US20020128199A1 - Anti-depressant effects of corticotropin release inhibiting factor - Google Patents
Anti-depressant effects of corticotropin release inhibiting factor Download PDFInfo
- Publication number
- US20020128199A1 US20020128199A1 US10/004,970 US497001A US2002128199A1 US 20020128199 A1 US20020128199 A1 US 20020128199A1 US 497001 A US497001 A US 497001A US 2002128199 A1 US2002128199 A1 US 2002128199A1
- Authority
- US
- United States
- Prior art keywords
- glu
- trh
- crif
- prepro
- peptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000001430 anti-depressive effect Effects 0.000 title description 9
- 102400000739 Corticotropin Human genes 0.000 title description 5
- 101800000414 Corticotropin Proteins 0.000 title description 5
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 title description 5
- 229960000258 corticotropin Drugs 0.000 title description 5
- 230000002401 inhibitory effect Effects 0.000 title description 2
- 241001465754 Metazoa Species 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 38
- 208000020401 Depressive disease Diseases 0.000 claims abstract description 15
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 91
- 108010065278 prepro-thyrotropin-releasing hormone Proteins 0.000 claims description 76
- 150000001413 amino acids Chemical class 0.000 claims description 36
- 150000001875 compounds Chemical class 0.000 claims description 29
- 101800004623 Thyrotropin-releasing hormone Proteins 0.000 claims description 10
- 230000004071 biological effect Effects 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 7
- 208000020925 Bipolar disease Diseases 0.000 claims description 4
- 206010036618 Premenstrual syndrome Diseases 0.000 claims description 4
- 208000024714 major depressive disease Diseases 0.000 claims description 4
- 208000026725 cyclothymic disease Diseases 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 41
- 239000004480 active ingredient Substances 0.000 description 37
- 241000700159 Rattus Species 0.000 description 36
- 235000001014 amino acid Nutrition 0.000 description 34
- 229940024606 amino acid Drugs 0.000 description 33
- 230000000694 effects Effects 0.000 description 32
- 102000004196 processed proteins & peptides Human genes 0.000 description 32
- 238000009472 formulation Methods 0.000 description 25
- 239000008194 pharmaceutical composition Substances 0.000 description 25
- 238000012048 forced swim test Methods 0.000 description 19
- 210000004556 brain Anatomy 0.000 description 17
- 239000003981 vehicle Substances 0.000 description 16
- -1 e.g. Chemical group 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 230000001684 chronic effect Effects 0.000 description 13
- 238000007667 floating Methods 0.000 description 12
- 239000004615 ingredient Substances 0.000 description 12
- 230000006399 behavior Effects 0.000 description 11
- 210000002963 paraventricular hypothalamic nucleus Anatomy 0.000 description 11
- 230000009194 climbing Effects 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 229920001184 polypeptide Polymers 0.000 description 10
- 239000000725 suspension Substances 0.000 description 10
- 238000011706 wistar kyoto rat Methods 0.000 description 10
- 150000002148 esters Chemical class 0.000 description 9
- 239000003826 tablet Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000000935 antidepressant agent Substances 0.000 description 8
- 230000000903 blocking effect Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 7
- 239000002270 dispersing agent Substances 0.000 description 7
- 229920002113 octoxynol Polymers 0.000 description 7
- 238000007911 parenteral administration Methods 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 239000003755 preservative agent Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000000375 suspending agent Substances 0.000 description 6
- 230000009182 swimming Effects 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 230000003542 behavioural effect Effects 0.000 description 5
- 238000000185 intracerebroventricular administration Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 108010022152 Corticotropin-Releasing Hormone Proteins 0.000 description 4
- 102000012289 Corticotropin-Releasing Hormone Human genes 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 241000700157 Rattus norvegicus Species 0.000 description 4
- 102400000336 Thyrotropin-releasing hormone Human genes 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 125000003275 alpha amino acid group Chemical group 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 230000007357 depressive behavior Effects 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 210000003016 hypothalamus Anatomy 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000006194 liquid suspension Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000002335 preservative effect Effects 0.000 description 4
- 238000013268 sustained release Methods 0.000 description 4
- 239000012730 sustained-release form Substances 0.000 description 4
- 239000003765 sweetening agent Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 210000000211 third ventricle Anatomy 0.000 description 4
- 229940034199 thyrotropin-releasing hormone Drugs 0.000 description 4
- 235000015112 vegetable and seed oil Nutrition 0.000 description 4
- 239000008158 vegetable oil Substances 0.000 description 4
- 239000000080 wetting agent Substances 0.000 description 4
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 3
- 208000019901 Anxiety disease Diseases 0.000 description 3
- 150000008574 D-amino acids Chemical class 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 229940005513 antidepressants Drugs 0.000 description 3
- 230000036506 anxiety Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 210000004900 c-terminal fragment Anatomy 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000003599 food sweetener Nutrition 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 239000007902 hard capsule Substances 0.000 description 3
- 230000004179 hypothalamic–pituitary–adrenal axis Effects 0.000 description 3
- 238000003364 immunohistochemistry Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000007913 intrathecal administration Methods 0.000 description 3
- 210000003140 lateral ventricle Anatomy 0.000 description 3
- 229940057995 liquid paraffin Drugs 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 239000004006 olive oil Substances 0.000 description 3
- 235000008390 olive oil Nutrition 0.000 description 3
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- 235000019489 Almond oil Nutrition 0.000 description 2
- 235000003911 Arachis Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- WHUUTDBJXJRKMK-GSVOUGTGSA-N D-glutamic acid Chemical compound OC(=O)[C@H](N)CCC(O)=O WHUUTDBJXJRKMK-GSVOUGTGSA-N 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 244000000231 Sesamum indicum Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 208000002847 Surgical Wound Diseases 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- QYPPJABKJHAVHS-UHFFFAOYSA-N agmatine Chemical compound NCCCCNC(N)=N QYPPJABKJHAVHS-UHFFFAOYSA-N 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 239000008168 almond oil Substances 0.000 description 2
- 239000002249 anxiolytic agent Substances 0.000 description 2
- 230000000949 anxiolytic effect Effects 0.000 description 2
- 239000008135 aqueous vehicle Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000008482 dysregulation Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000000834 fixative Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 239000003862 glucocorticoid Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 239000006193 liquid solution Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000001073 mediodorsal thalamic nucleus Anatomy 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229960001412 pentobarbital Drugs 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 239000007901 soft capsule Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 238000013222 sprague-dawley male rat Methods 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229940037128 systemic glucocorticoids Drugs 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- FTLYMKDSHNWQKD-UHFFFAOYSA-N (2,4,5-trichlorophenyl)boronic acid Chemical compound OB(O)C1=CC(Cl)=C(Cl)C=C1Cl FTLYMKDSHNWQKD-UHFFFAOYSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- HSTOKWSFWGCZMH-UHFFFAOYSA-N 3,3'-diaminobenzidine Chemical compound C1=C(N)C(N)=CC=C1C1=CC=C(N)C(N)=C1 HSTOKWSFWGCZMH-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101800001415 Bri23 peptide Proteins 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 102400000107 C-terminal peptide Human genes 0.000 description 1
- 101800000655 C-terminal peptide Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108010056643 Corticotropin-Releasing Hormone Receptors Proteins 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 102100030851 Cortistatin Human genes 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229930182847 D-glutamic acid Natural products 0.000 description 1
- 206010054089 Depressive symptom Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 101000919922 Homo sapiens Cortistatin Proteins 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 108090000189 Neuropeptides Proteins 0.000 description 1
- 102000003797 Neuropeptides Human genes 0.000 description 1
- BZQFBWGGLXLEPQ-UHFFFAOYSA-N O-phosphoryl-L-serine Natural products OC(=O)C(N)COP(O)(O)=O BZQFBWGGLXLEPQ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102000003946 Prolactin Human genes 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- WERKSKAQRVDLDW-ANOHMWSOSA-N [(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO WERKSKAQRVDLDW-ANOHMWSOSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 201000005255 adrenal gland hyperfunction Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 210000004727 amygdala Anatomy 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000003474 anti-emetic effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 239000002111 antiemetic agent Substances 0.000 description 1
- 229940125683 antiemetic agent Drugs 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000037007 arousal Effects 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000009910 autonomic response Effects 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229950006137 dexfosfoserine Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000021824 exploration behavior Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 230000001279 glycosylating effect Effects 0.000 description 1
- FBPFZTCFMRRESA-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexol Chemical compound OCC(O)C(O)C(O)C(O)CO FBPFZTCFMRRESA-UHFFFAOYSA-N 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 208000013403 hyperactivity Diseases 0.000 description 1
- 230000002267 hypothalamic effect Effects 0.000 description 1
- 238000002991 immunohistochemical analysis Methods 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000002663 nebulization Methods 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 230000000955 neuroendocrine Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 210000001009 nucleus accumben Anatomy 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 238000012346 open field test Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- USRGIUJOYOXOQJ-GBXIJSLDSA-N phosphothreonine Chemical compound OP(=O)(O)O[C@H](C)[C@H](N)C(O)=O USRGIUJOYOXOQJ-GBXIJSLDSA-N 0.000 description 1
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical group OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 150000003141 primary amines Chemical group 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical class CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 229940085605 saccharin sodium Drugs 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 229940080313 sodium starch Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000012536 storage buffer Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/06—Tripeptides
- A61K38/066—TRH, thyroliberin, thyrotropin releasing hormone
Definitions
- HPA hypothalamic-pituitary-adrenal
- CRF hypothalamic corticotropin releasing factor
- prepro-TRH 178-199 a peptide derived from the TRH precursor, inhibits ACTH secretion in vitro (Redei et al., 1995, Endocrinology 136:1813-1816; Redei et al., 1995, Endocrinology 136:3557-3563) and plasma ACTH, CORT, and prolactin responses to stressors in vivo (McGivern et al., 1997, J. Neurosci. 17:4886-4894).
- prepro-TRH 178-199 produced behavioral effects in rats in paradigms used to assess response to novelty and anxiolytic potential (McGivem et al., 1997, J. Neurosci. 17:4886-4894).
- Intracerebroventricular (i.c.v.) administration of prepro-TRH 178-199 into the lateral ventricle induced significant increases of locomotion in the open field test of time spent in the open arms of the elevated plus maze and in the light compartment of the light/dark box.
- prepro-TRH 178-199 administered directly into the brain, increases arousal and exploratory behavior, and decreases anxiety in experimental paradigms routinely used to assess these behaviors in animals.
- the invention relates to a method of treating a depressive disorder in an animal.
- the method comprises administering to said animal a compound having CRIF biological activity.
- the compound is a peptide.
- the compound is a peptidometic.
- the compound is in a therapeutically effective amount.
- the compound is in a pharmaceutically acceptable carrier.
- the animal is a human.
- the compound is administered to the animal by a route selected from the group consisting of oral, parenteral, intranasal and central.
- the peptide is a CRIF peptide comprising at least three amino acids positioned between the fourth and fifth TRH peptide on a prepro-TRH molecule.
- the CRIF peptide comprises from three to twenty two amino acids positioned between the fourth and fifth TRH peptide on a prepro-TRH molecule.
- the CRIF peptide comprises the sequence Phe-Ile-Asp-Pro-Glu-Leu-Gln-Arg-Ser-Trp-Glu-Glu-Lys-Glu-Gly-Glu-Gly-Val-Leu-Met-Pro-Glu.
- the CRIF peptide comprises the sequence Phe-Ile-Asp-Pro-Glu-Leu-Gln-Arg-Ser-Trp-Glu-Glu-Thr-Glu-Gly-Glu-Glu-Gly-Gly-Leu-Met-Pro-Glu.
- the CRIF peptide comprises the sequence Glu-Gly-Glu-Gly-Val-Leu-Met-Pro-Glu.
- the CRIF peptide comprises the sequence Leu-Met-Pro-Glu.
- the CRIF peptide comprises from three to twenty six amino acids positioned between the fourth and fifth TRH peptide on a prepro-TRH molecule.
- the CRIF peptide comprises the sequence Leu-Ala-Asp-Pro Lys-Ala-Gln-Arg-Ser-Trp-Glu-Glu-Glu-Glu-Glu-Glu-Arg-Glu-Glu-Asp-Leu-Met-Pro-Glu.
- the depressive disorder is selected from the group consisting of major depression, minor depression, bipolar disorders, disthymia, cyclothymia, and premenstrual syndrome.
- FIG. 1 is a graph depicting the effects of centrally administered prepro-TRH 178-199 on floating and activity in the forced swim test. Rats were treated with vehicle or prepro-TRH 178-199 (1.5, 3.0, 6.0, 12.0 ⁇ g/kg body weight) 15 minutes after the first 15 minute swim and 5 minutes before the second 5 minute swim. Floating time is measured when the animals are immobile and activity included swimming and climbing behaviors. Each value represents the mean ⁇ SEM of 6 (vehicle) or 7 (peptide) rats.
- FIG. 2 is a graph depicting the effects of central sub-acute and chronic administration of prepro-TRH 178-199 on floating, climbing and swimming in the forced swim test. Rats were treated with vehicle or 6 ⁇ g/kg prepro-TRH 178-199 sub-acutely or in a sub-acute manner but after 13 days of daily administration of the same dose of prepro-TRH 178-199. Each value represents the mean ⁇ SEM of 7 (chronic vehicle), 10 (chronic peptide), 5 (acute vehicle), 6 (acute peptide) rats.
- FIG. 3 is a diagram depicting the effects of central sub-acute administration of 6 ⁇ g/kg prepro-TRH 178-199 and 2.2 ⁇ g/kg prepro-TRH 191-199 on floating, climbing and swimming behavior in the forced swim test. Each value represents the mean +SEM of 7 (vehicle), 8 (prepro-TRH 178-199) and 8 (prepro-TRH 191-199) rats.
- FIG. 4A is an image of a photomicrograph depicting the differential expression of prepro-TRH 178-199 immunoreactivity in Wistar rats. Coronal sections were obtained through the paraventricular nucleus (PVN) of the hypothalmus of the rats. The third ventricle (3V) and the anterior commissure (ac) are indicated. Magnification using a 20 ⁇ objective.
- FIG. 4B is an image of a photomicrograph depicting the differential expression of prepro-TRH 178-199 immunoreactivity in WKY rats. Coronal sections were obtained through the paraventricular nucleus (PVN) of the hypothalmus of the rats. The third ventricle (3V) and the anterior commissure (ac) are indicated. Magnification using a 20 ⁇ objective.
- FIG. 4C is an image of a photomicrograph depicting the differential expression of prepro-TRH 178-199 immunoreactivity in Wistar rats. Coronal sections were obtained through the parastrial nucleus (PSN) of the brain of the rats. The third ventricle (3V) and the anterior commissure (ac) are indicated. Magnification using a 20 ⁇ objective.
- FIG. 4D is an image of a photomicrograph depicting the differential expression of prepro-TRH 178-199 immunoreactivity in WKY rats. Coronal sections were obtained through the parastrial nucleus (PSN) of the brain of the rats. The third ventricle (3V) and the anterior commissure (ac) are indicated. Magnification using a 20 ⁇ objective.
- the invention relates to the discovery that administration of prepro-TRH 178-199, or peptides derived therefrom, to the brain of an animal exhibiting depressed behavior alleviates the depression.
- Prepro-TRH 178-199 is also know herein as corticotropin release inhibiting factor (CRIF).
- CRIF corticotropin release inhibiting factor
- the invention therefore includes a method of treating a depressive disorder in an animal, comprising administering CRIF, or peptides derived therefrom, to the animal.
- the animal is a human.
- depression disorder should be construed to include major depression, minor depression, bipolar disorders, disthymia, cyclothymia, and premenstrual syndrome. The term should be specifically construed to exclude anxiety in the absence of depressive symptoms.
- CRIF peptide The isolation and characterization of CRIF peptide is disclosed in U.S. Pat. No. 5,830,866 (which is hereby incorporated herein by reference in its entirety).
- Peptides having CRIF activity are those which comprise at least three contiguous amino acids contained within the amino acid sequence positioned between the fourth and fifth thyrotropin releasing hormone sequence on a prepro-thyrotropin releasing hormone protein.
- Full-length CRIF is designated herein as rat prepro-TRH 178-199, which identifies CRIF as being amino acid numbers 178-199 on the rat prepro-TRH molecule.
- the invention should in no way be construed as being limited to full-length CRIF.
- peptides which have fewer amino acids than full length CRIF have CRIF biological activity, as that term is defined herein.
- peptides having as few as four amino acids and peptides having at least nine amino acids positioned within the prepro-TRH 178-199 molecule have CRIF biological activity according to the results of experiments presented herein.
- Full length rat CRIF peptide comprises twenty two contiguous amino acids in length, wherein CRIF is located between the fourth and fifth TRH in the prepro-TRH molecule.
- full length rat CRIF is also known as prepro-TRH-178-199.
- Full length human CRIF comprises twenty six contiguous amino acids in length, wherein CRIF is located between the fourth and fifth TRH in the human prepro-TRH molecule.
- Full length human CRIF is also known as human prepro-TRH 158-183.
- the invention should be construed to include any and all CRIF peptides comprising amino acid lengths which range from at least three contiguous amino acids to as much as twenty two amino acids in length, being positioned within the rat prepro-TRH 178-199 molecule.
- the CRIF peptide of the invention may therefore comprise at least three contiguous amino acids in length, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, at least twelve, at least thirteen, at least fourteen, at least fifteen, at least sixteen, at least seventeen, at least eighteen, at least nineteen, at least twenty, at least twenty one, and up to twenty two contiguous amino acids in length, wherein the peptide is positioned within the rat prepro-TRH 178-199 molecule.
- the CRIF peptide of the invention comprises either four or nine amino acids in length.
- Preferred rodent CRIF sequences include from three to twenty two contiguous amino acid sequences of the sequence Phe-Ile-Asp-Pro-Glu-Leu-Gln-Arg-Ser-Trp-Glu-Glu-Lys-Glu-Gly-Glu-Gly-Val-Leu-Met-Pro-Glu (full length rat CRIF) and the sequence Phe-Ile-Asp-Pro-Glu-Leu-Gln-Arg-Ser-Trp-Glu-Glu-Thr-Glu-Gly-Glu-Glu-Gly-Gly-Leu-Met-Pro-Glu (full length mouse CRIF), and also the sequence Glu-Gly-Glu-Gly-Val-Leu-Met-Pro-Glu (a rat CRIF peptide), the sequence Leu-Met-Pro-Glu (another rat CRIF peptide), and any derivatives and analogs thereof which retain the biological activity of CRIF as defined herein.
- the CRIF peptide of the invention is from three to twenty two contiguous amino acids positioned within the prepro-TRH 178-199 molecule.
- human CRIF fill length human CRIF comprises twenty six contiguous amino acids in length, wherein CRIF is located between the fourth and fifth TRH in the human prepro-TRH molecule.
- the invention should therefore be construed to include any and all human or other higher mammalian CRIF peptides comprising amino acid lengths which range from at least three contiguous amino acids to as much as twenty six amino acids in length, being positioned within the human prepro-TRH 158-183 molecule.
- the CRIF peptide of the invention may therefore comprise at least three contiguous amino acids in length, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, at least twelve, at least thirteen, at least fourteen, at least fifteen, at least sixteen, at least seventeen, at least eighteen, at least nineteen, at least twenty, at least twenty one, at least twenty two, at least twenty three, at least twenty four, at least twenty five, and up to twenty six contiguous amino acids in length, wherein the peptide is positioned within the human prepro-TRH 158-183 molecule.
- a preferred human CRIF is a peptide having from three to twenty six contiguous amino acids of the sequence Leu-Ala-Asp-Pro Lys-Ala-Gln-Arg-Ser-Trp-Glu-Glu-Glu-Glu-Glu-Glu-Arg-Glu-Glu-Asp-Leu-Met-Pro-Glu (full length human CRIF).
- the present invention also provides for the use of analogs of peptides having CRIF activity.
- Analogs can differ from naturally occurring proteins or peptides by conservative amino acid sequence differences or by modifications which do not affect sequence, or by both.
- conservative amino acid changes may be made, which although they alter the primary sequence of the protein or peptide, do not normally alter its function.
- Conservative amino acid substitutions typically include substitutions within the following groups:
- valine isoleucine, leucine
- aspartic acid glutamic acid
- modifications which do not normally alter the primary sequence but which may be useful, include in vivo or in vitro chemical derivatization of peptides, e.g., amidation, acetylation, or carboxylation, and modifications of glycosylation, e.g., those made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing or in further processing steps; e.g., by exposing the polypeptide to enzymes which affect glycosylation, e.g., mammalian glycosylating or deglycosylating enzymes. Also embraced are peptides which have phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.
- peptides which have been modified using ordinary molecular biological techniques so as to improve their resistance to proteolytic degradation or to optimize solubility properties or to render them more suitable as a therapeutic agent.
- Analogs of such peptides include those containing residues other than naturally occurring L-amino acids, e.g., D-amino acids or non-naturally occurring synthetic amino acids.
- the peptides of the invention are not limited to products of any of the specific exemplary processes listed herein.
- the peptides may incorporate amino acid residues which are modified without affecting activity.
- the termini may be derivatized to include blocking groups, i.e. chemical substituents suitable to protect and/or stabilize the N- and C-termini from “undesirable degradation”, a term meant to encompass any type of enzymatic, chemical or biochemical breakdown of the compound at its termini which is likely to affect the function of the compound as an anti-inflammatory agent, i.e. sequential degradation of the compound at a terminal end thereof.
- Blocking groups include protecting groups conventionally used in the art of peptide chemistry which will not adversely affect the in vivo activities of the peptide.
- suitable N-terminal blocking groups can be introduced by alkylation or acylation of the N-terminus.
- suitable N-terminal blocking groups include C 1 -C 5 branched or unbranched alkyl groups, acyl groups such as formyl and acetyl groups, as well as substituted forms thereof, such as the acetamidomethyl (Acm) group.
- Desamino analogs of amino acids are also useful N-terminal blocking groups, and can either be coupled to the N-terminus of the peptide or used in place of the N-terminal reside.
- Suitable C-terminal blocking groups include esters, ketones or amides.
- Ester or ketone-forming alkyl groups particularly lower alkyl groups such as methyl, ethyl and propyl, and amide-forming amino groups such as primary amines (—NH 2 ), and mono- and di-alkylamino groups such as methylamino, ethylamino, dimethylamino, diethylamino, methylethylamino and the like are examples of C-terminal blocking groups.
- Descarboxylated amino acid analogues such as agmatine are also useful C-terminal blocking groups and can be either coupled to the peptide's C-terminal residue or used in place of it. Further, it will be appreciated that the free amino and carboxyl groups at the termini can be removed altogether from the peptide to yield desamino and descarboxylated forms thereof without affect on peptide activity.
- peptide may include one or more D-amino acid resides, or may comprise amino acids which are all in the D-form.
- Retro-inverso forms of peptides in accordance with the present invention are also contemplated, for example, inverted peptides in which all amino acids are substituted with D-amino acid forms.
- Acid addition salts of the present invention are also contemplated as functional equivalents.
- an inorganic acid such as hydrochloric, hydrobromic, sulfuric, nitice, phosphoric, and the like
- an organic acid such as an acetic, propionic, glycolic, pyruvic, oxalic
- CRIF-like peptides and CRIF may also be used for the generation of peptidometics and other small molecules useful for treatment of such disorders.
- Peptidomimetics may be generated using techniques described in PCT/US93/01201 and in U.S. Pat. No. 5,334,702.
- the invention should also be construed to include a method of treating a depressive disorder comprising administering a CRIF peptidometic to the animal.
- the CRIF peptide (or any analog, or peptidometic derived therefrom) is administered to the animal so as to be delivered to the brain of the animal for alleviation of depressive disorder in the animal.
- Suitable routes of administration therefore include oral, parenteral, intranasal and intrathecal (central).
- CRIF peptides which are useful in the methods of the invention may be formulated and administered to an animal for treatment of a depressive disorder are now described.
- the invention encompasses the preparation and use of pharmaceutical compositions comprising a CRIF peptide useful for treatment of a depressive disorder as an active ingredient.
- a pharmaceutical composition may consist of the active ingredient alone, in a form suitable for administration to a subject, or the pharmaceutical composition may comprise the active ingredient and one or more pharmaceutically acceptable carriers, one or more additional ingredients, or some combination of these.
- the active ingredient may be present in the pharmaceutical composition in the form of a physiologically acceptable ester or salt, such as in combination with a physiologically acceptable cation or anion, as is well known in the art.
- the term “pharmaceutically acceptable carrier” means a chemical composition with which the active ingredient may be combined and which, following the combination, can be used to administer the active ingredient to a subject.
- physiologically acceptable ester or salt means an ester or salt form of the active ingredient which is compatible with any other ingredients of the pharmaceutical composition, which is not deleterious to the subject to which the composition is to be administered.
- compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology.
- preparatory methods include the step of bringing the active ingredient into association with a carrier or one or more other accessory ingredients, and then, if necessary or desirable, shaping or packaging the product into a desired single- or multi-dose unit.
- compositions are principally directed to pharmaceutical compositions which are suitable for ethical administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions of the invention is contemplated include, but are not limited to, humans and other primates, mammals including commercially relevant mammals such as cattle, pigs, horses, sheep, cats and dogs.
- compositions that are useful in the methods of the invention may be prepared, packaged, or sold in formulations suitable for oral, parenteral, intranasal, intrathecal or another route of administration.
- Other contemplated formulations include projected nanoparticles, liposomal preparations, resealed erythrocytes containing the active ingredient, and immunologically-based formulations.
- a pharmaceutical composition of the invention may be prepared, packaged, or sold in bulk, as a single unit dose, or as a plurality of single unit doses.
- a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient.
- the amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
- compositions of the invention will vary, depending upon the identity, size, and condition of the subject treated and further depending upon the route by which the composition is to be administered.
- the composition may comprise between 0.1% and 100% (w/w) active ingredient.
- a pharmaceutical composition of the invention may further comprise one or more additional pharmaceutically active agents.
- additional agents include anti-emetics and scavengers such as cyanide and cyanate scavengers.
- Controlled- or sustained-release formulations of a pharmaceutical composition of the invention may be made using conventional technology.
- a formulation of a pharmaceutical composition of the invention suitable for oral administration may be prepared, packaged, or sold in the form of a discrete solid dose unit including, but not limited to, a tablet, a hard or soft capsule, a cachet, a troche, or a lozenge, each containing a predetermined amount of the active ingredient.
- Other formulations suitable for oral administration include, but are not limited to, a powdered or granular formulation, an aqueous or oily suspension, an aqueous or oily solution, or an emulsion.
- an “oily” liquid is one which comprises a carbon-containing liquid molecule and which exhibits a less polar character than water.
- a tablet comprising the active ingredient may, for example, be made by compressing or molding the active ingredient, optionally with one or more additional ingredients.
- Compressed tablets may be prepared by compressing, in a suitable device, the active ingredient in a free-flowing form such as a powder or granular preparation, optionally mixed with one or more of a binder, a lubricant, an excipient, a surface active agent, and a dispersing agent.
- Molded tablets may be made by molding, in a suitable device, a mixture of the active ingredient, a pharmaceutically acceptable carrier, and at least sufficient liquid to moisten the mixture.
- compositions used in the manufacture of tablets include, but are not limited to, inert diluents, granulating and disintegrating agents, binding agents, and lubricating agents.
- Known dispersing agents include, but are not limited to, potato starch and sodium starch glycollate.
- Known surface active agents include, but are not limited to, sodium lauryl sulphate.
- Known diluents include, but are not limited to, calcium carbonate, sodium carbonate, lactose, microcrystalline cellulose, calcium phosphate, calcium hydrogen phosphate, and sodium phosphate.
- Known granulating and disintegrating agents include, but are not limited to, corn starch and alginic acid.
- binding agents include, but are not limited to, gelatin, acacia, pre-gelatinized maize starch, polyvinylpyrrolidone, and hydroxypropyl methylcellulose.
- Known lubricating agents include, but are not limited to, magnesium stearate, stearic acid, silica, and talc.
- Tablets may be non-coated or they may be coated using known methods to achieve delayed disintegration in the gastrointestinal tract of a subject, thereby providing sustained release and absorption of the active ingredient.
- a material such as glyceryl monostearate or glyceryl distearate may be used to coat tablets.
- tablets may be coated using methods described in U.S. Pat. Nos. 4,256,108; 4,160,452; and 4,265,874 to form osmotically-controlled release tablets.
- Tablets may further comprise a sweetening agent, a flavoring agent, a coloring agent, a preservative, or some combination of these in order to provide pharmaceutically elegant and palatable preparation.
- Hard capsules comprising the active ingredient may be made using a physiologically degradable composition, such as gelatin. Such hard capsules comprise the active ingredient, and may further comprise additional ingredients including, for example, an inert solid diluent such as calcium carbonate, calcium phosphate, or kaolin.
- an inert solid diluent such as calcium carbonate, calcium phosphate, or kaolin.
- Soft gelatin capsules comprising the active ingredient may be made using a physiologically degradable composition, such as gelatin.
- a physiologically degradable composition such as gelatin.
- Such soft capsules comprise the active ingredient, which may be mixed with water or an oil medium such as peanut oil, liquid paraffin, or olive oil.
- Liquid formulations of a pharmaceutical composition of the invention which are suitable for oral administration may be prepared, packaged, and sold either in liquid form or in the form of a dry product intended for reconstitution with water or another suitable vehicle prior to use.
- Liquid suspensions may be prepared using conventional methods to achieve suspension of the active ingredient in an aqueous or oily vehicle.
- Aqueous vehicles include, for example, water and isotonic saline.
- Oily vehicles include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin.
- Liquid suspensions may further comprise one or more additional ingredients including, but not limited to, suspending agents, dispersing or wetting agents, emulsifying agents, demulcents, preservatives, buffers, salts, flavorings, coloring agents, and sweetening agents.
- Oily suspensions may further comprise a thickening agent.
- suspending agents include, but are not limited to, sorbitol syrup, hydrogenated edible fats, sodium alginate, polyvinylpyrrolidone, gum tragacanth, gum acacia, and cellulose derivatives such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose.
- Known dispersing or wetting agents include, but are not limited to, naturally-occurring phosphatides such as lecithin, condensation products of an alkylene oxide with a fatty acid, with a long chain aliphatic alcohol, with a partial ester derived from a fatty acid and a hexitol, or with a partial ester derived from a fatty acid and a hexitol anhydride (e.g. polyoxyethylene stearate, heptadecaethyleneoxycetanol, polyoxyethylene sorbitol monooleate, and polyoxyethylene sorbitan monooleate, respectively).
- Known emulsifying agents include, but are not limited to, lecithin and acacia.
- Known preservatives include, but are not limited to, methyl, ethyl, or n-propyl-para-hydroxybenzoates, ascorbic acid, and sorbic acid.
- Known sweetening agents include, for example, glycerol, propylene glycol, sorbitol, sucrose, and saccharin
- Known thickening agents for oily suspensions include, for example, beeswax, hard paraffin, and cetyl alcohol.
- Liquid solutions of the active ingredient in aqueous or oily solvents may be prepared in substantially the same manner as liquid suspensions, the primary difference being that the active ingredient is dissolved, rather than suspended in the solvent.
- Liquid solutions of the pharmaceutical composition of the invention may comprise each of the components described with regard to liquid suspensions, it being understood that suspending agents will not necessarily aid dissolution of the active ingredient in the solvent.
- Aqueous solvents include, for example, water and isotonic saline.
- Oily solvents include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin.
- Powdered and granular formulations of a pharmaceutical preparation of the invention may be prepared using known methods. Such formulations may be administered directly to a subject, used, for example, to form tablets, to fill capsules, or to prepare an aqueous or oily suspension or solution by addition of an aqueous or oily vehicle thereto. Each of these formulations may further comprise one or more of dispersing or wetting agent, a suspending agent, and a preservative. Additional excipients, such as fillers and sweetening, flavoring, or coloring agents, may also be included in these formulations.
- Parenteral administration thus includes, but is not limited to, administration of a pharmaceutical composition by injection of the composition, by application of the composition through a surgical incision, by application of the composition through a tissue-penetrating non-surgical wound, and the like.
- parenteral administration is contemplated to include, but is not limited to, subcutaneous, intraperitoneal, intramuscular, intrasternal injection, and kidney dialytic infusion techniques.
- Formulations of a pharmaceutical composition suitable for parenteral administration comprise the active ingredient combined with a pharmaceutically acceptable carrier, such as sterile water or sterile isotonic saline. Such formulations may be prepared, packaged, or sold in a form suitable for bolus administration or for continuous administration. Injectable formulations may be prepared, packaged, or sold in unit dosage form, such as in ampules or in multi-dose containers containing a preservative. Formulations for parenteral administration include, but are not limited to, suspensions, solutions, emulsions in oily or aqueous vehicles, pastes, and implantable sustained-release or biodegradable formulations.
- Such formulations may further comprise one or more additional ingredients including, but not limited to, suspending, stabilizing, or dispersing agents.
- the active ingredient is provided in dry (i.e. powder or granular) form for reconstitution with a suitable vehicle (e.g. sterile pyrogen-free water) prior to parenteral administration of the reconstituted composition.
- the pharmaceutical compositions may be prepared, packaged, or sold in the form of a sterile injectable aqueous or oily suspension or solution.
- This suspension or solution may be formulated according to the known art, and may comprise, in addition to the active ingredient, additional ingredients such as the dispersing agents, wetting agents, or suspending agents described herein.
- Such sterile injectable formulations may be prepared using a non-toxic parenterally-acceptable diluent or solvent, such as water or 1,3-butane diol, for example.
- Other acceptable diluents and solvents include, but are not limited to, Ringer's solution, isotonic sodium chloride solution, and fixed oils such as synthetic mono- or di-glycerides.
- compositions for sustained release or implantation may comprise pharmaceutically acceptable polymeric or hydrophobic materials such as an emulsion, an ion exchange resin, a sparingly soluble polymer, or a sparingly soluble salt.
- compositions of the invention formulated for intranasal delivery may also provide the active ingredient in the form of droplets of a solution or suspension.
- Such formulations may be prepared, packaged, or sold as aqueous or dilute alcoholic solutions or suspensions, optionally sterile, comprising the active ingredient, and may conveniently be administered using any nebulization or atomization device.
- Such formulations may further comprise one or more additional ingredients including, but not limited to, a flavoring agent such as saccharin sodium, a volatile oil, a buffering agent, a surface active agent, or a preservative such as methylhydroxybenzoate.
- the droplets provided by this route of administration preferably have an average diameter in the range from about 0.1 to about 200 nanometers.
- Another formulation suitable for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 0.2 to 500 micrometers. Such a formulation is administered in the manner in which snuff is taken i.e. by rapid inhalation through the nasal passage from a container of the powder held close to the nares.
- Formulations suitable for nasal administration may, for example, comprise from about as little as 0.1% (w/w) and as much as 100% (w/w) of the active ingredient, and may further comprise one or more of the additional ingredients described herein.
- Formulations suitable for central administration include saline salts and the addition of other ingredients which render the compound more stable in the brain.
- dosages of the compound of the invention which may be administered to an animal, preferably a human, range in amount from 1 ⁇ g to about 100 g per killogram of body weight of the animal. While the precise dosage administered will vary depending upon any number of factors, including but not limited to, the type of animal and type of disease state being treated, the age of the animal and the route of administration. Preferably, the dosage of the compound will vary from about 1 mg to about 10 g per killogram of body weight of the animal. More preferably, the dosage will vary from about 10 mg to about 1 g per killogram of body weight of the animal.
- the compound may be administered to an animal as frequently as several times daily, or it may be administered less frequently, such as once a day, once a week, once every two weeks, once a month, or even less frequently, such as once every several months or even once a year or less.
- the frequency of the dose will be readily apparent to the skilled artisan and will depend upon any number of factors, such as, but not limited to, the type and severity of the disease being treated, the type and age of the animal, etc.
- alleviating a depressive disorder means reducing the severity of at least one symptom associated with the depressive disorder.
- the term “alleviating” is used synonymously herein with the term “treating.”
- amino acids are represented by the full name thereof, by the three letter code corresponding thereto, or by the one-letter code corresponding thereto, as indicated in the following table: Full Name Three-Letter Code One-Letter Code Aspartic Acid Asp D Glutamic Acid Glu E Lysine Lys K Arginine Arg R Histidine His H Tyrosine Tyr Y Cysteine Cys C Asparagine Asn N Glutamine Gln Q Serine Ser S Threonine Thr T Glycine Gly G Alanine Ala A Valine Val V Leucine Leu L Isoleucine Ile I Methionine Met M Proline Pro P Phenylalanine Phe F Tryptophan Trp W
- Depression in an animal is “alleviated” if the severity of a symptom of the depression, the frequency with which such a symptom is experienced by an animal, or both, are reduced.
- “Depression” as used herein refers to major depression, minor depression, bipolar disorders, disthymia, cyclodisthymia, and premenstrual syndrome. It is used herein synonymously with the term “depressive disorder.” The term should be specifically construed to exclude anxiety.
- Polypeptide refers to a polymer composed of amino acid residues, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof linked via peptide bonds, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof. Synthetic polypeptides can be synthesized, for example, using an automated polypeptide synthesizer.
- protein typically refers to large polypeptides.
- peptide typically refers to short polypeptides.
- CRIF-like activity denotes an activity which is so similar to that of CRIF, i.e., which functions by the same mechanism as CRIF, so as to be virtually indistinguishable from CRIF.
- this term as used herein, should also be construed to encompass compounds which may operate by the same mechanism as CRIF, but which may have a higher specific activity than CRIF.
- CRIF-related disorder any disease or disorder in an animal which can be alleviated, prevented or otherwise treated by manipulating CRIF in the animal.
- peripheral administration denotes administration of a compound to an animal by any route other than direct administration to the brain.
- peripheral administration includes, but is not limited to, oral, nasopharyngeal, intraperitoneal, intramuscular and intravenous administration of any of the compounds of the invention.
- Central administration denotes administration of a compound directly to the brain. This term is used herein synonymously with the term “intrathecal administration.”
- a “therapeutic” treatment is a treatment administered to an animal, including a human, which exhibits signs of pathology for the purpose of diminishing or eliminating those signs.
- a “therapeutically effective amount” of a compound is that amount of compound which is sufficient to provide a beneficial effect to the animal to which the compound is administered.
- the data disclosed herein demonstrate the effects of a neuropeptide, rat prepro-TRH 178-199, on the Porsolt forced swim test (FST) of depression in rats.
- Sub-acute intracerebroventricular (i.c.v.) administration of prepro-TRH 178-199 significantly and dose-responsively reduced floating and increased active behavior in the FST.
- Chronic (14 days) administration of 6 ⁇ g/kg prepro-TRH 178-199 decreased floating and increased climbing significantly with no significant differences between chronic and sub-acute treatment effects on active behavior.
- the animals were subjected to an initial 15 minute swim pretest, followed by a 5 minute swim test 24 hours later.
- the rats received two injections of sterile vehicle (1.5, 3.0, 6.0 or 12.0 ⁇ g/kg) or prepro-TRH 178-199 (0.6, 1.2., 2.3 and 4.6 nmol/kg) in a 2-3 ⁇ l volume between the pretest and the test: 15 minutes after the initial (pre)-swim and 5 minutes before the test swim.
- the C-terminal peptide was administered in this sub-acute fashion at 2.2 ⁇ g/kg (2.3 nmol/kg) dose, which is equivalent to 6 ⁇ g/kg prepro-TRH 178-199.
- prepro-TRH 178-199 or sterile water vehicle was injected i.c.v. daily for 13 days.
- a forced swim 15 minutes pretest was carried out followed by injection of prepro-TRH 178-199 or vehicle 15 minutes later.
- the animals received an i.c.v. injection of prepro-TRH 178-199 or an injection of vehicle and 5 minutes later they were tested in the 5 minute swim test.
- the forced swim test utilized a glass water tank 30 cm in diameter and 45 cm tall with the water level 15 cm from the top and the water temperature set at 25° C.
- the rats were individually placed in the water tank for 15 minutes. Twenty-four hours later, the rats were placed once more in the tank for a 5 minute session and the tests were videotaped The videotapes were scored by a trained observer who was blind to the treatment conditions and the time spent floating, and time spent swimming and climbing were recorded.
- prepro-TRH 178-199 was examined by comparing the effect of the C-terminal fragment (i.e., prepro-TRH 191-199) to that of the full-length peptide using F344XBN rats.
- the data disclosed herein examined the antidepressant-like actions of intracerebroventricularly administered prepro-TRH 178-199 by determining its dose-response characteristics in the forced swim test, a standard test of antidepressant drug efficacy. Furthermore, the antidepressant-efficacy of chronic administration of prepro-TRH 178-199 was also determined in the forced-swim test. Finally, the biological activity of the C-terminal fragment, prepro-TRH 191-199, was determined.
- IHC was performed according to standard procedures (Bingaman et al., 1993, Neuroendocrinology 59:228-234). Briefly, sections were washed three times in 0.01 M PBS with 0.1% Triton-X (TX) for 15 minutes to rinse off the storage buffer. The sections were incubated in 0.3% H 2 O 2 in 0.01 M PBS/TX for 15 minutes and then rinsed 2X in PBS/TX for one hour at room temperature (RT). The sections were then incubated with a rabbit polyclonal antibody directed against prepro-TRH 178-199 (used at 1:10,000 dilution) overnight at RT.
- TX Triton-X
- the brain sections were incubated with biotinylated goat anti-rabbit IgG (Vector Laboratories, Inc.; 1,200 dilution) in PBS/TX with 2% NGS for two hours at RT.
- the sections were washed 3 ⁇ for 10 minutes in PBS/TX and were processed according to the avidin-biotin-peroxidase procedure (ABC, Vector Laboratories, Burlingame, Calif.). Sections were then washed 2 ⁇ in PBS for 15 minutes and rinsed in 0.1 M Tris-HCl buffer for 15 minutes.
- the sections were developed with 3,3′-diaminobenzidine (DAB, 0.5/mg/ml) in Tris buffer containing 0.03% H 2 O 2 for two minutes. The reaction was stopped by washing the section twice in PBS for 10 minutes. The sections were mounted on Superfrost Plus slides and coverslipped using Permount (Fisher Scientific).
- DAB 3,3′-diaminobenzidine
- IR cell profiles and fiber densities were examined in the nucleus accumbens, lateral septum, medial amygdala, dorsomedial nucleus (DMN) of the hypothalamus, paraventricular nucleus (PVN) of the hypothalamus, and the parastrial nucleus (PSN) of Wistar and WKY rats.
- DN dorsomedial nucleus
- PVN paraventricular nucleus
- PSN parastrial nucleus
- WKY rats had four times the number of IR cell body profiles (p ⁇ 0.0005; FIG. 4A and FIG. 4B) of the Wistar rats.
- WKY rats exhibited marginally lower density in nerve fibers when compared to Wistar rats (p ⁇ 0.06; FIG. 4A and FIG. 4B). In the PSN, WKY rats exhibited significantly lower fiber density (p ⁇ 0.002; FIG. 4C and FIG. 4D).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Endocrinology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Methods and compositions for treatment of depression in animals are provided.
Description
- This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/140,962, filed on Jun. 24, 1999.
- Stressful life events are thought to precipitate depressive episodes in vulnerable individuals. There appears to be a biochemical link between stress and depression since dysregulation of the stress-responsive hypothalamic-pituitary-adrenal (HPA) axis, manifested in cortisol hypersecretion, frequently occurs in melancholic depressed patients, and remission from depression leads to normalization of this dysregulation. Inversely, decreasing the levels and efficacy of glucocorticoids can ameliorate symptoms of depression. Thus, there is clinical evidence that hypercortisolemia may be associated with the pathophysiology of a subtype of depression.
- Synthesis and secretion of glucocorticoids is regulated by ACTH which in turn is primarily stimulated by the hypothalamic corticotropin releasing factor (CRF). CRF appears to mediate not only the endocrine, but also the autonomic and behavioral responses to stress, the later event occurring directly in the brain. Increased production of CRF is thought to be involved in the etiology of depression. Thus, CRF receptor antagonists have been developed and tested for their anxiolytic and antidepressant characteristics.
- Recently studies demonstrated that prepro-TRH 178-199, a peptide derived from the TRH precursor, inhibits ACTH secretion in vitro (Redei et al., 1995, Endocrinology 136:1813-1816; Redei et al., 1995, Endocrinology 136:3557-3563) and plasma ACTH, CORT, and prolactin responses to stressors in vivo (McGivern et al., 1997, J. Neurosci. 17:4886-4894). It has also been reported that centrally administered prepro-TRH 178-199 produced behavioral effects in rats in paradigms used to assess response to novelty and anxiolytic potential (McGivem et al., 1997, J. Neurosci. 17:4886-4894). Intracerebroventricular (i.c.v.) administration of prepro-TRH 178-199 into the lateral ventricle induced significant increases of locomotion in the open field test of time spent in the open arms of the elevated plus maze and in the light compartment of the light/dark box. Thus, prepro-TRH 178-199, administered directly into the brain, increases arousal and exploratory behavior, and decreases anxiety in experimental paradigms routinely used to assess these behaviors in animals.
- Currently, while anti-depressive therapeutic compounds are available, each of these compounds may have deleterious side effects. There is therefore a need in the art for the discovery and development of additional compounds which alleviate depression. The present invention satisfies this need.
- The invention relates to a method of treating a depressive disorder in an animal. The method comprises administering to said animal a compound having CRIF biological activity.
- In one aspect, the compound is a peptide.
- In another aspect, the compound is a peptidometic.
- In yet another aspect, the compound is in a therapeutically effective amount.
- In a further aspect, the compound is in a pharmaceutically acceptable carrier.
- In yet another aspect, the animal is a human.
- In another aspect, the compound is administered to the animal by a route selected from the group consisting of oral, parenteral, intranasal and central.
- In one embodiment, the peptide is a CRIF peptide comprising at least three amino acids positioned between the fourth and fifth TRH peptide on a prepro-TRH molecule.
- In a further embodiment, the CRIF peptide comprises from three to twenty two amino acids positioned between the fourth and fifth TRH peptide on a prepro-TRH molecule.
- In another embodiment, the CRIF peptide comprises the sequence Phe-Ile-Asp-Pro-Glu-Leu-Gln-Arg-Ser-Trp-Glu-Glu-Lys-Glu-Gly-Glu-Gly-Val-Leu-Met-Pro-Glu.
- In yet another embodiment, the CRIF peptide comprises the sequence Phe-Ile-Asp-Pro-Glu-Leu-Gln-Arg-Ser-Trp-Glu-Glu-Thr-Glu-Gly-Glu-Glu-Gly-Gly-Leu-Met-Pro-Glu.
- In another embodiment, the CRIF peptide comprises the sequence Glu-Gly-Glu-Gly-Val-Leu-Met-Pro-Glu.
- In a further embodiment, the CRIF peptide comprises the sequence Leu-Met-Pro-Glu.
- In yet another embodiment, the CRIF peptide comprises from three to twenty six amino acids positioned between the fourth and fifth TRH peptide on a prepro-TRH molecule.
- In another embodiment, the CRIF peptide comprises the sequence Leu-Ala-Asp-Pro Lys-Ala-Gln-Arg-Ser-Trp-Glu-Glu-Glu-Glu-Glu-Glu-Glu-Glu-Arg-Glu-Glu-Asp-Leu-Met-Pro-Glu.
- In a further aspect, the depressive disorder is selected from the group consisting of major depression, minor depression, bipolar disorders, disthymia, cyclothymia, and premenstrual syndrome.
- FIG. 1 is a graph depicting the effects of centrally administered prepro-TRH 178-199 on floating and activity in the forced swim test. Rats were treated with vehicle or prepro-TRH 178-199 (1.5, 3.0, 6.0, 12.0 μg/kg body weight) 15 minutes after the first 15 minute swim and 5 minutes before the second 5 minute swim. Floating time is measured when the animals are immobile and activity included swimming and climbing behaviors. Each value represents the mean ±SEM of 6 (vehicle) or 7 (peptide) rats.
- FIG. 2 is a graph depicting the effects of central sub-acute and chronic administration of prepro-TRH 178-199 on floating, climbing and swimming in the forced swim test. Rats were treated with vehicle or 6 μg/kg prepro-TRH 178-199 sub-acutely or in a sub-acute manner but after 13 days of daily administration of the same dose of prepro-TRH 178-199. Each value represents the mean ±SEM of 7 (chronic vehicle), 10 (chronic peptide), 5 (acute vehicle), 6 (acute peptide) rats.
- FIG. 3 is a diagram depicting the effects of central sub-acute administration of 6 μg/kg prepro-TRH 178-199 and 2.2 μg/kg prepro-TRH 191-199 on floating, climbing and swimming behavior in the forced swim test. Each value represents the mean +SEM of 7 (vehicle), 8 (prepro-TRH 178-199) and 8 (prepro-TRH 191-199) rats.
- FIG. 4A is an image of a photomicrograph depicting the differential expression of prepro-TRH 178-199 immunoreactivity in Wistar rats. Coronal sections were obtained through the paraventricular nucleus (PVN) of the hypothalmus of the rats. The third ventricle (3V) and the anterior commissure (ac) are indicated. Magnification using a 20×objective.
- FIG. 4B is an image of a photomicrograph depicting the differential expression of prepro-TRH 178-199 immunoreactivity in WKY rats. Coronal sections were obtained through the paraventricular nucleus (PVN) of the hypothalmus of the rats. The third ventricle (3V) and the anterior commissure (ac) are indicated. Magnification using a 20×objective.
- FIG. 4C is an image of a photomicrograph depicting the differential expression of prepro-TRH 178-199 immunoreactivity in Wistar rats. Coronal sections were obtained through the parastrial nucleus (PSN) of the brain of the rats. The third ventricle (3V) and the anterior commissure (ac) are indicated. Magnification using a 20×objective.
- FIG. 4D is an image of a photomicrograph depicting the differential expression of prepro-TRH 178-199 immunoreactivity in WKY rats. Coronal sections were obtained through the parastrial nucleus (PSN) of the brain of the rats. The third ventricle (3V) and the anterior commissure (ac) are indicated. Magnification using a 20×objective.
- The invention relates to the discovery that administration of prepro-TRH 178-199, or peptides derived therefrom, to the brain of an animal exhibiting depressed behavior alleviates the depression.
- Prepro-TRH 178-199 is also know herein as corticotropin release inhibiting factor (CRIF). As the data provided herein establish, CRIF peptides having various lengths are useful in the methods of the invention. Essentially, the data establish that central sub-acute administration of CRIF dose-responsively inhibits immobility of rats in a forced swim test, a standard test of antidepressant drug efficacy. The data further illustrate that the anti-depressant activity of CRIF is not limited to the particular animal being tested, in that, it is evident that two different strains of rats respond to CRIF. In addition, the data establish that chronic administration of CRIF to the rats results in more pronounced anti-depressant activity compared with sub-acute administration of CRIF. Further, peptides derived from the C-terminus of CRIF are equally capable of alleviating depression in the rats.
- The invention therefore includes a method of treating a depressive disorder in an animal, comprising administering CRIF, or peptides derived therefrom, to the animal. Preferably, the animal is a human.
- The term “depressive disorder” as used herein, should be construed to include major depression, minor depression, bipolar disorders, disthymia, cyclothymia, and premenstrual syndrome. The term should be specifically construed to exclude anxiety in the absence of depressive symptoms.
- The isolation and characterization of CRIF peptide is disclosed in U.S. Pat. No. 5,830,866 (which is hereby incorporated herein by reference in its entirety). Peptides having CRIF activity are those which comprise at least three contiguous amino acids contained within the amino acid sequence positioned between the fourth and fifth thyrotropin releasing hormone sequence on a prepro-thyrotropin releasing hormone protein. Full-length CRIF is designated herein as rat prepro-TRH 178-199, which identifies CRIF as being amino acid numbers 178-199 on the rat prepro-TRH molecule. However, the invention should in no way be construed as being limited to full-length CRIF. Rather, as the data presented herein establish, peptides which have fewer amino acids than full length CRIF, have CRIF biological activity, as that term is defined herein. For example, peptides having as few as four amino acids and peptides having at least nine amino acids positioned within the prepro-TRH 178-199 molecule have CRIF biological activity according to the results of experiments presented herein.
- Full length rat CRIF peptide comprises twenty two contiguous amino acids in length, wherein CRIF is located between the fourth and fifth TRH in the prepro-TRH molecule. Thus, full length rat CRIF is also known as prepro-TRH-178-199. Full length human CRIF comprises twenty six contiguous amino acids in length, wherein CRIF is located between the fourth and fifth TRH in the human prepro-TRH molecule. Full length human CRIF is also known as human prepro-TRH 158-183.
- The invention should be construed to include any and all CRIF peptides comprising amino acid lengths which range from at least three contiguous amino acids to as much as twenty two amino acids in length, being positioned within the rat prepro-TRH 178-199 molecule. The CRIF peptide of the invention may therefore comprise at least three contiguous amino acids in length, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, at least twelve, at least thirteen, at least fourteen, at least fifteen, at least sixteen, at least seventeen, at least eighteen, at least nineteen, at least twenty, at least twenty one, and up to twenty two contiguous amino acids in length, wherein the peptide is positioned within the rat prepro-TRH 178-199 molecule. Preferably, the CRIF peptide of the invention comprises either four or nine amino acids in length. Preferred rodent CRIF sequences include from three to twenty two contiguous amino acid sequences of the sequence Phe-Ile-Asp-Pro-Glu-Leu-Gln-Arg-Ser-Trp-Glu-Glu-Lys-Glu-Gly-Glu-Gly-Val-Leu-Met-Pro-Glu (full length rat CRIF) and the sequence Phe-Ile-Asp-Pro-Glu-Leu-Gln-Arg-Ser-Trp-Glu-Glu-Thr-Glu-Gly-Glu-Glu-Gly-Gly-Leu-Met-Pro-Glu (full length mouse CRIF), and also the sequence Glu-Gly-Glu-Gly-Val-Leu-Met-Pro-Glu (a rat CRIF peptide), the sequence Leu-Met-Pro-Glu (another rat CRIF peptide), and any derivatives and analogs thereof which retain the biological activity of CRIF as defined herein.
- Most preferably, the CRIF peptide of the invention is from three to twenty two contiguous amino acids positioned within the prepro-TRH 178-199 molecule.
- With respect to human CRIF, fill length human CRIF comprises twenty six contiguous amino acids in length, wherein CRIF is located between the fourth and fifth TRH in the human prepro-TRH molecule. The invention should therefore be construed to include any and all human or other higher mammalian CRIF peptides comprising amino acid lengths which range from at least three contiguous amino acids to as much as twenty six amino acids in length, being positioned within the human prepro-TRH 158-183 molecule. The CRIF peptide of the invention may therefore comprise at least three contiguous amino acids in length, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, at least twelve, at least thirteen, at least fourteen, at least fifteen, at least sixteen, at least seventeen, at least eighteen, at least nineteen, at least twenty, at least twenty one, at least twenty two, at least twenty three, at least twenty four, at least twenty five, and up to twenty six contiguous amino acids in length, wherein the peptide is positioned within the human prepro-TRH 158-183 molecule.
- A preferred human CRIF is a peptide having from three to twenty six contiguous amino acids of the sequence Leu-Ala-Asp-Pro Lys-Ala-Gln-Arg-Ser-Trp-Glu-Glu-Glu-Glu-Glu-Glu-Glu-Glu-Arg-Glu-Glu-Asp-Leu-Met-Pro-Glu (full length human CRIF).
- The present invention also provides for the use of analogs of peptides having CRIF activity. Analogs can differ from naturally occurring proteins or peptides by conservative amino acid sequence differences or by modifications which do not affect sequence, or by both.
- For example, conservative amino acid changes may be made, which although they alter the primary sequence of the protein or peptide, do not normally alter its function. Conservative amino acid substitutions typically include substitutions within the following groups:
- glycine, alanine;
- valine, isoleucine, leucine;
- aspartic acid, glutamic acid;
- asparagine, glutamine;
- serine, threonine;
- lysine, arginine; and
- phenylalanine, tyrosine.
- Other modifications, which do not normally alter the primary sequence but which may be useful, include in vivo or in vitro chemical derivatization of peptides, e.g., amidation, acetylation, or carboxylation, and modifications of glycosylation, e.g., those made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing or in further processing steps; e.g., by exposing the polypeptide to enzymes which affect glycosylation, e.g., mammalian glycosylating or deglycosylating enzymes. Also embraced are peptides which have phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.
- Also included are peptides which have been modified using ordinary molecular biological techniques so as to improve their resistance to proteolytic degradation or to optimize solubility properties or to render them more suitable as a therapeutic agent. Analogs of such peptides include those containing residues other than naturally occurring L-amino acids, e.g., D-amino acids or non-naturally occurring synthetic amino acids. The peptides of the invention are not limited to products of any of the specific exemplary processes listed herein.
- It will thus be appreciated that the peptides may incorporate amino acid residues which are modified without affecting activity. For example, the termini may be derivatized to include blocking groups, i.e. chemical substituents suitable to protect and/or stabilize the N- and C-termini from “undesirable degradation”, a term meant to encompass any type of enzymatic, chemical or biochemical breakdown of the compound at its termini which is likely to affect the function of the compound as an anti-inflammatory agent, i.e. sequential degradation of the compound at a terminal end thereof.
- Blocking groups include protecting groups conventionally used in the art of peptide chemistry which will not adversely affect the in vivo activities of the peptide. For example, suitable N-terminal blocking groups can be introduced by alkylation or acylation of the N-terminus. Examples of suitable N-terminal blocking groups include C 1-C5 branched or unbranched alkyl groups, acyl groups such as formyl and acetyl groups, as well as substituted forms thereof, such as the acetamidomethyl (Acm) group. Desamino analogs of amino acids are also useful N-terminal blocking groups, and can either be coupled to the N-terminus of the peptide or used in place of the N-terminal reside. Suitable C-terminal blocking groups, in which the carboxyl group of the C-terminus is either incorporated or not, include esters, ketones or amides. Ester or ketone-forming alkyl groups, particularly lower alkyl groups such as methyl, ethyl and propyl, and amide-forming amino groups such as primary amines (—NH2), and mono- and di-alkylamino groups such as methylamino, ethylamino, dimethylamino, diethylamino, methylethylamino and the like are examples of C-terminal blocking groups. Descarboxylated amino acid analogues such as agmatine are also useful C-terminal blocking groups and can be either coupled to the peptide's C-terminal residue or used in place of it. Further, it will be appreciated that the free amino and carboxyl groups at the termini can be removed altogether from the peptide to yield desamino and descarboxylated forms thereof without affect on peptide activity.
- Other modifications can also be incorporated and these include, but are not limited to, substitution of one or more of the amino acids in the natural L-isomeric form with amino acids in the D-isomeric form. Thus, the peptide may include one or more D-amino acid resides, or may comprise amino acids which are all in the D-form. Retro-inverso forms of peptides in accordance with the present invention are also contemplated, for example, inverted peptides in which all amino acids are substituted with D-amino acid forms.
- Acid addition salts of the present invention are also contemplated as functional equivalents. Thus, a peptide in accordance with the present invention treated with an inorganic acid such as hydrochloric, hydrobromic, sulfuric, nitice, phosphoric, and the like, or an organic acid such as an acetic, propionic, glycolic, pyruvic, oxalic, malic, malonic, succinic, maleic, fumaric, tataric, citric, benzoic, cinnamie, mandelic, methanesulfonic, ethanesulfonic, p-toluenesulfonic, salicyclic and the like, to provide a water soluble salt of the peptide is suitable for use in therapeutic settings.
- CRIF-like peptides and CRIF may also be used for the generation of peptidometics and other small molecules useful for treatment of such disorders. Peptidomimetics may be generated using techniques described in PCT/US93/01201 and in U.S. Pat. No. 5,334,702.
- Thus, the invention should also be construed to include a method of treating a depressive disorder comprising administering a CRIF peptidometic to the animal.
- In the methods of the invention, the CRIF peptide (or any analog, or peptidometic derived therefrom) is administered to the animal so as to be delivered to the brain of the animal for alleviation of depressive disorder in the animal. Suitable routes of administration therefore include oral, parenteral, intranasal and intrathecal (central). The smaller the CRIF peptide, the more likely that it will cross the blood brain barrier when administered using a route other than direct brain administration and therefore enter the brain tissue wherein the effects of the peptide are manifested.
- CRIF peptides which are useful in the methods of the invention may be formulated and administered to an animal for treatment of a depressive disorder are now described.
- The invention encompasses the preparation and use of pharmaceutical compositions comprising a CRIF peptide useful for treatment of a depressive disorder as an active ingredient. Such a pharmaceutical composition may consist of the active ingredient alone, in a form suitable for administration to a subject, or the pharmaceutical composition may comprise the active ingredient and one or more pharmaceutically acceptable carriers, one or more additional ingredients, or some combination of these. The active ingredient may be present in the pharmaceutical composition in the form of a physiologically acceptable ester or salt, such as in combination with a physiologically acceptable cation or anion, as is well known in the art.
- As used herein, the term “pharmaceutically acceptable carrier” means a chemical composition with which the active ingredient may be combined and which, following the combination, can be used to administer the active ingredient to a subject.
- As used herein, the term “physiologically acceptable” ester or salt means an ester or salt form of the active ingredient which is compatible with any other ingredients of the pharmaceutical composition, which is not deleterious to the subject to which the composition is to be administered.
- The formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with a carrier or one or more other accessory ingredients, and then, if necessary or desirable, shaping or packaging the product into a desired single- or multi-dose unit.
- Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for ethical administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions of the invention is contemplated include, but are not limited to, humans and other primates, mammals including commercially relevant mammals such as cattle, pigs, horses, sheep, cats and dogs.
- Pharmaceutical compositions that are useful in the methods of the invention may be prepared, packaged, or sold in formulations suitable for oral, parenteral, intranasal, intrathecal or another route of administration. Other contemplated formulations include projected nanoparticles, liposomal preparations, resealed erythrocytes containing the active ingredient, and immunologically-based formulations.
- A pharmaceutical composition of the invention may be prepared, packaged, or sold in bulk, as a single unit dose, or as a plurality of single unit doses. As used herein, a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
- The relative amounts of the active ingredient, the pharmaceutically acceptable carrier, and any additional ingredients in a pharmaceutical composition of the invention will vary, depending upon the identity, size, and condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1% and 100% (w/w) active ingredient.
- In addition to the active ingredient, a pharmaceutical composition of the invention may further comprise one or more additional pharmaceutically active agents. Particularly contemplated additional agents include anti-emetics and scavengers such as cyanide and cyanate scavengers.
- Controlled- or sustained-release formulations of a pharmaceutical composition of the invention may be made using conventional technology.
- A formulation of a pharmaceutical composition of the invention suitable for oral administration may be prepared, packaged, or sold in the form of a discrete solid dose unit including, but not limited to, a tablet, a hard or soft capsule, a cachet, a troche, or a lozenge, each containing a predetermined amount of the active ingredient. Other formulations suitable for oral administration include, but are not limited to, a powdered or granular formulation, an aqueous or oily suspension, an aqueous or oily solution, or an emulsion.
- As used herein, an “oily” liquid is one which comprises a carbon-containing liquid molecule and which exhibits a less polar character than water.
- A tablet comprising the active ingredient may, for example, be made by compressing or molding the active ingredient, optionally with one or more additional ingredients. Compressed tablets may be prepared by compressing, in a suitable device, the active ingredient in a free-flowing form such as a powder or granular preparation, optionally mixed with one or more of a binder, a lubricant, an excipient, a surface active agent, and a dispersing agent. Molded tablets may be made by molding, in a suitable device, a mixture of the active ingredient, a pharmaceutically acceptable carrier, and at least sufficient liquid to moisten the mixture. Pharmaceutically acceptable excipients used in the manufacture of tablets include, but are not limited to, inert diluents, granulating and disintegrating agents, binding agents, and lubricating agents. Known dispersing agents include, but are not limited to, potato starch and sodium starch glycollate. Known surface active agents include, but are not limited to, sodium lauryl sulphate. Known diluents include, but are not limited to, calcium carbonate, sodium carbonate, lactose, microcrystalline cellulose, calcium phosphate, calcium hydrogen phosphate, and sodium phosphate. Known granulating and disintegrating agents include, but are not limited to, corn starch and alginic acid. Known binding agents include, but are not limited to, gelatin, acacia, pre-gelatinized maize starch, polyvinylpyrrolidone, and hydroxypropyl methylcellulose. Known lubricating agents include, but are not limited to, magnesium stearate, stearic acid, silica, and talc.
- Tablets may be non-coated or they may be coated using known methods to achieve delayed disintegration in the gastrointestinal tract of a subject, thereby providing sustained release and absorption of the active ingredient. By way of example, a material such as glyceryl monostearate or glyceryl distearate may be used to coat tablets. Further by way of example, tablets may be coated using methods described in U.S. Pat. Nos. 4,256,108; 4,160,452; and 4,265,874 to form osmotically-controlled release tablets. Tablets may further comprise a sweetening agent, a flavoring agent, a coloring agent, a preservative, or some combination of these in order to provide pharmaceutically elegant and palatable preparation.
- Hard capsules comprising the active ingredient may be made using a physiologically degradable composition, such as gelatin. Such hard capsules comprise the active ingredient, and may further comprise additional ingredients including, for example, an inert solid diluent such as calcium carbonate, calcium phosphate, or kaolin.
- Soft gelatin capsules comprising the active ingredient may be made using a physiologically degradable composition, such as gelatin. Such soft capsules comprise the active ingredient, which may be mixed with water or an oil medium such as peanut oil, liquid paraffin, or olive oil.
- Liquid formulations of a pharmaceutical composition of the invention which are suitable for oral administration may be prepared, packaged, and sold either in liquid form or in the form of a dry product intended for reconstitution with water or another suitable vehicle prior to use.
- Liquid suspensions may be prepared using conventional methods to achieve suspension of the active ingredient in an aqueous or oily vehicle. Aqueous vehicles include, for example, water and isotonic saline. Oily vehicles include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin. Liquid suspensions may further comprise one or more additional ingredients including, but not limited to, suspending agents, dispersing or wetting agents, emulsifying agents, demulcents, preservatives, buffers, salts, flavorings, coloring agents, and sweetening agents. Oily suspensions may further comprise a thickening agent. Known suspending agents include, but are not limited to, sorbitol syrup, hydrogenated edible fats, sodium alginate, polyvinylpyrrolidone, gum tragacanth, gum acacia, and cellulose derivatives such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose. Known dispersing or wetting agents include, but are not limited to, naturally-occurring phosphatides such as lecithin, condensation products of an alkylene oxide with a fatty acid, with a long chain aliphatic alcohol, with a partial ester derived from a fatty acid and a hexitol, or with a partial ester derived from a fatty acid and a hexitol anhydride (e.g. polyoxyethylene stearate, heptadecaethyleneoxycetanol, polyoxyethylene sorbitol monooleate, and polyoxyethylene sorbitan monooleate, respectively). Known emulsifying agents include, but are not limited to, lecithin and acacia. Known preservatives include, but are not limited to, methyl, ethyl, or n-propyl-para-hydroxybenzoates, ascorbic acid, and sorbic acid. Known sweetening agents include, for example, glycerol, propylene glycol, sorbitol, sucrose, and saccharin Known thickening agents for oily suspensions include, for example, beeswax, hard paraffin, and cetyl alcohol.
- Liquid solutions of the active ingredient in aqueous or oily solvents may be prepared in substantially the same manner as liquid suspensions, the primary difference being that the active ingredient is dissolved, rather than suspended in the solvent. Liquid solutions of the pharmaceutical composition of the invention may comprise each of the components described with regard to liquid suspensions, it being understood that suspending agents will not necessarily aid dissolution of the active ingredient in the solvent. Aqueous solvents include, for example, water and isotonic saline. Oily solvents include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin.
- Powdered and granular formulations of a pharmaceutical preparation of the invention may be prepared using known methods. Such formulations may be administered directly to a subject, used, for example, to form tablets, to fill capsules, or to prepare an aqueous or oily suspension or solution by addition of an aqueous or oily vehicle thereto. Each of these formulations may further comprise one or more of dispersing or wetting agent, a suspending agent, and a preservative. Additional excipients, such as fillers and sweetening, flavoring, or coloring agents, may also be included in these formulations.
- As used herein, “parenteral administration” of a pharmaceutical composition includes any route of administration characterized by physical breaching of a tissue of a subject and administration of the pharmaceutical composition through the breach in the tissue. Parenteral administration thus includes, but is not limited to, administration of a pharmaceutical composition by injection of the composition, by application of the composition through a surgical incision, by application of the composition through a tissue-penetrating non-surgical wound, and the like. In particular, parenteral administration is contemplated to include, but is not limited to, subcutaneous, intraperitoneal, intramuscular, intrasternal injection, and kidney dialytic infusion techniques.
- Formulations of a pharmaceutical composition suitable for parenteral administration comprise the active ingredient combined with a pharmaceutically acceptable carrier, such as sterile water or sterile isotonic saline. Such formulations may be prepared, packaged, or sold in a form suitable for bolus administration or for continuous administration. Injectable formulations may be prepared, packaged, or sold in unit dosage form, such as in ampules or in multi-dose containers containing a preservative. Formulations for parenteral administration include, but are not limited to, suspensions, solutions, emulsions in oily or aqueous vehicles, pastes, and implantable sustained-release or biodegradable formulations. Such formulations may further comprise one or more additional ingredients including, but not limited to, suspending, stabilizing, or dispersing agents. In one embodiment of a formulation for parenteral administration, the active ingredient is provided in dry (i.e. powder or granular) form for reconstitution with a suitable vehicle (e.g. sterile pyrogen-free water) prior to parenteral administration of the reconstituted composition.
- The pharmaceutical compositions may be prepared, packaged, or sold in the form of a sterile injectable aqueous or oily suspension or solution. This suspension or solution may be formulated according to the known art, and may comprise, in addition to the active ingredient, additional ingredients such as the dispersing agents, wetting agents, or suspending agents described herein. Such sterile injectable formulations may be prepared using a non-toxic parenterally-acceptable diluent or solvent, such as water or 1,3-butane diol, for example. Other acceptable diluents and solvents include, but are not limited to, Ringer's solution, isotonic sodium chloride solution, and fixed oils such as synthetic mono- or di-glycerides. Other parentally-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form, in a liposomal preparation, or as a component of a biodegradable polymer systems. Compositions for sustained release or implantation may comprise pharmaceutically acceptable polymeric or hydrophobic materials such as an emulsion, an ion exchange resin, a sparingly soluble polymer, or a sparingly soluble salt.
- Pharmaceutical compositions of the invention formulated for intranasal delivery may also provide the active ingredient in the form of droplets of a solution or suspension. Such formulations may be prepared, packaged, or sold as aqueous or dilute alcoholic solutions or suspensions, optionally sterile, comprising the active ingredient, and may conveniently be administered using any nebulization or atomization device. Such formulations may further comprise one or more additional ingredients including, but not limited to, a flavoring agent such as saccharin sodium, a volatile oil, a buffering agent, a surface active agent, or a preservative such as methylhydroxybenzoate. The droplets provided by this route of administration preferably have an average diameter in the range from about 0.1 to about 200 nanometers.
- Another formulation suitable for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 0.2 to 500 micrometers. Such a formulation is administered in the manner in which snuff is taken i.e. by rapid inhalation through the nasal passage from a container of the powder held close to the nares.
- Formulations suitable for nasal administration may, for example, comprise from about as little as 0.1% (w/w) and as much as 100% (w/w) of the active ingredient, and may further comprise one or more of the additional ingredients described herein.
- Formulations suitable for central administration include saline salts and the addition of other ingredients which render the compound more stable in the brain.
- Typically dosages of the compound of the invention which may be administered to an animal, preferably a human, range in amount from 1 μg to about 100 g per killogram of body weight of the animal. While the precise dosage administered will vary depending upon any number of factors, including but not limited to, the type of animal and type of disease state being treated, the age of the animal and the route of administration. Preferably, the dosage of the compound will vary from about 1 mg to about 10 g per killogram of body weight of the animal. More preferably, the dosage will vary from about 10 mg to about 1 g per killogram of body weight of the animal.
- The compound may be administered to an animal as frequently as several times daily, or it may be administered less frequently, such as once a day, once a week, once every two weeks, once a month, or even less frequently, such as once every several months or even once a year or less. The frequency of the dose will be readily apparent to the skilled artisan and will depend upon any number of factors, such as, but not limited to, the type and severity of the disease being treated, the type and age of the animal, etc.
- Definitions
- The articles “a” and “an” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
- As used herein, “alleviating a depressive disorder” means reducing the severity of at least one symptom associated with the depressive disorder. The term “alleviating” is used synonymously herein with the term “treating.”
- As used herein, amino acids are represented by the full name thereof, by the three letter code corresponding thereto, or by the one-letter code corresponding thereto, as indicated in the following table:
Full Name Three-Letter Code One-Letter Code Aspartic Acid Asp D Glutamic Acid Glu E Lysine Lys K Arginine Arg R Histidine His H Tyrosine Tyr Y Cysteine Cys C Asparagine Asn N Glutamine Gln Q Serine Ser S Threonine Thr T Glycine Gly G Alanine Ala A Valine Val V Leucine Leu L Isoleucine Ile I Methionine Met M Proline Pro P Phenylalanine Phe F Tryptophan Trp W - Depression in an animal is “alleviated” if the severity of a symptom of the depression, the frequency with which such a symptom is experienced by an animal, or both, are reduced.
- “Depression” as used herein refers to major depression, minor depression, bipolar disorders, disthymia, cyclodisthymia, and premenstrual syndrome. It is used herein synonymously with the term “depressive disorder.” The term should be specifically construed to exclude anxiety.
- “Polypeptide” refers to a polymer composed of amino acid residues, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof linked via peptide bonds, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof. Synthetic polypeptides can be synthesized, for example, using an automated polypeptide synthesizer.
- The term “protein” typically refers to large polypeptides.
- The term “peptide” typically refers to short polypeptides.
- Conventional notation is used herein to portray polypeptide sequences: the left-hand end of a polypeptide sequence is the amino-terminus; the right-hand end of a polypeptide sequence is the carboxyl-terminus.
- “CRIF-like activity” as used here denotes an activity which is so similar to that of CRIF, i.e., which functions by the same mechanism as CRIF, so as to be virtually indistinguishable from CRIF. However, this term as used herein, should also be construed to encompass compounds which may operate by the same mechanism as CRIF, but which may have a higher specific activity than CRIF.
- By the term “CRIF-related disorder” as used herein is meant any disease or disorder in an animal which can be alleviated, prevented or otherwise treated by manipulating CRIF in the animal.
- “Peripheral administration” as used herein, denotes administration of a compound to an animal by any route other than direct administration to the brain. Thus, peripheral administration includes, but is not limited to, oral, nasopharyngeal, intraperitoneal, intramuscular and intravenous administration of any of the compounds of the invention.
- “Central administration” as used herein, denotes administration of a compound directly to the brain. This term is used herein synonymously with the term “intrathecal administration.”
- A “therapeutic” treatment is a treatment administered to an animal, including a human, which exhibits signs of pathology for the purpose of diminishing or eliminating those signs.
- A “therapeutically effective amount” of a compound is that amount of compound which is sufficient to provide a beneficial effect to the animal to which the compound is administered.
- The invention is now described with reference to the following examples. These examples are provided for the purpose of illustration only and the invention should in no way be construed as being limited to these examples but rather should be construed to encompass any and all variations which become evident as a result of the teaching provided herein.
- The experiments presented in this example may be summarized as follows.
- The data disclosed herein demonstrate the effects of a neuropeptide, rat prepro-TRH 178-199, on the Porsolt forced swim test (FST) of depression in rats. Sub-acute intracerebroventricular (i.c.v.) administration of prepro-TRH 178-199 significantly and dose-responsively reduced floating and increased active behavior in the FST. Chronic (14 days) administration of 6 μg/kg prepro-TRH 178-199 decreased floating and increased climbing significantly with no significant differences between chronic and sub-acute treatment effects on active behavior.
- The data disclosed herein further demonstrated that the biological activity of this peptide resides in the C-terminal fragment as prepro-TRH 178-199 and prepro-TRH 191-199 exhibited equally potent anti-depressant activity in the FST. These data suggest that the bioactive neuropeptide prepro-TRH 178-199 has antidepressant-like activity, and therefore, that endogenous prepro-TRH 178-199 contributes to the etiology or manifestation of depressive behavior.
- The Materials and Methods used in the experiments presented in this example are now described.
- Animals
- Adult male Sprague-Dawley or F1 Brown Norway/Fisher344 rats were used in these experiments presented herein. The rats were implanted with cannulae into the lateral ventricle as described previously (McGivern, 1997, J. Neurosci. 17:4886-4894). For purposes of the stereotaxic surgery, the animals were anesthetized (ketamine, 50 mg/kg/xylazine, 8 mg/kg) and were positioned in a stereotaxic head frame. At the end of behavioral testing, placements were verified by anesthetizing the animal with pentobarbital (45 mg/kg) and injecting 1 μl Trypan Blue staining solution through the cannulae just prior to decapitation. Oily data from animals with confirmed correct cannulae placement were included in the analysis.
- At least 7 days after the stereotaxic surgery, the animals were subjected to an initial 15 minute swim pretest, followed by a 5 minute swim test 24 hours later. The rats received two injections of sterile vehicle (1.5, 3.0, 6.0 or 12.0 μg/kg) or prepro-TRH 178-199 (0.6, 1.2., 2.3 and 4.6 nmol/kg) in a 2-3 μl volume between the pretest and the test: 15 minutes after the initial (pre)-swim and 5 minutes before the test swim. In the case of prepro-TRH 191-199 administration, the C-terminal peptide was administered in this sub-acute fashion at 2.2 μg/kg (2.3 nmol/kg) dose, which is equivalent to 6 μg/kg prepro-TRH 178-199.
- In the chronic treatment experiment, 6 μg/kg prepro-TRH 178-199 or sterile water vehicle was injected i.c.v. daily for 13 days. On the fourteenth day, a forced swim 15 minutes pretest was carried out followed by injection of prepro-TRH 178-199 or vehicle 15 minutes later. Twenty hours later, the animals received an i.c.v. injection of prepro-TRH 178-199 or an injection of vehicle and 5 minutes later they were tested in the 5 minute swim test.
- Forced swim test (FST)
- The forced swim test (FST) utilized a glass water tank 30 cm in diameter and 45 cm tall with the water level 15 cm from the top and the water temperature set at 25° C. The rats were individually placed in the water tank for 15 minutes. Twenty-four hours later, the rats were placed once more in the tank for a 5 minute session and the tests were videotaped The videotapes were scored by a trained observer who was blind to the treatment conditions and the time spent floating, and time spent swimming and climbing were recorded.
- The Results of the experiments presented in this example are now described.
- Sub-acute i.c.v. administration of various doses of prepro-TRH 178-199 to male Sprague-Dawley rats had a significant effect on floating behavior (F[4,29]=5.04, p=0.004, FIG. 1). The 1.5, 3.0 and 6.0 μg/kg doses significantly (p<0.05, respectively) reduced the floating time, while the 12.0 μg/kg dose had no effect, resulting in a bell-shape dose-response curve The time spent with active behavior was also significantly increased by prepro-TRH 178-199 (F[4,32]=3.27; p=0.025, FIG. 1). This increased activity reached significance (p<0.05) at the 3 and 6 μg/kg doses. When activity is divided into climbing and swimming, there were no significant differences between the treatment groups.
- The effect of sub-acute and chronic administration of 6 μg/kg prepro-TRH 178-199 on FST behaviors differed only by the potency of the effect (FIG. 2). Chronic administration consisted of daily administration of the peptide or vehicle into the lateral ventricle of adult male Sprague-Dawley rats, while sub-acute administration was essentially a repeat of the dose-response experiment (FIG. 1) at the 6 μg/kg dose. Floating time was decreased by the administration of the peptide regardless of the length of treatment (F[1,23]=32.4; p<0.001), but chronic administration decreased floating significantly more than did the acute treatment (F[1,23]=8.89; p=0.007, FIG. 2). Within activity measures, climbing increased significantly in response to i.c.v. administration of prepro-TRH 178-199 (F[1,23]=14.8; p=0.001), but there were no significant differences between chronic and sub-acute treatment effects on climbing. Time spent swimming was not altered by either sub-acute or chronic treatment.
- In addition, the structure-function relationship of prepro-TRH 178-199 was examined by comparing the effect of the C-terminal fragment (i.e., prepro-TRH 191-199) to that of the full-length peptide using F344XBN rats. Prepro-TRH 191-199 had effects very similar to those of the full-length peptide. Either 2.2 μg/kg prepro-TRH 191-199 or the equimolar dose of 6 μg/kg prepro-TRH 178-199 administered in the sub-acute mode, equally and significantly decreased floating (F[2,29]=9.7; p<0.001, FIG. 3) and increased climbing (F[2,29]=6.0; p<0.01), specifically climbing in the FST.
- The data disclosed herein examined the antidepressant-like actions of intracerebroventricularly administered prepro-TRH 178-199 by determining its dose-response characteristics in the forced swim test, a standard test of antidepressant drug efficacy. Furthermore, the antidepressant-efficacy of chronic administration of prepro-TRH 178-199 was also determined in the forced-swim test. Finally, the biological activity of the C-terminal fragment, prepro-TRH 191-199, was determined.
- The data disclosed herein demonstrate for the first time that i.c.v. administration of prepro-TRH 178-199 decreases immobility in the forced swim test in a dose-dependent fashion. The forced swim test is used for screening antidepressant activity where the potential drug, administered sub-acutely between the pretest and the test sessions, decrease the duration of the behavioral immobility. Therefore, the data disclosed herein indicate the potential antidepressive effect of prepro-TRH 178-199.
- Wistar Kyoto Strain of Rat
- To further elucidate the involvement of prepro-TRH 178-199 peptide in neuroendocrine as well as behavioral abnormalities, the expression of this peptide in a suggested animal model of depression, the Wistar Kyoto (WKY) strain of rat, was examined in the experiments described herein.
- It has been discovered in the present invention that WKY rats (Hanada et al., 1997, Neurosci. Abst. 23:119) that exhibit depressive behavior (Pare and Redei, 1993, J. Physiol. 87:229-238), exhibit a decreased density of fiber staining for prepro-TRH 178-199 immunoreactivity in the papastrial nucleus. This brain region is believed to be involved in depressive behavior. This finding supports the idea that CRIF affects depressive behavior.
- The experiments presented in this example may be summarized as follows.
- Immunohistochemical analysis of prepro-TRH 178-199 in Wistar and WKY rats demonstrated significant strain differences in prepro-TRH 178-199 in the paraventricular nucleus (PVN) of the hypothalamus and in the parastrial nucleus (PSN), but not other brain regions. In the PVN, WKY rats exhibited a significantly lower fiber density (p<0.002).
- The data disclosed herein suggest that altered levels of prepro-TRH 178-199 in WKY rats results in hyper-activity of the HPA axis and in hyper-emotional behavioral characteristics observed in this rat strain. Such data correlate with prepro-TRH 178-199 involvement in the regulation of the HPA axis and behavior.
- The Materials and Methods used in the experiments presented in this example are now described.
- Animals
- Young adult male Wistar (n=5) and WKY (n=5) rats were anesthetized with sodium pentobarbital (100 mg/kg) and the animals were perfused intracardiacally with 50 ml 0.9% saline followed by 200 ml 4% paraformaldehyde. The flow rate of the paraformaldehyde fixative was maintained at approximately 4 ml/minute. The brains were removed, postfixed in the same fixative for four hours, and then the brains were cryoprotected with 30% sucrose in 0.025 M PBS. Thirty-six micron thick brain sections were cut frozen on a sliding microtome and the sections were saved in 0.01 M PBS containing 0.1% Na Azide for later immunohistochemical processing.
- Immunohistochemistry (IHC)
- IHC was performed according to standard procedures (Bingaman et al., 1993, Neuroendocrinology 59:228-234). Briefly, sections were washed three times in 0.01 M PBS with 0.1% Triton-X (TX) for 15 minutes to rinse off the storage buffer. The sections were incubated in 0.3% H 2O2 in 0.01 M PBS/TX for 15 minutes and then rinsed 2X in PBS/TX for one hour at room temperature (RT). The sections were then incubated with a rabbit polyclonal antibody directed against prepro-TRH 178-199 (used at 1:10,000 dilution) overnight at RT. Following subsequent washes (3× in PBS/TX for 10 minutes each), the brain sections were incubated with biotinylated goat anti-rabbit IgG (Vector Laboratories, Inc.; 1,200 dilution) in PBS/TX with 2% NGS for two hours at RT. The sections were washed 3× for 10 minutes in PBS/TX and were processed according to the avidin-biotin-peroxidase procedure (ABC, Vector Laboratories, Burlingame, Calif.). Sections were then washed 2× in PBS for 15 minutes and rinsed in 0.1 M Tris-HCl buffer for 15 minutes. Subsequently, the sections were developed with 3,3′-diaminobenzidine (DAB, 0.5/mg/ml) in Tris buffer containing 0.03% H2O2 for two minutes. The reaction was stopped by washing the section twice in PBS for 10 minutes. The sections were mounted on Superfrost Plus slides and coverslipped using Permount (Fisher Scientific).
- Immunoreactive (IR) cell profiles and fiber densities were examined in the nucleus accumbens, lateral septum, medial amygdala, dorsomedial nucleus (DMN) of the hypothalamus, paraventricular nucleus (PVN) of the hypothalamus, and the parastrial nucleus (PSN) of Wistar and WKY rats. Among the regions examined, the PVN and the PSN exhibited significant differences in the level of prepro-TRH 178-199 peptide expression between strains. In the PVN, WKY rats had four times the number of IR cell body profiles (p<0.0005; FIG. 4A and FIG. 4B) of the Wistar rats. In the same region, however, WKY rats exhibited marginally lower density in nerve fibers when compared to Wistar rats (p<0.06; FIG. 4A and FIG. 4B). In the PSN, WKY rats exhibited significantly lower fiber density (p<0.002; FIG. 4C and FIG. 4D). The other brain regions examined, including the lateral septum, did not exhibit detectable differences in the expression of prepro-TRH 178-199 peptide between rat strains.
- The disclosures of each and every patent, patent application, and publication cited herein are hereby incorporated herein by reference in their entirety.
- While this invention has been disclosed with reference to specific embodiments, it is apparent that other embodiments and variations of this invention may be devised by others skilled in the art without departing from the true spirit and scope of the invention. The appended claims are intended to be construed to include all such embodiments and equivalent variations.
Claims (16)
1. A method of treating a depressive disorder in an animal, said method comprising administering to said animal a compound having CRIF biological activity.
2. The method of claim 1 , wherein said compound is a peptide.
3. The method of claim 1 , wherein said compound is a peptidometic.
4. The method of claim 1 , wherein said compound is in a therapeutically effective amount.
5. The method of claim 1 , wherein said compound is in a pharmaceutically acceptable carrier.
6. The method of claim 1 , wherein said animal is a human.
7. The method of claim 1 , wherein said compound is administered to said animal by a route selected from the group consisting of oral, parenteral, intranasal and central.
8. The method of claim 2 , wherein said peptide is a CRIF peptide comprising at least three amino acids positioned between the fourth and fifth TRH peptide on a prepro-TRH molecule.
9. The method of claim 8 , wherein said CRIF peptide comprises from three to twenty two amino acids positioned between the fourth and fifth TRH peptide on a prepro-TRH molecule.
10. The method of claim 9 , wherein said CRIF peptide comprises the sequence Phe-Ile-Asp-Pro-Glu-Leu-Gln-Arg-Ser-Trp-Glu-Glu-Lys-Glu-Gly-Glu-Gly-Val-Leu-Met-Pro-Glu.
11. The method of claim 9 , wherein said CRIF peptide comprises the sequence Phe-Ile-Asp-Pro-Glu-Leu-Gln-Arg-Ser-Trp-Glu-Glu-Thr-Glu-Gly-Glu-Glu-Gly-Gly-Leu-Met-Pro-Glu.
12. The method of claim 9 , wherein said CRIF peptide comprises the sequence Glu-Gly-Glu-Gly-Val-Leu-Met-Pro-Glu.
13. The method of claim 9 , wherein said CRIF peptide comprises the sequence Leu-Met-Pro-Glu.
14. The method of claim 8 , wherein said CRIF peptide comprises from three to twenty six amino acids positioned between the fourth and fifth TRH peptide on a prepro-TRH molecule.
15. The method of claim 14 , wherein said CRIF peptide comprises the sequence Leu-Ala-Asp-Pro Lys-Ala-Gln-Arg-Ser-Trp-Glu-Glu-Glu-Glu-Glu-Glu-Glu-Glu-Arg-Glu-Glu-Asp-Leu-Met-Pro-Glu.
16. The method of claim 1 , wherein said depressive disorder is selected from the group consisting of major depression, minor depression, bipolar disorders, disthymia, cyclothymia, and premenstrual syndrome.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/004,970 US20020128199A1 (en) | 1999-06-24 | 2001-12-03 | Anti-depressant effects of corticotropin release inhibiting factor |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14096299P | 1999-06-24 | 1999-06-24 | |
| US09/366,981 US6372713B1 (en) | 1995-09-08 | 1999-08-04 | Anti-depressant effects of corticotropin release inhibiting factor |
| US10/004,970 US20020128199A1 (en) | 1999-06-24 | 2001-12-03 | Anti-depressant effects of corticotropin release inhibiting factor |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/366,981 Division US6372713B1 (en) | 1995-09-08 | 1999-08-04 | Anti-depressant effects of corticotropin release inhibiting factor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020128199A1 true US20020128199A1 (en) | 2002-09-12 |
Family
ID=26838649
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/366,981 Expired - Fee Related US6372713B1 (en) | 1995-09-08 | 1999-08-04 | Anti-depressant effects of corticotropin release inhibiting factor |
| US10/004,970 Abandoned US20020128199A1 (en) | 1999-06-24 | 2001-12-03 | Anti-depressant effects of corticotropin release inhibiting factor |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/366,981 Expired - Fee Related US6372713B1 (en) | 1995-09-08 | 1999-08-04 | Anti-depressant effects of corticotropin release inhibiting factor |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US6372713B1 (en) |
| AU (1) | AU5332600A (en) |
| WO (1) | WO2001000222A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7094250B2 (en) * | 2001-08-01 | 2006-08-22 | Medlogic Global Limited | Multiple function medical adhesive applicator |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4160452A (en) * | 1977-04-07 | 1979-07-10 | Alza Corporation | Osmotic system having laminated wall comprising semipermeable lamina and microporous lamina |
| US4256108A (en) * | 1977-04-07 | 1981-03-17 | Alza Corporation | Microporous-semipermeable laminated osmotic system |
| US4265874A (en) * | 1980-04-25 | 1981-05-05 | Alza Corporation | Method of delivering drug with aid of effervescent activity generated in environment of use |
| US5334702A (en) * | 1991-03-25 | 1994-08-02 | University Of Illinois | Compositions which are immunologically crossreactive with antibodies and preparative methods therefor |
| US5830866A (en) * | 1994-09-12 | 1998-11-03 | The Trustees Of The University Of Pennsylvania | Corticotropin release inhibiting factor and methods of using same |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6039956A (en) * | 1994-09-12 | 2000-03-21 | Pennsylvania, Trustees Of The University Of, The | Corticotropin release inhibiting factor and methods of using same for treating behavioral symptoms in an anxiety disorder |
-
1999
- 1999-08-04 US US09/366,981 patent/US6372713B1/en not_active Expired - Fee Related
-
2000
- 2000-06-09 AU AU53326/00A patent/AU5332600A/en not_active Abandoned
- 2000-06-09 WO PCT/US2000/016107 patent/WO2001000222A1/en not_active Ceased
-
2001
- 2001-12-03 US US10/004,970 patent/US20020128199A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4160452A (en) * | 1977-04-07 | 1979-07-10 | Alza Corporation | Osmotic system having laminated wall comprising semipermeable lamina and microporous lamina |
| US4256108A (en) * | 1977-04-07 | 1981-03-17 | Alza Corporation | Microporous-semipermeable laminated osmotic system |
| US4265874A (en) * | 1980-04-25 | 1981-05-05 | Alza Corporation | Method of delivering drug with aid of effervescent activity generated in environment of use |
| US5334702A (en) * | 1991-03-25 | 1994-08-02 | University Of Illinois | Compositions which are immunologically crossreactive with antibodies and preparative methods therefor |
| US5830866A (en) * | 1994-09-12 | 1998-11-03 | The Trustees Of The University Of Pennsylvania | Corticotropin release inhibiting factor and methods of using same |
Also Published As
| Publication number | Publication date |
|---|---|
| AU5332600A (en) | 2001-01-31 |
| WO2001000222A1 (en) | 2001-01-04 |
| US6372713B1 (en) | 2002-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5604203A (en) | Analogs of peptide YY and uses thereof | |
| Gozes et al. | Pharmaceutical VIP: prospects and problems | |
| JPH11501281A (en) | Neuropeptide Y antagonists and agonists | |
| JPH06500103A (en) | Tachykinin agonists for the treatment of Alzheimer's disease | |
| CN1551780A (en) | Gastrointestinal hormone for preventing or treating overweight | |
| US20240218018A1 (en) | Compstatin Analogs with Increased Solubility and Improved Pharmacokinetic Properties | |
| Leone et al. | Melanocortins as innovative drugs for ischemic diseases and neurodegenerative disorders: established data and perspectives | |
| US20240391954A1 (en) | Mc4r agonist peptides | |
| CN109718363B (en) | Peptide for preventing, relieving or treating Alzheimer disease and application thereof | |
| US20070197445A1 (en) | Compounds for control of appetite | |
| US20120115791A1 (en) | Methods for Treating Immune Mediated Neurological Diseases | |
| CN119285744A (en) | Retro-inverso peptide | |
| US6682740B1 (en) | Peptides derived fram complement peptide C3a sequence and antiallergic compositions comprising them | |
| EP3503924B1 (en) | Bcl-w polypeptides and mimetics for treating or preventing chemotherapy-induced peripheral neuropathy and hearing loss | |
| US6372713B1 (en) | Anti-depressant effects of corticotropin release inhibiting factor | |
| KR102084341B1 (en) | Short synthetic peptides and uses thereof | |
| WO2002016408A2 (en) | Gpe analogs | |
| US20080221038A1 (en) | Compounds for Control of Appetite | |
| US20020137885A1 (en) | Corticotropin release inhibiting factor and methods of using same | |
| US10981956B2 (en) | Neuroprotective peptide | |
| JP2003513930A (en) | Peptides for the treatment of erectile dysfunction | |
| ES2291372T3 (en) | UROTENSIN-II AGONISTS AND ANTAGONISTS. | |
| US20240002437A1 (en) | Compositions and methods of treating inflammatory lung diseases | |
| HUT70176A (en) | Amylin antagonists and agonists | |
| US20190233487A1 (en) | Neuroprotective beta amyloid core peptides and peptidomimetic derivatives |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |