US20020094401A1 - High strength part - Google Patents
High strength part Download PDFInfo
- Publication number
- US20020094401A1 US20020094401A1 US10/077,708 US7770802A US2002094401A1 US 20020094401 A1 US20020094401 A1 US 20020094401A1 US 7770802 A US7770802 A US 7770802A US 2002094401 A1 US2002094401 A1 US 2002094401A1
- Authority
- US
- United States
- Prior art keywords
- strength
- interior surfaces
- shell
- opposing interior
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 claims abstract description 41
- 229920000642 polymer Polymers 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 229920005989 resin Polymers 0.000 claims description 33
- 239000011347 resin Substances 0.000 claims description 33
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 16
- 239000000945 filler Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 7
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 claims description 4
- WVRNUXJQQFPNMN-VAWYXSNFSA-N 3-[(e)-dodec-1-enyl]oxolane-2,5-dione Chemical compound CCCCCCCCCC\C=C\C1CC(=O)OC1=O WVRNUXJQQFPNMN-VAWYXSNFSA-N 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims 1
- 238000009736 wetting Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 8
- 238000011960 computer-aided design Methods 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013022 venting Methods 0.000 description 2
- KMOUUZVZFBCRAM-UHFFFAOYSA-N 1,2,3,6-tetrahydrophthalic anhydride Chemical compound C1C=CCC2C(=O)OC(=O)C21 KMOUUZVZFBCRAM-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/22—Component parts, details or accessories; Auxiliary operations
- B29C39/42—Casting under special conditions, e.g. vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/44—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/44—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
- B29C70/443—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/54—Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
- B29C70/542—Placing or positioning the reinforcement in a covering or packaging element before or during moulding, e.g. drawing in a sleeve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/139—Open-ended, self-supporting conduit, cylinder, or tube-type article
- Y10T428/1393—Multilayer [continuous layer]
Definitions
- the present invention relates generally to manufactured parts, and more particularly to high-strength parts having exterior surfaces that are precision manufactured using a stereolithographic method/apparatus while having an interior core made from a high-strength material.
- CAD computer-aided design
- a stereolithography apparatus or SLA as it is known takes CAD data and automatically produces a hard plastic pattern or model in a matter of hours.
- the patterns or models are three dimensional and include any design features that are made available by most general-use CAD systems. Examples of such SLA systems include those disclosed in U.S. Pat. No. 4,575,330 (Hull), U.S. Pat. No. 5,104,592 (Hull et al.), U.S. Pat. No. 5,216,616 (Masters), and U.S. Pat. No. 5,263,130 (Pomerantz et al.)
- a part design is created on a CAD system and then downloaded to the control unit of an SLA.
- the control unit directs a movable laser beam onto the surface of a tank filled with a liquid polymer that is photo-curable.
- An elevator table resides just below the surface of the liquid polymer. In operation, the polymer solidifies to a thickness of approximately 0.005-0.030 inches wherever the laser beam strikes the surface of the liquid photo-curable polymer.
- To construct a cross-section of the part the laser beam is scanned back and forth on the surface in the shape of the cross-section.
- the elevator table is then lowered a programmed amount so that the just-solidified cross-section is covered with the liquid polymer.
- Another cross-section of the part is then created on top of the first cross-section in the same manner as described above. The process continues until the complete part has been constructed. Finally, the part is removed from the tank and cured.
- the cured polymer part does not typically provide the strength characteristics required of the actual part. Thus, functional testing of the SLA created part is not usually possible and must therefore be delayed until the part can be cast or machined from an appropriate strength material.
- Another object of the present invention is to provide a method of making a precision manufactured part having the strength characteristics necessary for the functional testing of the part.
- high-strength parts are produced by first performing a stereolithography part generation process to create a polymer part having opposing interior surfaces.
- An uncured strength material is interposed between the opposing interior surfaces of the polymer part.
- the polymer part with the uncured strength material is then heated.
- the strength material is chosen to bond to the opposing interior surfaces during the heating step.
- the strength material comprises either a mixture of an epichlorohydrin resin, a catalyst and filler particles, or a mesh wetted with a catalyzed epichlorohydrin resin.
- FIG. 1A is a cross-section of an arbitrarily-shaped, stereolithography-generated polymer part for use in an embodiment of the present invention
- FIG. 1B is a cross-section of the part of FIG. 1A partially filled with a secondary material in accordance with the present invention
- FIG. 1C is a cross-section of the high-strength part produced in accordance with the present invention.
- FIG. 2A is a cross-section of arbitrarily-shaped, stereolithography-generated polymer shells that can nest with one another in accordance with another embodiment of the present invention
- FIG. 2B is a cross-section of the polymer shells of FIG. 2A and a reinforcing mesh saturated with a catalyzed resin interposed between the shells;
- FIG. 2C is a cross-section of the polymer shells after they have been pressed together in nested engagement about the catalyzed resin-wetted reinforcing mesh used to form the high-strength part.
- FIG. 1A a cross-section of an arbitrarily-shaped hollow polymer part is referenced generally by numeral 10 .
- Part 10 is designed/constructed using a stereolithography apparatus (SLA) to achieve the desired exterior dimensions.
- SLA stereolithography apparatus
- polymer part 10 is made from an epoxy resin polymer developed and sold by Ciba Geigy Corporation under the tradename CIBATOOLTM SL5180 or SL5170.
- the present invention is also compatible with other epoxy polymer systems.
- polymer part 10 is designed/constructed to have inner shell 12 with interior surface 12 a and outer shell 14 with interior surface 14 a .
- Interior surface 12 a and interior surface 14 a oppose one another and are separated from one another by gap 16 that is fairly uniform throughout polymer part 10 in accordance with the precision of the particular SLA system.
- Gap 16 is maintained by a plurality of spaced-apart internal supports 18 formed integrally with inner shell 12 and outer shell 14 of the same polymer material during the stereolithography construction process. Spacing between supports 18 is selected to provide sufficient flow area for passage of a viscous secondary material (as will be described further below), while sufficiently maintaining the integrity of gap 16 .
- polymer part 10 can be accomplished with the aid of any one of a variety of patterning software packages used in conjunction with an SLA.
- patterning software package is available under the tradename QUICKCASTTM from Ciba Geigy Corporation.
- the structure of polymer part 10 i.e., inner shell 12 , outer shell 14 and supports 18 , is photo-cured during a stereolithography process and any uncured liquid polymer is drained via, for example, holes 20 , 21 and 22 , thereby leaving gap 16 .
- secondary material 30 is injected between inner shell 12 and outer shell 14 using holes 20 and 21 , for example, as indicated by arrows 40 .
- Hole 22 in this example allows the displaced air in gap 16 to escape as indicated by arrow 42 .
- secondary material 30 is in a liquid state when it fills gap 16 .
- the injection indicated by arrow 40 can be pressure assisted using pump 41 while the venting of air indicated by arrow 42 can be vacuum assisted using vacuum 43 .
- part 50 has a precision contoured exterior provided by the stereolithographic process while having a core with the strength properties of the cured secondary material 30 .
- secondary material 30 In its uncured liquid form, secondary material 30 should be easily castable. Upon curing, secondary material 30 must bond with the photo-cured polymer material used in the stereolithographic part generation process. Once cured, secondary material 30 must have a coefficient of expansion similar to that of the photo-cured polymer material.
- secondary material 30 is a catalyzed epoxy resin that is mixed with filler particles for added strength.
- the epoxy resin for secondary material 30 should be one having its basic epoxidizing resin based on epichlorohydrin.
- the catalyst is chosen based upon the desired pot life. That is, if the part to be constructed were geometrically complex, a longer pot life may be desired to allow for complete filling of the stereolithographic part. For example, one catalyst which does not add to the basic viscosity of the epichlorohydrin resin is methylendomethylene (THPA).
- a pot life of about two hours is achieved when methylendomethylene is added to an epichlorohydrin resin at 80-90 weight percent of the epichlorohydrin resin's weight. For most applications, a two hour pot life is adequate.
- Other suitable catalysts include hexahydrophthalic anhydride (HHPA), dodecenylsuccinic anhydride (DDSA), and polyamide.
- strength-enhancing filler particles are added and mixed thoroughly with the mixture of resin and catalyst.
- the mixture of resin, catalyst and filler particles forms secondary material 30 for injection between inner shell 12 and outer shell 14 .
- Choice of the particular material for the filler particles varies with the thickness of gap 16 and the desired strength properties of the filled polymer part. For example, for gaps up to approximately 3 ⁇ 4 of an inch in thickness, milled glass fiber in the range of ⁇ fraction (1/32) ⁇ to ⁇ fraction (1/64) ⁇ of an inch in length can be added to the mixture of resin and catalyst in a proportion that is 50-60 weight percent of the resin's weight.
- gap 16 is between approximately 1 ⁇ 4 to 3 ⁇ 4 of an inch, aluminum powder is added in a proportion up to 10 weight percent of the resin's weight. The aluminum powder aids in heat dispersion during the curing process.
- secondary material 30 e.g., either the mixture of resin, catalyst and filler or the mixture of resin, catalyst, filler and metal powder
- the filled part is cured. Curing is accomplished by heating the filled part to a fairly low temperature of approximately 125° F. until secondary material 30 cures to a useful strength, i.e., a strength greater than the strength of the photo-cured polymer material.
- FIG. 2A a cross-section is shown of polymer part 100 formed of first shell 112 and second shell 114 .
- Surface 114 a of shell 114 is contoured and shaped to nest with surface 112 a of shell 112 .
- Surfaces 112 b and 114 b form the exterior surfaces of part 100 .
- a mat or mesh 120 is interposed between shells 112 and 114 .
- mesh 120 serves as fiber reinforcement and is typically constructed from glass or graphite fiber bundled cables or tows.
- the mesh size and thickness are dependent on the required properties of the end part. Generally, the more mesh material, the greater the strength of the object incorporating same. Usually, the placement and orientation of the fibers are chosen such that the greatest number of uninterrupted fibers are placed along the axis where the greatest tensile strength is required.
- Mesh 120 is wetted with a catalyzed resin such as the epichlorohydrin resin mixed with the methylendomethylene catalyst as described in detail above.
- a catalyzed resin such as the epichlorohydrin resin mixed with the methylendomethylene catalyst as described in detail above.
- the catalyzed resin is depicted in FIG. 2B as dashed lines 122 both above and below mesh 120 in order to indicate that mesh 120 is saturated with the catalyzed resin.
- mesh 120 saturated with catalyzed resin 122 conforms to the nested arrangement of shells 112 and 114 . Further, mesh 120 separates opposing surfaces 112 a and 114 a to essentially define a uniform separation between shells 112 and 114 similar to the uniform gap maintained by supports 18 in the embodiment of FIGS. 1A, 1B and 1 C. Any excess catalyzed resin is squeezed out of the ends of shells 112 and 114 as indicated by arrows 124 . Additional vents (not shown) can also be provided in each of shells 112 and 114 for venting purposes.
- a vacuum (not shown) may be applied to the various vents to assist in the removal of excess catalyzed liquid and/or air bubbles.
- the nested part with reinforcing mesh 120 saturated with catalyzed resin 122 is then cured at a fairly low temperature, e.g., 125EF, as described above.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
High-strength parts are produced by first performing a stereolithography part generation process to create a polymer part having opposing interior surfaces. An uncured strength material is interposed between the opposing interior surfaces of the polymer part. The polymer part with the uncured strength material is then heated. The strength material is chosen to bond to the opposing interior surfaces during the heating step.
Description
- [0001] The invention described herein may be manufactured and used by or for the Government of the United States of America for Governmental purposes without the payment of any royalties thereon or therefor.
- (1) Field of the Invention
- The present invention relates generally to manufactured parts, and more particularly to high-strength parts having exterior surfaces that are precision manufactured using a stereolithographic method/apparatus while having an interior core made from a high-strength material.
- (2) Description of the Prior Art
- Complex models can now be quickly and accurately made by linking computer-aided design (CAD) model specifications with a commercially available process known as stereolithography. A stereolithography apparatus (or SLA as it is known) takes CAD data and automatically produces a hard plastic pattern or model in a matter of hours. The patterns or models are three dimensional and include any design features that are made available by most general-use CAD systems. Examples of such SLA systems include those disclosed in U.S. Pat. No. 4,575,330 (Hull), U.S. Pat. No. 5,104,592 (Hull et al.), U.S. Pat. No. 5,216,616 (Masters), and U.S. Pat. No. 5,263,130 (Pomerantz et al.)
- The basic concept of stereolithography is as follows. A part design is created on a CAD system and then downloaded to the control unit of an SLA. The control unit directs a movable laser beam onto the surface of a tank filled with a liquid polymer that is photo-curable. An elevator table resides just below the surface of the liquid polymer. In operation, the polymer solidifies to a thickness of approximately 0.005-0.030 inches wherever the laser beam strikes the surface of the liquid photo-curable polymer. To construct a cross-section of the part, the laser beam is scanned back and forth on the surface in the shape of the cross-section. The elevator table is then lowered a programmed amount so that the just-solidified cross-section is covered with the liquid polymer. Another cross-section of the part is then created on top of the first cross-section in the same manner as described above. The process continues until the complete part has been constructed. Finally, the part is removed from the tank and cured.
- While producing complex parts accurately and quickly using stereolithography has many advantages, the cured polymer part does not typically provide the strength characteristics required of the actual part. Thus, functional testing of the SLA created part is not usually possible and must therefore be delayed until the part can be cast or machined from an appropriate strength material.
- Accordingly, it is an object of the present invention to utilize the speed and accuracy of stereolithography in forming high-strength parts.
- Another object of the present invention is to provide a method of making a precision manufactured part having the strength characteristics necessary for the functional testing of the part.
- Other objects and advantages of the present invention will become more obvious hereinafter in the specification and drawings.
- In accordance with the present invention, high-strength parts are produced by first performing a stereolithography part generation process to create a polymer part having opposing interior surfaces. An uncured strength material is interposed between the opposing interior surfaces of the polymer part. The polymer part with the uncured strength material is then heated. The strength material is chosen to bond to the opposing interior surfaces during the heating step. The strength material comprises either a mixture of an epichlorohydrin resin, a catalyst and filler particles, or a mesh wetted with a catalyzed epichlorohydrin resin.
- Other objects, features and advantages of the present invention will become apparent upon reference to the following description of the preferred embodiments and to the drawings, wherein:
- FIG. 1A is a cross-section of an arbitrarily-shaped, stereolithography-generated polymer part for use in an embodiment of the present invention;
- FIG. 1B is a cross-section of the part of FIG. 1A partially filled with a secondary material in accordance with the present invention;
- FIG. 1C is a cross-section of the high-strength part produced in accordance with the present invention;
- FIG. 2A is a cross-section of arbitrarily-shaped, stereolithography-generated polymer shells that can nest with one another in accordance with another embodiment of the present invention;
- FIG. 2B is a cross-section of the polymer shells of FIG. 2A and a reinforcing mesh saturated with a catalyzed resin interposed between the shells; and
- FIG. 2C is a cross-section of the polymer shells after they have been pressed together in nested engagement about the catalyzed resin-wetted reinforcing mesh used to form the high-strength part.
- Referring now to the drawings, and more particularly to FIGS. 1A, 1B and 1C, one embodiment of the present invention will be described. In FIG. 1A, a cross-section of an arbitrarily-shaped hollow polymer part is referenced generally by
numeral 10.Part 10 is designed/constructed using a stereolithography apparatus (SLA) to achieve the desired exterior dimensions. A variety of such SLA systems are known in the art and will, therefore, not be described further. Typically,polymer part 10 is made from an epoxy resin polymer developed and sold by Ciba Geigy Corporation under the tradename CIBATOOL™ SL5180 or SL5170. However, the present invention is also compatible with other epoxy polymer systems. - In terms of the present invention,
polymer part 10 is designed/constructed to haveinner shell 12 withinterior surface 12 a andouter shell 14 withinterior surface 14 a. Interior surface 12 a andinterior surface 14 a oppose one another and are separated from one another bygap 16 that is fairly uniform throughoutpolymer part 10 in accordance with the precision of the particular SLA system.Gap 16 is maintained by a plurality of spaced-apartinternal supports 18 formed integrally withinner shell 12 andouter shell 14 of the same polymer material during the stereolithography construction process. Spacing between supports 18 is selected to provide sufficient flow area for passage of a viscous secondary material (as will be described further below), while sufficiently maintaining the integrity ofgap 16. The design ofpolymer part 10 can be accomplished with the aid of any one of a variety of patterning software packages used in conjunction with an SLA. For example, one such patterning software package is available under the tradename QUICKCAST™ from Ciba Geigy Corporation. Briefly, the structure ofpolymer part 10, i.e.,inner shell 12,outer shell 14 and supports 18, is photo-cured during a stereolithography process and any uncured liquid polymer is drained via, for example, holes 20, 21 and 22, thereby leavinggap 16. - With
polymer part 10 constructed as in FIG. 1A, a secondary material is introduced as will be described with the aid of FIG. 1B. Like reference numerals will be used for the elements common with FIG. 1A. In this embodiment of the present invention,secondary material 30 is injected betweeninner shell 12 andouter shell 14 using 20 and 21, for example, as indicated by arrows 40.holes Hole 22 in this example allows the displaced air ingap 16 to escape as indicated byarrow 42. Accordingly,secondary material 30 is in a liquid state when it fillsgap 16. To assure uniform filling ofsecondary material 30 betweeninner shell 12 andouter shell 14, the injection indicated by arrow 40 can be pressure assisted usingpump 41 while the venting of air indicated byarrow 42 can be vacuum assisted usingvacuum 43. The completely filled part, referenced generally by numeral 50 in FIG. 1C, is then heated so thatsecondary material 30 bonds topolymer part 10 assecondary material 30 cures. Thus,part 50 has a precision contoured exterior provided by the stereolithographic process while having a core with the strength properties of the curedsecondary material 30. - In its uncured liquid form,
secondary material 30 should be easily castable. Upon curing,secondary material 30 must bond with the photo-cured polymer material used in the stereolithographic part generation process. Once cured,secondary material 30 must have a coefficient of expansion similar to that of the photo-cured polymer material. - In general, when
polymer part 10 is formed from an epoxy resin polymer as described above,secondary material 30 is a catalyzed epoxy resin that is mixed with filler particles for added strength. The epoxy resin forsecondary material 30 should be one having its basic epoxidizing resin based on epichlorohydrin. The catalyst is chosen based upon the desired pot life. That is, if the part to be constructed were geometrically complex, a longer pot life may be desired to allow for complete filling of the stereolithographic part. For example, one catalyst which does not add to the basic viscosity of the epichlorohydrin resin is methylendomethylene (THPA). A pot life of about two hours is achieved when methylendomethylene is added to an epichlorohydrin resin at 80-90 weight percent of the epichlorohydrin resin's weight. For most applications, a two hour pot life is adequate. Other suitable catalysts include hexahydrophthalic anhydride (HHPA), dodecenylsuccinic anhydride (DDSA), and polyamide. - Immediately after mixing the resin and catalyst, strength-enhancing filler particles are added and mixed thoroughly with the mixture of resin and catalyst. The mixture of resin, catalyst and filler particles forms
secondary material 30 for injection betweeninner shell 12 andouter shell 14. Choice of the particular material for the filler particles varies with the thickness ofgap 16 and the desired strength properties of the filled polymer part. For example, for gaps up to approximately ¾ of an inch in thickness, milled glass fiber in the range of {fraction (1/32)} to {fraction (1/64)} of an inch in length can be added to the mixture of resin and catalyst in a proportion that is 50-60 weight percent of the resin's weight. (While strength increases with the increase in filler material, the mixture can become too viscous is if the stated proportion is exceeded.) In addition, ifgap 16 is between approximately ¼ to ¾ of an inch, aluminum powder is added in a proportion up to 10 weight percent of the resin's weight. The aluminum powder aids in heat dispersion during the curing process. - After secondary material 30 (e.g., either the mixture of resin, catalyst and filler or the mixture of resin, catalyst, filler and metal powder) fills the SLA generated part, the filled part is cured. Curing is accomplished by heating the filled part to a fairly low temperature of approximately 125° F. until
secondary material 30 cures to a useful strength, i.e., a strength greater than the strength of the photo-cured polymer material. - The present invention can also be implemented by constructing the stereolithographic part as two arbitrarily-shaped nesting shell as will now be described with the aid of FIGS. 2A, 2B and 2C. In FIG. 2A, a cross-section is shown of
polymer part 100 formed offirst shell 112 andsecond shell 114.Surface 114 a ofshell 114 is contoured and shaped to nest withsurface 112 a ofshell 112. 112 b and 114 b form the exterior surfaces ofSurfaces part 100. As shown in FIG. 2B, a mat ormesh 120 is interposed between 112 and 114. As will become apparent below,shells mesh 120 serves as fiber reinforcement and is typically constructed from glass or graphite fiber bundled cables or tows. The mesh size and thickness are dependent on the required properties of the end part. Generally, the more mesh material, the greater the strength of the object incorporating same. Usually, the placement and orientation of the fibers are chosen such that the greatest number of uninterrupted fibers are placed along the axis where the greatest tensile strength is required. -
Mesh 120 is wetted with a catalyzed resin such as the epichlorohydrin resin mixed with the methylendomethylene catalyst as described in detail above. For purpose of illustrations, the catalyzed resin is depicted in FIG. 2B as dashedlines 122 both above and belowmesh 120 in order to indicate thatmesh 120 is saturated with the catalyzed resin. - When
112 and 114 are pressed into nested engagement with one another as shown in FIG. 2C, mesh 120 saturated with catalyzedshells resin 122 conforms to the nested arrangement of 112 and 114. Further,shells mesh 120 112 a and 114 a to essentially define a uniform separation betweenseparates opposing surfaces 112 and 114 similar to the uniform gap maintained byshells supports 18 in the embodiment of FIGS. 1A, 1B and 1C. Any excess catalyzed resin is squeezed out of the ends of 112 and 114 as indicated byshells arrows 124. Additional vents (not shown) can also be provided in each of 112 and 114 for venting purposes. As with the first embodiment, a vacuum (not shown) may be applied to the various vents to assist in the removal of excess catalyzed liquid and/or air bubbles. The nested part with reinforcingshells mesh 120 saturated with catalyzedresin 122 is then cured at a fairly low temperature, e.g., 125EF, as described above. - The advantages of the present in invention are numerous. The accuracy and efficiency of stereolithography are combined with a strength material in a novel fashion to produce a high-strength part. In this way, a stereolithographic part can be tested for both form and function.
- It will be understood that many additional changes in the details, materials, steps and arrangement of parts, which have been herein described and illustrated in order to explain the nature of the invention, may be made by those skilled in the art within the principle and scope of the invention as expressed in the appended claims.
Claims (17)
1. A method for producing high-strength parts, comprising the steps of:
performing a stereolithography part generation process to create a polymer part having opposing interior surfaces;
interposing an uncured strength material between said opposing interior surfaces; and
heating said polymer part with said uncured strength material interposed between said opposing interior surfaces, wherein said uncured strength material cures and bonds to said opposing interior surfaces.
2. A method according to claim 1 wherein said step of performing includes the step of generating a plurality of spaced apart internal supports integral with and between said opposing interior surfaces during said stereolithography part generation process to a gap between said opposing interior surfaces.
3. A method according to claim 2 wherein:
said step of performing further includes the step of providing a first hole and a second hole in said polymer part, each of said first hole and said second hole communicating with said gap; and
said step of filling includes the step of injecting said uncured strength material into said first hole.
4. A method according to claim 3 further comprising the step of applying a vacuum to said second hole while said uncured strength material is injected into said first hole.
5. A method according to claim 1 wherein:
said step of performing creates a first shell of said polymer part and creates a second shell of said polymer part that can be nested with said first shell to define said opposing interior surfaces; and
said step of filling is accomplished by sandwiching said first shell and said second shell about said uncured strength material.
6. A method according to claim 5 wherein said step of filling comprises the steps of:
placing a mesh between said first shell and said second shell;
wetting said mesh with a catalyzed resin to form said uncured strength material; and
pressing said first shell and said second shell together about said mesh wetted with said catalyzed resin, wherein said mesh conforms to said opposing interior surfaces.
7. A high-strength part, comprising:
a part made from a photo-curable polymer, said part having opposing interior surfaces; and
a strength material interposed between and bonded to said opposing interior surfaces.
8. A high-strength part as in claim 7 further comprising a plurality of spaced apart internal supports made from said photo-curable polymer, said plurality of spaced apart internal supports further being integral with said opposing interior surfaces to create a gap therebetween.
9. A high-strength part as in claim 7 wherein said strength material comprises a mixture of an epichlorohydrin resin, a catalyst and filler particles.
10. A high-strength part as in claim 9 wherein said catalyst is selected from the group consisting of methylendomethylene, hexahydrophthalic anhydride, dodecenylsuccinic anhydride, and polyamide.
11. A high-strength part as in claim 9 wherein said catalyst is methylendomethylene mixed with said epichlorohydrin resin in a proportion of 80-90 weight percent of said epichlorohydrin resin.
12. A high-strength part as in claim 11 wherein said filler particles are glass fibers in the range of {fraction (1/32)} to {fraction (1/64)} of an inch in length.
13. A high-strength part as in claim 12 wherein said glass fibers are 50-60 weight percent of said epichlorohydrin resin.
14. A high-strength part as in claim 9 , said mixture further comprising aluminum powder in a proportion up to 10 weight percent of said epichlorohydrin resin.
15. A high-strength part as in claim 7 wherein said strength material comprises a mesh wetted with a catalyzed epichlorohydrin resin.
16. A high-strength part as in claim 15 wherein said catalyzed epichlorohydrin resin uses a catalyst selected from the group consisting of methylendomethylene, hexahydrophthalic anhydride, dodecenylsuccinic anhydride, and polyamide.
17. A high-strength part as in claim 16 wherein said catalyst is methylendomethylene mixed with a epichlorohydrin resin in a proportion of 80-90 weight percent of said epichlorohydrin resin.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/077,708 US20020094401A1 (en) | 1999-10-04 | 2002-02-15 | High strength part |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/413,052 US6364986B1 (en) | 1999-10-04 | 1999-10-04 | High-strength parts formed using stereolithography |
| US10/077,708 US20020094401A1 (en) | 1999-10-04 | 2002-02-15 | High strength part |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/413,052 Division US6364986B1 (en) | 1999-10-04 | 1999-10-04 | High-strength parts formed using stereolithography |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020094401A1 true US20020094401A1 (en) | 2002-07-18 |
Family
ID=23635622
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/413,052 Expired - Fee Related US6364986B1 (en) | 1999-10-04 | 1999-10-04 | High-strength parts formed using stereolithography |
| US10/077,708 Abandoned US20020094401A1 (en) | 1999-10-04 | 2002-02-15 | High strength part |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/413,052 Expired - Fee Related US6364986B1 (en) | 1999-10-04 | 1999-10-04 | High-strength parts formed using stereolithography |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US6364986B1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050015171A1 (en) * | 2003-07-15 | 2005-01-20 | Cruz-Uribe Antonio S. | Method and a system for producing an object using solid freeform fabrication |
| DE102006026756A1 (en) * | 2006-06-09 | 2007-12-13 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method for production of molded parts e.g. rail vehicles, comprises mechanical vertically, casing-freely construction of mold wall made of flowable mold wall-material and of rear wall made of flowable rear wall-material |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020171177A1 (en) * | 2001-03-21 | 2002-11-21 | Kritchman Elisha M. | System and method for printing and supporting three dimensional objects |
| US7752882B2 (en) * | 2005-11-17 | 2010-07-13 | The Boeing Company | Porosity reference standard utilizing a mesh |
| US7762120B2 (en) * | 2005-12-01 | 2010-07-27 | The Boeing Company | Tapered ultrasonic reference standard |
| US7770457B2 (en) * | 2006-10-13 | 2010-08-10 | The Boeing Company | Pseudo porosity reference standard for metallic interleaved composite laminates |
| JP5431576B2 (en) | 2009-05-12 | 2014-03-05 | スリーディー システムズ インコーポレーテッド | Compositions and methods for selective deposition modeling |
| US8905335B1 (en) * | 2009-06-10 | 2014-12-09 | The United States Of America, As Represented By The Secretary Of The Navy | Casting nozzle with dimensional repeatability for viscous liquid dispensing |
| US8323429B2 (en) * | 2009-07-31 | 2012-12-04 | United States Gypsum Company | Method for preparing three-dimensional plaster objects |
| WO2015042089A1 (en) * | 2013-09-23 | 2015-03-26 | United Technologies Corporation | Method of generating support structure of tube components to become functional features |
| DE102014221480B4 (en) * | 2014-10-22 | 2017-10-05 | Nanoscribe Gmbh | Method for producing a three-dimensional structure |
| JP6637081B2 (en) | 2015-06-30 | 2020-01-29 | ザ ジレット カンパニー リミテッド ライアビリティ カンパニーThe Gillette Company Llc | Polymer cutting edge structure and method of manufacturing the same |
| NL2015101B1 (en) * | 2015-07-07 | 2017-01-31 | Jasper Bouwmeester Holding B V | Method for preparing a fiber-reinforced article having a 3D printed surface layer. |
| DE102015115793A1 (en) | 2015-09-18 | 2017-03-23 | Airbus Defence and Space GmbH | Production of objects with fiber-reinforced area |
| US11654623B2 (en) * | 2015-11-11 | 2023-05-23 | Xerox Corporation | Additive manufacturing system with layers of reinforcing mesh |
| US10562200B2 (en) * | 2016-06-28 | 2020-02-18 | The Gillette Company Llc | Polymeric cutting edge structures and method of manufacturing polymeric cutting edge structures |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2233928B (en) * | 1989-05-23 | 1992-12-23 | Brother Ind Ltd | Apparatus and method for forming three-dimensional article |
| US5173220A (en) * | 1991-04-26 | 1992-12-22 | Motorola, Inc. | Method of manufacturing a three-dimensional plastic article |
-
1999
- 1999-10-04 US US09/413,052 patent/US6364986B1/en not_active Expired - Fee Related
-
2002
- 2002-02-15 US US10/077,708 patent/US20020094401A1/en not_active Abandoned
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050015171A1 (en) * | 2003-07-15 | 2005-01-20 | Cruz-Uribe Antonio S. | Method and a system for producing an object using solid freeform fabrication |
| WO2005009723A1 (en) * | 2003-07-15 | 2005-02-03 | Hewlett Packard Development Company, L.P. | A method and a system for producing an object using solid freeform fabrication |
| JP2007531641A (en) * | 2003-07-15 | 2007-11-08 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Method and system for creating an object using solid freeform manufacturing |
| US7625512B2 (en) | 2003-07-15 | 2009-12-01 | Hewlett-Packard Development Company, L.P. | Method and a system for producing an object using solid freeform fabrication |
| DE102006026756A1 (en) * | 2006-06-09 | 2007-12-13 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method for production of molded parts e.g. rail vehicles, comprises mechanical vertically, casing-freely construction of mold wall made of flowable mold wall-material and of rear wall made of flowable rear wall-material |
| DE102006026756B4 (en) * | 2006-06-09 | 2009-06-10 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method and device for producing a molded part |
Also Published As
| Publication number | Publication date |
|---|---|
| US6364986B1 (en) | 2002-04-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6364986B1 (en) | High-strength parts formed using stereolithography | |
| US6630093B1 (en) | Method for making freeform-fabricated core composite articles | |
| US10875288B2 (en) | Additive manufacturing of composite materials | |
| JP4219278B2 (en) | Rapid prototype injection molding | |
| US8932499B2 (en) | Method for producing an SMC multi-layer component | |
| US20180141246A1 (en) | Moldable Fly-Away Tool Structure System | |
| US5989679A (en) | Strong, dimensionally stable object | |
| NL2022640B1 (en) | A method for preparing a composite product | |
| JP7619758B2 (en) | Internal Tooling for Composite Parts | |
| US6103156A (en) | Method for rapid production of structural prototype plastic parts | |
| US6245274B1 (en) | Method for making advanced grid-stiffened structures | |
| US5049342A (en) | Method of fabricating composite structures | |
| SE514891C2 (en) | Plastic product comprising an inner core and method of manufacture thereof | |
| WO2004078442A1 (en) | Pre-consolidated pre-form and method of pre-consolidating pre-forms | |
| EP2266784A1 (en) | Method for producing a sandwich component having a honeycomb core | |
| JP2018140595A (en) | Method for manufacturing fiber reinforced composite material | |
| CN107399090B (en) | Fiber-reinforced foamed composite material and manufacturing method thereof | |
| US5814259A (en) | Method for molding structural parts utilizing modified silicone rubber | |
| EP0076673B1 (en) | Moulding method | |
| JPH03166921A (en) | Method for producing fiber-reinforced composite materials | |
| JP2002347128A (en) | Stereolithography and manufacturing method | |
| JP3541184B2 (en) | Manufacturing method of mold by stereolithography | |
| CN118560064A (en) | Continuous fiber 3D printing thermosetting composite sandwich structure curing and performance reinforcing method | |
| CN117484919A (en) | Method for molding composite material based on photo-curing resin | |
| JPH047111A (en) | Manufacture of fiber reinforced plastic hollow body |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |