US20020155489A1 - Method for screening enzyme activity - Google Patents
Method for screening enzyme activity Download PDFInfo
- Publication number
- US20020155489A1 US20020155489A1 US10/121,145 US12114502A US2002155489A1 US 20020155489 A1 US20020155489 A1 US 20020155489A1 US 12114502 A US12114502 A US 12114502A US 2002155489 A1 US2002155489 A1 US 2002155489A1
- Authority
- US
- United States
- Prior art keywords
- nucleic acid
- dna
- library
- clones
- enzyme activity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000000694 effects Effects 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000012216 screening Methods 0.000 title claims abstract description 22
- 102000004190 Enzymes Human genes 0.000 title abstract description 81
- 108090000790 Enzymes Proteins 0.000 title abstract description 81
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 116
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 100
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 100
- 244000005700 microbiome Species 0.000 claims abstract description 28
- 108090000623 proteins and genes Proteins 0.000 claims description 57
- 102000004169 proteins and genes Human genes 0.000 claims description 22
- 230000014509 gene expression Effects 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 17
- 239000012634 fragment Substances 0.000 claims description 10
- 239000000284 extract Substances 0.000 claims description 8
- 239000002299 complementary DNA Substances 0.000 claims description 2
- 239000000523 sample Substances 0.000 abstract description 56
- 108091033319 polynucleotide Proteins 0.000 abstract description 24
- 102000040430 polynucleotide Human genes 0.000 abstract description 24
- 239000002157 polynucleotide Substances 0.000 abstract description 24
- 230000008569 process Effects 0.000 abstract description 14
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract description 11
- 230000001131 transforming effect Effects 0.000 abstract description 6
- 108020004414 DNA Proteins 0.000 description 78
- 229940088598 enzyme Drugs 0.000 description 75
- 239000013598 vector Substances 0.000 description 40
- 210000004027 cell Anatomy 0.000 description 31
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 24
- 108091008053 gene clusters Proteins 0.000 description 21
- 235000018102 proteins Nutrition 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 19
- 150000001875 compounds Chemical class 0.000 description 19
- 238000009396 hybridization Methods 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- 239000007790 solid phase Substances 0.000 description 17
- 239000000872 buffer Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000013612 plasmid Substances 0.000 description 15
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 14
- -1 pharmaceutical Substances 0.000 description 14
- 229920000936 Agarose Polymers 0.000 description 13
- 241000588724 Escherichia coli Species 0.000 description 11
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 description 11
- 230000000975 bioactive effect Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 238000010367 cloning Methods 0.000 description 10
- 230000007613 environmental effect Effects 0.000 description 10
- 230000007062 hydrolysis Effects 0.000 description 10
- 238000006460 hydrolysis reaction Methods 0.000 description 10
- 108010076504 Protein Sorting Signals Proteins 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 8
- 239000013604 expression vector Substances 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- 238000004806 packaging method and process Methods 0.000 description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 230000000813 microbial effect Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 229920001817 Agar Polymers 0.000 description 6
- 102000004157 Hydrolases Human genes 0.000 description 6
- 108090000604 Hydrolases Proteins 0.000 description 6
- 108010030975 Polyketide Synthases Proteins 0.000 description 6
- 239000008272 agar Substances 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 229930001119 polyketide Natural products 0.000 description 6
- 125000000830 polyketide group Chemical group 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 230000009870 specific binding Effects 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 230000003321 amplification Effects 0.000 description 5
- 239000003242 anti bacterial agent Substances 0.000 description 5
- 229940088710 antibiotic agent Drugs 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- 239000007984 Tris EDTA buffer Substances 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 4
- 239000002246 antineoplastic agent Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 4
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000010187 selection method Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 241000203069 Archaea Species 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 102000012410 DNA Ligases Human genes 0.000 description 3
- 108010061982 DNA Ligases Proteins 0.000 description 3
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- 102000003960 Ligases Human genes 0.000 description 3
- 108090000364 Ligases Proteins 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 108020004682 Single-Stranded DNA Proteins 0.000 description 3
- 238000002105 Southern blotting Methods 0.000 description 3
- 102000004357 Transferases Human genes 0.000 description 3
- 108090000992 Transferases Proteins 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 238000000246 agarose gel electrophoresis Methods 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 150000002118 epoxides Chemical class 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000033444 hydroxylation Effects 0.000 description 3
- 238000005805 hydroxylation reaction Methods 0.000 description 3
- 229960003444 immunosuppressant agent Drugs 0.000 description 3
- 239000003018 immunosuppressive agent Substances 0.000 description 3
- 150000002611 lead compounds Chemical class 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229930014626 natural product Natural products 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 229920001542 oligosaccharide Polymers 0.000 description 3
- 150000002482 oligosaccharides Chemical class 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 2
- 108700023418 Amidases Proteins 0.000 description 2
- 108020004634 Archaeal DNA Proteins 0.000 description 2
- 239000003298 DNA probe Substances 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 108090000371 Esterases Proteins 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 2
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 102000008109 Mixed Function Oxygenases Human genes 0.000 description 2
- 108010074633 Mixed Function Oxygenases Proteins 0.000 description 2
- 108010086093 Mung Bean Nuclease Proteins 0.000 description 2
- BACYUWVYYTXETD-UHFFFAOYSA-N N-Lauroylsarcosine Chemical compound CCCCCCCCCCCC(=O)N(C)CC(O)=O BACYUWVYYTXETD-UHFFFAOYSA-N 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 102000005922 amidase Human genes 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000000211 autoradiogram Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000003857 carboxamides Chemical class 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229940000406 drug candidate Drugs 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000006735 epoxidation reaction Methods 0.000 description 2
- 230000035558 fertility Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 229940016590 sarkosyl Drugs 0.000 description 2
- 108700004121 sarkosyl Proteins 0.000 description 2
- 229930000044 secondary metabolite Natural products 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- KIWLGOJGWNJVDN-NCFXGAEVSA-N (2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfinyloxane-3,4,5-triol Chemical class O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1S(=O)[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 KIWLGOJGWNJVDN-NCFXGAEVSA-N 0.000 description 1
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- DEQPBRIACBATHE-FXQIFTODSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-2-iminopentanoic acid Chemical compound N1C(=O)N[C@@H]2[C@H](CCCC(=N)C(=O)O)SC[C@@H]21 DEQPBRIACBATHE-FXQIFTODSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 108010006591 Apoenzymes Proteins 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- 102000016680 Dioxygenases Human genes 0.000 description 1
- 108010028143 Dioxygenases Proteins 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241000194033 Enterococcus Species 0.000 description 1
- 102000005486 Epoxide hydrolase Human genes 0.000 description 1
- 108020002908 Epoxide hydrolase Proteins 0.000 description 1
- 102100029203 F-box only protein 8 Human genes 0.000 description 1
- 101150047844 F1 gene Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 102000051366 Glycosyltransferases Human genes 0.000 description 1
- 108700023372 Glycosyltransferases Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101100334493 Homo sapiens FBXO8 gene Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 108010054320 Lignin peroxidase Proteins 0.000 description 1
- 101710155614 Ligninase A Proteins 0.000 description 1
- 101710155621 Ligninase B Proteins 0.000 description 1
- 108090000856 Lyases Proteins 0.000 description 1
- 102000004317 Lyases Human genes 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229930191564 Monensin Natural products 0.000 description 1
- GAOZTHIDHYLHMS-UHFFFAOYSA-N Monensin A Natural products O1C(CC)(C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CCC1C(O1)(C)CCC21CC(O)C(C)C(C(C)C(OC)C(C)C(O)=O)O2 GAOZTHIDHYLHMS-UHFFFAOYSA-N 0.000 description 1
- 102000006833 Multifunctional Enzymes Human genes 0.000 description 1
- 108010047290 Multifunctional Enzymes Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 101000969137 Mus musculus Metallothionein-1 Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108010033272 Nitrilase Proteins 0.000 description 1
- 108010024026 Nitrile hydratase Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 101100084022 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) lapA gene Proteins 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 101150006914 TRP1 gene Proteins 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 240000004922 Vigna radiata Species 0.000 description 1
- 235000010721 Vigna radiata var radiata Nutrition 0.000 description 1
- 235000011469 Vigna radiata var sublobata Nutrition 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- DFPAKSUCGFBDDF-ZQBYOMGUSA-N [14c]-nicotinamide Chemical compound N[14C](=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-ZQBYOMGUSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 229940124350 antibacterial drug Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 150000008430 aromatic amides Chemical class 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 1
- 210000003578 bacterial chromosome Anatomy 0.000 description 1
- 125000001743 benzylic group Chemical group 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 150000001942 cyclopropanes Chemical class 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 108010052305 exodeoxyribonuclease III Proteins 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 230000023266 generation of precursor metabolites and energy Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 244000052637 human pathogen Species 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000009884 interesterification Methods 0.000 description 1
- VFQXVTODMYMSMJ-UHFFFAOYSA-N isonicotinamide Chemical compound NC(=O)C1=CC=NC=C1 VFQXVTODMYMSMJ-UHFFFAOYSA-N 0.000 description 1
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 1
- 150000004715 keto acids Chemical class 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 229960005358 monensin Drugs 0.000 description 1
- GAOZTHIDHYLHMS-KEOBGNEYSA-N monensin A Chemical compound C([C@@](O1)(C)[C@H]2CC[C@@](O2)(CC)[C@H]2[C@H](C[C@@H](O2)[C@@H]2[C@H](C[C@@H](C)[C@](O)(CO)O2)C)C)C[C@@]21C[C@H](O)[C@@H](C)[C@@H]([C@@H](C)[C@@H](OC)[C@H](C)C(O)=O)O2 GAOZTHIDHYLHMS-KEOBGNEYSA-N 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000006464 oxidative addition reaction Methods 0.000 description 1
- 238000007248 oxidative elimination reaction Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 210000001322 periplasm Anatomy 0.000 description 1
- 238000012247 phenotypical assay Methods 0.000 description 1
- 101150009573 phoA gene Proteins 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- IBBMAWULFFBRKK-UHFFFAOYSA-N picolinamide Chemical compound NC(=O)C1=CC=CC=N1 IBBMAWULFFBRKK-UHFFFAOYSA-N 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- UMSVPCYSAUKCAZ-UHFFFAOYSA-N propane;hydrochloride Chemical compound Cl.CCC UMSVPCYSAUKCAZ-UHFFFAOYSA-N 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000007065 protein hydrolysis Effects 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 208000009305 pseudorabies Diseases 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011945 regioselective hydrolysis Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000003385 ring cleavage reaction Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- 244000000000 soil microbiome Species 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 230000006098 transglycosylation Effects 0.000 description 1
- 238000005918 transglycosylation reaction Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
Definitions
- the present invention relates to the production and screening of expression libraries for enzyme activity and, more particularly, to obtaining selected polynucleotides from nucleic acid of a microorganism and to screening of an expression library for enzyme activity which is produced from selected polynucleotides.
- enzymes Because of their chemo-, regio- and stereospecificity, enzymes present a unique opportunity to optimally achieve desired selective transformations. These are often extremely difficult to duplicate chemically, especially in single-step reactions. The elimination of the need for protection groups, selectivity, the ability to carry out multi-step transformations in a single reaction vessel, along with the concomitant reduction in environmental burden, has led to the increased demand for enzymes in chemical and pharmaceutical industries. Enzyme-based processes have been gradually replacing many conventional chemical-based methods. A current limitation to more widespread industrial use is primarily due to the relatively small number of commercially available enzymes. Only ⁇ 300 enzymes (excluding DNA modifying enzymes) are at present commercially available from the >3000 non DNA-modifying enzyme activities thus far described.
- enzymes for technological applications also may require performance under demanding industrial conditions. This includes activities in environments or on substrates for which the currently known arsenal of enzymes was not evolutionarily selected. Enzymes have evolved by selective pressure to perform very specific biological functions within the milieu of a living organism, under conditions of mild temperature, pH and salt concentration. For the most part, the non-DNA modifying enzyme activities thus far described have been isolated from mesophilic organisms, which represent a very small fraction of the available phylogenetic diversity. The dynamic field of biocatalysis takes on a new dimension with the help of enzymes isolated from microorganisms that thrive in extreme environments. Such enzymes must function at temperatures above 100° C. in terrestrial hot springs and deep sea thermal vents, at temperatures below 0° C.
- bioactive compounds are derived from soil microorganisms. Many microbes inhabiting soils and other complex ecological communities produce a variety of compounds that increase their ability to survive and proliferate. These compounds are generally thought to be nonessential for growth of the organism and are synthesized with the aid of genes involved in intermediary metabolism hence their name—“secondary metabolites”. Secondary metabolites that influence the growth or survival of other organisms are known as “bioactive” compounds and serve as key components of the chemical defense arsenal of both micro- and macroorganisms. Humans have exploited these compounds for use as antibiotics, antiinfectives and other bioactive compounds with activity against a broad range of prokaryotic and eukaryotic pathogens.
- bioactive compounds of microbial origin have been characterized, with more than 60% produced by the gram positive soil bacteria of the genus Streptomyces. (Barnes et al., Proc. Nat. Acad. Sci. U.S.A., 91, 1994). Of these, at least 70 are currently used for biomedical and agricultural applications.
- the largest class of bioactive compounds, the polyketides, include a broad range of antibiotics, immunosuppressants and anticancer agents which together account for sales of over $5 billion per year.
- the present invention provides a novel approach for obtaining enzymes for further use, for example, for a wide variety of industrial applications, for medical applications, for packaging into kits for use as research reagents and for other applications.
- recombinant enzymes are generated from microorganisms and are classified by various enzyme characteristics.
- one aspect of the present invention provides a process for identifying clones having a specified enzyme activity, which process comprises screening for said specified enzyme activity in a library of clones prepared by:
- nucleic acid obtained from at least one microorganism is selected by recovering from the nucleic acid, polynucleotides which specifically bind, such as by hybridization, to a probe polynucleotide sequence.
- the nucleic acid obtained from the microorganism or microorganisms can be genomic DNA, RNA or genomic gene library DNA.
- the probe may be directly or indirectly bound to a solid phase by which it is separated from the nucleic acid which is not hybridized or otherwise specifically bound to the probe.
- the process can also include releasing nucleic acid from said probe after recovering said hybridized or otherwise bound nucleic acid and amplifying the nucleic acid so released.
- the invention also provides for screening of the expression libraries for gene cluster protein product(s) and, more particularly, to obtaining selected gene clusters from nucleic acid of a prokaryote or eukaryote and to screening of an expression library for a desired activity of a protein of related activity(ies) of a family of proteins which results from expression of the selected gene cluster nucleic acid of interest.
- one embodiment of this aspect provides a process for identifying clones having a specified protein(s) activity, which process comprises screening for said specified enzyme activity in the library of clones prepared by (i) selectively isolating target gene cluster nucleic acid, from nucleic acid derived from at least one organism, by use of at least one probe polynucleotide comprising at least a portion of a polynucleotide sequence complementary to a nucleic acid sequence encoding the protein(s) having the specified activity of interest; and (ii) transforming a host with isolated target gene cluster nucleic acid to produce a library of such clones which are screened for the specified activity of interest. For example, if one is using DNA in a lambda vector one could package the DNA and infect cells via this route.
- gene cluster nucleic acid obtained from the genomic nucleic acid of the organism(s) is selected by recovering from the nucleic acid, nucleic acid which specifically binds, such as by hybridization, to a probe polynucleotide sequence.
- the polynucleotide probe may be directly or indirectly bound to a solid phase by which it is separated from the nucleic acid which is not hybridized or otherwise specifically bound to the probe.
- This embodiment of this aspect of the process of the invention can also include releasing bound nucleic acid from said probe after recovering said hybridized or otherwise bound nucleic acid and amplifying the nucleic acid so released.
- FIG. 1A shows a photograph of an agarose gel containing standards and samples a-f described in Example 2.
- Samples c-f represent DNA recovered from a genomic DNA library using two specific DNA probes and amplified using gene specific primers, as described in Example 2.
- FIG. 1B shows a photograph of an agarose gel containing standards and samples a-f described in Example 2.
- Samples c-f represent DNA recovered from a genomic DNA library using two specific DNA probes and amplified using vector specific primers, as described in Example 2.
- FIG. 2 shows a photograph of four colony hybridization plates. Plates A and B showed positive clones i.e., colonies which contained DNA prepared in accordance with the present invention, also contained probe sequence. Plates C and D were controls and showed no positive clones.
- Novel systems to clone and screen for enzymatic activities and bioactivities of interest in vitro are desirable.
- the method(s) of the present invention allow the cloning and discovery of novel bioactive molecules in vitro, and in particular novel bioactive molecules derived from uncultivated samples Large size gene clusters, genes and gene fragments can be cloned and screened using the method(s) of the present invention.
- the method(s) of the present invention allow one to clone utilizing well known genetic systems, and to screen in vitro with crude (impure) preparations.
- the present invention allows one to screen for and identify genes encoding enzymatic activities and bioactivities of interest from complex environmental gene expression libraries.
- the microorganisms from which the libraries may be prepared include prokaryotic microorganisms, such as Eubacteria and Archaebacteria, and lower eukaryotic microorganisms such as fungi, some algae and protozoa.
- the microorganisms may be cultured microorganisms or uncultured microorganisms obtained from environmental samples and such microorganisms may be extremophiles, such as thermophiles, hyperthermophiles, psychrophiles and psychrotrophs.
- the library may be produced from environmental samples in which case nucleic acid may be recovered without culturing of an organism or the nucleic acid may be recovered from a cultured organism.
- Sources of microorganism nucleic acid as a starting material library from which target nucleic acid is obtained are particularly contemplated to include environmental samples, such as microbial samples obtained from Arctic and Antarctic ice, water or permafrost sources, materials of volcanic origin, materials from soil or plant sources in tropical areas, etc.
- environmental samples such as microbial samples obtained from Arctic and Antarctic ice, water or permafrost sources, materials of volcanic origin, materials from soil or plant sources in tropical areas, etc.
- nucleic acid may be recovered from either a culturable or non-culturable organism and employed to produce an appropriate recombinant expression library for subsequent determination of enzyme activity.
- genes Bacteria and many eukaryotes have a coordinated mechanism for regulating genes whose products are involved in related processes.
- the genes are clustered, in structures referred to as “gene clusters,” on a single chromosome and are transcribed together under the control of a single regulatory sequence, including a single promoter which initiates transcription of the entire cluster.
- the gene cluster, the promoter, and additional sequences that function in regulation altogether are referred to as an “operon” and can include up to 20 or more genes, usually from 2 to 6 genes.
- a gene cluster is a group of adjacent genes that are either identical or related, usually as to their function.
- Some gene families consist of identical members. Clustering is a prerequisite for maintaining identity between genes, although clustered genes are not necessarily identical. Gene clusters range from extremes where a duplication is generated to adjacent related genes to cases where hundreds of identical genes lie in a tandem array. Sometimes no significance is discernable in a repetition of a particular gene. A principal example of this is the expressed duplicate insulin genes in some species, whereas a single insulin gene is adequate in other mammalian species.
- gene clusters undergo continual reorganization and, thus, the ability to create heterogeneous libraries of gene clusters from, for example, bacterial or other prokaryote sources is valuable in determining sources of novel proteins, particularly including enzymes such as, for example, the polyketide synthases that are responsible for the synthesis of polyketides having a vast array of useful activities.
- enzymes such as, for example, the polyketide synthases that are responsible for the synthesis of polyketides having a vast array of useful activities.
- Other types of proteins that are the product(s) of gene clusters are also contemplated, including, for example, antibiotics, antivirals, antitumor agents and regulatory proteins, such as insulin.
- Polyketides are molecules which are an extremely rich source of bioactivities, including antibiotics (such as tetracyclines and erythromycin), anti-cancer agents (daunomycin), immunosuppressants (FK506 and rapamycin), and veterinary products (monensin). Many polyketides (produced by polyketide synthases) are valuable as therapeutic agents. Polyketide synthases are multifunctional enzymes that catalyze the biosynthesis of a hugh variety of carbon chains differing in length and patterns of functionality and cyclization. Polyketide synthase genes fall into gene clusters and at least one type (designated type I) of polyketide synthases have large size genes and enzymes, complicating genetic manipulation and in vitro studies of these genes/proteins.
- the gene cluster nucleic acid is ligated into a vector, particularly wherein a vector further comprises expression regulatory sequences which can control and regulate the production of a detectable protein or protein-related array activity from the ligated gene clusters.
- a vector further comprises expression regulatory sequences which can control and regulate the production of a detectable protein or protein-related array activity from the ligated gene clusters.
- Use of vectors which have an exceptionally large capacity for exogenous nucleic acid introduction are particularly appropriate for use with such gene clusters and are described by way of example herein to include the f-factor (or fertility factor) of E. coli.
- This f-factor of E. coli is a plasmid which affect high-frequency transfer of itself during conjugation and is ideal to achieve and stably propagate large nucleic acid fragments, such as gene clusters from mixed microbial samples.
- isolated means that material is removed from its original environment (e.g., the natural environment if it is naturally occurring).
- a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide separated from some or all of the coexisting materials in the natural system, is isolated.
- the nucleic acid isolated or derived from these microorganisms can preferably be inserted into a vector or a plasmid prior to probing for selected polynucleotides.
- vectors or plasmids are preferably those containing expression regulatory sequences, including promoters, enhancers and the like.
- polynucleotides can be part of a vector and/or a composition and still be isolated, in that such vector or composition is not part of its natural environment. Particularly preferred phage or plasmid and methods for introduction and packaging into them are described in detail in the protocol set forth herein.
- nucleic acid Isolation variants for DNA and RNA isolation
- the probe polynucleotide used for selectively isolating the target nucleic acid of interest from the nucleic acid derived from at least one microorganism can be a full-length coding region sequence or a partial coding region sequence of nucleic acid for an enzyme of known activity.
- the original nucleic acid library can be preferably probed using mixtures of probes comprising at least a portion of nucleic acid sequences encoding enzymes having the specified enzyme activity.
- These probes or probe libraries are preferably single-stranded and the microbial nucleic acid which is probed has preferably been converted into single-stranded form.
- the probes that are particularly suitable are those derived from nucleic acid encoding enzymes having an activity similar or identical to the specified enzyme activity which is to be screened.
- the probe polynucleotide should be at least about 10 bases and preferably at least 15 bases. In one embodiment, the entire coding region may be employed as a probe. Conditions for the hybridization in which target nucleic acid is selectively isolated by the use of at least one polynucleotide probe will be designed to provide a hybridization stringency of at least about 50% sequence identity, more particularly a stringency providing for a sequence identity of at least about 70%.
- Hybridization techniques for probing a microbial nucleic acid library to isolate target nucleic acid of potential interest are well known in the art and any of those which are described in the literature are suitable for use herein to probe nucleic acid for separation from the remainder of the nucleic acid derived from the microorganisms.
- Solution phase hybridizations followed by binding of the probe to a solid phase is preferable.
- the probe polynucleotide is “labeled” with one partner of a specific binding pair (i.e. a ligand) and the other partner of the pair is bound to a solid matrix to provide ease of separation of target from its source.
- the ligand and specific binding partner can be selected from, in either orientation, the following: (1) an antigen or hapten and an antibody or specific binding fragment thereof; (2) biotin or iminobiotin and avidin or streptavidin; (3) a sugar and a lectin specific therefor; (4) an enzyme and an inhibitor therefor; (5) an apoenzyme and cofactor; (6) complementary homopolymeric oligonucleotides; and (7) a hormone and a receptor therefor.
- the solid phase is preferably selected from: (1) a glass or polymeric surface; (2) a packed column of polymeric beads; and (3) magnetic or paramagnetic particles.
- the target nucleic acid is separated from the probe polynucleotide after isolation. It is then amplified before being used to transform hosts.
- the double stranded nucleic acid selected to include as at least a portion thereof a predetermined nucleic acid sequence can be rendered single stranded, subjected to amplification and reannealed to provide amplified numbers of selected double stranded nucleic acid. Numerous amplification methodologies are now well known in the art.
- the selected nucleic acid is then used for preparing a library for screening by transforming a suitable organism.
- Hosts particularly those specifically identified herein as preferred, are transformed by artificial introduction of the vectors containing the target nucleic acid by inoculation under conditions conducive for such transformation.
- the screening for enzyme activity may be effected on individual expression clones or may be initially effected on a mixture of expression clones to ascertain whether or not the mixture has one or more specified enzyme activities. If the mixture has a specified enzyme activity, then the individual clones may be rescreened for such enzyme activity or for a more specific activity. Thus, for example, if a clone mixture has hydrolase activity, then the individual clones may be recovered and screened to determine which of such clones has hydrolase activity.
- the invention provides a process for enzyme activity screening of clones containing selected nucleic acid derived from a microorganism which process comprises:
- screening a library for specified enzyme activity said library including a plurality of clones, said clones having been prepared by recovering from nucleic acid of a microorganism selected nucleic acid, which nucleic acid is selected by hybridization to at least one nucleic acid sequence which is all or a portion of a nucleic acid sequence encoding an enzyme having the specified activity; and
- a nucleic acid library derived from a microorganism is subjected to a selection procedure to select therefrom nucleic acid which hybridizes to one or more probe nucleic acid sequences which is all or a portion of a nucleic acid sequence encoding an enzyme having the specified enzyme activity by:
- a nucleic acid library derived from a microorganism is subjected to a selection procedure to select therefrom double-stranded nucleic acid which hybridizes to one or more probe polynucleotide sequences which is all or a portion of a nucleic acid sequence encoding an enzyme having the specified enzyme activity by:
- the process includes a preselection to recover nucleic acid including signal or secretion sequences.
- nucleic acid including signal or secretion sequences.
- Another particularly preferred embodiment of this aspect further comprises, after (a) but before (a) above, the steps of:
- nucleic acid which has been selected and isolated to include a signal sequence is then subjected to the selection procedure hereinabove described to select and isolate therefrom nucleic acid which binds to one or more probe nucleic acid sequences derived from nucleic acid encoding an enzyme(s) having the specified enzyme activity.
- the pathways by which proteins are sorted and transported to their proper cellular location are often referred to as protein targeting pathways.
- One of the most important elements in all of these targeting systems is a short amino acid sequence at the amino terminus of a newly synthesized polypeptide called the signal sequence.
- This signal sequence directs a protein to its appropriate location in the cell and is removed during transport or when the protein reaches its final destination.
- Most lysosomal, membrane, or secreted proteins have an amino-terminal signal sequence that marks them for translocation into the lumen of the endoplasmic reticulum. More than 100 signal sequences for proteins in this group have been determined. The sequences vary in length from 13 to 36 amino acid residues.
- a phoA expression vector termed pMG, which, like TaphoA, is useful in identifying genes encoding membrane-spanning sequences or signal peptides.
- pMG which, like TaphoA, is useful in identifying genes encoding membrane-spanning sequences or signal peptides.
- This cloning system has been modified to facilitate the distinction of outer membrane and periplasmic alkaline phosphatase (AP) fusion proteins from inner membrane AP fusion proteins by transforming pMG recombinants into E. coli KS330, the strain utilized in the “blue halo” assay first described by Strauch and Beckwith, Proc. Nat. Acad. Sci. USA, 85:15761580, 1988.
- the pMG/KS330r ⁇ cloning and screening approach can identify genes encoding proteins with clevable signal peptides and therefore can serve as a first step in the identification of genes encoding polypeptides of interest.
- the nucleic acid derived from a microorganism(s) is preferably inserted into an appropriate vector (generally a vector containing suitable regulatory sequences for effecting expression) prior to subjecting such nucleic acid to a selection procedure to select and isolate therefrom nucleic acid which hybridizes to nucleic acid derived from nucleic acid encoding an enzyme(s) having the specified enzyme activity.
- an appropriate vector generally a vector containing suitable regulatory sequences for effecting expression
- expression vectors which may be used there may be mentioned viral particles, baculovirus, phage, plasmids, phagemids, cosmids, phosmids, bacterial artificial chromosomes, viral nucleic acid (e.g. vaccinia, adenovirus, foul pox virus, pseudorabies and derivatives of SV40), P1-based artificial chromosomes, yeast plasmids, yeast artificial chromosomes, and any other vectors specific for specific hosts of interest (such as bacillus, aspergillus, yeast, etc.)
- the DNA may be included in any one of a variety of expression vectors for expressing a polypeptide.
- Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences. Large numbers of suitable vectors are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example; Bacterial: pQE70, pQE60, pQE-9 (Qiagen), psiXl74, pBluescript SK, pBluescript KS, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); pTRC99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia); Eukaryotic: pWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene), pSVK3, pBPV, pMSG, pSVL (Pharmacia). However, any other plasmid or vector may be used as long as they are replicable and viable in the host
- a particularly preferred type of vector for use in the present invention contains an f-factor origin replication.
- the f-factor (or fertility factor) in E. coli is a plasmid which effects high frequency transfer of itself during conjugation and less frequent transfer of the bacterial chromosome itself.
- a particularly preferred embodiment is to use cloning vectors, referred to as “fosmids” or bacterial artificial chromosome (BAC) vectors. These are derived from E. coli f-factor which is able to stably integrate large segments of DNA. When integrated with DNA from a mixed uncultured environmental sample, this makes it possible to achieve large genomic fragments in the form of a stable “environmental DNA library.”
- nucleic acid derived from a microorganism(s) may be inserted into the vector by a variety of procedures.
- the nucleic acid sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.
- the nucleic acid sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis.
- promoter particularly named bacterial promoters include lac, lacZ, T3, T7, gpt, lambda P R , P L and trp.
- Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.
- the expression vector also contains a ribosome binding site for translation initiation and a transcription terminator.
- the vector may also include appropriate sequences for amplifying expression. Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers.
- the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E. coli.
- recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence.
- promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), ⁇ -factor, acid phosphatase, or heat shock proteins, among others.
- PGK 3-phosphoglycerate kinase
- the heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium.
- the nucleic acid selected and isolated as hereinabove described is introduced into a suitable host to prepare a library which is screened for the desired enzyme activity.
- the selected nucleic acid is preferably already in a vector which includes appropriate control sequences whereby selected nucleic acid which encodes for an enzyme may be expressed, for detection of the desired activity.
- the host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell.
- Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation (Davis, L., Dibner, M., Battey, I., Basic Methods in Molecular Biology, (1986)).
- bacterial cells such as E. coli, Streptonyces, Salmonella typhimurium
- fungal cells such as yeast
- insect cells such as Drosophila S2 and Spodoptera Sf9
- animal cells such as CHO, COS or Bowes melanoma
- adenoviruses plant cells, etc.
- mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell, 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.
- Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5′ flanking nontranscribed sequences. nucleic acid sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.
- Host cells are genetically engineered (transduced or transformed or transfected) with the vectors.
- the engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying genes.
- the culture conditions such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
- the library may be screened for a specified enzyme activity by procedures known in the art.
- the enzyme activity may be screened for one or more of the six IUB classes; oxid6reductases, transferases, hydrolases, lyases, isomerases and ligases.
- the recombinant enzymes which are determined to be positive for one or more of the IUB classes may then be rescreened for a more specific enzyme activity.
- the library may be screened for a more specialized enzyme activity.
- the library may be screened for a more specialized activity, i.e. the type of bond on which the hydrolase acts.
- the library may be screened to ascertain those hydrolases which act on one or more specified chemical functionalities, such as: (a) amide (peptide bonds), i.e. proteases; (b) ester bonds, i.e. esterases and lipases; (c) acetals, i.e., glycosidases.
- the clones which are identified as having the specified enzyme activity may then be sequenced to identify the nucleic acid sequence encoding an enzyme having the specified activity.
- the nucleic acid sequence encoding an enzyme having the specified activity may then be sequenced to identify the nucleic acid sequence encoding an enzyme having the specified activity.
- the DNA is sheared by vigorous passage through a 25 gauge double-hub needle attached to 1-ml syringes. An aliquot (0.5 ⁇ g) is electrophoresed through a 0.8% agarose gel to confirm that the majority of the sheared DNA is within the desired size range (3-6 kb).
- the sheared DNA is “polished” or made blunt-ended by treatment with mung bean nuclease.
- the sheared DNA is brought up to a volume of 405 ⁇ l with Tris/EDTA (TE buffer) and incubated with lOx mung bean buffer (45 ⁇ l) and mung bean nuclease (2.0 ⁇ l, 150 ⁇ l) for 15 minutes at 37° C.
- the reaction is extracted once with phenol/chloroform and then once with chloroform alone.
- the DNA is precipitated by adding ice-cold ethanol (1 ml) and is placed on ice for 10 minutes.
- the precipitate is spun in a microcentrifuge (high speed, 30 minutes), washed with 70% ethanol (1 ml), microcentrifuged again (high speed, 10 minutes), dried and resuspended in TE buffer (26 ⁇ l).
- EcoR I sites in the DNA must be protected from future enzymatic reactions. To accomplish this, the DNA is incubated with 10 ⁇ EcoR I methylase (5.0 ⁇ l, 40 U/ ⁇ l) for 1 hour at 37° C.
- the DNA is further treated to ensure that it is blunt-ended by incubation with 100 mM MgCl 2 (5.0 ⁇ l), dNTP mix (8.0 ⁇ l, 2.5 mM of each dGTP, dATP, dCTP, dTTP) and DNA polymerase I large (Klenow) fragment (4.0 ⁇ l, 5 U/ ⁇ l) for 30 minutes at 12° C. Then, 1 ⁇ sodium chloride/Tris/EDTA (STE buffer) 450 ⁇ l) is added and the reaction is extracted once with phenol/chloroform and then once with chloroform alone. The DNA is precipitated by adding ice-cold ethanol (1 ml) and is placed on ice for 10 minutes.
- the precipitate is spun in a microcentrifuge (high speed, 30 minutes), washed with 70% ethanol (1 ml), microcentrifuged again (high speed, 10 minutes), dried and resuspended in TE buffer (7.0 ⁇ l).
- the blunt-ended DNA is made compatible with the vector cloning site by ligating to EcoR I linkers using a very high molar ratio of linkers to DNA. This lowers the probability of two DNA molecules ligating together creating a chimeric clone and increases the probability of linkers ligating to both ends of the DNA molecules.
- the ligation reaction is performed by adding EcoR I linkers [GGAATTCC] (14 ⁇ l, 200 ng/ ⁇ l), 10 ⁇ ligase buffer (3.0 ⁇ l), 10 mM rATP (3.0 ⁇ l) and T4 DNA ligase (3.0 ⁇ l, 4 WU/ ⁇ l) and incubating at 4° C overnight.
- the ligation reaction is terminated by heating to 68° C. for 10 minutes.
- the linkers are digested to create EcoR I overhangs by incubation with water (238 ⁇ l), 10 ⁇ EcoR I buffer (30 ⁇ l) and EcoR I restriction endonuclease (2.0 ⁇ l, 100 U/ ⁇ l) for 1.5 hours at 37° C.
- the digestion reaction is discontinued by adding 0.5M EDTA and the DNA is placed on ice.
- the DNA is size fractionated through a sucrose gradient which is rapid, reliable and relatively free of inhibiting contaminants.
- the removal of sub-optimal DNA fragments and the small linkers is critical because ligation to the vector can result in recombinant molecules that are too large and unpackageable by in viro lambda packaging extracts or can result in the construction of a “linker library.”
- the DNA sample is heated to 65° C. for 10 minutes and loaded on a 10-ml sucrose gradient (40% w/v). The gradient is spun in an ultracentrifuge at room temperature, 25K for 16 hours. Fractions are collected from the gradient by puncturing the bottom of the gradient tube with an 18 gauge needle and collecting the sucrose solution which flows through the needle (10 drops per fraction).
- a small aliquot (20 ⁇ l) of each fraction is analyzed by 0.8% agarose gel electrophoresis and the fractions containing DNA in the desired size range (3-6 kb) is precipitated by adding ice cold ethanol (1 ml). The precipitate is spun in a microcentrifuge (high speed, 30 minutes), washed with 70% ethanol (1 ml), microcentrifuged again (high speed, 10 minutes), dried and resuspended in TE buffer (5-10 ⁇ l).
- a plate assay is performed on the resuspended DNA to acquire an approximate concentration by spotting 0.5 ⁇ l of the DNA on 0.8% agarose containing ehtidium bromide (5 ⁇ g/ml). The DNA is visually compared to spotted DNA standards of known concentration by viewing on a UV light box.
- the DNA is ligated to Lambda ZAP II cloning vector arms which were digested with EcoR I restriction enzyme and dephosphorylated.
- the ligation reaction has a final volume of 5.0 ⁇ l and contains 10 ⁇ ligase buffer (0.5 ⁇ l), 10 mM rATP (0.5 ⁇ l), Lambda ZAP II arms (1.0 ⁇ l, 1.0 ⁇ g/ ⁇ l), DNA ( ⁇ 2.5 ⁇ l, 200 ng), T4 DNA ligase (0.5 ⁇ l, 4 WU/ ⁇ l) and water (as needed to bring the final volume up to 5.0 ⁇ l).
- the ligation reaction is incubated overnight at 4° C.
- the ligation reaction is packaged using two in vitro lambda packaging extracts (2.5 ⁇ l of ligation per extract) in accordance with the manufacturer's protocol.
- the packaging reactions are stopped with the addition of sodium chloride/MgSO 4 /Tris/gelatin (SM buffer) (500 ⁇ l) and pooled for a total volume of 1 ml per ligation reaction.
- SM buffer sodium chloride/MgSO 4 /Tris/gelatin
- the packaged phage are titrated on a suitable host, for example, XL1-Blue MRF′ E. coli cells, as follows:
- Top agar (3 ml, 48° C.) containing Isopropyl- ⁇ -D-thio-galactopyranoside (IPTG) (1.5 mM) and 5-bromo-chloro-3-indoyl- ⁇ -D-galactopyranoside (X-gal) (2.5 mglml) is added to each tube, plated onto 100-mm petri dishes containing bottom agar and incubated at 37° C. overnight.
- the number of plaque forming units (pfu) are calculated as follows. Typical results are 5.0 ⁇ 10 5 ⁇ 1.0 ⁇ 10 6 pfu/ml with a 5% background (nonrecombinants).
- the phage particles are harvested by overlaying the plates with SM buffer (8-10 ml) and maintaining the plates at 4° C. overnight with gentle rocking.
- the phage elute into the SM buffer and are recovered by pouring the SM buffer off of each plate into a 50-ml conical tube.
- Chloroform (3 ml) is added to each tube which is then shaken vigorously, incubated at room temperature for 15 minutes and centrifuged (2,000 rpm, 10 minutes) to remove cell debris.
- the supernatant (amplified library) is then decanted into a fresh 50-ml conical tube to which chloroform (500 ⁇ l) is added and stored at 4° C. for later use.
- the library can contain DNA from isolated microorganisms, enriched cultures or environmental samples.
- Single-stranded DNA is made in one of two ways: 1) The plasmid library can be grown and the double-stranded plasmid DNA isolated. The double-stranded DNA is made single-stranded using F1 gene II protein and Exonuclease III. The gene II protein nicks the double-stranded plasmids at the F1 origin and the Exo III digests away the nicked strand leaving a single-stranded circle. This method is used by Life Technologies in their GeneTrapperTM kit; 2) the second method involves the use of a helper phage to “rescue” one of the strands of the double-stranded plasmids. The plasmid library is grown in a small overnight culture. A small aliquot of this is mixed with VCS-M13 helper phage and again grown overnight. The next morning the phagemids (virus particles containing single-stranded DNA) are recovered from the media and used in the following protocol.
- Biotinylated probes were prepared by PCR amplification of fragments of ⁇ 1300 bp in length coding for a portion of the DNA polymerase gene of these organisms. The amplification products were made using biotinylated dUTP in the amplification mix. This modified nucleotide is incorporated throughout the DNA during synthesis. Unincorporated nucleotides were removed using the QIAGEN PCR Clean-up kit.
- MPG beads 50 ⁇ l of washed and blocked MPG beads were added and mixed to each sample. These mixtures were agitated every 5 minutes for a total of 30 minutes. MPG beads are sent at 1 mg/ml in buffer containing preservative so 6 sets of 100 ⁇ l were washed 2 times in 3 ⁇ SSC and resuspended in 60 ⁇ l of 3>SSC containing 100 ⁇ g of sonicated salmon sperm DNA.
- FIG. 1A is a photograph of the autoradiogram resulting from the Southern hybridization agarose gel electrophoresis columns of DNA from sample solutions a-f in Example 2, when hybridized with gene specific primers.
- FIG. 1B is a photograph of the autoradiogram resulting from the Southern hybridization agarose gel electrophoresis columns of DNA from sample solutions a-f in Example 2, when hybridized with vector specific primers.
- FIG. 2 is a photograph of four colony hybridization plates resulting from Plates A and B show positive clones i.e., colonies containing sequences contained in the probe and which contain DNA from a library prepared in accordance with the invention. Plates C and D were controls and showed no positive clones.
- the cell suspension was mixed with one volume of 1% molten Seaplaque LMP agarose (FMC) cooled to 40° C., and then immediately drawn into a 1 ml syringe.
- the syringe was sealed with parafilm and placed on ice for 10 min.
- the cell-containing agarose plug was extruded into 10 ml of Lysis Buffer (lOmM Tris pH 8.0, 50 mM NaCl, 0.1M EDTA, 1% Sarkosyl, 0.2% sodium deoxycholate, 1 mg/ml lysozyme) and incubated at 37° C. for one hour.
- Lysis Buffer lOmM Tris pH 8.0, 50 mM NaCl, 0.1M EDTA, 1% Sarkosyl, 0.2% sodium deoxycholate, 1 mg/ml lysozyme
- the agarose plug was then transferred to 40 mls of ESP Buffer (1% Sarkosyl, 1 mg/ml proteinase K, in 0.5M EDTA), and incubated at 55° C. for 16 hours. The solution was decanted and replaced with fresh ESP Buffer, and incubated at 55° C. for an additional hour. The agarose plugs were then placed in 50 mM EDTA and stored at 4° C. shipboard for the duration of the oceanographic cruise.
- ESP Buffer 1% Sarkosyl, 1 mg/ml proteinase K, in 0.5M EDTA
- the solution was then changed to 250 ⁇ l of the same buffer containing 4U of Sau3A1 (NEB), equilibrated to 37° C. in a water bath, and then incubated on a rocking platform in a 37° C. incubator for 45 min.
- the plug was transferred to a 1.5 ml microcentrifuge tube and incubated at 68° C. for 30 min to inactivate the enzyme and to melt the agarose.
- the agarose was digested and the DNA dephosphorylased using Gelase and HK-phosphatase (Epicentre), respectively, according to the manufacturer's recommendations. Protein was removed by gentle phenol/chloroform extraction and the DNA was ethanol precipitated, pelleted, and then washed with 70% ethanol. This partially digested DNA was resuspended in sterile H 2 O to a concentration of 2.5 ng/ ⁇ l for ligation to the pFOS1 vector.
- PCR amplification results from several of the agarose plugs indicated the presence of significant amounts of archaeal DNA.
- Agarose plugs prepared from this picoplankton sample were chosen for subsequent fosmid library preparation.
- Each 1 ml agarose plug from this site contained approximately 7.5 ⁇ 10 5 cells, therefore approximately 5.4 ⁇ 10 5 cells were present in the 72 ⁇ l slice used in the preparation of the partially digested DNA.
- Vector arms were prepared from pFOS1 as described (Kim et al., Stable propagation of casmid sized human DNA inserts in an F factor based vector, Nucl. Acids Res., 20:10832-10835, 1992). Briefly, the plasmid was completely digested with AstII, dephosphorylated with HK phosphatase, and then digested with BamHI to generate two arms, each of which contained a cos site in the proper orientation for cloning and packaging ligated DNA between 35-45 kbp.
- the partially digested picoplankton DNA was ligated overnight to the PFOS1 arms in a 15 ⁇ l ligation reaction containing 25 ng each of vector and insert and 1U of T4 DNA ligase (Boehringer-Mannheim).
- the ligated DNA in four microliters of this reaction was in vitro packaged using the Gigapack XL packaging system (Stratagene), the fosmid particles transfected to E. coli strain DH10B (BRL), and the cells spread onto LB cm15 plates.
- the resultant fosmid clones were picked into 96-well microliter dishes containing LB cm15 supplemented with 7% glycerol. Recombinant fosmids, each containing ca.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Disclosed is a process for identifying clones having a specified enzyme activity by screening for the specified enzyme activity in a library of clones prepared by (i) selectively isolating target nucleic acid from nucleic acid derived from at least one microorganism, by use of at least one polynucleotide probe comprising at least a portion of a nucleic acid sequence encoding an enzyme having the specified enzyme activity; and (ii) transforming a host with isolated target nucleic acid to produce a library of clones which are screened for the specified enzyme activity.
Description
- This application is a continuation-in-part of U.S. application Ser. No. 08/692,002 filed Aug. 2, 1996, which is a continuation-in-part of provisional application No. 60/008,317 filed Dec. 7, 1995.
- The present invention relates to the production and screening of expression libraries for enzyme activity and, more particularly, to obtaining selected polynucleotides from nucleic acid of a microorganism and to screening of an expression library for enzyme activity which is produced from selected polynucleotides.
- There is a critical need in the chemical industry for efficient catalysts for the practical synthesis of optically pure materials; enzymes can provide the optimal solution. All classes of molecules and compounds that are utilized in both established and emerging chemical, pharmaceutical, textile, food and feed, detergent markets must meet stringent economical and environmental standards. The synthesis of polymers, pharmaceuticals, natural products and agrochemicals is often hampered by expensive processes which produce harmful byproducts and which suffer from low enantioselectivity. Enzymes have a number of remarkable advantages which can overcome these problems in catalysis: they act on single functional groups, they distinguish between similar functional groups on a single molecule, and they distinguish between enantiomers. Moreover, they are biodegradable and function at very low mole fractions in reaction mixtures. Because of their chemo-, regio- and stereospecificity, enzymes present a unique opportunity to optimally achieve desired selective transformations. These are often extremely difficult to duplicate chemically, especially in single-step reactions. The elimination of the need for protection groups, selectivity, the ability to carry out multi-step transformations in a single reaction vessel, along with the concomitant reduction in environmental burden, has led to the increased demand for enzymes in chemical and pharmaceutical industries. Enzyme-based processes have been gradually replacing many conventional chemical-based methods. A current limitation to more widespread industrial use is primarily due to the relatively small number of commercially available enzymes. Only ˜300 enzymes (excluding DNA modifying enzymes) are at present commercially available from the >3000 non DNA-modifying enzyme activities thus far described.
- The use of enzymes for technological applications also may require performance under demanding industrial conditions. This includes activities in environments or on substrates for which the currently known arsenal of enzymes was not evolutionarily selected. Enzymes have evolved by selective pressure to perform very specific biological functions within the milieu of a living organism, under conditions of mild temperature, pH and salt concentration. For the most part, the non-DNA modifying enzyme activities thus far described have been isolated from mesophilic organisms, which represent a very small fraction of the available phylogenetic diversity. The dynamic field of biocatalysis takes on a new dimension with the help of enzymes isolated from microorganisms that thrive in extreme environments. Such enzymes must function at temperatures above 100° C. in terrestrial hot springs and deep sea thermal vents, at temperatures below 0° C. in arctic waters, in the saturated salt environment of the Dead Sea, at pH values around 0 in coal deposits and geothermal sulfur-rich springs, or at pH values greater than 11 in sewage sludge. Enzymes obtained from these extremophilic organisms open a new field in biocatalysis.
- In addition to the need for new enzymes for industrial use, there has been a dramatic increase in the need for bioactive compounds with novel activities. This demand has arisen largely from changes in worldwide demographics coupled with the clear and increasing trend in the number of pathogenic organisms that are resistant to currently available antibiotics. For example, while there has been a surge in demand for antibacterial drugs in emerging nations with young populations, countries with aging populations, such as the U.S., require a growing repertoire of drugs against cancer, diabetes, arthritis and other debilitating conditions. The death rate from infectious diseases has increased 58% between 1980 and 1992 and it has been estimated that the emergence of antibiotic resistant microbes has added in excess of $30 billion annually to the cost of health care in the U.S. alone. (Adams et al., Chemical and Engineering News, 1995; Amann et al., Microbiological Reviews, 59, 1995). As a response to this trend pharmaceutical companies have significantly increased their screening of microbial diversity for compounds with unique activities or specificities.
- There are several common sources of lead compounds (drug candidates), including natural product collections, synthetic chemical collections, and synthetic combinatorial chemical libraries, such as nucleotides, peptides, or other polymeric molecules. Each of these sources has advantages and disadvantages. The success of programs to screen these candidates depends largely on the number of compounds entering the programs, and pharmaceutical companies have to date screened hundred of thousands of synthetic and natural compounds in search of lead compounds. Unfortunately, the ratio of novel to previously-discovered compounds has diminished with time. The discovery rate of novel lead compounds has not kept pace with demand despite the best efforts of pharmaceutical companies. There exists a strong need for accessing new sources of potential drug candidates.
- The majority of bioactive compounds currently in use are derived from soil microorganisms. Many microbes inhabiting soils and other complex ecological communities produce a variety of compounds that increase their ability to survive and proliferate. These compounds are generally thought to be nonessential for growth of the organism and are synthesized with the aid of genes involved in intermediary metabolism hence their name—“secondary metabolites”. Secondary metabolites that influence the growth or survival of other organisms are known as “bioactive” compounds and serve as key components of the chemical defense arsenal of both micro- and macroorganisms. Humans have exploited these compounds for use as antibiotics, antiinfectives and other bioactive compounds with activity against a broad range of prokaryotic and eukaryotic pathogens. Approximately 6,000 bioactive compounds of microbial origin have been characterized, with more than 60% produced by the gram positive soil bacteria of the genus Streptomyces. (Barnes et al., Proc. Nat. Acad. Sci. U.S.A., 91, 1994). Of these, at least 70 are currently used for biomedical and agricultural applications. The largest class of bioactive compounds, the polyketides, include a broad range of antibiotics, immunosuppressants and anticancer agents which together account for sales of over $5 billion per year.
- Despite the seemingly large number of available bioactive compounds, it is clear that one of the greatest challenges facing modern biomedical science is the proliferation of antibiotic resistant pathogens. Because of their short generation time and ability to readily exchange genetic information, pathogenic microbes have rapidly evolved and disseminated resistance mechanisms against virtually all classes of antibiotic compounds. For example, there are virulent strains of the human pathogens Staphylococcus and Streptococcus that can now be treated with but a single antibiotic, vancomycin, and resistance to this compound will require only the transfer of a single gene, vana, from resistant Enterococcus species for this to occur. (Bateson et al., System. Appl. Microbiol, 12, 1989). When this crucial need for novel antibacterial compounds is superimposed on the growing demand for enzyme inhibitors, immunosuppressants and anti-cancer agents it becomes readily apparent why pharmaceutical companies have stepped up their screening of microbial diversity for bioactive compounds with novel properties.
- The present invention provides a novel approach for obtaining enzymes for further use, for example, for a wide variety of industrial applications, for medical applications, for packaging into kits for use as research reagents and for other applications. In accordance with the present invention, recombinant enzymes are generated from microorganisms and are classified by various enzyme characteristics.
- More particularly, one aspect of the present invention provides a process for identifying clones having a specified enzyme activity, which process comprises screening for said specified enzyme activity in a library of clones prepared by:
- (i) selectively isolating target RNA or genomic DNA or fragments thereof, from nucleic acid derived from at least one microorganism, by use of at least one probe polynucleotide comprising at least a portion of a polynucleotide sequence encoding an enzyme having the specified enzyme activity; and
- (ii) transforming a host with isolated target cDNA, genomic DNA or fragments thereof, to produce a library of clones which are screened, preferably for the specified enzyme activity, using an activity library screening or nucleic acid library screening protocol.
- In a preferred embodiment of this aspect, nucleic acid obtained from at least one microorganism is selected by recovering from the nucleic acid, polynucleotides which specifically bind, such as by hybridization, to a probe polynucleotide sequence. The nucleic acid obtained from the microorganism or microorganisms can be genomic DNA, RNA or genomic gene library DNA. One could even use nucleic acid prepared for vector ligation, for instance. The probe may be directly or indirectly bound to a solid phase by which it is separated from the nucleic acid which is not hybridized or otherwise specifically bound to the probe. The process can also include releasing nucleic acid from said probe after recovering said hybridized or otherwise bound nucleic acid and amplifying the nucleic acid so released.
- The invention also provides for screening of the expression libraries for gene cluster protein product(s) and, more particularly, to obtaining selected gene clusters from nucleic acid of a prokaryote or eukaryote and to screening of an expression library for a desired activity of a protein of related activity(ies) of a family of proteins which results from expression of the selected gene cluster nucleic acid of interest.
- More particularly, one embodiment of this aspect provides a process for identifying clones having a specified protein(s) activity, which process comprises screening for said specified enzyme activity in the library of clones prepared by (i) selectively isolating target gene cluster nucleic acid, from nucleic acid derived from at least one organism, by use of at least one probe polynucleotide comprising at least a portion of a polynucleotide sequence complementary to a nucleic acid sequence encoding the protein(s) having the specified activity of interest; and (ii) transforming a host with isolated target gene cluster nucleic acid to produce a library of such clones which are screened for the specified activity of interest. For example, if one is using DNA in a lambda vector one could package the DNA and infect cells via this route.
- In a particular embodiment of this aspect, gene cluster nucleic acid obtained from the genomic nucleic acid of the organism(s) is selected by recovering from the nucleic acid, nucleic acid which specifically binds, such as by hybridization, to a probe polynucleotide sequence. The polynucleotide probe may be directly or indirectly bound to a solid phase by which it is separated from the nucleic acid which is not hybridized or otherwise specifically bound to the probe. This embodiment of this aspect of the process of the invention can also include releasing bound nucleic acid from said probe after recovering said hybridized or otherwise bound nucleic acid and amplifying the nucleic acid so released.
- These and other aspects of the present invention will be apparent to those skilled in the art from the teachings herein.
- FIG. 1A shows a photograph of an agarose gel containing standards and samples a-f described in Example 2. Samples c-f represent DNA recovered from a genomic DNA library using two specific DNA probes and amplified using gene specific primers, as described in Example 2.
- FIG. 1B shows a photograph of an agarose gel containing standards and samples a-f described in Example 2. Samples c-f represent DNA recovered from a genomic DNA library using two specific DNA probes and amplified using vector specific primers, as described in Example 2.
- FIG. 2 shows a photograph of four colony hybridization plates. Plates A and B showed positive clones i.e., colonies which contained DNA prepared in accordance with the present invention, also contained probe sequence. Plates C and D were controls and showed no positive clones.
- Novel systems to clone and screen for enzymatic activities and bioactivities of interest in vitro are desirable. The method(s) of the present invention allow the cloning and discovery of novel bioactive molecules in vitro, and in particular novel bioactive molecules derived from uncultivated samples Large size gene clusters, genes and gene fragments can be cloned and screened using the method(s) of the present invention. Unlike previous strategies, the method(s) of the present invention allow one to clone utilizing well known genetic systems, and to screen in vitro with crude (impure) preparations.
- The present invention allows one to screen for and identify genes encoding enzymatic activities and bioactivities of interest from complex environmental gene expression libraries. The microorganisms from which the libraries may be prepared include prokaryotic microorganisms, such as Eubacteria and Archaebacteria, and lower eukaryotic microorganisms such as fungi, some algae and protozoa. The microorganisms may be cultured microorganisms or uncultured microorganisms obtained from environmental samples and such microorganisms may be extremophiles, such as thermophiles, hyperthermophiles, psychrophiles and psychrotrophs.
- As previously indicated, the library may be produced from environmental samples in which case nucleic acid may be recovered without culturing of an organism or the nucleic acid may be recovered from a cultured organism.
- Sources of microorganism nucleic acid as a starting material library from which target nucleic acid is obtained are particularly contemplated to include environmental samples, such as microbial samples obtained from Arctic and Antarctic ice, water or permafrost sources, materials of volcanic origin, materials from soil or plant sources in tropical areas, etc. Thus, for example, nucleic acid may be recovered from either a culturable or non-culturable organism and employed to produce an appropriate recombinant expression library for subsequent determination of enzyme activity.
- Bacteria and many eukaryotes have a coordinated mechanism for regulating genes whose products are involved in related processes. The genes are clustered, in structures referred to as “gene clusters,” on a single chromosome and are transcribed together under the control of a single regulatory sequence, including a single promoter which initiates transcription of the entire cluster. The gene cluster, the promoter, and additional sequences that function in regulation altogether are referred to as an “operon” and can include up to 20 or more genes, usually from 2 to 6 genes. Thus, a gene cluster is a group of adjacent genes that are either identical or related, usually as to their function.
- Some gene families consist of identical members. Clustering is a prerequisite for maintaining identity between genes, although clustered genes are not necessarily identical. Gene clusters range from extremes where a duplication is generated to adjacent related genes to cases where hundreds of identical genes lie in a tandem array. Sometimes no significance is discernable in a repetition of a particular gene. A principal example of this is the expressed duplicate insulin genes in some species, whereas a single insulin gene is adequate in other mammalian species.
- It is important to further research gene clusters and the extent to which the full length of the cluster is necessary for the expression of the proteins resulting therefrom. Further, gene clusters undergo continual reorganization and, thus, the ability to create heterogeneous libraries of gene clusters from, for example, bacterial or other prokaryote sources is valuable in determining sources of novel proteins, particularly including enzymes such as, for example, the polyketide synthases that are responsible for the synthesis of polyketides having a vast array of useful activities. Other types of proteins that are the product(s) of gene clusters are also contemplated, including, for example, antibiotics, antivirals, antitumor agents and regulatory proteins, such as insulin.
- Polyketides are molecules which are an extremely rich source of bioactivities, including antibiotics (such as tetracyclines and erythromycin), anti-cancer agents (daunomycin), immunosuppressants (FK506 and rapamycin), and veterinary products (monensin). Many polyketides (produced by polyketide synthases) are valuable as therapeutic agents. Polyketide synthases are multifunctional enzymes that catalyze the biosynthesis of a hugh variety of carbon chains differing in length and patterns of functionality and cyclization. Polyketide synthase genes fall into gene clusters and at least one type (designated type I) of polyketide synthases have large size genes and enzymes, complicating genetic manipulation and in vitro studies of these genes/proteins.
- The ability to select and combine desired components from a library of polyketides and postpolyketide biosynthesis genes for generation of novel polyketides for study is appealing. The method(s) of the present invention make it possible to and facilitate the cloning of novel polyketide synthases, since one can generate gene banks with clones containing large inserts (especially when using the f-factor based vectors), which facilitates cloning of gene clusters.
- Preferably, the gene cluster nucleic acid is ligated into a vector, particularly wherein a vector further comprises expression regulatory sequences which can control and regulate the production of a detectable protein or protein-related array activity from the ligated gene clusters. Use of vectors which have an exceptionally large capacity for exogenous nucleic acid introduction are particularly appropriate for use with such gene clusters and are described by way of example herein to include the f-factor (or fertility factor) of E. coli. This f-factor of E. coli is a plasmid which affect high-frequency transfer of itself during conjugation and is ideal to achieve and stably propagate large nucleic acid fragments, such as gene clusters from mixed microbial samples.
- The term “isolated” means that material is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide separated from some or all of the coexisting materials in the natural system, is isolated.
- The nucleic acid isolated or derived from these microorganisms can preferably be inserted into a vector or a plasmid prior to probing for selected polynucleotides. Such vectors or plasmids are preferably those containing expression regulatory sequences, including promoters, enhancers and the like. Such polynucleotides can be part of a vector and/or a composition and still be isolated, in that such vector or composition is not part of its natural environment. Particularly preferred phage or plasmid and methods for introduction and packaging into them are described in detail in the protocol set forth herein.
- The following outlines a general procedure for producing libraries from both culturable and non-culturable organisms, which libraries can be probed to select therefrom nucleic acid sequences which hybridize to specified probe polynucleotides:
- ENVIRONMENTAL SAMPLE
- Obtain Biomass
- nucleic acid Isolation (various methods for DNA and RNA isolation)
- For Example:
- Shear DNA (25 gauge needle)
- Blunt DNA (Mung Bean Nuclease)
- Methylate DNA (EcoR I Methylase)
- Ligate to EcoR I linkers (GGAATTCC)
- Cut back linkers (EcoR I Restriction Endonuclease)
- Size Fractionate (Sucrose Gradient)
- Ligate to lambda vector
- Package (in vitro lambda packaging extract)
- Plate on E. coli host and amplify
- The probe polynucleotide used for selectively isolating the target nucleic acid of interest from the nucleic acid derived from at least one microorganism can be a full-length coding region sequence or a partial coding region sequence of nucleic acid for an enzyme of known activity. The original nucleic acid library can be preferably probed using mixtures of probes comprising at least a portion of nucleic acid sequences encoding enzymes having the specified enzyme activity. These probes or probe libraries are preferably single-stranded and the microbial nucleic acid which is probed has preferably been converted into single-stranded form. The probes that are particularly suitable are those derived from nucleic acid encoding enzymes having an activity similar or identical to the specified enzyme activity which is to be screened.
- The probe polynucleotide should be at least about 10 bases and preferably at least 15 bases. In one embodiment, the entire coding region may be employed as a probe. Conditions for the hybridization in which target nucleic acid is selectively isolated by the use of at least one polynucleotide probe will be designed to provide a hybridization stringency of at least about 50% sequence identity, more particularly a stringency providing for a sequence identity of at least about 70%.
- Hybridization techniques for probing a microbial nucleic acid library to isolate target nucleic acid of potential interest are well known in the art and any of those which are described in the literature are suitable for use herein to probe nucleic acid for separation from the remainder of the nucleic acid derived from the microorganisms. Solution phase hybridizations followed by binding of the probe to a solid phase is preferable.
- Preferably the probe polynucleotide is “labeled” with one partner of a specific binding pair (i.e. a ligand) and the other partner of the pair is bound to a solid matrix to provide ease of separation of target from its source. The ligand and specific binding partner can be selected from, in either orientation, the following: (1) an antigen or hapten and an antibody or specific binding fragment thereof; (2) biotin or iminobiotin and avidin or streptavidin; (3) a sugar and a lectin specific therefor; (4) an enzyme and an inhibitor therefor; (5) an apoenzyme and cofactor; (6) complementary homopolymeric oligonucleotides; and (7) a hormone and a receptor therefor. The solid phase is preferably selected from: (1) a glass or polymeric surface; (2) a packed column of polymeric beads; and (3) magnetic or paramagnetic particles.
- Further, it is optional but desirable to perform an amplification of the target nucleic acid that has been isolated. In this embodiment the target nucleic acid is separated from the probe polynucleotide after isolation. It is then amplified before being used to transform hosts. The double stranded nucleic acid selected to include as at least a portion thereof a predetermined nucleic acid sequence can be rendered single stranded, subjected to amplification and reannealed to provide amplified numbers of selected double stranded nucleic acid. Numerous amplification methodologies are now well known in the art.
- The selected nucleic acid is then used for preparing a library for screening by transforming a suitable organism. Hosts, particularly those specifically identified herein as preferred, are transformed by artificial introduction of the vectors containing the target nucleic acid by inoculation under conditions conducive for such transformation. One could transform with double stranded circular or linear nucleic acid or there may also be instances where one would transform with single stranded circular or linear nucleic acid.
- The resultant libraries of transformed clones are then screened for clones which display activity for the enzyme of interest in a phenotypic assay for enzyme activity.
- Having prepared a multiplicity of clones from nucleic acid selectively isolated from an organism, such clones are screened for a specific enzyme activity and to identify the clones having the specified enzyme characteristics.
- The screening for enzyme activity may be effected on individual expression clones or may be initially effected on a mixture of expression clones to ascertain whether or not the mixture has one or more specified enzyme activities. If the mixture has a specified enzyme activity, then the individual clones may be rescreened for such enzyme activity or for a more specific activity. Thus, for example, if a clone mixture has hydrolase activity, then the individual clones may be recovered and screened to determine which of such clones has hydrolase activity.
- As described with respect to one of the above aspects, the invention provides a process for enzyme activity screening of clones containing selected nucleic acid derived from a microorganism which process comprises:
- screening a library for specified enzyme activity, said library including a plurality of clones, said clones having been prepared by recovering from nucleic acid of a microorganism selected nucleic acid, which nucleic acid is selected by hybridization to at least one nucleic acid sequence which is all or a portion of a nucleic acid sequence encoding an enzyme having the specified activity; and
- transforming a host with the selected nucleic acid to produce clones which are screened for the specified enzyme activity.
- In one embodiment, a nucleic acid library derived from a microorganism is subjected to a selection procedure to select therefrom nucleic acid which hybridizes to one or more probe nucleic acid sequences which is all or a portion of a nucleic acid sequence encoding an enzyme having the specified enzyme activity by:
- (a) rendering -the double-stranded nucleic acid population into a single-stranded nucleic acid population;
- (b) contacting the single-stranded nucleic acid population of (a) with the nucleic acid probe bound to a ligand under conditions permissive of hybridization so as to produce a double-stranded complex of probe and members of the nucleic acid population which hybridize thereto;
- (c) contacting the double-stranded complex of (b) with a solid phase specific binding partner for said ligand so as to produce a solid phase complex;
- (d) separating the solid phase complex from the single-stranded nucleic acid population of (b);
- (e) releasing from the probe the members of the population which had bound to the solid phase bound probe;
- (f) forming double-stranded nucleic acid from the members of the population of (e);
- (g) introducing the double-stranded nucleic acid of (f) into a suitable host to form a library containing a plurality of clones containing the selected nucleic acid; and
- (h) screening the library for the specified enzyme activity.
- In another embodiment, a nucleic acid library derived from a microorganism is subjected to a selection procedure to select therefrom double-stranded nucleic acid which hybridizes to one or more probe polynucleotide sequences which is all or a portion of a nucleic acid sequence encoding an enzyme having the specified enzyme activity by:
- (a) contacting the double-stranded nucleic acid population with the polynucleotide probe bound to a ligand under conditions permissive of hybridization so as to produce a complex of probe and members of the nucleic acid population which hybridize thereto;
- (b) contacting the complex of (a) with a solid phase specific binding partner for said ligand so as to produce a solid phase complex;
- (c) separating the solid phase complex from the unbound nucleic acid population of (b);
- (d) releasing from the probe the members of the population which had bound to the solid phase bound probe;
- (e) introducing the double-stranded nucleic acid of (d) into a suitable host to form a library containing a plurality of clones containing the selected nucleic acid; and
- (f) screening the library for the specified enzyme activity.
- In another aspect, the process includes a preselection to recover nucleic acid including signal or secretion sequences. In this manner it is possible to select from the nucleic acid population by hybridization as hereinabove described only nucleic acid which includes a signal or secretion sequence. The following paragraphs describe the protocol for this embodiment of the invention, the nature and function of secretion signal sequences in general and a specific exemplary application of such sequences to an assay or selection process.
- Another particularly preferred embodiment of this aspect further comprises, after (a) but before (a) above, the steps of:
- (i). contacting the double-stranded nucleic acid population of (a) with a ligand-bound oligonucleotide probe that is complementary to a secretion signal sequence unique to a given class of proteins under conditions permissive of hybridization to form a double-stranded complex;
- (ii). contacting the complex of (a i) with a solid phase specific binding partner for said ligand so as to produce a solid phase complex;
- (iii) separating the solid phase complex from the unbound nucleic acid population;
- (iv) releasing the members of the population which had bound to said solid phase bound probe; and
- (v) separating the solid phase bound probe from the members of the population which had bound thereto.
- The nucleic acid which has been selected and isolated to include a signal sequence is then subjected to the selection procedure hereinabove described to select and isolate therefrom nucleic acid which binds to one or more probe nucleic acid sequences derived from nucleic acid encoding an enzyme(s) having the specified enzyme activity.
- The pathways by which proteins are sorted and transported to their proper cellular location are often referred to as protein targeting pathways. One of the most important elements in all of these targeting systems is a short amino acid sequence at the amino terminus of a newly synthesized polypeptide called the signal sequence. This signal sequence directs a protein to its appropriate location in the cell and is removed during transport or when the protein reaches its final destination. Most lysosomal, membrane, or secreted proteins have an amino-terminal signal sequence that marks them for translocation into the lumen of the endoplasmic reticulum. More than 100 signal sequences for proteins in this group have been determined. The sequences vary in length from 13 to 36 amino acid residues.
- A phoA expression vector, termed pMG, which, like TaphoA, is useful in identifying genes encoding membrane-spanning sequences or signal peptides. Giladi et al., J. Bacteriol., 175(13):41294136, 1993. This cloning system has been modified to facilitate the distinction of outer membrane and periplasmic alkaline phosphatase (AP) fusion proteins from inner membrane AP fusion proteins by transforming pMG recombinants into E. coli KS330, the strain utilized in the “blue halo” assay first described by Strauch and Beckwith, Proc. Nat. Acad. Sci. USA, 85:15761580, 1988. The pMG/KS330r− cloning and screening approach can identify genes encoding proteins with clevable signal peptides and therefore can serve as a first step in the identification of genes encoding polypeptides of interest.
- The nucleic acid derived from a microorganism(s) is preferably inserted into an appropriate vector (generally a vector containing suitable regulatory sequences for effecting expression) prior to subjecting such nucleic acid to a selection procedure to select and isolate therefrom nucleic acid which hybridizes to nucleic acid derived from nucleic acid encoding an enzyme(s) having the specified enzyme activity.
- As representative examples of expression vectors which may be used there may be mentioned viral particles, baculovirus, phage, plasmids, phagemids, cosmids, phosmids, bacterial artificial chromosomes, viral nucleic acid (e.g. vaccinia, adenovirus, foul pox virus, pseudorabies and derivatives of SV40), P1-based artificial chromosomes, yeast plasmids, yeast artificial chromosomes, and any other vectors specific for specific hosts of interest (such as bacillus, aspergillus, yeast, etc.) Thus, for example, the DNA may be included in any one of a variety of expression vectors for expressing a polypeptide. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences. Large numbers of suitable vectors are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example; Bacterial: pQE70, pQE60, pQE-9 (Qiagen), psiXl74, pBluescript SK, pBluescript KS, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); pTRC99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia); Eukaryotic: pWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene), pSVK3, pBPV, pMSG, pSVL (Pharmacia). However, any other plasmid or vector may be used as long as they are replicable and viable in the host.
- A particularly preferred type of vector for use in the present invention contains an f-factor origin replication. The f-factor (or fertility factor) in E. coli is a plasmid which effects high frequency transfer of itself during conjugation and less frequent transfer of the bacterial chromosome itself. A particularly preferred embodiment is to use cloning vectors, referred to as “fosmids” or bacterial artificial chromosome (BAC) vectors. These are derived from E. coli f-factor which is able to stably integrate large segments of DNA. When integrated with DNA from a mixed uncultured environmental sample, this makes it possible to achieve large genomic fragments in the form of a stable “environmental DNA library.”
- The nucleic acid derived from a microorganism(s) may be inserted into the vector by a variety of procedures. In general, the nucleic acid sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.
- The nucleic acid sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. Particular named bacterial promoters include lac, lacZ, T3, T7, gpt, lambda P R, PL and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression. Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers.
- In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E. coli.
- Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), α-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium.
- The nucleic acid selected and isolated as hereinabove described is introduced into a suitable host to prepare a library which is screened for the desired enzyme activity. The selected nucleic acid is preferably already in a vector which includes appropriate control sequences whereby selected nucleic acid which encodes for an enzyme may be expressed, for detection of the desired activity. The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation (Davis, L., Dibner, M., Battey, I., Basic Methods in Molecular Biology, (1986)).
- As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as E. coli, Streptonyces, Salmonella typhimurium; fungal cells, such as yeast; insect cells such as Drosophila S2 and Spodoptera Sf9; animal cells such as CHO, COS or Bowes melanoma; adenoviruses; plant cells, etc. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.
- With particular references to various mammalian cell culture systems that can be employed to express recombinant protein, examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell, 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5′ flanking nontranscribed sequences. nucleic acid sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.
- Host cells are genetically engineered (transduced or transformed or transfected) with the vectors. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying genes. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
- The library may be screened for a specified enzyme activity by procedures known in the art. For example, the enzyme activity may be screened for one or more of the six IUB classes; oxid6reductases, transferases, hydrolases, lyases, isomerases and ligases. The recombinant enzymes which are determined to be positive for one or more of the IUB classes may then be rescreened for a more specific enzyme activity.
- Alternatively, the library may be screened for a more specialized enzyme activity. For example, instead of generically screening for hydrolase activity, the library may be screened for a more specialized activity, i.e. the type of bond on which the hydrolase acts. Thus, for example, the library may be screened to ascertain those hydrolases which act on one or more specified chemical functionalities, such as: (a) amide (peptide bonds), i.e. proteases; (b) ester bonds, i.e. esterases and lipases; (c) acetals, i.e., glycosidases.
- The clones which are identified as having the specified enzyme activity may then be sequenced to identify the nucleic acid sequence encoding an enzyme having the specified activity. Thus, in accordance with the present invention it is possible to isolate and identify: (i) nucleic acid encoding an enzyme having a specified enzyme activity, (ii) enzymes having such activity (including the amino acid sequence thereof) and (iii) produce recombinant enzymes having such activity.
- Having thus disclosed exemplary embodiments of the present invention, it should be noted by those skilled in the art that the disclosures are exemplary only and that various other alternatives, adaptations and modifications may be made within the scope of the present invention. Accordingly, the present invention is not limited to the specific embodiments as illustrated herein.
- Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following examples are to be considered illustrative and thus are not limiting of the remainder of the disclosure in any way whatsoever.
- Lipase/Esterase
- a. Enantioselective hydrolysis of esters (lipids)/thioesters
- 1) Resolution of racemic mixtures
- 2) Synthesis of optically active acids or alcohols from meso-diesters
- b. Selective syntheses
- 1) Regiospecific hydrolysis of carbohydrate esters
- 2) Selective hydrolysis of cyclic secondary alcohols
- c. Synthesis of optically active esters, lactones, acids, alcohols
- 1) Transesterification of activated/nonactivated esters
- 2) Interesterification
- 3) Optically active lactones from hydroxyesters
- 4) Regio- and enantioselective ring opening of anhydrides
- d. Detergents
- e. Fat/Oil conversion
- f. Cheese ripening
- 2 Protease
- a. Ester/amide synthesis
- b. Peptide synthesis
- c. Resolution of racemic mixtures of amino acid esters
- d. Synthesis of non-natural amino acids
- e. Detergents/protein hydrolysis
- 3 Glycosidase/Glycosyl Transferase
- a. Sugar/polymer synthesis
- b. Cleavage of glycosidic linkages to form mono, di-and oligosaccharides
- c. Synthesis of complex oligosaccharides
- d. Glycoside synthesis using UDP-galactosyl transferase
- e. Transglycosylation of disaccharides, glycosyl fluorides, aryl galactosides
- f. Glycosyl transfer in oligosaccharide synthesis
- g. Diastereoselective cleavage of β-glucosylsulfoxides
- h. Asymmetric glycosylations
- i. Food processing
- j. Paper processing
- 4 Phosphatase/Kinase
- a. Synthesis/hydrolysis of phosphate esters
- 1) Regio-, enantioselective phosphorylation
- 2) Introduction of phosphate esters
- 3) Synthesize phospholipid precursors
- 4) Controlled polynucleotide synthesis
- b. Activate biological molecule
- c. Selective phosphate bond formation without protecting groups
- 5 Mono/Dioxygenase
- a. Direct oxyfunctionalization of unactivated organic substrates
- b. Hydroxylation of alkane, aromatics, steroids
- c. Epoxidation of alkenes
- d. Enantioselective sulphoxidation
- e. Regio- and stereoselective Bayer-Villiger oxidations
- 6 Haloperoxidase
- a. Oxidative addition of halide ion to nucleophilic sites
- b. Addition of hypohalous acids to olefinic bonds
- c. Ring cleavage of cyclopropanes
- d. Activated aromatic substrates converted to ortho and para derivatives
- e. 1.3 diketones converted to 2-halo-derivatives
- f. Heteroatom oxidation of sulfur and nitrogen containing substrates
- g. Oxidation of enol acetates, alkynes and activated aromatic rings
- 7 Lignin Peroxidase/Diarylpropane Peroxidase
- a. Oxidative cleavage of C-C bonds
- b. Oxidation of benzylic alcohols to aldehydes
- c. Hydroxylation of benzylic carbons
- d. Phenol dimerization
- e. Hydroxylation of double bonds to form diols
- f. Cleavage of lignin aldehydes
- 8 Epoxide Hydrolase
- a. Synthesis of enantiomerically pure bioactive compounds
- b. Regio- and enantioselective hydrolysis of epoxide
- c. Aromatic and olefinic epoxidation by monooxygenases to form epoxides
- d. Resolution of racemic epoxides
- e. Hydrolysis of steroid epoxides
- 9 Nitrile Hydratase/Nitrilase
- a. Hydrolysis of aliphatic nitrites to carboxamides
- b. Hydrolysis of aromatic, heterocyclic, unsaturated aliphatic nitrites to corresponding acids
- c. Hydrolysis of acrylonitrile
- d. Production of aromatic and carboxamides, carboxylic acids (nicotinamide, picolinamide, isonicotinamide)
- e. Regioselective hydrolysis of acrylic dinitrile
- f. α-amino acids from α-hydroxynitriles
- 10 Transaminase
- a. Transfer of amino groups into oxo-acids
- 11 Amidase/Acylase
- a. Hydrolysis of amides, amidines, and other C—N bonds
- b. Non-natural amino acid resolution and synthesis
- Cloning DNA fragments prepared by random cleavage of the target DNA generates the most representative library. An aliquot of DNA (50-100 μg) isolated from biomass is prepared as follows:
- The DNA is sheared by vigorous passage through a 25 gauge double-hub needle attached to 1-ml syringes. An aliquot (0.5 μg) is electrophoresed through a 0.8% agarose gel to confirm that the majority of the sheared DNA is within the desired size range (3-6 kb).
- The sheared DNA is “polished” or made blunt-ended by treatment with mung bean nuclease. First, the sheared DNA is brought up to a volume of 405 μl with Tris/EDTA (TE buffer) and incubated with lOx mung bean buffer (45 μl) and mung bean nuclease (2.0 μl, 150 μl) for 15 minutes at 37° C. The reaction is extracted once with phenol/chloroform and then once with chloroform alone. The DNA is precipitated by adding ice-cold ethanol (1 ml) and is placed on ice for 10 minutes. The precipitate is spun in a microcentrifuge (high speed, 30 minutes), washed with 70% ethanol (1 ml), microcentrifuged again (high speed, 10 minutes), dried and resuspended in TE buffer (26 μl).
- EcoR I sites in the DNA must be protected from future enzymatic reactions. To accomplish this, the DNA is incubated with 10×EcoR I methylase (5.0 μl, 40 U/μl) for 1 hour at 37° C.
- The DNA is further treated to ensure that it is blunt-ended by incubation with 100 mM MgCl 2 (5.0 μl), dNTP mix (8.0 μl, 2.5 mM of each dGTP, dATP, dCTP, dTTP) and DNA polymerase I large (Klenow) fragment (4.0 μl, 5 U/μl) for 30 minutes at 12° C. Then, 1×sodium chloride/Tris/EDTA (STE buffer) 450 μl) is added and the reaction is extracted once with phenol/chloroform and then once with chloroform alone. The DNA is precipitated by adding ice-cold ethanol (1 ml) and is placed on ice for 10 minutes. The precipitate is spun in a microcentrifuge (high speed, 30 minutes), washed with 70% ethanol (1 ml), microcentrifuged again (high speed, 10 minutes), dried and resuspended in TE buffer (7.0 μl).
- The blunt-ended DNA is made compatible with the vector cloning site by ligating to EcoR I linkers using a very high molar ratio of linkers to DNA. This lowers the probability of two DNA molecules ligating together creating a chimeric clone and increases the probability of linkers ligating to both ends of the DNA molecules. The ligation reaction is performed by adding EcoR I linkers [GGAATTCC] (14 μl, 200 ng/μl), 10×ligase buffer (3.0 μl), 10 mM rATP (3.0 μl) and T4 DNA ligase (3.0 μl, 4 WU/μl) and incubating at 4° C overnight.
- The ligation reaction is terminated by heating to 68° C. for 10 minutes. The linkers are digested to create EcoR I overhangs by incubation with water (238 μl), 10×EcoR I buffer (30 μl) and EcoR I restriction endonuclease (2.0 μl, 100 U/μl) for 1.5 hours at 37° C. The digestion reaction is discontinued by adding 0.5M EDTA and the DNA is placed on ice.
- The DNA is size fractionated through a sucrose gradient which is rapid, reliable and relatively free of inhibiting contaminants. The removal of sub-optimal DNA fragments and the small linkers is critical because ligation to the vector can result in recombinant molecules that are too large and unpackageable by in viro lambda packaging extracts or can result in the construction of a “linker library.” The DNA sample is heated to 65° C. for 10 minutes and loaded on a 10-ml sucrose gradient (40% w/v). The gradient is spun in an ultracentrifuge at room temperature, 25K for 16 hours. Fractions are collected from the gradient by puncturing the bottom of the gradient tube with an 18 gauge needle and collecting the sucrose solution which flows through the needle (10 drops per fraction). A small aliquot (20 μl) of each fraction is analyzed by 0.8% agarose gel electrophoresis and the fractions containing DNA in the desired size range (3-6 kb) is precipitated by adding ice cold ethanol (1 ml). The precipitate is spun in a microcentrifuge (high speed, 30 minutes), washed with 70% ethanol (1 ml), microcentrifuged again (high speed, 10 minutes), dried and resuspended in TE buffer (5-10 μl).
- A plate assay is performed on the resuspended DNA to acquire an approximate concentration by spotting 0.5 μl of the DNA on 0.8% agarose containing ehtidium bromide (5 μg/ml). The DNA is visually compared to spotted DNA standards of known concentration by viewing on a UV light box.
- The DNA is ligated to Lambda ZAP II cloning vector arms which were digested with EcoR I restriction enzyme and dephosphorylated. The ligation reaction has a final volume of 5.0 μl and contains 10×ligase buffer (0.5 μl), 10 mM rATP (0.5 μl), Lambda ZAP II arms (1.0 μl, 1.0 μg/μl), DNA (≦2.5 μl, 200 ng), T4 DNA ligase (0.5 μl, 4 WU/μl) and water (as needed to bring the final volume up to 5.0 μl). The ligation reaction is incubated overnight at 4° C.
- The ligation reaction is packaged using two in vitro lambda packaging extracts (2.5 μl of ligation per extract) in accordance with the manufacturer's protocol. The packaging reactions are stopped with the addition of sodium chloride/MgSO 4/Tris/gelatin (SM buffer) (500 μl) and pooled for a total volume of 1 ml per ligation reaction. The packaged phage are titrated on a suitable host, for example, XL1-Blue MRF′ E. coli cells, as follows:
- Host cells (200 μl, OD 600=1.0 in MgSO4) are aliquotted into tubes, inoculated with the packaged phage (1 μl) and incubated for 15 minutes at 37° C. Top agar (3 ml, 48° C.) containing Isopropyl-β-D-thio-galactopyranoside (IPTG) (1.5 mM) and 5-bromo-chloro-3-indoyl-α-D-galactopyranoside (X-gal) (2.5 mglml) is added to each tube, plated onto 100-mm petri dishes containing bottom agar and incubated at 37° C. overnight. The number of plaque forming units (pfu) are calculated as follows. Typical results are 5.0×105−1.0×106 pfu/ml with a 5% background (nonrecombinants).
- (# clear pfu)×(1,000 μl packaged phage)=# recombinant pfu/ml
- A portion of the library (≧2.5×10 5 pfu) is amplified as follows. Host cells (3 ml, OD600=1.0 in MgSO4) are aliquotted into 50-ml conical tubes, inoculated with packaged phage (≧2.5×105 pfu) and incubated for 20 minutes at 37° C. Top agar (40 ml, 48° C.) is added to each tube and plated across five 150-mm petri dishes containing bottom agar and incubated at 37° C. for 6-8 hours or until plaques are about pinhead in size.
- The phage particles are harvested by overlaying the plates with SM buffer (8-10 ml) and maintaining the plates at 4° C. overnight with gentle rocking. The phage elute into the SM buffer and are recovered by pouring the SM buffer off of each plate into a 50-ml conical tube. Chloroform (3 ml) is added to each tube which is then shaken vigorously, incubated at room temperature for 15 minutes and centrifuged (2,000 rpm, 10 minutes) to remove cell debris. The supernatant (amplified library) is then decanted into a fresh 50-ml conical tube to which chloroform (500 μl) is added and stored at 4° C. for later use.
- The amplified library is titered as follows. Serial dilutions of the amplified library are preapred in SM buffer (10 −5, 10−6). Host cells (200 μl, OD600=1.0 in MgSO4) are aliquotted into two tubes, inoculated with the diluted phage (1 μl from each dilution) and incubated for 15 minutes at 37° C. Top agar (3 ml, 48° C.) containing Isopropyl-β-D-thio-galactopyranoside (IPTG) (1.5 mM) and 5-bromo4-chloro-3-indoyl-β-D-galactopyranoside (X-gal) (2.5 mg/ml) is added to each tube, plated onto 100-mm petri dishes containing bottom agar and incubated at 37° C. overnight. The number of plaque forming units are calculated. Typical results are 1.0×1010 pfu/ml with a 5% background (nonrecombinants).
- Starting with a plasmid library prepared as described in Example 1, hybridization selection and preparation of the expression library were performed according to the protocol described in this example. The library can contain DNA from isolated microorganisms, enriched cultures or environmental samples.
- Single-stranded DNA is made in one of two ways: 1) The plasmid library can be grown and the double-stranded plasmid DNA isolated. The double-stranded DNA is made single-stranded using F1 gene II protein and Exonuclease III. The gene II protein nicks the double-stranded plasmids at the F1 origin and the Exo III digests away the nicked strand leaving a single-stranded circle. This method is used by Life Technologies in their GeneTrapper™ kit; 2) the second method involves the use of a helper phage to “rescue” one of the strands of the double-stranded plasmids. The plasmid library is grown in a small overnight culture. A small aliquot of this is mixed with VCS-M13 helper phage and again grown overnight. The next morning the phagemids (virus particles containing single-stranded DNA) are recovered from the media and used in the following protocol.
- PROTOCOL
- 1. Six samples of 4 μg of rescued, single-stranded DNA from
library # 17 were prepared in 3×SSC buffer. Final reaction volumes were 30 μl. - 2. To these solutions was added one of the following:
- a) nothing
- b) 100 ng of biotinylated probe from an unrelated sequence
- c,d) 100 ng of biotinylated probe from organism #13 DNA polymerase gene
- e,f) 100 ng of biotinylated probe from
organism # 17 DNA polymerase gene - Biotinylated probes were prepared by PCR amplification of fragments of ˜1300 bp in length coding for a portion of the DNA polymerase gene of these organisms. The amplification products were made using biotinylated dUTP in the amplification mix. This modified nucleotide is incorporated throughout the DNA during synthesis. Unincorporated nucleotides were removed using the QIAGEN PCR Clean-up kit.
- 3. These mixtures were denatured by heating to 95° C. for 2 minutes.
- 4. Hybridization was performed for 90 minutes at 70° C. for samples a, b, d and f. Samples c and e were hybridized at 60° C.
- 5. 50 ∥l of washed and blocked MPG beads were added and mixed to each sample. These mixtures were agitated every 5 minutes for a total of 30 minutes. MPG beads are sent at 1 mg/ml in buffer containing preservative so 6 sets of 100 μl were washed 2 times in 3×SSC and resuspended in 60 μl of 3>SSC containing 100 μg of sonicated salmon sperm DNA.
- 6. The DNA/bead mixtures were washed 2 times at room temperature in 0.1×SSC/0. 1% SDS, 2 times at 42° C. in 0.1×SSC/0.1% SDS for 10 minutes each and 1 additional wash at room temperature with 3×SSC.
- 7. The bound DNA was eluted by heating the beads to 70° C. for 15 minutes in 50 μl TE.
- 8. Dilutions of the eluted DNAs were made and PCR amplification was performed with either gene specific primers or vectors specific primers. Dilutions of the library DNA were used as standards.
- 9. The DNA inserts contained within the DNA were amplified by PCR using vector specific primers. These inserts were cloned using the TA Cloning system (Invitrogen).
- 10. Duplicates of 92 white colonies and 4 blue colonies from samples d and f were grown overnight and colony lifts were prepared for Southern blotting.
- 11. The digoxigenin system from Boehringer Mannheim was used to probe the colonies using the
organism # 17 probe. - RESULTS
- PCR Quantitation
- FIGS. 1A and 1B. FIG. 1A is a photograph of the autoradiogram resulting from the Southern hybridization agarose gel electrophoresis columns of DNA from sample solutions a-f in Example 2, when hybridized with gene specific primers. FIG. 1B is a photograph of the autoradiogram resulting from the Southern hybridization agarose gel electrophoresis columns of DNA from sample solutions a-f in Example 2, when hybridized with vector specific primers.
- The gene specific DNA amplifications of samples a and b demonstrate that non-specific binding to the beads is minimal. The amount of DNA bound under the other conditions results in the following estimates of enrichment.
gene specific equivalent total enrichment c 50 ng 100 pg 500X d 50 ng 30 pg 1667X e 20 ng 50 pg 400X f 20 ng 20 pg 1000X - Colony Hybridization
- FIG. 2 is a photograph of four colony hybridization plates resulting from Plates A and B show positive clones i.e., colonies containing sequences contained in the probe and which contain DNA from a library prepared in accordance with the invention. Plates C and D were controls and showed no positive clones.
- Seven of 92 colonies from the panned sample were positive for sequences contained in the probe. No positive clones were found in the unpanned sample.
- Cell collection and preparation of DNA. Agarose plugs containing concentrated picoplankton cells were prepared from samples collected on an oceanographic cruise from Newport, Oregon to Honolulu, Hawaii. Seawater (30 liters) was collected in Niskin bottles, screened through 10 μm Nitex, and concentrated by hollow fiber filtration (Amicon DC10) through 30,000 MW cutoff polyfulfone filters. The concentrated bacterioplankton cells were collected on a 0.22 μm, 47 mm Durapore filter, and resuspended in 1 ml of 2×STE buffer (1M NaCl, 0.1M EDTA, 10 mM Tris, pH 8.0) to a final density of approximately 1×10 10 cells per ml. The cell suspension was mixed with one volume of 1% molten Seaplaque LMP agarose (FMC) cooled to 40° C., and then immediately drawn into a 1 ml syringe. The syringe was sealed with parafilm and placed on ice for 10 min. The cell-containing agarose plug was extruded into 10 ml of Lysis Buffer (lOmM Tris pH 8.0, 50 mM NaCl, 0.1M EDTA, 1% Sarkosyl, 0.2% sodium deoxycholate, 1 mg/ml lysozyme) and incubated at 37° C. for one hour. The agarose plug was then transferred to 40 mls of ESP Buffer (1% Sarkosyl, 1 mg/ml proteinase K, in 0.5M EDTA), and incubated at 55° C. for 16 hours. The solution was decanted and replaced with fresh ESP Buffer, and incubated at 55° C. for an additional hour. The agarose plugs were then placed in 50 mM EDTA and stored at 4° C. shipboard for the duration of the oceanographic cruise.
- One slice of an agarose plug (72 μl) prepared from a sample collected off the Oregon coast was dialyzed overnight at 4° C. against 1 mL of buffer A (100 mM NaCl, 10 mM Bis Tris Propane-HCl, 100 μg/ml acetylated BSA: pH 7.0 @ 25° C.) in a 2 mL microcentrifuge tube. The solution was replaced with 250 μl of fresh buffer A containing 10 mM MgCl 2 and 1 mM DTT and incubated on a rocking platform for 1 hr at room temperature. The solution was then changed to 250 μl of the same buffer containing 4U of Sau3A1 (NEB), equilibrated to 37° C. in a water bath, and then incubated on a rocking platform in a 37° C. incubator for 45 min. The plug was transferred to a 1.5 ml microcentrifuge tube and incubated at 68° C. for 30 min to inactivate the enzyme and to melt the agarose. The agarose was digested and the DNA dephosphorylased using Gelase and HK-phosphatase (Epicentre), respectively, according to the manufacturer's recommendations. Protein was removed by gentle phenol/chloroform extraction and the DNA was ethanol precipitated, pelleted, and then washed with 70% ethanol. This partially digested DNA was resuspended in sterile H2O to a concentration of 2.5 ng/μl for ligation to the pFOS1 vector.
- PCR amplification results from several of the agarose plugs (data not shown) indicated the presence of significant amounts of archaeal DNA. Quantitative hybridization experiments using rRNA extracted from one sample, collected at 200 m of depth off the Oregon Coast, indicated that planktonic archaea in (this assemblage comprised approximately 4.7% of the total picoplankton biomass (this sample corresponds to “PACI”-200 m in Table 1 of DeLong et al., high abundance of Archaea in Antarctic marine picoplankton, Nature, 371:695-698, 1994). Results from archaeal-biased rDNA PCR amplification performed on agarose plug lysates confirmed the presence of relatively large amounts of archaeal DNA in this sample. Agarose plugs prepared from this picoplankton sample were chosen for subsequent fosmid library preparation. Each 1 ml agarose plug from this site contained approximately 7.5×105 cells, therefore approximately 5.4×105 cells were present in the 72 μl slice used in the preparation of the partially digested DNA.
- Vector arms were prepared from pFOS1 as described (Kim et al., Stable propagation of casmid sized human DNA inserts in an F factor based vector, Nucl. Acids Res., 20:10832-10835, 1992). Briefly, the plasmid was completely digested with AstII, dephosphorylated with HK phosphatase, and then digested with BamHI to generate two arms, each of which contained a cos site in the proper orientation for cloning and packaging ligated DNA between 35-45 kbp. The partially digested picoplankton DNA was ligated overnight to the PFOS1 arms in a 15 μl ligation reaction containing 25 ng each of vector and insert and 1U of T4 DNA ligase (Boehringer-Mannheim). The ligated DNA in four microliters of this reaction was in vitro packaged using the Gigapack XL packaging system (Stratagene), the fosmid particles transfected to E. coli strain DH10B (BRL), and the cells spread onto LBcm15 plates. The resultant fosmid clones were picked into 96-well microliter dishes containing LBcm15 supplemented with 7% glycerol. Recombinant fosmids, each containing ca. 40 kb of picoplankton DNA insert, yielded a library of 3.552 fosmid clones, containing approximately 1.4×108 base pairs of cloned DNA. All of the clones examined contained inserts ranging from 38 to 42 kbp. This library was stored frozen at −80° C. for later analysis.
- Numerous modifications and variations of the present invention are possible in light of the above teachings; therefore, within the scope of the claims, the invention may be practiced other than as particularly described.
Claims (3)
1. A method for making a library containing a plurality of clones, each clone containing a cDNA or genomic DNA fragment obtained from a population of uncultivated microorganisms.
2. A method for identifying a desired bioactivity or biomolecule comprising:
(a) producing one or more expression libraries derived from nucleic acid directly isolated from the environment;
(b) combining a cell-free extract from the expression library or libraries with crude or partially purified extracts, or pure proteins from a metabolically rich cell line to form an extract mixture free from the library and cell line cells; and
(c) screening said mixture to identify an activity or molecule produced by the extract mixture.
3. A method for identifying a desired bioactivity or biomolecule comprising:
(a) producing one or more expression libraries containing clones having nucleic acid inserts derived from nucleic acid directly isolated from the environment;
(b) transferring said clones into a metabolically rich cell line; and
(c) screening said cell line to identify clones having a bioactivity or biomolecule of interest.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/121,145 US20020155489A1 (en) | 1995-12-07 | 2002-04-09 | Method for screening enzyme activity |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US831795P | 1995-12-07 | 1995-12-07 | |
| US08/692,002 US6054267A (en) | 1995-12-07 | 1996-08-02 | Method for screening for enzyme activity |
| US08/944,795 US6030779A (en) | 1995-07-18 | 1997-10-06 | Screening for novel bioactivities |
| US09/421,970 US6368798B1 (en) | 1995-12-07 | 1999-10-20 | Screening for novel bioactivities |
| US10/121,145 US20020155489A1 (en) | 1995-12-07 | 2002-04-09 | Method for screening enzyme activity |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/421,970 Continuation US6368798B1 (en) | 1995-12-07 | 1999-10-20 | Screening for novel bioactivities |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020155489A1 true US20020155489A1 (en) | 2002-10-24 |
Family
ID=46276531
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/421,970 Expired - Lifetime US6368798B1 (en) | 1995-12-07 | 1999-10-20 | Screening for novel bioactivities |
| US10/121,145 Abandoned US20020155489A1 (en) | 1995-12-07 | 2002-04-09 | Method for screening enzyme activity |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/421,970 Expired - Lifetime US6368798B1 (en) | 1995-12-07 | 1999-10-20 | Screening for novel bioactivities |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US6368798B1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016054024A3 (en) * | 2014-09-29 | 2016-06-30 | The Regents Of The University Of California | Dna-linked enzyme-coupled assays |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7153655B2 (en) * | 1998-06-16 | 2006-12-26 | Alligator Bioscience Ab | Method for in vitro molecular evolution of protein function involving the use of exonuclease enzyme and two populations of parent polynucleotide sequence |
| US6958213B2 (en) * | 2000-12-12 | 2005-10-25 | Alligator Bioscience Ab | Method for in vitro molecular evolution of protein function |
| US20020086292A1 (en) | 2000-12-22 | 2002-07-04 | Shigeaki Harayama | Synthesis of hybrid polynucleotide molecules using single-stranded polynucleotide molecules |
| AU2003217716A1 (en) * | 2002-02-25 | 2003-09-09 | Cabot Corporation | Custom ligand design for biomolecular filtration and purification for bioseperation |
| US7262012B2 (en) * | 2002-05-17 | 2007-08-28 | Alligator Bioscience Ab | Method for in vitro molecular evolution of protein function using varied exonuclease digestion in two polynucleotide populations |
| EP2404928A1 (en) | 2003-07-02 | 2012-01-11 | Verenium Corporation | Glucanases, nucleic acids encoding them and methods for making and using them |
| CN101228188A (en) | 2005-06-21 | 2008-07-23 | 佐马技术有限公司 | IL-1β-binding antibodies and fragments thereof |
| GB2432366B (en) * | 2005-11-19 | 2007-11-21 | Alligator Bioscience Ab | A method for in vitro molecular evolution of protein function |
| PL1989302T3 (en) | 2006-02-14 | 2019-03-29 | Bp Corp North America Inc | Xylanases, nucleic acids encoding them and methods for making and using them |
| CN101528766A (en) | 2006-08-04 | 2009-09-09 | 维莱尼姆公司 | Glucanases, nucleic acids encoding them and methods of making and using them |
| NZ601191A (en) | 2007-10-03 | 2014-01-31 | Verenium Corp | Xylanases, nucleic acids encoding them and methods for making and using them |
| MX2019011579A (en) | 2017-03-28 | 2020-01-20 | Plantarc Bio Ltd | Methods for improving traits in plants. |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0285123A3 (en) * | 1987-04-03 | 1989-02-01 | Stabra AG | A method for complete mutagenesis of nucleic acids |
| US5783431A (en) * | 1996-04-24 | 1998-07-21 | Chromaxome Corporation | Methods for generating and screening novel metabolic pathways |
-
1999
- 1999-10-20 US US09/421,970 patent/US6368798B1/en not_active Expired - Lifetime
-
2002
- 2002-04-09 US US10/121,145 patent/US20020155489A1/en not_active Abandoned
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016054024A3 (en) * | 2014-09-29 | 2016-06-30 | The Regents Of The University Of California | Dna-linked enzyme-coupled assays |
| US10829798B2 (en) | 2014-09-29 | 2020-11-10 | The Regents Of The University Of California | DNA-linked enzyme-coupled assays |
Also Published As
| Publication number | Publication date |
|---|---|
| US6368798B1 (en) | 2002-04-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6030779A (en) | Screening for novel bioactivities | |
| US6054267A (en) | Method for screening for enzyme activity | |
| US6344328B1 (en) | Method for screening for enzyme activity | |
| EP1696025B1 (en) | Screening methods for enzymes and enzyme kits | |
| US6168919B1 (en) | Screening methods for enzymes and enzyme kits | |
| US6656677B2 (en) | Enzyme kits and libraries | |
| AU720334B2 (en) | Method of screening for enzyme activity | |
| US6368798B1 (en) | Screening for novel bioactivities | |
| US20060094033A1 (en) | Screening methods and libraries of trace amounts of DNA from uncultivated microorganisms | |
| AU756201B2 (en) | Method of screening for enzyme activity | |
| AU767618B2 (en) | Screening methods for enzymes and enzyme kits | |
| EP1319068A2 (en) | Combinatorial screening of mixed populations of organisms | |
| AU2007202329A1 (en) | Method of screening for enzyme activity | |
| AU2003200812A2 (en) | Method of screening for enzyme activity | |
| HK1040094A1 (en) | Method of screening for thermostable enzyme activity |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |