US20020099016A1 - Antisecretory factor peptides regulating pathological permeability changes - Google Patents
Antisecretory factor peptides regulating pathological permeability changes Download PDFInfo
- Publication number
- US20020099016A1 US20020099016A1 US09/991,792 US99179201A US2002099016A1 US 20020099016 A1 US20020099016 A1 US 20020099016A1 US 99179201 A US99179201 A US 99179201A US 2002099016 A1 US2002099016 A1 US 2002099016A1
- Authority
- US
- United States
- Prior art keywords
- protein
- amino acids
- ala
- seq
- raf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010038288 antisecretory factor Proteins 0.000 title abstract description 50
- 230000001575 pathological effect Effects 0.000 title abstract description 11
- 230000035699 permeability Effects 0.000 title description 7
- 230000001105 regulatory effect Effects 0.000 title description 3
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 64
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 61
- 239000012634 fragment Substances 0.000 claims abstract description 48
- 239000003674 animal food additive Substances 0.000 claims abstract description 7
- 150000001413 amino acids Chemical class 0.000 claims description 50
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 35
- 108010049048 Cholera Toxin Proteins 0.000 claims description 31
- 102000009016 Cholera Toxin Human genes 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 26
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 21
- 230000001262 anti-secretory effect Effects 0.000 claims description 15
- 241000251539 Vertebrata <Metazoa> Species 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 206010012735 Diarrhoea Diseases 0.000 claims description 11
- 229920001184 polypeptide Polymers 0.000 claims description 10
- 239000013543 active substance Substances 0.000 claims description 5
- 241000282412 Homo Species 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 230000002401 inhibitory effect Effects 0.000 claims description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 abstract description 28
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 abstract description 28
- 239000012530 fluid Substances 0.000 abstract description 27
- 206010061218 Inflammation Diseases 0.000 abstract description 16
- 239000003814 drug Substances 0.000 abstract description 16
- 230000004054 inflammatory process Effects 0.000 abstract description 16
- 229940079593 drug Drugs 0.000 abstract description 13
- 241001465754 Metazoa Species 0.000 abstract description 12
- 150000007523 nucleic acids Chemical class 0.000 abstract description 9
- 108020004707 nucleic acids Proteins 0.000 abstract description 8
- 102000039446 nucleic acids Human genes 0.000 abstract description 8
- 239000013598 vector Substances 0.000 abstract description 8
- 206010030113 Oedema Diseases 0.000 abstract description 4
- 230000018044 dehydration Effects 0.000 abstract description 4
- 238000006297 dehydration reaction Methods 0.000 abstract description 4
- 108010033276 Peptide Fragments Proteins 0.000 abstract description 2
- 102000007079 Peptide Fragments Human genes 0.000 abstract description 2
- 230000001142 anti-diarrhea Effects 0.000 abstract description 2
- 201000010099 disease Diseases 0.000 abstract description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 31
- 241000700159 Rattus Species 0.000 description 26
- 239000002299 complementary DNA Substances 0.000 description 25
- 206010062767 Hypophysitis Diseases 0.000 description 24
- 210000003635 pituitary gland Anatomy 0.000 description 24
- 230000028327 secretion Effects 0.000 description 17
- 230000000968 intestinal effect Effects 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 15
- 108020001507 fusion proteins Proteins 0.000 description 14
- 230000004071 biological effect Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 102000037865 fusion proteins Human genes 0.000 description 13
- 239000013615 primer Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 12
- 241000283973 Oryctolagus cuniculus Species 0.000 description 11
- 239000003053 toxin Substances 0.000 description 11
- 231100000765 toxin Toxicity 0.000 description 11
- 108700012359 toxins Proteins 0.000 description 11
- 241000588724 Escherichia coli Species 0.000 description 10
- 238000010186 staining Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 9
- 210000004556 brain Anatomy 0.000 description 9
- 210000000813 small intestine Anatomy 0.000 description 9
- 230000032258 transport Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- 108700026244 Open Reading Frames Proteins 0.000 description 8
- 210000004347 intestinal mucosa Anatomy 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- COXVTLYNGOIATD-HVMBLDELSA-N CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O Chemical compound CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O COXVTLYNGOIATD-HVMBLDELSA-N 0.000 description 7
- 229960003699 evans blue Drugs 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 6
- 108091034117 Oligonucleotide Proteins 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 210000001035 gastrointestinal tract Anatomy 0.000 description 6
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 5
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 5
- 102000005720 Glutathione transferase Human genes 0.000 description 5
- 108010070675 Glutathione transferase Proteins 0.000 description 5
- 238000000636 Northern blotting Methods 0.000 description 5
- 101710084578 Short neurotoxin 1 Proteins 0.000 description 5
- 241000282898 Sus scrofa Species 0.000 description 5
- 101710182532 Toxin a Proteins 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 210000004877 mucosa Anatomy 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 241000282326 Felis catus Species 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 4
- 108090000190 Thrombin Proteins 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000000147 enterotoxin Substances 0.000 description 4
- 231100000655 enterotoxin Toxicity 0.000 description 4
- 238000003119 immunoblot Methods 0.000 description 4
- 210000000936 intestine Anatomy 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 239000002751 oligonucleotide probe Substances 0.000 description 4
- 230000001817 pituitary effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229960004072 thrombin Drugs 0.000 description 4
- 229920000936 Agarose Polymers 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 241000193163 Clostridioides difficile Species 0.000 description 3
- YRMZCZIRHYCNHX-RYUDHWBXSA-N Glu-Phe-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)NCC(O)=O YRMZCZIRHYCNHX-RYUDHWBXSA-N 0.000 description 3
- 108010024636 Glutathione Proteins 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 3
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 3
- 241000282887 Suidae Species 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 238000001042 affinity chromatography Methods 0.000 description 3
- 108010005233 alanylglutamic acid Proteins 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000000740 bleeding effect Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 235000011089 carbon dioxide Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 210000004907 gland Anatomy 0.000 description 3
- 229960003180 glutathione Drugs 0.000 description 3
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 3
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 3
- 108010015792 glycyllysine Proteins 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 238000002649 immunization Methods 0.000 description 3
- 230000002055 immunohistochemical effect Effects 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 3
- 108010057821 leucylproline Proteins 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- HHGYNJRJIINWAK-FXQIFTODSA-N Ala-Ala-Arg Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N HHGYNJRJIINWAK-FXQIFTODSA-N 0.000 description 2
- YHKANGMVQWRMAP-DCAQKATOSA-N Ala-Leu-Arg Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N YHKANGMVQWRMAP-DCAQKATOSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 206010008631 Cholera Diseases 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 101710146739 Enterotoxin Proteins 0.000 description 2
- 241000701959 Escherichia virus Lambda Species 0.000 description 2
- BUZMZDDKFCSKOT-CIUDSAMLSA-N Glu-Glu-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O BUZMZDDKFCSKOT-CIUDSAMLSA-N 0.000 description 2
- JWNZHMSRZXXGTM-XKBZYTNZSA-N Glu-Ser-Thr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(O)=O JWNZHMSRZXXGTM-XKBZYTNZSA-N 0.000 description 2
- SWQALSGKVLYKDT-UHFFFAOYSA-N Gly-Ile-Ala Natural products NCC(=O)NC(C(C)CC)C(=O)NC(C)C(O)=O SWQALSGKVLYKDT-UHFFFAOYSA-N 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- WNGVUZWBXZKQES-YUMQZZPRSA-N Leu-Ala-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)NCC(O)=O WNGVUZWBXZKQES-YUMQZZPRSA-N 0.000 description 2
- HRTRLSRYZZKPCO-BJDJZHNGSA-N Leu-Ile-Ser Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(O)=O HRTRLSRYZZKPCO-BJDJZHNGSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 208000002720 Malnutrition Diseases 0.000 description 2
- MFDDVIJCQYOOES-GUBZILKMSA-N Met-Val-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCSC)N MFDDVIJCQYOOES-GUBZILKMSA-N 0.000 description 2
- QAVZUKIPOMBLMC-AVGNSLFASA-N Met-Val-Leu Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC(C)C QAVZUKIPOMBLMC-AVGNSLFASA-N 0.000 description 2
- XMBSYZWANAQXEV-UHFFFAOYSA-N N-alpha-L-glutamyl-L-phenylalanine Natural products OC(=O)CCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XMBSYZWANAQXEV-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 101800004192 Peptide P1 Proteins 0.000 description 2
- JLMZKEQFMVORMA-SRVKXCTJSA-N Pro-Pro-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 JLMZKEQFMVORMA-SRVKXCTJSA-N 0.000 description 2
- 102100033479 RAF proto-oncogene serine/threonine-protein kinase Human genes 0.000 description 2
- 101710141955 RAF proto-oncogene serine/threonine-protein kinase Proteins 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- LVVBAKCGXXUHFO-ZLUOBGJFSA-N Ser-Ala-Asp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(O)=O LVVBAKCGXXUHFO-ZLUOBGJFSA-N 0.000 description 2
- WBINSDOPZHQPPM-AVGNSLFASA-N Ser-Glu-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CO)N)O WBINSDOPZHQPPM-AVGNSLFASA-N 0.000 description 2
- GZGFSPWOMUKKCV-NAKRPEOUSA-N Ser-Pro-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CO GZGFSPWOMUKKCV-NAKRPEOUSA-N 0.000 description 2
- CEXFELBFVHLYDZ-XGEHTFHBSA-N Thr-Arg-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(O)=O CEXFELBFVHLYDZ-XGEHTFHBSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- PVPAOIGJYHVWBT-KKHAAJSZSA-N Val-Asn-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](C(C)C)N)O PVPAOIGJYHVWBT-KKHAAJSZSA-N 0.000 description 2
- CGGVNFJRZJUVAE-BYULHYEWSA-N Val-Asp-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N CGGVNFJRZJUVAE-BYULHYEWSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- -1 antidiabetics Substances 0.000 description 2
- 108010029539 arginyl-prolyl-proline Proteins 0.000 description 2
- 108010093581 aspartyl-proline Proteins 0.000 description 2
- 238000000211 autoradiogram Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000001045 blue dye Substances 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 2
- 210000001100 crypt cell Anatomy 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 210000000959 ear middle Anatomy 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 108010063718 gamma-glutamylaspartic acid Proteins 0.000 description 2
- 108010067216 glycyl-glycyl-glycine Proteins 0.000 description 2
- 108010050848 glycylleucine Proteins 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 210000002011 intestinal secretion Anatomy 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001155 isoelectric focusing Methods 0.000 description 2
- 210000003140 lateral ventricle Anatomy 0.000 description 2
- 108010073472 leucyl-prolyl-proline Proteins 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 230000001071 malnutrition Effects 0.000 description 2
- 235000000824 malnutrition Nutrition 0.000 description 2
- 210000004400 mucous membrane Anatomy 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 208000015380 nutritional deficiency disease Diseases 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 201000009395 primary hyperaldosteronism Diseases 0.000 description 2
- 108010048397 seryl-lysyl-leucine Proteins 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 108010061238 threonyl-glycine Proteins 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 108010015385 valyl-prolyl-proline Proteins 0.000 description 2
- QRXMUCSWCMTJGU-UHFFFAOYSA-L (5-bromo-4-chloro-1h-indol-3-yl) phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP([O-])(=O)[O-])=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-L 0.000 description 1
- OAKPWEUQDVLTCN-NKWVEPMBSA-N 2',3'-Dideoxyadenosine-5-triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1CC[C@@H](CO[P@@](O)(=O)O[P@](O)(=O)OP(O)(O)=O)O1 OAKPWEUQDVLTCN-NKWVEPMBSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- ITZMJCSORYKOSI-AJNGGQMLSA-N APGPR Enterostatin Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N1[C@H](C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)CCC1 ITZMJCSORYKOSI-AJNGGQMLSA-N 0.000 description 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 208000005452 Acute intermittent porphyria Diseases 0.000 description 1
- GFBLJMHGHAXGNY-ZLUOBGJFSA-N Ala-Asn-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O GFBLJMHGHAXGNY-ZLUOBGJFSA-N 0.000 description 1
- NHCPCLJZRSIDHS-ZLUOBGJFSA-N Ala-Asp-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O NHCPCLJZRSIDHS-ZLUOBGJFSA-N 0.000 description 1
- GWFSQQNGMPGBEF-GHCJXIJMSA-N Ala-Asp-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](C)N GWFSQQNGMPGBEF-GHCJXIJMSA-N 0.000 description 1
- YSMPVONNIWLJML-FXQIFTODSA-N Ala-Asp-Pro Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(O)=O YSMPVONNIWLJML-FXQIFTODSA-N 0.000 description 1
- RXTBLQVXNIECFP-FXQIFTODSA-N Ala-Gln-Gln Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O RXTBLQVXNIECFP-FXQIFTODSA-N 0.000 description 1
- FUSPCLTUKXQREV-ACZMJKKPSA-N Ala-Glu-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(O)=O FUSPCLTUKXQREV-ACZMJKKPSA-N 0.000 description 1
- FBHOPGDGELNWRH-DRZSPHRISA-N Ala-Glu-Phe Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O FBHOPGDGELNWRH-DRZSPHRISA-N 0.000 description 1
- VGPWRRFOPXVGOH-BYPYZUCNSA-N Ala-Gly-Gly Chemical compound C[C@H](N)C(=O)NCC(=O)NCC(O)=O VGPWRRFOPXVGOH-BYPYZUCNSA-N 0.000 description 1
- KMGOBAQSCKTBGD-DLOVCJGASA-N Ala-His-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)CC1=CN=CN1 KMGOBAQSCKTBGD-DLOVCJGASA-N 0.000 description 1
- AWZKCUCQJNTBAD-SRVKXCTJSA-N Ala-Leu-Lys Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCCN AWZKCUCQJNTBAD-SRVKXCTJSA-N 0.000 description 1
- LDLSENBXQNDTPB-DCAQKATOSA-N Ala-Lys-Arg Chemical compound NCCCC[C@H](NC(=O)[C@@H](N)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N LDLSENBXQNDTPB-DCAQKATOSA-N 0.000 description 1
- PVQLRJRPUTXFFX-CIUDSAMLSA-N Ala-Met-Gln Chemical compound CSCC[C@H](NC(=O)[C@H](C)N)C(=O)N[C@@H](CCC(N)=O)C(O)=O PVQLRJRPUTXFFX-CIUDSAMLSA-N 0.000 description 1
- XSTZMVAYYCJTNR-DCAQKATOSA-N Ala-Met-Leu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(O)=O XSTZMVAYYCJTNR-DCAQKATOSA-N 0.000 description 1
- DCVYRWFAMZFSDA-ZLUOBGJFSA-N Ala-Ser-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O DCVYRWFAMZFSDA-ZLUOBGJFSA-N 0.000 description 1
- RMAWDDRDTRSZIR-ZLUOBGJFSA-N Ala-Ser-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O RMAWDDRDTRSZIR-ZLUOBGJFSA-N 0.000 description 1
- XSLGWYYNOSUMRM-ZKWXMUAHSA-N Ala-Val-Asn Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O XSLGWYYNOSUMRM-ZKWXMUAHSA-N 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 101100393868 Arabidopsis thaliana GT11 gene Proteins 0.000 description 1
- HJVGMOYJDDXLMI-AVGNSLFASA-N Arg-Arg-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](N)CCCNC(N)=N HJVGMOYJDDXLMI-AVGNSLFASA-N 0.000 description 1
- DCGLNNVKIZXQOJ-FXQIFTODSA-N Arg-Asn-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCCN=C(N)N)N DCGLNNVKIZXQOJ-FXQIFTODSA-N 0.000 description 1
- NONSEUUPKITYQT-BQBZGAKWSA-N Arg-Asn-Gly Chemical compound C(C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)NCC(=O)O)N)CN=C(N)N NONSEUUPKITYQT-BQBZGAKWSA-N 0.000 description 1
- JUWQNWXEGDYCIE-YUMQZZPRSA-N Arg-Gln-Gly Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(O)=O JUWQNWXEGDYCIE-YUMQZZPRSA-N 0.000 description 1
- SLNCSSWAIDUUGF-LSJOCFKGSA-N Arg-His-Ala Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(O)=O SLNCSSWAIDUUGF-LSJOCFKGSA-N 0.000 description 1
- FFEUXEAKYRCACT-PEDHHIEDSA-N Arg-Ile-Ile Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)CCCNC(N)=N)[C@@H](C)CC)C(O)=O FFEUXEAKYRCACT-PEDHHIEDSA-N 0.000 description 1
- OOIMKQRCPJBGPD-XUXIUFHCSA-N Arg-Ile-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O OOIMKQRCPJBGPD-XUXIUFHCSA-N 0.000 description 1
- GMFAGHNRXPSSJS-SRVKXCTJSA-N Arg-Leu-Gln Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O GMFAGHNRXPSSJS-SRVKXCTJSA-N 0.000 description 1
- RIQBRKVTFBWEDY-RHYQMDGZSA-N Arg-Lys-Thr Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O RIQBRKVTFBWEDY-RHYQMDGZSA-N 0.000 description 1
- YCYXHLZRUSJITQ-SRVKXCTJSA-N Arg-Pro-Pro Chemical compound NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 YCYXHLZRUSJITQ-SRVKXCTJSA-N 0.000 description 1
- AMIQZQAAYGYKOP-FXQIFTODSA-N Arg-Ser-Asn Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(O)=O AMIQZQAAYGYKOP-FXQIFTODSA-N 0.000 description 1
- ISJWBVIYRBAXEB-CIUDSAMLSA-N Arg-Ser-Glu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(O)=O ISJWBVIYRBAXEB-CIUDSAMLSA-N 0.000 description 1
- ASQKVGRCKOFKIU-KZVJFYERSA-N Arg-Thr-Ala Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](C)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N)O ASQKVGRCKOFKIU-KZVJFYERSA-N 0.000 description 1
- AIFHRTPABBBHKU-RCWTZXSCSA-N Arg-Thr-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O AIFHRTPABBBHKU-RCWTZXSCSA-N 0.000 description 1
- ORXCYAFUCSTQGY-FXQIFTODSA-N Asn-Ala-Met Chemical compound C[C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CC(=O)N)N ORXCYAFUCSTQGY-FXQIFTODSA-N 0.000 description 1
- ULRPXVNMIIYDDJ-ACZMJKKPSA-N Asn-Glu-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CC(=O)N)N ULRPXVNMIIYDDJ-ACZMJKKPSA-N 0.000 description 1
- OLVIPTLKNSAYRJ-YUMQZZPRSA-N Asn-Gly-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CC(=O)N)N OLVIPTLKNSAYRJ-YUMQZZPRSA-N 0.000 description 1
- JLNFZLNDHONLND-GARJFASQSA-N Asn-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC(=O)N)N JLNFZLNDHONLND-GARJFASQSA-N 0.000 description 1
- YUOXLJYVSZYPBJ-CIUDSAMLSA-N Asn-Pro-Glu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O YUOXLJYVSZYPBJ-CIUDSAMLSA-N 0.000 description 1
- JZLFYAAGGYMRIK-BYULHYEWSA-N Asn-Val-Asp Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O JZLFYAAGGYMRIK-BYULHYEWSA-N 0.000 description 1
- ZAESWDKAMDVHLL-RCOVLWMOSA-N Asn-Val-Gly Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O ZAESWDKAMDVHLL-RCOVLWMOSA-N 0.000 description 1
- PBVLJOIPOGUQQP-CIUDSAMLSA-N Asp-Ala-Leu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O PBVLJOIPOGUQQP-CIUDSAMLSA-N 0.000 description 1
- NJIKKGUVGUBICV-ZLUOBGJFSA-N Asp-Ala-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O NJIKKGUVGUBICV-ZLUOBGJFSA-N 0.000 description 1
- ZELQAFZSJOBEQS-ACZMJKKPSA-N Asp-Asn-Glu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O ZELQAFZSJOBEQS-ACZMJKKPSA-N 0.000 description 1
- NAPNAGZWHQHZLG-ZLUOBGJFSA-N Asp-Asp-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CC(=O)O)N NAPNAGZWHQHZLG-ZLUOBGJFSA-N 0.000 description 1
- VZNOVQKGJQJOCS-SRVKXCTJSA-N Asp-Asp-Tyr Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O VZNOVQKGJQJOCS-SRVKXCTJSA-N 0.000 description 1
- UWOPETAWXDZUJR-ACZMJKKPSA-N Asp-Cys-Glu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(O)=O UWOPETAWXDZUJR-ACZMJKKPSA-N 0.000 description 1
- SVABRQFIHCSNCI-FOHZUACHSA-N Asp-Gly-Thr Chemical compound [H]N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(O)=O SVABRQFIHCSNCI-FOHZUACHSA-N 0.000 description 1
- UMHUHHJMEXNSIV-CIUDSAMLSA-N Asp-Leu-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(O)=O UMHUHHJMEXNSIV-CIUDSAMLSA-N 0.000 description 1
- LTCKTLYKRMCFOC-KKUMJFAQSA-N Asp-Phe-Leu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O LTCKTLYKRMCFOC-KKUMJFAQSA-N 0.000 description 1
- BWJZSLQJNBSUPM-FXQIFTODSA-N Asp-Pro-Asn Chemical compound OC(=O)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(O)=O BWJZSLQJNBSUPM-FXQIFTODSA-N 0.000 description 1
- AHWRSSLYSGLBGD-CIUDSAMLSA-N Asp-Pro-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O AHWRSSLYSGLBGD-CIUDSAMLSA-N 0.000 description 1
- FAUPLTGRUBTXNU-FXQIFTODSA-N Asp-Pro-Ser Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O FAUPLTGRUBTXNU-FXQIFTODSA-N 0.000 description 1
- JJQGZGOEDSSHTE-FOHZUACHSA-N Asp-Thr-Gly Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O JJQGZGOEDSSHTE-FOHZUACHSA-N 0.000 description 1
- GCACQYDBDHRVGE-LKXGYXEUSA-N Asp-Thr-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H]([C@H](O)C)NC(=O)[C@@H](N)CC(O)=O GCACQYDBDHRVGE-LKXGYXEUSA-N 0.000 description 1
- USENATHVGFXRNO-SRVKXCTJSA-N Asp-Tyr-Asp Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CC(O)=O)C(O)=O)CC1=CC=C(O)C=C1 USENATHVGFXRNO-SRVKXCTJSA-N 0.000 description 1
- GXIUDSXIUSTSLO-QXEWZRGKSA-N Asp-Val-Met Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CC(=O)O)N GXIUDSXIUSTSLO-QXEWZRGKSA-N 0.000 description 1
- 206010048962 Brain oedema Diseases 0.000 description 1
- 101100245381 Caenorhabditis elegans pbs-6 gene Proteins 0.000 description 1
- 101100315624 Caenorhabditis elegans tyr-1 gene Proteins 0.000 description 1
- 241000589875 Campylobacter jejuni Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- 208000016998 Conn syndrome Diseases 0.000 description 1
- 102400000739 Corticotropin Human genes 0.000 description 1
- 101800000414 Corticotropin Proteins 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 208000014311 Cushing syndrome Diseases 0.000 description 1
- VIRYODQIWJNWNU-NRPADANISA-N Cys-Glu-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CS)N VIRYODQIWJNWNU-NRPADANISA-N 0.000 description 1
- ALNKNYKSZPSLBD-ZDLURKLDSA-N Cys-Thr-Gly Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O ALNKNYKSZPSLBD-ZDLURKLDSA-N 0.000 description 1
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 102100029764 DNA-directed DNA/RNA polymerase mu Human genes 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 208000017701 Endocrine disease Diseases 0.000 description 1
- 208000004232 Enteritis Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- 206010051283 Fluid imbalance Diseases 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- RZSLYUUFFVHFRQ-FXQIFTODSA-N Gln-Ala-Glu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(O)=O RZSLYUUFFVHFRQ-FXQIFTODSA-N 0.000 description 1
- RGRMOYQUIJVQQD-SRVKXCTJSA-N Gln-Arg-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCC(=O)N)N RGRMOYQUIJVQQD-SRVKXCTJSA-N 0.000 description 1
- JFSNBQJNDMXMQF-XHNCKOQMSA-N Gln-Asp-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)O)NC(=O)[C@H](CCC(=O)N)N)C(=O)O JFSNBQJNDMXMQF-XHNCKOQMSA-N 0.000 description 1
- QYKBTDOAMKORGL-FXQIFTODSA-N Gln-Gln-Asp Chemical compound C(CC(=O)N)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N QYKBTDOAMKORGL-FXQIFTODSA-N 0.000 description 1
- XFKUFUJECJUQTQ-CIUDSAMLSA-N Gln-Gln-Glu Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O XFKUFUJECJUQTQ-CIUDSAMLSA-N 0.000 description 1
- VSXBYIJUAXPAAL-WDSKDSINSA-N Gln-Gly-Ala Chemical compound OC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](N)CCC(N)=O VSXBYIJUAXPAAL-WDSKDSINSA-N 0.000 description 1
- HDUDGCZEOZEFOA-KBIXCLLPSA-N Gln-Ile-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C)C(=O)O)NC(=O)[C@H](CCC(=O)N)N HDUDGCZEOZEFOA-KBIXCLLPSA-N 0.000 description 1
- LHMWTCWZARHLPV-CIUDSAMLSA-N Gln-Met-Ser Chemical compound CSCC[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCC(=O)N)N LHMWTCWZARHLPV-CIUDSAMLSA-N 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- UTKUTMJSWKKHEM-WDSKDSINSA-N Glu-Ala-Gly Chemical compound OC(=O)CNC(=O)[C@H](C)NC(=O)[C@@H](N)CCC(O)=O UTKUTMJSWKKHEM-WDSKDSINSA-N 0.000 description 1
- RLZBLVSJDFHDBL-KBIXCLLPSA-N Glu-Ala-Ile Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O RLZBLVSJDFHDBL-KBIXCLLPSA-N 0.000 description 1
- ZOXBSICWUDAOHX-GUBZILKMSA-N Glu-Asn-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CCC(O)=O ZOXBSICWUDAOHX-GUBZILKMSA-N 0.000 description 1
- NTBDVNJIWCKURJ-ACZMJKKPSA-N Glu-Asp-Asn Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O NTBDVNJIWCKURJ-ACZMJKKPSA-N 0.000 description 1
- JRCUFCXYZLPSDZ-ACZMJKKPSA-N Glu-Asp-Ser Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O JRCUFCXYZLPSDZ-ACZMJKKPSA-N 0.000 description 1
- UMIRPYLZFKOEOH-YVNDNENWSA-N Glu-Gln-Ile Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O UMIRPYLZFKOEOH-YVNDNENWSA-N 0.000 description 1
- NKLRYVLERDYDBI-FXQIFTODSA-N Glu-Glu-Asp Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O NKLRYVLERDYDBI-FXQIFTODSA-N 0.000 description 1
- HNVFSTLPVJWIDV-CIUDSAMLSA-N Glu-Glu-Gln Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O HNVFSTLPVJWIDV-CIUDSAMLSA-N 0.000 description 1
- OAGVHWYIBZMWLA-YFKPBYRVSA-N Glu-Gly-Gly Chemical compound OC(=O)CC[C@H](N)C(=O)NCC(=O)NCC(O)=O OAGVHWYIBZMWLA-YFKPBYRVSA-N 0.000 description 1
- HVYWQYLBVXMXSV-GUBZILKMSA-N Glu-Leu-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O HVYWQYLBVXMXSV-GUBZILKMSA-N 0.000 description 1
- CUPSDFQZTVVTSK-GUBZILKMSA-N Glu-Lys-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCC(O)=O CUPSDFQZTVVTSK-GUBZILKMSA-N 0.000 description 1
- ILWHFUZZCFYSKT-AVGNSLFASA-N Glu-Lys-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O ILWHFUZZCFYSKT-AVGNSLFASA-N 0.000 description 1
- SUIAHERNFYRBDZ-GVXVVHGQSA-N Glu-Lys-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O SUIAHERNFYRBDZ-GVXVVHGQSA-N 0.000 description 1
- QNJNPKSWAHPYGI-JYJNAYRXSA-N Glu-Phe-Leu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C(O)=O)CC1=CC=CC=C1 QNJNPKSWAHPYGI-JYJNAYRXSA-N 0.000 description 1
- QJVZSVUYZFYLFQ-CIUDSAMLSA-N Glu-Pro-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O QJVZSVUYZFYLFQ-CIUDSAMLSA-N 0.000 description 1
- GPSHCSTUYOQPAI-JHEQGTHGSA-N Glu-Thr-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O GPSHCSTUYOQPAI-JHEQGTHGSA-N 0.000 description 1
- UZWUBBRJWFTHTD-LAEOZQHASA-N Glu-Val-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CCC(O)=O UZWUBBRJWFTHTD-LAEOZQHASA-N 0.000 description 1
- PUUYVMYCMIWHFE-BQBZGAKWSA-N Gly-Ala-Arg Chemical compound NCC(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N PUUYVMYCMIWHFE-BQBZGAKWSA-N 0.000 description 1
- RPLLQZBOVIVGMX-QWRGUYRKSA-N Gly-Asp-Phe Chemical compound [H]NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O RPLLQZBOVIVGMX-QWRGUYRKSA-N 0.000 description 1
- CQZDZKRHFWJXDF-WDSKDSINSA-N Gly-Gln-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CN CQZDZKRHFWJXDF-WDSKDSINSA-N 0.000 description 1
- SOEATRRYCIPEHA-BQBZGAKWSA-N Gly-Glu-Glu Chemical compound [H]NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O SOEATRRYCIPEHA-BQBZGAKWSA-N 0.000 description 1
- CCQOOWAONKGYKQ-BYPYZUCNSA-N Gly-Gly-Ala Chemical compound OC(=O)[C@H](C)NC(=O)CNC(=O)CN CCQOOWAONKGYKQ-BYPYZUCNSA-N 0.000 description 1
- SWQALSGKVLYKDT-ZKWXMUAHSA-N Gly-Ile-Ala Chemical compound NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O SWQALSGKVLYKDT-ZKWXMUAHSA-N 0.000 description 1
- SXJHOPPTOJACOA-QXEWZRGKSA-N Gly-Ile-Arg Chemical compound NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](C(O)=O)CCCN=C(N)N SXJHOPPTOJACOA-QXEWZRGKSA-N 0.000 description 1
- CCBIBMKQNXHNIN-ZETCQYMHSA-N Gly-Leu-Gly Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O CCBIBMKQNXHNIN-ZETCQYMHSA-N 0.000 description 1
- UUYBFNKHOCJCHT-VHSXEESVSA-N Gly-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)CN UUYBFNKHOCJCHT-VHSXEESVSA-N 0.000 description 1
- BXICSAQLIHFDDL-YUMQZZPRSA-N Gly-Lys-Asn Chemical compound [H]NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O BXICSAQLIHFDDL-YUMQZZPRSA-N 0.000 description 1
- PDUHNKAFQXQNLH-ZETCQYMHSA-N Gly-Lys-Gly Chemical compound NCCCC[C@H](NC(=O)CN)C(=O)NCC(O)=O PDUHNKAFQXQNLH-ZETCQYMHSA-N 0.000 description 1
- HAOUOFNNJJLVNS-BQBZGAKWSA-N Gly-Pro-Ser Chemical compound NCC(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O HAOUOFNNJJLVNS-BQBZGAKWSA-N 0.000 description 1
- MKIAPEZXQDILRR-YUMQZZPRSA-N Gly-Ser-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)CN MKIAPEZXQDILRR-YUMQZZPRSA-N 0.000 description 1
- WNGHUXFWEWTKAO-YUMQZZPRSA-N Gly-Ser-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)CN WNGHUXFWEWTKAO-YUMQZZPRSA-N 0.000 description 1
- DNVDEMWIYLVIQU-RCOVLWMOSA-N Gly-Val-Asp Chemical compound NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O DNVDEMWIYLVIQU-RCOVLWMOSA-N 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- HDXNWVLQSQFJOX-SRVKXCTJSA-N His-Arg-Gln Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N HDXNWVLQSQFJOX-SRVKXCTJSA-N 0.000 description 1
- TWROVBNEHJSXDG-IHRRRGAJSA-N His-Leu-Val Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O TWROVBNEHJSXDG-IHRRRGAJSA-N 0.000 description 1
- DPQIPEAHIYMUEJ-IHRRRGAJSA-N His-Lys-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC1=CN=CN1)N DPQIPEAHIYMUEJ-IHRRRGAJSA-N 0.000 description 1
- UOYGZBIPZYKGSH-SRVKXCTJSA-N His-Ser-Lys Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)O)N UOYGZBIPZYKGSH-SRVKXCTJSA-N 0.000 description 1
- VXZZUXWAOMWWJH-QTKMDUPCSA-N His-Thr-Val Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O VXZZUXWAOMWWJH-QTKMDUPCSA-N 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 206010020571 Hyperaldosteronism Diseases 0.000 description 1
- CYHYBSGMHMHKOA-CIQUZCHMSA-N Ile-Ala-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N CYHYBSGMHMHKOA-CIQUZCHMSA-N 0.000 description 1
- AZEYWPUCOYXFOE-CYDGBPFRSA-N Ile-Arg-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](C(C)C)C(=O)O)N AZEYWPUCOYXFOE-CYDGBPFRSA-N 0.000 description 1
- ZZHGKECPZXPXJF-PCBIJLKTSA-N Ile-Asn-Phe Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ZZHGKECPZXPXJF-PCBIJLKTSA-N 0.000 description 1
- RPZFUIQVAPZLRH-GHCJXIJMSA-N Ile-Asp-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](C)C(=O)O)N RPZFUIQVAPZLRH-GHCJXIJMSA-N 0.000 description 1
- WIZPFZKOFZXDQG-HTFCKZLJSA-N Ile-Ile-Ala Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O WIZPFZKOFZXDQG-HTFCKZLJSA-N 0.000 description 1
- SVBAHOMTJRFSIC-SXTJYALSSA-N Ile-Ile-Asn Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(=O)N)C(=O)O)N SVBAHOMTJRFSIC-SXTJYALSSA-N 0.000 description 1
- GVKKVHNRTUFCCE-BJDJZHNGSA-N Ile-Leu-Ser Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)O)N GVKKVHNRTUFCCE-BJDJZHNGSA-N 0.000 description 1
- KBDIBHQICWDGDL-PPCPHDFISA-N Ile-Thr-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)O)N KBDIBHQICWDGDL-PPCPHDFISA-N 0.000 description 1
- WXLYNEHOGRYNFU-URLPEUOOSA-N Ile-Thr-Phe Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N WXLYNEHOGRYNFU-URLPEUOOSA-N 0.000 description 1
- NUEHSWNAFIEBCQ-NAKRPEOUSA-N Ile-Val-Cys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CS)C(=O)O)N NUEHSWNAFIEBCQ-NAKRPEOUSA-N 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- CZCSUZMIRKFFFA-CIUDSAMLSA-N Leu-Ala-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(O)=O CZCSUZMIRKFFFA-CIUDSAMLSA-N 0.000 description 1
- ZRLUISBDKUWAIZ-CIUDSAMLSA-N Leu-Ala-Asp Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(O)=O ZRLUISBDKUWAIZ-CIUDSAMLSA-N 0.000 description 1
- OIARJGNVARWKFP-YUMQZZPRSA-N Leu-Asn-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O OIARJGNVARWKFP-YUMQZZPRSA-N 0.000 description 1
- VQPPIMUZCZCOIL-GUBZILKMSA-N Leu-Gln-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(O)=O VQPPIMUZCZCOIL-GUBZILKMSA-N 0.000 description 1
- DPWGZWUMUUJQDT-IUCAKERBSA-N Leu-Gln-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(O)=O DPWGZWUMUUJQDT-IUCAKERBSA-N 0.000 description 1
- OXRLYTYUXAQTHP-YUMQZZPRSA-N Leu-Gly-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(O)=O OXRLYTYUXAQTHP-YUMQZZPRSA-N 0.000 description 1
- LIINDKYIGYTDLG-PPCPHDFISA-N Leu-Ile-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(O)=O LIINDKYIGYTDLG-PPCPHDFISA-N 0.000 description 1
- LXKNSJLSGPNHSK-KKUMJFAQSA-N Leu-Leu-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)O)N LXKNSJLSGPNHSK-KKUMJFAQSA-N 0.000 description 1
- REPBGZHJKYWFMJ-KKUMJFAQSA-N Leu-Lys-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N REPBGZHJKYWFMJ-KKUMJFAQSA-N 0.000 description 1
- KPYAOIVPJKPIOU-KKUMJFAQSA-N Leu-Lys-Lys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O KPYAOIVPJKPIOU-KKUMJFAQSA-N 0.000 description 1
- VVQJGYPTIYOFBR-IHRRRGAJSA-N Leu-Lys-Met Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(=O)O)N VVQJGYPTIYOFBR-IHRRRGAJSA-N 0.000 description 1
- DPURXCQCHSQPAN-AVGNSLFASA-N Leu-Pro-Pro Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DPURXCQCHSQPAN-AVGNSLFASA-N 0.000 description 1
- PWPBLZXWFXJFHE-RHYQMDGZSA-N Leu-Pro-Thr Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(O)=O PWPBLZXWFXJFHE-RHYQMDGZSA-N 0.000 description 1
- ZJZNLRVCZWUONM-JXUBOQSCSA-N Leu-Thr-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O ZJZNLRVCZWUONM-JXUBOQSCSA-N 0.000 description 1
- KLSUAWUZBMAZCL-RHYQMDGZSA-N Leu-Thr-Pro Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(O)=O KLSUAWUZBMAZCL-RHYQMDGZSA-N 0.000 description 1
- GZRABTMNWJXFMH-UVOCVTCTSA-N Leu-Thr-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O GZRABTMNWJXFMH-UVOCVTCTSA-N 0.000 description 1
- YQFZRHYZLARWDY-IHRRRGAJSA-N Leu-Val-Lys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCCCN YQFZRHYZLARWDY-IHRRRGAJSA-N 0.000 description 1
- QESXLSQLQHHTIX-RHYQMDGZSA-N Leu-Val-Thr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O QESXLSQLQHHTIX-RHYQMDGZSA-N 0.000 description 1
- YNNPKXBBRZVIRX-IHRRRGAJSA-N Lys-Arg-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(O)=O YNNPKXBBRZVIRX-IHRRRGAJSA-N 0.000 description 1
- MKBIVWXCFINCLE-SRVKXCTJSA-N Lys-Asn-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCCCN)N MKBIVWXCFINCLE-SRVKXCTJSA-N 0.000 description 1
- AAORVPFVUIHEAB-YUMQZZPRSA-N Lys-Asp-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O AAORVPFVUIHEAB-YUMQZZPRSA-N 0.000 description 1
- IWWMPCPLFXFBAF-SRVKXCTJSA-N Lys-Asp-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O IWWMPCPLFXFBAF-SRVKXCTJSA-N 0.000 description 1
- PBIPLDMFHAICIP-DCAQKATOSA-N Lys-Glu-Glu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O PBIPLDMFHAICIP-DCAQKATOSA-N 0.000 description 1
- NKKFVJRLCCUJNA-QWRGUYRKSA-N Lys-Gly-Lys Chemical compound NCCCC[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCCN NKKFVJRLCCUJNA-QWRGUYRKSA-N 0.000 description 1
- NCZIQZYZPUPMKY-PPCPHDFISA-N Lys-Ile-Thr Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(O)=O NCZIQZYZPUPMKY-PPCPHDFISA-N 0.000 description 1
- QKXZCUCBFPEXNK-KKUMJFAQSA-N Lys-Leu-His Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 QKXZCUCBFPEXNK-KKUMJFAQSA-N 0.000 description 1
- UQRZFMQQXXJTTF-AVGNSLFASA-N Lys-Lys-Glu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O UQRZFMQQXXJTTF-AVGNSLFASA-N 0.000 description 1
- URBJRJKWSUFCKS-AVGNSLFASA-N Lys-Met-Arg Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](CCCCN)N URBJRJKWSUFCKS-AVGNSLFASA-N 0.000 description 1
- MDDUIRLQCYVRDO-NHCYSSNCSA-N Lys-Val-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CCCCN MDDUIRLQCYVRDO-NHCYSSNCSA-N 0.000 description 1
- BLIPQDLSCFGUFA-GUBZILKMSA-N Met-Arg-Asn Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(O)=O BLIPQDLSCFGUFA-GUBZILKMSA-N 0.000 description 1
- MCNGIXXCMJAURZ-VEVYYDQMSA-N Met-Asp-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CCSC)N)O MCNGIXXCMJAURZ-VEVYYDQMSA-N 0.000 description 1
- GPAHWYRSHCKICP-GUBZILKMSA-N Met-Glu-Glu Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O GPAHWYRSHCKICP-GUBZILKMSA-N 0.000 description 1
- LRALLISKBZNSKN-BQBZGAKWSA-N Met-Gly-Ser Chemical compound CSCC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O LRALLISKBZNSKN-BQBZGAKWSA-N 0.000 description 1
- HZVXPUHLTZRQEL-UWVGGRQHSA-N Met-Leu-Gly Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O HZVXPUHLTZRQEL-UWVGGRQHSA-N 0.000 description 1
- HLZORBMOISUNIV-DCAQKATOSA-N Met-Ser-Leu Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC(C)C HLZORBMOISUNIV-DCAQKATOSA-N 0.000 description 1
- WXJLBSXNUHIGSS-OSUNSFLBSA-N Met-Thr-Ile Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O WXJLBSXNUHIGSS-OSUNSFLBSA-N 0.000 description 1
- 206010028665 Myxoedema Diseases 0.000 description 1
- ZRKLEAHGBNDKHM-UHFFFAOYSA-N N,n'-diallyl-2,3-dihydroxysuccinamide Chemical compound C=CCNC(=O)C(O)C(O)C(=O)NCC=C ZRKLEAHGBNDKHM-UHFFFAOYSA-N 0.000 description 1
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 1
- 108700015679 Nested Genes Proteins 0.000 description 1
- 108090000189 Neuropeptides Proteins 0.000 description 1
- 102000003797 Neuropeptides Human genes 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 108010093625 Opioid Peptides Proteins 0.000 description 1
- 102000001490 Opioid Peptides Human genes 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- PSBJZLMFFTULDX-IXOXFDKPSA-N Phe-Cys-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC1=CC=CC=C1)N)O PSBJZLMFFTULDX-IXOXFDKPSA-N 0.000 description 1
- OYQBFWWQSVIHBN-FHWLQOOXSA-N Phe-Glu-Phe Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O OYQBFWWQSVIHBN-FHWLQOOXSA-N 0.000 description 1
- RFEXGCASCQGGHZ-STQMWFEESA-N Phe-Gly-Arg Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O RFEXGCASCQGGHZ-STQMWFEESA-N 0.000 description 1
- RSPUIENXSJYZQO-JYJNAYRXSA-N Phe-Leu-Gln Chemical compound NC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC1=CC=CC=C1 RSPUIENXSJYZQO-JYJNAYRXSA-N 0.000 description 1
- GOUWCZRDTWTODO-YDHLFZDLSA-N Phe-Val-Asn Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O GOUWCZRDTWTODO-YDHLFZDLSA-N 0.000 description 1
- XALFIVXGQUEGKV-JSGCOSHPSA-N Phe-Val-Gly Chemical compound OC(=O)CNC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CC1=CC=CC=C1 XALFIVXGQUEGKV-JSGCOSHPSA-N 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 108091036407 Polyadenylation Proteins 0.000 description 1
- 206010036182 Porphyria acute Diseases 0.000 description 1
- WWAQEUOYCYMGHB-FXQIFTODSA-N Pro-Asn-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H]1CCCN1 WWAQEUOYCYMGHB-FXQIFTODSA-N 0.000 description 1
- KPDRZQUWJKTMBP-DCAQKATOSA-N Pro-Asp-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@@H]1CCCN1 KPDRZQUWJKTMBP-DCAQKATOSA-N 0.000 description 1
- KIPIKSXPPLABPN-CIUDSAMLSA-N Pro-Glu-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H]1CCCN1 KIPIKSXPPLABPN-CIUDSAMLSA-N 0.000 description 1
- NXEYSLRNNPWCRN-SRVKXCTJSA-N Pro-Glu-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O NXEYSLRNNPWCRN-SRVKXCTJSA-N 0.000 description 1
- HAEGAELAYWSUNC-WPRPVWTQSA-N Pro-Gly-Val Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O HAEGAELAYWSUNC-WPRPVWTQSA-N 0.000 description 1
- ABSSTGUCBCDKMU-UWVGGRQHSA-N Pro-Lys-Gly Chemical compound NCCCC[C@@H](C(=O)NCC(O)=O)NC(=O)[C@@H]1CCCN1 ABSSTGUCBCDKMU-UWVGGRQHSA-N 0.000 description 1
- LNICFEXCAHIJOR-DCAQKATOSA-N Pro-Ser-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O LNICFEXCAHIJOR-DCAQKATOSA-N 0.000 description 1
- PKHDJFHFMGQMPS-RCWTZXSCSA-N Pro-Thr-Arg Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O PKHDJFHFMGQMPS-RCWTZXSCSA-N 0.000 description 1
- IMNVAOPEMFDAQD-NHCYSSNCSA-N Pro-Val-Glu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O IMNVAOPEMFDAQD-NHCYSSNCSA-N 0.000 description 1
- 102100024819 Prolactin Human genes 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 235000013290 Sagittaria latifolia Nutrition 0.000 description 1
- 241000242677 Schistosoma japonicum Species 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- ZUGXSSFMTXKHJS-ZLUOBGJFSA-N Ser-Ala-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(O)=O ZUGXSSFMTXKHJS-ZLUOBGJFSA-N 0.000 description 1
- IYCBDVBJWDXQRR-FXQIFTODSA-N Ser-Ala-Met Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(O)=O IYCBDVBJWDXQRR-FXQIFTODSA-N 0.000 description 1
- OLIJLNWFEQEFDM-SRVKXCTJSA-N Ser-Asp-Phe Chemical compound OC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 OLIJLNWFEQEFDM-SRVKXCTJSA-N 0.000 description 1
- IXUGADGDCQDLSA-FXQIFTODSA-N Ser-Gln-Gln Chemical compound C(CC(=O)N)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CO)N IXUGADGDCQDLSA-FXQIFTODSA-N 0.000 description 1
- UFKPDBLKLOBMRH-XHNCKOQMSA-N Ser-Glu-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CO)N)C(=O)O UFKPDBLKLOBMRH-XHNCKOQMSA-N 0.000 description 1
- XUDRHBPSPAPDJP-SRVKXCTJSA-N Ser-Lys-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CO XUDRHBPSPAPDJP-SRVKXCTJSA-N 0.000 description 1
- LRZLZIUXQBIWTB-KATARQTJSA-N Ser-Lys-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O LRZLZIUXQBIWTB-KATARQTJSA-N 0.000 description 1
- RXSWQCATLWVDLI-XGEHTFHBSA-N Ser-Met-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H]([C@@H](C)O)C(O)=O RXSWQCATLWVDLI-XGEHTFHBSA-N 0.000 description 1
- CKDXFSPMIDSMGV-GUBZILKMSA-N Ser-Pro-Val Chemical compound [H]N[C@@H](CO)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(O)=O CKDXFSPMIDSMGV-GUBZILKMSA-N 0.000 description 1
- HHJFMHQYEAAOBM-ZLUOBGJFSA-N Ser-Ser-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O HHJFMHQYEAAOBM-ZLUOBGJFSA-N 0.000 description 1
- AABIBDJHSKIMJK-FXQIFTODSA-N Ser-Ser-Met Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(O)=O AABIBDJHSKIMJK-FXQIFTODSA-N 0.000 description 1
- YEDSOSIKVUMIJE-DCAQKATOSA-N Ser-Val-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O YEDSOSIKVUMIJE-DCAQKATOSA-N 0.000 description 1
- 241000607764 Shigella dysenteriae Species 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- MQCPGOZXFSYJPS-KZVJFYERSA-N Thr-Ala-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O MQCPGOZXFSYJPS-KZVJFYERSA-N 0.000 description 1
- KEGBFULVYKYJRD-LFSVMHDDSA-N Thr-Ala-Phe Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 KEGBFULVYKYJRD-LFSVMHDDSA-N 0.000 description 1
- XYEXCEPTALHNEV-RCWTZXSCSA-N Thr-Arg-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O XYEXCEPTALHNEV-RCWTZXSCSA-N 0.000 description 1
- LGNBRHZANHMZHK-NUMRIWBASA-N Thr-Glu-Asp Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(=O)O)C(=O)O)N)O LGNBRHZANHMZHK-NUMRIWBASA-N 0.000 description 1
- UDQBCBUXAQIZAK-GLLZPBPUSA-N Thr-Glu-Glu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O UDQBCBUXAQIZAK-GLLZPBPUSA-N 0.000 description 1
- HJOSVGCWOTYJFG-WDCWCFNPSA-N Thr-Glu-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)O)N)O HJOSVGCWOTYJFG-WDCWCFNPSA-N 0.000 description 1
- KCRQEJSKXAIULJ-FJXKBIBVSA-N Thr-Gly-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O KCRQEJSKXAIULJ-FJXKBIBVSA-N 0.000 description 1
- XPNSAQMEAVSQRD-FBCQKBJTSA-N Thr-Gly-Gly Chemical compound C[C@@H](O)[C@H](N)C(=O)NCC(=O)NCC(O)=O XPNSAQMEAVSQRD-FBCQKBJTSA-N 0.000 description 1
- QQWNRERCGGZOKG-WEDXCCLWSA-N Thr-Gly-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O QQWNRERCGGZOKG-WEDXCCLWSA-N 0.000 description 1
- DJDSEDOKJTZBAR-ZDLURKLDSA-N Thr-Gly-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O DJDSEDOKJTZBAR-ZDLURKLDSA-N 0.000 description 1
- KBBRNEDOYWMIJP-KYNKHSRBSA-N Thr-Gly-Thr Chemical compound C[C@H]([C@@H](C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)O)N)O KBBRNEDOYWMIJP-KYNKHSRBSA-N 0.000 description 1
- FQPDRTDDEZXCEC-SVSWQMSJSA-N Thr-Ile-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(O)=O FQPDRTDDEZXCEC-SVSWQMSJSA-N 0.000 description 1
- NDXSOKGYKCGYKT-VEVYYDQMSA-N Thr-Pro-Asp Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(O)=O NDXSOKGYKCGYKT-VEVYYDQMSA-N 0.000 description 1
- UQCNIMDPYICBTR-KYNKHSRBSA-N Thr-Thr-Gly Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O UQCNIMDPYICBTR-KYNKHSRBSA-N 0.000 description 1
- QGVBFDIREUUSHX-IFFSRLJSSA-N Thr-Val-Gln Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O QGVBFDIREUUSHX-IFFSRLJSSA-N 0.000 description 1
- QNXZCKMXHPULME-ZNSHCXBVSA-N Thr-Val-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)O)N)O QNXZCKMXHPULME-ZNSHCXBVSA-N 0.000 description 1
- 102000011923 Thyrotropin Human genes 0.000 description 1
- 108010061174 Thyrotropin Proteins 0.000 description 1
- 229940123445 Tricyclic antidepressant Drugs 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- CDRYEAWHKJSGAF-BPNCWPANSA-N Tyr-Ala-Met Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(O)=O CDRYEAWHKJSGAF-BPNCWPANSA-N 0.000 description 1
- REJBPZVUHYNMEN-LSJOCFKGSA-N Val-Ala-His Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](C(C)C)N REJBPZVUHYNMEN-LSJOCFKGSA-N 0.000 description 1
- LIQJSDDOULTANC-QSFUFRPTSA-N Val-Asn-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](C(C)C)N LIQJSDDOULTANC-QSFUFRPTSA-N 0.000 description 1
- XLDYBRXERHITNH-QSFUFRPTSA-N Val-Asp-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)C(C)C XLDYBRXERHITNH-QSFUFRPTSA-N 0.000 description 1
- DDNIHOWRDOXXPF-NGZCFLSTSA-N Val-Asp-Pro Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N1CCC[C@@H]1C(=O)O)N DDNIHOWRDOXXPF-NGZCFLSTSA-N 0.000 description 1
- YLHLNFUXDBOAGX-DCAQKATOSA-N Val-Cys-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N YLHLNFUXDBOAGX-DCAQKATOSA-N 0.000 description 1
- URIRWLJVWHYLET-ONGXEEELSA-N Val-Gly-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)C(C)C URIRWLJVWHYLET-ONGXEEELSA-N 0.000 description 1
- LAYSXAOGWHKNED-XPUUQOCRSA-N Val-Gly-Ser Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O LAYSXAOGWHKNED-XPUUQOCRSA-N 0.000 description 1
- LYERIXUFCYVFFX-GVXVVHGQSA-N Val-Leu-Glu Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](C(C)C)N LYERIXUFCYVFFX-GVXVVHGQSA-N 0.000 description 1
- SYSWVVCYSXBVJG-RHYQMDGZSA-N Val-Leu-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)N)O SYSWVVCYSXBVJG-RHYQMDGZSA-N 0.000 description 1
- ZRSZTKTVPNSUNA-IHRRRGAJSA-N Val-Lys-Leu Chemical compound CC(C)C[C@H](NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)C(C)C)C(O)=O ZRSZTKTVPNSUNA-IHRRRGAJSA-N 0.000 description 1
- OFQGGTGZTOTLGH-NHCYSSNCSA-N Val-Met-Gln Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N OFQGGTGZTOTLGH-NHCYSSNCSA-N 0.000 description 1
- DOFAQXCYFQKSHT-SRVKXCTJSA-N Val-Pro-Pro Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DOFAQXCYFQKSHT-SRVKXCTJSA-N 0.000 description 1
- DLLRRUDLMSJTMB-GUBZILKMSA-N Val-Ser-Met Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)O)N DLLRRUDLMSJTMB-GUBZILKMSA-N 0.000 description 1
- 102100026383 Vasopressin-neurophysin 2-copeptin Human genes 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- ATNOAWAQFYGAOY-GPTZEZBUSA-J [Na+].[Na+].[Na+].[Na+].Cc1cc(ccc1\N=N\c1ccc2c(cc(c(N)c2c1O)S([O-])(=O)=O)S([O-])(=O)=O)-c1ccc(\N=N\c2ccc3c(cc(c(N)c3c2O)S([O-])(=O)=O)S([O-])(=O)=O)c(C)c1 Chemical compound [Na+].[Na+].[Na+].[Na+].Cc1cc(ccc1\N=N\c1ccc2c(cc(c(N)c2c1O)S([O-])(=O)=O)S([O-])(=O)=O)-c1ccc(\N=N\c2ccc3c(cc(c(N)c3c2O)S([O-])(=O)=O)S([O-])(=O)=O)c(C)c1 ATNOAWAQFYGAOY-GPTZEZBUSA-J 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 108010044940 alanylglutamine Proteins 0.000 description 1
- 108010047495 alanylglycine Proteins 0.000 description 1
- 108010011559 alanylphenylalanine Proteins 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000001949 anaesthesia Methods 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002429 anti-coagulating effect Effects 0.000 description 1
- 230000003178 anti-diabetic effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003793 antidiarrheal agent Substances 0.000 description 1
- 108010018691 arginyl-threonyl-arginine Proteins 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 108010077245 asparaginyl-proline Proteins 0.000 description 1
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 1
- 108010069205 aspartyl-phenylalanine Proteins 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 229940125717 barbiturate Drugs 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 208000006752 brain edema Diseases 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 229960004126 codeine Drugs 0.000 description 1
- 235000015246 common arrowhead Nutrition 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229960000258 corticotropin Drugs 0.000 description 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 235000021051 daily weight gain Nutrition 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 201000010064 diabetes insipidus Diseases 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- KAKKHKRHCKCAGH-UHFFFAOYSA-L disodium;(4-nitrophenyl) phosphate;hexahydrate Chemical compound O.O.O.O.O.O.[Na+].[Na+].[O-][N+](=O)C1=CC=C(OP([O-])([O-])=O)C=C1 KAKKHKRHCKCAGH-UHFFFAOYSA-L 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 210000003890 endocrine cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 230000028023 exocytosis Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 108010006664 gamma-glutamyl-glycyl-glycine Proteins 0.000 description 1
- 239000003629 gastrointestinal hormone Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 1
- 108010010147 glycylglutamine Proteins 0.000 description 1
- 108010037850 glycylvaline Proteins 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 108010040030 histidinoalanine Proteins 0.000 description 1
- 108010018006 histidylserine Proteins 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000012151 immunohistochemical method Methods 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000036046 immunoreaction Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000001153 interneuron Anatomy 0.000 description 1
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 1
- 230000003870 intestinal permeability Effects 0.000 description 1
- 238000010212 intracellular staining Methods 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 108010034529 leucyl-lysine Proteins 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- RDOIQAHITMMDAJ-UHFFFAOYSA-N loperamide Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 RDOIQAHITMMDAJ-UHFFFAOYSA-N 0.000 description 1
- 229960001571 loperamide Drugs 0.000 description 1
- 108010009298 lysylglutamic acid Proteins 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 208000004396 mastitis Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 108010005942 methionylglycine Proteins 0.000 description 1
- HOVAGTYPODGVJG-ZFYZTMLRSA-N methyl alpha-D-glucopyranoside Chemical compound CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HOVAGTYPODGVJG-ZFYZTMLRSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012120 mounting media Substances 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 208000003786 myxedema Diseases 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 239000004081 narcotic agent Substances 0.000 description 1
- 230000003533 narcotic effect Effects 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 230000002644 neurohormonal effect Effects 0.000 description 1
- FSVCQIDHPKZJSO-UHFFFAOYSA-L nitro blue tetrazolium dichloride Chemical compound [Cl-].[Cl-].COC1=CC(C=2C=C(OC)C(=CC=2)[N+]=2N(N=C(N=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)[N+]([O-])=O)=CC=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=C([N+]([O-])=O)C=C1 FSVCQIDHPKZJSO-UHFFFAOYSA-L 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229940127240 opiate Drugs 0.000 description 1
- 239000003399 opiate peptide Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 150000002990 phenothiazines Chemical class 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 235000008476 powdered milk Nutrition 0.000 description 1
- 208000013846 primary aldosteronism Diseases 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- INCIMLINXXICKS-UHFFFAOYSA-M pyronin Y Chemical compound [Cl-].C1=CC(=[N+](C)C)C=C2OC3=CC(N(C)C)=CC=C3C=C21 INCIMLINXXICKS-UHFFFAOYSA-M 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000026267 regulation of growth Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 206010039083 rhinitis Diseases 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N serine Chemical compound OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108010048818 seryl-histidine Proteins 0.000 description 1
- 108010026333 seryl-proline Proteins 0.000 description 1
- 229940007046 shigella dysenteriae Drugs 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000013222 sprague-dawley male rat Methods 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 150000005075 thioxanthenes Chemical class 0.000 description 1
- 229960000874 thyrotropin Drugs 0.000 description 1
- 230000001748 thyrotropin Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 239000003029 tricyclic antidepressant agent Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/142—Amino acids; Derivatives thereof
- A23K20/147—Polymeric derivatives, e.g. peptides or proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/08—Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/12—Antidiarrhoeals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
- A61P25/36—Opioid-abuse
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/16—Otologicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/38—Drugs for disorders of the endocrine system of the suprarenal hormones
- A61P5/40—Mineralocorticosteroids, e.g. aldosterone; Drugs increasing or potentiating the activity of mineralocorticosteroids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/12—Antidiuretics, e.g. drugs for diabetes insipidus
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to new antisecretory factors having fluid transport and/or inflammatory reactions regulating properties as well as polynucleic regulating properties, and polynucleic acids coding therefor, and the use thereof.
- A. edema which is characterized by the abnormal accumulation of fluid in the intercellular tissue spaces or body cavities, or
- B. dehydration which, in a strict sense, means loss of water only, but is in fact commonly used to describe the combined loss of water and ions.
- edema or dehydration are: diarrheas, inflammatory bowel diseases, brain edema, asthma, rhinitis, conjunctivitis, arthritis, glaucoma, various forms of pathological intracranial pressure (increase or decrease), pressure alteration in the middle ear such as Morbus Mé Chrysler, dermatitis, chemical or physical derangement of the skin and skin adjacent glands such as mastitis, various forms of endocrine disorders, such as diabetes insipidus.
- kidney diseases such as pyslonephritis and glomerulonephritis
- metabolic diseases such as myxedema and acute intermittent porphyria
- side effects during treatment with various drugs such as antidiabetics, tricyclic antidepressants, cytostatics, barbiturates, narcotics and narcotic analogues.
- Diarrhea is caused by a change in the permeability in the gut for electrolytes and water. This disturbance is often caused by bacterial enterotoxins such as those produced by Escherichia coli, Campylobacter jejuni, Vibrio cholerae, Shigella dysenteriae and Chostridium difficile. The disturbance could also be caused by intestinal inflammation. Since the uptake of water is coupled to the uptake of electrolytes and nutrients, animals with frequent diarrhea suffers from malnutrition, resulting in retardation of the daily weight gain in the growing animal. The body counteracts these reactions by neuro-hormonal mechanisms such as the release of somatostatin and opiate peptides from interneurons in the intestinal mucosa. These polypeptides are capable of reversing fluid secretion and diarrhea.
- AF antisecretory factor
- Antimicrobial drugs have been widely used in the treatment of diarrhea in both human and veterinarian medicine. They are also used as feed additives for pigs, calves and chicken. However, due to the rapid development of resistant bacteria in the gut, the use of antibiotics against enteritis is generally not accepted in human medicine and their use is also diminishing in veterinarian medicine.
- the antisecretory factor has so far not been used directly for treatment of diarrhea or malnutrition due to the difficulties involved in obtaining a pure preparation of this protein.
- AF antisecretory factor
- Pigs given this feed obtained high levels of AF-like proteins and had a significant increase in the daily growth rate compared to matched controls.
- AF in rats challenged with toxin A from C. difficile protects not only against intestinal secretion but also against inflammation and bleeding in the gut.
- a major object of the present invention is to provide a new recombinant protein and homologues and fragments (peptides) thereof for use in normalizing pathological fluid transport.
- proteins and peptides are collectively called antisecretory factors (AF).
- AF antisecretory factors
- the use of AF also partly inhibits, or totally eliminates the development of inflammatory reactions of various aetiologies. Reconstitution back to normal (fluid transport or inflammation) is obtained by the use of proteins or peptides. Further the AF proteins or peptides are effectively absorbed via various mucus membranes without losing in potency (when compared to intravenous administration). Consequently, a multitude of treatment regimens exist, and a correctly administrated protein or peptide make it possible to rapidly reconstitute a deranged fluid (water and ion) balance, an inflammatory reaction, or both.
- rAF recombinant AF
- homologues and fragments thereof could be used for immunodetection, as feed additive for growing animals and as antidiarrheal and drugs against diseases involving edema, dehydration and/or inflammation.
- a recombinant protein having essentially the amino acid sequence shown in SEQ ID NO:2, or homologues or fragments thereof.
- composition for normalizing pathological fluid transport and/or inflammatory reactions comprising as an active principal an effective amount of the recombinant protein having essentially the amino acid sequence shown in SEQ ID NO:2, or homologues or fragments thereof.
- Feed for normalizing pathological fluid transport and/or inflammatory reactions in vertebrates comprising as an active agent a recombinant protein having essentially the amino acid sequence shown in SEQ ID NO:2, or homologues or fragments thereof, or an organism capable of producing such a protein or homologues or fragments thereof.
- a process of normalizing pathological fluid transport and/or inflammatory reactions in vertebrates comprising administering to the vertebrate an effective amount of a recombinant protein having essentially the amino acid sequence shown in SEQ ID NO: 1, or homologues or fragments thereof, or an organism producing said protein or homologues or fragments.
- nucleic acids coding for a recombinant protein having essentially the sequence shown in SEQ ID NO:2, or homologues or fragments thereof.
- Vector comprising nucleic acids coding for a recombinant protein having essentially the amino acid sequence shown in SEQ. ID No. 1, or homologues or fragments thereof.
- Host except human comprising a vector including nucleic acids coding for a recombinant protein having essentially the amino acid sequence shown in SEQ. ID No. 1, or homologues or fragments thereof.
- organisms capable of producing the recombinant protein use can be made of different types of organisms, such as recombinant bacteria and eucaryotic organisms, such as yeast, plants and vertebrates except humans.
- RNA sequence of the new cDNA was determined and shown to be unique.
- oligonucleotide probes were constructed which hybridize with human and porcine pituitary RNA.
- the size of this RNA about 1400 basepairs, complies with the size of the sequenced cDNA comprising 1309 basepairs plus a poly(A)tail.
- a partial cDNA sequence from rat pituitary gland has been shown to be identical with that of the human cDNA reflecting a ubiquitous structure conserved in AF genes from different species. This resemblance makes it possible to use the same oligonucleotide probes to identify AF-coding RNA and DNA from different species.
- rAF recombinant AF
- the AF protein in form of a fusion protein with gluthathione S-transferase was expressed in large amounts in E. coli . and purified to homogeneity by affinity chromatography. After cleavage of the fusion protein with thrombin, the recombinant AF (rAF) was shown to be extremely potent, 44 ng (10 ⁇ 12 mol) giving a half-maximal inhibition of cholera toxin-induced fluid secretion in rat intestine.
- the fluid secretion was measured by the intestinal loop model: a section (loop) of the small intestine is ligated by means of two sutures; in the loop a certain amount of enterotoxin is injected. If antisecretory drugs are tested they are injected between one hour before and two hours after toxin challenge. The injection was made by three different routes; intravenously, intraintestinally and intranasally. The fluid is accumulating in the loop 5 h after toxin challenge. The secretion is calculated from the weight of the accumulated fluid per cm intestine.
- sequence of the protein was determined both directly by amino acid sequencing and indirectly by deduction from the cDNA sequence.
- rAF recombinant AF inhibits secretion also when injected after toxin challenge in contrast to the preparations of natural AF tested which seem to efficient only when injected before the toxin.
- rAF could be used both prophylactically and therapeutically.
- rAF and its peptide fragments were shown to inhibit cytotoxic reactions and inflammation in the gut caused by toxin A from Clostridium difficile.
- rAF and its fragments were shown to reverse pathological permeability changes induced by cholera toxin not only in the intestinal mucosa but also in plexus choroideus which regulates the fluid pressure in the brain.
- Antisera against rAF were produced in rabbits and used in enzyme-linked immuno assays (ELISA). This assay might be used to measure AF in body fluids or feed.
- ELISA enzyme-linked immuno assays
- the antibodies were also shown to be efficient for detection of AF in tissue sections by means of immunohistochemical techniques and for detection of AF in Western-blot.
- Antisecretory factor was prepared from pig blood by means of affinity chromatography on agarose and isoelectric focusing. To one liter of pig blood (containing anticoagulating substances) 1 g of sodium thiosulfate and 1 mg of phenylmethylsulfonylfluoride were added. The blood cells were separated by centrifugation and the clear plasma was eluted through a column with Sepharose 6B (Pharmacia LKB Biotechnology Sweden), the gel volume corresponding to about 10% of the volume of the solution.
- the rabbits were immunized and the sera tested for their capacity to stain intracellular material in sections of human pituitary gland (method described in Example 6). Only one of the sera showed specific and distinct intracellular staining without staining extracellular matrix proteins. This antiserum was selected for screening of a cDNA/lambda phage GT11 library from human pituitary gland expressing proteins in E. coli.
- Phage DNA from AF recombinants was isolated with Wizard Lambda Preps (Promega) and digested with EcoR1. The inserts were purified with Sephaglas BandPrep Kits (Pharmacia), recloned into pGex-1 ⁇ T vector (Pharmacia) as described by the manufacturer and transfected into Epicurian Coli XLI-Blue, Top 1 cells or BL21 cells (all three from Stratagen). rAF or rpeptides were prepared in BL21 cells when not stated otherwise (2).
- RACE rapid amplification of cDNA ends
- a modified RACE-method that generates 5′-RACE-Ready cDNA with an anchor oligonucleotide ligated to the 3′-ends of the human brain cDNA molecules was purchased from Clontech Laboratories.
- RACE fragment was further amplified in order to express the corresponding peptides and test for their biological properties.
- the position of the base and amino acid at the start and end of these oligonucleotide fragments and their corresponding peptides are shown in Table 1.
- Porcine and bovine cDNA (Clontech Laboratories) was used as templet for amplifying fragments corresponding to N3 in Table 1.
- Variation of the sequence was also inserted artificially by site directed mutagenesis in which method various oligonucleotides corresponding to position 168-193 was synthesized in order to replace one by one of amino acid 35-42 (positions as shown in SEQ ID NO:2).
- the amplified DNA fragment was cloned into pGex-1 ⁇ T vector by using the EcoR1 site built into the anchor and the gene-specific primer.
- double stranded cDNA from human pituitary gland and brain (Clontach) were amplified with primer pair C/D containing an extra EcoR1-cleavage site (Fig. 1 b ).
- the primers were designed to allow the entire open reading frame (ORF) to be amplified.
- the pituitary and brain PCR-products of expected size were digested with ECOR1, isolated and cloned into the plasmid pGex-1 ⁇ T vector.
- DNA from plasmid pGex-1 ⁇ T was used as a template for sequencing of the inserts by dideoxy-chain-termination method (15) using the Sequence version 2.0 kit (U.S. Biochemical Corp.).
- Initial forward and reverse primers copying regions of pGex-1 ⁇ T immediately upstream and downstream of inserted DNA were obtained from Pharmacia.
- Subsequent primers were synthesized (Scandinavian Gene Synthesis AB) on the basis of sequence information obtained.
- Three different PCR clones were sequenced in order to avoid base-exchange by Taq polymerase in the 5′-RACE method.
- Nucleotide sequence and the deduced protein sequence data were compiled and analyzed by using MacVector 4.1 (Eastman Chemical Co.). To predict the corresponding amino acid sequence of the cDNA inserts, codon usage of different reading frames was compared and gave one large open reading frame. Interrogation of DNA and protein sequence data was carried out by use of an Entrez CD-ROM disc (National Center for Biotechnology Information, Bethesda, USA).
- the fragment had a total length of 376 bp (not including the synthetic nucleotide arm at the 5′-end).
- the total reconstructed CDNA contained 1309 basepairs followed a poly-A tail, which was preceded by a poly-A signal (FIG. 1, positions 1289-1295).
- the cDNA-clones obtained by immunological screening and by PCR amplification of the entire CDNA were ligated to pGex-1 ⁇ T.
- This vector allows expression of foreign proteins in E. coli as fusions to the C terminus of the Schistosoma japonicum 26 kDa glutathione S-transferase (GST), which can be affinity purified under nondenaturing conditions with help of the kit provided from Pharmacia. Briefly, overnight cultures of E. coli transformed with recombinant pGex-1 ⁇ T plasmids were diluted in fresh medium and grown for a further 3 h at 37° C.
- Protein expression was induced by 0.1 mM IPTG (isopropyl-beta-D-thiogalactopyranoside), and after a further 4 h of growth at 30° C., the calls were pelleted and resuspended in PBS.
- Cells were lyzed by sonication, treated with 1% Triton X-100 and centrifuged at 12000X g for 10 min; the supernatant containing the expressed fusion proteins was purified by passing the lysates through glutathione agarose (Pharmacia).
- the fusion proteins were either eluted by competition with free glutathione or were cleaved overnight with 10 U bovine thrombin to remove the AF-protein from the GST affinity tail.
- the entire method of using the pGex plasmid and purifying the recombinant proteins or peptides was a performed by means of the kits provided from Pharmacia.
- the full-length transcript was isolated by using PCR-amplification of pituitary and brain cDNA. Using the primer pair C/D, 1215 bp identical to the sequence of clone-4 (FIG. 1, SEQ ID NO: 1) was isolated. The open-reading frame encoded 382 amino acids with a calculated molecular mass of 41.14 kDa and a calculated pI of 4.9.
- the AF clones-1, 2 and 3 as well as the oligonucleotides N1-N5 were ligated into the pGEX-1 ⁇ T plasmid vector so that the ORF was in frame with the glutathione S-transferase (GST) protein.
- GST glutathione S-transferase
- the constructs were transformed into E. coli , and expression of fusion proteins was induced with IPTG.
- the purified fusion proteins and the thrombin-cleaved AF protein or peptide were subjected to SDS-PACE and Western blotting using antiserum against porcine antisecretory factor (FIG. 2). Coomassie brilliant blue staining of the proteins revealed discrete bands for each protein except for the GST-AF-1 protein which manifested degradation into smaller components.
- the first ten residues of the protein appear to be relatively hydrophobic when analyzed according to KyteDoolittle (22) and might constitute a signal peptide, which is cleaved out prior to exocytosis of the protein.
- This interpretation is supported by the Western blot analyzes (FIG. 3) in which the recombinant protein appeared to have a slightly higher molecular mass than the protein extract from pituitary gland. Some of this difference, however, might also be due to the additional five amino acids in the recombinant protein constituting the trombin cleavage site of the fusion protein.
- the sensitivity of the antiserum was tested with a dot blot assay.
- GST-AF-2 was applied on an ECL nitrocellulose membrane in 1/5 dilutions, and the antiserum diluted 1:1000.
- the membrane was blocked with 1% bovine serum albumin (BSA) in PBS at 4° C. for 16 h, and then incubated for 11 ⁇ 2 h with a 1:800 dilution of rabbit anti-GST-AF or porcine AF antiserum.
- BSA bovine serum albumin
- the blot was developed with alkaline phosphatese-conjugated goat anti-rabbit immunoglobulin followed by 5-bromo-4-chloro-3-indolyl phosphate and p-nitro blue tetrazolium (Boehringer Mannheim).
- the estimated limit for antigen detection was about 1 ng in this test.
- SDS-polyacrylamide gel electrophoresis SDS-PAGE of human and porcine pituitary gland extracts and pure AF-proteins was performed in 10% acrylamide minislab gels, essentially as described by Laemmli (4) with the modification that bis-acrylamide as a cross-linker was replaced by N,N′-diallyltartardiamide with the corresponding molarity. Pyronin Y (Sigma) was used as a marker of the electrophoretic front. Prestained molecular weight reference were purchased from BDH. Proteins were then either stained with Coomassie brilliant blue or transferred electrophoretically to 0.45 mm pore-size ECL nitrocellulose (Amershem) for immunoblotting. The subsequent incubations with BSA, conjugated anti-IgG and alkaline phosphatase substrate were the same as for the dot blot assay described above.
- ELISA assays were performed using anti-AF-1 and anti-AF-2 according to a previously described method (5). As shown in FIG. 3 b the sensitivity of the test with the crude antiserum was between 1-10 ⁇ g protein whereas the test with the affinity purified antibody had a sensitivity between 5 and 50 ng protein,
- RNA Human pituitary glands were obtained postmortem from Sahlgrenska Hospital (permission given by Swedish Health and Welfare Board; 2% transplantationslagen, 1975:190). To obtain RNA, pituitary glands were extracted with guanidinium thiocyanate RNA according to Chomczynski and Sacchi (6). Polyadenylated RNA was selected by means of a commercial kit (Pharmacia) using columns with oligodT-cellulose. In addition, a pool of human pituitary mRNA from 107 individuals purchased from Clontach was used. Five ⁇ g of each sample of poly(A+)RNA was glyoxal-treated and electrophoresed in a 1.2% agarose gel (7).
- hybridization solution contained 50% formamide, 5 ⁇ SSPE, 10 ⁇ Denhard's solution with 250 ⁇ g/ml denaturated low-MW DNA and 50 ⁇ g/ml polyadenylic acid.
- the blots were probed with four different antisense 28 bp oligonuclaotides comprising the positions 132-105 (primer E), 297-270 (primer F), 748-721 (primer G) and 833-806 (primer H) of the sequence (FIG.
- probes were 3′-end labelled with terminal transferase (Boehringer Mannheim) plus [ ⁇ 32p ]ddATP (Amersham) and purified on Nick columns (Pharmacia). Five postwashes in 5 ⁇ SSPE/0.1% SDS-0.5 ⁇ SSPE/0.1% SDS were made at 42° C. for 30 min each time, with a repeat of the last wash. Filters were exposed to Hyperfilm MP (Amersham) for 7 days.
- the fixed pituitary glands were frozen in liquid nitrogen, and cryo sections, 7 ⁇ m thick, were prepared. From each sample 5-10 sections comprising different parts of the gland were fastened to microscope slides. The sections were blocked in 5% fat-free dried milk and incubated with primary rabbit antiserum (anti-GST-AF-2 fusion protein) diluted 1:4000-1:8000 in a humid chamber overnight at 4° C. After rinsing in buffer, the specimens were incubated for 1 h at 23° C. with alkaline phosphatase-conjugated swine anti-rabbit immunoglobulins diluted 1:50 (Dako A/S). The immunoreaction was visualized with phosphatase substrates as described elsewhere (8). Control sections were incubated with immune serum absorbed with an excess of OST-AF-2 protein or with all incubation steps except the primary antibody.
- primary rabbit antiserum anti-GST-AF-2 fusion protein
- the antisecretory activity was measured in a rat intestinal loop model previously described (9).
- a jejunal loop was challenged with 3 ⁇ g of cholera toxin.
- Either different doses of purified AF-1-proteins or PBS (control) was injected before or after the challenge with cholera toxin.
- the weight of the accumulated fluid in the intestinal loop was recorded after five hours.
- Each AF preparation was tested in at least six rats. Fisher's PLSD was used for statistical analysis of the data.
- clone-1 protein Nine ng of clone-1 protein is sufficient to reduce the response by 34%, whereas 44 ng (10 ⁇ 12 mol) and 220 ng reduced it by 46% and 78%, respectively.
- the biological activity of recombinant AF is greater than that of any enterotoxin known to us and greater than that of any intestinal hormone or neuropeptide modifying water and electrolyte transport.
- the level of activity of human rAF in rat is surprisingly high which probably reflects a ubiquitous structure conserved in rAF molecules from different species. This hypothesis is supported by the cross-reactivity between human and porcine material obtained in the Western blot and Northern blot analyzes.
- the rAF was produced in Epicurian Coli XL-1 cells. In these cells much of the produced rAF was degradated into smaller peptides. When rAF was produced in BL21 cells only a small portion of the rAF was degradated while in Top 1 cells no degradation was observed. Surprisingly the biological activity was proportional to the extent of degradation, i.e. more degradation resulted in higher activity. Therefore various shorter fragments were produced in order to test for their possible biological activity.
- X 2 is H, R or K
- X 3 is S, L or another neutral amino acid
- X 4 is T or A. TABLE 1 Inhibition of cholera secretion*** Code Oligonucleotide* Peptide** pmol ED50 N1 63-301 1-80 + 4 N2 168-301 36-80 + 6 N3 168-215 36-51 + 3 N4 122-170 21-36 ⁇ N5 186-269 42-69 ⁇ P3 S.P.S.*** 35-46 + 7 P1 S.P.S. 35-42 + 5 P2 S.P.S. 36-41 ⁇
- the rat was subjected to transcardial perfusion via the left ventricle-right atrium (using a peristaltic pump [Cole Parmer Instruments, Chicago, Ill., USA]) with 200 ml of 4° C. PBS/Alsevier's (1/1 ratio) solution during a period of some 150 sea, performed under ether anaesthesia. This procedure was undertaken in order to remove all of the EB present in the vascular system, leaving only the EB in the interstitial tissue to be detected by the formamide extraction of the dye.
- the brain and a part of the small intestine were sampled and frozen on dry ice and cryostat sections, 8 ⁇ m thick, were prepared.
- the sections were air-dried and mounted in a xylene-containing mounting media.
- the sections were viewed in a Zeiss fluorescence microscope using a filter combination identical to that used for rhodamin-emitted fluorescence.
- FIGS. 10 and 11 demonstrate that the fluorescent intensity (white color) is of a similar magnitude in both the small intestine (FIG. 10) and in the plexus choroideus (FIG. 11) in group A (P1 iv+CT po) and C(PBS iv+PBS po).
- group A P1 iv+CT po
- C(PBS iv+PBS po) C(PBS iv+PBS po)
- the results clearly demonstrate that injection of the octapeptide prior to toxin challenge inhibits the CT-induced extravascular penetration of Evans blue. The results suggest that this holds true not only in the vascular system of the small intestine, but also in the plexus choroideus of the lateral ventricles of the brain.
- FIG. 1 a and continued on FIG. 1 b Nucleic acid sequence (SEQ ID NO: 1) and deduced amino acid sequence (SEQ ID NO:2) of the new human protein. The confirmed amino acid sequence is underlined.
- Fig. 1 c Horizontal map showing cloned cDNA and oligonucleotide primers.
- FIG. 2 Coomassie brilliant blue-stained SDS-polyacrylamide minlgel (A) and immunoblot probed with antisera against porcine AF (B). Lanes with unprimed numbers contain glutathione-agarose-purified GST-AF fusion proteins AF-1, AF-2 and AF-3, whereas lanes with primed numbers contain the fusion proteins cleaved with thrombin. Molecular weight references (R), (BDH), are indicated on the left. The GST-AF-1 fusion protein is highly degraded but the immunoblot analysis shows only the detection of a full-length protein and spontaneous thrombin cleavage product. There is a 26 kDa product in the GST-AF-3 protein, probably the glutathione S-transferase-tail that has been independently expressed.
- FIG. 3 a Western blot using antiserum against recombinant protein AF-2.
- R molecular weight standard
- FIG. 3 b Enzyme linked immuno-assay (ELISA) of rAF using crude antiserum and affinity purified antibodies raised in rabbit.
- ELISA Enzyme linked immuno-assay
- FIG. 5 Cryosections of adenohypophysis stained with antiserum against recombinant protein GST-AF-2.
- A Sections incubated with immune serum showing scattered cells with varying degrees of positive immunoreactivity (solid arrows). Many calls completely lack staining (open arrows).
- B Serial sections to A incubated with immune serum preabsorbed with excess of recombinant protein GSTAF-2, There is no specific staining of the cells.
- FIG. 6 Biological activity of recombinant protein AF-1 testing inhibition of cholera toxin-induced fluid secretion. Graded doses of the protein were injected intravenously in rat; three ⁇ g of cholera toxin was injected into an intestinal loop; after five hours the accumulated fluid (mg/cm intestine) in the loop was measured. Each value represents the mean ⁇ S.A.E. of a group of six animals.
- FIG. 7 Biological activity of intravenously injected rAF-1; 0.5 ⁇ g of rAF was administrated 20-30 sec before or 90 min after challenge with 3 ⁇ g of cholera toxin in an intestinal loop of rat.
- FIG. 8 Biological activity of intraluminarly injected rAF-1; 3 ⁇ g of rAF was injected 20-30 sec before or 90 min after challenge with 3 ⁇ g of cholera toxin in an intestinal loop of rat; the rAF was injected about 5 cm proximate to the loop in which the toxin was injected.
- FIG. 9 A ( ⁇ 2.5) is control (PBS) loops showing cellular debris in the intestinal lumen (L), but no staining of the remaining mucosa, which suggests a total destruction of the epithelial lining.
- B (0.5 ⁇ l of P1 prior to toxin challenge) shows a clearly delineated epithelial lining forming villi, suggesting a conserved and normal intestinal mucosa.
- C ( ⁇ 10) shows the destructed mucosa in the PBS-treated control group, and D shows the corresponding mucosa in the experimental (P1-treated) group.
- FIG. 10 Evans blue fluorescence in jejunal specimens from three groups of rats treated with cholera toxin (CT) or control buffer (PBS); pretreatment with antisecretory peptide P1 or control buffer (PBS).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Diabetes (AREA)
- Zoology (AREA)
- Endocrinology (AREA)
- Polymers & Plastics (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- Ophthalmology & Optometry (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Hematology (AREA)
- Pulmonology (AREA)
- Rheumatology (AREA)
- Psychiatry (AREA)
- Pain & Pain Management (AREA)
- Addiction (AREA)
- Animal Husbandry (AREA)
- Obesity (AREA)
- Food Science & Technology (AREA)
- Immunology (AREA)
Abstract
A new recombinant protein called Antisecretory Factor (rAF) and homologues and peptide fragments thereof are described. The protein and the homologues and fragments thereof are useful for normalising pathological fluid transport and/or inflammatory reactions in animals including humans. Antibodies against AF or homologues or fragments thereof are described. Nucleic acids coding for the protein or for homologues or fragments thereof are also described as well as vectors and hosts comprising the nucleic acids. The rAF and homologues and fragments thereof could be used for immunodetection, as feed additive for growing animals and as antidiarrheal and drugs against diseases involving edema, dehydration and/or inflammation.
Description
- This application is a continuation of U.S. application Ser. No. 09/029,333, filed on Mar. 13, 1998, which was a national stage filing under 35 U.S.C. § 371 of International Application No. PCT/SE96/01049 filed on Aug. 23, 1996, which International Application was published by the International Bureau in English on Mar. 6, 1997, and which claims priority to Swedish Application No. 9502936-9 filed Aug. 24, 1995.
- The present invention relates to new antisecretory factors having fluid transport and/or inflammatory reactions regulating properties as well as polynucleic regulating properties, and polynucleic acids coding therefor, and the use thereof.
- All cells and tissues of the body are critically dependent on a constant and normal fluid environment in combination with an adequate blood supply. Derangement of one or both of these supporting systems may rapidly become fatal. Concerning fluid imbalance, two principally different systems exist:
- A. edema, which is characterized by the abnormal accumulation of fluid in the intercellular tissue spaces or body cavities, or
- B. dehydration, which, in a strict sense, means loss of water only, but is in fact commonly used to describe the combined loss of water and ions.
- The most common forms of either edema or dehydration are: diarrheas, inflammatory bowel diseases, brain edema, asthma, rhinitis, conjunctivitis, arthritis, glaucoma, various forms of pathological intracranial pressure (increase or decrease), pressure alteration in the middle ear such as Morbus Ménière, dermatitis, chemical or physical derangement of the skin and skin adjacent glands such as mastitis, various forms of endocrine disorders, such as diabetes insipidus. Conn's syndrome, Cushing's syndrome and Morbus Addison, kidney diseases such as pyslonephritis and glomerulonephritis, metabolic diseases such as myxedema and acute intermittent porphyria, side effects during treatment with various drugs such as antidiabetics, tricyclic antidepressants, cytostatics, barbiturates, narcotics and narcotic analogues.
- Diarrhea is caused by a change in the permeability in the gut for electrolytes and water. This disturbance is often caused by bacterial enterotoxins such as those produced by Escherichia coli, Campylobacter jejuni, Vibrio cholerae, Shigella dysenteriae and Chostridium difficile. The disturbance could also be caused by intestinal inflammation. Since the uptake of water is coupled to the uptake of electrolytes and nutrients, animals with frequent diarrhea suffers from malnutrition, resulting in retardation of the daily weight gain in the growing animal. The body counteracts these reactions by neuro-hormonal mechanisms such as the release of somatostatin and opiate peptides from interneurons in the intestinal mucosa. These polypeptides are capable of reversing fluid secretion and diarrhea.
- The recently described antisecretory factor (AF) has been partially purified from pig pituitary gland and shown to reverse pathological secretion induced by various enterotoxins. High levels of AF in sow milk protect the suckling piglets against neonatal diarrhea.
- Antimicrobial drugs have been widely used in the treatment of diarrhea in both human and veterinarian medicine. They are also used as feed additives for pigs, calves and chicken. However, due to the rapid development of resistant bacteria in the gut, the use of antibiotics against enteritis is generally not accepted in human medicine and their use is also diminishing in veterinarian medicine.
- Other antidiarrheal drugs counteract the secretion in the intestinal mucosa. Since these drugs are directed against the host animal, it is unlikely that resistance against the drugs will develop. These types of drugs include nerve-active drugs like phenothiazines and thioxanthenes. Due to some serious side effects these types of drugs have not been accepted for treatment of diarrhea in most countries. Other drugs are derivatives of opiates like codeine and loperamide since these drugs mainly acts by inhibiting intestinal mobility, they also inhibit the clearance of pathogenic bacteria from the gut and should definitely not be recommended against dysenteric bacteria or parasites. Derivatives of somatostatin have been introduced recently, but have so far a limited use due to difficulties in the administration of the drugs and possible interactions with the endocrine regulation of growth.
- The antisecretory factor (AF) has so far not been used directly for treatment of diarrhea or malnutrition due to the difficulties involved in obtaining a pure preparation of this protein. However, it has been possible to induce similar proteins in domestic animals which have been given a specific feed (SE Patent No. 9000028-2). Pigs given this feed obtained high levels of AF-like proteins and had a significant increase in the daily growth rate compared to matched controls. AF in rats challenged with toxin A from C. difficile protects not only against intestinal secretion but also against inflammation and bleeding in the gut.
- A major object of the present invention is to provide a new recombinant protein and homologues and fragments (peptides) thereof for use in normalizing pathological fluid transport. These proteins and peptides are collectively called antisecretory factors (AF). The use of AF also partly inhibits, or totally eliminates the development of inflammatory reactions of various aetiologies. Reconstitution back to normal (fluid transport or inflammation) is obtained by the use of proteins or peptides. Further the AF proteins or peptides are effectively absorbed via various mucus membranes without losing in potency (when compared to intravenous administration). Consequently, a multitude of treatment regimens exist, and a correctly administrated protein or peptide make it possible to rapidly reconstitute a deranged fluid (water and ion) balance, an inflammatory reaction, or both.
- In summary, the recombinant AF (rAF) and the homologues and fragments thereof could be used for immunodetection, as feed additive for growing animals and as antidiarrheal and drugs against diseases involving edema, dehydration and/or inflammation.
- The objects of the present invention are the following:
- A recombinant protein having essentially the amino acid sequence shown in SEQ ID NO:2, or homologues or fragments thereof.
- A fragment of the recombinant protein shown in SEQ ID NO:2: which fragment is chosen from the group comprising
- a) amino acids nos. 35-42
- b) amino acids nos. 35-46
- c) amino acids nos. 36-51
- d) amino acids nos. 36-80
- e) amino acids nos. 1-80
- of the amino acid sequence shown in SEQ ID NO:2.
- A peptide X 1VCX2X3KX4R corresponding to the fragment comprising the amino acids no. 35-42 of the recombinant protein shown in SEQ ID NO:2, wherein X is I or none, X2 is H, R or K, X3 is S, L or another neutral amino acid and X4 is T or A.
- Antibodies against a recombinant protein having essentially the amino acid sequence shown in SEQ ID NO:2, or homologues or fragments thereof.
- A protein binding to antibodies specific to a recombinant protein having essentially the amino acid sequence shown in SEQ ID No. 1, or homologues or fragments thereof.
- A composition for normalizing pathological fluid transport and/or inflammatory reactions comprising as an active principal an effective amount of the recombinant protein having essentially the amino acid sequence shown in SEQ ID NO:2, or homologues or fragments thereof.
- Use of a recombinant protein having essentially the amino acid sequence shown in SEQ ID NO:2, homologues or fragments thereof for manufacturing a composition for normalizing pathological fluid transport and/or inflammatory reactions.
- Feed for normalizing pathological fluid transport and/or inflammatory reactions in vertebrates, comprising as an active agent a recombinant protein having essentially the amino acid sequence shown in SEQ ID NO:2, or homologues or fragments thereof, or an organism capable of producing such a protein or homologues or fragments thereof.
- A process of normalizing pathological fluid transport and/or inflammatory reactions in vertebrates, comprising administering to the vertebrate an effective amount of a recombinant protein having essentially the amino acid sequence shown in SEQ ID NO: 1, or homologues or fragments thereof, or an organism producing said protein or homologues or fragments.
- Use of specific antibodies against a recombinant protein having essentially the amino acid sequence shown in SEQ ID NO:2, or homologues or fragments thereof, for detecting said protein or fragments in organisms.
- Nucleic acids coding for a recombinant protein having essentially the sequence shown in SEQ ID NO:2, or homologues or fragments thereof.
- Use of nucleic acids coding for a recombinant protein having essentially the amino acid sequence shown in SEQ ID No. 1, or homologues or fragments thereof, for producing corresponding proteins or homologues or fragments.
- Use of probes or primers derived from nucleic acids coding for a recombinant protein having essentially the sequence shown in SEQ. ID No. 1, or homologues or fragments thereof, for detecting the presence of nucleic acids in organisms.
- Vector comprising nucleic acids coding for a recombinant protein having essentially the amino acid sequence shown in SEQ. ID No. 1, or homologues or fragments thereof.
- Host except human comprising a vector including nucleic acids coding for a recombinant protein having essentially the amino acid sequence shown in SEQ. ID No. 1, or homologues or fragments thereof.
- A strain of an organism except human capable of producing a protein having essentially the amino acid sequence shown in SEQ ID No. 1, or homologues or fragments thereof.
- As organisms capable of producing the recombinant protein use can be made of different types of organisms, such as recombinant bacteria and eucaryotic organisms, such as yeast, plants and vertebrates except humans.
- Despite ten years of attempts to purify AF by conventional biochemical techniques, it has not been possible to obtain AF in a homogeneous form. However, by means of a new procedure of preparing a semipure AF for immunization and selecting antiserum by means of an immunohistochemical method a suitable antiserum was chosen. With this antiserum it has now been possible to clone recombinant human cDNA expressing AF in E. coli.
- The sequence of the new cDNA was determined and shown to be unique. By knowledge of this sequence, oligonucleotide probes were constructed which hybridize with human and porcine pituitary RNA. The size of this RNA, about 1400 basepairs, complies with the size of the sequenced cDNA comprising 1309 basepairs plus a poly(A)tail. A partial cDNA sequence from rat pituitary gland has been shown to be identical with that of the human cDNA reflecting a ubiquitous structure conserved in AF genes from different species. This resemblance makes it possible to use the same oligonucleotide probes to identify AF-coding RNA and DNA from different species.
- It has furthermore been possible to express the rAF in a biological active form. The AF protein in form of a fusion protein with gluthathione S-transferase was expressed in large amounts in E. coli. and purified to homogeneity by affinity chromatography. After cleavage of the fusion protein with thrombin, the recombinant AF (rAF) was shown to be extremely potent, 44 ng (10−12 mol) giving a half-maximal inhibition of cholera toxin-induced fluid secretion in rat intestine.
- By gene technique smaller fragments of rAF was produced. The activity was shown to reside in a small sequence consisting of 7 to 8 amino acids. This was confirmed by help of chemical solid phase synthesis by which technique an octapeptide was produced and shown to be almost as biological potent as rAF on molar basis. With help of site directed synthesis a variety of sequences within the active site was constructed and replacements of certain amino acids shown to be possible without abolishing the biological activity.
- The fluid secretion was measured by the intestinal loop model: a section (loop) of the small intestine is ligated by means of two sutures; in the loop a certain amount of enterotoxin is injected. If antisecretory drugs are tested they are injected between one hour before and two hours after toxin challenge. The injection was made by three different routes; intravenously, intraintestinally and intranasally. The fluid is accumulating in the loop 5 h after toxin challenge. The secretion is calculated from the weight of the accumulated fluid per cm intestine.
- The sequence of the protein was determined both directly by amino acid sequencing and indirectly by deduction from the cDNA sequence.
- Recombinant AF seems to exert very little toxic or systemic effects since no obvious toxic reactions were noted in rats given 100 fold higher doses than that causing half-maximal inhibition. Since it is efficient when injected in the small intestine it could be administrated perorally.
- The recombinant AF inhibits secretion also when injected after toxin challenge in contrast to the preparations of natural AF tested which seem to efficient only when injected before the toxin. Thus, rAF could be used both prophylactically and therapeutically.
- Further, rAF and its peptide fragments were shown to inhibit cytotoxic reactions and inflammation in the gut caused by toxin A from Clostridium difficile. By help of a dye permeability test rAF and its fragments were shown to reverse pathological permeability changes induced by cholera toxin not only in the intestinal mucosa but also in plexus choroideus which regulates the fluid pressure in the brain.
- Antisera against rAF were produced in rabbits and used in enzyme-linked immuno assays (ELISA). This assay might be used to measure AF in body fluids or feed.
- A method of purifying antibodies against AF (natural or recombinant) by means of affinity chromatography on columns with agarose coupled rAF is reported below.
- The antibodies were also shown to be efficient for detection of AF in tissue sections by means of immunohistochemical techniques and for detection of AF in Western-blot.
- The invention will now be described further by means of the following non-limiting Examples together with the accompanying drawings.
- Antisecretory factor was prepared from pig blood by means of affinity chromatography on agarose and isoelectric focusing. To one liter of pig blood (containing anticoagulating substances) 1 g of sodium thiosulfate and 1 mg of phenylmethylsulfonylfluoride were added. The blood cells were separated by centrifugation and the clear plasma was eluted through a column with Sepharose 6B (Pharmacia LKB Biotechnology Stockholm), the gel volume corresponding to about 10% of the volume of the solution. After washing with three bed volumes of phosphate buffered saline (PBS=0.15 M NaCl, 0.05 M sodium phosphate, pH 7.2), the column was eluted with two bed volumes of 1 M α-methyl-D-glucoside dissolved in PBS. The eluate was concentrated and dialyzed against water on an “Omega 10k flow through” ultrafilter (Filtran Technology Corp.). The fraction was subsequently fractionated by isoelectric focusing in an ampholine (Pharmacia) gradient pH 4-6 on a 400 ml isoelectrofocusing column (LKB, Sweden). A fraction having an isoelectric point-between 4.7 and 4.9 was collected and dialyzed against PBS. Thus, partially purified AF was divided into small aliquotes and used for production of antiserum in rabbits according to a previously described method.
- The rabbits were immunized and the sera tested for their capacity to stain intracellular material in sections of human pituitary gland (method described in Example 6). Only one of the sera showed specific and distinct intracellular staining without staining extracellular matrix proteins. This antiserum was selected for screening of a cDNA/lambda phage GT11 library from human pituitary gland expressing proteins in E. coli.
- A 5′-stretch cDNA library from normal human pituitary gland, derived from tissues obtained from a pool of nine Caucasians, was purchased from Clontech Laboratories. For screening of the library, phages were plated at 3×10 4 plaque forming units per 150 mm dish on E. coli Y1090. The previously described rabbit antiserum against porcine AF was absorbed with 0.5 volumes of E. coli Y1090-lysate for 4 hours at 23° C. and diluted to a ratio of 1:400 and screening performed according to Young and Davis (1).
- Alkaline-phosphatase-conjugated goat anti-rabbit antibodies were used as second antibodies (Jackson). Positive plaques were picked, eluted into phage suspension medium [20 mM Tris-HCl (pH 7.5), 100 mM NaCl, 10 mM MgSO 4, 2% gelatin], replated, and screened until all plagues tested were positive.
- cDNA-recloning
- Phage DNA from AF recombinants was isolated with Wizard Lambda Preps (Promega) and digested with EcoR1. The inserts were purified with Sephaglas BandPrep Kits (Pharmacia), recloned into pGex-1λT vector (Pharmacia) as described by the manufacturer and transfected into Epicurian Coli XLI-Blue,
Top 1 cells or BL21 cells (all three from Stratagen). rAF or rpeptides were prepared in BL21 cells when not stated otherwise (2). - Amplification of cDNA by PCR
- To obtain the missing 5′-end of the cDNA a PCR-based method called RACE (rapid amplification of cDNA ends) was performed. A modified RACE-method that generates 5′-RACE-Ready cDNA with an anchor oligonucleotide ligated to the 3′-ends of the human brain cDNA molecules was purchased from Clontech Laboratories. The 5′-end was amplified from a portion of the 5′-RACE-Ready cDNA in two PCR amplification steps using a 5′ primer complementary to the anchor and two nested gene-specific 3 PCR primers A and B (A=base 429-411 and B=base 376-359; FIG. 1 a). Various smaller portions of the RACE fragment was further amplified in order to express the corresponding peptides and test for their biological properties. The position of the base and amino acid at the start and end of these oligonucleotide fragments and their corresponding peptides are shown in Table 1. Porcine and bovine cDNA (Clontech Laboratories) was used as templet for amplifying fragments corresponding to N3 in Table 1. Variation of the sequence was also inserted artificially by site directed mutagenesis in which method various oligonucleotides corresponding to position 168-193 was synthesized in order to replace one by one of amino acid 35-42 (positions as shown in SEQ ID NO:2). The amplified DNA fragment was cloned into pGex-1λT vector by using the EcoR1 site built into the anchor and the gene-specific primer. To verily the sequence obtained by the RACE method, double stranded cDNA from human pituitary gland and brain (Clontach) were amplified with primer pair C/D containing an extra EcoR1-cleavage site (Fig. 1b). The primers were designed to allow the entire open reading frame (ORF) to be amplified. The pituitary and brain PCR-products of expected size were digested with ECOR1, isolated and cloned into the plasmid pGex-1λT vector.
- DNA sequencing and oligonucleotides
- DNA from plasmid pGex-1λT was used as a template for sequencing of the inserts by dideoxy-chain-termination method (15) using the Sequence version 2.0 kit (U.S. Biochemical Corp.). Initial forward and reverse primers copying regions of pGex-1λT immediately upstream and downstream of inserted DNA were obtained from Pharmacia. Subsequent primers were synthesized (Scandinavian Gene Synthesis AB) on the basis of sequence information obtained. Three different PCR clones were sequenced in order to avoid base-exchange by Taq polymerase in the 5′-RACE method.
- Nucleotide sequence and the deduced protein sequence data were compiled and analyzed by using MacVector 4.1 (Eastman Chemical Co.). To predict the corresponding amino acid sequence of the cDNA inserts, codon usage of different reading frames was compared and gave one large open reading frame. Interrogation of DNA and protein sequence data was carried out by use of an Entrez CD-ROM disc (National Center for Biotechnology Information, Bethesda, USA).
- Molecular cloning and sequence analysis of cDNA
- Polyvalent antisera against AF protein from pig were used for screening cDNA from human pituitary glands. Two clones expressing immunoreactive AF were isolated, rescued from phage lambda and recloned into the EcoR1 site of vector pGex-1λT as described in the kit provided from Pharmacia. Restriction analysis gave insert sizes of 1100 and 900 bp, respectively DNA-sequencing of the two clones revealed homology to be complete except for one substitution (FIG. 1, C replacing T at position 1011). A sequence upstream of the 5′-end of
clone 2 was obtained by means of the RACE method. The fragment had a total length of 376 bp (not including the synthetic nucleotide arm at the 5′-end). The total reconstructed CDNA contained 1309 basepairs followed a poly-A tail, which was preceded by a poly-A signal (FIG. 1, positions 1289-1295). An open reading frame (ORF) of 1146 bp (positions 63-1208) was identified. - Construction and Purification of Fusion Proteins
- The cDNA-clones obtained by immunological screening and by PCR amplification of the entire CDNA were ligated to pGex-1λT. This vector allows expression of foreign proteins in E. coli as fusions to the C terminus of the Schistosoma japonicum 26 kDa glutathione S-transferase (GST), which can be affinity purified under nondenaturing conditions with help of the kit provided from Pharmacia. Briefly, overnight cultures of E. coli transformed with recombinant pGex-1λT plasmids were diluted in fresh medium and grown for a further 3 h at 37° C. Protein expression was induced by 0.1 mM IPTG (isopropyl-beta-D-thiogalactopyranoside), and after a further 4 h of growth at 30° C., the calls were pelleted and resuspended in PBS. Cells were lyzed by sonication, treated with 1% Triton X-100 and centrifuged at 12000X g for 10 min; the supernatant containing the expressed fusion proteins was purified by passing the lysates through glutathione agarose (Pharmacia). The fusion proteins were either eluted by competition with free glutathione or were cleaved overnight with 10 U bovine thrombin to remove the AF-protein from the GST affinity tail. The entire method of using the pGex plasmid and purifying the recombinant proteins or peptides was a performed by means of the kits provided from Pharmacia.
- Sequence and size of Recombinant AF-proteins
- To confirm the coding sequence, the full-length transcript was isolated by using PCR-amplification of pituitary and brain cDNA. Using the primer pair C/D, 1215 bp identical to the sequence of clone-4 (FIG. 1, SEQ ID NO: 1) was isolated. The open-reading frame encoded 382 amino acids with a calculated molecular mass of 41.14 kDa and a calculated pI of 4.9.
- The AF clones-1, 2 and 3 as well as the oligonucleotides N1-N5 (FIG. 1 and Table 1) were ligated into the pGEX-1λT plasmid vector so that the ORF was in frame with the glutathione S-transferase (GST) protein. The constructs were transformed into E. coli, and expression of fusion proteins was induced with IPTG. The purified fusion proteins and the thrombin-cleaved AF protein or peptide were subjected to SDS-PACE and Western blotting using antiserum against porcine antisecretory factor (FIG. 2). Coomassie brilliant blue staining of the proteins revealed discrete bands for each protein except for the GST-AF-1 protein which manifested degradation into smaller components.
- Solid phase peptide synthesis
- Smaller peptides (P 7 to P18 in Table 1) was produced (K. J. Ross-Petersen AS) on solid phase in an Applied Biosystems peptide synthesizer. The purity of each peptide was 93-100% as evaluated on reversed phase HPLC on Deltapak C18, 300 A using a linear gradient of 0.1 % trifluoro acetic acid in water/acetonitril.
- Amino acid sequencing
- Protein sequence analysis was performed to further validate the identified ORF. The pure AF proteins were run in 10% macro-slab gel SDS-PAGE (14) and the proteins transferred to a Problot membrane (Applied Biosystems) by electroblatting (Bio-Rad). Spots, visualized by Ponceau S staining, were excised from the blot and the first 20 amino acids of the proteins were sequenced by automated Edman degradation on an automatic sequencer (Applied Biosystems).
- The N-terminal sequences of clone-2 and clone-3 were determined, and shown to perfectly match amino acids 63-75 and 130-140, respectively, of the predicted sequence (FIG. 1, SEQ ID NO:2).
- Comparison with other protein sequences available from GenBank revealed that the sequence of rAF (FIG. 1, SEQ ID NO:2) is unique in all its parts and no similar sequence has been reported.
- The first ten residues of the protein appear to be relatively hydrophobic when analyzed according to KyteDoolittle (22) and might constitute a signal peptide, which is cleaved out prior to exocytosis of the protein. This interpretation is supported by the Western blot analyzes (FIG. 3) in which the recombinant protein appeared to have a slightly higher molecular mass than the protein extract from pituitary gland. Some of this difference, however, might also be due to the additional five amino acids in the recombinant protein constituting the trombin cleavage site of the fusion protein.
- Antisera Against Recombinant GST-AF Fusion Protein
- Antibodies against the purified fusion proteins GST-AF-1, GST-AF-2 and thrombin-cleaved pure AF-I protein (=rAF) for use in ELISA, Western blot and immunohistochemical studies were produced in rabbits. Each rabbit was given 100 pg of antigen In I ml PBS mixed with an equal volume of Freund's complete adjuvant; each immunization was distributed in 8-10 portions injected in the back intracutaneously. Two booster dozes with 50 μg antigen were injected at 3 and 5 weeks, the last one without Freund's complete adjuvant. The rabbits were bled 6 days after last booster and sera were prepared and stored at −20° C. The sensitivity of the antiserum was tested with a dot blot assay. GST-AF-2 was applied on an ECL nitrocellulose membrane in 1/5 dilutions, and the antiserum diluted 1:1000. The membrane was blocked with 1% bovine serum albumin (BSA) in PBS at 4° C. for 16 h, and then incubated for 1½ h with a 1:800 dilution of rabbit anti-GST-AF or porcine AF antiserum. The blot was developed with alkaline phosphatese-conjugated goat anti-rabbit immunoglobulin followed by 5-bromo-4-chloro-3-indolyl phosphate and p-nitro blue tetrazolium (Boehringer Mannheim). The estimated limit for antigen detection was about 1 ng in this test.
- SDS-polyacrylamlde gel electrophoresis and immunoblotting
- SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of human and porcine pituitary gland extracts and pure AF-proteins was performed in 10% acrylamide minislab gels, essentially as described by Laemmli (4) with the modification that bis-acrylamide as a cross-linker was replaced by N,N′-diallyltartardiamide with the corresponding molarity. Pyronin Y (Sigma) was used as a marker of the electrophoretic front. Prestained molecular weight reference were purchased from BDH. Proteins were then either stained with Coomassie brilliant blue or transferred electrophoretically to 0.45 mm pore-size ECL nitrocellulose (Amershem) for immunoblotting. The subsequent incubations with BSA, conjugated anti-IgG and alkaline phosphatase substrate were the same as for the dot blot assay described above.
- As stated above Coomassie Brilliant Blue staining revealed no discrete band for the GST-AF-1 protein, which was probably due to proteolytic degradation into smaller components. However, in the Western blot analyzes the full length protein gave a much stronger signal than the degradated products (FIG. 2 b). The strong reaction with the antiserum against porcine AF indicated that the recombinant proteins indeed have the same immunoreactivity as AF. The molecular weight of the full length protein appeared to be about 60 kDa which is higher than the true mol. wt of 41139 Da estimated from the amino acid composition. Furthermore, the proteins were also immunoblotted and probed with antiserum raised against GST-AF-2, which bound to the thrombin-cleaved proteins (FIG. 3).
- Antiserum against recombinant GST-AF-2 reacted with the naturally occurring AF protein of an apparent mol mass of 60 kDa, and with some smaller components, probably enzymatic degradation products (FIG. 3 a).
- ELISA for determination of AP-concentrations
- ELISA assays were performed using anti-AF-1 and anti-AF-2 according to a previously described method (5). As shown in FIG. 3 b the sensitivity of the test with the crude antiserum was between 1-10 μg protein whereas the test with the affinity purified antibody had a sensitivity between 5 and 50 ng protein,
- Northern Blot Analysis
- Human pituitary glands were obtained postmortem from Sahlgrenska Hospital (permission given by Swedish Health and Welfare Board; 2% transplantationslagen, 1975:190). To obtain RNA, pituitary glands were extracted with guanidinium thiocyanate RNA according to Chomczynski and Sacchi (6). Polyadenylated RNA was selected by means of a commercial kit (Pharmacia) using columns with oligodT-cellulose. In addition, a pool of human pituitary mRNA from 107 individuals purchased from Clontach was used. Five μg of each sample of poly(A+)RNA was glyoxal-treated and electrophoresed in a 1.2% agarose gel (7). After capillary alkaline transfer for 3 h in 0.05 M NaOH to Hybond N+nylon membranes (Amersham), prehybridization and hybridization were carried out for 24 h each at 42° C. The hybridization solution contained 50% formamide, 5×SSPE, 10×Denhard's solution with 250 μg/ml denaturated low-MW DNA and 50 μg/ml polyadenylic acid. The blots were probed with four different antisense 28 bp oligonuclaotides comprising the positions 132-105 (primer E), 297-270 (primer F), 748-721 (primer G) and 833-806 (primer H) of the sequence (FIG. 1); the probes were 3′-end labelled with terminal transferase (Boehringer Mannheim) plus [α 32p]ddATP (Amersham) and purified on Nick columns (Pharmacia). Five postwashes in 5×SSPE/0.1% SDS-0.5×SSPE/0.1% SDS were made at 42° C. for 30 min each time, with a repeat of the last wash. Filters were exposed to Hyperfilm MP (Amersham) for 7 days.
- Expression in pituitary gland
- Northern blot analyzes were performed with a mixture of four oligonucleotide probes hybridizing with different sequences along the cloned cDNA (FIG. 4). The probes hybridized with a single band of about 1400 bp in the separated mRNA from pituitary gland. The strongest signals were obtained with the human material, but the porcine material also cross-reacted.
- Species and Tissues
- Human pituitary glands were obtained postmortem from Sahlgrenska Hospital (permission given by the Swedish Health and Welfare Board; §2 transplantationslagen, 1975:190). Glands were kept frozen at −70° C., except those used for histological examination which were fixed for 24 h in 4% paraformaldehyde dissolved in phosphate-buffered saline (PBS=0.15 M NaCl, 0.05 M sodium phosphate, pH 7.2) and thereafter transferred to 7.5% sucrose in PBS. Pituitary glands from pigs, 5-7 months old, obtained from a slaughter house, were placed on dry ice during transport and kept frozen at −70° C. until used. Sprague-Dawley rate, 2-3 months old, were obtained for bioassay from B & K Universal AB, Sollentuna, Sweden. Rabbits (New Zealand White) for immunizations were obtained from Lidk{haeck over (o)}ping Kaninfarm, Sweden.
- Immunohistochemistry
- The fixed pituitary glands were frozen in liquid nitrogen, and cryo sections, 7 μm thick, were prepared. From each sample 5-10 sections comprising different parts of the gland were fastened to microscope slides. The sections were blocked in 5% fat-free dried milk and incubated with primary rabbit antiserum (anti-GST-AF-2 fusion protein) diluted 1:4000-1:8000 in a humid chamber overnight at 4° C. After rinsing in buffer, the specimens were incubated for 1 h at 23° C. with alkaline phosphatase-conjugated swine anti-rabbit immunoglobulins diluted 1:50 (Dako A/S). The immunoreaction was visualized with phosphatase substrates as described elsewhere (8). Control sections were incubated with immune serum absorbed with an excess of OST-AF-2 protein or with all incubation steps except the primary antibody.
- Distribution of AF in sections of pituitary gland.
- The distribution of AF in sections of human pituitary glands was studied with immunohistochemical techniques (FIG. 5). In all specimens investigated, a moderate number of cells in the adenohypophysis were stained; the immunostained material appeared to be located in granules in the cytoplasm; preabsorption of the immune serum with an excess of GST-AF-2 protein abolished the signal. No staining was observed in the posterior part (neurohypophysis).
- The distribution of immunoreactive material in the pituitary gland demonstrated solely intracellular distribution of AF in secreting cells of the anterior lobe (adenophypophysis). The proteins emanating from this lobe include growth hormone, thyrotropin, corticotropin, prolactin and lutainising hormone. The passage of these hormones from intracellular localization to the vascular system is triggered by releasing factors produced by neuroandocrinic cells in the hypothalamus.
- Antisecretory Activity
- The antisecretory activity was measured in a rat intestinal loop model previously described (9). A jejunal loop was challenged with 3 μg of cholera toxin. Either different doses of purified AF-1-proteins or PBS (control) was injected before or after the challenge with cholera toxin. The weight of the accumulated fluid in the intestinal loop (mg/cm) was recorded after five hours. Each AF preparation was tested in at least six rats. Fisher's PLSD was used for statistical analysis of the data.
- Biological activity of rAF protein
- The biological activity of the pure rAF protein of clone-1 produced in E. coli was tested in a rat model. The capacity of the rAF to inhibit intestinal fluid secretion when injected intravenously 20-30 sec before intestinal challenge with cholera toxin is shown in FIG. 6. In control animals injected with buffer only, the cholera toxin caused a pronounced secretion, 412±9 mg fluid per cm intestine. The pure rAF caused dose-dependent inhibition of the cholera secretion which was significantly different from the response to the buffer (p<0.01, n=6). Nine ng of clone-1 protein is sufficient to reduce the response by 34%, whereas 44 ng (10−12 mol) and 220 ng reduced it by 46% and 78%, respectively. The biological activity of recombinant AF is greater than that of any enterotoxin known to us and greater than that of any intestinal hormone or neuropeptide modifying water and electrolyte transport. Moreover, the level of activity of human rAF in rat is surprisingly high which probably reflects a ubiquitous structure conserved in rAF molecules from different species. This hypothesis is supported by the cross-reactivity between human and porcine material obtained in the Western blot and Northern blot analyzes.
- The capacity of 0.5 μg of rAF to inhibit intestinal secretion when injected intravenously 20-30 sec before and 90 min after cholera toxin challenge was compared (FIG. 7). Both administrations gave significant inhibition compared to control animals (p<0.01, n=6). Thus, in contrast to natural AF, the recombinant protein was also efficient when given after toxin challenge which make rAF useful for therapeutic treatment of diarrhea.
- 3 μg rAF was injected in a 8-10 cm long loop placed immediately proximal to the loop which was challenged with cholera toxin. The rAF was either induced 20-30 sec before or 90 min after the toxin-challenge. In. FIG. 8 it is shown that both test groups obtained a significant reduction of the fluid secretion compared to controls (p<0.01, n=6); no difference was observed between the two test groups. This experiment suggests that rAF is active after oral administration and might be used as an additive in animal feed provided that no serious side effect is obtained.
- In the Examples described above, the rAF was produced in Epicurian Coli XL-1 cells. In these cells much of the produced rAF was degradated into smaller peptides. When rAF was produced in BL21 cells only a small portion of the rAF was degradated while in
Top 1 cells no degradation was observed. Surprisingly the biological activity was proportional to the extent of degradation, i.e. more degradation resulted in higher activity. Therefore various shorter fragments were produced in order to test for their possible biological activity. - As shown in Table 1, these fragments were tested intravenously prior to cholera toxin challenge in the same way as described above for the intact rAF. The peptides expressed by
2 and 3 tested in amounts of 0.1, 1 and 10 μg had no effect on the toxin response. In contrast one microgram of the peptide expressed by the RACE fragment (clone 4) had a pronounced effect. A lot of shorter constructs were made from the RACE fragment and expressed in pGex-1-lambda. As shown in Table 1, the active site was found to be situated betweenclone amino acid residue 35 to 51. In order to determine more exactly the active site three small peptides were made by solid phase peptide synthesis. Two of them were active, peptide 35-46 (P3) and peptide 35-42 (P1); the latter octapeptide IVCHSKTP, (P1) was active in a dose less than 1 ng being almost as active in a molar basis as the intact rAF. In contrast a shorter hexapeptide VCHSKT (P2) exerted no effect when tested in doses between 1 ng and 10 μg. - A peptide X 1VCX2X3KX4R corresponding to the human fragment P1 but with certain changes and/or deletions, have also been produced by site directed mutagenesis and tested for biological activity. Comparison was also made of sequences from bovine and porcine cDNA. These studies suggested the following changes and/or deletions:
- X 1 is I or none
- X 2 is H, R or K
- X 3 is S, L or another neutral amino acid
- X 4 is T or A.
TABLE 1 Inhibition of cholera secretion*** Code Oligonucleotide* Peptide** pmol ED50 N1 63-301 1-80 + 4 N2 168-301 36-80 + 6 N3 168-215 36-51 + 3 N4 122-170 21-36 − N5 186-269 42-69 − P3 S.P.S.*** 35-46 + 7 P1 S.P.S. 35-42 + 5 P2 S.P.S. 36-41 − - The effect of rAF on inflammation in the intestinal mucosa was also tested in the rat intestinal loop model. Thus, 20 rate were challenged with 0.5 μg of toxin A from Clostridium difficile (10) and the inflammatory and fluid secretion measured after 2.5 and 5 hours, respectively (10+10 rats). Half of the rats in each group received 100 ng of rAF intravenously 30 sec prior to the challenge; the other half received PBS buffer as control. After killing the rat, the loops was dissected out, and the middle 2-3 cm part of the loops were frozen on dry ice. The frozen specimens were then sectioned in 8 μm thick sections by use of a Leica cryostat. The sections were stained to demonstrate alkaline phosphatases by enzyme histochemistry. Alkaline phosphatases are expressed by the intestinal epithelial cells and the staining allows an assessment and of the integrity of the intestinal epithelium.
- The results revealed (FIG. 9) that the control rats developed extensive damage of the intestinal mucosa: after 2.5 h shedding of epithelial calls from the basal membrane was observed together with necrotic tissue, whereas extensive bleeding was observed after 5 h. In contrast, animal treated with rAF developed no shedding, necrosis or bleeding. The toxin A-induced fluid secretion was also inhibited from 199±4 to 137±5 mg/cm after 2.5 h (p<0.01) and from 421±3 to 203±6 mg/cm after 6 h (5 rats/group, p<0.01).
- A similar experiment was performed with 0.5 μg of the peptide IVCHSKTR (=P1) replacing the rAF protein. The octapeptide achieved the same effect on toxin A-induced intestinal inflammation and fluid secretion as shown in FIG. 9.
- Toxicity
- In order to test the toxicity of rAF it was injected in a high dose, 50 μg per rat. No obvious toxic reaction was registered during an observation period of one week.
- In order to evaluate the effect of rAF on the permeability of an organic substance dissolved in the blood a test with Evans blue dye was performed according to a previously described method (11). The experiment was initially performed as described above in Example 7 and FIG. 5 with intravenous injection of rAF prior to cholera toxin challenge. However, no fluid secretion was measured but 90 min after toxin challenge Evans blue dye, 1 ml of a 1.5% solution in PBS, was injected intravenously. The dye was allowed to circulate for a 5 min long period. Thereafter the rat was subjected to transcardial perfusion via the left ventricle-right atrium (using a peristaltic pump [Cole Parmer Instruments, Chicago, Ill., USA]) with 200 ml of 4° C. PBS/Alsevier's (1/1 ratio) solution during a period of some 150 sea, performed under ether anaesthesia. This procedure was undertaken in order to remove all of the EB present in the vascular system, leaving only the EB in the interstitial tissue to be detected by the formamide extraction of the dye.
- The results in Table 2 demonstrate that CT-challenge significantly (p<0.001) increases the amount of EB that can be extracted from the intestinal tissue with some 43%, while an intravenous injection of 1 BrT prior to cholera toxin challenge prevent this increase, i.e. the amount of EB extracted from the tissue in group 1 (control) did not differ from that in group 3 (1 rAF+CT)
TABLE 2 EB/g % increase of Group Challenge ng int. tissue × 10−07 EB- kono 1 PBS + PBS 6 29.3 ± 1.0 − 2 PBS + CT 6 51.8 ± 1.3 43 (p < 0.001) 3 1rAF + CT 6 29.6 ± 1.5 0 NS - The results shown in
rigs 10 and 11 demonstrate the extravasation of the azo dye Evans blue in the small intestine and in the corresponding plexus choroideus from the lateral ventricles of the brain after intestinal challenge with cholera toxin, with and without previous treatment of the rats with P1 (IVCHSKTR), - The experiments were performed in the following way: Male Sprague-Dawley rats, weighing 350 g, were starved for 18 h prior to the experimental procedure, but had free excess to water. The rats were used in groups of six. The peptide P1, cholera toxin (CT), and PBS were administrated according to Table 3.
TABLE 3 Group iv inj. 1* po. inj.* iv. inj. 2* A P1 CT EB B PBS CT EB C PBS PBS EB - The i.v. injection of P1 (0.5 μg) or of PBS were performed 10-15 sec before the peroral challenge with 100 μg CT or with PBS; 60 min after the peroral challenge, the rats were anaesthetized with ether and injected iv. with Evans blue. The dye was allowed to equilibrate for another 30 min, whereafter the rats were again anaesthetized with ether and perfused intracardially via the left ventricle with 250 ml of Alsevers solution/PBS=50/50, in order to remove all dye present in the vascular system. After this perfuming treatment, performed during some 2-3 min, the fluorescence registrated should represent dye present only outside the vascular system.
- The brain and a part of the small intestine were sampled and frozen on dry ice and cryostat sections, 8 μm thick, were prepared. The sections were air-dried and mounted in a xylene-containing mounting media. The sections were viewed in a Zeiss fluorescence microscope using a filter combination identical to that used for rhodamin-emitted fluorescence.
- The results in FIGS. 10 and 11 demonstrate that the fluorescent intensity (white color) is of a similar magnitude in both the small intestine (FIG. 10) and in the plexus choroideus (FIG. 11) in group A (P1 iv+CT po) and C(PBS iv+PBS po). Compared to the high fluorescent intensity in the small intestine as well as in the plexus choroideus in group B (PBS iv+CT po), the results clearly demonstrate that injection of the octapeptide prior to toxin challenge inhibits the CT-induced extravascular penetration of Evans blue. The results suggest that this holds true not only in the vascular system of the small intestine, but also in the plexus choroideus of the lateral ventricles of the brain.
- In conclusion: the effect of intravenous octapeptide IVCHSKTR administration inhibits cholera toxin-induced extravascular penetration of Evans blue in the small intestine as well as in the plexus choroideus in the central nervous system. Thus, the action of rAF and its peptide derivatives is not confined to the small intestine only, but influences also the permeability of blood vessels in the central nervous system. These findings indicate that rAF and its peptide derivatives can be used to reverse pathological intracranial pressure, pressure alteration in the middle ear and various forms of permeability changes in blood vessels.
- [1] Young, R. A. and Davis, R. W. (1983) Proc. Natl. Acad. Sci. USA. 80, 1194-1198
- [2] Sambrook., J., Fritsch, E. F., Manistis, T. (1989) Molecular Cloning: A Laboratory Manual, pp 1.74-1.84, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- [3] Frohman, M. A., Dush, M. K., and Martin, G. R. (1988) Proc. Natl. Acad. Sci., USA 86, 8998-9002.
- [4] Laemmli, U. K. (1970) Nature 227,680-685.
- [5] Zachrisson, G., Lagargård, T. and L{haeck over (o)}nnroth, I. (1986) Acta Path. Microbial. Immunol. Scand. C, 94, 227-231.
- [6] Chomczynaki, P., Sacchi, N. (1987) Analyt. Biochem. 162, 156-159.
- [7] Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, pp 7.40-7.42, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- [8] Jennische, E., Matejka, G. L. (1992) Acta. Physiol. Scand., 146,79-86.
- [9] Lange, S. (1982) FEMS Microbiol. Lett. 15, 239-242.
- [10] Torres, J. F., Jennische, E., Lange, S. and L{haeck over (o)}nnroth, I. (1990) Gut 781-785
- [11] Lange, S., Delbro D S, Jannische E. Evans Blue permeation of intestinal mucosa in the rat. Scand. J. Gastroenterol. 1994, 29:38-46.
- FIG. 1 a and continued on FIG. 1b. Nucleic acid sequence (SEQ ID NO: 1) and deduced amino acid sequence (SEQ ID NO:2) of the new human protein. The confirmed amino acid sequence is underlined. Fig. 1c. Horizontal map showing cloned cDNA and oligonucleotide primers.
- FIG. 2. Coomassie brilliant blue-stained SDS-polyacrylamide minlgel (A) and immunoblot probed with antisera against porcine AF (B). Lanes with unprimed numbers contain glutathione-agarose-purified GST-AF fusion proteins AF-1, AF-2 and AF-3, whereas lanes with primed numbers contain the fusion proteins cleaved with thrombin. Molecular weight references (R), (BDH), are indicated on the left. The GST-AF-1 fusion protein is highly degraded but the immunoblot analysis shows only the detection of a full-length protein and spontaneous thrombin cleavage product. There is a 26 kDa product in the GST-AF-3 protein, probably the glutathione S-transferase-tail that has been independently expressed.
- FIG. 3 a. Western blot using antiserum against recombinant protein AF-2. To the left, porcine (P) and three human (H1, H2, H3) pituitary glands; and to the right, the three recombinant proteins AF-1, AF-2 and AF-3 (see FIG. 2) were applied; in the center the molecular weight standard (R).
- FIG. 3 b. Enzyme linked immuno-assay (ELISA) of rAF using crude antiserum and affinity purified antibodies raised in rabbit.
- FIG. 4. Autoradiogram of Northern blots of RNA from a human and porcine pituitary gland (p=pooled and i=individual material). Five μg of purified mRNA was applied in each basin; 3′-end 32P-labelled oligonucleotide probes were used and the autoradiogram developed after 7 days,
- FIG. 5 Cryosections of adenohypophysis stained with antiserum against recombinant protein GST-AF-2. A. Sections incubated with immune serum showing scattered cells with varying degrees of positive immunoreactivity (solid arrows). Many calls completely lack staining (open arrows). B. Serial sections to A incubated with immune serum preabsorbed with excess of recombinant protein GSTAF-2, There is no specific staining of the cells. C and D. Larger magnifications of immunopositive cells demonstrating cytoplasmatic staining of the endocrine cells, n=nucleus, c=cytoplasms.
- FIG. 6. Biological activity of recombinant protein AF-1 testing inhibition of cholera toxin-induced fluid secretion. Graded doses of the protein were injected intravenously in rat; three μg of cholera toxin was injected into an intestinal loop; after five hours the accumulated fluid (mg/cm intestine) in the loop was measured. Each value represents the mean ±S.A.E. of a group of six animals.
- FIG. 7. Biological activity of intravenously injected rAF-1; 0.5 μg of rAF was administrated 20-30 sec before or 90 min after challenge with 3 μg of cholera toxin in an intestinal loop of rat.
- FIG. 8. Biological activity of intraluminarly injected rAF-1; 3 μg of rAF was injected 20-30 sec before or 90 min after challenge with 3 μg of cholera toxin in an intestinal loop of rat; the rAF was injected about 5 cm proximate to the loop in which the toxin was injected.
- FIG. 9 A (×2.5) is control (PBS) loops showing cellular debris in the intestinal lumen (L), but no staining of the remaining mucosa, which suggests a total destruction of the epithelial lining. B (0.5 μl of P1 prior to toxin challenge) shows a clearly delineated epithelial lining forming villi, suggesting a conserved and normal intestinal mucosa. L=intestinal lumen. Bars=500 μm. C (×10) shows the destructed mucosa in the PBS-treated control group, and D shows the corresponding mucosa in the experimental (P1-treated) group. The black arrow point at the epithelial lining, LP=lamina propria, mm=muscularis mucosa, open arrow point at the crypt cells. Bars=100 μm. E (×25) shows the destructed mucosa in the control (PBS-treated) group, and F shows a corresponding magnification from a rat subjected to P1 treatment prior to toxin challenge. Bars=50 μm.
- FIG. 10. Evans blue fluorescence in jejunal specimens from three groups of rats treated with cholera toxin (CT) or control buffer (PBS); pretreatment with antisecretory peptide P1 or control buffer (PBS). LP=lamina propria. Black arrow indicating epithelial cell lining; open arrow head indicating crypt cells. Bars=100 μm.
- FIG. 11. Evans blue fluorescence in plexus choroideus specimens from the rats shown in FIG. 10. Bars=50 μm.
-
0 SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 2 <210> SEQ ID NO 1 <211> LENGTH: 1328 <212> TYPE: DNA <213> ORGANISM: Human <220> FEATURE: <221> NAME/KEY: mat_peptide <222> LOCATION: (63)..(1208) <221> NAME/KEY: sig_peptide <222> LOCATION: (1289)..(1295) <221> NAME/KEY: CDS <222> LOCATION: (63)..(1208) <400> SEQUENCE: 1 aattggagga gttgttgtta ggccgtcccg gagacccggt cgggagggag caaggtggca 60 ag atg gtg ttg gaa agc act atg gtg tgt gtg gac aac agt gag tat 107 Met Val Leu Glu Ser Thr Met Val Cys Val Asp Asn Ser Glu Tyr 1 5 10 15 atg cgg aat gga gac ttc tta ccc acc agg ctg cag gcc cag cag gat 155 Met Arg Asn Gly Asp Phe Leu Pro Thr Arg Leu Gln Ala Gln Gln Asp 20 25 30 gct gtc aac ata gtt tgt cat tca aag acc cgc agc aac cct gag aac 203 Ala Val Asn Ile Val Cys His Ser Lys Thr Arg Ser Asn Pro Glu Asn 35 40 45 aac gtg ggc ctt atc aca ctg gct aat gac tgt gaa gtg ctg acc aca 251 Asn Val Gly Leu Ile Thr Leu Ala Asn Asp Cys Glu Val Leu Thr Thr 50 55 60 ctc acc cca gac act ggc cgt atc ctg tcc aag cta cat act gtc caa 299 Leu Thr Pro Asp Thr Gly Arg Ile Leu Ser Lys Leu His Thr Val Gln 65 70 75 ccc aag ggc aag atc acc ttc tgc acg ggc atc cgc gtg gcc cat ctg 347 Pro Lys Gly Lys Ile Thr Phe Cys Thr Gly Ile Arg Val Ala His Leu 80 85 90 95 gct ctg aag cac cga caa ggc aag aat cac aag atg cgc atc att gcc 395 Ala Leu Lys His Arg Gln Gly Lys Asn His Lys Met Arg Ile Ile Ala 100 105 110 ttt gtg gga agc cca gtg gag gac aat gag aag gat ctg gtg aaa ctg 443 Phe Val Gly Ser Pro Val Glu Asp Asn Glu Lys Asp Leu Val Lys Leu 115 120 125 gct aaa cgc ctc aag aag gag aaa gta aat gtt gac att atc aat ttt 491 Ala Lys Arg Leu Lys Lys Glu Lys Val Asn Val Asp Ile Ile Asn Phe 130 135 140 ggg gaa gag gag gtg aac aca gaa aag ctg aca gcc ttt gta aac acg 539 Gly Glu Glu Glu Val Asn Thr Glu Lys Leu Thr Ala Phe Val Asn Thr 145 150 155 ttg aat ggc aaa gat gga acc ggt tct cat ctg gtg aca gtg cct cct 587 Leu Asn Gly Lys Asp Gly Thr Gly Ser His Leu Val Thr Val Pro Pro 160 165 170 175 ggg ccc agt ttg gct gat gct ctc atc agt tct ccg att ttg gct ggt 635 Gly Pro Ser Leu Ala Asp Ala Leu Ile Ser Ser Pro Ile Leu Ala Gly 180 185 190 gaa ggt ggt gcc atg ctg ggt ctt ggt gcc agt gac ttt gaa ttt gga 683 Glu Gly Gly Ala Met Leu Gly Leu Gly Ala Ser Asp Phe Glu Phe Gly 195 200 205 gta gat ccc agt gct gat cct gag ctg gcc ttg gcc ctt cgt gta tct 731 Val Asp Pro Ser Ala Asp Pro Glu Leu Ala Leu Ala Leu Arg Val Ser 210 215 220 atg gaa gag cag cgg cac gca gga gga gga gcg cgg cgg gca gct cga 779 Met Glu Glu Gln Arg His Ala Gly Gly Gly Ala Arg Arg Ala Ala Arg 225 230 235 gct tct gct gct gag gcc ggg att gct acg act ggg act gaa gac tca 827 Ala Ser Ala Ala Glu Ala Gly Ile Ala Thr Thr Gly Thr Glu Asp Ser 240 245 250 255 gac gat gcc ctg ctg aag atg acc atc agc cag caa gag ttt ggc cgc 875 Asp Asp Ala Leu Leu Lys Met Thr Ile Ser Gln Gln Glu Phe Gly Arg 260 265 270 act ggg ctt cct gac cta agc agt atg act gag gaa gag cag att gct 923 Thr Gly Leu Pro Asp Leu Ser Ser Met Thr Glu Glu Glu Gln Ile Ala 275 280 285 tat gcc atg cag atg tcc ctg cag gga gca gag ttt ggc cag gcg gaa 971 Tyr Ala Met Gln Met Ser Leu Gln Gly Ala Glu Phe Gly Gln Ala Glu 290 295 300 tca gca gac att gat gcc agc tca gct atg gac aca tct gag cca gcc 1019 Ser Ala Asp Ile Asp Ala Ser Ser Ala Met Asp Thr Ser Glu Pro Ala 305 310 315 aag gag gag gat gat tac gac gtg atg cag gac ccc gag ttc ctt cag 1067 Lys Glu Glu Asp Asp Tyr Asp Val Met Gln Asp Pro Glu Phe Leu Gln 320 325 330 335 agt gtc cta gag aac ctc cca ggt gtg gat ccc aac aat gaa gcc att 1115 Ser Val Leu Glu Asn Leu Pro Gly Val Asp Pro Asn Asn Glu Ala Ile 340 345 350 cga aat gct atg ggc tcc ctg cct ccc agg cca cca agg acg gca aga 1163 Arg Asn Ala Met Gly Ser Leu Pro Pro Arg Pro Pro Arg Thr Ala Arg 355 360 365 agg aca aga agg agg aag aca aga agt gag act gga ggg aaa ggg 1208 Arg Thr Arg Arg Arg Lys Thr Arg Ser Glu Thr Gly Gly Lys Gly 370 375 380 tagctgagtc tgcttagggg actgcatggg aagcacggaa tatagggtta gatgtgtgtt 1268 atctgtaacc attacagcct aaataaagct tggcaacttt taaaaaaaaa aaaaaaaaaa 1328 <210> SEQ ID NO 2 <211> LENGTH: 382 <212> TYPE: PRT <213> ORGANISM: Human <400> SEQUENCE: 2 Met Val Leu Glu Ser Thr Met Val Cys Val Asp Asn Ser Glu Tyr Met 1 5 10 15 Arg Asn Gly Asp Phe Leu Pro Thr Arg Leu Gln Ala Gln Gln Asp Ala 20 25 30 Val Asn Ile Val Cys His Ser Lys Thr Arg Ser Asn Pro Glu Asn Asn 35 40 45 Val Gly Leu Ile Thr Leu Ala Asn Asp Cys Glu Val Leu Thr Thr Leu 50 55 60 Thr Pro Asp Thr Gly Arg Ile Leu Ser Lys Leu His Thr Val Gln Pro 65 70 75 80 Lys Gly Lys Ile Thr Phe Cys Thr Gly Ile Arg Val Ala His Leu Ala 85 90 95 Leu Lys His Arg Gln Gly Lys Asn His Lys Met Arg Ile Ile Ala Phe 100 105 110 Val Gly Ser Pro Val Glu Asp Asn Glu Lys Asp Leu Val Lys Leu Ala 115 120 125 Lys Arg Leu Lys Lys Glu Lys Val Asn Val Asp Ile Ile Asn Phe Gly 130 135 140 Glu Glu Glu Val Asn Thr Glu Lys Leu Thr Ala Phe Val Asn Thr Leu 145 150 155 160 Asn Gly Lys Asp Gly Thr Gly Ser His Leu Val Thr Val Pro Pro Gly 165 170 175 Pro Ser Leu Ala Asp Ala Leu Ile Ser Ser Pro Ile Leu Ala Gly Glu 180 185 190 Gly Gly Ala Met Leu Gly Leu Gly Ala Ser Asp Phe Glu Phe Gly Val 195 200 205 Asp Pro Ser Ala Asp Pro Glu Leu Ala Leu Ala Leu Arg Val Ser Met 210 215 220 Glu Glu Gln Arg His Ala Gly Gly Gly Ala Arg Arg Ala Ala Arg Ala 225 230 235 240 Ser Ala Ala Glu Ala Gly Ile Ala Thr Thr Gly Thr Glu Asp Ser Asp 245 250 255 Asp Ala Leu Leu Lys Met Thr Ile Ser Gln Gln Glu Phe Gly Arg Thr 260 265 270 Gly Leu Pro Asp Leu Ser Ser Met Thr Glu Glu Glu Gln Ile Ala Tyr 275 280 285 Ala Met Gln Met Ser Leu Gln Gly Ala Glu Phe Gly Gln Ala Glu Ser 290 295 300 Ala Asp Ile Asp Ala Ser Ser Ala Met Asp Thr Ser Glu Pro Ala Lys 305 310 315 320 Glu Glu Asp Asp Tyr Asp Val Met Gln Asp Pro Glu Phe Leu Gln Ser 325 330 335 Val Leu Glu Asn Leu Pro Gly Val Asp Pro Asn Asn Glu Ala Ile Arg 340 345 350 Asn Ala Met Gly Ser Leu Pro Pro Arg Pro Pro Arg Thr Ala Arg Arg 355 360 365 Thr Arg Arg Arg Lys Thr Arg Ser Glu Thr Gly Gly Lys Gly 370 375 380
Claims (19)
1. A synthetic protein comprising SEQ ID NO:2 or a homolog or a fragment thereof, and wherein said homolog or fragment of SEQ ID NO:2 comprises formula X1VCX2X3KX4R,
(a) wherein said formula corresponds to amino acids 35-42 of SEQ ID NO:2;
(b) X1 is I or is absent;
(c) X2 is H, R or K;
(d) X3 is S, L or anther neutral amino acid; and
(d) X4 is T or A; and
wherein said synthetic protein or homolog or fragment thereof has antisecretory activity when administered after cholera toxin challenge.
2. A composition comprising the synthetic protein or homolog or fragment of claim 1 .
3. The synthetic protein of claim 1 , wherein said synthetic protein consists of SEQ ID NO:2.
4. A composition comprising the synthetic protein of claim 3 .
5. A synthetic polypeptide comprising (a) amino acids 35-42, (b) amino acids 35-46, (c) amino acids 36-51, (d) amino acids 36-80, or (e) amino acids 1-80 of SEQ ID NO:2, or (f) a peptide of formula X1VCX2X3KX4R wherein the formula corresponds to amino acids 35-42 of SEQ ID NO:2 of any of polypeptides (a) to (e), and wherein
(i) X1 is I or is absent;
(ii) X2 is H, R or K;
(iii) X3 is S, L or anther neutral amino acid; and
(iv) X4 is T or A.
6. A composition comprising the synthetic polypeptide of claim 5 .
7. A synthetic polypeptide consisting of a sequence of amino acids selected from the group consisting of (a) amino acids 35-42, (b) amino acids 35-46, (c) amino acids 36-51, (d) amino acids 36-80, and (e) amino acids 1-80 of SEQ ID NO:2.
8. A composition for use in vertebrates including humans comprising an effective amount of the synthetic protein or fragment or homolog of claim 1 , wherein said composition has antisecretory activity.
9. A synthetic composition for use in vertebrates including humans comprising an effective amount of the synthetic polypeptide of claim 5 , wherein said composition has antisecretory activity.
10. A method of using the synthetic protein or homolog or fragment of claim 1 comprising administering an effective amount of the synthetic protein or homolog or fragment to a vertebrate to induce antisecretory activity.
11. A method of using the synthetic polypeptide of claim 5 comprising administering an effective amount of the synthetic polypeptide to a vertebrate to induce antisecretory activity.
12. A method of inhibiting diarrhea in a vertebrate comprising administering the composition of claim 2 .
13. A method of inhibiting diarrhea in a vertebrate comprising administering the composition of claim 6 .
14. The method of claim 12 , wherein said vertebrate is a human.
15. The method of claim 13 , wherein said vertebrate is a human.
16. A feed or food for vertebrates including humans comprising an active agent, wherein the active agent is the synthetic protein or a homolog or a fragment thereof of claim 1 wherein said feed or food has antisecretory activity.
17. A feed or food for vertebrates comprising an active agent, wherein said active agent is the synthetic polypeptide of claim 5 and wherein said feed or food has antisecretory activity.
18. A feed additive comprising the synthetic protein or homolog or fragment thereof of claim 1 , wherein said feed additive has antisecretory activity.
19. A feed additive comprising the synthetic polypeptide of claim 5 , wherein said feed additive has antisecretory activity.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/991,792 US20020099016A1 (en) | 1995-08-24 | 2001-11-26 | Antisecretory factor peptides regulating pathological permeability changes |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE9502936-9 | 1995-08-24 | ||
| SE9502936A SE508609C2 (en) | 1995-08-24 | 1995-08-24 | Anti-secretory factor - its amino acid sequence, nubleic acid sequence and use |
| US09/029,333 US6344440B1 (en) | 1995-08-24 | 1996-08-23 | Antisecretory factor peptides regulating pathological permeability changes |
| US09/991,792 US20020099016A1 (en) | 1995-08-24 | 2001-11-26 | Antisecretory factor peptides regulating pathological permeability changes |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/029,333 Continuation US6344440B1 (en) | 1995-08-24 | 1996-08-23 | Antisecretory factor peptides regulating pathological permeability changes |
| PCT/SE1996/001049 Continuation WO1997008202A1 (en) | 1995-08-24 | 1996-08-23 | Antisecretory factor peptides regulating pathological permeability changes |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020099016A1 true US20020099016A1 (en) | 2002-07-25 |
Family
ID=20399269
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/029,333 Expired - Lifetime US6344440B1 (en) | 1995-08-24 | 1996-08-23 | Antisecretory factor peptides regulating pathological permeability changes |
| US09/991,792 Abandoned US20020099016A1 (en) | 1995-08-24 | 2001-11-26 | Antisecretory factor peptides regulating pathological permeability changes |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/029,333 Expired - Lifetime US6344440B1 (en) | 1995-08-24 | 1996-08-23 | Antisecretory factor peptides regulating pathological permeability changes |
Country Status (28)
| Country | Link |
|---|---|
| US (2) | US6344440B1 (en) |
| EP (1) | EP0851876B1 (en) |
| JP (2) | JP4040679B2 (en) |
| KR (1) | KR100552947B1 (en) |
| CN (1) | CN1171902C (en) |
| AT (1) | ATE270305T1 (en) |
| AU (1) | AU702589B2 (en) |
| BG (1) | BG63209B1 (en) |
| BR (1) | BR9610308A (en) |
| CA (1) | CA2230111C (en) |
| CZ (1) | CZ295444B6 (en) |
| DE (2) | DE69632828T2 (en) |
| DK (1) | DK0851876T3 (en) |
| EA (1) | EA001201B1 (en) |
| EE (1) | EE04501B1 (en) |
| ES (1) | ES2118683T3 (en) |
| HU (1) | HU224971B1 (en) |
| IL (1) | IL123404A (en) |
| NO (1) | NO320560B1 (en) |
| NZ (2) | NZ316647A (en) |
| PL (1) | PL188530B1 (en) |
| PT (1) | PT851876E (en) |
| RO (1) | RO120197B1 (en) |
| SE (1) | SE508609C2 (en) |
| SI (1) | SI0851876T1 (en) |
| SK (1) | SK23698A3 (en) |
| TR (1) | TR199800304T1 (en) |
| WO (1) | WO1997008202A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100286052A1 (en) * | 2003-09-26 | 2010-11-11 | As Faktor Ab | Novel use of antisecretory factor |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE508609C2 (en) * | 1995-08-24 | 1998-10-19 | Rural Patent Svenska Ab | Anti-secretory factor - its amino acid sequence, nubleic acid sequence and use |
| SE506486C2 (en) * | 1996-11-20 | 1997-12-22 | Svenska Lantmaennen Riksfoerbu | Food that, when consumed, induces antisecretory proteins |
| SE513496C2 (en) | 1998-12-17 | 2000-09-18 | Rural Patent Svenska Ab | NASP-enriched egg yolk and its use |
| JP2004513066A (en) * | 1999-06-21 | 2004-04-30 | インカイン ファーマシューティカル カンパニー,インコーポレイティド | Angiosidine: CYS-SER-VAL-THR-CYS-GLY specific tumor cell adhesion receptor |
| AU2007244004B2 (en) * | 2006-04-27 | 2012-02-09 | Lantmannen As-Faktor Ab | Use of antisecretory factors for treating intraocular hypertension |
| NZ572256A (en) * | 2006-04-27 | 2012-02-24 | Lantmannen As Faktor Ab | Medical uses of antisecretory proteins for the treatment or prevention of dysfunction of lipid rafts, receptors and/or caveolae |
| EP2037950B1 (en) | 2006-04-27 | 2014-04-23 | Lantmännen AS-Faktor AB | Further medical uses of antisecretory protein |
| RU2341981C2 (en) * | 2006-07-03 | 2008-12-27 | Государственное учреждение Всероссийский научно-исследовательский институт пищевых ароматизаторов, кислот и красителей Российской академии сельскохозяйственных наук (ГУ ВНИИПАКК) | Complex food supplement |
| US8901083B2 (en) | 2008-11-25 | 2014-12-02 | Temple University | Administration of angiocidin for the treatment of leukemia |
| EP3769778A1 (en) | 2009-02-11 | 2021-01-27 | Lantmännen Medical AB | Use of antisecretory factors (af) for optimizing cellular uptake |
| WO2017009004A1 (en) * | 2015-07-10 | 2017-01-19 | Lantmännen As-Faktor Ab | Process for producing egg yolk with high content of af-16 |
| EP3484909B1 (en) * | 2016-07-18 | 2021-06-16 | Lantmännen Medical AB | Antisecretory factor 17 |
| CN112368014B (en) | 2018-06-28 | 2024-11-19 | 兰特门内医疗公司 | Use of antisecretory factors in the treatment and/or prevention of acute respiratory failure |
| CN112770643A (en) * | 2018-09-28 | 2021-05-07 | 兰特门内保健食品公司 | Consumable product comprising malted de-hulled oats |
| CN112770644A (en) * | 2018-09-28 | 2021-05-07 | 兰特门内保健食品公司 | Consumable product comprising malted wheat |
| CN115605214A (en) | 2020-03-26 | 2023-01-13 | 兰特门内保健食品公司(Se) | Consumable product comprising malted cereals for promoting recovery of physical activity |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6344440B1 (en) * | 1995-08-24 | 2002-02-05 | Rural Patent Svenska Ab | Antisecretory factor peptides regulating pathological permeability changes |
-
1995
- 1995-08-24 SE SE9502936A patent/SE508609C2/en not_active IP Right Cessation
-
1996
- 1996-08-23 AT AT96929619T patent/ATE270305T1/en active
- 1996-08-23 US US09/029,333 patent/US6344440B1/en not_active Expired - Lifetime
- 1996-08-23 EP EP96929619A patent/EP0851876B1/en not_active Expired - Lifetime
- 1996-08-23 PL PL96325114A patent/PL188530B1/en unknown
- 1996-08-23 WO PCT/SE1996/001049 patent/WO1997008202A1/en not_active Ceased
- 1996-08-23 ES ES96929619T patent/ES2118683T3/en not_active Expired - Lifetime
- 1996-08-23 TR TR1998/00304T patent/TR199800304T1/en unknown
- 1996-08-23 DE DE69632828T patent/DE69632828T2/en not_active Expired - Lifetime
- 1996-08-23 NZ NZ316647A patent/NZ316647A/en not_active IP Right Cessation
- 1996-08-23 CA CA2230111A patent/CA2230111C/en not_active Expired - Lifetime
- 1996-08-23 IL IL12340496A patent/IL123404A/en not_active IP Right Cessation
- 1996-08-23 BR BR9610308-6A patent/BR9610308A/en not_active IP Right Cessation
- 1996-08-23 SK SK236-98A patent/SK23698A3/en unknown
- 1996-08-23 JP JP51018597A patent/JP4040679B2/en not_active Expired - Lifetime
- 1996-08-23 CN CNB961973005A patent/CN1171902C/en not_active Expired - Lifetime
- 1996-08-23 AU AU68932/96A patent/AU702589B2/en not_active Expired
- 1996-08-23 DE DE0851876T patent/DE851876T1/en active Pending
- 1996-08-23 SI SI9630013T patent/SI0851876T1/en unknown
- 1996-08-23 KR KR1019980701343A patent/KR100552947B1/en not_active Expired - Lifetime
- 1996-08-23 PT PT96929619T patent/PT851876E/en unknown
- 1996-08-23 RO RO98-00364A patent/RO120197B1/en unknown
- 1996-08-23 CZ CZ1998520A patent/CZ295444B6/en not_active IP Right Cessation
- 1996-08-23 EA EA199800221A patent/EA001201B1/en not_active IP Right Cessation
- 1996-08-23 EE EE9800055A patent/EE04501B1/en not_active IP Right Cessation
- 1996-08-23 DK DK96929619T patent/DK0851876T3/en active
- 1996-08-23 HU HU9900137A patent/HU224971B1/en unknown
-
1998
- 1998-02-23 NO NO19980743A patent/NO320560B1/en not_active IP Right Cessation
- 1998-02-24 BG BG102280A patent/BG63209B1/en unknown
-
1999
- 1999-08-20 NZ NZ337380A patent/NZ337380A/en not_active IP Right Cessation
-
2001
- 2001-11-26 US US09/991,792 patent/US20020099016A1/en not_active Abandoned
-
2007
- 2007-07-25 JP JP2007193054A patent/JP2008043331A/en not_active Withdrawn
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6344440B1 (en) * | 1995-08-24 | 2002-02-05 | Rural Patent Svenska Ab | Antisecretory factor peptides regulating pathological permeability changes |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100286052A1 (en) * | 2003-09-26 | 2010-11-11 | As Faktor Ab | Novel use of antisecretory factor |
| US8748367B2 (en) * | 2003-09-26 | 2014-06-10 | As Faktor Ab | Use of antisecretory factor |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6344440B1 (en) | Antisecretory factor peptides regulating pathological permeability changes | |
| US5607918A (en) | Vascular endothelial growth factor-B and DNA coding therefor | |
| US7781188B1 (en) | Nucleotide and protein sequences of Nogo genes and methods based thereon | |
| US20110160445A1 (en) | Heparin-Binding Growth Factor (HBGF) Polypeptides | |
| AU4440302A (en) | Heparin-binding growth factor (HBGF) polypeptides | |
| HK1038027B (en) | Nucleotide and protein sequences of nogo genes and methods based thereon |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |