US20020153245A1 - Flow-through eletrochemical reactor for wastewater treatment - Google Patents
Flow-through eletrochemical reactor for wastewater treatment Download PDFInfo
- Publication number
- US20020153245A1 US20020153245A1 US09/782,279 US78227901A US2002153245A1 US 20020153245 A1 US20020153245 A1 US 20020153245A1 US 78227901 A US78227901 A US 78227901A US 2002153245 A1 US2002153245 A1 US 2002153245A1
- Authority
- US
- United States
- Prior art keywords
- flow
- electrochemical reactor
- reactor according
- cathode
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004065 wastewater treatment Methods 0.000 title description 3
- 239000002351 wastewater Substances 0.000 claims abstract description 35
- 230000006378 damage Effects 0.000 claims abstract description 11
- 239000011148 porous material Substances 0.000 claims abstract description 10
- 239000013076 target substance Substances 0.000 claims abstract description 8
- 230000000694 effects Effects 0.000 claims abstract description 6
- 238000004891 communication Methods 0.000 claims abstract description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 24
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 22
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 22
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- 239000010936 titanium Substances 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 claims description 12
- 229910052697 platinum Inorganic materials 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 239000006260 foam Substances 0.000 claims description 10
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 claims description 10
- -1 aryl compound Chemical class 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical group [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 description 27
- 239000000356 contaminant Substances 0.000 description 15
- 150000002989 phenols Chemical class 0.000 description 12
- 241000894007 species Species 0.000 description 12
- 239000010405 anode material Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 150000002894 organic compounds Chemical class 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 229930003836 cresol Natural products 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical compound C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- REPVLJRCJUVQFA-UHFFFAOYSA-N (-)-isopinocampheol Natural products C1C(O)C(C)C2C(C)(C)C1C2 REPVLJRCJUVQFA-UHFFFAOYSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WAQIIHCCEMGYKP-UHFFFAOYSA-N Linalyl propionate Chemical compound CCC(=O)OC(C)(C=C)CCC=C(C)C WAQIIHCCEMGYKP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- CKDOCTFBFTVPSN-UHFFFAOYSA-N borneol Natural products C1CC2(C)C(C)CC1C2(C)C CKDOCTFBFTVPSN-UHFFFAOYSA-N 0.000 description 1
- 229940116229 borneol Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Natural products C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- FPIQZBQZKBKLEI-UHFFFAOYSA-N ethyl 1-[[2-chloroethyl(nitroso)carbamoyl]amino]cyclohexane-1-carboxylate Chemical compound ClCCN(N=O)C(=O)NC1(C(=O)OCC)CCCCC1 FPIQZBQZKBKLEI-UHFFFAOYSA-N 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000006385 ozonation reaction Methods 0.000 description 1
- LMXFTMYMHGYJEI-UHFFFAOYSA-N p-menthane-3,8-diol Chemical compound CC1CCC(C(C)(C)O)C(O)C1 LMXFTMYMHGYJEI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229960005137 succinic acid Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
- C02F2001/46138—Electrodes comprising a substrate and a coating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46152—Electrodes characterised by the shape or form
- C02F2001/46157—Perforated or foraminous electrodes
- C02F2001/46161—Porous electrodes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4611—Fluid flow
Definitions
- This invention relates to wastewater treatment where levels of organic contaminants, such as phenols and related compounds, are to be decreased.
- Electrochemical treatment of wastewater can reduce the level of organic contaminants by oxidation.
- Noding U.S. Pat. No. 4,652,355 discloses an electrochemical reactor in which the anode and cathode in a reaction chamber are in the same plane as the direction of flow of aryl-containing wastewater. This reactor predominantly produces aryl hydroquinones, which are not ideal end products for environmental release.
- Cole U.S. Pat. No. 5,531,865 discloses an electrochemical reactor having a cathode and a plurality of sacrificial anodes elongated in a chamber, parallel to the direction of flow of contaminated water. With such a configuration of electrodes, charge density will vary across the cross-section of the reaction chamber, and it is possible that a significant amount of aryl compounds will not contact an anode, and experience sufficient charge density to be oxidized, while flowing through the chamber.
- Sampson et al. U.S. Pat. No. 5,705,050 discloses a packed bed reactor, which includes an ion exchange material packed between an anode and a cathode.
- ion exchange materials require special handling and specific reactor conditions to tolerate higher back pressures that can occur.
- the electrochemical reactor of the present invention addresses limitations in known reactors.
- the reactor disclosed herein provides a high probability that contaminant molecules will experience intimate contact with an anode and thus encounter the necessary current density for oxidation. This advantage is coupled with the relatively simple construction of the reactor and ease of maintenance.
- the invention provides an electrochemical reactor (cell) for reducing the concentration of organic compounds, such as aryl compounds, found in wastewater from industrial processes. Breakdown of the organic compounds occurs by oxidation at the anode of the electrochemical reactor.
- the present invention provides a flow-through electrochemical reactor comprising:
- a body having an internal chamber, and an inlet port and an outlet port in communication with said internal chamber to permit flow of wastewater therethrough;
- At least one porous anode arranged in said internal chamber such that the wastewater flowing between said inlet port and said outlet port flows through the pores of said at least one porous anode, said at least one porous anode having activity for the destruction of a target substance;
- At least one cathode disposed in the internal chamber to permit an electric current to be established between said at least one cathode and said at least one anode, said electric current reducing the concentration of said target substance in the wastewater flowing through the chamber.
- the reactor when in use, reduces TOC content of industrial wastewater by oxidizing target substances, such as aryl compounds, efficiently. Efficient oxidation minimizes the possibility of competing side reactions.
- the side reactions are unfavorable since they might produce compounds that are as harmful as, or more harmful than, the compounds to be destroyed.
- the electrochemical reactor can treat a wastewater stream to reduce the concentration of aryl compounds to an environmentally acceptable level.
- the reactor of the present invention also offers the advantage that it can be installed within an existing piping system.
- FIG. 1 is a schematic diagram of an embodiment of the flow-through reactor of the present invention
- FIG. 2 is a top view of an electrode of FIG. 1;
- FIG. 3 is a schematic side view of an electrode and holder of FIG. 1;
- FIG. 4 is an image of a titanium foam used as an anode substrate
- FIG. 5 shows the morphology of an antimony-doped tin dioxide (SnO 2 ) dimentionally-stable anode (DSA) coating
- FIG. 6 is a graph of the efficiency of phenol destruction by an embodiment of an electrochemical reactor of the invention, at current densities of 1.4 (white), 2.8 (black) and 5.6 (cross-hatched) MA/cm 2 , using 3D foam anodes of either antimony-doped tin dioxide, platinum or tantalum-doped iridium dioxide; and
- FIG. 7 is a graph of the efficiency of destruction of a mixture of m- and p-cresol by an embodiment of an electrochemical reactor of the invention, at current densities of 1.4 (white), 2.8 (black) and 5.6 (cross-hatched) mA/cm 2 , using 3D foam anodes of either antimony-doped tin dioxide, platinum or tantalum-doped iridium dioxide.
- an electrochemical reactor 1 in accordance with the present invention includes a tubular body 2 having an inlet port 3 and an outlet port 4 .
- the inlet port 3 is retained on the tubular body 2 with a first retaining means (not shown).
- An inlet O-ring 5 is disposed between the inlet port 3 and the tubular body 2 in a sealing engagement.
- the outlet port 4 is retained on the tubular body 2 with a second retaining means (not shown).
- An outlet O-ring 6 is disposed between the outlet port 4 and the tubular body 2 in a sealing engagement.
- a cathode 7 which includes an circular, 3D foam-type electrode 15 retained in an insulating electrode holder having a top 16 and bottom 18 (see FIG. 1) held together with screws 17 .
- Each electrode holder is sized to provide a snug fit within the tubular body 2 so that essentially all wastewater introduced into the reactor passes through the porous anodes 8 and cathodes 7 .
- FIG. 3 shows a foam-type electrode 15 and contact wire 9 between the top 16 and bottom 18 of the electrode holder prior to assembly by screwing the top 16 and bottom 18 together with the screw 17 .
- the reactor 1 can be mounted vertically or horizontally.
- the reactor should be placed in an open recirculation circuit, thus allowing evolved gases, such as carbon dioxide, to escape.
- the body of the reactor can have a variety of shapes but preferably is tubular and the internal chamber cylindrical, with a generally circular cross-section. While FIG. 1 shows detachable inlet and outlet ports 3 and 4 , which permit convenient access to the electrodes in the tubular body 2 , a unitary construction is also possible.
- the electrode holder (see FIG. 3) serves as a mechanical device to install electrodes within the electrochemical reactor 1 , as well as an electrical insulator.
- the insulating holder preferably is sized, conveniently in a disc shape, for close-fitting insertion into the internal chamber.
- the holders can be held in place within the body 2 by screws passing through the wall of the body, or by some other suitable means. It is preferred that the electrical connection is also provided by the screw which can be connected electrically to a suitable power supply external to the reactor. Conveniently, the power supply is a DC supply.
- the number, and arrangement, of electrodes in the reactor 1 can be conveniently changed.
- the electrodes can be removed from the reactor for periodic cleaning.
- the cleaning process can also be performed in situ and may involve the use of an organic solvent, such as methanol or ethanol, or an alkaline cleaner, with or without current.
- the current may be inverted if needed. It is preferred that the anode material is platinum and the cathode material is nickel, because a current polarity inversion to clean them will not result in damage to the electrode materials.
- the electrodes are preferably stacked in an alternating arrangement, such that an anode is placed next to a cathode and vice-versa (i.e. C/A/C/A/C/A/C/A/C . . . ).
- the number of anodes and cathodes in the reactor can be varied, from a minimum of one anode and one cathode to many tens of anodes and cathodes.
- the alternating arrangement begins and ends with a cathode, to ensure optimum activity of the anode at the start and end of the series. More preferably, there are two to ten anodes and three to eleven cathodes, respectively.
- cathodes there are seven cathodes and six anodes.
- the number of electrodes used depends upon the volume of the solution to be treated and the desired treatment time.
- Each anode is isolated from each cathode, to avoid a short-circuit.
- the anodes and cathodes typically are each connected to corresponding bus bars that in turn are connected to a DC power supply.
- the reactor is made from any material that has the necessary mechanical strength for the chosen dimensions of the reactor, and resistance to corrosion by the wastewater stream of interest.
- Such materials can be glass, polymer-coated stainless steel, reinforced fiberglass or polymer, and the like.
- the wastewater is filtered before treatment in the reactor in order to minimize the possibility of blockage of the electrodes with solid materials.
- the wastewater to be treated flows through the porous electrodes in the reactor, and therefore the liquid can be treated then conducted to a holding tank. While the solution to be treated flows through the reactor, and hence through the electrodes, a DC current passes within the reactor, between the anodes and the cathodes.
- the pore openings in the foam electrodes allow a free flow, of the wastewater to be treated, with a minimum of flow restriction.
- a current density that can vary between 0.7 and 70 (mA/cm 2 ) is applied, although for phenolic compounds, a current density of about 1.4 mA/cm 2 is preferred.
- zones of different current densities can be established within the reactor in order to optimize the destruction of each target compound. The distance between certain electrodes can be selected based on the desired current density at a particular location in the reactor.
- the electrolysis (or treatment) time depends upon the initial concentration of the problem compounds and the final concentration desired, as well as the flow rate. This latter variable can be between 1 to 60 liters per minute of reactor capacity, although a flow of about 8 liters per minute is preferred.
- the dimensions of the electrodes, and the reactor generally, can be varied depending on specific requirements. Electrode diameter conveniently can be up to about 1.5 m. Electrode thickness conveniently can be up to 3 cm, preferably about 0.5 cm for a titanium substrate.
- the wastewater to be treated can circulate for a variable number of cycles through the reactor, or make a single pass, depending upon the level of initial contamination level and final desired (or required) final level and desired (or required) treatment time.
- the reactor is used at ambient temperature and pressure, although other conditions can be selected as appropriate.
- Wastewater to be treated can come from industrial sources, such as debarking effluent, and pulp and papermaking effluent.
- Preferred target aryl compounds in such wastewater are phenol and o-, m- and p-cresol.
- the reactor described herein has the capability of destroying the target compounds even in the presence of other organic compounds, such as butanoic acid, pentanoic acid, hexanoic acid, butanedioic acid, camphor, borneol, linalyl propanoate, furan carboxaldehyde, cyclohexanecarboxylic acid, 2-(2-hydroxy-2-propyl)-5-methyl-cyclohexanol, benzoic acid, 4-hydroxy-benzenepropanoic acid, or inorganic species such as calcium, iron, magnesium, manganese, aluminum, zinc, sodium and potassium.
- the total organic carbon (TOC) level of the wastewater to be treated is preferably less than 7500 ppb, more preferably less than 1500 ppb.
- the anode conveniently should be made from a material that is stable in the wastewater to be treated, and that provides reasonable activity for the destruction of the target compounds.
- the anode is preferably non-sacrificial.
- the anode typically is constituted by a coated substrate, the substrate preferably being a valve metal, such as tantalum or titanium. Although various anode Isubstrates could be used, such as nickel, stainless steel alloys or other corrosion resistant materials, titanium is preferred.
- the anode substrate should be in the form of a porous or 3D medium (sponge, foam, felt or mesh).
- a foam-type is preferred, such as the Astro Met® materials (Astro Met, Cincinnati, Ohio), in a configuration similar to that shown in FIGS. 2 and 3.
- Each anode should have a pore opening value of up to 40 pores per linear inch (ppi), preferably 20 ppi, to allow liquid flow with minimal resistance.
- titanium When used as anode substrate, it is preferably first activated through a process that removes the surface oxide layer. Treating the titanium with boiling concentrated hydrochloric acid is one such process. The treated titanium is then quickly coated with the selected anode material.
- the anode is where the electrooxidative processes take place. Destruction of an organic compound by oxidation is a two-fold process:
- Step 1 the water molecule is split into hydrogen and hydroxyl radicals.
- the anode (M) serves as a base to the formation of these two species (it acts as an electrocatalyst).
- the second step involves the oxidation of an organic compound (R):
- RO corresponds to the oxidized organic compound
- Electrochemical efficiency is defined as the ratio between the two main anodic reactions.
- Antimony-doped tin dioxide (see FIG. 5) coated anodes have been shown to be good at destroying organic compounds. However, it was the least efficient anode material that was tested in the reactor of the invention, most probably due to the presence of numerous other organic species in the wastewater to be treated.
- tantalum-doped iridium dioxide-coated anodes showed a very good efficiency for destroying organic compounds, it was found that, over a period of time, the coating tends to spall off the anode substrate.
- the tin dioxide and iridium dioxide coatings are doped as described above, they can each generally be doped with a dopant selected from Sb, Ta, F, Cl, Mo, W and Nb, and mixtures thereof, if required.
- Known coating methods can be used to coat the anodes.
- the invention is augmented when the coating is uniform and homogeneous on the substrate.
- a cathode is necessary to complete the electrical circuit and allow the electrochemical oxidation process to be possible.
- the cathode can be formed from a porous or 3D medium (foam, sponge, felt or mesh) and is preferably of a structure similar to that shown in FIGS. 2 and 3.
- Each porous cathode should have a pore opening value of up to 40 pores per linear inch (ppi), preferably 20 ppi, to allow liquid flow with minimal resistance.
- the cathode can also have other structures, such as a ring-like structure.
- the cathode material can be nickel, nickel alloys, stainless steel or even titanium, or any other corrosion resistant material.
- Nickel is preferred because of its acceptable cost, stability in water and because it is commercially available in a porous-type structure such as found in Astro Met® materials (Astro Met, Cincinnati, Ohio).
- a solution from origin A containing a total concentration of 7051 ppb of phenolic contaminant compounds, was treated in a reactor built with antimony-doped tin dioxide anodes for 72 hours.
- the anodic current density was 5.6 mA/cm 2
- the flow rate was 8.2 l/minute, corresponding to a volume to treat of 6.8 liters of solution per volume liter of reactor
- the total applied current was 300 mA, corresponding to 76104 coulombs.
- the final total concentration of the phenolic compounds went down to 26 ppb.
- the concentration decrease of each species is shown in Table 2.
- a solution from origin A containing a total concentration of 7519 ppb of phenolic contaminant compounds, was treated in a reactor built with antimony-doped tin dioxide anodes for 48 hours.
- the anodic current density was 2.8 mA/cm 2
- the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor
- the total applied current was 600 mA, corresponding to 77760 coulombs.
- the final total concentration of the phenolic compounds went down to 23 ppb.
- the concentration decrease of each species is shown in Table 3.
- a solution from origin B containing a total concentration of 2783 ppb of phenolic contaminant compounds, was treated in a reactor built with antimony-doped tin dioxide anodes for 12 hours.
- the anodic current density was 1.4 mA/cm 2 ,the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor, and the total applied current was 150 mA, corresponding to 6480 coulombs.
- the final total concentration of the phenolic compounds went down to 710 ppb.
- the concentration decrease of each species is shown in Table 4.
- a solution from origin B containing a total concentration of 2374 ppb of phenolic contaminant compounds, was treated in a reactor built with tantalum-doped iridium dioxide anodes for 6 hours.
- the anodic current density was 5.6 mA/cm 2
- the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor
- the total applied current was 300 mA, corresponding to 6480 coulombs.
- the final total concentration of the phenolic compounds went down to 922 ppb.
- the concentration decrease of each species is shown in Table 5.
- a solution from origin B containing a total concentration of 2343 ppb of phenolic contaminant compounds, was treated in a reactor built with tantalum-doped iridium dioxide anodes for 12 hours.
- the anodic current density was 2.8 mA/cm 2
- the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor
- the total applied current was 150 mA, corresponding to 6480 coulombs.
- the final total concentration of the phenolic compounds went down to 272 ppb.
- the concentration decrease of each species is shown in Table 6.
- a solution from origin B containing a total concentration of 2783 ppb of phenolic contaminant compounds, was treated in a reactor built with tantalum-doped iridium dioxide anodes for 12 hours.
- the anodic current density was 1.4 mA/cm 2 the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor, and the total applied current was 75 mA, corresponding to 6480 coulombs.
- the final total concentration of the phenolic compounds went down to 115 ppb.
- the concentration decrease of each species is shown in Table 7.
- a solution from origin B containing a total concentration of 1369 ppb of phenolic contaminant compounds, was treated in a reactor built with anodes made of platinum electroplated on sponge titanium substrate for 9 hours.
- the anodic current density was 5.6 mA/cm 2
- the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor
- the total applied current was 200 mA, corresponding to 6480 coulombs.
- the final total concentration of the phenolic compounds went down to 48 ppb.
- the concentration decrease of each species is shown in Table 8.
- a solution from origin B containing a total concentration of 1994 ppb of phenolic contaminant compounds, was treated in a reactor built with anodes made of platinum electroplated on foam titanium substrate for 18 hours.
- the anodic current density was 2.8 mA/cm 2 ,the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor, and the total applied current was 100 mg, corresponding to 6480 coulombs.
- the final total concentration of the phenolic compounds went down to 49 ppb.
- the concentration decrease of each species is shown in Table 9.
- a solution from origin B containing a total concentration of 1829 ppb of phenolic contaminant compounds, was treated in a reactor built with anodes made of platinum electroplated on foam titanium substrate for 18 hours.
- the anodic current density was 1.4 mA/cm 2
- the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor
- the total applied current was 50 mA, corresponding to 6480 coulombs.
- the final total concentration of the phenolic compounds went down to 52 ppb.
- the concentration decrease of each species is shown in Table 10.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Disclosed is A flow-through electrochemical reactor comprising a body having an internal chamber, and an inlet port and an outlet port in communication with said internal chamber to permit flow of wastewater therethrough, at least one porous anode arranged in said internal chamber such that the wastewater flowing between said inlet port and said outlet port flows through the pores of said at least one porous anode, said at least one porous anode having activity for the destruction of a target substance, and at least one cathode disposed in the internal chamber to permit an electric current to be established between said at least one cathode and said at least one anode, said electric current reducing the concentration of said target substance in the wastewater flowing through the chamber.
Description
- This invention relates to wastewater treatment where levels of organic contaminants, such as phenols and related compounds, are to be decreased.
- Several industrial processes require the use of large quantities of water for their operations. The water may come from natural sources such as rivers or from treated city water. As a consequence of the industrial activities, the used water may become contaminated with organic pollutants beyond permissible, environmentally acceptable limits.
- Organic contaminants can be removed to a limited degree by adsorption on activated carbon, ozonation, or a combination of these methods. After use, activated carbon, if filled with contaminants, requires destruction or disposal to a special landfill. In addition, activated carbon is not necessarily selective enough to efficiently absorb the problem compounds, and when the active sites are full, the adsorption capacity goes down to zero. Ozone is a dangerous chemical and it would be preferred if its use could be avoided in wastewater treatment.
- Electrochemical treatment of wastewater can reduce the level of organic contaminants by oxidation. Noding (U.S. Pat. No. 4,652,355) discloses an electrochemical reactor in which the anode and cathode in a reaction chamber are in the same plane as the direction of flow of aryl-containing wastewater. This reactor predominantly produces aryl hydroquinones, which are not ideal end products for environmental release.
- Similarly, Cole (U.S. Pat. No. 5,531,865) discloses an electrochemical reactor having a cathode and a plurality of sacrificial anodes elongated in a chamber, parallel to the direction of flow of contaminated water. With such a configuration of electrodes, charge density will vary across the cross-section of the reaction chamber, and it is possible that a significant amount of aryl compounds will not contact an anode, and experience sufficient charge density to be oxidized, while flowing through the chamber.
- Several patents have issued relating to reactors that, in attempting to optimize the possibility of electrochemical reaction, make available significant electrode surface area by having multiple solid electrodes in various configurations and/or requiring meandering flow of wastewater over the surface the electrodes (for example U.S. Pat. No. 5,549,812 (Witt); U.S. Pat. No. 5,587,057 (Metzler et al.); 5,611,907 (Herbst et al.); U.S. Pat. No. 5,746,904 (Lee); and U.S. Pat. No. 5,928,493 (Morkovsky et al.)). The reactors found in these patents tend to be of relatively complex construction and the flowpath of the wastewater over solid electrodes, in each case, does not guarantee intimate contact with an anode surface.
- Sampson et al. (U.S. Pat. No. 5,705,050) discloses a packed bed reactor, which includes an ion exchange material packed between an anode and a cathode. However, ion exchange materials require special handling and specific reactor conditions to tolerate higher back pressures that can occur.
- By using at least one porous anode, the electrochemical reactor of the present invention addresses limitations in known reactors. By directing the flow of wastewater through the pores of at least one porous anode, the reactor disclosed herein provides a high probability that contaminant molecules will experience intimate contact with an anode and thus encounter the necessary current density for oxidation. This advantage is coupled with the relatively simple construction of the reactor and ease of maintenance.
- The invention provides an electrochemical reactor (cell) for reducing the concentration of organic compounds, such as aryl compounds, found in wastewater from industrial processes. Breakdown of the organic compounds occurs by oxidation at the anode of the electrochemical reactor.
- More specifically, the present invention provides a flow-through electrochemical reactor comprising:
- a body having an internal chamber, and an inlet port and an outlet port in communication with said internal chamber to permit flow of wastewater therethrough;
- at least one porous anode arranged in said internal chamber such that the wastewater flowing between said inlet port and said outlet port flows through the pores of said at least one porous anode, said at least one porous anode having activity for the destruction of a target substance; and
- at least one cathode disposed in the internal chamber to permit an electric current to be established between said at least one cathode and said at least one anode, said electric current reducing the concentration of said target substance in the wastewater flowing through the chamber.
- The reactor, when in use, reduces TOC content of industrial wastewater by oxidizing target substances, such as aryl compounds, efficiently. Efficient oxidation minimizes the possibility of competing side reactions. The side reactions are unfavorable since they might produce compounds that are as harmful as, or more harmful than, the compounds to be destroyed.
- Thus, the electrochemical reactor can treat a wastewater stream to reduce the concentration of aryl compounds to an environmentally acceptable level. The reactor of the present invention also offers the advantage that it can be installed within an existing piping system.
- Further features of the present invention will become apparent, to those skilled in the art to which the present invention relates, from reading the following specification with reference to the accompanying drawings, in which:
- FIG. 1 is a schematic diagram of an embodiment of the flow-through reactor of the present invention;
- FIG. 2 is a top view of an electrode of FIG. 1;
- FIG. 3 is a schematic side view of an electrode and holder of FIG. 1;
- FIG. 4 is an image of a titanium foam used as an anode substrate;
- FIG. 5 shows the morphology of an antimony-doped tin dioxide (SnO 2) dimentionally-stable anode (DSA) coating;
- FIG. 6 is a graph of the efficiency of phenol destruction by an embodiment of an electrochemical reactor of the invention, at current densities of 1.4 (white), 2.8 (black) and 5.6 (cross-hatched) MA/cm 2, using 3D foam anodes of either antimony-doped tin dioxide, platinum or tantalum-doped iridium dioxide; and
- FIG. 7 is a graph of the efficiency of destruction of a mixture of m- and p-cresol by an embodiment of an electrochemical reactor of the invention, at current densities of 1.4 (white), 2.8 (black) and 5.6 (cross-hatched) mA/cm 2, using 3D foam anodes of either antimony-doped tin dioxide, platinum or tantalum-doped iridium dioxide.
- The following description illustrates the manner in which the principles of this invention are applied but is not to be construed as, in any sense, limiting the scope of the invention.
- Referring to the embodiment of FIG. 1, an
electrochemical reactor 1 in accordance with the present invention includes atubular body 2 having aninlet port 3 and anoutlet port 4. Theinlet port 3 is retained on thetubular body 2 with a first retaining means (not shown). An inlet O-ring 5 is disposed between theinlet port 3 and thetubular body 2 in a sealing engagement. Similarly, theoutlet port 4 is retained on thetubular body 2 with a second retaining means (not shown). An outlet O-ring 6 is disposed between theoutlet port 4 and thetubular body 2 in a sealing engagement. - Inside the tubular body are a series of
porous cathodes 7 andanodes 8 in alternating arrangement, each having a contact wire 9 in the form of a screw passing, in a liquid-tight manner, through holes in the wall of thetubular body 2. The screws also serve to secure the cathodes and anodes in place and are further provided with electrical communication to a DC power supply (not shown). Wastewater is introduced into the reactor through aninlet pipe 10 from areservoir 11. Treated wastewater leaves the reactor through anoutlet pipe 12 and is returned to thereservoir 11. Apump 13 is used to move the wastewater through the reactor. The wastewater supply from thereservoir 11 is controlled by avalve 14. - Referring to FIG. 2, a
cathode 7 is shown which includes an circular, 3D foam-type electrode 15 retained in an insulating electrode holder having a top 16 and bottom 18 (see FIG. 1) held together withscrews 17. Each electrode holder is sized to provide a snug fit within thetubular body 2 so that essentially all wastewater introduced into the reactor passes through theporous anodes 8 andcathodes 7. - FIG. 3 shows a foam-
type electrode 15 and contact wire 9 between the top 16 and bottom 18 of the electrode holder prior to assembly by screwing the top 16 and bottom 18 together with thescrew 17. - In use, the
reactor 1 can be mounted vertically or horizontally. The reactor should be placed in an open recirculation circuit, thus allowing evolved gases, such as carbon dioxide, to escape. - The body of the reactor can have a variety of shapes but preferably is tubular and the internal chamber cylindrical, with a generally circular cross-section. While FIG. 1 shows detachable inlet and
3 and 4, which permit convenient access to the electrodes in theoutlet ports tubular body 2, a unitary construction is also possible. The electrode holder (see FIG. 3) serves as a mechanical device to install electrodes within theelectrochemical reactor 1, as well as an electrical insulator. The insulating holder preferably is sized, conveniently in a disc shape, for close-fitting insertion into the internal chamber. The holders can be held in place within thebody 2 by screws passing through the wall of the body, or by some other suitable means. It is preferred that the electrical connection is also provided by the screw which can be connected electrically to a suitable power supply external to the reactor. Conveniently, the power supply is a DC supply. - By removing the
inlet port 3 oroutlet port 4, or both, the number, and arrangement, of electrodes in thereactor 1 can be conveniently changed. In addition, the electrodes can be removed from the reactor for periodic cleaning. The cleaning process can also be performed in situ and may involve the use of an organic solvent, such as methanol or ethanol, or an alkaline cleaner, with or without current. The current may be inverted if needed. It is preferred that the anode material is platinum and the cathode material is nickel, because a current polarity inversion to clean them will not result in damage to the electrode materials. - The electrodes are preferably stacked in an alternating arrangement, such that an anode is placed next to a cathode and vice-versa (i.e. C/A/C/A/C/A/C/A/C . . . ). As such, the number of anodes and cathodes in the reactor can be varied, from a minimum of one anode and one cathode to many tens of anodes and cathodes. It is preferred that the alternating arrangement begins and ends with a cathode, to ensure optimum activity of the anode at the start and end of the series. More preferably, there are two to ten anodes and three to eleven cathodes, respectively. Conveniently, there are seven cathodes and six anodes. The number of electrodes used depends upon the volume of the solution to be treated and the desired treatment time. Each anode is isolated from each cathode, to avoid a short-circuit. The anodes and cathodes typically are each connected to corresponding bus bars that in turn are connected to a DC power supply.
- The reactor is made from any material that has the necessary mechanical strength for the chosen dimensions of the reactor, and resistance to corrosion by the wastewater stream of interest. Such materials can be glass, polymer-coated stainless steel, reinforced fiberglass or polymer, and the like.
- Preferably, the wastewater is filtered before treatment in the reactor in order to minimize the possibility of blockage of the electrodes with solid materials. The wastewater to be treated flows through the porous electrodes in the reactor, and therefore the liquid can be treated then conducted to a holding tank. While the solution to be treated flows through the reactor, and hence through the electrodes, a DC current passes within the reactor, between the anodes and the cathodes. The pore openings in the foam electrodes allow a free flow, of the wastewater to be treated, with a minimum of flow restriction.
- Depending upon the anode material, a current density that can vary between 0.7 and 70 (mA/cm 2) is applied, although for phenolic compounds, a current density of about 1.4 mA/cm2 is preferred. For wastewater having several target compounds, zones of different current densities can be established within the reactor in order to optimize the destruction of each target compound. The distance between certain electrodes can be selected based on the desired current density at a particular location in the reactor.
- The electrolysis (or treatment) time depends upon the initial concentration of the problem compounds and the final concentration desired, as well as the flow rate. This latter variable can be between 1 to 60 liters per minute of reactor capacity, although a flow of about 8 liters per minute is preferred. The dimensions of the electrodes, and the reactor generally, can be varied depending on specific requirements. Electrode diameter conveniently can be up to about 1.5 m. Electrode thickness conveniently can be up to 3 cm, preferably about 0.5 cm for a titanium substrate.
- The wastewater to be treated can circulate for a variable number of cycles through the reactor, or make a single pass, depending upon the level of initial contamination level and final desired (or required) final level and desired (or required) treatment time. Conveniently, the reactor is used at ambient temperature and pressure, although other conditions can be selected as appropriate.
- Wastewater to be treated can come from industrial sources, such as debarking effluent, and pulp and papermaking effluent. Preferred target aryl compounds in such wastewater are phenol and o-, m- and p-cresol. The reactor described herein has the capability of destroying the target compounds even in the presence of other organic compounds, such as butanoic acid, pentanoic acid, hexanoic acid, butanedioic acid, camphor, borneol, linalyl propanoate, furan carboxaldehyde, cyclohexanecarboxylic acid, 2-(2-hydroxy-2-propyl)-5-methyl-cyclohexanol, benzoic acid, 4-hydroxy-benzenepropanoic acid, or inorganic species such as calcium, iron, magnesium, manganese, aluminum, zinc, sodium and potassium.
- The total organic carbon (TOC) level of the wastewater to be treated is preferably less than 7500 ppb, more preferably less than 1500 ppb.
- The Anode
- The anode conveniently should be made from a material that is stable in the wastewater to be treated, and that provides reasonable activity for the destruction of the target compounds. The anode is preferably non-sacrificial.
- The anode typically is constituted by a coated substrate, the substrate preferably being a valve metal, such as tantalum or titanium. Although various anode Isubstrates could be used, such as nickel, stainless steel alloys or other corrosion resistant materials, titanium is preferred. The anode substrate should be in the form of a porous or 3D medium (sponge, foam, felt or mesh). A foam-type is preferred, such as the Astro Met® materials (Astro Met, Cincinnati, Ohio), in a configuration similar to that shown in FIGS. 2 and 3. Each anode should have a pore opening value of up to 40 pores per linear inch (ppi), preferably 20 ppi, to allow liquid flow with minimal resistance.
- When titanium is used as anode substrate, it is preferably first activated through a process that removes the surface oxide layer. Treating the titanium with boiling concentrated hydrochloric acid is one such process. The treated titanium is then quickly coated with the selected anode material.
- The anode is where the electrooxidative processes take place. Destruction of an organic compound by oxidation is a two-fold process:
- H2O+M→M—OH.+H++e−
Step 1. - In
Step 1, the water molecule is split into hydrogen and hydroxyl radicals. The anode (M) serves as a base to the formation of these two species (it acts as an electrocatalyst). The second step involves the oxidation of an organic compound (R): - R+M—OH.→M+RO+H++e−
Step 2. - where RO corresponds to the oxidized organic compound.
- This overall reaction competes with the reaction that forms oxygen. Electrochemical efficiency is defined as the ratio between the two main anodic reactions.
- Anode materials were tested for stability and efficiency to destroy organic contaminants in high TOC wastewater. The results of these tests are summarized in Table 1:
TABLE 1 Efficiency for Electrochemical Anode Material Organic Destruction Stability Platinum Very good Very good Tantalum doped Very good Poor Iridium Dioxide Antimony doped Good Very good Tin Dioxide - Platinum, electrodeposited on a titanium substrate (see FIG. 4), exhibited high efficiency, together with high stability. Platinum was efficient in electrolyzing wastewater contaminated with phenol compounds, and is thus the preferred anode material. A summary of the evaluated efficiencies of the anode materials described in Table 1 is given in FIG. 6 and FIG. 7.
- As well as platinum exemplified above, other metals such as palladium, rhodium, iridium or ruthenium, alone or in alloys with themselves or other suitable metals, can be used as the anode material.
- Antimony-doped tin dioxide (see FIG. 5) coated anodes have been shown to be good at destroying organic compounds. However, it was the least efficient anode material that was tested in the reactor of the invention, most probably due to the presence of numerous other organic species in the wastewater to be treated.
- Although tantalum-doped iridium dioxide-coated anodes showed a very good efficiency for destroying organic compounds, it was found that, over a period of time, the coating tends to spall off the anode substrate.
- Although it is preferred that the tin dioxide and iridium dioxide coatings are doped as described above, they can each generally be doped with a dopant selected from Sb, Ta, F, Cl, Mo, W and Nb, and mixtures thereof, if required.
- Known coating methods can be used to coat the anodes. The invention is augmented when the coating is uniform and homogeneous on the substrate.
- The Cathode
- A cathode is necessary to complete the electrical circuit and allow the electrochemical oxidation process to be possible. The cathode can be formed from a porous or 3D medium (foam, sponge, felt or mesh) and is preferably of a structure similar to that shown in FIGS. 2 and 3. Each porous cathode should have a pore opening value of up to 40 pores per linear inch (ppi), preferably 20 ppi, to allow liquid flow with minimal resistance. The cathode can also have other structures, such as a ring-like structure.
- The cathode material can be nickel, nickel alloys, stainless steel or even titanium, or any other corrosion resistant material. Nickel is preferred because of its acceptable cost, stability in water and because it is commercially available in a porous-type structure such as found in Astro Met® materials (Astro Met, Cincinnati, Ohio).
- A solution from origin A, containing a total concentration of 7051 ppb of phenolic contaminant compounds, was treated in a reactor built with antimony-doped tin dioxide anodes for 72 hours. The anodic current density was 5.6 mA/cm 2, the flow rate was 8.2 l/minute, corresponding to a volume to treat of 6.8 liters of solution per volume liter of reactor, and the total applied current was 300 mA, corresponding to 76104 coulombs. After the treatment period, the final total concentration of the phenolic compounds went down to 26 ppb. The concentration decrease of each species is shown in Table 2.
TABLE 2 Compound\ charge (C) 0 4925 24077 31738 50890 76104 Phenol 2600 1500 140 63 0 0 0-cresol 51 24 0 0 0 0 m-cresol 600 270 20 10 0 0 p-cresol 3800 1100 71 44 30 26 - A solution from origin A, containing a total concentration of 7519 ppb of phenolic contaminant compounds, was treated in a reactor built with antimony-doped tin dioxide anodes for 48 hours. The anodic current density was 2.8 mA/cm 2, the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor, and the total applied current was 600 mA, corresponding to 77760 coulombs. After the treatment period, the final total concentration of the phenolic compounds went down to 23 ppb. The concentration decrease of each species is shown in Table 3.
TABLE 3 Compound\ charge (C) 0 5683 10543 38362 48752 77760 Phenol 2800 910 630 23 0 0 0-cresol 39 12 0 0 0 0 m-cresol 480 210 140 0 0 0 p-cresol 4200 730 220 38 29 23 - A solution from origin B, containing a total concentration of 2783 ppb of phenolic contaminant compounds, was treated in a reactor built with antimony-doped tin dioxide anodes for 12 hours. The anodic current density was 1.4 mA/cm 2,the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor, and the total applied current was 150 mA, corresponding to 6480 coulombs. After the treatment period, the final total concentration of the phenolic compounds went down to 710 ppb. The concentration decrease of each species is shown in Table 4.
TABLE 4 Compound\ charge (C) 0 540 1060 3240 4860 6480 Phenol 1174 1298 1015 643 586 540 0-cresol 25 13 13 9 8 7 m− + p-cresol 1219 762 593 385 259 163 Total 2418 2073 1621 1038 853 710 - A solution from origin B, containing a total concentration of 2374 ppb of phenolic contaminant compounds, was treated in a reactor built with tantalum-doped iridium dioxide anodes for 6 hours. The anodic current density was 5.6 mA/cm 2, the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor, and the total applied current was 300 mA, corresponding to 6480 coulombs. After the treatment period, the final total concentration of the phenolic compounds went down to 922 ppb. The concentration decrease of each species is shown in Table 5.
TABLE 5 Compound\ charge (C) 0 540 1080 2160 4320 6480 Phenol 822 772 754 665 486 358 0-cresol 27 25 25 20 14 10 m− + p− 1525 1454 1474 1176 801 554 cresol Total 2374 2251 2253 1861 1301 922 - A solution from origin B, containing a total concentration of 2343 ppb of phenolic contaminant compounds, was treated in a reactor built with tantalum-doped iridium dioxide anodes for 12 hours. The anodic current density was 2.8 mA/cm 2, the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor, and the total applied current was 150 mA, corresponding to 6480 coulombs. After the treatment period, the final total concentration of the phenolic compounds went down to 272 ppb. The concentration decrease of each species is shown in Table 6.
TABLE 6 Compound\ charge (C) 0 540 1620 3330 4860 6480 Phenol 771 600 432 272 202 116 0-cresol 28 17 14 8 8 6 m− + p− 1545 951 733 380 298 151 cresol Total 2343 1568 1179 660 509 272 - A solution from origin B, containing a total concentration of 2783 ppb of phenolic contaminant compounds, was treated in a reactor built with tantalum-doped iridium dioxide anodes for 12 hours. The anodic current density was 1.4 mA/cm 2 the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor, and the total applied current was 75 mA, corresponding to 6480 coulombs. After the treatment period, the final total concentration of the phenolic compounds went down to 115 ppb. The concentration decrease of each species is shown in Table 7.
TABLE 7 Compound\ charge (C) 0 270 540 1080 1620 6480 Phenol 788 704 524 380 285 37 0-cresol 36 31 21 17 13 7 m− + p− 1960 1551 1066 723 515 70 cresol Total 2783 2286 1612 1121 813 115 - A solution from origin B, containing a total concentration of 1369 ppb of phenolic contaminant compounds, was treated in a reactor built with anodes made of platinum electroplated on sponge titanium substrate for 9 hours. The anodic current density was 5.6 mA/cm 2, the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor, and the total applied current was 200 mA, corresponding to 6480 coulombs. After the treatment period, the final total concentration of the phenolic compounds went down to 48 ppb. The concentration decrease of each species is shown in Table 8.
TABLE 8 Compound\ charge (C) 0 720 1440 3120 4560 6480 Phenol 359 286 253 173 119 16 0-cresol 22 15 15 11 8 4 m− + p− 988 690 595 373 250 29 cresol Total 1369 990 863 557 377 48 - A solution from origin B, containing a total concentration of 1994 ppb of phenolic contaminant compounds, was treated in a reactor built with anodes made of platinum electroplated on foam titanium substrate for 18 hours. The anodic current density was 2.8 mA/cm 2,the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor, and the total applied current was 100 mg, corresponding to 6480 coulombs. After the treatment period, the final total concentration of the phenolic compounds went down to 49 ppb. The concentration decrease of each species is shown in Table 9.
TABLE 9 Compound\ charge (C) 0 360 1440 2880 4680 6480 Phenol 519 416 246 97 54 23 0-cresol 29 20 13 6 3 2 m− + p− 1445 1078 585 156 46 24 cresol Total 1994 1514 844 259 103 49 - A solution from origin B, containing a total concentration of 1829 ppb of phenolic contaminant compounds, was treated in a reactor built with anodes made of platinum electroplated on foam titanium substrate for 18 hours. The anodic current density was 1.4 mA/cm 2, the flow rate was 8.2 l/min., corresponding to a volume to treat of 32.8 liters of solution per volume liter of reactor, and the total applied current was 50 mA, corresponding to 6480 coulombs. After the treatment period, the final total concentration of the phenolic compounds went down to 52 ppb. The concentration decrease of each species is shown in Table 10.
TABLE 10 Compound\ charge (C) 0 360 720 1260 4320 6480 Phenol 479 375 255 137 23 29 0-cresol 24 19 13 9 3 2 m− + p− 1356 957 651 381 38 21 cresol Total 1829 1351 919 528 64 52
Claims (14)
1. A flow-through electrochemical reactor comprising:
a body having an internal chamber, and an inlet port and an outlet port in communication with said internal chamber to permit flow of wastewater therethrough;
at least one porous anode arranged in said internal chamber such that the wastewater flowing between said inlet port and said outlet port flows through the pores of said at least one porous anode, said at least one porous anode having activity for the destruction of a target substance; and
at least one cathode disposed in the internal chamber to permit an electric current to be established between said at least one cathode and said at least one anode, said electric current reducing the concentration of said target substance in the wastewater flowing through the chamber.
2. A flow-through electrochemical reactor according to claim 1 , wherein the porous anode comprises a foam.
3. A flow-through electrochemical reactor according to claim 1 , wherein the porous anode comprises a substrate having an anodic coating.
4. A flow-through electrochemical reactor according to claim 3 , wherein the substrate is tantalum or titanium.
5. A flow-through electrochemical reactor according to claim 3 , wherein the anodic coating is selected from the group consisting of platinum, tantalum-doped iridium dioxide and antimony-doped tin dioxide.
6. A flow-through electrochemical reactor according to claim 1 , wherein the at least one cathode is a porous cathode, and wherein the at least one porous cathode is sized in the internal chamber so that the wastewater passes through the pores of the porous cathode.
7. A flow-through electrochemical reactor according to claim 6 , wherein the porous cathode comprises a foam.
8. A flow-through electrochemical reactor according to claim 1 , wherein the cathode comprises nickel.
9. A flow-through electrochemical reactor according to claim 1 , wherein the body is tubular and the internal chamber is generally cylindrical, and wherein each anode and cathode is supported by an insulating holder sized to be slidably inserted into the internal chamber.
10. A flow-through electrochemical reactor according to claim 1 , wherein the reactor comprises from two to ten anodes and from three to eleven cathodes, respectively, in alternating arrangement.
11. A flow-through electrochemical reactor according to claim 10 , wherein the reactor comprises seven cathodes and six anodes.
12. A flow-through electrochemical reactor according to claim 1 , wherein the target substance comprises an aryl compound, and, in use, the reactor produces an electrical current having a current density capable of oxidizing the aryl compound.
13. A flow-through electrochemical reactor according to claim 12 , wherein the aryl compound is selected from the group consisting of phenol, o-cresol, m-cresol and p-cresol.
14. A flow-through electrochemical reactor according to claim 13 , wherein the aryl compound is phenol.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/782,279 US6814840B2 (en) | 2001-02-14 | 2001-02-14 | Flow-through electrochemical reactor for wastewater treatment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/782,279 US6814840B2 (en) | 2001-02-14 | 2001-02-14 | Flow-through electrochemical reactor for wastewater treatment |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20020153245A1 true US20020153245A1 (en) | 2002-10-24 |
| US6814840B2 US6814840B2 (en) | 2004-11-09 |
Family
ID=25125561
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/782,279 Expired - Fee Related US6814840B2 (en) | 2001-02-14 | 2001-02-14 | Flow-through electrochemical reactor for wastewater treatment |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US6814840B2 (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100412233C (en) * | 2006-10-13 | 2008-08-20 | 扬州大学 | A kind of process method of electrochemical oxidation treatment of phenol-containing wastewater |
| WO2009040521A1 (en) * | 2007-09-25 | 2009-04-02 | Anthony John Maxwell | Power storage system wherein the electrolyte comprises acid mine drainage |
| WO2010102774A1 (en) * | 2009-03-09 | 2010-09-16 | Hausgrohe Ag | Methods for decomposing partially fluorinated and perfluorinated surfactants |
| WO2010023677A3 (en) * | 2008-08-25 | 2011-01-06 | Thermax Limited | Apparatus and method for wastewater treatment |
| CN104659379A (en) * | 2015-02-13 | 2015-05-27 | 清华大学 | Nanometer iron-manganese composite oxide loaded gas diffusion electrode and preparation and application thereof |
| CN106517427A (en) * | 2016-10-21 | 2017-03-22 | 河海大学 | Wastewater treatment device and method |
| CN106629999A (en) * | 2016-11-29 | 2017-05-10 | 浙江科源环境科技有限公司 | Electroacoustic multivariant catalytic oxidation device and method for treating wastewater by using same |
| CN107746091A (en) * | 2017-11-07 | 2018-03-02 | 广州栋方生物科技股份有限公司 | A kind of method for reducing camphor content in borneol water |
| CN110451614A (en) * | 2019-08-13 | 2019-11-15 | 北京环球中科水务科技有限公司 | Electroxidation-flocculation reactor, organic wastewater treating system and application |
| US10961138B2 (en) * | 2017-05-11 | 2021-03-30 | Research Center For Eco-Environmental Sciences, Chinese Academay Of Sciences | Wastewater synergistic treatment acceleration device |
| CN112919589A (en) * | 2021-01-29 | 2021-06-08 | 陕西科技大学 | Penetrating type electro-catalysis water treatment device and operation method |
| CN115010223A (en) * | 2021-03-04 | 2022-09-06 | 中国石油化工股份有限公司 | Electro-catalysis water treatment device |
| CN116081781A (en) * | 2023-04-06 | 2023-05-09 | 天津市环境保护技术开发中心设计所有限责任公司 | High-voltage cathode electro-Fenton catalytic oxidation sewage treatment device |
| CN116177687A (en) * | 2023-03-02 | 2023-05-30 | 沈阳工大蓝金环保产业技术研究院有限公司 | Filtering type electrocatalytic disinfection reactor and disinfection method |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8080150B2 (en) * | 2003-12-18 | 2011-12-20 | Rwo Gmbh | Electrolytic cell |
| ITMI20041974A1 (en) * | 2004-10-18 | 2005-01-18 | De Nora Elettrodi Spa | IMPROVEMENT OF THE COD KILLING PROCESS FOR ELECTROCHEMICAL OXIDATION |
| US20060171841A1 (en) * | 2005-01-28 | 2006-08-03 | Acernese Primo L | Reticulated liquid treatment devices with electric power source |
| KR100843404B1 (en) * | 2007-01-23 | 2008-07-03 | 삼성전기주식회사 | Hydrogen generator with porous electrode plate |
| US9560731B2 (en) | 2007-10-16 | 2017-01-31 | Foret Plasma Labs, Llc | System, method and apparatus for an inductively coupled plasma Arc Whirl filter press |
| US9761413B2 (en) * | 2007-10-16 | 2017-09-12 | Foret Plasma Labs, Llc | High temperature electrolysis glow discharge device |
| US9516736B2 (en) | 2007-10-16 | 2016-12-06 | Foret Plasma Labs, Llc | System, method and apparatus for recovering mining fluids from mining byproducts |
| US11806686B2 (en) | 2007-10-16 | 2023-11-07 | Foret Plasma Labs, Llc | System, method and apparatus for creating an electrical glow discharge |
| US8397918B2 (en) * | 2008-09-28 | 2013-03-19 | Keith A. Langenbeck | Multiple flat disc type pump and hydrocyclone |
| US10294129B2 (en) | 2013-12-09 | 2019-05-21 | General Electric Company | Polymeric-metal composite electrode-based electrochemical device for generating oxidants |
| CN110330078B (en) * | 2019-06-28 | 2020-09-15 | 浙江大学 | A high-efficiency and long-life three-dimensional structure antimony-doped tin oxide electrode |
| US11623884B1 (en) | 2019-08-02 | 2023-04-11 | Wm Intellectual Property Holdings, L.L.C. | System and method for removal of PFAS from waste streams |
| US12410071B1 (en) | 2020-10-19 | 2025-09-09 | Wm Intellectual Property Holdings, L.L.C. | System and method for removal of PFAS and other emerging contaminant micro-constituents from landfill leachate and other impacted liquids |
Family Cites Families (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3664951A (en) | 1970-07-22 | 1972-05-23 | Pollution Engineering Internat | Apparatus and process to treat waste water for pollution control and industrial reuse |
| US4014766A (en) | 1974-10-28 | 1977-03-29 | Mitsubishi Petrochemical Company Limited | Electrolytic treatment of waste water |
| US4113615A (en) | 1975-12-03 | 1978-09-12 | Exxon Research & Engineering Co. | Method for obtaining substantially complete removal of phenols from waste water |
| JPS5357177A (en) | 1976-11-04 | 1978-05-24 | Nippon Fuirutaa Kk | Method and apparatus for treating waste liquids in rapid running stream |
| LU76626A1 (en) | 1977-01-21 | 1978-09-13 | ||
| CA1166603A (en) | 1978-12-04 | 1984-05-01 | Sankar Das Gupta | Reactor electrode with porous portion and titanium portion |
| CA1162514A (en) | 1980-01-21 | 1984-02-21 | Sankar Das Gupta | Apparatus for waste treatment equipment |
| US4339324A (en) * | 1980-12-03 | 1982-07-13 | Henes Products Corp. | Polycell gas generator |
| US4445990A (en) * | 1981-11-12 | 1984-05-01 | General Electric Company | Electrolytic reactor for cleaning wastewater |
| US4473449A (en) | 1982-09-22 | 1984-09-25 | The Board Of Trustees Of The Leland Stanford Junior University | Flowthrough electrochemical hemodialysate regeneration |
| SE451855B (en) | 1983-06-17 | 1987-11-02 | Svenska Utvecklings Ab | ELECTROCEDOM CELL UNIT INTENDED TO BE USED IN AN ELECTROCHEMICAL CELL WITH PORO'S FLOW ELECTRODE, ELECTROCHEMICAL CELL, PROCEDURE FOR THE PREPARATION OF THE ELECTROCHEMICAL CELL AND USED FOR USING IT |
| US4705564A (en) | 1985-09-13 | 1987-11-10 | The Dow Chemical Company | Flow-through electrolytic cell |
| US4689124A (en) | 1985-09-13 | 1987-08-25 | The Dow Chemical Company | Flow-through electrolytic cell |
| US4652355A (en) | 1985-09-13 | 1987-03-24 | The Dow Chemical Company | Flow-through electrolytic cell |
| CH671408A5 (en) | 1987-02-20 | 1989-08-31 | Bbc Brown Boveri & Cie | |
| US5587057A (en) | 1992-03-19 | 1996-12-24 | David M. A. Metzler | Highly conductive liquid media electrocoagulation |
| US5531865A (en) | 1992-08-19 | 1996-07-02 | Cole; Leland G. | Electrolytic water purification process |
| US5364509A (en) | 1993-01-21 | 1994-11-15 | Eltech Systems Corporation | Wastewater treatment |
| JP2652609B2 (en) | 1993-05-31 | 1997-09-10 | ミズ株式会社 | Electrolyzed water generator |
| US5705050A (en) | 1996-04-29 | 1998-01-06 | Sampson; Richard L. | Electrolytic process and apparatus for the controlled oxidation and reduction of inorganic and organic species in aqueous solutions |
| US5399247A (en) | 1993-12-22 | 1995-03-21 | Eastman Kodak Company | Method of electrolysis employing a doped diamond anode to oxidize solutes in wastewater |
| DE4410658C2 (en) | 1994-03-26 | 1996-11-21 | Wt Wassertechn Gmbh | Method and device for treating industrial waste water by means of electrolysis |
| US5611907A (en) | 1994-04-18 | 1997-03-18 | Global Water Industries, Inc. | Electrolytic treatment device and method for using same |
| GB9408124D0 (en) | 1994-04-23 | 1994-06-15 | Univ Waterloo | Electrically-enhanced degradation of organic contaminants using zero-valent metals |
| CA2144035C (en) | 1995-03-03 | 2003-01-07 | Barry R. Macdougall | Removal of organics from aqueous solutions |
| DE69608244T2 (en) | 1996-03-05 | 2001-01-25 | Ming Shing Lee | Water treatment through electroflotation and electrocoagulation |
| US5879555A (en) | 1997-02-21 | 1999-03-09 | Mockba Corporation | Electrochemical treatment of materials |
| WO1999023035A1 (en) | 1997-11-01 | 1999-05-14 | Anglo Operations Limited | Removal of pollutants from effluents with electrochemical treatment |
| US5928493A (en) | 1997-11-24 | 1999-07-27 | Kaspar Electroplating Corporation | Process and apparatus for electrocoagulative treatment of industrial waste water |
| TW449574B (en) | 1998-05-01 | 2001-08-11 | Ind Tech Res Inst | Method of wastewater treatment by electrolysis and oxidization |
| US6071409A (en) | 1998-07-07 | 2000-06-06 | Abb Lummus Global Inc. | Phenolic wastewater treatment with ethers for removal and recovery of phenolics |
| US6342150B1 (en) * | 1998-09-09 | 2002-01-29 | Thomas Clay Sale | Redox water treatment system |
| US6315886B1 (en) * | 1998-12-07 | 2001-11-13 | The Electrosynthesis Company, Inc. | Electrolytic apparatus and methods for purification of aqueous solutions |
-
2001
- 2001-02-14 US US09/782,279 patent/US6814840B2/en not_active Expired - Fee Related
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100412233C (en) * | 2006-10-13 | 2008-08-20 | 扬州大学 | A kind of process method of electrochemical oxidation treatment of phenol-containing wastewater |
| WO2009040521A1 (en) * | 2007-09-25 | 2009-04-02 | Anthony John Maxwell | Power storage system wherein the electrolyte comprises acid mine drainage |
| WO2010023677A3 (en) * | 2008-08-25 | 2011-01-06 | Thermax Limited | Apparatus and method for wastewater treatment |
| WO2010102774A1 (en) * | 2009-03-09 | 2010-09-16 | Hausgrohe Ag | Methods for decomposing partially fluorinated and perfluorinated surfactants |
| US9221695B2 (en) | 2009-03-09 | 2015-12-29 | Hansgrohe Se | Methods for decomposing partially fluorinated and perfluorinated surfactants |
| CN104659379A (en) * | 2015-02-13 | 2015-05-27 | 清华大学 | Nanometer iron-manganese composite oxide loaded gas diffusion electrode and preparation and application thereof |
| CN106517427A (en) * | 2016-10-21 | 2017-03-22 | 河海大学 | Wastewater treatment device and method |
| CN106629999A (en) * | 2016-11-29 | 2017-05-10 | 浙江科源环境科技有限公司 | Electroacoustic multivariant catalytic oxidation device and method for treating wastewater by using same |
| US10961138B2 (en) * | 2017-05-11 | 2021-03-30 | Research Center For Eco-Environmental Sciences, Chinese Academay Of Sciences | Wastewater synergistic treatment acceleration device |
| CN107746091A (en) * | 2017-11-07 | 2018-03-02 | 广州栋方生物科技股份有限公司 | A kind of method for reducing camphor content in borneol water |
| CN110451614A (en) * | 2019-08-13 | 2019-11-15 | 北京环球中科水务科技有限公司 | Electroxidation-flocculation reactor, organic wastewater treating system and application |
| CN112919589A (en) * | 2021-01-29 | 2021-06-08 | 陕西科技大学 | Penetrating type electro-catalysis water treatment device and operation method |
| CN115010223A (en) * | 2021-03-04 | 2022-09-06 | 中国石油化工股份有限公司 | Electro-catalysis water treatment device |
| CN116177687A (en) * | 2023-03-02 | 2023-05-30 | 沈阳工大蓝金环保产业技术研究院有限公司 | Filtering type electrocatalytic disinfection reactor and disinfection method |
| CN116081781A (en) * | 2023-04-06 | 2023-05-09 | 天津市环境保护技术开发中心设计所有限责任公司 | High-voltage cathode electro-Fenton catalytic oxidation sewage treatment device |
Also Published As
| Publication number | Publication date |
|---|---|
| US6814840B2 (en) | 2004-11-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6814840B2 (en) | Flow-through electrochemical reactor for wastewater treatment | |
| US11679998B2 (en) | Method and apparatus for electrochemical purification of wastewater | |
| KR100379123B1 (en) | Electrolytic apparatus and methods for purification of aqueous solutions | |
| JP3364518B2 (en) | Wastewater treatment method | |
| AU767548B2 (en) | Electrolytic apparatus, methods for purification of aqueous solutions and synthesis of chemicals | |
| US6773575B2 (en) | Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid | |
| EP2649014B1 (en) | Carbon bed electrolyser for treatment of liquid effluents and a process thereof | |
| US11939687B2 (en) | Water electrolysis apparatus, and sterilization/cleaning method and method for decomposing/removing harmful substance, each using water electrolysis apparatus | |
| CN106660837A (en) | An apparatus for conducting an electro-fenton reaction for decomposing organic chemical compounds | |
| JPH10151463A (en) | Water treatment method | |
| JP7269253B2 (en) | Electrolytic cell with bipolar electrodes for wastewater treatment | |
| EP1587760B1 (en) | Electrolytic cell | |
| JP3727579B2 (en) | Hydrothermal electrolysis reactor and electrode | |
| CA2336507C (en) | Flow-through electrochemical reactor for wastewater treatment | |
| JPH1110160A (en) | Method for treating water by electrolytic oxidation | |
| EP4644335A1 (en) | Ceramic-carbon foam electrodes enriched with metal oxides, their method of preparation, and use in electro-oxidation reactors | |
| KR101644275B1 (en) | Electrolysis device and water treatment method using the device | |
| KR100795842B1 (en) | Membrane type flow electrolyzer using platinum / titanium working electrode | |
| JPH1043765A (en) | Electrolyzer for electrolytic treatment of water to be treated | |
| JPH0655177A (en) | Electrochemical treatment apparatus | |
| JPH09299955A (en) | Electrolytic cell and treatment of water using the same | |
| JP3664274B2 (en) | Electrolytic treatment method of water to be treated | |
| JP5285393B2 (en) | Electrolyzer | |
| JPH04219192A (en) | Treatment of water to be treated | |
| JPH04219193A (en) | Treatment of water to be treated |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NATIONAL RESEARCH COUNCIL OF CANADA, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HENUSET, YVES MICHEL;FOURNIER, JOEL;REEL/FRAME:011730/0216;SIGNING DATES FROM 20010223 TO 20010224 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Expired due to failure to pay maintenance fee |
Effective date: 20081109 |