visual identification, removal, and biopsy of potentially cancerous growths. Endoscopy is expensive, uncomfortable, inherently risky, and therefore not a practical tool for screening populations to identify those with colorectal cancer.
- Non-invasive analysis of stool samples for characteristics indicative of the presence of colorectal cancer or precancer is a preferred alternative for early diagnosis, but no known diagnostic method is available which reliably achieves this goal.
- PCR polymarase chain reaction
- the yield of nucleic acid from a stool sample is increased by providing an optimal ratio of solvent volume to stool mass in the sample. Accordingly, the invention provides stool sample preparation protocols for increasing sample nucleic acid yield.
- methods of the invention comprise homogenizing a representative stool sample in a solvent in order to form a homogenized sample mixture having a solvent volume to stool mass ratio of at least 5:1, then enriching the homogenized sample for the target (human) DNA.
- the human DNA may then be analyzed for the characteristics of disease.
- Providing an optimal solvent volume to stool mass ratio increases the yield of nucleic acid obtained from the sample.
- An especially-preferred ratio of solvent volume to stool mass is between about 10:1 and about 30:1, more preferably from about 10:1 to about 20:1, and most preferably 10:1.
- a preferred solvent for preparing stool samples according to the invention is a physiologically-compatible buffer such as a buffer comprising Tris-EDTA-NaCl.
- a preferred buffer is a Tris-EDTA-NaCl buffer comprising about 50 to about 100 mM Tris, about 10 to about 20 mM EDTA, and about 5 to about 15 mM NaCl at about pH 9.0.
- a particularly preferred buffer is 50 mM Tris, 16 mM EDTA and 10 mM NaCl at pH 9.0.
- Another preferred solvent is guanidine isothiocyanate (GITC).
- a preferred GITC buffer has a concentration of about 1 M to about 5 M.
- a particularly preferred GITC buffer has a concentration of about 3 M.
- methods further comprise the step of enriching the homogenized sample mixture for human DNA by, for example, using sequence-specific nucleic acid probes hybridizing to target human DNA.
- the methods of the invention comprise homogenizing a, stool sample in a physiologically-acceptable solvent for DNA in order to form a homogenized sample mixture having a solvent volume to stool mass ratio of at least 5:1; ensuring that the homogenized sample has at least a minimum number N of total DNA molecules to facilitate detection of a low-frequency target DNA molecule; and analyzing the target DNA for the characteristics of disease, preferably by amplifying the target DNA with a polymerase chain reaction.
- the present invention provides methods for analyzing DNA extracted from stool which comprise homogenizing a stool sample in a solvent for DNA in order to form a homogenized sample mixture having a solvent volume to stool mass ratio of at least 5:1; enriching the homogenized sample for human DNA; ensuring that the enriched homogenized sample has at least a minimum number N of total DNA molecules to provide for detection of a low-frequency target DNA molecule; and analyzing the target DNA for DNA characteristics indicative of disease.
- Methods of the invention are useful to screen for the presence in a stool sample of nucleic acids indicative of colorectal cancer.
- Such methods comprise obtaining a representative stool sample (i.e., at least a cross-section); homogenizing the sample in a solvent having a solvent volume to stool mass ratio of at least 5:1; enriching the sample for target human DNA; and analyzing the DNA for characteristics of colorectal cancer.
- Various methods of analysis of DNA characteristics exist, such as those disclosed in co-owned, copending U.S. patent application Ser. No. 08/700,583, incorporated by reference herein.
- Methods of the invention also comprise obtaining a representative (i.e., cross-sectional) sample of stool and homogenizing the stool in a buffer, such as a buffer comprising a detergent and a proteinase and optionally a DNase inhibitor.
- a buffer such as a buffer comprising a detergent and a proteinase and optionally a DNase inhibitor.
- the methods of the invention are especially and most preferably useful for detecting DNA characteristics indicative of a subpopulation of transformed cells in a representative stool sample.
- the DNA characteristics may be, for example, mutations, including point mutations, deletions, additions, translocations, substitutions, and loss of heterozygosity.
- Methods of the invention may further comprise a visual examination of the colon.
- surgical resection of abnormal tissue may be done in order to prevent the spread of cancerous or precancerous tissue.
- methods of the invention provide means for screening for the presence of a cancerous or precancerous subpopulation of cells in a heterogeneous sample, such as a stool sample.
- Methods of the invention reduce morbidity and mortality associated with lesions of the colonic epithelium.
- methods of the invention comprise more accurate and convenient screening methods than are currently available in the art, because such methods take advantage of the increased yield of relevant DNA.
- Methods of the invention thus provide unexpected and enhanced detection and analysis of low-frequency DNA in a heterogeneous sample is facilitated through application of the methods described herein. That is, homogenization of stool sample in solvent at a ratio of at least 5:1 (volume to mass) alone, or in combination with methods for sample enrichment disclosed herein, provides a reliable method for obtaining a sufficient number of DNA molecules for effective and efficient analysis, even if the target molecule is a low-frequency DNA molecule. Further aspects and advantages of the invention are contained in the following detailed description thereof.
- FIG. 1 is a representation of a partial nucleotide sequence of the kras gene (base pairs 62826571) and the positions of capture probe CP1, PCR primer A1, and PCR primer B1, in relation to the kras nucleotide sequence.
- FIG. 2 is an image produced using a Stratagene Eagle Eye II Still Video System (Stratagene, La Jolla, Calif.), of the results of a gel electrophoresis run with the uncut DNA extracted as described in Example 2.
- FIG. 3 is an image produced using a Stratagene Eagle Eye II Still Video System (Stratagene, La Jolla, Calif.), of the results of a gel electrophoresis run with the DNA extracted as described in Example 3.
- the invention provides improved methods for extraction and analysis of nucleic acids from stool.
- the yield of nucleic acids extracted from stool is increased by homogenizing the stool in a buffer at optimal ratio of buffer volume to stool mass. Yield is further improved by enriching for human DNA. Improved nucleic acid yields allow nucleic acid analysis of stool samples to be conducted more efficiently with less stool volume.
- a stool sample obtained for analysis comprises at least a cross-section of a whole stool.
- cells and cellular debris from the colonic epithelium is deposited onto and into stool in a longitudinal streak.
- Obtaining at least a cross-section of a stool ensures that a representative sampling of colonic epithelial cells and cellular debris is analyzed.
- Physiologically acceptable solvents include those solvents generally known to those skilled in the art as suitable for dispersion of biological sample material. Such solvents include phosphate-buffered saline comprising a salt, such as 20-100 mM NaCl or KCl, and optionally a detergent, such as 1-10% SDS or TritonTM, and/or a proteinase, such as proteinase K (at, e.g., about 20 mg/ml).
- a salt such as 20-100 mM NaCl or KCl
- a detergent such as 1-10% SDS or TritonTM
- proteinase such as proteinase K (at, e.g., about 20 mg/ml).
- a preferred solvent is a physiologically-compatible buffer comprising, for example, 1 M Tris, 0.5M EDTA, 5M NaCl and water to a final concentration of 500 mM Tris, 16 mM EDTA and 10 mM NaCl at pH 9.
- the buffer acts as a solvent to disperse the solid stool sample during homogenization. Applicants have discovered that increasing the-volume of solvent in relation to solid mass of the sample results in increased yields of DNA.
- solvent is added to the solid sample in a solvent volume to solid mass ratio of at least about 5:1.
- the solvent volume to solid mass ratio is preferably in the range of about 10:1 to about 30:1, and more preferably in the range of about 10:1 to about 20:1. Most preferably, the solvent volume to solid mass ratio is about 10:1.
- solvent volume may be measured in milliliters, and solid mass measured in milligrams, but the practitioner will appreciate that the ratio of volume to mass remains constant, regardless of scale up or down of the particular mass and volume units. That is, solvent volume to solid mass ratios may be measured as liters:grams or ⁇ l: ⁇ g.
- the homogenized sample is enriched for the target (human) DNA.
- enrichment of the sample means manipulating the sample to decrease the amount of undesired, non-human DNA in the sample relative to the amount of target human DNA. Enrichment techniques include sequence-specific capture of target DNA or removal of bacterial nucleic acids.
- the enrichment step is carried out in a physiologically compatible buffer, such as guanidine isothiocyanate (GITC).
- a physiologically compatible buffer such as guanidine isothiocyanate (GITC).
- Capture probes are then added to the mixture to hybridize to target DNA in order to facilitate selective removal of target DNA from the sample.
- Sequence specific capture of target DNA can be accomplished by initially denaturing sample DNA to form single-stranded DNA. Then, a sufficient quantity of sequence specific oligonucleotide probe that is complementary to at least a portion of a target polynucleotide (e.g., a sequence in or near the p53 allele) is added. The probe sequence (labeled with biotin) is allowed to hybridize to the complementary target DNA sequence. Beads coated with avidin or streptavidin are then added and attach to the biotinylated hybrids by affinity-binding. The beads may be magnetized to facilitate isolation.
- a target polynucleotide e.g., a sequence in or near the p53 allele
- the resultant DNA is washed repeatedly to remove inhibitors, including those commonly introduced via the capture probe technique.
- washes are preferably carried out approximately four times with 1M GITC and 0.1% detergent, such as Igepal (Sigma).
- the initial washes are then preferably followed by two washes with a standard wash buffer (such as Tris-EDTA-NaCl) to remove the GITC from the mix, since GITC is a known inhibitor of DNA polymerases, including those associated with PCR.
- the target DNA is eluted into a small volume of distilled water by heating.
- Assays using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) analysis or other nucleic acid analysis methods may be used to detect DNA characteristics indicative of a disorder, such as colorectal cancer or pre-cancer.
- PCR polymerase chain reaction
- RFLP restriction fragment length polymorphism
- Several particularly useful analytical techniques are described in co-pending U.S. applications Ser. Nos. 08/700,583, 08/815,576 and 08/877,333, the disclosures of which are incorporated herein by reference.
- the homogenized sample is examined to determine that the sample has at least a minimum number (N) of total DNA molecules to provide for detection of a low-frequency target DNA molecule.
- N minimum number of total DNA molecules to provide for detection of a low-frequency target DNA molecule.
- the number of molecules analyzed in a sample determines the ability of the analysis to detect low-frequency events. In the case of PCR, the number of input molecules must be about 500 if the PCR efficiency is close to 100%. As PCR efficiency goes down, the required number of input molecules goes up. Analyzing the minimum number of input molecules reduces the probability that a low-frequency event is not detected in PCR because it is not amplified in the first few rounds. Methods of the invention therefore include determining a threshold number of sample molecules that must be analyzed in order to detect a low-frequency molecular event at a prescribed level of confidence.
- methods of the invention may also be used to isolate total DNA from stool homogenate.
- the homogenized mixture is centrifuged to form a pellet made up of cell debris and stool matter, and a supernatant containing nucleic acid and associated proteins, lipids, etc.
- the supernatant is treated with a detergent, such as 20% SDS, and enzymes capable of degrading protein (e.g., Proteinase K).
- the supernatant is then Phenol-Chloroform extracted.
- the resulting purified nucleic acids are then precipitated by means known in the art.
- a variety of techniques in the art can then be employed to manipulate the resulting nucleic acids, including further purification or isolation of specific nucleic acids.
- Methods of the invention are also useful for analysis of pooled DNA samples.
- enumerative analysis of pooled genomic DNA samples is used to determine the presence or likelihood of disease. Pooled genomic DNA from healthy members of a population and pooled genomic DNA from diseased members of a population are obtained. The number or amount of each variant at a single-nucleotide polymorphic site is determined in each sample.
- the numbers or amounts are analyzed to determine if there is a statistically-significant difference between the variant(s) present in the sample obtained from the healthy population and those present in the sample obtained from the diseased population.
- a statistically-significant difference indicates that the polymorphic locus is a marker for disease.
- nucleic acid e.g., a polymorphic variant
- methods may be used to identify a nucleic acid (e.g., a polymorphic variant) associated with a disease.
- Such methods comprise counting the number or determining the amount of a nucleic acid, preferably a single base, in members of a diseased population, and counting numbers or determining amounts of the same nucleic acid in members of a healthy population. A statistically-significant difference in the numbers of the nucleic acid between the two populations is indicative that the interrogated locus is associated with a disease.
- the polymorphic locus is identified, either by methods of the invention or by consulting an appropriate database, such methods are useful to determine which variant at the polymorphic locus is associated with a disease.
- enumerative methods are used to determine whether there is a statistically-significant difference between the number of a fist variant in members of a diseased population, and the number of a second variant at the same locus in members of a healthy population.
- a statistically-significant difference is indicative that the variant in members of the diseased population is useful as a marker for disease.
- patients are screened for the presence of the variant that is thought to be associated with disease, the presence such a variant being indicative of the presence of disease, or a predisposition for a disease.
- Methods of the present invention are particularly useful for isolation and analysis of nucleic acids that encompass genes that have mutations implicated in colorectal cancer, such as kras.
- the kras gene has a length of more than 30 kbp and codes for a 189 amino acid protein characterized as a low-molecular weight GTP-binding protein. The gene acquires malignant properties by single point mutations, the most common of which occurs at the 12th amino acid.
- Several studies have confirmed that approximately 40% of primary colorectal adenocarcinoma cells in humans contain a mutated form of the kras gene. Accordingly, the kras gene is a particularly suitable target for the methods of colorectal cancer detection of the present invention.
- CP1 has the following sequence: 5′ GCC TGC TGA AM TGA CTG AAT ATA AAC TTG TGG TAG T 3′ (SEQ, ID NO: 1), and is preferably biotinylated at the 5′ end in order to facilitate isolation. As illustrated more fully below, CP1 is effective in the sequence specific capture of kras DNA.
- PCR primers for the analysis of extracted kras DNA sequence have also been determined.
- Primer A1 has the sequence: 5° C. CTG CTG AAA ATG ACT GAA 3′ (SEQ ID NO: 2)
- Primer B1 has the sequence: 5° CAT GM MT GGT CAG AGA M 3′ (SEQ ID NO: 3).
- the PCR primers A1 and B1, as well as capture probe CP1 are depicted in FIG. 1, showing their relation to the kras nucleotide sequence, base pairs 6282-6571 (SEQ ID NO: 4).
- One skilled in the art can construct other suitable capture probes and PCR primers for kras or other target genes or nucleotide sequences, using techniques well known in the art.
- the methods of the present invention which involve homogenizing stool sample in a volume of solvent such that the ratio of solvent volume to stool mass is at least 5:1, and/or enriching the sample for human DNA, provide a means for obtaining a sample having a minimum number N of total DNA molecules to facilitate detection of a low-frequency target DNA molecule.
- Voided stool was collected from a patient and a cross-sectional portion of the stool was removed for use as a sample. After determining the mass of the sample, an approximately 10 ⁇ volume of Tris-EDTA-NaCl lysis buffer was added to the solid sample in a test tube. The final concentration of the buffer was 500 mM Tris, 16 mM EDTA and 10 mM NaCl, at a pH of about 9.0. Four 10 mm glass balls were placed in the tube and the tube and contents were homogenized in an Exactor II shaker for 15 minutes. The homogenized mixture was then allowed to stand 5 minutes at room temperature.
- the tube was then centrifuged for 5 minutes at 10,000 rpm in a Sorvall Centrifuge, and the supernatant was transferred to a clean test tube. A 20% SDS solution was added to the tube to a final concentration of 0.5%. Proteinase K was also added to the tube to a final concentration of 500 mg/ml. The tube was then incubated overnight at 37° C.
- the contents of the tube were extracted with an equal volume of phenol/chloroform and centrifuged at 3500 rpm for 3 minutes.
- the aqueous layer was then transferred to a new tube and extracted three (3) times with equal volumes of chloroform and centrifuged at 3500 rpm for 3 minutes.
- the aqueous layer was then transferred to a new tube and 0.1 ⁇ volume of 3M NaOAc was added to the aqueous portion, which was then extracted with an equal volume of isopropanol, and centrifuged for 5 minutes at 12,000 rpm.
- the supernatant was discarded, and the pellet was washed with 10 ml of 70% ethanol, and centrifuged at 12,000 rpm for 5 minutes. The supernatant was discarded and the pellet containing isolated DNA was dried by inverting the tube.
- a comparative analysis of solvent volume to mass ratios was conducted. Three separate stool samples were prepared as described above. A first sample, designated SS88-3 ⁇ , was homogenized in buffer at a volume to mass ratio of 3:1. A second sample, designated SS88-5 ⁇ , was homogenized at a ratio of 5:1; and a third sample, designated SS88-10 ⁇ , was homogenized at a ratio of 10:1.
- a second set of four equivalent samples was prepared from a single stool sample. Each of the four samples was of equal mass, and was homogenized as described in Example 1 at a solvent volume to stool mass ratio of 5:1, 10:1, 20:1, and 30:1, respectively. After homogenization each sample was subdivided into 8 aliquots, 4 treated with RNase, and 4 untreated. Total DNA was then isolated as described above and analyzed on agarose gels.
- FIG. 3 shows the results of a ratio of 10:1 produced the greatest yield of nucleic acids.
- FIG. 3 also shows the effect of RNase treatment on the yield of DNA from each stool sample. As shown in the Figure, RNase treatment virtually eliminates RNA from the sample, but leaves DNA intact. The results indicate that optimal solvent volume to stool mass ratios greatly increase DNA yield from stool samples.
- methods of the invention produce increased yields of DNA from stool, thereby allowing more efficient sequence-specific capture of target nucleic acid.
- Methods of the invention provide improvements in the ability to detect disease-related nucleic acid mutations present in stool. The skilled artisan will find additional applications and embodiments of the invention useful upon inspection of the foregoing description of the invention. Therefore, the invention is limited only by the scope of the appended claims.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The present invention provides methods for the preparation of stool samples to increase the yield of relevant DNA, and further provides methods for isolating and analyzing target DNA for characteristics indicative of colorectal cancer. Methods for screening patients for the presence of cancerous or pre-cancerous colorectal lesions are also provided.
Description
- This application is a continuation-in-part of U.S. application Ser. No. 08/876,638, filed Jun. 15, 1997.
- This invention relates to methods for the early detection of colon cancer in patients, and more particularly to methods for preparing stool samples in order to increase the yield of nucleic acids.
- Stool samples frequently must be prepared for medical diagnostic analysis. Stool samples may be analyzed for diagnosis of medical conditions ranging from parasitic, bacterial or viral infections to inflammatory bowel disease and colorectal cancer.
- Colorectal cancer is a leading cause of death in Western society. However, if diagnosed early, it may be treated effectively by removal of the cancerous tissue. Colorectal cancers originate in the colorectal epithelium and typically are not extensively vascularized (and therefore not invasive) during the early stages of development. Colorectal cancer is thought to result from the clonal expansion of a single mutant cell in the epithelial lining of the colon or rectum. The transition to a highly vascularized, invasive and ultimately metastatic cancer which spreads throughout the body commonly takes ten years or longer. If the cancer is detected prior to invasion, surgical removal of the cancerous tissue is an-effective cure. However,colorectal cancer is often detected only upon manifestation of clinical symptoms, such as pain and black tarry stool. Generally, such symptoms are present only when the disease is well established, and often after metastasis has occurred. Early detection of colorectal cancer therefore is important in order to significantly reduce its morbidity.
- Invasive diagnostic methods such as endoscopic examination allow for direct visual identification, removal, and biopsy of potentially cancerous growths. Endoscopy is expensive, uncomfortable, inherently risky, and therefore not a practical tool for screening populations to identify those with colorectal cancer. Non-invasive analysis of stool samples for characteristics indicative of the presence of colorectal cancer or precancer is a preferred alternative for early diagnosis, but no known diagnostic method is available which reliably achieves this goal.
- Current non-invasive screening methods involve assaying stool samples for the presence of fecal occult blood or for elevated levels of carcinoembryonic antigen, both of which are suggestive of the presence of colorectal cancer. Additionally, recent developments in molecular biology provide methods of great potential for detecting the presence of a range of DNA mutations or alterations indicative of colorectal cancer. The presence of such mutations can be detected in DNA found in stool samples during various stages of colorectal cancer. However, stool comprises cells and cellular debris from the patient, from microorganisms, and from food, resulting in a heterogeneous population of cells. This makes detection of small, specific subpopulations difficult to detect reliably.
- Use of the polymarase chain reaction (PCR) has made detection of nucleic acids more routine, but any PCR is limited by the amount of DNA present in a sample. A minimum amount of material must be present for specific analysis and this limitation becomes more relevant when one seeks to detect a nucleic acid that is present in a sample in small proportion relative to other nucleic acids in the sample, which is often the case when analyzing stool sample for detecting DNA characteristics of colorectal cancer. If a low-frequency mutant strand is not amplified in the first few rounds of PCR, any signal obtained from the mutant strand in later rounds will be obscured by background or by competing signal from amplification of ubiquitous wild-type strand.
- An additional problem encounter in preparation of stool sample for detection of colorectal cancer is the difficulty of extracting sufficient quantities of relevant DNA from the stool. Stool samples routinely contain cell debris, enzymes, bacteria (and associated nucleic acids), and various other compounds that can interfere with traditional DNA extraction procedures and reduce DNA yield. Furthermore, DNA in stool often appears digested or partially digested, which can reduce the efficiency of extraction methods.
- It has now been appreciated that the yield of nucleic acid from a stool sample is increased by providing an optimal ratio of solvent volume to stool mass in the sample. Accordingly, the invention provides stool sample preparation protocols for increasing sample nucleic acid yield.
- In a preferred embodiment, methods of the invention comprise homogenizing a representative stool sample in a solvent in order to form a homogenized sample mixture having a solvent volume to stool mass ratio of at least 5:1, then enriching the homogenized sample for the target (human) DNA. The human DNA may then be analyzed for the characteristics of disease. Providing an optimal solvent volume to stool mass ratio increases the yield of nucleic acid obtained from the sample. An especially-preferred ratio of solvent volume to stool mass is between about 10:1 and about 30:1, more preferably from about 10:1 to about 20:1, and most preferably 10:1.
- A preferred solvent for preparing stool samples according to the invention is a physiologically-compatible buffer such as a buffer comprising Tris-EDTA-NaCl. A preferred buffer is a Tris-EDTA-NaCl buffer comprising about 50 to about 100 mM Tris, about 10 to about 20 mM EDTA, and about 5 to about 15 mM NaCl at about pH 9.0. A particularly preferred buffer is 50 mM Tris, 16 mM EDTA and 10 mM NaCl at pH 9.0. Another preferred solvent is guanidine isothiocyanate (GITC). A preferred GITC buffer has a concentration of about 1 M to about 5 M. A particularly preferred GITC buffer has a concentration of about 3 M.
- Also in a preferred embodiment, methods further comprise the step of enriching the homogenized sample mixture for human DNA by, for example, using sequence-specific nucleic acid probes hybridizing to target human DNA.
- In an alternative preferred embodiment, the methods of the invention comprise homogenizing a, stool sample in a physiologically-acceptable solvent for DNA in order to form a homogenized sample mixture having a solvent volume to stool mass ratio of at least 5:1; ensuring that the homogenized sample has at least a minimum number N of total DNA molecules to facilitate detection of a low-frequency target DNA molecule; and analyzing the target DNA for the characteristics of disease, preferably by amplifying the target DNA with a polymerase chain reaction.
- In another embodiment, the present invention provides methods for analyzing DNA extracted from stool which comprise homogenizing a stool sample in a solvent for DNA in order to form a homogenized sample mixture having a solvent volume to stool mass ratio of at least 5:1; enriching the homogenized sample for human DNA; ensuring that the enriched homogenized sample has at least a minimum number N of total DNA molecules to provide for detection of a low-frequency target DNA molecule; and analyzing the target DNA for DNA characteristics indicative of disease.
- Methods of the invention are useful to screen for the presence in a stool sample of nucleic acids indicative of colorectal cancer. Such methods comprise obtaining a representative stool sample (i.e., at least a cross-section); homogenizing the sample in a solvent having a solvent volume to stool mass ratio of at least 5:1; enriching the sample for target human DNA; and analyzing the DNA for characteristics of colorectal cancer. Various methods of analysis of DNA characteristics exist, such as those disclosed in co-owned, copending U.S. patent application Ser. No. 08/700,583, incorporated by reference herein.
- Methods of the invention also comprise obtaining a representative (i.e., cross-sectional) sample of stool and homogenizing the stool in a buffer, such as a buffer comprising a detergent and a proteinase and optionally a DNase inhibitor.
- The methods of the invention are especially and most preferably useful for detecting DNA characteristics indicative of a subpopulation of transformed cells in a representative stool sample. The DNA characteristics may be, for example, mutations, including point mutations, deletions, additions, translocations, substitutions, and loss of heterozygosity. Methods of the invention may further comprise a visual examination of the colon. Finally, surgical resection of abnormal tissue may be done in order to prevent the spread of cancerous or precancerous tissue.
- Accordingly, methods of the invention provide means for screening for the presence of a cancerous or precancerous subpopulation of cells in a heterogeneous sample, such as a stool sample. Methods of the invention reduce morbidity and mortality associated with lesions of the colonic epithelium. Moreover, methods of the invention comprise more accurate and convenient screening methods than are currently available in the art, because such methods take advantage of the increased yield of relevant DNA.
- Methods of the invention thus provide unexpected and enhanced detection and analysis of low-frequency DNA in a heterogeneous sample is facilitated through application of the methods described herein. That is, homogenization of stool sample in solvent at a ratio of at least 5:1 (volume to mass) alone, or in combination with methods for sample enrichment disclosed herein, provides a reliable method for obtaining a sufficient number of DNA molecules for effective and efficient analysis, even if the target molecule is a low-frequency DNA molecule. Further aspects and advantages of the invention are contained in the following detailed description thereof.
- FIG. 1 is a representation of a partial nucleotide sequence of the kras gene (base pairs 62826571) and the positions of capture probe CP1, PCR primer A1, and PCR primer B1, in relation to the kras nucleotide sequence.
- FIG. 2 is an image produced using a Stratagene Eagle Eye II Still Video System (Stratagene, La Jolla, Calif.), of the results of a gel electrophoresis run with the uncut DNA extracted as described in Example 2.
- FIG. 3 is an image produced using a Stratagene Eagle Eye II Still Video System (Stratagene, La Jolla, Calif.), of the results of a gel electrophoresis run with the DNA extracted as described in Example 3.
- The invention provides improved methods for extraction and analysis of nucleic acids from stool. According to methods of the invention, the yield of nucleic acids extracted from stool is increased by homogenizing the stool in a buffer at optimal ratio of buffer volume to stool mass. Yield is further improved by enriching for human DNA. Improved nucleic acid yields allow nucleic acid analysis of stool samples to be conducted more efficiently with less stool volume.
- In preferred methods of the invention a stool sample obtained for analysis comprises at least a cross-section of a whole stool. As provided in U.S. Pat. No. 5,741,650, incorporated by reference herein, cells and cellular debris from the colonic epithelium is deposited onto and into stool in a longitudinal streak. Obtaining at least a cross-section of a stool ensures that a representative sampling of colonic epithelial cells and cellular debris is analyzed.
- Once the stool sample is collected, it is homogenized in a physiologically acceptable solvent. A preferred means of homogenization employs agitation with glass beads. Physiologically acceptable solvents include those solvents generally known to those skilled in the art as suitable for dispersion of biological sample material. Such solvents include phosphate-buffered saline comprising a salt, such as 20-100 mM NaCl or KCl, and optionally a detergent, such as 1-10% SDS or Triton™, and/or a proteinase, such as proteinase K (at, e.g., about 20 mg/ml). A preferred solvent is a physiologically-compatible buffer comprising, for example, 1 M Tris, 0.5M EDTA, 5M NaCl and water to a final concentration of 500 mM Tris, 16 mM EDTA and 10 mM NaCl at pH 9. The buffer acts as a solvent to disperse the solid stool sample during homogenization. Applicants have discovered that increasing the-volume of solvent in relation to solid mass of the sample results in increased yields of DNA.
- According to methods of the invention, solvent (buffer) is added to the solid sample in a solvent volume to solid mass ratio of at least about 5:1. The solvent volume to solid mass ratio is preferably in the range of about 10:1 to about 30:1, and more preferably in the range of about 10:1 to about 20:1. Most preferably, the solvent volume to solid mass ratio is about 10:1. Typically, solvent volume may be measured in milliliters, and solid mass measured in milligrams, but the practitioner will appreciate that the ratio of volume to mass remains constant, regardless of scale up or down of the particular mass and volume units. That is, solvent volume to solid mass ratios may be measured as liters:grams or μl: μg.
- In a preferred embodiment of the present invention, the homogenized sample is enriched for the target (human) DNA. In the context of the present invention, “enrichment” of the sample means manipulating the sample to decrease the amount of undesired, non-human DNA in the sample relative to the amount of target human DNA. Enrichment techniques include sequence-specific capture of target DNA or removal of bacterial nucleic acids.
- In a preferred embodiment of the invention, the enrichment step is carried out in a physiologically compatible buffer, such as guanidine isothiocyanate (GITC). Capture probes are then added to the mixture to hybridize to target DNA in order to facilitate selective removal of target DNA from the sample.
- Sequence specific capture of target DNA can be accomplished by initially denaturing sample DNA to form single-stranded DNA. Then, a sufficient quantity of sequence specific oligonucleotide probe that is complementary to at least a portion of a target polynucleotide (e.g., a sequence in or near the p53 allele) is added. The probe sequence (labeled with biotin) is allowed to hybridize to the complementary target DNA sequence. Beads coated with avidin or streptavidin are then added and attach to the biotinylated hybrids by affinity-binding. The beads may be magnetized to facilitate isolation.
- After separation of probe-target hybrids, the resultant DNA is washed repeatedly to remove inhibitors, including those commonly introduced via the capture probe technique. In the methods of the present invention, washes are preferably carried out approximately four times with 1M GITC and 0.1% detergent, such as Igepal (Sigma). The initial washes are then preferably followed by two washes with a standard wash buffer (such as Tris-EDTA-NaCl) to remove the GITC from the mix, since GITC is a known inhibitor of DNA polymerases, including those associated with PCR.
- Finally, the target DNA is eluted into a small volume of distilled water by heating. Assays using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) analysis or other nucleic acid analysis methods may be used to detect DNA characteristics indicative of a disorder, such as colorectal cancer or pre-cancer. Several particularly useful analytical techniques are described in co-pending U.S. applications Ser. Nos. 08/700,583, 08/815,576 and 08/877,333, the disclosures of which are incorporated herein by reference.
- In an alternative embodiment, the homogenized sample is examined to determine that the sample has at least a minimum number (N) of total DNA molecules to provide for detection of a low-frequency target DNA molecule. The number of molecules analyzed in a sample determines the ability of the analysis to detect low-frequency events. In the case of PCR, the number of input molecules must be about 500 if the PCR efficiency is close to 100%. As PCR efficiency goes down, the required number of input molecules goes up. Analyzing the minimum number of input molecules reduces the probability that a low-frequency event is not detected in PCR because it is not amplified in the first few rounds. Methods of the invention therefore include determining a threshold number of sample molecules that must be analyzed in order to detect a low-frequency molecular event at a prescribed level of confidence.
- As is more fully described in copending U.S. application Ser. No. ______ [Atty Docket No. EXT-021], which is incorporated herein by reference, the determination of a minimum number N of DNA molecules that must be present in a sample to permit amplification and analysis of a low-frequency target DNA molecule is based upon a model of stochastic processes in PCR. Utilizing pre-set or predetermined values for PCR efficiency and mutant DNA to wild-type DNA ratio in the sample, the model predicts the number of molecules that must be presented to the PCR in order to ensure, within a defined level of statistical confidence, that a low-frequency molecule will be amplified.
- The skilled practitioner will appreciate that determination of the minimum number N of molecules present in the sample may be used in lieu of, or in addition to, the enrichment techniques detailed above, to ensure reliable results in the methods of the present invention.
- Alternatively, methods of the invention may also be used to isolate total DNA from stool homogenate. The homogenized mixture is centrifuged to form a pellet made up of cell debris and stool matter, and a supernatant containing nucleic acid and associated proteins, lipids, etc. The supernatant is treated with a detergent, such as 20% SDS, and enzymes capable of degrading protein (e.g., Proteinase K). The supernatant is then Phenol-Chloroform extracted. The resulting purified nucleic acids are then precipitated by means known in the art. A variety of techniques in the art can then be employed to manipulate the resulting nucleic acids, including further purification or isolation of specific nucleic acids.
- Methods of the invention are also useful for analysis of pooled DNA samples. As described in more detail in U.S. application Ser. No. 09/098,180, and U.S. Pat. No. 5,670,325, both of which are incorporated by reference herein, enumerative analysis of pooled genomic DNA samples is used to determine the presence or likelihood of disease. Pooled genomic DNA from healthy members of a population and pooled genomic DNA from diseased members of a population are obtained. The number or amount of each variant at a single-nucleotide polymorphic site is determined in each sample. The numbers or amounts are analyzed to determine if there is a statistically-significant difference between the variant(s) present in the sample obtained from the healthy population and those present in the sample obtained from the diseased population. A statistically-significant difference indicates that the polymorphic locus is a marker for disease.
- These methods may be used to identify a nucleic acid (e.g., a polymorphic variant) associated with a disease. Such methods comprise counting the number or determining the amount of a nucleic acid, preferably a single base, in members of a diseased population, and counting numbers or determining amounts of the same nucleic acid in members of a healthy population. A statistically-significant difference in the numbers of the nucleic acid between the two populations is indicative that the interrogated locus is associated with a disease.
- Once the polymorphic locus is identified, either by methods of the invention or by consulting an appropriate database, such methods are useful to determine which variant at the polymorphic locus is associated with a disease. In this case, enumerative methods are used to determine whether there is a statistically-significant difference between the number of a fist variant in members of a diseased population, and the number of a second variant at the same locus in members of a healthy population. A statistically-significant difference is indicative that the variant in members of the diseased population is useful as a marker for disease. Using this information, patients are screened for the presence of the variant that is thought to be associated with disease, the presence such a variant being indicative of the presence of disease, or a predisposition for a disease.
- Methods of the present invention are particularly useful for isolation and analysis of nucleic acids that encompass genes that have mutations implicated in colorectal cancer, such as kras. The kras gene has a length of more than 30 kbp and codes for a 189 amino acid protein characterized as a low-molecular weight GTP-binding protein. The gene acquires malignant properties by single point mutations, the most common of which occurs at the 12th amino acid. Several studies have confirmed that approximately 40% of primary colorectal adenocarcinoma cells in humans contain a mutated form of the kras gene. Accordingly, the kras gene is a particularly suitable target for the methods of colorectal cancer detection of the present invention.
- Toward this end, applicants have constructed a suitable exemplary capture probe directed to the kras nucleotide sequence. The capture probe, designated CP1, has the following sequence: 5′ GCC TGC TGA AM TGA CTG AAT ATA AAC TTG
TGG TAG T 3′ (SEQ, ID NO: 1), and is preferably biotinylated at the 5′ end in order to facilitate isolation. As illustrated more fully below, CP1 is effective in the sequence specific capture of kras DNA. - Suitable PCR primers for the analysis of extracted kras DNA sequence have also been determined. Primer A1 has the sequence: 5° C. CTG CTG AAA
ATG ACT GAA 3′ (SEQ ID NO: 2), and Primer B1 has the sequence: 5° CAT GM MT GGTCAG AGA M 3′ (SEQ ID NO: 3). The PCR primers A1 and B1, as well as capture probe CP1, are depicted in FIG. 1, showing their relation to the kras nucleotide sequence, base pairs 6282-6571 (SEQ ID NO: 4). One skilled in the art can construct other suitable capture probes and PCR primers for kras or other target genes or nucleotide sequences, using techniques well known in the art. - Accordingly, the methods of the present invention, which involve homogenizing stool sample in a volume of solvent such that the ratio of solvent volume to stool mass is at least 5:1, and/or enriching the sample for human DNA, provide a means for obtaining a sample having a minimum number N of total DNA molecules to facilitate detection of a low-frequency target DNA molecule. These methods thus provide the unexpected result that one is now able to reliably detect a small portion of low-frequency DNA in a heterogeneous sample.
- The following examples provide further details of methods according to the invention. However, numerous additional aspects of the invention will become apparent upon consideration of the following examples.
- Stool Sample Preparation
- Voided stool was collected from a patient and a cross-sectional portion of the stool was removed for use as a sample. After determining the mass of the sample, an approximately 10×volume of Tris-EDTA-NaCl lysis buffer was added to the solid sample in a test tube. The final concentration of the buffer was 500 mM Tris, 16 mM EDTA and 10 mM NaCl, at a pH of about 9.0. Four 10 mm glass balls were placed in the tube and the tube and contents were homogenized in an Exactor II shaker for 15 minutes. The homogenized mixture was then allowed to stand 5 minutes at room temperature. The tube was then centrifuged for 5 minutes at 10,000 rpm in a Sorvall Centrifuge, and the supernatant was transferred to a clean test tube. A 20% SDS solution was added to the tube to a final concentration of 0.5%. Proteinase K was also added to the tube to a final concentration of 500 mg/ml. The tube was then incubated overnight at 37° C.
- After incubation, the contents of the tube were extracted with an equal volume of phenol/chloroform and centrifuged at 3500 rpm for 3 minutes. The aqueous layer was then transferred to a new tube and extracted three (3) times with equal volumes of chloroform and centrifuged at 3500 rpm for 3 minutes. The aqueous layer was then transferred to a new tube and 0.1×volume of 3M NaOAc was added to the aqueous portion, which was then extracted with an equal volume of isopropanol, and centrifuged for 5 minutes at 12,000 rpm. The supernatant was discarded, and the pellet was washed with 10 ml of 70% ethanol, and centrifuged at 12,000 rpm for 5 minutes. The supernatant was discarded and the pellet containing isolated DNA was dried by inverting the tube.
- A comparative analysis of solvent volume to mass ratios was conducted. Three separate stool samples were prepared as described above. A first sample, designated SS88-3×, was homogenized in buffer at a volume to mass ratio of 3:1. A second sample, designated SS88-5×, was homogenized at a ratio of 5:1; and a third sample, designated SS88-10×, was homogenized at a ratio of 10:1.
- Total DNA from each sample was resuspended in 100 ul of 100 mM Tris, 10 mM EDTA buffer and 10 ul aliquots were loaded onto a 4% agarose gel for electrophoresis at 125 V constant voltage for about one hour. The results are shown in FIG. 2. As shown in FIG. 2, the yield of total DNA increased as the ratio of solvent to mass increased from 3×to 10×.
- A second set of four equivalent samples was prepared from a single stool sample. Each of the four samples was of equal mass, and was homogenized as described in Example 1 at a solvent volume to stool mass ratio of 5:1, 10:1, 20:1, and 30:1, respectively. After homogenization each sample was subdivided into 8 aliquots, 4 treated with RNase, and 4 untreated. Total DNA was then isolated as described above and analyzed on agarose gels.
- The results are shown in FIG. 3. As shown, a ratio of 10:1 produced the greatest yield of nucleic acids. FIG. 3 also shows the effect of RNase treatment on the yield of DNA from each stool sample. As shown in the Figure, RNase treatment virtually eliminates RNA from the sample, but leaves DNA intact. The results indicate that optimal solvent volume to stool mass ratios greatly increase DNA yield from stool samples.
- Sequence-Specific Capture of Target DNA.
- Once extracted from stool, specific nucleic acids are isolated using sequence-specific capture probes. Total DNA was extracted from a stool sample according to the methods described in Example 1. The pelletized DNA was resuspended in 1 ml of TE buffer. A 100 μl aliquot of this solution was removed to a new tube and 100 μl of 6M guanidine isothiocyanate (GITC) was added to a final concentration of 3M GITC. A vast excess of biotinylated kras capture probe CP1 was the added to the sample. The mixture was heated to 95° C. for 5 minutes to denature the DNA, then cooled to 37° C. for 5 minutes. Finally, probe and target DNA were allowed to hybridize for 30 minutes at room temperature. Streptavidin-coated magnetized beads (320 mg) (Dynal Corp.) were suspended in 400 μl distilled water and added to the mixture. After briefly mixing, the tube was maintained at room temperature for 30 minutes.
- Once the affinity binding was completed, a magnetic field was applied to the sample to draw the magnetized isolation beads (both with and without hybridized complex out of the sample. The beads were then washed four (4) times in 1M GITC/0.1% Igepal (Sigma, St. Louis, Mo.) solution for 15 minutes, followed by two (2) washes with wash buffer (TE with 1M NaCl) for 15 minutes in order to isolate complexed streptavidin. Finally, 10 μl distilled water was added to the beads and heated at 95° C. for 3 minutes to elute the DNA. Sequencing and/or gel electrophoresis enable confirmation of the capture of kras-specific DNA.
- Accordingly, methods of the invention produce increased yields of DNA from stool, thereby allowing more efficient sequence-specific capture of target nucleic acid. Methods of the invention provide improvements in the ability to detect disease-related nucleic acid mutations present in stool. The skilled artisan will find additional applications and embodiments of the invention useful upon inspection of the foregoing description of the invention. Therefore, the invention is limited only by the scope of the appended claims.
-
1 4 1 37 DNA Artificial Sequence misc_feature Description of Artificial Sequence CP1 kras capture probe 1 gcctgctgaa aatgactgaa tataaacttg tggtagt 37 2 19 DNA Artificial Sequence misc_feature Description of Artificial Sequence kras PCR Primer A1 2 cctgctgaaa atgactgaa 19 3 20 DNA Artificial Sequence misc_feature Description of Artificial Sequence kras PCR primer B1 3 catgaaaatg gtcagagaaa 20 4 307 DNA homo sapiens misc_feature Partial nucleotide sequence of the kras gene 4 gtactggtgg agtatttgat agtgtattaa ccttatgtgt gacatgttct aatatagtca 60 cattttcatt atttttatta taaggcctgc tgaaaatgac tgaatataaa cttgtggtag 120 ttggagctgg tggcgtaggc aagagtgcct tgacgataca gctaattcag aatcattttg 180 tggacgaata tgatccaaca atagaggtaa atcttgtttt aatatgcata ttactggtgc 240 aggaccattc tttgatacag ataaaggttt ctctgaccat tttcatgtac agaagtcctt 300 gctaaga 307
Claims (40)
1. A method for analyzing DNA extracted from stool, comprising:
homogenizing a stool sample in a solvent for DNA in order to form a homogenized sample mixture having a solvent volume to stool mass ratio of at least 5:1;
enriching said homogenized sample for human DNA; and
analyzing said human DNA for characteristics of disease.
2. The method of claim 1 wherein the solvent volume to stool mass ratio is from about 10:1 to about 30:1.
3. The method of claim 2 wherein the solvent volume to stool mass ratio is about 10:1 to about 20:1.
4. The method of claim 2 wherein the solvent volume to stool mass ratio is about 10:1.
5. The method of claim 1 wherein the solvent comprises a physiologically compatible buffer.
6. The method of claim 5 wherein the buffer comprises Tris-EDTA-NaCl.
7. The method of claim 6 wherein the Tris-EDTA-NaCl buffer comprises a final concentration of about 50 mM Tris, about 16 mM EDTA and about 10 mM NaCl at about pH 9.0.
8. The method of claim 1 wherein the solvent comprises guanidine isothiocyanate buffer.
9. The method of claim 8 wherein the guanidine isothiocyanate buffer comprises a final concentration of from about 1 to about 5 M.
10. The method of claim 9 wherein the guanidine isothiocyanate buffer comprises a final concentration of about 3 M.
11. The method of claim 1 wherein said enriching step comprises contacting said DNA with a sequence-specific capture probe.
12. The method of claim 1 wherein said solvent comprises a detergent and a proteinase.
13. The method of claim 1 wherein said DNA is human DNA.
14. A method of screening for the presence of a colorectal cancerous or pre-cancerous lesion in a patient, the method comprising the steps of:
obtaining a sample comprising at least a cross-sectional portion of a stool voided by the patient;
homogenizing the sample in a solvent in order to form a homogenized sample mixture having a solvent volume to stool mass ratio of at least 5:1;
enriching said sample for a target human DNA; and
analyzing the target human DNA for DNA characteristics indicative of the presence of said colorectal cancerous or pre-cancerous lesion.
15. The method of claim 14 wherein said analyzing step comprises amplifying the DNA with a polymerase chain reaction.
16. The method of claim 14 wherein said DNA characteristics comprise a loss of heterozygosity encompassing a polymorphic locus.
17. The method of claim 14 wherein said DNA characteristic is a mutation.
18. The method of claim 17 wherein said mutation is selected from the group consisting of loss of heterozygosity and microsatellite instability.
19. The method of claim 14 wherein said DNA characteristics comprise a deletion in a tumor suppressor allele.
20. The method of claim 14 wherein said analyzing step comprises determining whether a difference exists in said sample between a number X of a first allele known or suspected to be mutated in a subpopulation of cells in the sample and a number Y of a second allele that is known or suspected not to be mutated in a subpopulation of cells in the sample, the presence of a statistically-significant difference being indicative of a mutation in a subpopulation of cells in the sample and the potential presence of a cancerous or precancerous lesion.
21. The method of claim 14 wherein said analyzing step comprises determining whether a difference exists between a number of a target tumor suppressor allele in the sample and a number of a non-cancer-associated reference allele in the sample, the presence of a statistically-significant difference being indicative of a deletion of the target tumor suppressor allele in a subpopulation of cells in the sample and the potential presence of a cancerous or precancerous lesion.
22. The method of claim 14 wherein said analyzing step further comprises the steps of:
a) detecting an amount of a maternal allele at a polymorphic locus in the sample;
b) detecting an amount of a paternal allele at the polymorphic locus in the sample; and
c) determining whether a difference exists between the amounts of maternal and paternal allele,
the presence of a statistically-significant difference being indicative of a deletion at the polymorphic locus in a subpopulation of cells in the sample and the potential presence of a lesion.
23. The method of claim 22 wherein said polymorphic locus is a single base polymorphism and is heterozygous between said maternal and paternal alleles.
24. The method of claim 22 wherein said detecting steps comprise,
a) hybridizing probe to a portion of said polymorphic locus on both maternal and paternal alleles that is immediately adjacent to said single-base polymorphism;
b) exposing said sample to a mixture of detectably-labeled dideoxy nucleoside triphosphates under conditions which allow appropriate binding of said dideoxy nucleoside triphosphates to said single-base polymorphism;
c) washing the sample; and
d) counting an amount of each detectably-labeled dideoxy nucleoside triphosphate remaining for the sample.
25. The method of claim 24 wherein said detectable label is selected from the group consisting of radioisotopes, fluorescent compounds, and particles.
26. The method of claim 14 wherein said analyzing step comprises a method for detecting heterozygosity at a single-nucleotide polymorphic locus, comprising the steps of.
a) hybridizing probes to a sequence immediately adjacent to a single-base polymorphism;
b) exposing the sample to a plurality of different labeled dideoxy nucleotides
c) washing the sample;
d) determining which of said dideoxy nucleotides are incorporated into said probes; and
e) detecting heterozygosity at the single-nucleotide polymorphic site as the detection of two dideoxy nucleotides having been incorporated into the probe.
27. The method of claim 14 wherein said analyzing step comprises:
(a) exposing the sample to a plurality of a first oligonucleotide probe and to a plurality of a second oligonucleotide probe under hybridization conditions, thereby to hybridize
(1) said first oligonucleotide probes to copies of a first polynucleotide segment characteristic of wild-type cells of the organism, and
(2) said second oligonucleotide probes to copies of a second polynucleotide segment characteristic of a wild-type genomic region suspected to be deleted or mutated in colorectal cancer cells;
(b) detecting a first number of duplexes formed between said first probe and said first segment and a second number of duplexes formed between said second probe and said second segment; and
(c) determining whether there is a difference between the number of duplexes formed between said first probe and said first segment and the number of duplexes formed between said second probe and said second segment,
the presence of a statistically-significant difference being indicative of the presence in said sample of a colorectal cancer or precancerous lesion.
28. The method of claim 27 wherein said first and second oligonucleotide probes each are coupled to a distinct detectable label.
29. The method of claim 27 wherein
said first oligonucleotide probes are attached to a first particle in a ratio of one first oligonucleotide probe to one particle and said second oligonucleotide probes are attached to a second particle detectably distinct from said first particle in a ratio of one second oligonucleotide probe to one second particle, wherein
said detecting step comprises separating hybridized from unhybridized first and second oligonucleotide probes and subsequently passing hybridized first and second oligonucleotide probes through a detector to determine said first and second numbers.
30. The method of claim 29 wherein said first and second particles are of detectably different sizes.
31. The method of claim 29 wherein said first and second particles are of detectably different colors.
32. The method of claim 27 further comprising, prior to step a) the steps of converting double-stranded DNA in said sample to single-stranded DNA and removing complement to said first and second polynucleotide segments.
33. The method of claim 32 wherein said removing step comprises hybridizing said complement to a nucleic acid probe attached to a magnetic particle and subsequently removing said magnetic particle from the sample.
34. The method of claim 14 wherein said analyzing step comprises a method for detecting a nucleic acid sequence change in a target allele in the sample, comprising the steps of:
(a) determining
(i) an amount of wild-type target allele in the sample, and
(ii) an amount of a reference allele in the sample; and
(b) detecting a nucleic acid sequence change in the target allele in the sample,
a statistically significant difference in the amount wild-type target allele and the amount of reference allele obtained in said determining step being indicative of a nucleic acid sequence change.
35. The method according to claim 34 wherein said determining step comprises exposing said sample to a first oligonucleotide probe capable of hybridizing with a portion of said wild-type allele and to a second oligonucleotide probe capable of hybridizing to a portion of said reference allele, and removing from said sample any unhybridized first or second oligonucleotide probe.
36. A method for screening for the presence of a colorectal cancerous or precancerous lesion in a patient, the method comprising the steps of:
obtaining a sample comprising at least a cross-sectional portion of a stool voided by the patient;
homogenizing the sample in a solvent in order to form a homogenized sample mixture having a solvent volume to stool mass ratio of at least 5:1;
ensuring that said sample have at least a minimum number N of total DNA molecules to provide for detection of a low-frequency target DNA molecule;
analyzing the target DNA for DNA characteristics indicative of the presence of said colorectal cancerous or pre-cancerous lesion.
37. A method for screening for the presence of a colorectal cancerous or precancerous lesion in a patient, the method comprising the steps of:
obtaining a sample containing of least a cross-sectional portion of a stool voided by the patient;
homogenizing the sample in a solvent in order to form a homogenized sample mixture having a solvent volume to stool mass ratio of at least 5:1;
enriching said homogenized sample for target human DNA;
ensuring that said sample have at least a minimum number N of total DNA molecules to provide for detection of a low-frequency target DNA molecule;
analyzing the target human DNA for DNA characteristics indicative of the presence of said colorectal cancerous or pre-cancerous lesion.
38. The method of claim 36 wherein said analyzing step comprises amplifying the DNA with a polymerase chain reaction.
39. The method of claim 37 wherein said analyzing step comprises amplifying the DNA with a polymerase chain reaction.
40. The method of claim 37 wherein said enriching step comprises contacting said DNA with a sequence-specific capture probe.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/105,877 US20020164631A1 (en) | 1997-06-16 | 2002-03-25 | Methods for stool sample preparation |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US87663897A | 1997-06-16 | 1997-06-16 | |
| US09/198,083 US6268136B1 (en) | 1997-06-16 | 1998-11-23 | Methods for stool sample preparation |
| US09/862,167 US6406857B1 (en) | 1997-06-16 | 2001-05-21 | Methods for stool sample preparation |
| US10/105,877 US20020164631A1 (en) | 1997-06-16 | 2002-03-25 | Methods for stool sample preparation |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/862,167 Continuation US6406857B1 (en) | 1997-06-16 | 2001-05-21 | Methods for stool sample preparation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020164631A1 true US20020164631A1 (en) | 2002-11-07 |
Family
ID=26893464
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/862,167 Expired - Lifetime US6406857B1 (en) | 1997-06-16 | 2001-05-21 | Methods for stool sample preparation |
| US10/105,877 Abandoned US20020164631A1 (en) | 1997-06-16 | 2002-03-25 | Methods for stool sample preparation |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/862,167 Expired - Lifetime US6406857B1 (en) | 1997-06-16 | 2001-05-21 | Methods for stool sample preparation |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US6406857B1 (en) |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030087258A1 (en) * | 1997-10-23 | 2003-05-08 | Shuber Anthony P. | Methods for detecting hypermethylated nucleic acid in heterogeneous biological samples |
| US6750020B2 (en) | 2001-03-15 | 2004-06-15 | Exact Sciences Corporation | Method for alteration detection |
| US20050014165A1 (en) * | 2003-07-18 | 2005-01-20 | California Pacific Medical Center | Biomarker panel for colorectal cancer |
| US6849403B1 (en) | 1999-09-08 | 2005-02-01 | Exact Sciences Corporation | Apparatus and method for drug screening |
| US6911308B2 (en) | 2001-01-05 | 2005-06-28 | Exact Sciences Corporation | Methods for detecting, grading or monitoring an H. pylori infection |
| US6919174B1 (en) | 1999-12-07 | 2005-07-19 | Exact Sciences Corporation | Methods for disease detection |
| US6964846B1 (en) | 1999-04-09 | 2005-11-15 | Exact Sciences Corporation | Methods for detecting nucleic acids indicative of cancer |
| US7368233B2 (en) | 1999-12-07 | 2008-05-06 | Exact Sciences Corporation | Methods of screening for lung neoplasm based on stool samples containing a nucleic acid marker indicative of a neoplasm |
| US7569342B2 (en) | 1997-12-10 | 2009-08-04 | Sierra Molecular Corp. | Removal of molecular assay interferences |
| US7776524B2 (en) | 2002-02-15 | 2010-08-17 | Genzyme Corporation | Methods for analysis of molecular events |
| US7811757B2 (en) | 1999-09-08 | 2010-10-12 | Genzyme Corporation | Methods for disease detection |
| US20100261221A1 (en) * | 2007-07-26 | 2010-10-14 | California Pacific Medical Center | Method to predict or diagnose a gastrointestinal disorder or disease |
| US7981607B2 (en) | 2004-08-27 | 2011-07-19 | Esoterix Genetic Laboratories LLC | Method for detecting recombinant event |
| US20120288867A1 (en) * | 2011-05-12 | 2012-11-15 | Exact Sciences Corporation | Serial isolation of multiple dna targets from stool |
| US20120288868A1 (en) * | 2011-05-12 | 2012-11-15 | Exact Sciences Corporation | Isolation of nucleic acids |
| US8980107B2 (en) | 2011-05-12 | 2015-03-17 | Exact Sciences Corporation | Spin filter |
| US8993341B2 (en) | 2011-05-12 | 2015-03-31 | Exact Sciences Corporation | Removal of PCR inhibitors |
| US9109256B2 (en) | 2004-10-27 | 2015-08-18 | Esoterix Genetic Laboratories, Llc | Method for monitoring disease progression or recurrence |
| US9777314B2 (en) | 2005-04-21 | 2017-10-03 | Esoterix Genetic Laboratories, Llc | Analysis of heterogeneous nucleic acid samples |
| CN109762877A (en) * | 2019-01-21 | 2019-05-17 | 北京大学第三医院(北京大学第三临床医学院) | Method and kit for enriching gastric Helicobacter pylori therapy-related genes from stool |
| US10400283B2 (en) | 2007-05-31 | 2019-09-03 | Nancy M. Lee | Method to predict or diagnose a gastrointestinal disorder or disease |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7217542B2 (en) * | 2002-10-31 | 2007-05-15 | Hewlett-Packard Development Company, L.P. | Microfluidic system for analyzing nucleic acids |
| US20040086895A1 (en) * | 2002-11-06 | 2004-05-06 | Crothers Donald M. | Method of electrochemical detection of somatic cell mutations |
| DE60330505D1 (en) * | 2003-03-19 | 2010-01-21 | Hamamatsu Found Sci & Tech Pro | METHOD FOR DETECTING A COLONECREMARKER |
| US20040259101A1 (en) * | 2003-06-20 | 2004-12-23 | Shuber Anthony P. | Methods for disease screening |
| US20080241827A1 (en) * | 2004-05-10 | 2008-10-02 | Exact Sciences Corporation | Methods For Detecting A Mutant Nucleic Acid |
| WO2005113769A1 (en) * | 2004-05-14 | 2005-12-01 | Exact Sciences Corporation | Method for stabilizing biological samples for nucleic acid analysis |
| WO2006065598A2 (en) * | 2004-12-13 | 2006-06-22 | Geneohm Sciences, Inc. | Fluidic cartridges for electrochemical detection of dna |
| US20110045991A1 (en) * | 2005-06-23 | 2011-02-24 | Sadanand Gite | Methods for the Detection of Colorectal Cancer |
| WO2007018257A1 (en) * | 2005-08-10 | 2007-02-15 | Hamamatsu Foundation For Science And Technology Promotion | Method of detecting large bowel cancer marker |
| CA2790416C (en) * | 2010-03-26 | 2017-05-23 | Mayo Foundation For Medical Education And Research | Methods and materials for detecting colorectal neoplasm |
| GB201107466D0 (en) | 2011-05-05 | 2011-06-15 | Loktionov Alexandre | Device and method for non-invasive collection of colorectal mucocellular layer and disease detection |
| JP6466336B2 (en) | 2012-10-24 | 2019-02-06 | ジェンマーク ダイアグノスティクス, インコーポレイテッド | Integrated multiple target analysis |
| US20140322706A1 (en) | 2012-10-24 | 2014-10-30 | Jon Faiz Kayyem | Integrated multipelx target analysis |
| US9222623B2 (en) | 2013-03-15 | 2015-12-29 | Genmark Diagnostics, Inc. | Devices and methods for manipulating deformable fluid vessels |
| USD881409S1 (en) | 2013-10-24 | 2020-04-14 | Genmark Diagnostics, Inc. | Biochip cartridge |
| US9498778B2 (en) | 2014-11-11 | 2016-11-22 | Genmark Diagnostics, Inc. | Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system |
| US10253358B2 (en) | 2013-11-04 | 2019-04-09 | Exact Sciences Development Company, Llc | Multiple-control calibrators for DNA quantitation |
| EP4209600A1 (en) | 2013-12-19 | 2023-07-12 | Exact Sciences Corporation | Synthetic nucleic acid control molecules |
| CN104073564B (en) * | 2014-07-15 | 2020-07-10 | 杭州诺辉健康科技有限公司 | Feces sample stabilizing solution, preparation method and application |
| US10184154B2 (en) | 2014-09-26 | 2019-01-22 | Mayo Foundation For Medical Education And Research | Detecting cholangiocarcinoma |
| US10005080B2 (en) | 2014-11-11 | 2018-06-26 | Genmark Diagnostics, Inc. | Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation |
| US9598722B2 (en) | 2014-11-11 | 2017-03-21 | Genmark Diagnostics, Inc. | Cartridge for performing assays in a closed sample preparation and reaction system |
| CN107532124B (en) | 2015-03-27 | 2022-08-09 | 精密科学公司 | Detection of esophageal disorders |
| ES2963227T3 (en) | 2016-07-19 | 2024-03-26 | Exact Sciences Corp | Nucleic acid control molecules of non-human organisms |
| AU2017299597B2 (en) | 2016-07-19 | 2023-08-24 | Exact Sciences Corporation | Methylated control DNA |
| CN113186185B (en) * | 2020-01-14 | 2023-05-26 | 东北林业大学 | Method for efficiently enriching host DNA from mammal feces |
Family Cites Families (87)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4101279A (en) | 1977-04-06 | 1978-07-18 | Muhammed Javed Aslam | Device for the collection and processing of stool specimens |
| US4333734A (en) | 1980-01-18 | 1982-06-08 | Sloan-Kettering Institute For Cancer Research | Diagnostic device for fecal occult blood and method of use |
| US4535058A (en) | 1982-10-01 | 1985-08-13 | Massachusetts Institute Of Technology | Characterization of oncogenes and assays based thereon |
| US4309782A (en) | 1980-09-11 | 1982-01-12 | Esteban Paulin | Device for collecting fecal specimens |
| US4358535A (en) | 1980-12-08 | 1982-11-09 | Board Of Regents Of The University Of Washington | Specific DNA probes in diagnostic microbiology |
| US5482834A (en) | 1982-05-17 | 1996-01-09 | Hahnemann University | Evaluation of nucleic acids in a biological sample hybridization in a solution of chaotrophic salt solubilized cells |
| US4445235A (en) | 1982-09-13 | 1984-05-01 | Pearl Slover | Stool specimen collector |
| US4578358A (en) | 1983-05-03 | 1986-03-25 | Warner-Lambert Company | Collection of specimens and detection of occult blood therein |
| US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
| US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
| US4871838A (en) | 1985-07-23 | 1989-10-03 | The Board Of Rijks Universiteit Leiden | Probes and methods for detecting activated ras oncogenes |
| US4705050A (en) | 1985-10-02 | 1987-11-10 | Markham Charles W | Moisture-activated floatation device |
| US5348855A (en) | 1986-03-05 | 1994-09-20 | Miles Inc. | Assay for nucleic acid sequences in an unpurified sample |
| CA1284931C (en) | 1986-03-13 | 1991-06-18 | Henry A. Erlich | Process for detecting specific nucleotide variations and genetic polymorphisms present in nucleic acids |
| US4981783A (en) | 1986-04-16 | 1991-01-01 | Montefiore Medical Center | Method for detecting pathological conditions |
| CA1341576C (en) | 1986-08-11 | 2008-07-08 | Thaddeus P. Dryja | Diagnosis of retinoblastoma |
| US4735905A (en) | 1986-08-15 | 1988-04-05 | V-Tech, Inc. | Specimen-gathering apparatus and method |
| US4935342A (en) | 1986-12-01 | 1990-06-19 | Syngene, Inc. | Method of isolating and purifying nucleic acids from biological samples |
| AU625169B2 (en) | 1987-03-23 | 1992-07-02 | Imperial Chemical Industries Plc | Molecular markers |
| US4857300A (en) | 1987-07-27 | 1989-08-15 | Cytocorp, Inc. | Cytological and histological fixative formulation and methods for using same |
| IL89964A0 (en) | 1988-04-15 | 1989-12-15 | Montefiore Med Center | Method for determining malignant progression,cdna,polypeptides encoded thereby and pharmaceutical compositions containing the same |
| FR2630000A1 (en) | 1988-04-18 | 1989-10-20 | Sultan Bernard | BOTTLE FOR COLLECTING AN URINARY BIOLOGICAL SAMPLE FOR CYTOBACTERIOLOGICAL EXAMINATION |
| US5272057A (en) | 1988-10-14 | 1993-12-21 | Georgetown University | Method of detecting a predisposition to cancer by the use of restriction fragment length polymorphism of the gene for human poly (ADP-ribose) polymerase |
| US5087617A (en) | 1989-02-15 | 1992-02-11 | Board Of Regents, The University Of Texas System | Methods and compositions for treatment of cancer using oligonucleotides |
| US5248671A (en) | 1989-02-15 | 1993-09-28 | Board Of Regents, The University Of Texas System | Methods and compositions for treatment of cancer using oligonucleotides |
| US5380645A (en) | 1989-03-16 | 1995-01-10 | The Johns Hopkins University | Generalized method for assessment of colorectal carcinoma |
| US5527676A (en) | 1989-03-29 | 1996-06-18 | The Johns Hopkins University | Detection of loss of the wild-type P53 gene and kits therefor |
| US5362623A (en) | 1991-06-14 | 1994-11-08 | The John Hopkins University | Sequence specific DNA binding by p53 |
| EP0390323B2 (en) | 1989-03-29 | 2012-08-08 | Johns Hopkins University | Detection of loss of the wild-type p53 gene |
| US5192501A (en) | 1989-04-04 | 1993-03-09 | Helena Laboratories Corporation | Method of formulating a test ink for a fecal occult blood test product |
| US5196167A (en) | 1989-04-04 | 1993-03-23 | Helena Laboratories Corporation | Fecal occult blood test product with positive and negative controls |
| US5589335A (en) | 1989-04-05 | 1996-12-31 | Amoco Corporation | Hybridization promotion reagents |
| DK0407789T3 (en) | 1989-06-23 | 1993-11-01 | Canon Kk | Method for detecting nucleic acids |
| US5302509A (en) | 1989-08-14 | 1994-04-12 | Beckman Instruments, Inc. | Method for sequencing polynucleotides |
| CA2029219A1 (en) | 1989-11-08 | 1991-05-09 | Mary K. Estes | Methods and reagents to detect and characterize norwalk and related viruses |
| US5641628A (en) | 1989-11-13 | 1997-06-24 | Children's Medical Center Corporation | Non-invasive method for isolation and detection of fetal DNA |
| US5137806A (en) | 1989-12-11 | 1992-08-11 | Board Of Regents, The University Of Texas System | Methods and compositions for the detection of sequences in selected DNA molecules |
| ATE164629T1 (en) | 1990-01-04 | 1998-04-15 | Univ Johns Hopkins | GENE MISSING IN HUMAN COLORECTAL CANCER |
| US5126239A (en) | 1990-03-14 | 1992-06-30 | E. I. Du Pont De Nemours And Company | Process for detecting polymorphisms on the basis of nucleotide differences |
| US5200314A (en) | 1990-03-23 | 1993-04-06 | Chiron Corporation | Polynucleotide capture assay employing in vitro amplification |
| AU8221191A (en) | 1990-06-27 | 1992-01-23 | Princeton University | Probes for detecting mutant p53 |
| WO1992008133A1 (en) | 1990-10-29 | 1992-05-14 | Dekalb Plant Genetics | Isolation of biological materials using magnetic particles |
| US5846710A (en) | 1990-11-02 | 1998-12-08 | St. Louis University | Method for the detection of genetic diseases and gene sequence variations by single nucleotide primer extension |
| US5352775A (en) | 1991-01-16 | 1994-10-04 | The Johns Hopkins Univ. | APC gene and nucleic acid probes derived therefrom |
| WO1992014157A1 (en) | 1991-02-05 | 1992-08-20 | Kamal Bahar | Simple test for detecting carcinoembryonic antigen |
| WO1992013971A1 (en) | 1991-02-05 | 1992-08-20 | Lifecodes Corporation | Molecular genetic identification using probes that recognize polymorphic loci |
| US5330892A (en) | 1991-03-13 | 1994-07-19 | The Johns Hopkins University | MCC gene (mutated in colorectal cancer) used for diagnosis of cancer in humans |
| US5468610A (en) | 1991-05-29 | 1995-11-21 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Three highly informative microsatellite repeat polymorphic DNA markers |
| US5378602A (en) | 1991-05-29 | 1995-01-03 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Highly informative microsatellite repeat polymorphic DNA markers twenty-[seven]six |
| US5149506A (en) | 1991-08-09 | 1992-09-22 | Sage Products, Inc. | Stool collection and transport device |
| US5506105A (en) | 1991-12-10 | 1996-04-09 | Dade International Inc. | In situ assay of amplified intracellular mRNA targets |
| WO1993020235A1 (en) | 1992-04-01 | 1993-10-14 | The Johns Hopkins University School Of Medicine | Methods of detecting mammalian nucleic acids isolated from stool specimen and reagents therefor |
| US5489508A (en) | 1992-05-13 | 1996-02-06 | University Of Texas System Board Of Regents | Therapy and diagnosis of conditions related to telomere length and/or telomerase activity |
| US5409586A (en) | 1992-08-26 | 1995-04-25 | Hitachi, Ltd. | Method for analyzing nucleic acid or protein and apparatus therefor |
| US5331973A (en) | 1993-03-15 | 1994-07-26 | Fiedler Paul N | Method for obtaining stool samples for gastrointestinal cancer testing |
| CA2092115C (en) | 1993-03-22 | 1998-12-15 | Janet L. Taylor | Testing for infestation of rapeseed and other cruciferae by the fungus leptosphaeria maculans (blackleg infestation) |
| US5492808A (en) | 1993-05-05 | 1996-02-20 | The Johns Hopkins University | Means for detecting familial colon cancer (FCC) |
| US5466576A (en) | 1993-07-02 | 1995-11-14 | Fred Hutchinson Cancer Research Center | Modulation of PIF-1-type helicases |
| SG68568A1 (en) | 1993-07-08 | 1999-11-16 | Johnson & Johnson Clin Diag | Method for coamplification of two different nucleic acid sequences using polymerase chain reaction |
| CA2143428A1 (en) | 1993-07-09 | 1995-01-19 | Takanori Oka | Method of nucleic acid-differentiation and assay kit for nucleic acid-differentiation |
| US5416025A (en) | 1993-11-29 | 1995-05-16 | Krepinsky; Jiri J. | Screening test for early detection of colorectal cancer |
| US5681697A (en) | 1993-12-08 | 1997-10-28 | Chiron Corporation | Solution phase nucleic acid sandwich assays having reduced background noise and kits therefor |
| US5709998A (en) | 1993-12-15 | 1998-01-20 | The Johns Hopkins University | Molecular diagnosis of familial adenomatous polyposis |
| US5538851A (en) | 1993-12-22 | 1996-07-23 | Institut Pasteur And Cneva | Primers for the amplification of genes coding for the enterotoxin and the lecithinase of Clostridium perfringens and their application to the determination of the presence and numeration of these bacteriae |
| US5496470A (en) | 1994-05-27 | 1996-03-05 | Barnes International, Inc. | Magnetic separator |
| US6037465A (en) | 1994-06-14 | 2000-03-14 | Invitek Gmbh | Universal process for isolating and purifying nucleic acids from extremely small amounts of highly contaminated various starting materials |
| US5702886A (en) | 1994-10-05 | 1997-12-30 | The Johns Hopkins University | Chromosome I8Q loss and prognosis in colorectal cancer |
| US5512441A (en) | 1994-11-15 | 1996-04-30 | American Health Foundation | Quantative method for early detection of mutant alleles and diagnostic kits for carrying out the method |
| US5463782A (en) | 1994-11-21 | 1995-11-07 | Eric V. Carlson | Foldable stool sample collection device |
| DE19530132C2 (en) | 1995-08-16 | 1998-07-16 | Max Planck Gesellschaft | Process for the purification, stabilization or isolation of nucleic acids from biological materials |
| US5670325A (en) | 1996-08-14 | 1997-09-23 | Exact Laboratories, Inc. | Method for the detection of clonal populations of transformed cells in a genomically heterogeneous cellular sample |
| US5612473A (en) | 1996-01-16 | 1997-03-18 | Gull Laboratories | Methods, kits and solutions for preparing sample material for nucleic acid amplification |
| US5741650A (en) | 1996-01-30 | 1998-04-21 | Exact Laboratories, Inc. | Methods for detecting colon cancer from stool samples |
| US5952178A (en) | 1996-08-14 | 1999-09-14 | Exact Laboratories | Methods for disease diagnosis from stool samples |
| US6143529A (en) | 1996-08-14 | 2000-11-07 | Exact Laboratories, Inc. | Methods for improving sensitivity and specificity of screening assays |
| US5928870A (en) | 1997-06-16 | 1999-07-27 | Exact Laboratories, Inc. | Methods for the detection of loss of heterozygosity |
| US6146828A (en) | 1996-08-14 | 2000-11-14 | Exact Laboratories, Inc. | Methods for detecting differences in RNA expression levels and uses therefor |
| US6100029A (en) | 1996-08-14 | 2000-08-08 | Exact Laboratories, Inc. | Methods for the detection of chromosomal aberrations |
| US6020137A (en) | 1996-08-14 | 2000-02-01 | Exact Laboratories, Inc. | Methods for the detection of loss of heterozygosity |
| US6203993B1 (en) | 1996-08-14 | 2001-03-20 | Exact Science Corp. | Methods for the detection of nucleic acids |
| US6300077B1 (en) | 1996-08-14 | 2001-10-09 | Exact Sciences Corporation | Methods for the detection of nucleic acids |
| US5856104A (en) | 1996-10-28 | 1999-01-05 | Affymetrix, Inc. | Polymorphisms in the glucose-6 phosphate dehydrogenase locus |
| US5830665A (en) | 1997-03-03 | 1998-11-03 | Exact Laboratories, Inc. | Contiguous genomic sequence scanning |
| US5888778A (en) | 1997-06-16 | 1999-03-30 | Exact Laboratories, Inc. | High-throughput screening method for identification of genetic mutations or disease-causing microorganisms using segmented primers |
| US6268136B1 (en) | 1997-06-16 | 2001-07-31 | Exact Science Corporation | Methods for stool sample preparation |
| US6280947B1 (en) | 1999-08-11 | 2001-08-28 | Exact Sciences Corporation | Methods for detecting nucleotide insertion or deletion using primer extension |
| US6503718B2 (en) | 1999-01-10 | 2003-01-07 | Exact Sciences Corporation | Methods for detecting mutations using primer extension for detecting disease |
-
2001
- 2001-05-21 US US09/862,167 patent/US6406857B1/en not_active Expired - Lifetime
-
2002
- 2002-03-25 US US10/105,877 patent/US20020164631A1/en not_active Abandoned
Cited By (52)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030087258A1 (en) * | 1997-10-23 | 2003-05-08 | Shuber Anthony P. | Methods for detecting hypermethylated nucleic acid in heterogeneous biological samples |
| US6818404B2 (en) | 1997-10-23 | 2004-11-16 | Exact Sciences Corporation | Methods for detecting hypermethylated nucleic acid in heterogeneous biological samples |
| US7569342B2 (en) | 1997-12-10 | 2009-08-04 | Sierra Molecular Corp. | Removal of molecular assay interferences |
| US6964846B1 (en) | 1999-04-09 | 2005-11-15 | Exact Sciences Corporation | Methods for detecting nucleic acids indicative of cancer |
| US7811757B2 (en) | 1999-09-08 | 2010-10-12 | Genzyme Corporation | Methods for disease detection |
| US6849403B1 (en) | 1999-09-08 | 2005-02-01 | Exact Sciences Corporation | Apparatus and method for drug screening |
| US6919174B1 (en) | 1999-12-07 | 2005-07-19 | Exact Sciences Corporation | Methods for disease detection |
| US7368233B2 (en) | 1999-12-07 | 2008-05-06 | Exact Sciences Corporation | Methods of screening for lung neoplasm based on stool samples containing a nucleic acid marker indicative of a neoplasm |
| US7981612B2 (en) | 1999-12-07 | 2011-07-19 | Mayo Foundation For Medical Education And Research | Methods of screening for supracolonic neoplasms based on stool samples containing a nucleic acid marker indicative of a neoplasm |
| US6911308B2 (en) | 2001-01-05 | 2005-06-28 | Exact Sciences Corporation | Methods for detecting, grading or monitoring an H. pylori infection |
| US6750020B2 (en) | 2001-03-15 | 2004-06-15 | Exact Sciences Corporation | Method for alteration detection |
| US8409829B2 (en) | 2002-02-15 | 2013-04-02 | Esoterix Genetic Laboratories, Llc | Methods for analysis of molecular events |
| US7776524B2 (en) | 2002-02-15 | 2010-08-17 | Genzyme Corporation | Methods for analysis of molecular events |
| US20050014165A1 (en) * | 2003-07-18 | 2005-01-20 | California Pacific Medical Center | Biomarker panel for colorectal cancer |
| US20080206756A1 (en) * | 2003-07-18 | 2008-08-28 | California Pacific Medical Center | Biomarker panel for colorectal cancer |
| US7981607B2 (en) | 2004-08-27 | 2011-07-19 | Esoterix Genetic Laboratories LLC | Method for detecting recombinant event |
| US8389220B2 (en) | 2004-08-27 | 2013-03-05 | Esoterix Genetic Laboratories, Llc | Method for detecting a recombinant event |
| US9109256B2 (en) | 2004-10-27 | 2015-08-18 | Esoterix Genetic Laboratories, Llc | Method for monitoring disease progression or recurrence |
| US9777314B2 (en) | 2005-04-21 | 2017-10-03 | Esoterix Genetic Laboratories, Llc | Analysis of heterogeneous nucleic acid samples |
| US10400283B2 (en) | 2007-05-31 | 2019-09-03 | Nancy M. Lee | Method to predict or diagnose a gastrointestinal disorder or disease |
| US10011879B2 (en) | 2007-07-26 | 2018-07-03 | Nancy M. Lee | Method to predict or diagnose a gastointestinal disorder or disease |
| US9353420B2 (en) | 2007-07-26 | 2016-05-31 | Nancy M. Lee | Method to predict or diagnose a gastointestinal disorder or disease |
| US8883440B2 (en) | 2007-07-26 | 2014-11-11 | Nancy M. Lee | Method to predict or diagnose a gastrointestinal disorder or disease |
| US20100261221A1 (en) * | 2007-07-26 | 2010-10-14 | California Pacific Medical Center | Method to predict or diagnose a gastrointestinal disorder or disease |
| US20140193813A1 (en) * | 2011-05-11 | 2014-07-10 | Exact Sciences Corporation | Isolation of nucleic acids |
| US20140194608A1 (en) * | 2011-05-11 | 2014-07-10 | Exact Sciences Corporation | Isolation of nucleic acids |
| US20140194607A1 (en) * | 2011-05-11 | 2014-07-10 | Exact Sciences Corporation | Isolation of nucleic acids |
| US20150284770A1 (en) * | 2011-05-11 | 2015-10-08 | Exact Sciences Corporation | Isolation of nucleic acids |
| US20150010907A1 (en) * | 2011-05-12 | 2015-01-08 | Exact Sciences Corporation | Serial isolation of multiple dna targets from stool |
| US9657330B2 (en) * | 2011-05-12 | 2017-05-23 | Exact Sciences Corporation | Serial isolation of multiple DNA targets from stool |
| US9000146B2 (en) * | 2011-05-12 | 2015-04-07 | Exact Sciences Corporation | Isolation of nucleic acids |
| US8999176B2 (en) | 2011-05-12 | 2015-04-07 | Exact Sciences Corporation | Isolation of nucleic acids |
| US9057098B2 (en) * | 2011-05-12 | 2015-06-16 | Exact Sciences Corporation | Isolation of nucleic acids |
| CN104450680A (en) * | 2011-05-12 | 2015-03-25 | 精密科学公司 | Isolation of nucleic acids |
| US8980107B2 (en) | 2011-05-12 | 2015-03-17 | Exact Sciences Corporation | Spin filter |
| US9163278B2 (en) * | 2011-05-12 | 2015-10-20 | Exact Sciences Corporation | Isolation of nucleic acids |
| US9169511B2 (en) * | 2011-05-12 | 2015-10-27 | Exact Sciences Corporation | Isolation of nucleic acids |
| US8808990B2 (en) * | 2011-05-12 | 2014-08-19 | Exact Sciences Corporation | Serial isolation of multiple DNA targets from stool |
| US9631228B2 (en) * | 2011-05-12 | 2017-04-25 | Exact Sciences Corporation | Isolation of nucleic acids |
| US8993341B2 (en) | 2011-05-12 | 2015-03-31 | Exact Sciences Corporation | Removal of PCR inhibitors |
| CN103649298A (en) * | 2011-05-12 | 2014-03-19 | 精密科学公司 | Isolation of nucleic acids |
| CN107312774A (en) * | 2011-05-12 | 2017-11-03 | 精密科学公司 | The separation of nucleic acid |
| US9845491B2 (en) | 2011-05-12 | 2017-12-19 | Exact Sciences Corporation | Isolation of nucleic acids |
| US9856515B2 (en) | 2011-05-12 | 2018-01-02 | Exact Sciences Corporation | Removal of PCR inhibitors |
| US20120288868A1 (en) * | 2011-05-12 | 2012-11-15 | Exact Sciences Corporation | Isolation of nucleic acids |
| US10047390B2 (en) * | 2011-05-12 | 2018-08-14 | Exact Sciences Corporation | Isolation of nucleic acids |
| US10196676B2 (en) * | 2011-05-12 | 2019-02-05 | Exact Sciences Corporation | Isolation of nucleic acids |
| US12428669B2 (en) | 2011-05-12 | 2025-09-30 | Exact Sciences Corporation | Isolation of nucleic acids |
| US20120288867A1 (en) * | 2011-05-12 | 2012-11-15 | Exact Sciences Corporation | Serial isolation of multiple dna targets from stool |
| US10822639B2 (en) | 2011-05-12 | 2020-11-03 | Exact Sciences Corporation | Isolation of nucleic acids |
| US11674169B2 (en) | 2011-05-12 | 2023-06-13 | Exact Sciences Corporation | Isolation of nucleic acids |
| CN109762877A (en) * | 2019-01-21 | 2019-05-17 | 北京大学第三医院(北京大学第三临床医学院) | Method and kit for enriching gastric Helicobacter pylori therapy-related genes from stool |
Also Published As
| Publication number | Publication date |
|---|---|
| US6406857B1 (en) | 2002-06-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6268136B1 (en) | Methods for stool sample preparation | |
| US6406857B1 (en) | Methods for stool sample preparation | |
| EP1169479B1 (en) | Methods for detecting nucleic acids indicative of cancer | |
| US6303304B1 (en) | Methods for disease diagnosis from stool samples | |
| US5741650A (en) | Methods for detecting colon cancer from stool samples | |
| EP1185693A2 (en) | Methods for improving sensitivity and specificity of screening assays | |
| WO1998058081A1 (en) | Methods for stool sample preparation | |
| JP2010279394A (en) | Method for disease detection | |
| JP2002543855A (en) | Method for detecting colorectal disease by performing an assay for detecting mutations at the BAT-26 locus | |
| WO2006094149A2 (en) | Methods and compositions for detecting adenoma | |
| CN116814778A (en) | DNA methylation markers, methods and kits for colorectal and/or adenoma diagnosis | |
| EP1291657A2 (en) | Methods for detecting colon cancer from stool samples |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |