US20020125198A1 - Method for destroying chlorite in solution - Google Patents
Method for destroying chlorite in solution Download PDFInfo
- Publication number
- US20020125198A1 US20020125198A1 US09/753,891 US75389101A US2002125198A1 US 20020125198 A1 US20020125198 A1 US 20020125198A1 US 75389101 A US75389101 A US 75389101A US 2002125198 A1 US2002125198 A1 US 2002125198A1
- Authority
- US
- United States
- Prior art keywords
- chlorite
- ascorbic acid
- acid
- ion
- chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 title claims abstract description 118
- 229910001919 chlorite Inorganic materials 0.000 title claims abstract description 113
- 229910052619 chlorite group Inorganic materials 0.000 title claims abstract description 113
- 238000000034 method Methods 0.000 title claims abstract description 30
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims abstract description 165
- 235000010323 ascorbic acid Nutrition 0.000 claims abstract description 80
- 239000011668 ascorbic acid Substances 0.000 claims abstract description 80
- 229960005070 ascorbic acid Drugs 0.000 claims abstract description 76
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 23
- 230000008569 process Effects 0.000 claims abstract description 17
- 235000010350 erythorbic acid Nutrition 0.000 claims abstract description 14
- CIWBSHSKHKDKBQ-DUZGATOHSA-N D-araboascorbic acid Natural products OC[C@@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-DUZGATOHSA-N 0.000 claims abstract description 9
- 239000004318 erythorbic acid Substances 0.000 claims abstract description 9
- 229940026239 isoascorbic acid Drugs 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- 239000002253 acid Substances 0.000 claims description 27
- -1 chlorate ions Chemical class 0.000 claims description 13
- 239000003651 drinking water Substances 0.000 claims description 13
- XTEGARKTQYYJKE-UHFFFAOYSA-M chlorate Inorganic materials [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 claims description 6
- 230000006378 damage Effects 0.000 claims description 6
- 235000020188 drinking water Nutrition 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 239000000498 cooling water Substances 0.000 claims description 4
- 229940026231 erythorbate Drugs 0.000 claims description 4
- 231100000252 nontoxic Toxicity 0.000 claims description 2
- 230000003000 nontoxic effect Effects 0.000 claims description 2
- 229910052783 alkali metal Inorganic materials 0.000 claims 3
- 239000010842 industrial wastewater Substances 0.000 claims 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-M chlorite Chemical compound [O-]Cl=O QBWCMBCROVPCKQ-UHFFFAOYSA-M 0.000 description 41
- 229940005993 chlorite ion Drugs 0.000 description 40
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 40
- 238000006243 chemical reaction Methods 0.000 description 21
- 239000004155 Chlorine dioxide Substances 0.000 description 20
- 235000019398 chlorine dioxide Nutrition 0.000 description 20
- 150000007524 organic acids Chemical class 0.000 description 17
- 239000000243 solution Substances 0.000 description 16
- 229940093915 gynecological organic acid Drugs 0.000 description 13
- 235000005985 organic acids Nutrition 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 11
- 150000007513 acids Chemical class 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 8
- 235000012206 bottled water Nutrition 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- 229960002218 sodium chlorite Drugs 0.000 description 5
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 5
- 229940072107 ascorbate Drugs 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229920005610 lignin Polymers 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229940077239 chlorous acid Drugs 0.000 description 2
- 230000000249 desinfective effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical class CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- SBJKKFFYIZUCET-JLAZNSOCSA-N Dehydro-L-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(=O)C1=O SBJKKFFYIZUCET-JLAZNSOCSA-N 0.000 description 1
- SBJKKFFYIZUCET-UHFFFAOYSA-N Dehydroascorbic acid Natural products OCC(O)C1OC(=O)C(=O)C1=O SBJKKFFYIZUCET-UHFFFAOYSA-N 0.000 description 1
- 241000193901 Dreissena polymorpha Species 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- BIVUUOPIAYRCAP-UHFFFAOYSA-N aminoazanium;chloride Chemical compound Cl.NN BIVUUOPIAYRCAP-UHFFFAOYSA-N 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- JFBJUMZWZDHTIF-UHFFFAOYSA-N chlorine chlorite Inorganic materials ClOCl=O JFBJUMZWZDHTIF-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 235000020960 dehydroascorbic acid Nutrition 0.000 description 1
- 239000011615 dehydroascorbic acid Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003920 environmental process Methods 0.000 description 1
- 229960004887 ferric hydroxide Drugs 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- RGCLLPNLLBQHPF-HJWRWDBZSA-N phosphamidon Chemical compound CCN(CC)C(=O)C(\Cl)=C(/C)OP(=O)(OC)OC RGCLLPNLLBQHPF-HJWRWDBZSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 235000010352 sodium erythorbate Nutrition 0.000 description 1
- 239000004320 sodium erythorbate Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- RBWSWDPRDBEWCR-RKJRWTFHSA-N sodium;(2r)-2-[(2r)-3,4-dihydroxy-5-oxo-2h-furan-2-yl]-2-hydroxyethanolate Chemical compound [Na+].[O-]C[C@@H](O)[C@H]1OC(=O)C(O)=C1O RBWSWDPRDBEWCR-RKJRWTFHSA-N 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical class S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000010891 toxic waste Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/70—Treatment of water, waste water, or sewage by reduction
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/02—Non-contaminated water, e.g. for industrial water supply
- C02F2103/023—Water in cooling circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S210/00—Liquid purification or separation
- Y10S210/902—Materials removed
- Y10S210/911—Cumulative poison
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S210/00—Liquid purification or separation
- Y10S210/931—Zebra mussel mitigation or treatment
Definitions
- the herein disclosed invention finds applicability in the field of water purification and in the field of toxic waste removal; and specifically where residues of chlorite are found in aqueous solutions.
- Chlorite is toxic to several invertebrates which are important in the food chain. Chlorine dioxide (ClO 2 ) in disinfection and other applications results in chlorite ion in the water. When this water flows to a receiving stream or other body of water, chlorite must be reduced to very low levels to meet government regulations.
- Chlorite removal is difficult. Known chlorite removal chemistries are slow, produce sludge, require precise pH control or produce unwanted by-products.
- chlorite ion Current regulations in some locations require chlorite ion to be at or below 0.006 ppm in water entering receiving streams; in other locations the amount of chlorite entering the stream may be higher.
- chlorine dioxide ClO 2
- a total of 2.5-3.0 ppm ClO 2 is used. Approximately 50-80% of this ClO 2 is converted to chlorite ion. If 3.0 ppm is fed, 1.5-2.4 ppm of chlorite ion can be produced. This amount varies depending upon water conditions. Under certain conditions, depending on the contents of the water, less chlorite will be produced.
- any reducing chemistry for chlorite destruction must be able to reduce chlorite to chloride ion or some other innocuous species. Since most of these systems are once-through, the water velocity is such that any treatment must act quickly and completely to reduce chlorite before discharge. Therefore, any treatment must reduce chlorite levels to essentially immeasurable levels of innocuous species in a few seconds. The treatment itself must also be innocuous, in the event of over treatment.
- European Patent 0 196 075 describes the preparation of a contact lens cleaning solution wherein ascorbic acid is added to chlorite to accelerate the decomposition of chlorite. In decomposing the chlorite by the use of acid, chlorine dioxide is produced.
- the patent identifies the system as containing a chlorite salt in aqueous solution and an agent for accelerating the decomposition of chlorite.
- the accelerating agent can be an acid.
- ascorbic acid is listed as the acid accelerating agent.
- the inventive concept of the herein disclosed invention is distinct from that of European patent 0 196 075.
- the herein disclosed invention employs adequate ascorbic acid to completely inactive the chlorite ion and to convert it to chloride.
- the European patent does not.
- the formulation of 0 196 075 is designed to release free oxygen from chlorite.
- Two components are needed. They are (A) an aqueous solution chlorite, and (B) another solid component containing, (i) an agent for accelerating the decomposition of the chlorite to form free oxygen, selected from acids, organic acid salts, ion exchange resins, reducing agents and sugars, and (ii) an agent for consuming excess free oxygen from the decomposition of the chlorite after impurities have been removed.
- These agents act as a catalyst for accelerating the decomposition of the chlorite contained in the component A.
- the agents may function by releasing hydrogen ion, which leads to accelerated decomposition of the chlorite to form free oxygen.”
- the acid may be any one as long as it provides the function required in the present invention.
- Preferred examples of the acids include organic acids such as adipic, stearic, sebacic, oxalic, itaconic, edetic, ascorbic; and inorganic acids such as hydrochloric and sulfuric acids. It is more preferred to use tartaric and/or citric acid . . . ”
- European 0 207 633 does disclose both chlorite and ascorbic acid, however, this disclosure is so broad as to not read on your discovery.
- Chvapil et al in U.S. Pat. No. 5,104,660 teach an antimicrobial wound dressing which may comprise sodium chlorite and ascorbic acid along with many other components. There is no suggestion in this reference to use ascorbic acid to rid the chlorite ion from an aqueous solution.
- European Patent 0 315 185 teaches methods of polymerization in which chlorite and ascorbic acid may be reactants.
- Granular Activated Carbon and Reverse Osmosis Although partial or complete removal of chlorite is possible with these technologies, none of these technologies are practical for large industrial facilities when the throughput is on the orders of 100,000 gallons per minute.
- Ferrous Iron Chlorite ion can be reduced to Cl ⁇ by ferrous iron (Fe 2+ ), as shown in the following equation.
- chlorite ion is reduced to chloride ion, and the iron forms a ferric hydroxide floculent which ultimately settles(s) out in the water.
- Ondruss et al 4 investigated the kinetics and found that at pH ⁇ 2.0 and high ionic strength condition (2.00 M), the reaction proceeded at a rate that would be acceptable for potable water plants.
- ferrous iron may be acceptable for potable water facilities, because they have the capability of handling the sludge produced. In addition, their holding time permits a somewhat slower reaction to proceed. However, for large industrial once-through facilities, ferrous iron is much too slow and the sludge produced is generally environmentally unacceptable.
- An object of this invention is to reduce chlorite in aqueous solution to chloride.
- a further object of this invention is to reduce chlorite in solution safely and rapidly.
- a major object of this invention is to produce a method which will reduce chlorite in a manner which is innocuous.
- the inventor has found that ascorbate ion or its isomers react with chlorite in an unexpected manner.
- the invention herein disclosed is unique in recognizing that a specific amount of ascorbic acid is required to convert the chlorite ion, not to chlorous acid (HClO 2 ) which disassociates to form chlorine dioxide (ClO 2 ) but to chloride ion (Cl ⁇ ) which is innocuous in the receiving stream. For example, if the pH of an aqueous solution of chlorite ion is lowered to less than pH 7, by addition of acid, whether organic or inorganic, chlorite ion forms chlorous acid, HClO 2 , which then dissociates to form chlorine dioxide, ClO 2 .
- the rate of reaction is a function of pH, the lower the pH, the more rapid the reaction. From the work of the inventor, it is clear that every acid (e.g., the ones that would dissolve in water) depressed the pH to a greater or lesser extent. The rate at which ClO 2 formed was a function of the final pH.
- Ascorbic acid if used at less than about a ratio of 2 moles ascorbic acid to 1 mole chlorite ion, would end up forming ClO 2 , because of the pH depression. If sufficient ascorbic acid is used, no ClO 2 is formed. The chlorite ion reacts with ascorbic acid to form chloride ion. This reaction chemistry is novel and unexpected. The a preferred ratio of ascorbic acid to chlorite would be about 5.2 ppm ascorbic acid to 1 ppm of chlorite.
- the inventor observes that when chlorine dioxide is applied to a solution which is to be disinfected, that after the chlorine dioxide does its disinfecting, about 70%-90% of the time, chlorine dioxide reverts back to chlorite ion.
- the chlorite ion is not decomposed, but is activated to chlorine dioxide, which, after disinfecting, ends up as chlorite ion.
- the chlorite ion is still in solution.
- ascorbic acid is added to chlorite ion at the correct molar ratio, ascorbic acid ‘reduces’ the chlorite ion to chloride ion, which is innocuous in potable water.
- Chlorite ion is a problem in numerous applications, not the least of which is potable water disinfection.
- Ascorbic acid functions in two distinct ways. It will activate chlorite to form chlorine dioxide because of its acidity, but only after the ascorbate ion has reacted with chlorite. That is, if the chlorite is in excess, then once the ascorbic acid has consumed all the chlorite that it can, the pH depression created by the ascorbic acid will then activate the remaining chlorite to produce chlorine dioxide. If ascorbic acid is in excess, all of the chlorite is consumed, no chlorine dioxide is formed and the chlorite ion is converted to chloride. The inventor deems this to be a major discovery.
- the yellow color is used to measure ClO 2 directly.
- Hach a company that manufactures and sells analytical instruments and reagents for the water treatment industry, sells a spectrophotometer and has a published procedure for direct measurement of ClO 2 .
- the instrument measures the yellow color. Thus, if a yellow color is obtained, there is ClO 2 present. If no yellow color, this indicates that there is no ClO 2 present.
- Experiment 2 To determine whether the reaction between ascorbic acid and chlorite was pH dependent; that is, if the pH is low will the reaction slow down or if the pH is high will the reaction slow down. A 1000 ppm chlorite solution was added to 5000 ppm ascorbic acid. This solution was divided into three beakers. One beaker was left at the natural pH of 2.5 (no pH adjustment). The pH of the second and third beakers was adjusted to 7.0 and 8.2, respectively. A 1 ml aliquot of each was taken and ClO 2 and chlorite were tested using the Fisher Porter Amperometric titrator using the Aieta method. No chlorite was measured.
- the inventor contemplates employing 1.5-2.5 moles of ascorbic acid per mole of chlorite and more specifically 1.9 to 2.1 moles of ascorbic acid per mole of chlorite.
- the pH of the reaction can be pH 5-9.
- Ascorbic acid and its isomer erythorbic acid have been found to reduce chlorite ion directly to chloride ion, very rapidly and without formation of troublesome by-products or sludge, and the reaction is pH independent.
- Ascorbic acid its isomer erythorbic acid (ET), or the sodium salts (NaET) thereof react very rapidly in aqueous solution with chlorite ion, on the order of seconds, reducing it to chloride ion. No chlorate was produced.
- the reaction appears to be pH independent within the range of pH 5-9. It does not appear that, unlike other organic acids, it does not appear that any ClO 2 is produced.
- ClO 2 Use in wastewater to reduce or eliminate chlorite ion that results from ClO 2 disinfection.
- the ClO 2 can be applied to the wastewater or it can be applied to a cooling tower or other industrial or environmental process to disinfect or destroy unacceptable molecules, such as phenol.
- Potable Water This includes drinking water, and drinking water to be used for some end use such as in dialysis clinics, where chlorite needs to be zero.
- Plant Effluent This would include once-through cooling water, where biofilm control is targeted, or once through cooling water, where control of zebra mussels is desired. This would include wastewater effluent applications, where the water is disinfected prior to discharge and the chlorite ion needs to be eliminated or reduced to meet NPDES permits. This would include some cooling tower applications, where the water from the cooling tower is not immediately but ultimately discharged.
- the inventor contemplates testing water for chlorite and applying effective amounts of ascorbic acid or erythorbic acid or salts thereof to rid the water of chlorite.
- chlorite and chlorite ion have been used interchangeably as understood by those skilled in the art.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
- The herein disclosed invention finds applicability in the field of water purification and in the field of toxic waste removal; and specifically where residues of chlorite are found in aqueous solutions.
- There is a need in the field of water purification to remove chlorite ion from water prior to use or disposing of the water in order to make the water non-toxic. No good way of destroying chlorite ion has been found, until now. Methods have been found, which require pH adjustment, produce sludge, or have some other drawback. Ascorbic acid reaction with chlorite is pH independent from 2.5 to 8.2, probably higher, and destruction of chlorite is virtually instantaneous.
- Chlorite is toxic to several invertebrates which are important in the food chain. Chlorine dioxide (ClO 2) in disinfection and other applications results in chlorite ion in the water. When this water flows to a receiving stream or other body of water, chlorite must be reduced to very low levels to meet government regulations.
- Chlorite removal is difficult. Known chlorite removal chemistries are slow, produce sludge, require precise pH control or produce unwanted by-products.
- Current regulations in some locations require chlorite ion to be at or below 0.006 ppm in water entering receiving streams; in other locations the amount of chlorite entering the stream may be higher. When chlorine dioxide (ClO 2) is used at normal usage levels, typically 0.5-1.0 ppm above demand (which can be higher with 2.0 ppm being typical), a total of 2.5-3.0 ppm ClO2 is used. Approximately 50-80% of this ClO2 is converted to chlorite ion. If 3.0 ppm is fed, 1.5-2.4 ppm of chlorite ion can be produced. This amount varies depending upon water conditions. Under certain conditions, depending on the contents of the water, less chlorite will be produced. Therefore, to use ClO2 for a given application, any reducing chemistry for chlorite destruction must be able to reduce chlorite to chloride ion or some other innocuous species. Since most of these systems are once-through, the water velocity is such that any treatment must act quickly and completely to reduce chlorite before discharge. Therefore, any treatment must reduce chlorite levels to essentially immeasurable levels of innocuous species in a few seconds. The treatment itself must also be innocuous, in the event of over treatment.
- Review of the Prior Art
-
European Patent 0 196 075 -
European Patent 0 196 075 describes the preparation of a contact lens cleaning solution wherein ascorbic acid is added to chlorite to accelerate the decomposition of chlorite. In decomposing the chlorite by the use of acid, chlorine dioxide is produced. On page 2 the patent identifies the system as containing a chlorite salt in aqueous solution and an agent for accelerating the decomposition of chlorite. The accelerating agent can be an acid. And on page 5, next to the last line, ascorbic acid is listed as the acid accelerating agent. Note also claim 1, taken with claim 5, identify the agent for accelerating the decomposition of chlorite to form free oxygen as ascorbic acid. The inventive concept of the herein disclosed invention is distinct from that ofEuropean patent 0 196 075. The herein disclosed invention employs adequate ascorbic acid to completely inactive the chlorite ion and to convert it to chloride. The European patent does not. - Further note that European 0 196 075, page 19, Table 3, discloses adding 0.01 g of ascorbic acid to a 0.06 g solution of sodium chlorite. These amounts are opposite those used in this invention. The herein disclosed invention for example uses approximately five parts ascorbic acid to destroy one part chlorite.
- The formulation of 0 196 075 is designed to release free oxygen from chlorite. Two components are needed. They are (A) an aqueous solution chlorite, and (B) another solid component containing, (i) an agent for accelerating the decomposition of the chlorite to form free oxygen, selected from acids, organic acid salts, ion exchange resins, reducing agents and sugars, and (ii) an agent for consuming excess free oxygen from the decomposition of the chlorite after impurities have been removed.
- The patent refers ‘forming free oxygen’ appears to actually refer to the formation of ClO 2. This is the reason acids, organic acid salts, ion exchange resins and sugars are used.
- On page 5, paragraph 4, the patent states:
- “These agents (acids, organic acid salts, ion exchange resins, reducing agents, and sugars) act as a catalyst for accelerating the decomposition of the chlorite contained in the component A. The agents may function by releasing hydrogen ion, which leads to accelerated decomposition of the chlorite to form free oxygen.”
- In paragraph 6 of the same page, they state,
- “The acid may be any one as long as it provides the function required in the present invention. Preferred examples of the acids include organic acids such as adipic, stearic, sebacic, oxalic, itaconic, edetic, ascorbic; and inorganic acids such as hydrochloric and sulfuric acids. It is more preferred to use tartaric and/or citric acid . . . ”
- The inclusion of mineral acids and citric as the preferred embodiment indicates that it is indeed the formation of chlorine dioxide from chlorite that is being referred to here. Just as found in many other patents, when the inventors find an organic acid that appears to be operative, they include other organic acids.
- Further in the text, on page 19, in Table 3, a series of products that include chlorite activated by various organic acids. This indicates that the European patent considered ascorbic acid to be just another organic acid. It does not appear that ascorbic acid was recognized as having special properties and considered to be a distinct acid, unlike other organic acids in its effect.
- Based on a review of this patent, it appears that what the authors refer to as decomposition of chlorite to form free oxygen is actually activating chlorite to form ClO 2. There simply is no recognition in European 0 196 075 of the special reactive nature of ascorbic acid with chlorite to form chloride.
- On the other hand, the herein disclosed invention requires substantial amounts of ascorbic acid to destroy the chlorite ion and convert it to chloride. Amounts which are beyond the parameters of the European patent, note as follows: The herein disclosed invention employs approximately 5 ppm ascorbic acid to consume 1 ppm of chlorite ion. This ratio of components is distinct and just the opposite of that of European 0 196 075 which in Table 3, page 19, uses 0.02×3=0.06 g of sodium chlorite with 0.01 g of ascorbic acid. It takes about approximately 5 ppm of ascorbic acid to consume 1 ppm of chlorite ion. The reaction is immediate, pH independent, and results in the formation of the chloride ion. No chlorine dioxide is formed as long as ascorbic acid is in a slight excess.
- So far as the Opflow, American Water Works Association Vol. 24, No. 12, December 1998, pages 1, 4 and 5 publication is concerned, the reference does not speak of deactivating chlorite. The reference speaks only of reducing chlorine or inactivating “chlorine level”. This is distinct from reducing chlorite levels. Nor are the herein disclosed critical proportions of reactants set forth.
-
European 0 207 633 does disclose both chlorite and ascorbic acid, however, this disclosure is so broad as to not read on your discovery. - Less pertinent references are noted:
- Griese, et al—Chemical Abstracts Vol. 115:166,2229 discloses the use of sodium thiosulfate and sulfites to eliminate chlorine dioxide and chlorite ions, residuals, from drinking water.
- May U.S. Pat. No. 4,851,130 teaches the use of erythorbate and ascorbate for oxygen removal.
- Reynolds in U.S. Pat. No. 4,609,472 teaches the removal of chlorate ions from brine using acid and hydrazine hydrochloride.
- Chvapil et al in U.S. Pat. No. 5,104,660 teach an antimicrobial wound dressing which may comprise sodium chlorite and ascorbic acid along with many other components. There is no suggestion in this reference to use ascorbic acid to rid the chlorite ion from an aqueous solution.
-
European Patent 0 315 185 teaches methods of polymerization in which chlorite and ascorbic acid may be reactants. - Tell et al in
European 0 107 633 teaches sterilizing compositions in which ascorbic acid and chlorite may be reactants, however, this reference does not teach the inventive proportion of ingredients or method of use as disclosed herein. - Peterka—Opflow Vol. 24 No. 12, December 1998, pages 1, 4 and 5 teaches ascorbic acid to neutralize chlorine in water. The reference does not teach chlorite in solution or the use of ascorbic acid to destroy chlorite.
- Review of Existing Chlorite Reduction Methodologies
- Granular Activated Carbon and Reverse Osmosis: Although partial or complete removal of chlorite is possible with these technologies, none of these technologies are practical for large industrial facilities when the throughput is on the orders of 100,000 gallons per minute.
- Sulfur Dioxide and Sulfite Ion: SO 2 and SO3 2− have been shown to remove ClO2 − by Gordon.1 In the pH range 4.0 to 7.5, the reaction is shown below:
- 2 SO3 2−+ClO2 −>2 SO4 2−+Cl−
-
- In the presence of oxygen and at elevated pHs, the reaction chemistry deviated from the equation shown above.
- Dixon et al and Griese et al 2, 3 observed that the presence of oxygen in the reduction of chlorite with SO2 or SO3 2− resulted in the formation of chlorate. They suggested that the use of sulfur-based reducing agents for removal of chlorite in potable water was not a viable option.
- The reaction of chlorite with SO 2 and SO3 2− is complete in less that a minute below a pH of about 5.0.
- However, for large industrial once-through applications, where 100,000 gpm through-put is common, it is not feasible nor environmentally acceptable in many cases to add sufficient acid to depress the pH of the water to <5.0 to get rapid chlorite destruction.
- Ferrous Iron: Chlorite ion can be reduced to Cl − by ferrous iron (Fe2+), as shown in the following equation.
- 4 Fe2++ClO2 −+10 H2O<>4Fe(OH)3(s)+Cl−=8H+
- In this reaction, chlorite ion is reduced to chloride ion, and the iron forms a ferric hydroxide floculent which ultimately settles(s) out in the water.
- Ondruss et al 4 investigated the kinetics and found that at pH<2.0 and high ionic strength condition (2.00 M), the reaction proceeded at a rate that would be acceptable for potable water plants.
- Ferrous iron (Fe 2+) has been used with good results by several potable water facilities.5
- The use of ferrous iron may be acceptable for potable water facilities, because they have the capability of handling the sludge produced. In addition, their holding time permits a somewhat slower reaction to proceed. However, for large industrial once-through facilities, ferrous iron is much too slow and the sludge produced is generally environmentally unacceptable.
- 1. Ozawa, T., and Kwan, T., “Detoxification of chlorine dioxide (ClO 2) by Ascorbic Acid in Aqueous Solutions: ESR Studies,” Wat. Res 21 (2), 229 (1987) describes problems with ClO2 in potable water. The addition of ascorbic acid to a solution of ClO2 is proposed to produce the following:
- ClO2+AsA>ClO2 −+AFR
- AFR>AsA+DasA
- where AsA=ascorbic acid, AFR—ascorbic acid free radical, and DasA=dehydroascorbic acid.
- No mention is made in this article of ascorbic acid reacting with chlorite.
- 2. Collings, G., Yokoyama, M., and Bergen, W., “Lignin as Determined by Oxidation with Sodium Chlorite and a Comparison with Permanganate Lignin,” J. Dairy Sci, 61(8), 1156(1978). Sodium chlorite oxidation is a technique of plant research for 30 years, involves taking some plant residue and adding acidified chlorite to the sample. The oxidation reaction is stopped by adding ascorbic acid. However, no mention of chemistry of exactly what is stopped. The implication is that chlorine dioxide oxidation is what is causing lignin removal, and ascorbic acid stops that reaction.
- In summary, for large industrial facilities, no good, rapid, environmentally friendly method for reducing chlorite ion has been found.
- None of the prior art teaches the use of ascorbic acid in amounts which will convert chlorite in solution to chloride ion.
- An object of this invention is to reduce chlorite in aqueous solution to chloride.
- A further object of this invention is to reduce chlorite in solution safely and rapidly.
- A major object of this invention is to produce a method which will reduce chlorite in a manner which is innocuous.
- The inventor has found that ascorbate ion or its isomers react with chlorite in an unexpected manner. The invention herein disclosed is unique in recognizing that a specific amount of ascorbic acid is required to convert the chlorite ion, not to chlorous acid (HClO 2) which disassociates to form chlorine dioxide (ClO2) but to chloride ion (Cl−) which is innocuous in the receiving stream. For example, if the pH of an aqueous solution of chlorite ion is lowered to less than pH 7, by addition of acid, whether organic or inorganic, chlorite ion forms chlorous acid, HClO2, which then dissociates to form chlorine dioxide, ClO2. The rate of reaction is a function of pH, the lower the pH, the more rapid the reaction. From the work of the inventor, it is clear that every acid (e.g., the ones that would dissolve in water) depressed the pH to a greater or lesser extent. The rate at which ClO2 formed was a function of the final pH.
- Ascorbic acid, if used at less than about a ratio of 2 moles ascorbic acid to 1 mole chlorite ion, would end up forming ClO 2, because of the pH depression. If sufficient ascorbic acid is used, no ClO2 is formed. The chlorite ion reacts with ascorbic acid to form chloride ion. This reaction chemistry is novel and unexpected. The a preferred ratio of ascorbic acid to chlorite would be about 5.2 ppm ascorbic acid to 1 ppm of chlorite.
- The inventor observes that when chlorine dioxide is applied to a solution which is to be disinfected, that after the chlorine dioxide does its disinfecting, about 70%-90% of the time, chlorine dioxide reverts back to chlorite ion. The chlorite ion is not decomposed, but is activated to chlorine dioxide, which, after disinfecting, ends up as chlorite ion. The chlorite ion is still in solution. When ascorbic acid is added to chlorite ion at the correct molar ratio, ascorbic acid ‘reduces’ the chlorite ion to chloride ion, which is innocuous in potable water.
- Chlorite ion is a problem in numerous applications, not the least of which is potable water disinfection.
- In many instances throughout the specification, approximate ratios or amounts of ascorbic acid to destroy chlorite have been set forth. Tests done in the laboratory have defined the stoichiometry of chlorite destruction by ascorbic/erythorbic acids. The reaction requires approximately 2 moles of ascorbic (or its isomer erythorbic) acid per mole of chlorite ion. In terms of ppm, it takes about 5.2 ppm ascorbic acid (or erythorbic acid) to destroy 1 ppm of chlorite ion.
- The inventor has performed tests which clearly show that all of the acids activate chlorite to form chlorine dioxide simply because acid functions to lower pH. Acids donate hydrogen ions resulting in the activation of chlorite to produce chlorine dioxide. The fact that some acids depress the pH more than others means that more or less chlorine dioxide is produced.
- Ascorbic acid, on the other hand, functions in two distinct ways. It will activate chlorite to form chlorine dioxide because of its acidity, but only after the ascorbate ion has reacted with chlorite. That is, if the chlorite is in excess, then once the ascorbic acid has consumed all the chlorite that it can, the pH depression created by the ascorbic acid will then activate the remaining chlorite to produce chlorine dioxide. If ascorbic acid is in excess, all of the chlorite is consumed, no chlorine dioxide is formed and the chlorite ion is converted to chloride. The inventor deems this to be a major discovery.
- Testing of Various Organic Acids for Activation of Chlorite
- Various organic acids were tested for reaction with chlorite ion. The acids generally activated ClO 2 to ClO2. Of the acids tested, only ascorbic acid consumed chlorite ion. See summary which follows.
- Purpose: The purpose of this experiment was to test various organic acids listed in
European Patent 0 196 075 for activation or destruction of chlorite ion. - Experiment 1: To several 1% chlorite solutions (1 ml of 25% into 24 mls of water), various organic acids were dissolved. The ClO 2 development after several minutes was noted. The results are shown in the following table:
Organic Acid Activation of Chlorite Rxn time ClO2 measured Acid Gms added (min) (as Cl2) Tartaric 0.64 5 239 Oxalic 0.53 3 628 Adipic 0.79 8 73 Citric 0.77 5 192 Itaconic 0.72 9 105 Ascorbic 0.68 8 >770 - Note the significantly larger amount of chlorine dioxide produced by ascorbic acid.
- The unusual results set forth in the chart when ascorbic acid was added, led to a repeat of the experiment.
- The experiment was repeated, with the exception that >2 gms of each acid was added to a 1% chlorite solution (1 ml of 25% chlorite into 24 ml of water). These results are shown below:
Organic Acid Activation of Chlorite Yellow color form Acid Gms added (ClO2 formed) Tartaric 2.42 Y Oxalic 2.33 Y Adipic 2.00 Y Citric 2.21 Y Itaconic 2.49 Y Ascorbic 2.91 N - Yellow (Y) color formed after a minute or so, the intensity varying with the acid. No (N) yellow color formed with ascorbic acid even after ½ hour. The yellow color is used to measure ClO 2 directly. Hach, a company that manufactures and sells analytical instruments and reagents for the water treatment industry, sells a spectrophotometer and has a published procedure for direct measurement of ClO2. The instrument measures the yellow color. Thus, if a yellow color is obtained, there is ClO2 present. If no yellow color, this indicates that there is no ClO2 present.
- Stearic acid, although mentioned in the European patent, was insoluble in water and not tested. Hydrochloric acid is known to activate chlorite and was eliminated from these tests.
- The inventor observes that if ascorbic acid is added at a molar ratio of <2:1, as it was in the first Experiment 1 and the buffering of the water is sufficiently low that a pH reduction occurs, then the pH lowering by the ascorbic acid will be sufficient to convert the unreacted chlorite to ClO 2. If ascorbic acid is added at a molar ratio of >2:1, than no ClO2 is formed, thus illustrating that ascorbic acid reacts differently with chlorite than does any of the other organic acids in the European patent.
- Conclusions: It is clear from these tests that all of the organic acids will, to a greater or lesser degree, activate chlorite to form ClO 2, however, they do not destroy chlorite. Ascorbic acid acts differently than any of the other organic acids, it destroys chlorite. That is, if sufficient ascorbic acid is used, the chlorite is destroyed, reduced to chloride, by ascorbic acid or ascorbate. The other organic acids just depress the pH and cause the ultimate formation of the yellow color (ClO2).
- Experiment 2: To determine whether the reaction between ascorbic acid and chlorite was pH dependent; that is, if the pH is low will the reaction slow down or if the pH is high will the reaction slow down. A 1000 ppm chlorite solution was added to 5000 ppm ascorbic acid. This solution was divided into three beakers. One beaker was left at the natural pH of 2.5 (no pH adjustment). The pH of the second and third beakers was adjusted to 7.0 and 8.2, respectively. A 1 ml aliquot of each was taken and ClO 2 and chlorite were tested using the Fisher Porter Amperometric titrator using the Aieta method. No chlorite was measured.
- Conclusions: Based on experiments performed, the inventor concludes that the reaction of ascorbic acid with chlorite ion is very rapid and pH independent over a pH range of 2.6-8.2.
- Broadly considered in the process of chlorite removal, the inventor contemplates employing 1.5-2.5 moles of ascorbic acid per mole of chlorite and more specifically 1.9 to 2.1 moles of ascorbic acid per mole of chlorite. The pH of the reaction can be pH 5-9.
- Ascorbic acid and its isomer erythorbic acid have been found to reduce chlorite ion directly to chloride ion, very rapidly and without formation of troublesome by-products or sludge, and the reaction is pH independent.
- Ascorbic acid, its isomer erythorbic acid (ET), or the sodium salts (NaET) thereof react very rapidly in aqueous solution with chlorite ion, on the order of seconds, reducing it to chloride ion. No chlorate was produced. The reaction appears to be pH independent within the range of pH 5-9. It does not appear that, unlike other organic acids, it does not appear that any ClO 2 is produced.
- In a preliminary investigation, a 0.25% solution of ClO 2 − was made by diluting 10 mls of 25% ClO2 − to 1000 mls. Then, a 0.2% solution of sodium erythorbate (henceforth NaET) was made by dissolving 1.0 g into 100 mls distilled H2O. A 1.0 ml aliquot of the ca. 2500 ppm chlorite solution was taken and added to 150 mls DI water. The sample was tested for chlorite using the amp titrator.
- The procedure was repeated except that 10 drops of the NaET was added. The solution was then tested using the amp titrator. This procedure was repeated using 20, and 30 drops of NaET solution. A plot of the results are shown in FIG. 1 which describes preliminary studies wherein the chlorite ion was reduced with erythorbate.
- This preliminary experiment was intended to investigate whether the NaET would be operative. The experiment was repeated with the better known isomer of erythorbic acid, ascorbic acid with similar results. The experiment was repeated under more precisely controlled conditions, and the results indicated that 1549 ppm NaClO 2 could be reduced to chloride by 5320 ppm ascorbic acid. This is approximately 3.5 ppm ascorbic (or erythorbic) acid to 1 ppm NaClO2. The preliminary experiments were refined and it was found that stoichiometric ratios of ascorbic acid to chlorite is approximately 5.2 to 1.
- The following lists several applications which would benefit greatly from the herein disclosed technology:
- Use in potable water to reduce chlorite to levels that meet EPA requirements.
- Use in emergency drinking water to insure that high chlorite levels are reduced or eliminated.
- Use in once-through cooling water systems. ClO 2 is used to control micro and macrofouling. The chlorite ion that results from this treatment is generally above the discharge limits placed by the EPA. Ascorbic acid, correctly added, could effectively reduce or eliminate the chlorite ion in the receiving waters.
- Use in wastewater to reduce or eliminate chlorite ion that results from ClO 2 disinfection. The ClO2 can be applied to the wastewater or it can be applied to a cooling tower or other industrial or environmental process to disinfect or destroy unacceptable molecules, such as phenol.
- Potable Water: This includes drinking water, and drinking water to be used for some end use such as in dialysis clinics, where chlorite needs to be zero.
- Plant Effluent: This would include once-through cooling water, where biofilm control is targeted, or once through cooling water, where control of zebra mussels is desired. This would include wastewater effluent applications, where the water is disinfected prior to discharge and the chlorite ion needs to be eliminated or reduced to meet NPDES permits. This would include some cooling tower applications, where the water from the cooling tower is not immediately but ultimately discharged.
- When used in the field, the inventor contemplates testing water for chlorite and applying effective amounts of ascorbic acid or erythorbic acid or salts thereof to rid the water of chlorite.
- In this application, the expression chlorite and chlorite ion have been used interchangeably as understood by those skilled in the art.
- Obviously, many modifications may be made without departing from the basic spirit of the present invention. Accordingly, it will be appreciated by those skilled in the art that within the scope of the appended claims, the invention may be practiced other than has been specifically described herein.
Claims (13)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/753,891 US6440314B1 (en) | 2001-01-03 | 2001-01-03 | Method for destroying chlorite in solution |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/753,891 US6440314B1 (en) | 2001-01-03 | 2001-01-03 | Method for destroying chlorite in solution |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US6440314B1 US6440314B1 (en) | 2002-08-27 |
| US20020125198A1 true US20020125198A1 (en) | 2002-09-12 |
Family
ID=25032582
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/753,891 Expired - Fee Related US6440314B1 (en) | 2001-01-03 | 2001-01-03 | Method for destroying chlorite in solution |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US6440314B1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1739422A1 (en) * | 2005-07-01 | 2007-01-03 | Société des Eaux de Marseille | Method of dechlorinating water streams in particular upstream of a biological pollution detector |
| US20070000846A1 (en) * | 2005-07-01 | 2007-01-04 | Societe Des Eaux De Marseille | Method of dechlorination treatment of flowing water, in particular upstream of a biological pollution detector |
| US20070080116A1 (en) * | 2005-10-11 | 2007-04-12 | Altivia Corporation | Method for chlorite removal |
| US20110139724A1 (en) * | 2008-08-29 | 2011-06-16 | Siemens Water Technologies Corp. | Composition and Method for Reducing Chlorite in Water |
| WO2014145352A1 (en) * | 2013-03-15 | 2014-09-18 | Subtech Industries Llc | Water with improved transdermal and cellular delivery |
| CN104304648A (en) * | 2014-10-21 | 2015-01-28 | 衡山卓越生物科技有限责任公司 | Method for converting kitchen waste as well as waste animals and plants into yeast protein feed |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060006361A1 (en) * | 2004-07-08 | 2006-01-12 | Joseph Callerame | Clathrate of chlorine dioxide |
| US7625533B2 (en) * | 2004-11-10 | 2009-12-01 | The United States Of America As Represented By The Secretary Of The Army | Portable chemical sterilizer |
| US8337717B2 (en) * | 2004-11-10 | 2012-12-25 | The United States Of America As Represented By The Secretary Of The Army | Process for producing aqueous chlorine dioxide for surface disinfection and decontamination |
| US7883640B2 (en) * | 2004-11-10 | 2011-02-08 | The United States Of America As Represented By The Secretary Of The Army | Chemical combination for generation of disinfectant and heat |
| GB2430881B (en) * | 2005-10-06 | 2010-10-13 | Ntnu Technology Transfer As | Oligoelectrolyte polyols for the treatment of mucosal hyperviscosity |
| GB0707096D0 (en) * | 2007-04-12 | 2007-05-23 | Ntnu Technology Transfer As | Method |
| US20080292507A1 (en) * | 2007-05-21 | 2008-11-27 | Tbs Technologies, Llc | Apparatus for the generation of gases |
| GB0904941D0 (en) | 2009-03-23 | 2009-05-06 | Ntnu Technology Transfer As | Composition |
| US9517934B2 (en) | 2013-03-14 | 2016-12-13 | The United States Of America As Represented By The Secretary Of The Army | Process for the generation of chlorine dioxide |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3669528D1 (en) | 1985-03-26 | 1990-04-19 | Toray Industries | CLEANING SYSTEM FOR CONTACT LENSES AND METHOD FOR CLEANING THEM. |
| US4609472A (en) | 1985-03-29 | 1986-09-02 | Olin Corporation | Process for removal of alkali metal chlorate from alkali metal chloride brines |
| US4690772A (en) | 1985-06-03 | 1987-09-01 | National Medical Care | Sterilant compositions |
| JPH07119264B2 (en) | 1987-11-06 | 1995-12-20 | ユニ・チャーム株式会社 | Method for producing water-absorbent composite |
| US4851130A (en) | 1988-11-30 | 1989-07-25 | Pfizer Inc. | Oxygen removal with carbon catalyzed erythorbate or ascorbate |
| US5104660A (en) | 1989-11-21 | 1992-04-14 | Bruce A. Barber | Method of preparing an antimicrobial wound dressing |
| US5167777A (en) * | 1990-10-30 | 1992-12-01 | Olin Corporation | Process and apparatus for the removal of oxyhalide species from aqueous solutions |
| NL1001583C2 (en) * | 1995-11-07 | 1997-05-13 | Akzo Nobel Nv | Conversion of chlorite into chloride and oxygen. |
-
2001
- 2001-01-03 US US09/753,891 patent/US6440314B1/en not_active Expired - Fee Related
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1739422A1 (en) * | 2005-07-01 | 2007-01-03 | Société des Eaux de Marseille | Method of dechlorinating water streams in particular upstream of a biological pollution detector |
| US20070000846A1 (en) * | 2005-07-01 | 2007-01-04 | Societe Des Eaux De Marseille | Method of dechlorination treatment of flowing water, in particular upstream of a biological pollution detector |
| FR2887869A1 (en) * | 2005-07-01 | 2007-01-05 | Eaux De Marseille Sa Soc D | PROCESS FOR THE TREATMENT OF FLOW WATER DECHLORATION, IN PARTICULAR BEFORE A BIOLOGICAL POLLUTION DETECTOR |
| US7531360B2 (en) | 2005-07-01 | 2009-05-12 | Societe Des Eaux De Marseille | Method of dechlorination treatment of flowing water, in particular upstream of a biological pollution detector |
| US20070080116A1 (en) * | 2005-10-11 | 2007-04-12 | Altivia Corporation | Method for chlorite removal |
| US7384565B2 (en) * | 2005-10-11 | 2008-06-10 | Siemens Water Technologies Corp. | Method for chlorite removal |
| US20110139724A1 (en) * | 2008-08-29 | 2011-06-16 | Siemens Water Technologies Corp. | Composition and Method for Reducing Chlorite in Water |
| WO2014145352A1 (en) * | 2013-03-15 | 2014-09-18 | Subtech Industries Llc | Water with improved transdermal and cellular delivery |
| CN104304648A (en) * | 2014-10-21 | 2015-01-28 | 衡山卓越生物科技有限责任公司 | Method for converting kitchen waste as well as waste animals and plants into yeast protein feed |
Also Published As
| Publication number | Publication date |
|---|---|
| US6440314B1 (en) | 2002-08-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6440314B1 (en) | Method for destroying chlorite in solution | |
| Barbusiński et al. | Use of Fenton’s reagent for removal of pesticides from industrial wastewater | |
| CA2065343C (en) | Process for disinfecting hard surfaces with chlorine dioxide | |
| US5120452A (en) | Process for purifying wastewater with hypochlorous acid | |
| US4340489A (en) | Wastewater treatment process with pH adjustment | |
| US5264136A (en) | Methods for generating residual disinfectants during the ozonization of water | |
| Lim et al. | N-nitrosodimethylamine (NDMA) formation during ozonation of N, N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control | |
| Echigo et al. | Contribution of brominated organic disinfection by-products to the mutagenicity of drinking water | |
| Mutke et al. | Oxidation of the nitrogen-free phosphonate antiscalants HEDP and PBTC in reverse osmosis concentrates: Reaction kinetics and degradation rate | |
| McCurry et al. | Control of nitrosamines during non-potable and de facto wastewater reuse with medium pressure ultraviolet light and preformed monochloramine | |
| US5039423A (en) | Process for purification of water | |
| Walsh et al. | Biostability and disinfectant by-product formation in drinking water blended with UF-treated filter backwash water | |
| Zheng et al. | Formation of free cyanide and cyanogen chloride from chloramination of publicly owned treatment works secondary effluent: Laboratory study with model compounds | |
| Bedner et al. | Making chlorine greener: investigation of alternatives to sulfite for dechlorination | |
| US7384565B2 (en) | Method for chlorite removal | |
| Warf | Chlorine dioxide and the small drinking water system | |
| Kociołek-Balawejder | A copolymer with N-chlorosulfonamide pendant groups as oxidant for residual sulfides | |
| RU2080304C1 (en) | Process for decontamination of hypochlorite solutions | |
| KR100433048B1 (en) | Total Nitrogen Eliminator Composition | |
| Noe | Assessing the Effect of Pre-Oxidation at Different Stages of Water Treatment to Limit N-Nitrosodimethylamine (NDMA) Formation | |
| EP0541637B1 (en) | A process for purifying impotable water and wastewater with hypochlorous acid | |
| Ren | Chlorine demand reduction in source water by chlorine dioxide treatment | |
| GB2084560A (en) | Disinfection of Aqueous Media | |
| Wang | Selected Mechanistic Aspects of Viral Inactivation by Peracetic Acid | |
| GB2057417A (en) | Disinfection of aqueous media |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: VULCAN CHEMICAL TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIMPSON, GREGORY D.;REEL/FRAME:011422/0179 Effective date: 20001213 |
|
| AS | Assignment |
Owner name: VULCAN MATERIALS COMPANY, ALABAMA Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:BHJ CHEMICAL COMPANY, LLC;REEL/FRAME:016345/0099 Effective date: 20050715 Owner name: BHJ CHEMICAL COMPANY, LLC, ALABAMA Free format text: MERGER;ASSIGNOR:VULCAN CHEMICAL TECHNOLOGIES, INC.;REEL/FRAME:016345/0090 Effective date: 20031130 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: BASIC CHEMICALS COMPANY, LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VULCAN MATERIALS COMPANY;VULCAN CHLORALKALI, LLC;REEL/FRAME:017730/0078 Effective date: 20050607 |
|
| AS | Assignment |
Owner name: OCCIDENTAL CHEMICAL CORPORATION, TEXAS Free format text: MERGER;ASSIGNOR:BASIC CHEMICALS COMPANY, LLC;REEL/FRAME:019850/0911 Effective date: 20061213 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100827 |