US20020143163A1 - Gene conferring resistance to the antibacterial 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), the protein encoded by same, and applications thereof - Google Patents
Gene conferring resistance to the antibacterial 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), the protein encoded by same, and applications thereof Download PDFInfo
- Publication number
- US20020143163A1 US20020143163A1 US09/805,681 US80568101A US2002143163A1 US 20020143163 A1 US20020143163 A1 US 20020143163A1 US 80568101 A US80568101 A US 80568101A US 2002143163 A1 US2002143163 A1 US 2002143163A1
- Authority
- US
- United States
- Prior art keywords
- dhcp
- protein
- gene
- resistance
- dep
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 81
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 45
- HLOLRONOOCGTRG-UHFFFAOYSA-N 4,5-dihydroxycyclopent-2-en-1-one Chemical compound OC1C=CC(=O)C1O HLOLRONOOCGTRG-UHFFFAOYSA-N 0.000 title claims abstract description 8
- 230000000844 anti-bacterial effect Effects 0.000 title abstract description 8
- 239000013612 plasmid Substances 0.000 claims abstract description 26
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 230000000694 effects Effects 0.000 claims abstract description 15
- 230000001580 bacterial effect Effects 0.000 claims abstract description 4
- 241000588724 Escherichia coli Species 0.000 claims description 41
- 230000014509 gene expression Effects 0.000 claims description 14
- 239000003242 anti bacterial agent Substances 0.000 claims description 13
- 229960005091 chloramphenicol Drugs 0.000 claims description 13
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 claims description 13
- 229940088710 antibiotic agent Drugs 0.000 claims description 12
- 241000894006 Bacteria Species 0.000 claims description 9
- 239000004098 Tetracycline Substances 0.000 claims description 7
- 229960002180 tetracycline Drugs 0.000 claims description 7
- 229930101283 tetracycline Natural products 0.000 claims description 7
- 235000019364 tetracycline Nutrition 0.000 claims description 7
- 150000003522 tetracyclines Chemical class 0.000 claims description 7
- 229960000268 spectinomycin Drugs 0.000 claims description 6
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 claims description 6
- 206010034133 Pathogen resistance Diseases 0.000 claims description 4
- 102000035160 transmembrane proteins Human genes 0.000 claims description 4
- 108091005703 transmembrane proteins Proteins 0.000 claims description 4
- 230000001086 cytosolic effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- 230000002209 hydrophobic effect Effects 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 56
- 102100033350 ATP-dependent translocase ABCB1 Human genes 0.000 description 14
- 239000006137 Luria-Bertani broth Substances 0.000 description 12
- 239000012634 fragment Substances 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 10
- 230000012010 growth Effects 0.000 description 10
- 108010078791 Carrier Proteins Proteins 0.000 description 8
- 102000014914 Carrier Proteins Human genes 0.000 description 8
- 108010047230 Member 1 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 239000002773 nucleotide Substances 0.000 description 8
- 125000003729 nucleotide group Chemical group 0.000 description 8
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 7
- 101001017818 Homo sapiens ATP-dependent translocase ABCB1 Proteins 0.000 description 7
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 101150083806 ydhB gene Proteins 0.000 description 7
- 102000004855 Multi drug resistance-associated proteins Human genes 0.000 description 6
- 108090001099 Multi drug resistance-associated proteins Proteins 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 230000018612 quorum sensing Effects 0.000 description 6
- 206010051066 Gastrointestinal stromal tumour Diseases 0.000 description 5
- 208000018142 Leiomyosarcoma Diseases 0.000 description 5
- 241000607618 Vibrio harveyi Species 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- RDOIQAHITMMDAJ-UHFFFAOYSA-N loperamide Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 RDOIQAHITMMDAJ-UHFFFAOYSA-N 0.000 description 5
- 229960001571 loperamide Drugs 0.000 description 5
- 230000036457 multidrug resistance Effects 0.000 description 5
- 206010000830 Acute leukaemia Diseases 0.000 description 4
- 101710202577 Bicyclomycin resistance protein Proteins 0.000 description 4
- BZKFMUIJRXWWQK-UHFFFAOYSA-N Cyclopentenone Chemical class O=C1CCC=C1 BZKFMUIJRXWWQK-UHFFFAOYSA-N 0.000 description 4
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 4
- 206010038678 Respiratory depression Diseases 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- LOUPRKONTZGTKE-LHHVKLHASA-N quinidine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@H]2[C@@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-LHHVKLHASA-N 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- BVIYGXUQVXBHQS-IUYQGCFVSA-N (2R,4S)-2-methyltetrahydrofuran-2,3,3,4-tetrol Chemical compound C[C@@]1(O)OC[C@H](O)C1(O)O BVIYGXUQVXBHQS-IUYQGCFVSA-N 0.000 description 3
- 206010059866 Drug resistance Diseases 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 108010091105 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 3
- 102000018075 Subfamily B ATP Binding Cassette Transporter Human genes 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000000845 anti-microbial effect Effects 0.000 description 3
- 238000002512 chemotherapy Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 2
- 241000607620 Aliivibrio fischeri Species 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- AEMOLEFTQBMNLQ-VANFPWTGSA-N D-mannopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H]1O AEMOLEFTQBMNLQ-VANFPWTGSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- YRYOXRMDHALAFL-UHFFFAOYSA-N N-(3-oxohexanoyl)homoserine lactone Chemical compound CCCC(=O)CC(=O)NC1CCOC1=O YRYOXRMDHALAFL-UHFFFAOYSA-N 0.000 description 2
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 2
- 241000187398 Streptomyces lividans Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- IAJILQKETJEXLJ-RSJOWCBRSA-N aldehydo-D-galacturonic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-RSJOWCBRSA-N 0.000 description 2
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 108010030074 endodeoxyribonuclease MluI Proteins 0.000 description 2
- 229940097043 glucuronic acid Drugs 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical group 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 108700025647 major vault Proteins 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 229960001404 quinidine Drugs 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 241000556533 uncultured marine bacterium Species 0.000 description 2
- KLLLJCACIRKBDT-UHFFFAOYSA-N 2-phenyl-1H-indole Chemical compound N1C2=CC=CC=C2C=C1C1=CC=CC=C1 KLLLJCACIRKBDT-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- WUWFMDMBOJLQIV-UHFFFAOYSA-N 7-(3-aminopyrrolidin-1-yl)-1-(2,4-difluorophenyl)-6-fluoro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid Chemical compound C1C(N)CCN1C(C(=C1)F)=NC2=C1C(=O)C(C(O)=O)=CN2C1=CC=C(F)C=C1F WUWFMDMBOJLQIV-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 101100381862 Bacillus subtilis (strain 168) bmr3 gene Proteins 0.000 description 1
- 101100043329 Bacillus subtilis (strain 168) spoVIF gene Proteins 0.000 description 1
- 101100480824 Bacillus subtilis (strain 168) tetB gene Proteins 0.000 description 1
- 101150049556 Bcr gene Proteins 0.000 description 1
- 241000158523 Corynebacterium striatum Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 101100082608 Escherichia coli (strain K12) pdeC gene Proteins 0.000 description 1
- 101710095428 HTH-type transcriptional regulator CynR Proteins 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 108050005144 Multidrug resistance proteins Proteins 0.000 description 1
- 102000014842 Multidrug resistance proteins Human genes 0.000 description 1
- 206010048723 Multiple-drug resistance Diseases 0.000 description 1
- DYUQAZSOFZSPHD-UHFFFAOYSA-N Phenylpropanol Chemical compound CCC(O)C1=CC=CC=C1 DYUQAZSOFZSPHD-UHFFFAOYSA-N 0.000 description 1
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 1
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- 241000187561 Rhodococcus erythropolis Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 108010063499 Sigma Factor Proteins 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000191982 Staphylococcus hyicus Species 0.000 description 1
- 241000892502 Streptomyces lividans 1326 Species 0.000 description 1
- 101100206306 Streptomyces lividans tetM gene Proteins 0.000 description 1
- 241000999525 Streptomyces venezuelae ATCC 10712 Species 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 0 [1*]C(=O)OC1([6*])C(=O)C([5*])=C([4*])C1([3*])OC([2*])=O.[3*]C1(C)=C([6*])(C)C(=O)C([5*])=C1[4*] Chemical compound [1*]C(=O)OC1([6*])C(=O)C([5*])=C([4*])C1([3*])OC([2*])=O.[3*]C1(C)=C([6*])(C)C(=O)C([5*])=C1[4*] 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 108091006088 activator proteins Proteins 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000003793 antidiarrheal agent Substances 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- WOUDXEYYJPOSNE-VKZDFBPFSA-N bicozamycin Chemical compound N1C(=O)[C@@]2(O)NC(=O)[C@]1([C@@H](O)[C@@](O)(CO)C)OCCC2=C WOUDXEYYJPOSNE-VKZDFBPFSA-N 0.000 description 1
- WOUDXEYYJPOSNE-UHFFFAOYSA-N bicyclomycin Natural products N1C(=O)C2(O)NC(=O)C1(C(O)C(O)(CO)C)OCCC2=C WOUDXEYYJPOSNE-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000012829 chemotherapy agent Substances 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 230000005757 colony formation Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- IAJILQKETJEXLJ-LECHCGJUSA-N iduronic acid Chemical compound O=C[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-LECHCGJUSA-N 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- 150000007523 nucleic acids Chemical group 0.000 description 1
- 229940127240 opiate Drugs 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000006825 purine synthesis Effects 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 101150025975 qacA gene Proteins 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 101150098466 rpsL gene Proteins 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 101150118377 tet gene Proteins 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229950008187 tosufloxacin Drugs 0.000 description 1
- 231100000816 toxic dose Toxicity 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 101150021406 ydhC gene Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
- C07K14/245—Escherichia (G)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- DHCP 4,5-dihydroxy-2-cyclopenten-1-one
- uronic acid is galacturonic acid, glucuronic acid, mannuronic acid or iduronic acid. It is also produced from roasted or parched vegetables, fruits, cereals, mushrooms, sea algae, cortex or cartilage. It has been demonstrated that this compound induces cancer cell differentiation and apoptosis. It has potential application as therapeutic or preventive agent against cancer and also as an antibacterial agent in antiseptics, dentrifices, cosmetics and bathing agents (Koyama et al., 1999).
- This patent discloses a method of manufacturing 4,5-dihydroxy-2-cyclopenten-1-one (DHCP). It also describes the antibacterial activity of DHCP.
- the invention disclosed in the present provisional application relates to a gene, dep, that, when present in multiple copies in bacterial cells, confers resistance to the antibacterial activity of DHCP, thus rendering the bacteria resistant to killing by DHCP.
- the present application also describes the protein encoded by the dep gene.
- This patent relates to functionally equivalent ether derivatives of DHCP and discloses the biological activity of these derivatives.
- This patent relates to functionally equivalent ester derivatives of DHCP and discloses the biological activity of these derivatives.
- MDR multidrug-resistance
- P-gp P-glycoprotein
- loperamide is a substrate for the efflux membrane transporter P-glycoprotein.
- loperamide is a potent opiate drug, it does not opioid central nervous system effects, such as respiratory depression, when given to patients at usual doses.
- This study tested the hypothesis that inhibition of P-glycoprotein with quinidine would increase the entry of loperamide into the central nervous system, thus causing respiratory depression.
- the results demonstrated that although loperamide produced no respiratory depression when used alone, respiratory depression was seen when loperamide was administered with quinidine.
- MDS myelodysplastic syndromes
- P-gp P-glycoprotein
- MRP1 multidrug resistance-associated protein
- Soft tissue leiomyosarcomas and malignant gastrointestinal stromal tumors differences in clinical outcome and expression of multidrug resistance proteins.
- MDR multidrug resistance
- the bioluminescent marine bacterium Vibrio harveyi controls light production (lux) by a quorum-sensing circuit.
- lux response regulator protein
- ⁇ 54 the response regulator protein
- LuxO functions as an activator protein via interaction with the alternative sigma factor, ⁇ 54 . Since LuxO is responsible for repression of the luciferase structural operon (luxCDABEGH), these results suggest that LuxO, together with ⁇ 54 , functions to activate a negative regulator of luminescence.
- FIG. 1 is the chemical structure of 4,5-dihydroxy-2-cyclopenten- 1 -one (DHCP).
- FIG. 2A is a graphical representation of the effect of DHCP concentration on the growth of E. coli.
- FIG. 2B is a graphical representation of the effect of DHCP concentration on the survival of E. coli.
- FIG. 3 is a restriction mapping of the plasmid pSP001 showing the DNA fragments conferring resistance to DHCP.
- FIG. 4 is a comparison of the amino acid sequence of the polypeptide encoded by dep with the proteins encoded by cmr, cmrA, cmx, cmlv, bcr, bmr3, yjcC, and tet.
- FIG. 5 is a comparison of the hydropathic profiles of the putative proteins encoded by dep, cmr, and cml.
- FIG. 6 is a nucleotide sequence showing the DNA sequence of a region of the E. coli genome containing the sequence of the dep gene.
- FIG. 7 is a nucleotide sequence showing the isolated DNA sequence of the dep gene.
- the provisional application describes the cloning of a gene encoding a transmembrane protein from E. coli. This protein, when expressed from a multi-copy plasmid, functions to transport 4,5-dihydroxy-2-cyclopenten-1-one (DHCP) out of the cell.
- DHCP 4,5-dihydroxy-2-cyclopenten-1-one
- DHCP and functionally equivalent compounds are represented by the formulas [I] and [II] and include optically active compounds thereof.
- R 3 -R 6 are independently hydrogen or an alkyl group, preferably a lower alkyl group such as a C 1 -C 6 alkyl.
- R 3 -R 6 are independently hydrogen or an alkyl group, preferably a lower alkyl group such as a C 1 -C 6 alkyl.
- DHCP is shown to possess anti-bacterial activity; it inhibits cell growth at a concentration of 350 ⁇ M or higher. At lower concentrations, it causes cells to elongate and grow poorly.
- a library of E. coli genomic DNA fragments was transformed into strain JM83 and grown on agar plates containing 400 ⁇ M DHCP. Colonies that were capable of growing on this medium were isolated. DNA was isolated from these colonies to identify and sequence the cloned genomic fragment that specified resistance. Four genes were found in the fragment that conferred resistance. Inactivation of various combinations of these four genes led to the conclusion that ORF389 was responsible for conferring resistance. This was confirmed by cloning ORF389 by itself into pUC19 (a multi-copy plasmid) and transforming strain JM83. The resultant cells were resistant to DHCP.
- ORF389 Comparison of the nucleotide sequence of ORF389 with the E. coli gene database showed that it was similar to known efflux proteins involved in conferring resistance to chloramphenicol and other antibiotics. Further analysis of the predicted structure of the protein encoded by ORF389 suggested that it was a membrane protein; it possesses multiple transmembrane domains and shares structural similarity with the aforementioned chloramphenicol efflux polypeptides.
- ORF389 was capable of conferring resistance to other antibiotics such as chloramphenicol, spectinomycin, and tetracycline
- the transformed JM83 cells containing the pUC19/ORF389 plasmid were plated on media containing these antibiotics.
- the presence of ORF389 failed to confer resistance to any antibiotic other than DHCP, suggesting that the efflux activity of the Dep protein is specific for DHCP.
- ORF389 confers resistance to DHCP only when it is present in multiple copies in the cell.
- the gene is naturally found in the genome of E. coli cells, but it is present in single copy. Such cells are susceptible to the antimicrobial activity of DHCP.
- ORF389 is cloned into pUC19 and introduced into JM83 cells, it is present in multiple copies (up to several hundred copies of the gene per cell), since pUC19 is maintained in up to several hundred copies per cell. Only when the gene dosage is increased, is resistance to DHCP found. The mechanism of resistance is simply increased efflux activity arising from the increased expression of the efflux protein in the transformed cells.
- nucleotide sequence encoding an efflux protein that is responsible for conferring resistance to DHCP or a compound functionally equivalent to DHCP may vary from the nucleic acid sequence disclosed herein.
- DHCP is a compound that exhibits antimicrobial and anti-tumor activity. It is made by heating various uronic acids (e.g., glucuronic acid, galacturonic acid, mannuronic acid).
- uronic acids e.g., glucuronic acid, galacturonic acid, mannuronic acid.
- the inventors have cloned a gene from E. coli that encodes a protein which is capable of transporting DHCP out of the cell.
- This transport protein shows sequence similarity with known efflux proteins that function to transport antibiotics such as chloramphenicol out of the cell. It has been shown that organisms which overexpress the transport protein become resistant to DHCP, probably because they are able to efficiently transport DHCP.
- Overexpression of the transport protein arises from the presence of multiple copies of the gene, rather than increased expression from the endogenous gene in E.
- E. coli possess a single copy of the transport gene.
- the level of transport protein expression from a single copy of the gene is insufficient to confer resistance to DHCP.
- the inventors have cloned the gene into a high copy number plasmid, pUC19, which is maintained in E. coli cells at 200-500 copies per cell.
- transformed E. coli containing this plasmid construct will possess 200-500 copies of the transport gene, and protein expression from multiple copies is greater than from a single copy. These transformed cells are resistant to DHCP.
- DHCP The general mode of action of DHCP requires that it enter the target cell. Resistance to DHCP can occur if DHCP is transported out of the cell as fast as or faster than it enters the cell. Given that, the concentration of DHCP within the cell can never accumulate to a toxic dose and the cell is resistant to the antimicrobial effects of the compound. Hence, the transport protein encoded by gene disclosed does not transport DHCP very efficiently, or the amount of transport protein expressed from the endogenous gene is very low. In either case, the presence of more transport protein (arising from many copies of the gene) will result in more efficient transfer of DHCP out of the cell.
- inhibitors of efflux activity will function to block the transport activity.
- a microbe or a tumor cell that is resistant to DHCP can be made to be more sensitive to the compound by preventing the resistant cell from transporting the compound back out.
- inhibitors of the transport gene of the invention may also be active in blocking transport of other efflux proteins such as the efflux proteins that transport chloramphenicol, or the P glycoprotein family of multiple drug resistant proteins.
- the P glycoproteins are expressed in many tumor cells, making these tumors resistant to chemotherapy agents. Abstracts regarding studies of P glycoproteins are referenced above.
- FIG. 1 is the chemical structure of 4,5-dihydroxy-2-cyclopenten-1-one (DHCP).
- FIG. 2 Effect of DHCP concentrations on the growth of E. coli.
- DHCP concentration 0 ⁇ M, open squares; 50 ⁇ M, closed diamonds; 100 ⁇ M, open circles; 250 ⁇ M, open diamonds; 400 ⁇ M closed squares.
- FIG. 3 Restriction mapping of the plasmid pSP001 conferring resistance to DHCP.
- ORFs comprising the DNA fragment (5.2 kb) conferring resistance to DHCP and the flanking ORFs are shown. The orientation of each ORF is marked with an arrow. The restriction enzyme sites are also shown. The ORFs are not drawn to scale.
- the plasmid pSP001 containing the DNA fragment conferring resistance to DHCP was digested with restriction enzymes to disrupt each of four ORFs, religated and transformed into JM83 cells. The transformants were then examined for their sensitivity to DHCP (400 ⁇ M).
- the enzymes used for digestion were: forpurR: MluI for ydhB; NruI-Eco47III, for ORF389, purR , and ydhB: NruI and SmaI, for ORF389: Aval and forpurR and ydhB: MluI and NruI.
- for construction of plasmid with ORF389 (dep) the plasmid pSP001 was digested with SmaI and MscI, the fragment was purified and cloned into pUC19 to yield plasmid pSP007.
- FIG. 4 The sequence homology between Dep, Cmr, CmrA, Cmx, CmlV, BcR, Bmr3, YjcC and Tet. Identical and similar sequences are marked with black and gray boxes, respectively. The consensus sequences for transmembrane proteins are marked with dotted lines and are represented as I, II, and III stretches.
- FIG. 5 Hydropathic profiles of Dep (A), Cmr from Rhodococcusfaciens (B) (6) and Cml from Streptomyces lividans (C) (8). Horizontal bars indicate predicted transmembrane regions.
- FIG. 6 is a nucleotide sequence showing the DNA sequence of a region of the E. coli genome containing the sequence of the dep gene. This region of the E. coli genome is available at Accession No. AE000261 U00096. The sequence shown is that of nucleotides 4381-8280. The dep gene is encoded by nucleotides 4627-5838. The dep sequence is shown in brackets.
- FIG. 7 is a nucleotide sequence showing the isolated DNA sequence of the dep gene.
- the plasmid pSP007 was confirmed to contain the dep gene by obtaining DNA sequence data from one end of the 1.7 kb insert. Sequence data obtained in this manner matched the first.
- E. coli wild-type strain JM83 [F ⁇ ara ⁇ (lac-proAB) rpsL(str′)](Yanisch-Perron et al., 1985) was grown in Luria broth (LB). Media were supplemented with ampicillin (final concentration of 50 ⁇ g/ml) whenever required.
- ampicillin final concentration of 50 ⁇ g/ml
- DHCP was added at various concentrations (0-400 ⁇ M) and growth was further monitored. After it reached to the Klett unit of 90-100, it was diluted 10-fold into media containing respective concentrations of DHCP.
- 2A shows the effect of different concentrations of DHCP on E. coli.
- the growth was slowed after 3 h of incubation in the presence of 50 ⁇ M DHCP, but it reached the maximum density after 8 h, similar to that without DHCP.
- the cells grew more slowly after 3 h incubation with 100 ⁇ M of DHCP and the maximum cell density was lower than that without DHCP.
- growth was severely impaired after 3 h of incubation and cells stopped growing after 5 h.
- 400 ⁇ M DHCP cell growth stopped after 4 h of incubation.
- E. coli genomic library was screened.
- the construction of E. coli genomic library was described previously (Lu and Inouye, 1998).
- the partially digested Sau3AI chromosomal DNA fragments from E. coli JM83 were cloned into the BamHI site of pUC19.
- the JM83 cells were transformed with the genomic library. Transformants were isolated for their ability to grow on DHCP (400 ⁇ M) containing LB plates at 37° C. Plasmid DNA was isolated from the resistant colonies, purified and retransformed into JM83 cells to confirm its ability to confer resistance to DHCP.
- the plasmid was designated as pSP001 and was found to contain a 5.2-kb DNA fragment. This fragment was sequenced from both ends using Sequenase and BLAST search was carried out for the analysis of homology of this fragment with the entire E. coli genome. It was found that this DNA fragment is located at 37.5 min on the E. coli chromosome and contains four ORFs (FIG. 3): ORF389, purR encoding purine synthesis repressor, ydhB encoding a homologue of the cyn operon transcriptional activator and ydhC encoding a homologue of bicyclomycin resistance protein (Berlyn et al., 1996).
- ORF389 is responsible for resistance to DHCP when cloned in a multicopy plasmid and further work was carried out using the plasmid pSP007.
- the ORF389 was named as dep- D HCP e fflux p rotein (see below).
- FIG. 4 shows nine proteins showing significantly high homology with Dep. Half of these proteins confer resistance to chloramphenicol.
- the proteins showing the highest degree of homology include: Cmr from Rhodococcus fasciens (Desomer et al., 1992), CmrA from R. erythropolis (Nagy et al., 1997), Cml from Streptomyces lividans 1326 (Dittrich et al., 1991), Cmx from Corynebacterium striatum (Accession no. U72639), and CmlV from S.
- Dep has the highest degree of homology with Cmr, product of chloramphenicol resistant gene (cmr) as compared to other proteins.
- Cmr protein was shown to contain three consensus sequences defined by Rouch et al. (1990) for transmembrane proteins. These sequences are at similar positions with respect to the predicted transmembrane domains. These are marked in FIG. 6 with dotted lines and are designated as I, II, III.
- the first stretch (I) comprising of LP is completely homologous with the stretch defined by these authors.
- the second stretch (II) shows 50% similarity with that of Cmr protein and the third stretch (III) is homologous between these two proteins except for one residue.
- the stretches I and III are located on the outside of the cytoplasmic membrane and the stretch II is located on the inside of the membrane.
- the positions of the membrane loops for the putative protein encoded by qacA were ascertained by inspecting the antigenic index profile and turn prediction. Such regions have a high antigenic index and turn probability (Rouch et al., 1990).
- FIG. 5A the hydropathic profile of Dep (FIG. 5A) is significantly similar to those of Cmr of R. faciens (Desomer et al., 1992) (FIG. 5B) and Cml of S. lividans (Dittrich et al., 1991) (FIG. 5C).
- Dep is predominantly hydrophobic and probably contains 12 predicted transmembrane ⁇ -helices (FIG. 5A).
- the other proteins homologous to Dep include BcR (bicyclomycin- resistance protein) from E. coli (Bentley et al., 1993), Bmr3 from B. subtilis involved in the multiple drug efflux pump conferring resistance to puromycin, tosufloxacin, norfloxacin (Ohki and Murata, 1997), Tet from Staphylococcus hyicus conferring tetracycline resistance (Schwarz et al., 1992) and YjcC conferring tetracenomycin-resistance (Accession no. D90826) (FIG. 4). All of these are efflux proteins, which is one of the most common mechanisms for drug resistance.
- dep encodes a putative efflux protein that forms a cytoplasmic channel specific for DHCP.
- the homologies are more prominent towards the N-terminal end of the proteins, which also is a common feature for efflux proteins (Desomer et al., 1992).
- Dep shows homology to efflux proteins for multiple drug resistance, we checked if it confers resistance to other antibiotics as well.
- the E. coli wild-type cells harboring pUC 19 or pSP007 plasmid were grown overnight in LB medium containing ampicillin. The cells were diluted 10- and 1000- times, and 5 ⁇ l of each dilution (corresponding to 3.5 ⁇ 10 5 cells and 3.5 ⁇ 10 3 cells, respectively) was spotted on LB plates containing serial dilutions of kanamycin, chloramphenicol, spectinomycin, tetracycline and DHCP. Plates were incubated at 37° C. for 20 h.
- pSP007 did not confer significant cross-resistance to any of the antibiotics tested.
- the MIC values for cells harboring pUC19 and pSP007 were same for spectinomycin, chloramphenicol and tetracycline. The MIC value was two times higher for kanamycin for the cells harboring pSP007 than the cells with pUC19.
- the MIC value for DHCP on the other hand was 8 times higher for the cells harboring pSP007 than that for the cells with pUC 19. It is interesting that Dep did not confer resistance to chloramphenicol, in spite of the high homology to cmr. TABLE 1 Minimum inhibitory concentrations (MICs) of various antibiotics for E.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Communicable Diseases (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
- This patent application claims the benefit of U.S. Provisional Application No. 60/228,727, filed Aug. 29, 2000. This earlier provisional application is hereby incorporated by reference.
- In spite of a number of antibiotics available against a variety of bacteria, due to emergence of multiple drug resistant strains, the search for newer and more effective antibacterial compounds has continued. 4,5-dihydroxy-2-cyclopenten-1-one (DHCP) (see FIG. 1) is a compound having antibacterial activity against a variety of gram-positive and -negative bacteria, such as Escherichia coli, Bacillus, Salmonella, Staphylococcus etc. The process for manufacture and the properties of DHCP have been patented (Koyama et al., 1999). It is prepared by the heat-treatment of uronic acid or its derivatives, wherein uronic acid is galacturonic acid, glucuronic acid, mannuronic acid or iduronic acid. It is also produced from roasted or parched vegetables, fruits, cereals, mushrooms, sea algae, cortex or cartilage. It has been demonstrated that this compound induces cancer cell differentiation and apoptosis. It has potential application as therapeutic or preventive agent against cancer and also as an antibacterial agent in antiseptics, dentrifices, cosmetics and bathing agents (Koyama et al., 1999).
- We have isolated a multicopy suppressor from an E. coli genomic library for the DHCP toxicity. The putative protein encoded by this gene showed high homology to known efflux proteins conferring resistance to a number of antibiotics including chloramphenicol, bicyclomycin and tetracycline. The gene was mapped at 37.5 min on the E. coli chromosome. It is designated as dep for DHCP efflux protein. However, the Dep protein does not confer cross-resistance to any of the antibiotics tested.
- U.S. Pat. No. 6,087,401 to Koyama, et al. Cyclopentones, process for preparing same, and the use thereof.
- This patent discloses a method of manufacturing 4,5-dihydroxy-2-cyclopenten-1-one (DHCP). It also describes the antibacterial activity of DHCP.
- In contrast, the invention disclosed in the present provisional application relates to a gene, dep, that, when present in multiple copies in bacterial cells, confers resistance to the antibacterial activity of DHCP, thus rendering the bacteria resistant to killing by DHCP. The present application also describes the protein encoded by the dep gene.
-
European Patent EP 0 941 981 A1 to Koyama, et al. Cyclopentones, process for preparing same, and the use thereof. - This patent application relates to essentially the same subject matter as that described in U.S. Pat. No. 6,087,401 to Koyama, et al.
- U.S. Pat. No. 6,111,145 to Kobayashi et al. Cyclopentenone derivative.
- This patent relates to functionally equivalent ether derivatives of DHCP and discloses the biological activity of these derivatives.
- European Patent Publication
EP 1 000 923 A1 to Kobayashi et al. Cyclopentenone derivatives. - This patent application relates to essentially the same subject matter as that described in U.S. Pat. No. 6,111,145 to Kobayashi et al.
- U.S. Pat. No. 6,136,854 to Koyama et al. Cyclopentenone derivative.
- This patent relates to functionally equivalent ester derivatives of DHCP and discloses the biological activity of these derivatives.
- European Patent Publication
EP 0 976 717 A1 to Koyama et al. Cyclopentenone derivatives. - This patent application relates to essentially the same subject matter as that described in U.S. Pat. No. 6,136,854 to Koyama et al.
- Clinical significance of P-glycoprotein expression and function for response to induction chemotherapy, relapse rate and overall survival in acute leukemia. C. Wuchter, et al. Haematologica 85(7):711-21 (2000).
- In acute leukemia, a multidrug-resistance (MDR) phenotype mediated by P-glycoprotein (P-gp) contributes to chemotherapy failure. This study investigated whether P-gp expression levels or functional P-gp activity was a better predictor of response to induction chemotherapy, relapse rate and overall survival in acute leukemia. The data demonstrated that the functional rhodamine-123- ( rh123)-efflux assay was preferred over P-gp expression analysis by monoclonal antibodies in acute leukemia.
- Increased drug delivery to the brain by P-glycoprotein inhibition. A. J. Sadeque, et al. Clinical Pharmacology & Therapeutics 68(3):231-7 (2000).
- In vitro studies had demonstrated that the antidiarrheal drug loperamide is a substrate for the efflux membrane transporter P-glycoprotein. Although loperamide is a potent opiate drug, it does not opioid central nervous system effects, such as respiratory depression, when given to patients at usual doses. This study tested the hypothesis that inhibition of P-glycoprotein with quinidine would increase the entry of loperamide into the central nervous system, thus causing respiratory depression. The results demonstrated that although loperamide produced no respiratory depression when used alone, respiratory depression was seen when loperamide was administered with quinidine.
- Expression of the multidrug-resistance-associated protein in myelodysplastic syndromes. S. Poulain, et al. British Journal of Haematology 110(3):591-8 (2000).
- In myelodysplastic syndromes (MDS), P-glycoprotein (P-gp) expression is associated with drug resistance, while the clinical significance of the multidrug resistance-associated protein (MRP1) is unclear. In this study of bone marrow from patients with MDS, expression of MRP1 was correlated with disease stage in MDS. With respect to P-gp, discordant expression/function of MRP1 was found in some cases, suggesting the existence of nonfunctional transport proteins in MDS. MRP1 expression did not appear to be a prognostic factor in MDS.
- Soft tissue leiomyosarcomas and malignant gastrointestinal stromal tumors: differences in clinical outcome and expression of multidrug resistance proteins. B. E. Plaat, et al. Journal of Clinical Oncology 18(18):3211-20 (2000).
- In this study, parameters associated with multidrug resistance (MDR) were compared between soft tissue leiomyosarcomas (LMS) and malignant gastrointestinal stromal tumors (GIST). Immunohistochemistry was used to detect P-glycoprotein (P-gp), multidrug resistance protein (MRP(1)), lung resistance protein (LRP), and c-kit. The results demonstrate that LMS patients have better survival rates compared to GIST patients, and the pattern of metastasis differs between the two patient groups. The expression of the MDR proteins tested is less pronounced in LMS than in GIST.
- Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production. M. G. Surette, et al. Proc. Natl. Acad. Sci. 96:1639-44 (1999).
- In bacteria, the regulation of gene expression in response to changes in cell density, called quorum sensing, is dependent on hormone-like molecules known as autoinducers that are produced by the bacteria and accumulate in the external environment as the bacterial cell population increases. The marine bacterium Vibrio harveyi has been shown to have two parallel quorum sensing systems, each composed of a sensor-autoinducer pair. The two different autoinducers belonging to each system have been termed autoinducer 1 (AI-1) and autoinducer 2 (AI-2). The identification and analysis of the genes responsible for AI-2 production in E. coli, S. typhimurium, and V. harveyi is reported.
- Quorum sensing in Vibrio fischeri: Probing autoinducer-LuxR interactions with autoinducer analogs. A. L. Schaefer, et al. Journal of Bacteriology 178:2897-2901 (1996).
- In Vibrio fischeri, luminescence genes are activated by the transcription factor LuxR in combination with a diffusible signal compound known as the autoinducer. This study analyzed the ability of a number of autoinducer analogs to interact with LuxR.
- Regulation of quorum sensing in Vibrio harveyi by LuxO and Sigma-54. B. N. Lilley and B. L. Bassler. Molecular Microbiology 36(4):940-954 (2000).
- The bioluminescent marine bacterium Vibrio harveyi controls light production (lux) by a quorum-sensing circuit. This study demonstrates that the response regulator protein LuxO functions as an activator protein via interaction with the alternative sigma factor, σ 54. Since LuxO is responsible for repression of the luciferase structural operon (luxCDABEGH), these results suggest that LuxO, together with σ54, functions to activate a negative regulator of luminescence.
- Bentley, J., Hyatt, L. S., Ainley, K., Parish, J. H., Herbert, R. B., and White, G. R. 1993. Cloning and sequence analysis of an Escherichia coli gene conferring bicyclomycin resistance. Gene 127: 117-120.
- Berlyn, M. K. B., Low, K. B., and Rudd. K. E. 1996. Linkage map of Escherichia coli K-12, Ed. 9. Pages 1715-1902. In Neidhardt, F. C., Curtiss III, R., Ingraham, J. L., Lin, E.C.C., et al. (ed) Escherichia coli and Salmonella. Cellular and Molecular Biology, Vol. 2, 2nd Ed., ASM Press, Washington DC.
- Desomer, J., Vereecke, D., Crespi, M., and Van Montagu, M. 1992. The plasmid-encoded chloramphenicol-resistance protein of Rhodococcus fascians is homologous to the transmembrane tetracycline efflux proteins. Mol. Microbiol. 6: 2377-2385.
- Dittrich, W., Betzler, M., and Schrempf, H. 1991. An amplifiable and deletable chloramphenicol-resistance determinant of Streptomyces lividans 1326 encodes a putative transmembrane protein. Mol. Microbiol. 5:2789-2797.
- Hiraga S., Niki, H., Ogura, T., Ichinose, C., Mori, H., Ezaki, B., and Jaffe, A. 1989. Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J. Bacteriol. 171:1496-505.
- Koyama, N., Sagawa, H., Kobayashi, E., Enoki, T., Wu, H-K., Nishiyama, E., Ikai, K., and Kato, I. 1999. Cyclopentanones, process for preparing the same, and the use thereof. European Patent (EP 0941 981 A1, date of publication: Sep. 15, 1999).
- Lu Q., and Inouye, M. 1998. The gene for 16S rRNA methyltransferase (ksgA) functions as a multicopy suppressor for a cold-sensitive mutant of Era, an essential RAS-like GTP-binding protein in Escherichia coli. J. Bacteriol. 180:5243-5246.
- Mosher, R. H., Camp, D. J., Yang, K., Brown, M. P., Shawl, W. V., and Vining, L. C. 1995. Inactivation of chloramphenicol by O-phosphorylation. J. Biol. Chem. 270:27000-27006.
- Nagy, I., Schoofs, G., Vanderleyden, J., and De Mot, R. 1997. Transposition of the IS21-related element IS1415 in Rhodococcus erythropolis. J. Bacteriol. 179:4635-4638.
- Ohki, R., and Murata, M. 1997. bmr3, a third multidrug transporter gene of Bacillus subtilis. J. Bacteriol. 179:1423-1427.
- Rouch, D. A., Cram, D. S., DiBerardino, D., Littlejohn, T. G., and Skurray, R. A. 1990. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol. Microbiol. 4:2051-2062.
- Schwarz, S., Cardoso, M., and Wegener, H. C. 1992. Nucleotide sequence and phylogeny of the tet(L) tetracycline resistance determinant encoded by plasmid pSTE1 from Staphylococcus hyicus. Antimicrob. Agents Chemother. 36:580-588.
- Yanisch-Perron, C., Vieira, J., and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103-119.
- All references cited herein are incorporated by reference.
- FIG. 1 is the chemical structure of 4,5-dihydroxy-2-cyclopenten- 1 -one (DHCP).
- FIG. 2A is a graphical representation of the effect of DHCP concentration on the growth of E. coli.
- FIG. 2B is a graphical representation of the effect of DHCP concentration on the survival of E. coli.
- FIG. 3 is a restriction mapping of the plasmid pSP001 showing the DNA fragments conferring resistance to DHCP.
- FIG. 4 is a comparison of the amino acid sequence of the polypeptide encoded by dep with the proteins encoded by cmr, cmrA, cmx, cmlv, bcr, bmr3, yjcC, and tet.
- FIG. 5 is a comparison of the hydropathic profiles of the putative proteins encoded by dep, cmr, and cml.
- FIG. 6 is a nucleotide sequence showing the DNA sequence of a region of the E. coli genome containing the sequence of the dep gene.
- FIG. 7 is a nucleotide sequence showing the isolated DNA sequence of the dep gene.
- The provisional application describes the cloning of a gene encoding a transmembrane protein from E. coli. This protein, when expressed from a multi-copy plasmid, functions to transport 4,5-dihydroxy-2-cyclopenten-1-one (DHCP) out of the cell.
- DHCP and functionally equivalent compounds are represented by the formulas [I] and [II] and include optically active compounds thereof. In Formula I, R 1 and R2 are the same or different and each of them is hydrogen, a straight or branched alkyl group, a straight or branched alkenyl group, an aromatic group, an aromatic-aliphatic group, with the proviso that R1=a benzyl group and R2=H is excluded.
-
- In Formula II, R 1 and R2 are the same or different and each of them is hydrogen, a straight or branched alkyl group, a straight or branched alkenyl group, an aromatic group, an aromatic-aliphatic group, with the proviso that the case where R1=R2=CH3 is excluded. See
References 5 and 6. R3-R6 are independently hydrogen or an alkyl group, preferably a lower alkyl group such as a C1-C6 alkyl. - DHCP is shown to possess anti-bacterial activity; it inhibits cell growth at a concentration of 350 μM or higher. At lower concentrations, it causes cells to elongate and grow poorly. To determine if E. coli is naturally resistant to DHCP, a library of E. coli genomic DNA fragments was transformed into strain JM83 and grown on agar plates containing 400 μM DHCP. Colonies that were capable of growing on this medium were isolated. DNA was isolated from these colonies to identify and sequence the cloned genomic fragment that specified resistance. Four genes were found in the fragment that conferred resistance. Inactivation of various combinations of these four genes led to the conclusion that ORF389 was responsible for conferring resistance. This was confirmed by cloning ORF389 by itself into pUC19 (a multi-copy plasmid) and transforming strain JM83. The resultant cells were resistant to DHCP.
- Comparison of the nucleotide sequence of ORF389 with the E. coli gene database showed that it was similar to known efflux proteins involved in conferring resistance to chloramphenicol and other antibiotics. Further analysis of the predicted structure of the protein encoded by ORF389 suggested that it was a membrane protein; it possesses multiple transmembrane domains and shares structural similarity with the aforementioned chloramphenicol efflux polypeptides.
- To determine if ORF389 was capable of conferring resistance to other antibiotics such as chloramphenicol, spectinomycin, and tetracycline, the transformed JM83 cells containing the pUC19/ORF389 plasmid were plated on media containing these antibiotics. The presence of ORF389 failed to confer resistance to any antibiotic other than DHCP, suggesting that the efflux activity of the Dep protein is specific for DHCP.
- It is important to note that ORF389 confers resistance to DHCP only when it is present in multiple copies in the cell. The gene is naturally found in the genome of E. coli cells, but it is present in single copy. Such cells are susceptible to the antimicrobial activity of DHCP. When ORF389 is cloned into pUC19 and introduced into JM83 cells, it is present in multiple copies (up to several hundred copies of the gene per cell), since pUC19 is maintained in up to several hundred copies per cell. Only when the gene dosage is increased, is resistance to DHCP found. The mechanism of resistance is simply increased efflux activity arising from the increased expression of the efflux protein in the transformed cells.
- It should be noted that due to the degeneneracy of the genetic code, the nucleotide sequence encoding an efflux protein that is responsible for conferring resistance to DHCP or a compound functionally equivalent to DHCP may vary from the nucleic acid sequence disclosed herein.
- DHCP is a compound that exhibits antimicrobial and anti-tumor activity. It is made by heating various uronic acids (e.g., glucuronic acid, galacturonic acid, mannuronic acid). The inventors have cloned a gene from E. coli that encodes a protein which is capable of transporting DHCP out of the cell. This transport protein shows sequence similarity with known efflux proteins that function to transport antibiotics such as chloramphenicol out of the cell. It has been shown that organisms which overexpress the transport protein become resistant to DHCP, probably because they are able to efficiently transport DHCP. Overexpression of the transport protein arises from the presence of multiple copies of the gene, rather than increased expression from the endogenous gene in E. coli. In other words, all E. coli possess a single copy of the transport gene. However, the level of transport protein expression from a single copy of the gene is insufficient to confer resistance to DHCP. The inventors have cloned the gene into a high copy number plasmid, pUC19, which is maintained in E. coli cells at 200-500 copies per cell. Thus, transformed E. coli containing this plasmid construct will possess 200-500 copies of the transport gene, and protein expression from multiple copies is greater than from a single copy. These transformed cells are resistant to DHCP.
- The general mode of action of DHCP requires that it enter the target cell. Resistance to DHCP can occur if DHCP is transported out of the cell as fast as or faster than it enters the cell. Given that, the concentration of DHCP within the cell can never accumulate to a toxic dose and the cell is resistant to the antimicrobial effects of the compound. Apparently, the transport protein encoded by gene disclosed does not transport DHCP very efficiently, or the amount of transport protein expressed from the endogenous gene is very low. In either case, the presence of more transport protein (arising from many copies of the gene) will result in more efficient transfer of DHCP out of the cell.
- An important application of the gene of the invention will be its use in studies to identify inhibitors of efflux activity. Such inhibitory compounds will function to block the transport activity. Thus a microbe or a tumor cell that is resistant to DHCP can be made to be more sensitive to the compound by preventing the resistant cell from transporting the compound back out. It is also conceivable that inhibitors of the transport gene of the invention may also be active in blocking transport of other efflux proteins such as the efflux proteins that transport chloramphenicol, or the P glycoprotein family of multiple drug resistant proteins. The P glycoproteins are expressed in many tumor cells, making these tumors resistant to chemotherapy agents. Abstracts regarding studies of P glycoproteins are referenced above.
- FIG. 1 is the chemical structure of 4,5-dihydroxy-2-cyclopenten-1-one (DHCP).
- FIG. 2 Effect of DHCP concentrations on the growth of E. coli.
- A. The JM83 cells were grown in LB medium up to Klett unit of 50 and DHCP was added at various concentrations (0-400 μM). After the growth reached to Klett unit of 90-100, cells were diluted with medium containing respective concentrations of DHCP and growth was further monitored. DHCP concentration: 0 μM, open squares; 50 μM, closed diamonds; 100 μM, open circles; 250 μM, open diamonds; 400 μM closed squares.
- B. Overnight grown cells of E. Coli JM83 were diluted appropriately and plated on LB plates containing different concentrations of DHCP (0-350 μM). The number of colonies on the plate without DHCP was taken as 100% and the other numbers were expressed as relative percentages.
- FIG. 3 Restriction mapping of the plasmid pSP001 conferring resistance to DHCP. Four ORFs comprising the DNA fragment (5.2 kb) conferring resistance to DHCP and the flanking ORFs are shown. The orientation of each ORF is marked with an arrow. The restriction enzyme sites are also shown. The ORFs are not drawn to scale. The plasmid pSP001 containing the DNA fragment conferring resistance to DHCP was digested with restriction enzymes to disrupt each of four ORFs, religated and transformed into JM83 cells. The transformants were then examined for their sensitivity to DHCP (400 μM). The enzymes used for digestion were: forpurR: MluI for ydhB; NruI-Eco47III, for ORF389, purR , and ydhB: NruI and SmaI, for ORF389: Aval and forpurR and ydhB: MluI and NruI. For construction of plasmid with ORF389 (dep), the plasmid pSP001 was digested with SmaI and MscI, the fragment was purified and cloned into pUC19 to yield plasmid pSP007.
- FIG. 4 The sequence homology between Dep, Cmr, CmrA, Cmx, CmlV, BcR, Bmr3, YjcC and Tet. Identical and similar sequences are marked with black and gray boxes, respectively. The consensus sequences for transmembrane proteins are marked with dotted lines and are represented as I, II, and III stretches.
- FIG. 5 Hydropathic profiles of Dep (A), Cmr from Rhodococcusfaciens (B) (6) and Cml from Streptomyces lividans (C) (8). Horizontal bars indicate predicted transmembrane regions.
- FIG. 6 is a nucleotide sequence showing the DNA sequence of a region of the E. coli genome containing the sequence of the dep gene. This region of the E. coli genome is available at Accession No. AE000261 U00096. The sequence shown is that of nucleotides 4381-8280. The dep gene is encoded by nucleotides 4627-5838. The dep sequence is shown in brackets.
- FIG. 7 is a nucleotide sequence showing the isolated DNA sequence of the dep gene. The plasmid pSP007 was confirmed to contain the dep gene by obtaining DNA sequence data from one end of the 1.7 kb insert. Sequence data obtained in this manner matched the first.
- The E. coli wild-type strain JM83 [F−araΔ (lac-proAB) rpsL(str′)](Yanisch-Perron et al., 1985) was grown in Luria broth (LB). Media were supplemented with ampicillin (final concentration of 50 μg/ml) whenever required. To check the effect of DHCP on the growth of E. coli, cells grown overnight in LB medium were diluted into fresh LB medium. After the growth reached to the Klett unit of 50, DHCP was added at various concentrations (0-400 μM) and growth was further monitored. After it reached to the Klett unit of 90-100, it was diluted 10-fold into media containing respective concentrations of DHCP. FIG. 2A shows the effect of different concentrations of DHCP on E. coli. The growth was slowed after 3 h of incubation in the presence of 50 μM DHCP, but it reached the maximum density after 8 h, similar to that without DHCP. The cells grew more slowly after 3 h incubation with 100 μM of DHCP and the maximum cell density was lower than that without DHCP. In the presence of 250 μM DHCP, growth was severely impaired after 3 h of incubation and cells stopped growing after 5 h. In the presence of 400 μM DHCP, cell growth stopped after 4 h of incubation. Microscopic examination of the cells grown with 250 μM DHCP for 8 h showed that the cells were elongated forming filaments, which are approximately 15-fold longer than the control cells. DAPI (diamidino phenylindole)(Hiraga et al., 1989) staining of these cells showed that the chromosomal condensation of the cells might be impaired by DHCP (data not shown).
- To check the colony formation ability of E. coli at various concentrations of DHCP, cells grown overnight in LB medium were diluted appropriately and plated on LB plates containing DHCP (0-350 μM). After incubation at 37° C, the number of colonies on each plate were counted. The number of colonies on the control plate without DHCP was taken as 100% and the other numbers were expressed as relative percentages (FIG. 2B). In the presence of 300 μM DHCP, 100-fold decrease in the colony numbers was observed. When 1×104 cells were plated on LB medium containing 350 μM DHCP, no colonies were obtained.
- In order to examine if E. coli contains a gene(s) that confers resistance to DHCP, the E. coli genomic library was screened. The construction of E. coli genomic library was described previously (Lu and Inouye, 1998). The partially digested Sau3AI chromosomal DNA fragments from E. coli JM83 were cloned into the BamHI site of pUC19. The JM83 cells were transformed with the genomic library. Transformants were isolated for their ability to grow on DHCP (400 μM) containing LB plates at 37° C. Plasmid DNA was isolated from the resistant colonies, purified and retransformed into JM83 cells to confirm its ability to confer resistance to DHCP. The plasmid was designated as pSP001 and was found to contain a 5.2-kb DNA fragment. This fragment was sequenced from both ends using Sequenase and BLAST search was carried out for the analysis of homology of this fragment with the entire E. coli genome. It was found that this DNA fragment is located at 37.5 min on the E. coli chromosome and contains four ORFs (FIG. 3): ORF389, purR encoding purine synthesis repressor, ydhB encoding a homologue of the cyn operon transcriptional activator and ydhC encoding a homologue of bicyclomycin resistance protein (Berlyn et al., 1996).
- To determine which gene is responsible for conferring resistance to DHCP, several deletion constructs were prepared as shown in FIG. 3. Disruption of purR, ydhB and both purR and ydhB had no effect on the resistance to DHCP (constructs pSP002, pSP003 and pSP006, respectively). However, disruption of ORF389 with purR and ydhB (pSP004) as well as disruption of ORF389 alone (pSP005) resulted in loss of DHCP resistance. We thus cloned ORF389 separately in pUC19 (pSP007), transformed the resultant plasmid in JM83 and checked sensitivity to DHCP. This plasmid conferred resistance to DHCP. These results clearly demonstrate that ORF389 is responsible for resistance to DHCP when cloned in a multicopy plasmid and further work was carried out using the plasmid pSP007. The ORF389 was named as dep- DHCP efflux protein (see below).
- Using BLAST-homology search computer program, we carried out a homology search for the putative protein encoded by dep. FIG. 4 shows nine proteins showing significantly high homology with Dep. Half of these proteins confer resistance to chloramphenicol. The proteins showing the highest degree of homology include: Cmr from Rhodococcus fasciens (Desomer et al., 1992), CmrA from R. erythropolis (Nagy et al., 1997), Cml from Streptomyces lividans 1326 (Dittrich et al., 1991), Cmx from Corynebacterium striatum (Accession no. U72639), and CmlV from S. venezuelae ISP5230 (Mosher et al., 1995). As seen from FIG. 4, Dep has the highest degree of homology with Cmr, product of chloramphenicol resistant gene (cmr) as compared to other proteins. Cmr protein was shown to contain three consensus sequences defined by Rouch et al. (1990) for transmembrane proteins. These sequences are at similar positions with respect to the predicted transmembrane domains. These are marked in FIG. 6 with dotted lines and are designated as I, II, III. In case of Dep, the first stretch (I) comprising of LP is completely homologous with the stretch defined by these authors. The second stretch (II) shows 50% similarity with that of Cmr protein and the third stretch (III) is homologous between these two proteins except for one residue. According to the model proposed by Rouch et al. (1990), the stretches I and III are located on the outside of the cytoplasmic membrane and the stretch II is located on the inside of the membrane. The positions of the membrane loops for the putative protein encoded by qacA were ascertained by inspecting the antigenic index profile and turn prediction. Such regions have a high antigenic index and turn probability (Rouch et al., 1990).
- In addition to homology in the primary sequences, the hydropathic profile of Dep (FIG. 5A) is significantly similar to those of Cmr of R. faciens (Desomer et al., 1992) (FIG. 5B) and Cml of S. lividans (Dittrich et al., 1991) (FIG. 5C). Dep is predominantly hydrophobic and probably contains 12 predicted transmembrane α-helices (FIG. 5A).
- The other proteins homologous to Dep include BcR (bicyclomycin- resistance protein) from E. coli (Bentley et al., 1993), Bmr3 from B. subtilis involved in the multiple drug efflux pump conferring resistance to puromycin, tosufloxacin, norfloxacin (Ohki and Murata, 1997), Tet from Staphylococcus hyicus conferring tetracycline resistance (Schwarz et al., 1992) and YjcC conferring tetracenomycin-resistance (Accession no. D90826) (FIG. 4). All of these are efflux proteins, which is one of the most common mechanisms for drug resistance. We speculate that dep encodes a putative efflux protein that forms a cytoplasmic channel specific for DHCP. The homologies are more prominent towards the N-terminal end of the proteins, which also is a common feature for efflux proteins (Desomer et al., 1992).
- Since Dep shows homology to efflux proteins for multiple drug resistance, we checked if it confers resistance to other antibiotics as well. The E. coli wild-type cells harboring pUC 19 or pSP007 plasmid were grown overnight in LB medium containing ampicillin. The cells were diluted 10- and 1000- times, and 5 μl of each dilution (corresponding to 3.5×105 cells and 3.5×103 cells, respectively) was spotted on LB plates containing serial dilutions of kanamycin, chloramphenicol, spectinomycin, tetracycline and DHCP. Plates were incubated at 37° C. for 20 h. As seen from Table 1, pSP007 did not confer significant cross-resistance to any of the antibiotics tested. The MIC values for cells harboring pUC19 and pSP007 were same for spectinomycin, chloramphenicol and tetracycline. The MIC value was two times higher for kanamycin for the cells harboring pSP007 than the cells with pUC19. The MIC value for DHCP on the other hand was 8 times higher for the cells harboring pSP007 than that for the cells with pUC 19. It is interesting that Dep did not confer resistance to chloramphenicol, in spite of the high homology to cmr.
TABLE 1 Minimum inhibitory concentrations (MICs) of various antibiotics for E. coli JM83 cells harboring pUC19 and pSP007. MICs (μg/ml) chloram- tetra- kanamycin spectinomycin phenicol cycline DHCP cells with 25 12.5 6.25 3.125 25 pUC19 cells with 50 12.5 6.25 3.125 200 pSP007 -
-
1 2 1 3900 DNA Escherichia coli 1 gccagccact cttccagctg acgcacggta tagctgaccg cagaaggaac gcgatgcagc 60 tcctgtgccg cagcgctaaa actaccatta cgcgctaccg catcaacaac ttcgagtgaa 120 tattctgacc acatagtctg cctgcaaaat ttttgaaacc agtcatcaaa tattaccgtt 180 tcacaacact aatttcactc cctacacttt gcggcggtgt ttaattgaga gatttagaga 240 atatacatgc aacctgggaa aagattttta gtctggctgg cgggtttgag cgtactcggt 300 tttctggcaa ccgatatgta tctgcctgct ttcgccgcca tacaggccga cctgcaaacg 360 cctgcgtctg ctgtcagtgc cagccttagt ctgttccttg ccggttttgc cgcagcccag 420 cttctgtggg ggccgctctc cgaccgttat ggtcgtaaac cggtattatt aatcggcctg 480 acaatttttg cgttaggtag tctggggatg ctgtgggtag aaaacgccgc tacgctgctg 540 gtattgcgtt ttgtacaggc tgtgggtgtc tgcgccgcgg cggttatctg gcaagcatta 600 gtgacagatt attatccttc acagaaagtt aaccgtattt ttgcggccat catgccgctg 660 gtgggtctat ctccggcact ggctcctctg ttaggaagct ggctgctggt ccatttttcc 720 tggcaggcga ttttcgccac cctgtttgcc attaccgtgg tgctgattct gcctattttc 780 tggctcaaac ccacgacgaa ggcccgtaac aatagtcagg atggtctgac ctttaccgac 840 ctgctacgtt ctaaaaccta tcgcggcaac gtgctgatat acgcagcctg ttcagccagt 900 ttttttgcat ggctgaccgg ttcaccgttc atccttagtg aaatgggcta cagcccggca 960 gttattggtt taagttatgt cccgcaaact atcgcgtttc tgattggtgg ttatggctgt 1020 cgcgccgcgc tgcagaaatg gcaaggcaag cagttattac cgtggttgct ggtgctgttt 1080 gctgtcagcg tcattgcgac ctgggctgcg ggcttcatta gccatgtgtc gctggtcgaa 1140 atcctgatcc cattctgtgt gatggcgatt gccaatggcg cgatctaccc tattgttgtc 1200 gcccaggcgc tgcgtccctt cccacacgca actggtcgcg ccgcagcgtt gcagaacact 1260 cttcaactgg gtctgtgctt cctcgcaagt ctggtagttt cctggctgat cagtatcagc 1320 acgccattgc tcaccaccac cagcgtgatg ttatcaacag taatgctggt cgcgctgggt 1380 tacatgatgc aacgttgtga agaagttggc tgccagaatc atggcaatgc cgaagtcgct 1440 catagcgaat cacactgacc tatatcgata tacttatact taggctgcta acaaaatttt 1500 gttgtatgat tgaaattagc ggcctatact aatttcgagt tgttaaagct acgataaata 1560 ttatgttttt acggggacag gatcgttccc gactcactat ggatagtcat ttcggcaagg 1620 gttcctcctt tccctctgtt ctacgtcgga ttatagactc gcggtttttt ctgcgagatt 1680 tctcacaaag cccaaaaagc gtctacgctg ttttaaggtt ctgatcaccg accagtgatg 1740 gagaaactat gagttcatcg tgtatagaag aagtcagtgt accggatgac aactggtacc 1800 gtatcgccaa cgaattactt agccgtgccg gtatagccat taacggttct gccccggcgg 1860 atattcgtgt gaaaaacccc gattttttta aacgcgttct gcaagaaggc tctttggggt 1920 taggcgaaag ttatatggat ggctggtggg aatgtgaccg actggatatg ttttttagca 1980 aagtcttacg cgcaggtctc gagaaccaac tcccccatca tttcaaagac acgctgcgta 2040 ttgccggcgc tcgtctcttc aatctgcaga gtaaaaaacg tgcctggata gtcggcaaag 2100 agcattacga tttgggtaat gacttgttca gccgcatgct tgatcccttc atgcaatatt 2160 cctgcgctta ctggaaagat gccgataatc tggaatctgc ccagcaggcg aagctcaaaa 2220 tgatttgtga aaaattgcag ttaaaaccag ggatgcgcgt actggatatt ggctgcggct 2280 ggggcggact ggcacactac atggcatcta attatgacgt aagcgtggtg ggcgtcacca 2340 tttctgccga acagcaaaaa atggctcagg aacgctgtga aggcctggat gtcaccattt 2400 tgctgcaaga ttatcgtgac ctgaacgacc agtttgatcg tattgtttct gtggggatgt 2460 tcgagcacgt cggaccgaaa aattacgata cctattttgc ggtggtggat cgtaatttga 2520 aaccggaagg catattcctg ctccatacta tcggttcgaa aaaaaccgat ctgaatgttg 2580 atccctggat taataaatat atttttccga acggttgcct gccctctgta cgccagattg 2640 ctcagtccag cgaaccccac tttgtgatgg aagactggca taacttcggt gctgattacg 2700 atactacgtt gatggcgtgg tatgaacgat tcctcgccgc atggccagaa attgcggata 2760 actatagtga acgctttaaa cgaatgttta cctattatct gaatgcctgt gcaggtgctt 2820 tccgcgcccg tgatattcag ctctggcagg tcgtgttctc acgcggtgtt gaaaacggcc 2880 ttcgagtggc tcgctaaagg ctattctatc gccccctctc cgggggcgat ttcagatcag 2940 gcttctgtgc ctggttgatt catggcattt tctcgtgccg ccagcacacg ttctaccgta 3000 tctaccactg cctgagtttg tggatcgatt tcaatgttga cgcgtgcgcc aagttttttc 3060 ttcccaagag tcgtgcgttc cagtgtttcc ggaattaaat ggacgcaaaa acgcgttggc 3120 gtgacttcgc cgacggtcag gctaataccg tcgatgccaa taaatccttt gtacagaata 3180 tatttcatca actgactatc ctggacttta aaccagatct ggcgattatt ttctgaggtt 3240 aatattttcg ccacttcagc agtggtcata atatgacctg acattaagtg tccgccaatt 3300 tcatcactga atttcgccgc acgctcaacg tttacccaat cccccacttt taaatcgcca 3360 agattggtaa tgcgtaacgt ttctttcatc aggtcaaaac tgacatggtt gccgttaatt 3420 tccgtcacgg tcaggcagca accgttatgc gccacggaag caccggtttc caggccgtcc 3480 agcatgtggt cgggtaactc caccacatgc gtacgaaaat ttggtttctc gtcaatcgac 3540 accagttttg cggtgccctg tacaatcccc gtaaacatac ttacaactcc tgaaatcagt 3600 taagacattc tgttcagcac aatagcaggt ggaaaacgcc cttaccagtg aaggggtaag 3660 aatggctatt ttttcactgg agaattaata aatcctcgct acaatagact gaatttcccc 3720 tgcttcttct ttttgctgcc cattcaggcg gctttttagt ctctcatata actacaaata 3780 aaaggtgttc acgtgcagaa gtatatcagt gaagcgcgtc tgttattagc attagcaatc 3840 ccggtgattc tcgcgcaaat cgcccaaact gcgatgggtt ttgtcagtac cgtgatggcg 3900 2 1212 DNA Escherichia coli 2 atgcaacctg ggaaaagatt tttagtctgg ctggcgggtt tgagcgtact cggttttctg 60 gcaaccgata tgtatctgcc tgctttcgcc gccatacagg ccgacctgca aacgcctgcg 120 tctgctgtca gtgccagcct tagtctgttc cttgccggtt ttgccgcagc ccagcttctg 180 tgggggccgc tctccgaccg ttatggtcgt aaaccggtat tattaatcgg cctgacaatt 240 tttgcgttag gtagtctggg gatgctgtgg gtagaaaacg ccgctacgct gctggtattg 300 cgttttgtac aggctgtggg tgtctgcgcc gcggcggtta tctggcaagc attagtgaca 360 gattattatc cttcacagaa agttaaccgt atttttgcgg ccatcatgcc gctggtgggt 420 ctatctccgg cactggctcc tctgttagga agctggctgc tggtccattt ttcctggcag 480 gcgattttcg ccaccctgtt tgccattacc gtggtgctga ttctgcctat tttctggctc 540 aaacccacga cgaaggcccg taacaatagt caggatggtc tgacctttac cgacctgcta 600 cgttctaaaa cctatcgcgg caacgtgctg atatacgcag cctgttcagc cagttttttt 660 gcatggctga ccggttcacc gttcatcctt agtgaaatgg gctacagccc ggcagttatt 720 ggtttaagtt atgtcccgca aactatcgcg tttctgattg gtggttatgg ctgtcgcgcc 780 gcgctgcaga aatggcaagg caagcagtta ttaccgtggt tgctggtgct gtttgctgtc 840 agcgtcattg cgacctgggc tgcgggcttc attagccatg tgtcgctggt cgaaatcctg 900 atcccattct gtgtgatggc gattgccaat ggcgcgatct accctattgt tgtcgcccag 960 gcgctgcgtc ccttcccaca cgcaactggt cgcgccgcag cgttgcagaa cactcttcaa 1020 ctgggtctgt gcttcctcgc aagtctggta gtttcctggc tgatcagtat cagcacgcca 1080 ttgctcacca ccaccagcgt gatgttatca acagtaatgc tggtcgcgct gggttacatg 1140 atgcaacgtt gtgaagaagt tggctgccag aatcatggca atgccgaagt cgctcatagc 1200 gaatcacact ga 1212
Claims (14)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/805,681 US20020143163A1 (en) | 2000-08-29 | 2001-03-14 | Gene conferring resistance to the antibacterial 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), the protein encoded by same, and applications thereof |
| US11/224,538 US7476526B2 (en) | 2000-08-29 | 2005-09-12 | Method of using a gene conferring resistance to 4,5-dihydroxy-2-cyclopenten-1-one (DHCP) and identifying inhibitors of a polypeptide encoded by the gene |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US22872700P | 2000-08-29 | 2000-08-29 | |
| US09/805,681 US20020143163A1 (en) | 2000-08-29 | 2001-03-14 | Gene conferring resistance to the antibacterial 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), the protein encoded by same, and applications thereof |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/224,538 Division US7476526B2 (en) | 2000-08-29 | 2005-09-12 | Method of using a gene conferring resistance to 4,5-dihydroxy-2-cyclopenten-1-one (DHCP) and identifying inhibitors of a polypeptide encoded by the gene |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020143163A1 true US20020143163A1 (en) | 2002-10-03 |
Family
ID=22858353
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/805,681 Abandoned US20020143163A1 (en) | 2000-08-29 | 2001-03-14 | Gene conferring resistance to the antibacterial 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), the protein encoded by same, and applications thereof |
| US11/224,538 Expired - Fee Related US7476526B2 (en) | 2000-08-29 | 2005-09-12 | Method of using a gene conferring resistance to 4,5-dihydroxy-2-cyclopenten-1-one (DHCP) and identifying inhibitors of a polypeptide encoded by the gene |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/224,538 Expired - Fee Related US7476526B2 (en) | 2000-08-29 | 2005-09-12 | Method of using a gene conferring resistance to 4,5-dihydroxy-2-cyclopenten-1-one (DHCP) and identifying inhibitors of a polypeptide encoded by the gene |
Country Status (10)
| Country | Link |
|---|---|
| US (2) | US20020143163A1 (en) |
| EP (1) | EP1313458B1 (en) |
| JP (1) | JP2004507260A (en) |
| KR (1) | KR100853629B1 (en) |
| CN (1) | CN1277842C (en) |
| AT (1) | ATE323476T1 (en) |
| AU (1) | AU2001285346A1 (en) |
| DE (1) | DE60118938T2 (en) |
| TW (1) | TWI226371B (en) |
| WO (1) | WO2002017902A1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200400263A (en) * | 2002-03-13 | 2004-01-01 | Takara Bio Inc | Effect of treatment with 4,5-dihydroxy-2-cyclopenten-1-one (DHCP) on gene expression and quorum-sensing in bacteria |
| WO2008126784A1 (en) * | 2007-04-06 | 2008-10-23 | Kyowa Hakko Bio Co., Ltd. | Method for production of glutathione or ϝ-glutamylcysteine |
| CN105541927A (en) * | 2016-02-03 | 2016-05-04 | 广西大学 | Ribose-derived Ustilaginoidea virens inhibitor |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EA003923B1 (en) * | 1996-09-27 | 2003-10-30 | Такара Сузо Ко., Лтд | Cyclopentenones, process for preparing the same, and the use thereof |
| AU732113B2 (en) * | 1997-07-02 | 2001-04-12 | Takara Bio Inc. | Antiallergic agents |
| DE69926994T2 (en) * | 1998-01-19 | 2006-06-22 | Takara Bio Inc., Otsu | SUBSTANCES WHICH APOPTOSE CAN INTRODUCE |
-
2001
- 2001-03-14 US US09/805,681 patent/US20020143163A1/en not_active Abandoned
- 2001-08-29 KR KR1020037002993A patent/KR100853629B1/en not_active Expired - Fee Related
- 2001-08-29 WO PCT/US2001/026961 patent/WO2002017902A1/en not_active Ceased
- 2001-08-29 AT AT01964501T patent/ATE323476T1/en not_active IP Right Cessation
- 2001-08-29 EP EP01964501A patent/EP1313458B1/en not_active Expired - Lifetime
- 2001-08-29 AU AU2001285346A patent/AU2001285346A1/en not_active Abandoned
- 2001-08-29 TW TW090121350A patent/TWI226371B/en not_active IP Right Cessation
- 2001-08-29 JP JP2002522876A patent/JP2004507260A/en active Pending
- 2001-08-29 CN CNB018142311A patent/CN1277842C/en not_active Expired - Fee Related
- 2001-08-29 DE DE60118938T patent/DE60118938T2/en not_active Expired - Fee Related
-
2005
- 2005-09-12 US US11/224,538 patent/US7476526B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| EP1313458A1 (en) | 2003-05-28 |
| AU2001285346A1 (en) | 2002-03-13 |
| US7476526B2 (en) | 2009-01-13 |
| TWI226371B (en) | 2005-01-11 |
| KR100853629B1 (en) | 2008-08-25 |
| ATE323476T1 (en) | 2006-05-15 |
| EP1313458A4 (en) | 2004-10-13 |
| CN1455668A (en) | 2003-11-12 |
| EP1313458B1 (en) | 2006-04-19 |
| DE60118938T2 (en) | 2007-01-11 |
| KR20030045046A (en) | 2003-06-09 |
| CN1277842C (en) | 2006-10-04 |
| US20070166786A1 (en) | 2007-07-19 |
| DE60118938D1 (en) | 2006-05-24 |
| JP2004507260A (en) | 2004-03-11 |
| WO2002017902A1 (en) | 2002-03-07 |
| WO2002017902A8 (en) | 2002-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Srinivasan et al. | Role of the two component signal transduction system CpxAR in conferring cefepime and chloramphenicol resistance in Klebsiella pneumoniae NTUH-K2044 | |
| Lomovskaya et al. | EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB | |
| Shelburne III et al. | A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus | |
| Lee et al. | Indole cell signaling occurs primarily at low temperatures in Escherichia coli | |
| Lin et al. | Contribution of EmrAB efflux pumps to colistin resistance in Acinetobacter baumannii | |
| Bengoechea et al. | Regulatory network of lipopolysaccharide O‐antigen biosynthesis in Yersinia enterocolitica includes cell envelope‐dependent signals | |
| Hart et al. | RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium | |
| Wang et al. | Dissecting the virulence‐related functionality and cellular transcription mechanism of a conserved hypothetical protein in Xanthomonas oryzae pv. oryzae | |
| Raneri et al. | Pseudomonas aeruginosa mutants defective in glucose uptake have pleiotropic phenotype and altered virulence in non-mammal infection models | |
| US20110150841A1 (en) | Secretion System and Methods for its Use | |
| US6720139B1 (en) | Genes identified as required for proliferation in Escherichia coli | |
| Carter et al. | Natural rpoS mutations contribute to population heterogeneity in Escherichia coli O157: H7 strains linked to the 2006 US spinach-associated outbreak | |
| Stevens et al. | Regulation of Escherichia coli K5 capsular polysaccharide expression: evidence for involvement of RfaH in the expression of group II capsules | |
| Lan et al. | Mutation of Lon protease differentially affects the expression of Pseudomonas syringae type III secretion system genes in rich and minimal media and reduces pathogenicity | |
| US7476526B2 (en) | Method of using a gene conferring resistance to 4,5-dihydroxy-2-cyclopenten-1-one (DHCP) and identifying inhibitors of a polypeptide encoded by the gene | |
| Giltner et al. | Evolutionary and functional diversity of the Pseudomonas type IVa pilin island | |
| Suezawa et al. | Identification of genes associated with the penetration activity of the human type of Edwardsiella tarda EdwGII through human colon epithelial cell monolayers | |
| Das et al. | Molecular characterization of Vibrio cholerae Δ relA Δ spoT double mutants | |
| Nagao et al. | Mapping and identification of the region and secondary structure required for the maturation of the nukacin ISK-1 prepeptide | |
| Reshamwala et al. | Biofilm formation in Escherichia coli cra mutants is impaired due to down-regulation of curli biosynthesis | |
| Newman et al. | Role of leuX in Escherichia coli colonization of the streptomycin-treated mouse large intestine | |
| Lee et al. | A rob-like gene of Enterobacter cloacae affecting porin synthesis and susceptibility to multiple antibiotics | |
| Hacker et al. | Effects of low, subinhibitory concentrations of antibiotics on expression of a virulence gene cluster of pathogenic Escherichia coli by using a wild-type gene fusion | |
| Phadtare et al. | Antibacterial activity of 4, 5-dihydroxy-2-cyclopentan-1-one (DHCP) and cloning of a gene conferring DHCP resistance in Escherichia coli | |
| CA2326757A1 (en) | Regulation of biofilm formation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: UNIVERSITY OF MEDICINE AND DENTISTRY OF NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PHADATARE, SANGITA;YAMANAKA, KUNITOSHI;KATO, IKUNOSHIN;AND OTHERS;REEL/FRAME:011608/0260;SIGNING DATES FROM 20010216 TO 20010310 |
|
| AS | Assignment |
Owner name: TAKARA SHUZO CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIVERSITY OF MEDICINE AND DENTISTRY OF NEW JERSEY;REEL/FRAME:012405/0332 Effective date: 20011129 |
|
| AS | Assignment |
Owner name: TAKARA BIO INC., A CORPORATION OF JAPAN, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:TAKARA SHUZO CO., LTD.;REEL/FRAME:014436/0198 Effective date: 20020422 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |