US20020073448A1 - Matrix attachment regions - Google Patents
Matrix attachment regions Download PDFInfo
- Publication number
- US20020073448A1 US20020073448A1 US09/816,894 US81689401A US2002073448A1 US 20020073448 A1 US20020073448 A1 US 20020073448A1 US 81689401 A US81689401 A US 81689401A US 2002073448 A1 US2002073448 A1 US 2002073448A1
- Authority
- US
- United States
- Prior art keywords
- seq
- dna
- sequence
- matrix attachment
- mar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011159 matrix material Substances 0.000 title claims abstract description 39
- 241000196324 Embryophyta Species 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000013598 vector Substances 0.000 claims abstract description 15
- 108020004414 DNA Proteins 0.000 claims description 116
- 239000012634 fragment Substances 0.000 claims description 67
- 210000004027 cell Anatomy 0.000 claims description 52
- 108090000623 proteins and genes Proteins 0.000 claims description 47
- 239000013612 plasmid Substances 0.000 claims description 42
- 230000005026 transcription initiation Effects 0.000 claims description 30
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 27
- 239000002773 nucleotide Substances 0.000 claims description 26
- 125000003729 nucleotide group Chemical group 0.000 claims description 26
- 244000061176 Nicotiana tabacum Species 0.000 claims description 22
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- 230000009466 transformation Effects 0.000 claims description 11
- 102000053602 DNA Human genes 0.000 claims description 7
- 241000700605 Viruses Species 0.000 claims description 6
- 239000011780 sodium chloride Substances 0.000 claims description 6
- 241000208125 Nicotiana Species 0.000 claims description 5
- 244000105624 Arachis hypogaea Species 0.000 claims description 3
- 235000010469 Glycine max Nutrition 0.000 claims description 3
- 244000068988 Glycine max Species 0.000 claims description 3
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 3
- 244000061456 Solanum tuberosum Species 0.000 claims description 3
- 241001233957 eudicotyledons Species 0.000 claims description 3
- 235000013311 vegetables Nutrition 0.000 claims description 3
- 229920000742 Cotton Polymers 0.000 claims description 2
- 241000209510 Liliopsida Species 0.000 claims description 2
- 235000020232 peanut Nutrition 0.000 claims description 2
- 239000001509 sodium citrate Substances 0.000 claims description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 2
- 230000009261 transgenic effect Effects 0.000 claims 4
- 241000219146 Gossypium Species 0.000 claims 1
- 210000004102 animal cell Anatomy 0.000 claims 1
- 230000027455 binding Effects 0.000 description 105
- 238000009739 binding Methods 0.000 description 99
- 210000000299 nuclear matrix Anatomy 0.000 description 32
- 102000008297 Nuclear Matrix-Associated Proteins Human genes 0.000 description 25
- 108010035916 Nuclear Matrix-Associated Proteins Proteins 0.000 description 25
- 210000004940 nucleus Anatomy 0.000 description 18
- 108091028043 Nucleic acid sequence Proteins 0.000 description 15
- 230000014509 gene expression Effects 0.000 description 15
- 238000002955 isolation Methods 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 101100163849 Arabidopsis thaliana ARS1 gene Proteins 0.000 description 10
- 101100097319 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ala1 gene Proteins 0.000 description 10
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 10
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 101000598243 Nicotiana tabacum Probable aquaporin TIP-type RB7-18C Proteins 0.000 description 9
- 101000655028 Nicotiana tabacum Probable aquaporin TIP-type RB7-5A Proteins 0.000 description 9
- 125000001475 halogen functional group Chemical group 0.000 description 9
- 230000010076 replication Effects 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 230000002103 transcriptional effect Effects 0.000 description 9
- 238000010367 cloning Methods 0.000 description 8
- 230000000977 initiatory effect Effects 0.000 description 8
- 239000008188 pellet Substances 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 8
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 8
- 238000003556 assay Methods 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 230000029087 digestion Effects 0.000 description 7
- 108091008146 restriction endonucleases Proteins 0.000 description 7
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- 102000007537 Type II DNA Topoisomerases Human genes 0.000 description 6
- 108010046308 Type II DNA Topoisomerases Proteins 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 108091035707 Consensus sequence Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 5
- 108700019146 Transgenes Proteins 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 239000011859 microparticle Substances 0.000 description 5
- 210000001938 protoplast Anatomy 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 4
- 108010039627 Aprotinin Proteins 0.000 description 4
- 241000218631 Coniferophyta Species 0.000 description 4
- QRLVDLBMBULFAL-UHFFFAOYSA-N Digitonin Natural products CC1CCC2(OC1)OC3C(O)C4C5CCC6CC(OC7OC(CO)C(OC8OC(CO)C(O)C(OC9OCC(O)C(O)C9OC%10OC(CO)C(O)C(OC%11OC(CO)C(O)C(O)C%11O)C%10O)C8O)C(O)C7O)C(O)CC6(C)C5CCC4(C)C3C2C QRLVDLBMBULFAL-UHFFFAOYSA-N 0.000 description 4
- 229960004405 aprotinin Drugs 0.000 description 4
- UVYVLBIGDKGWPX-KUAJCENISA-N digitonin Chemical compound O([C@@H]1[C@@H]([C@]2(CC[C@@H]3[C@@]4(C)C[C@@H](O)[C@H](O[C@H]5[C@@H]([C@@H](O)[C@@H](O[C@H]6[C@@H]([C@@H](O[C@H]7[C@@H]([C@@H](O)[C@H](O)CO7)O)[C@H](O)[C@@H](CO)O6)O[C@H]6[C@@H]([C@@H](O[C@H]7[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O7)O)[C@@H](O)[C@@H](CO)O6)O)[C@@H](CO)O5)O)C[C@@H]4CC[C@H]3[C@@H]2[C@@H]1O)C)[C@@H]1C)[C@]11CC[C@@H](C)CO1 UVYVLBIGDKGWPX-KUAJCENISA-N 0.000 description 4
- UVYVLBIGDKGWPX-UHFFFAOYSA-N digitonine Natural products CC1C(C2(CCC3C4(C)CC(O)C(OC5C(C(O)C(OC6C(C(OC7C(C(O)C(O)CO7)O)C(O)C(CO)O6)OC6C(C(OC7C(C(O)C(O)C(CO)O7)O)C(O)C(CO)O6)O)C(CO)O5)O)CC4CCC3C2C2O)C)C2OC11CCC(C)CO1 UVYVLBIGDKGWPX-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000000159 protein binding assay Methods 0.000 description 4
- 229940063673 spermidine Drugs 0.000 description 4
- 229940063675 spermine Drugs 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- YODZTKMDCQEPHD-UHFFFAOYSA-N thiodiglycol Chemical compound OCCSCCO YODZTKMDCQEPHD-UHFFFAOYSA-N 0.000 description 4
- 229950006389 thiodiglycol Drugs 0.000 description 4
- 244000283070 Abies balsamea Species 0.000 description 3
- 235000007173 Abies balsamea Nutrition 0.000 description 3
- 101100479039 Caenorhabditis elegans aars-1 gene Proteins 0.000 description 3
- 108010077544 Chromatin Proteins 0.000 description 3
- 241000207199 Citrus Species 0.000 description 3
- 244000241257 Cucumis melo Species 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 3
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 101710163270 Nuclease Proteins 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 210000003483 chromatin Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 108010002685 hygromycin-B kinase Proteins 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000003752 polymerase chain reaction Methods 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000012134 supernatant fraction Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 241000589158 Agrobacterium Species 0.000 description 2
- 244000144725 Amygdalus communis Species 0.000 description 2
- 235000011437 Amygdalus communis Nutrition 0.000 description 2
- 244000226021 Anacardium occidentale Species 0.000 description 2
- 244000099147 Ananas comosus Species 0.000 description 2
- 235000007119 Ananas comosus Nutrition 0.000 description 2
- 241001674345 Callitropsis nootkatensis Species 0.000 description 2
- 235000009467 Carica papaya Nutrition 0.000 description 2
- 240000006432 Carica papaya Species 0.000 description 2
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 235000009847 Cucumis melo var cantalupensis Nutrition 0.000 description 2
- 240000008067 Cucumis sativus Species 0.000 description 2
- 230000026774 DNA mediated transformation Effects 0.000 description 2
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 2
- 240000006497 Dianthus caryophyllus Species 0.000 description 2
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 2
- 108010067770 Endopeptidase K Proteins 0.000 description 2
- 244000299507 Gossypium hirsutum Species 0.000 description 2
- 235000005206 Hibiscus Nutrition 0.000 description 2
- 235000007185 Hibiscus lunariifolius Nutrition 0.000 description 2
- 244000284380 Hibiscus rosa sinensis Species 0.000 description 2
- 108010033040 Histones Proteins 0.000 description 2
- 102000006947 Histones Human genes 0.000 description 2
- 244000267823 Hydrangea macrophylla Species 0.000 description 2
- 235000014486 Hydrangea macrophylla Nutrition 0.000 description 2
- 206010020649 Hyperkeratosis Diseases 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- 235000014826 Mangifera indica Nutrition 0.000 description 2
- 240000007228 Mangifera indica Species 0.000 description 2
- 240000003183 Manihot esculenta Species 0.000 description 2
- 241000234479 Narcissus Species 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 244000025272 Persea americana Species 0.000 description 2
- 235000008673 Persea americana Nutrition 0.000 description 2
- 240000007377 Petunia x hybrida Species 0.000 description 2
- 235000010617 Phaseolus lunatus Nutrition 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 241000218606 Pinus contorta Species 0.000 description 2
- 235000013267 Pinus ponderosa Nutrition 0.000 description 2
- 235000008577 Pinus radiata Nutrition 0.000 description 2
- 241000218621 Pinus radiata Species 0.000 description 2
- 235000008566 Pinus taeda Nutrition 0.000 description 2
- 241000218679 Pinus taeda Species 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 240000001416 Pseudotsuga menziesii Species 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 241000208422 Rhododendron Species 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- 244000299461 Theobroma cacao Species 0.000 description 2
- 235000009470 Theobroma cacao Nutrition 0.000 description 2
- 241000218638 Thuja plicata Species 0.000 description 2
- 101710183280 Topoisomerase Proteins 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000013020 embryo development Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 2
- 229940051250 hexylene glycol Drugs 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000000442 meristematic effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 230000005305 organ development Effects 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000004114 suspension culture Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- SXGZJKUKBWWHRA-UHFFFAOYSA-N 2-(N-morpholiniumyl)ethanesulfonate Chemical compound [O-]S(=O)(=O)CC[NH+]1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-N 0.000 description 1
- VLEIUWBSEKKKFX-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O VLEIUWBSEKKKFX-UHFFFAOYSA-N 0.000 description 1
- 235000004507 Abies alba Nutrition 0.000 description 1
- 235000014081 Abies amabilis Nutrition 0.000 description 1
- 244000101408 Abies amabilis Species 0.000 description 1
- 244000178606 Abies grandis Species 0.000 description 1
- 235000017894 Abies grandis Nutrition 0.000 description 1
- 235000004710 Abies lasiocarpa Nutrition 0.000 description 1
- 240000005020 Acaciella glauca Species 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 235000001274 Anacardium occidentale Nutrition 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 241000193388 Bacillus thuringiensis Species 0.000 description 1
- 235000021533 Beta vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- PCDQPRRSZKQHHS-XVFCMESISA-N CTP Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 PCDQPRRSZKQHHS-XVFCMESISA-N 0.000 description 1
- 244000045232 Canavalia ensiformis Species 0.000 description 1
- 241000282461 Canis lupus Species 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 235000007516 Chrysanthemum Nutrition 0.000 description 1
- 244000189548 Chrysanthemum x morifolium Species 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000010071 Cucumis prophetarum Nutrition 0.000 description 1
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 1
- LMKYZBGVKHTLTN-NKWVEPMBSA-N D-nopaline Chemical compound NC(=N)NCCC[C@@H](C(O)=O)N[C@@H](C(O)=O)CCC(O)=O LMKYZBGVKHTLTN-NKWVEPMBSA-N 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 235000014466 Douglas bleu Nutrition 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000221079 Euphorbia <genus> Species 0.000 description 1
- 240000002395 Euphorbia pulcherrima Species 0.000 description 1
- 241000218218 Ficus <angiosperm> Species 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 235000009432 Gossypium hirsutum Nutrition 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 235000021506 Ipomoea Nutrition 0.000 description 1
- 241000207783 Ipomoea Species 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 241000208467 Macadamia Species 0.000 description 1
- 235000018330 Macadamia integrifolia Nutrition 0.000 description 1
- 240000007575 Macadamia integrifolia Species 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 235000004456 Manihot esculenta Nutrition 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- VPRLICVDSGMIKO-UHFFFAOYSA-N Mannopine Natural products NC(=O)CCC(C(O)=O)NCC(O)C(O)C(O)C(O)CO VPRLICVDSGMIKO-UHFFFAOYSA-N 0.000 description 1
- 241000234295 Musa Species 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108010033272 Nitrilase Proteins 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 235000002725 Olea europaea Nutrition 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 108010029182 Pectin lyase Proteins 0.000 description 1
- 244000100170 Phaseolus lunatus Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 240000000020 Picea glauca Species 0.000 description 1
- 235000008127 Picea glauca Nutrition 0.000 description 1
- 241000218595 Picea sitchensis Species 0.000 description 1
- 235000005205 Pinus Nutrition 0.000 description 1
- 241000218602 Pinus <genus> Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000008593 Pinus contorta Nutrition 0.000 description 1
- 235000011334 Pinus elliottii Nutrition 0.000 description 1
- 241000142776 Pinus elliottii Species 0.000 description 1
- 244000019397 Pinus jeffreyi Species 0.000 description 1
- 241000555277 Pinus ponderosa Species 0.000 description 1
- 235000013269 Pinus ponderosa var ponderosa Nutrition 0.000 description 1
- 235000013268 Pinus ponderosa var scopulorum Nutrition 0.000 description 1
- 241000219843 Pisum Species 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 235000008572 Pseudotsuga menziesii Nutrition 0.000 description 1
- 235000005386 Pseudotsuga menziesii var menziesii Nutrition 0.000 description 1
- 241000508269 Psidium Species 0.000 description 1
- 240000001679 Psidium guajava Species 0.000 description 1
- 235000013929 Psidium pyriferum Nutrition 0.000 description 1
- 235000011449 Rosa Nutrition 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 241000109329 Rosa xanthina Species 0.000 description 1
- 241000209056 Secale Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 241001138418 Sequoia sempervirens Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 235000006468 Thea sinensis Nutrition 0.000 description 1
- 241000592342 Tracheophyta Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 240000003021 Tsuga heterophylla Species 0.000 description 1
- 235000008554 Tsuga heterophylla Nutrition 0.000 description 1
- 241000722923 Tulipa Species 0.000 description 1
- 241000722921 Tulipa gesneriana Species 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 101150037081 aroA gene Proteins 0.000 description 1
- 229940097012 bacillus thuringiensis Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012148 binding buffer Substances 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 235000020226 cashew nut Nutrition 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002153 concerted effect Effects 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 244000013123 dwarf bean Species 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 235000021331 green beans Nutrition 0.000 description 1
- 101150054900 gus gene Proteins 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000001744 histochemical effect Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000012296 in situ hybridization assay Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- HLBRJWWTLIAOTE-UHFFFAOYSA-M lithium;2-hydroxy-3,5-diiodobenzoate Chemical compound [Li+].OC1=C(I)C=C(I)C=C1C([O-])=O HLBRJWWTLIAOTE-UHFFFAOYSA-M 0.000 description 1
- 235000014684 lodgepole pine Nutrition 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- VPRLICVDSGMIKO-SZWOQXJISA-N mannopine Chemical compound NC(=O)CC[C@@H](C(O)=O)NC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO VPRLICVDSGMIKO-SZWOQXJISA-N 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- -1 octapine Chemical compound 0.000 description 1
- 238000001503 one-tailed test Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000003499 redwood Nutrition 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 235000000673 shore pine Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000012536 storage buffer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- PIEPQKCYPFFYMG-UHFFFAOYSA-N tris acetate Chemical compound CC(O)=O.OCC(N)(CO)CO PIEPQKCYPFFYMG-UHFFFAOYSA-N 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 235000020138 yakult Nutrition 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/822—Reducing position variability, e.g. by the use of scaffold attachment region/matrix attachment region (SAR/MAR); Use of SAR/MAR to regulate gene expression
Definitions
- the present invention relates to matrix attachment regions isolated from a higher plant, and to methods for isolating matrix attachment sequences.
- Matrix Attachment Regions are genomic DNA sequences which bind specifically to components of the nuclear matrix. See Boulikas, J. Cell. Biochem. 52:14 (1993). These sequences are thought to define independent chromatin domains through their attachment to the nuclear matrix. Both transcription and replication are thought to occur at the nuclear matrix.
- a first aspect of the present invention is an isolated DNA molecule having a nucleotide sequence selected from the group consisting of SEQ ID NO: 1, 2, 4-11 and 13, sequences that hybridize to this isolated DNA under stringent conditions.
- a further aspect of the present invention is a DNA construct comprising a transcription initiation region, a structural gene operatively associated with the transcription initiation region, and at least one matrix attachment region of- the present invention positioned either 5′ to the transcription initiation region or 3′ to the structural gene.
- a further aspect of the present invention is a vector comprising a DNA construct as described above, including plasmids, viruses and plant transformation.
- a further aspect of the present invention is a host cell containing a DNA construct as described above, including plant and animal host cells.
- a further aspect of the present invention is a method of identifying matrix attachment regions in a DNA molecule of known nucleotide sequence, by identifying a sequence section of at least twenty contiguous nucleotides that is at least 90% A or T nucleotides.
- the method may further comprise preparing a MAR molecule of at least about 300 nucleotides, comprising the identified MAR motif.
- FIG. 1 provides maps depicting generalized plasmids from the cloning of random matrix associated DNA into pBluescript II SK+.
- 1 A is DNA isolated after digestion with RsaI and ligated into the EcoRV site (clones 1-4, 6-8, 2-23 and 26-28).
- 1 B is DNA isolated after digestion with TaqI and ligated into the ClaI site (clones 11, 15, 34 and 35).
- 1 C is DNA isolated after digestion with EcoRI and ligated into the EcoRI site (clones 109, 113, 115 and 116).
- ID is DNA isolated after digestion with HindIII and ligated into the HindIII site (clones 201-203, 205, 206, 209, 211 and 216-220).
- 1 E is DNA isolated after digestion with DnaseI and ligated into the HincII site (clones 302, 203, 205, 311 and 319).
- 1 F is a map of ToRB7-6 which serves as a positive control in the exogenous binding assay.
- FIG. 2 provides plasmid maps of specific clones or subclones chosen for sequencing. Inserts are indicated by shaded boxes labeled either ‘MAR’ for binding clones or ‘insert’ for non-binding clones.
- 2 A is plasmid pS 1 containing MAR SEQ ID NO:1;
- 2B is plasmid pS4 containing MAR SEQ ID NO:2;
- 2 C is plasmid pS8 containing non-binding SEQ ID NO:3;
- 2 D is plasmid pS115 containing MAR SEQ ID NO:4;
- 2 E is MAR plasmid pS116;
- 2 F is plasmid pS116-1.1 containing MAR SEQ ID NO:5, which is a smaller core binding fragment of clone 116;
- 2 G is MAR plasmid pS202;
- 2 H is plasmid pS202-1 containing MAR SEQ ID NO:6,which
- FIG. 3 provides the sequences of the MAR clones and subclones of the present invention, and the control sequences of the known TobRB7 MAR (SEQ ID NO:20) and yeast ARS1 MAR (SEQ ID NO:21).
- FIG. 4 provides graphic representations depicting the locations of different MAR DNA motifs within the sequenced clones or subclones. Binding strengths are indicated on a scale of 0-100.
- the A box (AATAAAYAAA) (SEQ ID NO:14) is represented by “A”, with 8/10 matches required for motif identification.
- the T box (TTWTWTTWTT) (SEQ ID NO:15) is represented by “T”, with 9/10 matches required for motif identification.
- the ARS consensus sequence (WTTTATRTTTW) (SEQ ID NO:16) is represented by ‘R’, with 10/11 matches required for motif identification.
- the topoisomerase II consensus sequence (GTNWAYATTNATNNR) (SEQ ID NO:17) is represented by ‘O’, with 13/15 matches required for motif identification. If motifs overlapped, only one is shown. Filled boxes indicate stretches of 20 base pairs consisting of ⁇ 90% AT DNA. Base unwinding regions are represented by ‘U’(AATATATTT; SEQ ID NO:22; Bode et al., Science 255:195 (1992)).
- FIG. 5 graphs the numbers of blocks of 20 or more nucleotides that consist of 90% or greater A or T nucleotides found in the sequenced clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100).
- FIG. 6 graphs the %AT found in the sequenced clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100).
- FIG. 7 graphs the number of T boxes found in the sequenced clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100).
- FIG. 8 graphs the number of A boxes found in the sequenced clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100).
- FIG. 9 graphs the number of base unwinding regions (BUR; SEQ ID NO:22) found in the sequence clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100).
- BUR base unwinding regions
- SEQ ID NOS: 1, 2, 4-11 and 13 sequence clones
- binding strength indicated as between 0-100.
- FIG. 10 graphs the length of the sequenced clones (SEQ ID NOS:
- FIG. 11 graphs the number of ARS motifs found in the sequenced clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100).
- FIG. 12 graphs the number of Topoisomerase motifs found in the sequenced clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100).
- Matrix attachment regions are structural components of chromatin that form topologically constrained loops of DNA through their interaction with the proteinaceous nuclear matrix. MARs have been found to co-localize with a variety of functional elements within the nucleus including transcriptional domain boundaries (Jarman and Higgs, EMBO J. 7:3337 (1988); Phi Van and Strätling, EMBO J. 7:655 (1988); Levy-Wilson and Fortier, J. Biol. Chem. 264:21196 (1990)), promoters, enhancers (Gasser and Laemmli, Cell 46:521 (1986); Cockerill and Garrard, Cell 44:273 (1986); van der Geest, Plant J.
- MARs The characteristics of MARs that dictate their binding to the nuclear matrix are not known.
- MARs are AT rich, but not all AT-rich DNA will bind to the nuclear matrix.
- MARs have also been reported to contain a number of short sequence motifs, but the necessity of these motifs has not been established. Motifs reported to occur in MARs include A boxes, T boxes, the ARS consensus and the consensus sequence for Drosophila topoisomerase.
- secondary structure motifs have been reported to be associated with MARs including base pair unwinding regions, bent DNA and single stranded regions.
- the present inventors identified a number of novel MAR sequences, and identified a new MAR motif whose frequency significantly correlates with the binding strength of a MAR.
- the present inventors found no significant correlation between binding strength and the length of the MAR fragment.
- a significant relationship between binding strength and overall AT content was identified. This is the first report of a correlation between the abundance of certain MAR related motifs and MAR binding strength.
- the newly identified MAR related motif of local AT rich regions (sections of 20 contiguous nucleotides that are ⁇ 90% A and/or T), has a higher correlation to MAR binding strength than any of the previously identified motifs.
- the method comprises identifying, in the known DNA sequence, regions or areas of the sequence which are at least 20 contiguous nucleotides in length and which consist of at least 90% A and/or T nucleotides.
- regions or areas of the sequence which are at least 20 contiguous nucleotides in length and which consist of at least 90% A and/or T nucleotides.
- the presence of a 20-bp region of ⁇ 90% AT indicates a MAR; a MAR may contain multiple regions of >90% AT.
- the identification of such regions may be carried out by techniques that are well-known in the art, including sequencing the DNA to be screened and reviewing a printed DNA sequence for such regions.
- Contiguous fragments of the original DNA sequence that are from one to several kilobases (from about 3,000 nucleotides, 2,000 nucleotides, or about 1,000 nucleotides) in length to about 500, 400, or 300 bases in length, and which encompass the 20-bp regions of ⁇ 90% AT can then be isolated (or created de novo by known synthesis techniques) and utilized as MARs.
- the isolated fragments can first be tested for MAR binding strength, for example using an exogenous nuclear matrix binding assay as described herein.
- the identification of such regions may be carried out be techniques that are well-known in the art, including sequencing the DNA to be screened and reviewing the printed DNA sequence for such regions. Fragments of the original DNA sequence that are from several kilobases in length to about 500, 400, or 300 bases in length, and which encompass the 20-bp regions of ⁇ 90% AT can then be isolated (or created de novo by known synthesis techniques) and utilized as MARs. Optionally, the isolated fragments can first be tested for MAR binding strength, for example using an exogenous nuclear matrix binding assay as described herein.
- MARs in nature are double-stranded genomic DNA molecules.
- the MARs of the present invention include those of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11 and SEQ ID NO:13.
- the sequences provided represent one strand of the double-stranded MAR DNA; the sequence of the complementary strand is readily apparent to those of ordinary skill in the art.
- MAR DNA sequences of the present invention include sequences that are functional MARs which hybridize to DNA sequences of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11 or SEQ ID NO:13 (or the complementary sequences thereto) under stringent conditions.
- hybridization of such sequences may be carried out under conditions represented by a wash stringency of 0.3M NaCl, 0.03M sodium citrate, and 0.1% SDS at 60° C., or even 70° C., in a standard in situ hybridization assay.
- a wash stringency of 0.3M NaCl, 0.03M sodium citrate, and 0.1% SDS at 60° C., or even 70° C.
- DNA sequences that act as MARs and hybridize to the DNA sequences give above will have at least 70%, 75%, 80%, 85%, 90%, 95% or even 97% or greater sequence similarity to the MAR sequences provided herein. (Determinations of sequence similarity are made with the two sequences aligned for maximum matching; gaps in either of the two sequences being matched are allowed in maximizing matching.)
- MARs of the present invention may consist of or comprise the specific sequences provided herein, or nucleotide sequences having substantial sequence similarity to the sequences provided herein that retain MAR functions.
- substantially sequence similarity means that DNA which have slight and non-consequential sequence variations from the specific sequences disclosed herein are considered to be equivalent to the disclosed sequences.
- ‘slight and non-consequential’ sequence variations mean that sequences with substantial sequence similarity will be functionally equivalent to the sequences disclosed and claimed herein. Functionally equivalent sequences will function in substantially the same manner as the sequences disclosed and claimed herein.
- DNA constructs of the present invention may be used to transform cells from a variety of organisms, including animal and plants (i.e., vascular plants).
- plants includes both gymnosperms and angiosperms (i.e., monocots and dicots).
- animals includes mammals, both primate and non-primate. Transformation according to the present invention may be used to increase expression levels of transgenes in stably transformed cells.
- Cells may be transformed while in cell culture; while in vivo or in situ in a tissue, organ, or intact organism.
- a transcription initiation region is operatively associated with a structural gene when it is capable of affecting the expression of that structural gene (i.e., the structural gene is under the transcriptional control of the transcription initiation region).
- the transcription initiation region is said to be “upstream” from the structural gene, which is in turn said to be “downstream” from the transcription initiation region.
- DNA constructs, or “expression cassettes,” of the present invention preferably include, 5′ to 3′ in the direction of transcription, a first matrix attachment region, a transcription initiation region, a structural gene operatively associated with the transcription initiation region, a termination sequence including a stop signal for RNA polymerase and a polyadenylation signal for polyadenylation (e.g., the nos terminator), and a second matrix attachment region. All of these regions should be capable of operating in the cells to be transformed.
- the termination region may be derived from the same gene as the transcription initiation or promoter region, or may be derived from a different gene.
- the matrix attachment regions (or “MARs”) of the present invention have a nucleotide sequence selected from the group consisting of SEQ ID NOS: 1, 2 4-11 and 13 provided herein. These MARs may be isolated from natural sources or may be chemically synthesized.
- MARs are known to act in an orientation-independent manner. Poljak et al., Nucleic Acids Res. 22:4386 (1994). Genetic constructs of the present invention may contain MARs oriented in either direction (5′-3′ or 3′-5′), as direct repeats in a single orientation ( ⁇ ), direct repeats in the opposite orientation ( ⁇ ), or either of two possible indirect repeats ( ⁇ ) or ( ⁇ ). The genetic constructs of the present invention may contain a single MAR as disclosed herein, multiple MARs of the present invention, or MARs of the present invention in conjunction with other MARs. A DNA construct of the present invention may comprise a first MAR of the present invention 5′ to the transcription initiation region and a second MAR of a different sequence situated 3′ to the structural gene, or vice versa.
- the transcription initiation region which preferably includes the RNA polymerase binding site (promoter), may be native to the host organism to be transformed or may be derived from an alternative source, where the region is functional in the host.
- Other sources include the Agrobacterium T-DNA genes, such as the transcriptional initiation regions for the biosynthesis of nopaline, octapine, mannopine, or other opine transcriptional initiation regions, transcriptional initiation regions from plants, transcriptional initiation regions from viruses (including host specific viruses), or partially or wholly synthetic transcription initiation regions.
- Transcriptional initiation and termination regions are well known. See, e.g., dGreve, J. Mol. Appl. Genet.
- the transcriptional initiation regions may, in addition to the RNA polymerase binding site, include regions which regulate transcription, where the regulation involves, for example, chemical or physical repression or induction (e.g., regulation based on metabolites or light) or regulation based on cell differentiation (such as associated with leaves, roots, seed, or the like in plants).
- the transcriptional initiation region, or the regulatory portion of such region is obtained from an appropriate gene which is so regulated.
- the 1,5-ribulose biphosphate carboxylase gene is light-induced and may be used for transcriptional initiation.
- Other genes are known which are induced by stress, temperature, wounding, pathogen effects, etc.
- Structural genes are those portions of genes which comprise a DNA segment coding for a protein, polypeptide, or portion thereof, possibly including a ribosome binding site and/or a translational start codon, but lacking a transcription initiation region.
- the term can also refer to introduced copies of a structural gene where that gene is also naturally found within the cell being transformed.
- the structural gene may encode a protein not normally found in the cell in which the gene is introduced or in combination with the transcription initiation region to which it is operationally associated, in which case it is termed a heterologous structural gene.
- Genes which may be operationally associated with a transcription initiation region of the present invention for expression in a plant species may be derived from a chromosomal gene, cDNA, a synthetic gene, or combinations thereof. Any structural gene may be employed. Where plant cells are transformed, the structural gene may encode an enzyme to introduce a desired trait, such as glyphosphate resistance; a protein such as a Bacillus thuringiensis protein (or fragment thereof) to impart insect resistance; or a plant virus protein or fragment thereof to impart virus resistance.
- the expression cassette may be provided in a DNA construct which also has at least one replication system.
- a replication system functional in Escherichia coli , such as ColE1, pSC101, pACYC184, or the like.
- the resulting construct may be cloned, sequenced, and the correctness of the manipulation determined.
- a broad host range replication system may be employed, such as the replication systems of the P-1 incompatibility plasmids, e.g., pRK290.
- one marker may be employed for selection in a prokaryotic host, while another marker may be employed for selection in a eukaryotic host, particularly a plant host.
- the markers may be protection against a biocide, such as antibiotics, toxins, heavy metals, or the like; provide complementation, for example by imparting prototrophy to an auxotrophic host; or provide a visible phenotype through the production of a novel compound.
- NPTII neomycin phosphotransferase
- HPT hygromycin phosphotransferase
- CAT chloramphenicol acetyltransferase
- NPTII neomycin phosphotransferase
- HPT hygromycin phosphotransferase
- CAT chloramphenicol acetyltransferase
- gentamicin resistance gene eomycin phosphotransferase
- suitable markers are ⁇ -glucuronidase, providing indigo production, luciferase, providing visible light production, NPTII, providing kanamycin resistance or G418 resistance, HPT, providing hygromycin resistance, and the mutated aroA gene, providing glyphosate resistance.
- the various fragments comprising the various constructs, expression cassettes, markers, and the like may be introduced consecutively by restriction enzyme cleavage of an appropriate replication system, and insertion of the particular construct or fragment into the available site. After ligation and cloning the DNA construct may be isolated for further manipulation. All of these techniques are amply exemplified in the literature and find particular exemplification in Sambrook et al., Molecular Cloning: A Laboratory Manual, (2d Ed. 1989)(Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.).
- Vectors which may be used to transform plant tissue with DNA-constructs of the present invention include vectors used for Agrobacterium-mediated transformation and ballistic vectors, as well as vectors suitable for direct DNA-mediated transformation.
- Microparticles carrying a DNA construct of the present invention which microparticles are suitable for the ballistic transformation of a cell, are also useful for transforming cells according to the present invention.
- the microparticle is propelled into a cell to produce a transformed cell.
- the transformed cell is a plant cell
- a plant may be regenerated from the transformed cell according to techniques known in the art. Any suitable ballistic cell transformation methodology and apparatus can be used in practicing the present invention. Exemplary apparatus and procedures are disclosed in Stomp et al., U.S. Pat. No. 5,122,466; and Sanford and Wolf, U.S. Pat. No. 4,945,050 (the disclosures of all U.S. Patent references cited herein are incorporated herein by reference in their entirety).
- the expression cassette When using ballistic transformation procedures, the expression cassette may be incorporated into a plasmid capable of replicating in the cell to be transformed.
- microparticles suitable for use in such systems include 1 to 5 ⁇ m gold spheres.
- the DNA construct may be deposited on the microparticle by any suitable technique, such as by precipitation.
- Plant species may be transformed with the DNA construct of the present invention by the DNA-mediated transformation of plant cell protoplasts and subsequent regeneration of the plant from the transformed protoplasts in accordance with procedures well known in the art.
- any plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a vector of the present invention.
- organogenesis means a process by which shoots and roots are developed sequentially from meristematic centers;
- embryogenesis means a process by which shoots and roots develop together in a concerted fashion (not sequentially), whether from somatic cells or gametes.
- the particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed.
- tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristems, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyl meristem).
- existing meristematic tissue e.g., apical meristems, axillary buds, and root meristems
- induced meristem tissue e.g., cotyledon meristem and hypocotyl meristem.
- Plants of the present invention may take a variety of forms.
- the plants may be chimeras of transformed cells and non-transformed cells; the plants may be clonal transformants (e.g., all cells transformed to contain the expression cassette); the plants may comprise grafts of transformed and untransformed tissues (e.g., a transformed root stock grafted to an untransformed scion in citrus species).
- the transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques.
- a dominant selectable marker (such as npt II) can be associated with the expression cassette to assist in breeding.
- Plants which may be employed in practicing the present invention include (but are not limited to) tobacco ( Nicotiana tabacum ), potato ( Solanum tuberosum ), soybean (glycine max), peanuts ( Arachis hypogaea ), cotton ( Gossypium hirsutum ), sweet potato ( Ipomoea batatus ), cassava ( Manihot esculenta ), coffee (Cofea spp.), coconut ( Cocos nucifera ), pineapple ( Ananas comosus ), citrus trees (Citrus spp.), cocoa ( Theobroma cacao ), tea ( Camellia sinensis ), banana (Musa spp.), avocado ( Persea americana ), fig ( Ficus casica ), guava ( Psidium guajava ), mango ( Mangifera indica), olive ( Olea europaea ), papaya ( Carica papaya ), cashew ( Anacardium occidentale
- Vegetables include tomatoes ( Lycopersicon esculentum ), lettuce (e.g., Lactuea sativa ), green beans ( Phaseolus vulgaris ), lima beans ( Phaseolus limensis ), peas (Pisum spp.) and members of the genus Cucumis such as cucumber ( C. sativus ), cantaloupe ( C. cantalupensis ), and musk melon ( C. melo ).
- Ornamentals include azalea (Rhododendron spp.), hydrangea ( Macrophylla hydrangea ), hibiscus ( Hibiscus rosasanensis ), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias ( Petunia hybrida ), carnation (dianthus caryophyllus), poinsettia ( Euphorbia pulcherima ), and chrysanthemum.
- Gymnosperms which may be employed to carrying out the present invention include conifers, including pines such as loblolly pine ( Pinus taeda ), slash pine ( Pinus elliotii ), ponderosa pine ( Pinus ponderosa ), lodgepole pine ( Pinus contorta ), and Monterey pine ( Pinus radiata ); Douglas-fir ( Pseudotsuga menziesii ); Western hemlock ( Tsuga canadensis ); Sitka spruce ( Picea glauca ); redwood ( Sequoia sempervirens ); true firs such as silver fir ( Abies amabilis ) and balsam fir ( Abies balsamea ); and cedars such as Western red cedar ( Thuja plicata ) and Alaska yellow-cedar ( Chamaecyparis nootkatensis ).
- conifers including pines such as loblolly pine ( Pinus
- the pellet was resuspended in 100 ml of 10 mM MES pH 5.5, 0.4M mannitol containing 1 g of cellulase (Onozuka RS Yakult Pharmaceutical LTD) and 0.1 g of pectolyase (Y-23 Seishin Corp.) and incubated for 30 to 60 minutes at 28° C. with gentle shaking in order to remove the cell wall.
- the resulting protoplasts were pelleted at 1400 rpm and washed two times in 50 ml of cold (4° C.) 0.4 mannitol (unbuffered).
- NEB1 Nuclei Isolation Buffer 1
- NIB1 Nuclei Isolation Buffer 1
- hepes 20 mM N-2-hydroxyethylpiperazine-N-ethanesulfonic acid (hepes)
- 20 mM KCl 1% thiodiglycol
- 50mM spermine Sigma S-2876
- 125 mM spermidine Sigma S-2501
- 0.5 mM phenylmethylsulfonyl fluoride PMSF 2M stock in methanol
- 2 ⁇ g/ml aprotinin 2 ⁇ g/ml aprotinin
- 0.5% Triton X-100 0.5 mM EDTA
- nuclei were resuspended in a suitable volume of storage buffer (NIB2 in 50% glycerol) such that the suspension would have an absorbance reading of 10 at 260 nm. Absorbance was determined by diluting 2 ⁇ l of nuclei in 0.5 ml of 2.2M sodium chloride, 5.5M urea. One ml aliquots were stored at ⁇ 70° C. until needed. The number of nuclei per tube was determined by counting aliquots using a hemocytometer. Although there was some variation between preparations, in general, each 1 ml tube with an absorbance of 10 contains about 3.5 million nuclei.
- nuclei Isolation Buffer 3 Nuclei Isolation Buffer 3
- NIB3 0.5M hexylene glycol, 20 mM hepes pH 7.4, 20 mM KCl, 1% thiodiglycol, 50 mM spermine, 125 mM spermidine, 0.5 mM PMSF, 2 ⁇ g/ml aprotinin.
- the nuclei were pelleted at 1400 rpm, resuspended in 200 ⁇ l of NIB3 containing 1 mM CuSO 4 and incubated at 42° C. for 15 minutes in order to stabilize the nuclear matrix.
- HOB2 10 mM 3,5 diiodosalicylic acid lithium salt (Sigma D-3635), 100 mM lithium acetate, 20 mM hepes, 2 mM EDTA, 0.1% digitonin, 0.5 mM PMSF, 2 ⁇ g/ml aprotinin) for 15 minutes at room temperature.
- Digitonin is prepared by mixing 5g in 12.5 ml of methanol, heating to 65° C.
- the second wash contained all the elements of the first wash, plus 10 uM phenanthroline
- the third wash contained all the elements of the second was plus 10 mM MgCl 2 .
- the halos were resuspended in 500 ⁇ l of D/BB plus all the elements of wash three.
- nuclear halos were treated with nucleases (either 250U of RsaI, TaqI, EcoRI, HindIII, or with DnaseI (Sigma) at 0. 1 ⁇ g/ml) and incubated at 37° C. for 90 minutes with the addition of another 250U of restriction enzymes or 0. 1g/ml of DnaseI after 45 minutes.
- nucleases either 250U of RsaI, TaqI, EcoRI, HindIII, or with DnaseI (Sigma) at 0. 1 ⁇ g/ml
- Nuclear matrices were washed with 1 ml of D/BB and 10 mM MgCl 2 to remove residual supernatant (unbound) DNA and to remove protease inhibitors.
- the pellet was resuspended in 500 ⁇ l of protease buffer (10 mM Tris-HCI pH 8.0, 20mM EDTA, 0.5% SDS, 0.5mg/ml proteinase K) and incubated at room temperature overnight.
- the purified operationally defined MAR DNA fragments were cloned into pBluescript II SK+(Stratagene).
- the vector was digested with either EcoRV, ClaI, EcoRI, Hind III or HincII (for blunt end ligation of DnaseI generated fragments), and ligated (using New England Biolabs T4 ligase according to the manufacturer's protocol) to the purified DNA from the nuclear matrices purified with RsaI, TaqI, EcoRI, HindIII, or DnaseI.
- Stratagene E. coli SURE cells were transformed with the plasmids according to the manufacturer's protocol.
- Plasmid DNA was isolated from transformants that were grown in 2 ml of Luria Broth (10 g/l tryptone, 10 g/l yeast extract, 5g/l NaCl) with 80 g/ml ampicillin overnight at 37° C. with shaking. The cells were spun at 13000 rpm in a microfuge for 2 minutes, and the pellets were resuspended in 150 ⁇ l of 20% sucrose, 25 mM Tris-HCl pH 8.0, 10 mM EDTA. The cells were treated with 350 ⁇ l of lysis buffer (1% SDS and 200 mM NaOH) and incubated at room temperature for 10 minutes.
- Luria Broth 10 g/l tryptone, 10 g/l yeast extract, 5g/l NaCl
- the cells were treated with 350 ⁇ l of lysis buffer (1% SDS and 200 mM NaOH) and incubated at room temperature for 10 minutes.
- Plasmid DNAs isolated from individual transformants were end labeled and tested for binding to the nuclear matrix.
- One ⁇ g of plasmid DNA was digested with the appropriate enzymes to release the fragment (usually EcoRI and HindIII) according to the manufacturer's protocol.
- a standard end-labeling reaction contained 250 ng of digested DNA (5 ⁇ l), 0.5 ⁇ l of 10X Klenow buffer, 0.33 ⁇ l of dNTPs (2 mM deoxycytosine triphosphate, 2 mM deoxyguanidine triphosphate and 2 mM deoxythymidine triphosphate), 2.5 ⁇ l of 10 mCi/ml ⁇ - 32 P deoxyadenosine triphosphate (Dupont NEN BLU-012H) and 0.2 ⁇ l of 5,000 U/ml DNA polymerase large fragment (NEB Klenow) in a total of 10 ⁇ l. The mixture was incubated at room temperature for 15 minutes and the reaction stopped by the addition of 40 ⁇ l of TE.
- dNTPs 2 mM deoxycytosine triphosphate, 2 mM deoxyguanidine triphosphate and 2 mM deoxythymidine triphosphate
- Dupont NEN BLU-012H deoxyadenosine tri
- the unincorporated nucleotides were removed by centrifugation through a Sephadex G-50 spin column.
- the amount of radioactivity (counts per minute) in the resulting end-labeled DNA was determined by placing 2 ⁇ l of labeled DNA in 3 ml of Scinti Verse (Fisher SX 1-4) and counted using the Beckman LS 100 C scintillation counter.
- Nuclear halos were treated with 250U of EcoRI and HindIII for 90 minutes at 37° C. with the addition of another 250U of each enzyme after 45 minutes.
- the resulting nuclear matrices were aliquoted at 50 ⁇ l for different binding reactions (different labeled DNA fragments for testing).
- Each 50 ⁇ l aliquot contained one tenth of the nuclear matrices, about 350,000, as well as one tenth of the cleaved, non-MAR, endogenous DNA, which served as nonspecific competitor.
- Radioactively labeled DNA fragments of interest were incubated with the nuclear matrices at 50,000 cpm per fragment (about 5 ng of DNA) per 50 ⁇ l reaction at 37° C.
- protease buffer 10 mM Tris-HCI pH 8.0, 20 mM EDTA, 0.5% SDS, 0.5 mg/ml proteinase K
- Twenty ⁇ l aliquots of the pellet and supernatant fractions were subjected to electrophoresis in a 1% agarose (FMC Sea Kem GTG 50072) gel, prepared and run in TAE (TAE 40 mM Tris-acetate pH 8.0 and 1 mM EDTA).
- the gel was then treated for 20 minutes in 7% trichloroacetic acid, dried and exposed to X-ray film (Kodak X-OMAT AR).
- This method of representing the DNA bound to the nuclear matrix is called the ‘equal fractions’ method, as an equal portion of the DNA from the pellet and the supernatant fractions (e.g., 20%) is applied to the gel.
- This approach allows direct determination of the amount of a fragment partitioning with the pellet or supernatant; very weak-binding DNA fragments are not scored as MARs.
- a random sample of MAR fragments was obtained by purifying matrix associated DNA and cloning these fragments.
- Five different preparations of nuclear matrices were made using one of five different nucleases. From each preparation, twenty colonies were picked, grown and analyzed for the presence of single inserts. A total of thirty-nine clones were then tested for their ability to rebind to the nuclear matrix. Since all clones were obtained using one of the five cloning strategies, the plasmids obtained using each strategy differ only in the content of their insert.
- the generalized plasmid maps are summarized in FIG. 1.
- MAR fragments showed significant reduction in binding when cleaved into smaller pieces (data not shown), which supports the hypothesis of a lower size limit for MAR fragments.
- the clones ranged in size from 150 to 200 base pairs. It is possible that none of the isolated DnaseI clones had binding activity because they were below the minimum size requirement. Furthermore, a higher percentage of the clones obtained using restriction enzymes with six base pair recognition sites (EcoRI and HindIII) had matrix binding activity (14/17) than those clones obtained using restriction enzymes with four base pair recognition sites (9/17). Again, this subtle discrepancy may be the result of the smaller size of the fragments generated using four base cutters.
- a 998 bp fragment of pS116 was excised using MunI and PstI and ligated into the EcoRI and PstI sites of pBluescript II SK+ to create pS116-1.1B (SEQ ID NO:5).
- a 635 bp and a 1087 bp fragment of pS202 were excised by cleavage with HindIII and EcoRI and ligated into pBC KS+ (Stratagene) using the same two restriction enzymes to create pS202-1 (SEQ ID NO:6) and pS202-2 (SEQ ID NO:7), respectively.
- a 704bp fragment of pS205 was excised with EcoRI and HindIII and ligated into the EcoRI and HindIII sites of pBC KS+ to create pS205-2 (SEQ ID NO: 8).
- a 306 bp fragment of pS206 was excised with BamHI and HindIII and ligated into the BamHI and HindIII sites of pBC KS+ to create pS206-1 (SEQ ID NO:9).
- a 685bp fragment of pS211 was excised with EcoRI and HindIII and ligated into the EcoRI and HindIII sites of pBC KS+ to create pS211-1 (SEQ ID NO:10).
- a 899bp fragment of pS217 was excised with BamHI and ligated into the BamHI site of pBC KS+ to create pS217-1 (SEQ ID NO:11).
- a 1499 bp fragment of pS220 was excised with XhoI and HindIII and ligated into the XhoI and HindIII sites of pBC KS+ to create pS220-1 (SEQ ID NO:13).
- the MAR fragments were sequenced in stages by primer walking. Each clone was sequenced using the Universal-21M13 (TGTAAAACGA CGGCCAGT)(SEQ ID NO:18) and reverse M13 (CAGGAAACCGA TATGACC)(SEQ ID NO: 19) primers at Iowa State University Nucleic Acids Facility for the initial portions of the sequence. In the case of longer clones, when a complete sequence was not obtained from the initial sequence, internal primers were designed and then constructed at the Molecular Genetics Facility at North Carolina State University. All interior primers are underlined in FIG. 3. Because of the AT-rich nature of the MARs, primers with suitable melting temperatures, but that avoided secondary structural features, had to be designed.
- PCR polymerase chain reaction
- MAR fragments From the randomly isolated MAR fragments, a sample of ten binding clones (pS1, pS4, pS115, pS116, pS202, pS205, pS206, pS211, pS217 and pS220) and two non-binding clones (pS8 and pS218) were chosen for sequence analysis. These particular MARs were chosen as representatives of the population based on binding strength. Within this population of ten sequences are several weak, medium and strong binding MARs, representing the spectrum of binding strengths within population.
- MAR fragments appear to involve multiple protein DNA interactions rather than a single binding site (Gasser et al., 1989), however, it is not known if multiple interactions are required for MAR binding, or if longer MAR fragments simply consist of many smaller MARs each acting independently.
- the binding of a particular MAR may be affected when that fragment is cleaved so that shorter fragments may contain none, some or all of the binding potential of the original full-length clone. In some instances, all of the fragments are capable of binding to the nuclear matrix, whereas in others the binding is confined to one of the smaller fragments.
- MAR sequences [0088] Several different motifs have previously been identified as associated with MAR sequences, including A boxes (SEQ ID NO:14), T boxes (SEQ ID NO:15), ARS consensus (SEQ ID NO:16), and the Drosophila consensus sequence for topoisomerase II (SEQ ID NO:17).
- a search was conducted for the presence of these motifs using the Apple MacIntosh program MacVector. In the search, 1 mismatch was allowed in the cases of the ARS consensus and T box, and 2 mismatches in the cases of A box and the consensus for topoisomerase II. Allowing for this number of mismatches results in similar probabilities of occurrence for all four motifs (see Table 2).
- the A box and T box motifs often resulted in overlapping regions due to their AT-rich nature. For example, within a stretch of bases of Ts, 10 T boxes can be found. The probability of finding an additional T box upon inclusion of the next base is 0.35 in a region of DNA that contains 70% AT. To avoid this artificial identification of additional motifs, only two T boxes would be counted in the above example.
- the present inventors tested the occurrence of each of these motifs for statistical significance against the number of occurrences that would be expected at random, to determine if these motifs are over-represented in MAR DNA.
- the probability of the presence of a specific sequence starting at a specific base within 70% AT rich DNA was calculated by multiplying the probabilities of each base in the motif (0.35 for A and T, 0.15 for G and C). Since mismatches of 1 or 2 bases were allowed for certain motifs, the probabilities were adjusted by dividing the calculated probability of occurrence of the motif with no mismatches by the lowest probability of an individual base (or bases when two mismatches were allowed) within the motif, yielding a conservative estimate of probability.
- the probabilities were multiplied by a factor of two, since these motifs can occur in either strand of the DNA.
- the factor of two provides a simple and conservative method for calculating the expected frequency within double stranded DNA.
- This calculated probability is then adjusted for the allowance of up to two mismatches by dividing by 0.15 and 0.35, the two lowest expected frequencies of each base. The resulting value is then multiplied by two, since motifs can occur in either strand of DNA.
- the calculated probability for an A box with two-mismatches, an ARS consensus with 1 mismatch, and the consensus for topoisomerase II with two mismatches are coincidentally identical, 6.428 ⁇ 10 ⁇ 4 , whereas the calculated probability of a T box occurring with one mismatch is slightly higher, 1.26 ⁇ 10 ⁇ 3 .
- the probability of the occurrence of a 20 bp stretch of DNA containing 90% or greater AT content was calculated by taking the probability of a single base being either A or T (0.7) to the 18 th power. Therefore, the probability of occurrence of a twenty base pair stretch with two mismatches (or 90% AT rich DNA) is equal to 1.628 ⁇ 10 ⁇ 3 . Since this type of motif will automatically be present on both strands at the same time, only those motifs found in one strand were counted. As with the other motifs, overlapping regions were not counted as separate occurrences, however, this motif often occurs in stretches much longer than 20 bp. The actual lengths of the regions are depicted in FIG. 4.
- the number of occurrences were counted as one from 20-39 bp; two from 40-59 bp; and so on.
- the probability of a motif starting at any one site was converted to an expected number of occurrences within a DNA sequence by multiplying by the number of base pairs in its length.
- the probability of a particular base occurring at a particular site was assumed to follow a multinomial distribution, i.e., any of the four bases can occur at a particular site. Note that this assumption may not be true if there are restraints on DNA sequences (e.g., five consecutive Gs not allowed), but since such restraints are presently unknown, the assumption of multinomial distribution was made. It would be expected that the probability of a particular string of bases (a motif) occurring at a particular site to have approximately a normal distribution. The observed number of MAR motifs were compared to the number expected under this normal distribution assumption.
- the number of observed MAR motifs was significantly greater (at the 1% level) than the number expected if the observed number of MAR motifs is greater than a calculated critical value.
- the critical value is ⁇ +Z 0.01 ⁇ (Steele and Torrie, Principles and Procedures of Statistics: A Biometrical Approach , McGraw-Hill Publishing Co., New York, N.Y. (1980)).
- ⁇ is the expected number of MAR motifs
- Z 0.01 is the Z statistic at 1%
- the motifs in question have already been shown to be associated with certain MAR sequences.
- the null hypothesis of the motifs occurring at random is compared to the one tailed test of the alternative hypothesis, that these motifs occur more often than would be expected by random occurrence.
- the 1% critical values are shown in Table 2. Since the observed number of occurrences for all five motifs is greater than the critical values, the null hypothesis can be rejected in favor of the alternative hypothesis that these motifs occur more often in MAR DNA than would be expected by chance alone.
- a boxes, T boxes, ARS consensus, topoisomerase II consensus and 20 bp regions of ⁇ 90% AT DNA all occur more often than would be expected at random.
- MARs may interact with the nuclear matrix through a variety of secondary structure motifs including a narrow minor groove, transiently single stranded regions and bent DNA. These structural motifs are expected to be present in the MARs described here because of their high AT content.
- a narrow minor groove is a feature of DNA containing long A tracts, a predicted feature within high AT content DNA.
- Transformation is achieved by mixing the appropriate reporter test plasmid and a selection plasmid, co-precipitating them onto microprojectiles, and bombarding plates of tobacco suspension culture cells as described previously (Allen et al., 1993). Antibiotic-resistant microcalli are selected and each callus is used to start an independent suspension culture cell line. Histochemical staining of segments from the original microcalli show that the staining intensity is greater in cell lines transformed with MAR plasmids. After several weeks of growth, with weekly transfers, suspension cells are harvested, DNA is extracted from each cell line for Southern analysis and quantitative PCR assays, and portions of the same cell population are used to measure extractable reporter activity and expressed protein levels. Transgene copy number estimates and expression data are calculated. Levels of GUS gene expression, measured as GUS enzyme activity, are assessed and compared to controls.
- n represents any nucleotide.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 60/066,118, filed Aug. 6, 1997.
- This invention was made with Government support under National Science Foundation Award MCB-9418491 and USDA Grant 91-37301-6377. The Government may have certain rights to this invention.
- The present invention relates to matrix attachment regions isolated from a higher plant, and to methods for isolating matrix attachment sequences.
- The proteinaceous nuclear ‘matrix’ or ‘scaffold’ in the cell nucleus plays a role in determining chromatin structure. Electron micrographs show that nuclear DNA is attached to this scaffold at intervals to produce a series of loops (Zlatanova and Van Holde, J. Cell Sci. 103:889 (1992)). Matrix Attachment Regions (MARs; also referred to a scaffold attachment regions or SARs) are genomic DNA sequences which bind specifically to components of the nuclear matrix. See Boulikas, J. Cell. Biochem. 52:14 (1993). These sequences are thought to define independent chromatin domains through their attachment to the nuclear matrix. Both transcription and replication are thought to occur at the nuclear matrix.
- Transformation of a cell using a transgene flanked by one or more MARs has been shown to increase expression of the transgene product, compared to transformation using a construct lacking MARs. See Allen et al., Plant Cell 8:899 (1996); Bonifer et al., EMBO J. 9:2843 (1990); McKnight et al., Proc. Natl. Acad. Sci. USA 89:6943 (1992); Phi-Van et al., Mol. Cell. Biol. 10:2303 (1990)). Flanking a GUS reporter gene with yeast MARs has been reported to result in higher and less variable transgene expression in plant cells. Allen et al. Plant Cell 5:603 (1993).
- In view of the foregoing, a first aspect of the present invention is an isolated DNA molecule having a nucleotide sequence selected from the group consisting of SEQ ID NO: 1, 2, 4-11 and 13, sequences that hybridize to this isolated DNA under stringent conditions.
- A further aspect of the present invention is a DNA construct comprising a transcription initiation region, a structural gene operatively associated with the transcription initiation region, and at least one matrix attachment region of- the present invention positioned either 5′ to the transcription initiation region or 3′ to the structural gene.
- A further aspect of the present invention is a vector comprising a DNA construct as described above, including plasmids, viruses and plant transformation.
- A further aspect of the present invention is a host cell containing a DNA construct as described above, including plant and animal host cells.
- A further aspect of the present invention is a method of identifying matrix attachment regions in a DNA molecule of known nucleotide sequence, by identifying a sequence section of at least twenty contiguous nucleotides that is at least 90% A or T nucleotides. The method may further comprise preparing a MAR molecule of at least about 300 nucleotides, comprising the identified MAR motif.
- FIG. 1 provides maps depicting generalized plasmids from the cloning of random matrix associated DNA into pBluescript II SK+. 1A is DNA isolated after digestion with RsaI and ligated into the EcoRV site (clones 1-4, 6-8, 2-23 and 26-28). 1B is DNA isolated after digestion with TaqI and ligated into the ClaI site (
11, 15, 34 and 35). 1C is DNA isolated after digestion with EcoRI and ligated into the EcoRI site (clones 109, 113, 115 and 116). ID is DNA isolated after digestion with HindIII and ligated into the HindIII site (clones 201-203, 205, 206, 209, 211 and 216-220). 1E is DNA isolated after digestion with DnaseI and ligated into the HincII site (clones 302, 203, 205, 311 and 319). 1F is a map of ToRB7-6 which serves as a positive control in the exogenous binding assay.clones - FIG. 2 provides plasmid maps of specific clones or subclones chosen for sequencing. Inserts are indicated by shaded boxes labeled either ‘MAR’ for binding clones or ‘insert’ for non-binding clones. 2A is plasmid pS1 containing MAR SEQ ID NO:1; 2B is plasmid pS4 containing MAR SEQ ID NO:2; 2C is plasmid pS8 containing non-binding SEQ ID NO:3; 2D is plasmid pS115 containing MAR SEQ ID NO:4; 2E is MAR plasmid pS116; 2F is plasmid pS116-1.1 containing MAR SEQ ID NO:5, which is a smaller core binding fragment of clone 116; 2G is MAR plasmid pS202; 2H is plasmid pS202-1 containing MAR SEQ ID NO:6,which is one of two binding fragments of clone 202; 2I is plasmid pS202-2 containing MAR SEQ ID NO:7, which is the second of two binding fragments of clone 202; 2J is plasmid pS203 containing a non-binding insert; 2K is MAR plasmid pS205; 2L is plasmid pS205-2 containing MAR SEQ ID NO:8, which is a core binding sequence from clone 205; 2M is MAR plasmid pS206; 2N is plasmid pS206-1 containing MAR SEQ ID NO:9, which is a core binding sequence from
clone 206; 2O is MAR plasmid pS211; 2P is plasmid pS211-1 containing MAR SEQ ID NO:10, which is a core binding sequence from clone 211; 2Q is MAR plasmid pS217; 2R is plasmid pS217-1 containing MAR SEQ ID NO:11, which is a core binding sequence from clone 217; 2S is plasmid pS218 containing non-binding insert SEQ ID NO:12; 2T is MAR plasmid pS220; 2U is plasmid pS220-1 containing MAR SEQ ID NO:13, which is a core binding sequence from clone 220; 2V is plasmid pRB7-6, containing the MAR ToRB7-6 fragment (SEQ ID NO:20) used as a positive control); 2W is plasmid pGCA887 (containing an insert from yeast ARS1 cloned into the vector pBCKS+ (Stratogene)), which serves as a standard for weak binding to the nuclear matrix (SEQ ID NO:21). - FIG. 3 provides the sequences of the MAR clones and subclones of the present invention, and the control sequences of the known TobRB7 MAR (SEQ ID NO:20) and yeast ARS1 MAR (SEQ ID NO:21).
- FIG. 4 provides graphic representations depicting the locations of different MAR DNA motifs within the sequenced clones or subclones. Binding strengths are indicated on a scale of 0-100. The A box (AATAAAYAAA) (SEQ ID NO:14) is represented by “A”, with 8/10 matches required for motif identification. The T box (TTWTWTTWTT) (SEQ ID NO:15) is represented by “T”, with 9/10 matches required for motif identification. The ARS consensus sequence (WTTTATRTTTW) (SEQ ID NO:16) is represented by ‘R’, with 10/11 matches required for motif identification. The topoisomerase II consensus sequence (GTNWAYATTNATNNR) (SEQ ID NO:17) is represented by ‘O’, with 13/15 matches required for motif identification. If motifs overlapped, only one is shown. Filled boxes indicate stretches of 20 base pairs consisting of ≧90% AT DNA. Base unwinding regions are represented by ‘U’(AATATATTT; SEQ ID NO:22; Bode et al., Science 255:195 (1992)).
- FIG. 5 graphs the numbers of blocks of 20 or more nucleotides that consist of 90% or greater A or T nucleotides found in the sequenced clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100). The two well-characterized MARs (TobRB7 and ARS1), as well as two non-binding clones (SEQ ID NOs:3 and 12) were included in the analysis.
- FIG. 6 graphs the %AT found in the sequenced clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100). The two well-characterized MARs (TobRB7 and ARS1), as well as two non-binding clones (SEQ ID NOs:3 and 12) were included in the analysis
- FIG. 7 graphs the number of T boxes found in the sequenced clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100). The two well-characterized MARs (TobRB7 and ARS1), as well as two non-binding clones (SEQ ID NOs:3 and 12) were included in the analysis.
- FIG. 8 graphs the number of A boxes found in the sequenced clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100). The two well-characterized MARs (TobRB7 and ARS1), as well as two non-binding clones (SEQ ID NOs:3 and 12) were included in the analysis.
- FIG. 9 graphs the number of base unwinding regions (BUR; SEQ ID NO:22) found in the sequence clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100). The two well-characterized MARs (TobRB7 and ARS1), as well as two non-binding clones (SEQ ID NOs:3 and 12) were included in the analysis.
- FIG. 10 graphs the length of the sequenced clones (SEQ ID NOS:
- 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100). The two well-characterized MARs (TobRB7 and ARS1), as well as two non-binding clones (SEQ ID NOs:3 and 12) were included in the analysis.
- FIG. 11 graphs the number of ARS motifs found in the sequenced clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100). The two well-characterized MARs (TobRB7 and ARS1), as well as two non-binding clones (SEQ ID NOs:3 and 12) were included in the analysis.
- FIG. 12 graphs the number of Topoisomerase motifs found in the sequenced clones (SEQ ID NOS: 1, 2, 4-11 and 13) versus binding strength (indicated as between 0-100). The two well-characterized MARs (TobRB7 and ARS1), as well as two non-binding clones (SEQ ID NOs:3 and 12) were included in the analysis.
- Matrix attachment regions (MARs) are structural components of chromatin that form topologically constrained loops of DNA through their interaction with the proteinaceous nuclear matrix. MARs have been found to co-localize with a variety of functional elements within the nucleus including transcriptional domain boundaries (Jarman and Higgs, EMBO J. 7:3337 (1988); Phi Van and Strätling, EMBO J. 7:655 (1988); Levy-Wilson and Fortier, J. Biol. Chem. 264:21196 (1990)), promoters, enhancers (Gasser and Laemmli, Cell 46:521 (1986); Cockerill and Garrard, Cell 44:273 (1986); van der Geest, Plant J. 6:413 (1994)), introns (Kas and Chasin, J. Mol. Biol. 194:677 (1987); Forrester et al., Science 265:1221 (1994)) and putative origins of replication (Brylawski et al., Cancer Res. 53:3865 (1993)), suggesting that MARs may play functional roles in addition to their purely structural role within the nucleus. It appears that not all MARs are involved in the same processes, and that categories or groups of these elements with distinct features and functions exist.
- The characteristics of MARs that dictate their binding to the nuclear matrix are not known. Presently, the only definition of a MAR is operational, based on the ability to bind to the nuclear matrix. It is known that MARs are AT rich, but not all AT-rich DNA will bind to the nuclear matrix. MARs have also been reported to contain a number of short sequence motifs, but the necessity of these motifs has not been established. Motifs reported to occur in MARs include A boxes, T boxes, the ARS consensus and the consensus sequence for Drosophila topoisomerase. In addition, several secondary structure motifs have been reported to be associated with MARs including base pair unwinding regions, bent DNA and single stranded regions.
- To date most matrix attachment regions have been identified through their association with a well-characterized gene. This type of sampling creates a bias that could hinder efforts in defining MAR sequences. It would be useful to be able to identify MARs by sequence alone. The present inventors obtained a group of DNA fragments that were MARs by operational definition, by purifying DNA associated with tobacco NT-1 nuclear matrices prepared using several different nucleases. These sequences were cloned and tested for their ability to rebind to the nuclear matrix, in order to identify MARs. Once MARs were identified, they were sequenced and analyzed for AT content and the presence of common motifs. The significance of each identified motif was assessed through correlation with the binding strength of MARs to the nuclear matrix.
- The present inventors identified a number of novel MAR sequences, and identified a new MAR motif whose frequency significantly correlates with the binding strength of a MAR. The present inventors found no significant correlation between binding strength and the length of the MAR fragment. However, a significant relationship between binding strength and overall AT content was identified. This is the first report of a correlation between the abundance of certain MAR related motifs and MAR binding strength. In addition, the newly identified MAR related motif of local AT rich regions (sections of 20 contiguous nucleotides that are ≧90% A and/or T), has a higher correlation to MAR binding strength than any of the previously identified motifs. These findings provide a method for the identification of MAR regions in DNA molecules of known nucleotide sequence. The method comprises identifying, in the known DNA sequence, regions or areas of the sequence which are at least 20 contiguous nucleotides in length and which consist of at least 90% A and/or T nucleotides. The presence of a 20-bp region of ≧90% AT indicates a MAR; a MAR may contain multiple regions of >90% AT.
- The identification of such regions may be carried out by techniques that are well-known in the art, including sequencing the DNA to be screened and reviewing a printed DNA sequence for such regions. Contiguous fragments of the original DNA sequence that are from one to several kilobases (from about 3,000 nucleotides, 2,000 nucleotides, or about 1,000 nucleotides) in length to about 500, 400, or 300 bases in length, and which encompass the 20-bp regions of ≧90% AT can then be isolated (or created de novo by known synthesis techniques) and utilized as MARs. Optionally, the isolated fragments can first be tested for MAR binding strength, for example using an exogenous nuclear matrix binding assay as described herein.
- The identification of such regions may be carried out be techniques that are well-known in the art, including sequencing the DNA to be screened and reviewing the printed DNA sequence for such regions. Fragments of the original DNA sequence that are from several kilobases in length to about 500, 400, or 300 bases in length, and which encompass the 20-bp regions of ≧90% AT can then be isolated (or created de novo by known synthesis techniques) and utilized as MARs. Optionally, the isolated fragments can first be tested for MAR binding strength, for example using an exogenous nuclear matrix binding assay as described herein.
- MARs in nature are double-stranded genomic DNA molecules. The MARs of the present invention include those of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11 and SEQ ID NO:13. The sequences provided represent one strand of the double-stranded MAR DNA; the sequence of the complementary strand is readily apparent to those of ordinary skill in the art.
- It will be apparent to those of skill in the art that minor sequence variations from the sequences provided above will not affect the function of the MARs of the present invention. MAR DNA sequences of the present invention include sequences that are functional MARs which hybridize to DNA sequences of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11 or SEQ ID NO:13 (or the complementary sequences thereto) under stringent conditions. For example, hybridization of such sequences may be carried out under conditions represented by a wash stringency of 0.3M NaCl, 0.03M sodium citrate, and 0.1% SDS at 60° C., or even 70° C., in a standard in situ hybridization assay. (See J. Sambrook et al., Molecular Cloning, A Laboratory Manual (2d ed. 1989)(Cold Spring Harbor Laboratory)). In general, DNA sequences that act as MARs and hybridize to the DNA sequences give above will have at least 70%, 75%, 80%, 85%, 90%, 95% or even 97% or greater sequence similarity to the MAR sequences provided herein. (Determinations of sequence similarity are made with the two sequences aligned for maximum matching; gaps in either of the two sequences being matched are allowed in maximizing matching.)
- MARs of the present invention may consist of or comprise the specific sequences provided herein, or nucleotide sequences having substantial sequence similarity to the sequences provided herein that retain MAR functions. As used herein, ‘substantial sequence similarity’ means that DNA which have slight and non-consequential sequence variations from the specific sequences disclosed herein are considered to be equivalent to the disclosed sequences. In this regard, ‘slight and non-consequential’ sequence variations mean that sequences with substantial sequence similarity will be functionally equivalent to the sequences disclosed and claimed herein. Functionally equivalent sequences will function in substantially the same manner as the sequences disclosed and claimed herein.
- DNA constructs of the present invention may be used to transform cells from a variety of organisms, including animal and plants (i.e., vascular plants). As used herein, plants includes both gymnosperms and angiosperms (i.e., monocots and dicots). As used herein, animals includes mammals, both primate and non-primate. Transformation according to the present invention may be used to increase expression levels of transgenes in stably transformed cells. Cells may be transformed while in cell culture; while in vivo or in situ in a tissue, organ, or intact organism.
- The term “operatively associated,” as used herein, refers to DNA sequences on a single DNA molecule which are associated so that the function of one is affected by the other. Thus, a transcription initiation region is operatively associated with a structural gene when it is capable of affecting the expression of that structural gene (i.e., the structural gene is under the transcriptional control of the transcription initiation region). The transcription initiation region is said to be “upstream” from the structural gene, which is in turn said to be “downstream” from the transcription initiation region.
- DNA constructs, or “expression cassettes,” of the present invention preferably include, 5′ to 3′ in the direction of transcription, a first matrix attachment region, a transcription initiation region, a structural gene operatively associated with the transcription initiation region, a termination sequence including a stop signal for RNA polymerase and a polyadenylation signal for polyadenylation (e.g., the nos terminator), and a second matrix attachment region. All of these regions should be capable of operating in the cells to be transformed. The termination region may be derived from the same gene as the transcription initiation or promoter region, or may be derived from a different gene.
- The matrix attachment regions (or “MARs”) of the present invention have a nucleotide sequence selected from the group consisting of SEQ ID NOS: 1, 2 4-11 and 13 provided herein. These MARs may be isolated from natural sources or may be chemically synthesized.
- MARs are known to act in an orientation-independent manner. Poljak et al., Nucleic Acids Res. 22:4386 (1994). Genetic constructs of the present invention may contain MARs oriented in either direction (5′-3′ or 3′-5′), as direct repeats in a single orientation (→→), direct repeats in the opposite orientation (←←), or either of two possible indirect repeats (←→) or (→←). The genetic constructs of the present invention may contain a single MAR as disclosed herein, multiple MARs of the present invention, or MARs of the present invention in conjunction with other MARs. A DNA construct of the present invention may comprise a first MAR of the
present invention 5′ to the transcription initiation region and a second MAR of a different sequence situated 3′ to the structural gene, or vice versa. - The transcription initiation region, which preferably includes the RNA polymerase binding site (promoter), may be native to the host organism to be transformed or may be derived from an alternative source, where the region is functional in the host. Other sources include the Agrobacterium T-DNA genes, such as the transcriptional initiation regions for the biosynthesis of nopaline, octapine, mannopine, or other opine transcriptional initiation regions, transcriptional initiation regions from plants, transcriptional initiation regions from viruses (including host specific viruses), or partially or wholly synthetic transcription initiation regions. Transcriptional initiation and termination regions are well known. See, e.g., dGreve, J. Mol. Appl. Genet. 1, 499-511 (1983); Salomon et al., EMBO J. 3, 141-146 (1984); Garfinkel et al., Cell 27, 143-153 (1983); and Barker et al., Plant Mol. Biol. 2, 235-350 (1983).
- The transcriptional initiation regions may, in addition to the RNA polymerase binding site, include regions which regulate transcription, where the regulation involves, for example, chemical or physical repression or induction (e.g., regulation based on metabolites or light) or regulation based on cell differentiation (such as associated with leaves, roots, seed, or the like in plants). Thus, the transcriptional initiation region, or the regulatory portion of such region, is obtained from an appropriate gene which is so regulated. For example, the 1,5-ribulose biphosphate carboxylase gene is light-induced and may be used for transcriptional initiation. Other genes are known which are induced by stress, temperature, wounding, pathogen effects, etc.
- Structural genes are those portions of genes which comprise a DNA segment coding for a protein, polypeptide, or portion thereof, possibly including a ribosome binding site and/or a translational start codon, but lacking a transcription initiation region. The term can also refer to introduced copies of a structural gene where that gene is also naturally found within the cell being transformed. The structural gene may encode a protein not normally found in the cell in which the gene is introduced or in combination with the transcription initiation region to which it is operationally associated, in which case it is termed a heterologous structural gene. Genes which may be operationally associated with a transcription initiation region of the present invention for expression in a plant species may be derived from a chromosomal gene, cDNA, a synthetic gene, or combinations thereof. Any structural gene may be employed. Where plant cells are transformed, the structural gene may encode an enzyme to introduce a desired trait, such as glyphosphate resistance; a protein such as a Bacillus thuringiensis protein (or fragment thereof) to impart insect resistance; or a plant virus protein or fragment thereof to impart virus resistance.
- The expression cassette may be provided in a DNA construct which also has at least one replication system. For convenience, it is common to have a replication system functional in Escherichia coli, such as ColE1, pSC101, pACYC184, or the like. In this manner, at each stage after each manipulation, the resulting construct may be cloned, sequenced, and the correctness of the manipulation determined. In addition, or in place of the E. coli replication system, a broad host range replication system may be employed, such as the replication systems of the P-1 incompatibility plasmids, e.g., pRK290. In addition to the replication system, there will frequently be at least one marker present, which may be useful in one or more hosts, or different markers for individual hosts. That is, one marker may be employed for selection in a prokaryotic host, while another marker may be employed for selection in a eukaryotic host, particularly a plant host. The markers may be protection against a biocide, such as antibiotics, toxins, heavy metals, or the like; provide complementation, for example by imparting prototrophy to an auxotrophic host; or provide a visible phenotype through the production of a novel compound. Exemplary genes which may be employed include neomycin phosphotransferase (NPTII), hygromycin phosphotransferase (HPT), chloramphenicol acetyltransferase (CAT), nitrilase, and the gentamicin resistance gene. For plant host selection, non-limiting examples of suitable markers are β-glucuronidase, providing indigo production, luciferase, providing visible light production, NPTII, providing kanamycin resistance or G418 resistance, HPT, providing hygromycin resistance, and the mutated aroA gene, providing glyphosate resistance.
- The various fragments comprising the various constructs, expression cassettes, markers, and the like may be introduced consecutively by restriction enzyme cleavage of an appropriate replication system, and insertion of the particular construct or fragment into the available site. After ligation and cloning the DNA construct may be isolated for further manipulation. All of these techniques are amply exemplified in the literature and find particular exemplification in Sambrook et al., Molecular Cloning: A Laboratory Manual, (2d Ed. 1989)(Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.).
- Vectors which may be used to transform plant tissue with DNA-constructs of the present invention include vectors used for Agrobacterium-mediated transformation and ballistic vectors, as well as vectors suitable for direct DNA-mediated transformation.
- Microparticles carrying a DNA construct of the present invention, which microparticles are suitable for the ballistic transformation of a cell, are also useful for transforming cells according to the present invention. The microparticle is propelled into a cell to produce a transformed cell. Where the transformed cell is a plant cell, a plant may be regenerated from the transformed cell according to techniques known in the art. Any suitable ballistic cell transformation methodology and apparatus can be used in practicing the present invention. Exemplary apparatus and procedures are disclosed in Stomp et al., U.S. Pat. No. 5,122,466; and Sanford and Wolf, U.S. Pat. No. 4,945,050 (the disclosures of all U.S. Patent references cited herein are incorporated herein by reference in their entirety). When using ballistic transformation procedures, the expression cassette may be incorporated into a plasmid capable of replicating in the cell to be transformed. Examples of microparticles suitable for use in such systems include 1 to 5 μm gold spheres. The DNA construct may be deposited on the microparticle by any suitable technique, such as by precipitation.
- Plant species may be transformed with the DNA construct of the present invention by the DNA-mediated transformation of plant cell protoplasts and subsequent regeneration of the plant from the transformed protoplasts in accordance with procedures well known in the art.
- Any plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a vector of the present invention. The term “organogenesis,” as used herein, means a process by which shoots and roots are developed sequentially from meristematic centers; the term “embryogenesis,” as used herein, means a process by which shoots and roots develop together in a concerted fashion (not sequentially), whether from somatic cells or gametes. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristems, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyl meristem).
- Plants of the present invention may take a variety of forms. The plants may be chimeras of transformed cells and non-transformed cells; the plants may be clonal transformants (e.g., all cells transformed to contain the expression cassette); the plants may comprise grafts of transformed and untransformed tissues (e.g., a transformed root stock grafted to an untransformed scion in citrus species). The transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. A dominant selectable marker (such as npt II) can be associated with the expression cassette to assist in breeding.
- Plants which may be employed in practicing the present invention include (but are not limited to) tobacco ( Nicotiana tabacum), potato (Solanum tuberosum), soybean (glycine max), peanuts (Arachis hypogaea), cotton (Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Cofea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), corn (Zea mays), wheat, oats, rye, barley, rice, vegetables, ornamentals, and conifers. Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuea sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Pisum spp.) and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. melo). Ornamentals include azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (dianthus caryophyllus), poinsettia (Euphorbia pulcherima), and chrysanthemum. Gymnosperms which may be employed to carrying out the present invention include conifers, including pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliotii), ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata); Douglas-fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca); redwood (Sequoia sempervirens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thuja plicata) and Alaska yellow-cedar (Chamaecyparis nootkatensis).
- The examples which follow are set forth to illustrate the present invention, and are not to be construed as limiting thereof.
- NT-1 Protoplast Isolation
- One hundred ml cultures of four day old tobacco NT-1 suspension cells were spun at 1400 rpm (585×g) for five minutes in a Beckman GPR table top centrifuge rotor GH 3.7 and washed in 10 mM MES (2-[N-morpholino]ethane-sulfonic acid sodium salt, Sigma M-3885) pH 5.5, 0.4M mannitol. The pellet was resuspended in 100 ml of 10 mM MES pH 5.5, 0.4M mannitol containing 1 g of cellulase (Onozuka RS Yakult Pharmaceutical LTD) and 0.1 g of pectolyase (Y-23 Seishin Corp.) and incubated for 30 to 60 minutes at 28° C. with gentle shaking in order to remove the cell wall. The resulting protoplasts were pelleted at 1400 rpm and washed two times in 50 ml of cold (4° C.) 0.4 mannitol (unbuffered).
- NT-1 Nuclei Isolation
- The protoplasts were pelleted and resuspended in 50 ml of Nuclei Isolation Buffer 1 (NIB1) at pH 6.5 (NIB1=0.5M hexylene glycol, 20 mM N-2-hydroxyethylpiperazine-N-ethanesulfonic acid (hepes), 20 mM KCl, 1% thiodiglycol, 50mM spermine (Sigma S-2876), 125 mM spermidine (Sigma S-2501), 0.5 mM phenylmethylsulfonyl fluoride (PMSF 2M stock in methanol), 2 μg/ml aprotinin (Sigma A-6279), 0.5% Triton X-100, 0.5 mM EDTA). This procedure solubilizes the plasma membrane and releases nuclei. After a five minute incubation on ice, the nuclei were filtered through a tier of 100 um, 50 um, and 30 um nylon mesh to remove the cellular debris and then spun through 15% Percoll (Pharmacia 17-0891-01)/NIB1 for further purification. The pelleted nuclei were washed two times with of Nuclei Isolation Buffer 2 (NIB2=
NIB 1 without EDTA). - Quantification of Nuclei
- The nuclei were resuspended in a suitable volume of storage buffer (NIB2 in 50% glycerol) such that the suspension would have an absorbance reading of 10 at 260 nm. Absorbance was determined by diluting 2 μl of nuclei in 0.5 ml of 2.2M sodium chloride, 5.5M urea. One ml aliquots were stored at −70° C. until needed. The number of nuclei per tube was determined by counting aliquots using a hemocytometer. Although there was some variation between preparations, in general, each 1 ml tube with an absorbance of 10 contains about 3.5 million nuclei.
- Preparation of Nuclear Halos and Nuclear Matrices
- Approximately 3.5 million nuclei (one tube stored at −70° C.) were thawed on ice and washed in 10 ml of Nuclei Isolation Buffer 3 (NIB3=0.5M hexylene glycol, 20 mM hepes pH 7.4, 20 mM KCl, 1% thiodiglycol, 50 mM spermine, 125 mM spermidine, 0.5 mM PMSF, 2 μg/ml aprotinin). The nuclei were pelleted at 1400 rpm, resuspended in 200 μl of NIB3 containing 1 mM CuSO 4 and incubated at 42° C. for 15 minutes in order to stabilize the nuclear matrix.
- To remove the histones and other soluble proteins, the nuclei were incubated in 10 ml of Halo Isolation Buffer 2 (HIB2=10
3,5 diiodosalicylic acid lithium salt (Sigma D-3635), 100 mM lithium acetate, 20 mM hepes, 2 mM EDTA, 0.1% digitonin, 0.5 mM PMSF, 2μg/ml aprotinin) for 15 minutes at room temperature. (Digitonin is prepared by mixing 5g in 12.5 ml of methanol, heating to 65° C. to dissolve, filtering throughmM Whatman # 1 filter paper, recrystalizing by removing the methanol under vacuum, weighing the resulting crystals and resuspending in water at a concentration of 5%, and storing at −20° C. until needed). When histones are removed the coiling restraints on the DNA are removed, allowing the DNA to spill out of the nucleus to form a ‘nuclear halo’. - The nuclear halos were pelleted at 3600 rpm (2900×g) and then washed with 10 ml of Digestion/Binding Buffer (D/BB=70 mM NaCl, 20 mM Tris-HCl pH 8.0, 20 mM KCl 0.1% digitonin, 1% thiodiglycol, 50 mM spermine, 125 mM spermidine, 2μg/ml aprotinin and 0.5mM PMSF). The second wash contained all the elements of the first wash, plus 10 uM phenanthroline, and the third wash contained all the elements of the second was plus 10 mM MgCl 2. The halos were resuspended in 500 μl of D/BB plus all the elements of wash three.
- For a discussion of the above-described methods, see Hall and Spiker, Plant Molecular Biology Manual D2: 1-12, Kluwer Academic Publishers, Dordrecht, the Netherlands.
- To cleave the DNA, nuclear halos were treated with nucleases (either 250U of RsaI, TaqI, EcoRI, HindIII, or with DnaseI (Sigma) at 0. 1 μg/ml) and incubated at 37° C. for 90 minutes with the addition of another 250U of restriction enzymes or 0. 1g/ml of DnaseI after 45 minutes. The resulting nuclear matrices and their associated DNA were separated from unbound DNA by centrifugation at 3600 rpm for 5 minutes.
- Isolation of Functionally-defined MAR DNA
- Nuclear matrices were washed with 1 ml of D/BB and 10 mM MgCl 2 to remove residual supernatant (unbound) DNA and to remove protease inhibitors. The pellet was resuspended in 500 μl of protease buffer (10 mM Tris-HCI pH 8.0, 20mM EDTA, 0.5% SDS, 0.5mg/ml proteinase K) and incubated at room temperature overnight. The matrix bound DNA was further purified by phenol:chloroform extraction and ethanol precipitation, dried and resuspended in 100 μl of Tris-EDTA (TE=10 mM Tris-HCl pH8.0 and 10 mM EDTA).
- Cloning
- The purified operationally defined MAR DNA fragments were cloned into pBluescript II SK+(Stratagene). The vector was digested with either EcoRV, ClaI, EcoRI, Hind III or HincII (for blunt end ligation of DnaseI generated fragments), and ligated (using New England Biolabs T4 ligase according to the manufacturer's protocol) to the purified DNA from the nuclear matrices purified with RsaI, TaqI, EcoRI, HindIII, or DnaseI. Stratagene E. coli SURE cells were transformed with the plasmids according to the manufacturer's protocol.
- Isolation of Plasmid DNA
- Plasmid DNA was isolated from transformants that were grown in 2 ml of Luria Broth (10 g/l tryptone, 10 g/l yeast extract, 5g/l NaCl) with 80 g/ml ampicillin overnight at 37° C. with shaking. The cells were spun at 13000 rpm in a microfuge for 2 minutes, and the pellets were resuspended in 150 μl of 20% sucrose, 25 mM Tris-HCl pH 8.0, 10 mM EDTA. The cells were treated with 350 μl of lysis buffer (1% SDS and 200 mM NaOH) and incubated at room temperature for 10 minutes. After the addition of 250 μl of 3M sodium acetate pH 5.2, the cells were incubated on ice for 10 minutes and then spun at 13000 rpm for 20 minutes at 4° C. The plasmid-DNA containing supernatant was transferred to a fresh tube containing 0.7 ml of isopropanol and spun at 13000 rpm for 20 minutes at 4° C. The pellets were washed with 70% ethanol, air dried overnight and then resuspended in 50 μl of TE containing 5 μg of Rnase A (Sigma), incubated at 37° C. for 1 hour and stored at 4° C. until needed. Alternatively, when large quantities of DNA were required, plasmid DNA was isolated using Qiagen columns according to the manufacturer's protocol.
- End Labeling Protocol
- Plasmid DNAs isolated from individual transformants were end labeled and tested for binding to the nuclear matrix. One μg of plasmid DNA was digested with the appropriate enzymes to release the fragment (usually EcoRI and HindIII) according to the manufacturer's protocol. A standard end-labeling reaction contained 250 ng of digested DNA (5 μl), 0.5 μl of 10X Klenow buffer, 0.33 μl of dNTPs (2 mM deoxycytosine triphosphate, 2 mM deoxyguanidine triphosphate and 2 mM deoxythymidine triphosphate), 2.5 μl of 10 mCi/ml α- 32P deoxyadenosine triphosphate (Dupont NEN BLU-012H) and 0.2 μl of 5,000 U/ml DNA polymerase large fragment (NEB Klenow) in a total of 10 μl. The mixture was incubated at room temperature for 15 minutes and the reaction stopped by the addition of 40 μl of TE. The unincorporated nucleotides were removed by centrifugation through a Sephadex G-50 spin column. The amount of radioactivity (counts per minute) in the resulting end-labeled DNA was determined by placing 2 μl of labeled DNA in 3 ml of Scinti Verse (Fisher SX 1-4) and counted using the Beckman LS 100 C scintillation counter.
- Matrix Binding-Exogenous Assay
- Nuclear halos were treated with 250U of EcoRI and HindIII for 90 minutes at 37° C. with the addition of another 250U of each enzyme after 45 minutes. The resulting nuclear matrices were aliquoted at 50 μl for different binding reactions (different labeled DNA fragments for testing). Each 50 μl aliquot contained one tenth of the nuclear matrices, about 350,000, as well as one tenth of the cleaved, non-MAR, endogenous DNA, which served as nonspecific competitor. Radioactively labeled DNA fragments of interest were incubated with the nuclear matrices at 50,000 cpm per fragment (about 5 ng of DNA) per 50 μl reaction at 37° C. for 3 hours with resuspension every 20 minutes. The pellet and supernatant fractions were separated by centrifugation at 3600 rpm for 5 minutes. The supernatant was transferred to a fresh tube containing 0.5 μl of 0.5M EDTA pH 8.0 and stored at −20° C. The matrices were washed with 200 μl of D/BB plus 10 mM MgCl2 (D/BB=70 mM NaCl, 20 mM Tris-HCl pH 8.0, 20 mM KCl, 0. 1% digitonin, 1% thiodiglycol, 50 mM spermine, 125 mM spermidine) and then resuspended in 50 μl of protease buffer (10 mM Tris-HCI pH 8.0, 20 mM EDTA, 0.5% SDS, 0.5 mg/ml proteinase K) and incubated at room temperature overnight. Twenty μl aliquots of the pellet and supernatant fractions were subjected to electrophoresis in a 1% agarose (FMC Sea Kem GTG 50072) gel, prepared and run in TAE (
TAE 40 mM Tris-acetate pH 8.0 and 1 mM EDTA). The gel was then treated for 20 minutes in 7% trichloroacetic acid, dried and exposed to X-ray film (Kodak X-OMAT AR). This method of representing the DNA bound to the nuclear matrix is called the ‘equal fractions’ method, as an equal portion of the DNA from the pellet and the supernatant fractions (e.g., 20%) is applied to the gel. This approach allows direct determination of the amount of a fragment partitioning with the pellet or supernatant; very weak-binding DNA fragments are not scored as MARs. - A random sample of MAR fragments was obtained by purifying matrix associated DNA and cloning these fragments. Five different preparations of nuclear matrices were made using one of five different nucleases. From each preparation, twenty colonies were picked, grown and analyzed for the presence of single inserts. A total of thirty-nine clones were then tested for their ability to rebind to the nuclear matrix. Since all clones were obtained using one of the five cloning strategies, the plasmids obtained using each strategy differ only in the content of their insert. The generalized plasmid maps are summarized in FIG. 1.
- Each clone was end labeled and tested for the ability to rebind to the nuclear matrix using the exogenous assay. A previously identified strong binding MAR fragment, ToRB7-6 (Hall et al., Proc. Natl. Acad. Sci. USA 88:9320 (1991)), served as a positive control. In each case, the non-binding vector served as an internal negative control. Results of such binding assays are shown in Table 1, which contains a summary of the relative binding strength of all the MAR clones tested. Among the clones obtained from nuclear halos treated with restriction enzymes that have four base pair recognition sites (RsaI and TaqI), 9 of 17 fragments had some binding activity as compared to 14 of 17 clones when enzymes with six base pair recognition sites were used. In addition to the 34 clones represented, five clones from the DnaseI treated nuclear halos were tested (302, 303, 305, 311 and 319); no binding was detected for any of these samples (results not shown). Relative binding strength was based on the proportion of each MAR fragment that partitioned in the bound fraction on a scale of 0 to 100%. In Table 1, no=no detectable binding; weak=detectable −40%; medium=40-70%; strong=70-100%.
TABLE 1 Clones Tested for Matrix Binding Activity* Four base cutters Six base cutters Clone # Binding strength Clone # Binding strength RsaI: EcoRV HindIII 1 Weak 201 weak 2 Weak 202 medium 3 No 203 no 4 Weak 205 medium 6 no 206 weak 7 weak 209 weak 8 no 211 strong 21 no 216 weak 22 weak 210 no 23 no 217 weak 26 no 218 no 27 no 219 weak 28 weak 220 medium TaqI: ClaI EcoRI 11 No 109 weak 15 Weak 113 weak 34 Weak 115 medium 35 Weak 116 strong - Because the fragments were isolated through their association with the nuclear matrix (the operational definition of a MAR), all of the fragments would be expected to rebind to the matrix in the exogenous assay. However, 40% of the clones did not have detectable binding activity. There are several possible explanations for this discrepancy. One such possibility is a cloning artifact. Some of the DNA fragments may have been altered during cloning, resulting in a loss of binding activity. This possibility can be substantiated in at least one case, pS8. In this clone the expected sequence at the ligation site is GATAC, but sequencing revealed GATCA. This indicates that the fragment was altered during the procedure. Since the clone was created by blunt end ligation, it is likely that the fragment was broken during some procedure and quite possible that the resulting fragment had lost its binding capability. Another possibility is that some of the non-MAR DNA was trapped within the nuclear matrix during isolation. This is a rare phenomenon, and would not be expected to result in 40% non-MAR clones. It is also possible that some of the non-binding clones really are bound to the nuclear matrix in vivo but that the sensitivity of the in vitro exogenous assay was not sufficient to detect weak binding fragments (see Materials and Methods for discussion of sensitivity of detection). Another possible explanation for the isolation of operationally defined MAR sequences that did not rebind to the nuclear matrix is their size. Several of the isolated MAR fragments showed significant reduction in binding when cleaved into smaller pieces (data not shown), which supports the hypothesis of a lower size limit for MAR fragments. The clones ranged in size from 150 to 200 base pairs. It is possible that none of the isolated DnaseI clones had binding activity because they were below the minimum size requirement. Furthermore, a higher percentage of the clones obtained using restriction enzymes with six base pair recognition sites (EcoRI and HindIII) had matrix binding activity (14/17) than those clones obtained using restriction enzymes with four base pair recognition sites (9/17). Again, this subtle discrepancy may be the result of the smaller size of the fragments generated using four base cutters. This observation may also play a part in the strength of binding, since all of the clones isolated using restriction enzymes with four base pair recognition sites were weak binding MARs or had no detectable binding. It should be noted that although there appears to be a lower limit of size, within a population of fragments of the appropriate size (300 bp to several kilobases), there does not appear to be a statistically significant correlation between binding strength and the size of the MAR fragment (see FIG. 5). Finally, some of the non-binding clones may be parts of MARs that were cleaved during isolation. It appears that the binding of MAR DNA to the nuclear matrix may involve extended contact. If a particular sequence is cut within the extended contact region, it is possible that none of the resulting fragments would be able to rebind to the nuclear matrix in the exogenous assay.
- Subcloning and Sequencing
- To effectively analyze the sequence of the MAR DNA, DNA that is not necessary for binding must be excluded. Core binding fragments of the MARs were identified by testing the binding of different subfragments of the clones and determining the particular fragments that contained the majority of the binding activity. These fragments were then cloned and sequenced.
- A 998 bp fragment of pS116 was excised using MunI and PstI and ligated into the EcoRI and PstI sites of pBluescript II SK+ to create pS116-1.1B (SEQ ID NO:5).
- A 635 bp and a 1087 bp fragment of pS202 were excised by cleavage with HindIII and EcoRI and ligated into pBC KS+ (Stratagene) using the same two restriction enzymes to create pS202-1 (SEQ ID NO:6) and pS202-2 (SEQ ID NO:7), respectively.
- A 704bp fragment of pS205 was excised with EcoRI and HindIII and ligated into the EcoRI and HindIII sites of pBC KS+ to create pS205-2 (SEQ ID NO: 8).
- A 306 bp fragment of pS206 was excised with BamHI and HindIII and ligated into the BamHI and HindIII sites of pBC KS+ to create pS206-1 (SEQ ID NO:9).
- A 685bp fragment of pS211 was excised with EcoRI and HindIII and ligated into the EcoRI and HindIII sites of pBC KS+ to create pS211-1 (SEQ ID NO:10).
- A 899bp fragment of pS217 was excised with BamHI and ligated into the BamHI site of pBC KS+ to create pS217-1 (SEQ ID NO:11).
- A 1499 bp fragment of pS220 was excised with XhoI and HindIII and ligated into the XhoI and HindIII sites of pBC KS+ to create pS220-1 (SEQ ID NO:13).
- All digestions, ligations and transformations were performed according to manufacturer protocols. The maps of the original plasmids and their subclones are depicted in FIG. 2.
- The MAR fragments were sequenced in stages by primer walking. Each clone was sequenced using the Universal-21M13 (TGTAAAACGA CGGCCAGT)(SEQ ID NO:18) and reverse M13 (CAGGAAACCGA TATGACC)(SEQ ID NO: 19) primers at Iowa State University Nucleic Acids Facility for the initial portions of the sequence. In the case of longer clones, when a complete sequence was not obtained from the initial sequence, internal primers were designed and then constructed at the Molecular Genetics Facility at North Carolina State University. All interior primers are underlined in FIG. 3. Because of the AT-rich nature of the MARs, primers with suitable melting temperatures, but that avoided secondary structural features, had to be designed. The usefulness of each primer was tested by attempting to amplify an internal MAR fragment using the constructed primer in conjunction with either the universal or reverse primer in a polymerase chain reaction (PCR). PCR was performed using Boehringer Mannheim Taq polymerase according to the manufacturer's protocol. Primers that resulted in successful amplification of DNA were used for additional sequencing at Iowa State University. Sequences of the primers used are underlined within the sequences in FIG. 3.
- From the randomly isolated MAR fragments, a sample of ten binding clones (pS1, pS4, pS115, pS116, pS202, pS205, pS206, pS211, pS217 and pS220) and two non-binding clones (pS8 and pS218) were chosen for sequence analysis. These particular MARs were chosen as representatives of the population based on binding strength. Within this population of ten sequences are several weak, medium and strong binding MARs, representing the spectrum of binding strengths within population. The binding of MAR fragments appears to involve multiple protein DNA interactions rather than a single binding site (Gasser et al., 1989), however, it is not known if multiple interactions are required for MAR binding, or if longer MAR fragments simply consist of many smaller MARs each acting independently. The binding of a particular MAR may be affected when that fragment is cleaved so that shorter fragments may contain none, some or all of the binding potential of the original full-length clone. In some instances, all of the fragments are capable of binding to the nuclear matrix, whereas in others the binding is confined to one of the smaller fragments.
- Several of the isolated clones were several kilobases in length. To avoid including non-MAR DNA in our sequence analysis, these samples were digested into smaller fragments and the binding of these subfragments tested. In the case of seven clones (116, 202, 205, 206, 211, 217 and 220) a smaller core binding fragment that maintained the most of the original binding strength was identified. These core binding fragments were subcloned and used instead of the original sequence (see FIG. 2 for plasmid maps). In the case of clone pS202, two binding subfragments (pS202-1 (SEQ ID NO:6) and pS202-2 (SEQ ID NO:7)) were identified, each of which maintained a binding strength similar to that of the original clone. Both fragments are included in this study. The other three clones (pS1, pS4, and pS115) were sequenced in their entirety (SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:4, respectively). Two of the three non-binding clones (pS8 and pS218) were sequenced in their entirety (SEQ ID NO:3 and SEQ ID NO:12, respectively) The binding strengths of the subclones were rated on a scale of 0-100 based on the percent of the MAR that partitioned in the bound fraction in the standard exogenous assay (FIG. 4).
- Several different motifs have previously been identified as associated with MAR sequences, including A boxes (SEQ ID NO:14), T boxes (SEQ ID NO:15), ARS consensus (SEQ ID NO:16), and the Drosophila consensus sequence for topoisomerase II (SEQ ID NO:17). A search was conducted for the presence of these motifs using the Apple MacIntosh program MacVector. In the search, 1 mismatch was allowed in the cases of the ARS consensus and T box, and 2 mismatches in the cases of A box and the consensus for topoisomerase II. Allowing for this number of mismatches results in similar probabilities of occurrence for all four motifs (see Table 2). The A box and T box motifs often resulted in overlapping regions due to their AT-rich nature. For example, within a stretch of bases of Ts, 10 T boxes can be found. The probability of finding an additional T box upon inclusion of the next base is 0.35 in a region of DNA that contains 70% AT. To avoid this artificial identification of additional motifs, only two T boxes would be counted in the above example.
- In the MAR DNA fragments obtained from the random cloning procedures described in the above Examples, AT rich motifs were present. These AT rich regions are depicted in FIG. 4. Additionally, several of the randomly obtained MAR sequences contained short stretches (20bp) of highly AT rich (≧90%) DNA. The locations of these stretches are also shown in FIG. 4.
- The present inventors tested the occurrence of each of these motifs for statistical significance against the number of occurrences that would be expected at random, to determine if these motifs are over-represented in MAR DNA. The probability of the presence of a specific sequence starting at a specific base within 70% AT rich DNA was calculated by multiplying the probabilities of each base in the motif (0.35 for A and T, 0.15 for G and C). Since mismatches of 1 or 2 bases were allowed for certain motifs, the probabilities were adjusted by dividing the calculated probability of occurrence of the motif with no mismatches by the lowest probability of an individual base (or bases when two mismatches were allowed) within the motif, yielding a conservative estimate of probability. In addition, the probabilities were multiplied by a factor of two, since these motifs can occur in either strand of the DNA. Although the two strands of a DNA sequence are not independent, the factor of two provides a simple and conservative method for calculating the expected frequency within double stranded DNA. For example, the probability of the topoisomerase II consensus sequence (GTNWAYATTNATNNR) occurring in 70% AT rich DNA without any mismatches is calculated by multiplying the expected frequency of each base together: [(0.15)(0.35)(1)(0.7)(0.35)(0.5)(0.35)(0.35)(0.35)(0.35)(1)(0.35)(0.35)(1)(1)(0.5)]=1.68×10 5.
- This calculated probability is then adjusted for the allowance of up to two mismatches by dividing by 0.15 and 0.35, the two lowest expected frequencies of each base. The resulting value is then multiplied by two, since motifs can occur in either strand of DNA. The calculated probability for an A box with two-mismatches, an ARS consensus with 1 mismatch, and the consensus for topoisomerase II with two mismatches are coincidentally identical, 6.428×10 −4, whereas the calculated probability of a T box occurring with one mismatch is slightly higher, 1.26×10−3. The probability of the occurrence of a 20 bp stretch of DNA containing 90% or greater AT content, was calculated by taking the probability of a single base being either A or T (0.7) to the 18th power. Therefore, the probability of occurrence of a twenty base pair stretch with two mismatches (or 90% AT rich DNA) is equal to 1.628×10−3. Since this type of motif will automatically be present on both strands at the same time, only those motifs found in one strand were counted. As with the other motifs, overlapping regions were not counted as separate occurrences, however, this motif often occurs in stretches much longer than 20 bp. The actual lengths of the regions are depicted in FIG. 4. The number of occurrences were counted as one from 20-39 bp; two from 40-59 bp; and so on. The probability of a motif starting at any one site, was converted to an expected number of occurrences within a DNA sequence by multiplying by the number of base pairs in its length.
- For purposes of the calculations the probability of a particular base occurring at a particular site was assumed to follow a multinomial distribution, i.e., any of the four bases can occur at a particular site. Note that this assumption may not be true if there are restraints on DNA sequences (e.g., five consecutive Gs not allowed), but since such restraints are presently unknown, the assumption of multinomial distribution was made. It would be expected that the probability of a particular string of bases (a motif) occurring at a particular site to have approximately a normal distribution. The observed number of MAR motifs were compared to the number expected under this normal distribution assumption. The number of observed MAR motifs was significantly greater (at the 1% level) than the number expected if the observed number of MAR motifs is greater than a calculated critical value. The critical value is μ+Z 0.01σ (Steele and Torrie, Principles and Procedures of Statistics: A Biometrical Approach, McGraw-Hill Publishing Co., New York, N.Y. (1980)). In this equation μ is the expected number of MAR motifs, Z0.01 is the Z statistic at 1% and C is the standard deviation of the expected number of occurrences of MAR motifs given a random expected number of occurrences given a random sequence of bases (σ={square root}μ). The motifs in question have already been shown to be associated with certain MAR sequences. The null hypothesis of the motifs occurring at random is compared to the one tailed test of the alternative hypothesis, that these motifs occur more often than would be expected by random occurrence. The 1% critical values are shown in Table 2. Since the observed number of occurrences for all five motifs is greater than the critical values, the null hypothesis can be rejected in favor of the alternative hypothesis that these motifs occur more often in MAR DNA than would be expected by chance alone. A boxes, T boxes, ARS consensus, topoisomerase II consensus and 20 bp regions of ≧90% AT DNA all occur more often than would be expected at random.
A box −2 ARS con −1 T box −1 Topo II-2 90% A + T length 6.428 × 10−4 6.428 × 10−4 1.261 × 10−3 6.428 × 10−4 1.28 × 10−3 Clone bp obs exp obs exp obs exp obs exp obs exp pS1 437 9 0.280 0 0.280 3 0.551 1 0.280 7 0.711 pS4 587 7 0.377 2 0.377 4 0.740 2 0.377 4 0.955 pS115 866 4 0.556 2 0.556 5 1.092 0 0.556 4 1.409 pS116-1.1B 998 11 0.642 1 0.642 14 1.258 2 0.642 16 1.624 pS202-1 635 7 0.408 0 0.408 4 0.800 1 0.408 3 1.033 pS202-2 1087 7 0.698 3 0.698 4 1.370 2 0.698 3 1.769 pS205-2 704 9 0.452 4 0.452 5 0.887 2 0.452 9 1.146 pS206-1 306 5 0.196 1 0.196 2 0.385 1 0.196 5 0.498 pS211-1 685 7 0.440 2 0.440 11 0.863 4 0.440 9 1.115 pS217-1 899 10 0.578 2 0.578 5 1.133 1 0.578 2 1.463 pS220-1 1499 21 0.963 5 0.963 10 1.890 2 0.963 20 2.440 Total 8705 97 5.599 22 5.599 67 10.974 18 5.599 82 14.171 1% Critical 11.10 11.10 18.67 11.10 22.92 Value Other MARS ARS-1 838 5 0.538 2 0.538 2 1.056 0 0.538 1 1.364 ToRB7-6 1103 13 0.709 3 0.709 7 1.390 3 0.709 16 1.795 Sca/Cla Non-binding clones pS8 383 2 0.246 0 0.246 1 0.482 2 0.246 2 0.623 pS218 999 5 0.642 2 0.642 5 1.259 4 0.642 0 1.626 - To determine if a correlation exists between the number of these motifs present within a particular MAR sequence and its binding strength, that data (FIGS. 6-11) was plotted and tested the significance of the regression coefficient, r, using an F test (Steele and Torrie, 1980). Included were all eleven binding sequences (SEQ ID NOs: 1, 2, 4-11, and 13); two non-binding sequences (SEQ ID NO:3 and SEQ ID NO:12); and two well characterized MARs (ToRB7-6 and ARS-1).
- The correlation between binding strength and the length of the MAR as well as the %AT content of MARs was analyzed. The analysis (Table 3), shows a significant correlation between the number of 20 bp stretches of 90% or greater AT and the binding strength of MARs. The number of T boxes is also significant, as is the number of A boxes. No significant correlation between binding strength and the length of the MAR fragment nor the presence of any of the other MAR related motifs was detected in this analysis. However, there was a significant relationship between binding strength and overall AT content. This is the first report of a correlation between the abundance of certain MAR related motifs and MAR binding strength. In addition, the newly identified MAR related motif of local AT rich regions (≧90%), has a higher correlation to MAR binding strength than any of the previously identified motifs.
TABLE 3 Motif R F calc significance % AT 0.77 18.93 ** length 0.38 2.19 ns #A box/kbp 0.19 0.49 ns total #A box 0.57 6.48 * # ARS/kbp 0.29 1.27 ns total # ARS box 0.35 1.85 ns #T box/kbp 0.64 9.45 ** total # T box 0.76 17.98 ** # TopoII/kbp 0.06 0.04 ns total # TopoII 0.23 0.07 ns # 90% AT/kbp 0.69 12.07 ** total # 90% AT 0.80 24.62 ** -
- Fcalc=F statistic=(n- 2)[r2/1-r2)]
- ns=not significant
- *=significant at 95%
- **=significant at 99%
- The relationship between certain MAR related motifs and MAR binding strength suggests that these motifs are general components of MARs. The lack of this relationship for other motifs suggests that these sequences are over-represented without being associated with MAR function, or may be related to only certain categories of MARs. In addition several other MAR related motifs (such as the asymmetric GA-rich stretches, or homopurine stretches) are found within some, but not all of the randomly obtained sequences. The presence of such a motif may indicate a specific class of MARs, but since there is no information about the location of these random sequences within the genome, it cannot be inferred from the presence of this motif that a sequence is a MAR with a specific function (or even a MAR at all).
- MARs may interact with the nuclear matrix through a variety of secondary structure motifs including a narrow minor groove, transiently single stranded regions and bent DNA. These structural motifs are expected to be present in the MARs described here because of their high AT content. A narrow minor groove is a feature of DNA containing long A tracts, a predicted feature within high AT content DNA.
- Earlier studies (Allen et al., Plant Cell 5:603 (1993)) showed that flanking a GUS reporter gene with two copies of a yeast MAR element (ARS-1) increased average GUS expression by 12-fold in stably transformed cell lines. In the present Example, the same cell line is transformed with constructs similar to those of Allen et al., 1993, but using a MAR having a sequence selected from SEQ ID NOs : 1, 2, 4-11 and 13.
- Transformation is achieved by mixing the appropriate reporter test plasmid and a selection plasmid, co-precipitating them onto microprojectiles, and bombarding plates of tobacco suspension culture cells as described previously (Allen et al., 1993). Antibiotic-resistant microcalli are selected and each callus is used to start an independent suspension culture cell line. Histochemical staining of segments from the original microcalli show that the staining intensity is greater in cell lines transformed with MAR plasmids. After several weeks of growth, with weekly transfers, suspension cells are harvested, DNA is extracted from each cell line for Southern analysis and quantitative PCR assays, and portions of the same cell population are used to measure extractable reporter activity and expressed protein levels. Transgene copy number estimates and expression data are calculated. Levels of GUS gene expression, measured as GUS enzyme activity, are assessed and compared to controls.
- The foregoing examples are illustrative of the present invention, and are not to be construed as limiting thereof. The invention is described by the following claims, with equivalents of the claims to be included therein.
-
0 SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 22 <210> SEQ ID NO 1 <211> LENGTH: 437 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 1 gatacgtaaa caacgtgtat ccagtaagta tcaagcctaa tctcgaagtg gtagagacga 60 gatgaccgac tttgacactc actatgggtc aataataata actgaaataa aactaagata 120 tttaaaccaa catgatttac agaatttaca ataatttatt taatcagcag aaataatcaa 180 atttcttcaa atgtaacaat tctcaatata ttaattaaat tccttcaatt caaataattt 240 ctaatttatc aattaaacct catttacagg agtaacaatt aattccttaa caagcaagaa 300 taataattca ttaaattcca aggatttttc aatttattaa ttagcttcac aacctgaaat 360 aaattattaa agtatcgtgt aattattatt attaagcacg atttctgccg aggacatacg 420 gcccgatcca gagtatc 437 <210> SEQ ID NO 2 <211> LENGTH: 587 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 2 gatactagag tggtgttatc aattcttact cgtatgaatt aattaaattt gtctcttatt 60 tctgtcctaa gtcatataca agaaatgcta actccatccg tttcaatccc tatgacatag 120 tttgatttga ttgaatttga aaatttaaga aacaaaagat aatttttgtg actcataatt 180 tagacatgtg ttataagact tttctcatga attttttaga aacaaatgat aatttttgga 240 actcataatt tagacgtttt ataaaaaata ctaactgcat ctggttcaat atttatgtgt 300 tattcctata aaacttctgg acttatattt ttaaatattt cataatattt ggtatcggta 360 taattttttt gtcacttttg gatgaaaggg aagtttaagt aaatttcttt ttccaaattt 420 agaaagttat aatattcttt ttaaaacgcc caaaaagaaa aataagctat tgattattat 480 aagcctaaac caaaagaatt ctttgactag taggaagcca tttttaagtt aggcgccaaa 540 attcaaagcc aacgtgggca tatctccaaa ctggcggcta cagtatc 587 <210> SEQ ID NO 3 <211> LENGTH: 383 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 3 accgctttta ttattattat ttttaccgag aattacaaca tcatgaaaat acatctcgaa 60 ccacgtcaca tcaatgcacc cgcggttatt gacatatttc aactctgttg agatttggat 120 ttgggtcaca taaatgtgca cccgagttta agaggataac attattaaat acgcgcctaa 180 aacgactagc gtatcattat tttgggtagg gccgtgaaat tttgctaaac tgcccatcca 240 gaaatctaag taattttacc aacacgtata gagggcccca cagcttgtgt atttttgttt 300 gtcgaggctc gtctcattca ttatttttaa aaggaatttg caacgtcgtg gaaatgcatc 360 tcgaaccacg tcacaatcaa tga 383 <210> SEQ ID NO 4 <211> LENGTH: 866 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 4 gaattcgata gactcactta aatattagaa gtgaattacc tagagttaga tccaaaacaa 60 ttatcttgca cctatcctat caacccttat cttttcccat tgattactac cttgcttacc 120 tttgttacga ttttcattag acaataactt tagattctta gttaattgca gttagaaatt 180 atattaaatt tcaattgttg gatcatcttg aataccaatc aagctagaaa atacaagaat 240 actgtttaaa tcaaatccat gtggatacga tattatacta tattatattt gacttgtgag 300 cattatttat gtgtgttttg tgctcgtcaa agtttggcgt cgttgccgag gattggcaat 360 caatagtgtt tgaaatagtt tttggtgcta atttaggaat taggttttat ttatttattt 420 tttcttttct tttctttttc cttttctatt ttatttcctt tattagttaa cttcttttca 480 agattttttt tgtagtacct aacaagttag agaagatact gtagattttg aactctaaat 540 gttgtgaaga tggagtacaa ccagcctaag aaaatatttg aatagttagc agctgaacat 600 tatcggcggt cggttatgcg gtttaaatgc ggtggaagca tctaccaccg cagcctaaag 660 aaaatatttt gaatagttag cagcttgaac attatcggcg gtcggttatg tgttttaaat 720 gcggtggaaa tcatctacgg gctaactgtc aagcaggtat gtattcttcc tatggttcgt 780 attttgagga gtctcactct gtttctagtt cgtacatgta tgaggattca tatgggcaca 840 actctgactc tggttgggat gaattc 866 <210> SEQ ID NO 5 <211> LENGTH: 998 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 5 gaattgtatt attgttaggt gggagagatt tttgactata tgggttaaaa tcagcgacaa 60 agggccaaat atacctattt acttttaaaa atagtctaat aatacctctc gttatattat 120 taggttatct atacctttgc agtcatattt tgggttcaaa tatacccctc atttaaacgg 180 agggacacgt gtcatcgtcc tgttggtcaa ttctaaatat ctcctaatta attaaaaaga 240 ctcattaccc atatccgaaa aatatttttt aaagcaatat ttttttataa aaaatggaaa 300 aactgaaatt atttttacta aaaattgaaa aaaacgaaaa tagttttttt tcagttttta 360 caaaaaaact attttagaaa aaattgaaaa atattttcta aaacaatgtt tttgtaaaaa 420 ctgaaaaaaa agaagctgaa aatcaatttt ctaaagcaat tttatttgta aaatctggaa 480 aaaactacta aaaactgaaa aaatgaaaat attttttttt ctaattttta caaaaaaaac 540 tgctttaaaa aaagctgaaa atattttcta aaacaatatt tttgtaaaaa ctaaaaaaaa 600 aatattttct tctttttttc agtttttagt taaaaatatt taagtttttt ccagttttta 660 attactttag aaaattactt ttctgctttt ttttcagttt ttacaaaaat attattttag 720 aaaatatttt tcagttcttt aaagcagttt ttttttgtaa aaacttgaaa aacaatattt 780 tcgttttttt cagtttttag taaaatttgt ttttagtttt tttcagtttt taccaaaaat 840 aaaattgctt tagaaaatta tttttcgggt atgggtaatg ggtcttttta attaattagg 900 agatattttg aattgatcaa taggacgatg acacatgtcc ctccgtttaa atgaggtgta 960 tatttgaatc caaagtaaga ctgcagcccg ggggatcc 998 <210> SEQ ID NO 6 <211> LENGTH: 635 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 6 gaattcgata tggcttgttg gacaagaatt aatgaatcaa ttgtgaaaaa gttgatggac 60 atattgaagg taaaatcata tactattttt ctaaaatctc ttttaaatgt tccccaatta 120 tctgatttct atattgctct taaatgtcac tcaaccttag atcaacaaac atataactta 180 cccagtacat aagagattgc ggcattatgg cttgaagaaa atcctagaga cacatctgca 240 ccacatattt gaatttatac ccacagtaat agagctcggt tagtacatta ttattatgga 300 tgttacgatc cgttgcagta tccattatta ttttccttcg gtgaaaatgg atgacattgt 360 ggaattaaaa aaattattca gacaaaaaat tcgacgaaac gtagagctta ctgcgaacat 420 gaacaattgc ccagtatatc aaatacgtgt tcagttgatg gattccttga tatggaagat 480 gaatcactac aaagaggaaa acgaaaaaga gatacagtgt cttgtcgaga gtattattgt 540 tacaaatttc aactaagaaa taatgaaaca aatgaagtgt tacattgtgg gagaatattc 600 caacaattta tagtagatat atatatataa agctt 635 <210> SEQ ID NO 7 <211> LENGTH: 1087 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 7 aagcttgcac gcctacatcg tgggataatt tagaaaaagg aaagggtata ttggatcccc 60 ctatcatttg tgaaacaggt aaccatacga gaaccccttt cgcttcctga aaaatgttat 120 atattgttgt actcatattt atacactatt tattattaat ataacgatgc ttattttgct 180 tggagattgg agattatcac agcttattta tcttatattg tatcttatta aacttaaaaa 240 cataaatact acgtgctctt ttaatttggg atctattaag ggttcgttgc acgcttttaa 300 acatcttggc tattctgttt accagctgct accttagcct gtatgcttac atcatctcct 360 aatttagaca aaggaaaggg tatattggac cccccctatc attcgtgaaa caggtaaaca 420 tacattcaga ttatactctt ttcagaatga catattgttt atacattact gtaaattgtg 480 actatttgta tattagggtc cacatcgggt acatctaacc tgcgtcatgt tatcttgaac 540 actgttccaa tcaaaggttt gcacaaactt aatgttacaa tcatgtccac catacgtatg 600 ccttggtgct cttttttttc ctaatgatac ttcttatata ttcagctcat aggcgggcca 660 gaaaggtgtg cctggtcact aaagagcaac gaagtgagta tgttgctcta aaaagggtcc 720 cacactgtca attctgtcat ccaaagaagt ttgaatatga acctccagga ttttgctgta 780 acagtggttc aataaggttg acatctcata aaatgccaac tgaattatcg gagttatact 840 ttggaaatac tgaagaatct gaaaattttc gaacttatat tagaacatac aataacatgt 900 ttgcatttac ttcacttggt gtcaagtatg ataaagagct agcgagaaga aattgtggta 960 tctacacatt tagagtccag ggacagatgt atcattttat agatgattta gttccttcca 1020 atgaaaaacc taggaattta tagctgtact tctacgataa tgataatgaa ctagccaaat 1080 caagctt 1087 <210> SEQ ID NO 8 <211> LENGTH: 704 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 8 gaattcttca gccattgtac atatagttgt gtattaatgt tattaataat ggataattaa 60 atatatacct ggaataaata tacgatatta taatagtgtg taattatata taaaaattat 120 acataatata atgatggtat ttaatatagc ataaatttga acgatctgga ttgatttctt 180 gaatcaaaat agagttgtgt gaaaagaaaa gaatgagatg aaaagcaaag tatgaagaga 240 tgaatttgtg ttttttttat ggaggaggaa ggttctcagt gatggaatca tccctggttt 300 tctttagcac caatgaaagt aatgaacccc ccccaaaaaa aaaaaaaaaa aaaaaaaagg 360 gagagagagt agaatggaac ggctaggtga aagtatagga gtagaaatta ggttcaggga 420 gagaaaaggg gggaaattaa ttcctaaatt aatgggattc taatttttaa actgttttga 480 aatattttaa aagtagtgtt atttatatta ttaactttta aaaaaagtca aacgaggtaa 540 aaattccatg ggggaaaatt taaatggtta gtcttctata atattttcaa ctctgcttag 600 cactaaaaat tagtctaaaa ataaccctaa attagtgtat ctaaattaat tagttcatcg 660 aacaggagca ttggattatc cctccagagt tacacaggaa gctt 704 <210> SEQ ID NO 9 <211> LENGTH: 306 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 9 ggatccagct attattatag catgtgagtt gtccgtgaac agctaatttt ttaccacacc 60 caaattcaat actattttag tgtaaatata tcttttaggt ctagtcttaa tatttaactt 120 tttgtcttac ttttaataga ttttatttga gaaaaattaa taattacaaa aaataaaaag 180 tatatattca catacttata gtacaaactt tgtttctatt tataaagaga aaaagaaatt 240 ttacaaaaaa caaatatatt tgctttcttt taattagtag ttttattaag caagctatag 300 aagctc 306 <210> SEQ ID NO 10 <211> LENGTH: 685 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 10 gaattccgtg gttttagcac ggtcgctcaa ttgtcatatt tggctcattt atctgatttt 60 taaacaatta agaacttata tgcaaattta acttttaaaa ccgcttttat cattatttat 120 tttatacaaa attacaacgt cgtgaaaagg catctcgaac cacgccacaa ccagtgcaca 180 cgtgatttgt tgacgcattt tggacttcgt caagatcgtg atttgggtta cataaatgta 240 caccccgtat ttaagaaaat aaccttatta aatattgcgc caaaatacta cgcgttatga 300 tactattagg gtaggcttgt gaattttact aaatcgccca tctcggaatc taggtatttt 360 cttatattaa aaaaaataag atgggggcct gcaatttttt attatttaat atttatttat 420 tttttagcga agatccctcc cttattttat gaataccctt taatgactac atctttatta 480 ttactaagtt tgtctataat tatgaagtca atctctacat acataaaaat aacatattaa 540 ttactaattt aaaacaaata ttaatggaaa gtaatattac taaaattata attacaaaca 600 acatggaatt gtcacaaaat aaaaaataaa aactaattat cccatagttg gattaaaatt 660 catattgtta gtatgactta agctt 685 <210> SEQ ID NO 11 <211> LENGTH: 899 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 11 aagctttaaa aggaagagag ccacaatttt ctttgacctt ccttctctcc tagccactaa 60 gatatacagt actggtcaaa aagagcatat ttatagctca aaattttgcc tttttctgtt 120 gtaaacgtga ttgtttctta cttggattct tgttctatat atttacggga gaaaagagca 180 atttgcatgc tcctaaatct tttattttct ggtgaaaaat tggtctttaa ttggctggga 240 attatttttt agatgctaca accttgacaa acacctaaga atattttagt gacaatggct 300 tgttctttga gtactggttt ttctgtttct ggtccctgtt tcaacgccac agccaaagag 360 tctcgtcgtc attgcccttc gattggcact ctgcaactta aagatttagc atccagagaa 420 tttctaggca aacccttgga ttatgcatca gatcatattg gtactaacca ttggaatgtt 480 gaacgacttt ctgtatgtaa atctctgata catttgcttc tgtgtttata cttggtgttt 540 tcatgttttc attcttgttt taaatttttc gagatcaaat catttataag tatttattct 600 aatgatttta ggcacaagta tcaatcgctg ctcagagatg gtgggagaag acccttaaac 660 ccaacatggt agagatcaat tcagcaacac aacttgttga ttcattatta aaagctggta 720 atagattggt cataattgac ttcttctctc ctagctgtag aggtttcaag actttacatc 780 ctaaggtaag atatatagca atcccctaaa aaaaaaaaaa aaaaaaaaaa aaaccaacaa 840 ctacatcgta atcctaagca agttagggtt aactatatga atcatcacta gacggatcc 899 <210> SEQ ID NO 12 <211> LENGTH: 999 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 12 aagcttaact ttactcacat tgctttcttt agggaagcgt cttcttaaat gaccatcctc 60 taaatttctc atgaatcttc ttctgttgtc cactctgtta tcgctgaaac gaaatctgaa 120 attgtcatga tgctgactat tatccaatca ctcagtctct aattcatatt tagattatct 180 tgttcaccag cccatactga tttttattgt tttggggtct aacttttcct tccggtagtc 240 ggttggagtc atgaacttat ttcttgaaat gaggatatga ctttatggcc tatactcttt 300 tggtgtctca aggcctgtca cctctcatct tttccttcaa ttgactatag actctgtaat 360 actgtcatct ttgggatcta ccgttgtcct ccatgtatca tatcttactc ataatgcttc 420 attaactatt ttcttatttc ccgctaacat ttatgtctat cactttattc tgaaaactcg 480 aacaagacat tcttttcgtt ttagatcccc tttgctccat ccagtggttc ttcgggggac 540 ttaacgttct cgctctccta gggaggcgag ccacactaag gtaatattta tcccttctag 600 gctttccgtg cctatcttct gagatatttt tttcatgcta atattcacat ctaattgtaa 660 ttttctagag tgcgccatct gggtgcctca caagaagagc tattagcatc tttgtaatat 720 ccttcggaaa tgtcaactaa cacaacacaa tccattcacc attttgggtt actctaacct 780 cagtcggata ctaatatcct gtcattttat taaactacac atgttagccc ccaataggat 840 ataactaaga tgggtgtggc caattctaca tacatctgtt actgttgaaa gtaagtcgca 900 atgcttttat ttttctgccg gagttgaaaa taccgataat ctatattaac tgggtacctc 960 gtacccttct catctttctc cttttacttg ttgaagctt 999 <210> SEQ ID NO 13 <211> LENGTH: 1499 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 13 aagcttgaaa aagaagaatt aaggcttgct ttcttaattt ttaaaaaata aaaattattt 60 tgaactatct atactatatt aaaagcacga aaaccctatc gaaatgtcgt tcgccttttt 120 taccctttaa aaataatttt acattagaca aaatagtcat tttactattt ttcctaatat 180 ataggatttt aaaattaatt taactttggc tattaaacat tttcttataa cttgaaatat 240 gtaaaactcc taatatttag aaatttaatt aacataacca aggattttta tatcggtaat 300 aactctaata tggtatccaa atcagtctag aactctctta cctctaataa gtaaaagtac 360 ttctaataaa ttcatatact ttttctctct tctccgatct ctctttgctc ttctttttat 420 gtatcctttc ctttctaata gccttttatg agaagtaaac ttttagggtt ggccccccct 480 ccccccacaa ttatatagtt tcttactcag ttgttggaat ataattcaaa ttcttaaata 540 attgacggtg acattgagtt ttactttgtg gaagagaatt agattctcgt gttagtaaaa 600 tcggttagta attgatgatg cattattttt actctataat agagatgcaa ttttattttt 660 gcattttggg atcaaattgt aatgcagtca tatattgatt tcataaatgt ttgggatatt 720 gttggttatt taactagaaa tagacttctt atttcatatt tattgttaaa atcctttatt 780 ggagatgaat tatttgttca ccgattagaa gttgatagtc gcttttgttt tagaagaaat 840 tttaccgtag accaagttaa ggagttttag aagcactttg catgggagca ttagtgtatg 900 ttatggcttt atcaaatata ggttttgaag attcagagag ccaagaaaag ctagaaccca 960 agaactagga agttagagta attcacaata ccataacgtg atataaaact ttttattgta 1020 actcaaatcg gtaatatttt ttgctttagt cttaatcgat aaattatttt tttatattga 1080 ttagttatag gaggctcaca aagttgggaa taattaaaat atcatatttt gtatttgaac 1140 aatttatgaa atagtaattg gtaaaaaatc actttaaatt tttatcctat atccagaagg 1200 attatggtgt ctggcatagt tgtttggaag atttgaatca gggtaaaagt atgttgtaat 1260 ttttattttg ttataggcat tttttgtgct tgattgtttt gttgtcatta tattttatta 1320 tttggaagtg tatatatatg tttgattaaa atatagataa tcaattttat aagaaatttg 1380 caacaattac acaaggataa agtctacaat atgcgagtaa aatttgattg aacctaggat 1440 gtcatattta atgcatattt tatttcaatg tgtttattat acatctattg tattatatg 1499 <210> SEQ ID NO 14 <211> LENGTH: 10 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 14 aataaayaaa 10 <210> SEQ ID NO 15 <211> LENGTH: 10 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 15 ttwtwttwtt 10 <210> SEQ ID NO 16 <211> LENGTH: 11 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 16 wtttatrttt w 11 <210> SEQ ID NO 17 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3)..(3) OTHER INFORMATION: n represents any nucleotide. <221> NAME/KEY: misc_feature <222> LOCATION: (10)..(10) <223> OTHER INFORMATION: n represents any nucleotide. <221> NAME/KEY: misc_feature <222> LOCATION: (13)..(14) <223> OTHER INFORMATION: n represents any nucleotide. <400> SEQUENCE: 17 gtnwayattn atnnr 15 <210> SEQ ID NO 18 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(18) OTHER INFORMATION: Synthetic Universal Primer -21M13 <400> SEQUENCE: 18 tgtaaaacga cggccagt 18 <210> SEQ ID NO 19 <211> LENGTH: 18 <212> TYPE: DNA ORGANISM: Artificial Sequence <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(18) <223> OTHER INFORMATION: Synthetic Reverse Primer M13. <400> SEQUENCE: 19 caggaaaccg atatgacc 18 <210> SEQ ID NO 20 <211> LENGTH: 1103 <212> TYPE: DNA <213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 20 tcgattaaaa atcccaatta tatttgcaga ttaaatcaaa ccataactca ttttgtttaa 60 gcttggtttg gttttatatt tatataagtt tttatatata tgcctttaag actttttata 120 gaattttctt taaaaaatat ctagaaatat ttgcgactct tctggcatgt aatatttcgt 180 taaatatgaa gtgctccatt tttattaact ttaaataatt ggttgtacga tcactttctt 240 atcaagtgtt actaaaatgc gtcaatctct ttgttcttcc atattcatat gtcaaaatct 300 atcaaaattc ttatatatct ttttcgaatt tgaagtgaaa tttcgataat ttaaaattaa 360 atagaacata tcattattta ggtatcatat tgatttttat acttaattac taaatttggt 420 taactttgaa agtgtacatc aacgaaaaat tagtcaaacg actaaaataa ataaatatca 480 tgtgttatta agaaaattct cctataagaa tattttaata gatcatatgt ttgtaaaaaa 540 aattaatttt tactaacaca tatatttact tatcaaaaat ttggcaaaac cgaaccaatc 600 caaccgatat agttggtttg gtttgatttt gatataaacc gaaccaactc ggtccatttg 660 cacccctaat cataatagct ttaatatttc aagatattat taagttaacg ttgtcaatat 720 cctggaaatt ttgcaaaatg aatcaagcct atatggctgt aatatgaatt taaaagcagc 780 tcgatgtggt ggtaatatgt aatttacttg attctaaaaa aatatcccaa gtattaataa 840 tttctgctag gaagaaggtt agctacgatt tacagcaaag ccagaataca aagaaccata 900 aagtgattga agctcgaaat atacgaagga acaaatattt ttaaaaaaat acgcaatgac 960 ttggaacaaa agaaagtgat atattttttg ttcttaaaca agcatcccct ctaaagaatg 1020 gcagttttcc tttgcatgta actattatgc tcccttcgtt acaaaaattt tggactacta 1080 ttgggaactt cttctgaaaa tag 1103 <210> SEQ ID NO 21 <211> LENGTH: 838 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae <400> SEQUENCE: 21 aagcttacat tttatgttag ctggtggact gacgccagaa aatgttggtg atgcgcttag 60 attaatggcg ttattggtgt tgatgtaagc ggaggtgtgg agacaaatgg tgtaaaagac 120 tctaacaaaa tagcaaattt cgtcaaaaat gctaagaaat aggttattac tgagtagtat 180 ttatttaagt attgtttgtg cacttgcctg caggcctttt gaaaagcaag cataaaagat 240 ctaaacataa aatctgtaaa ataacaagat gtaaagataa tgctaaatca tttggctttt 300 tgattgattg tacaggaaaa tatacatcgc agggggttga cttttaccat ttcaccgcaa 360 tggaatcaaa cttgttgaag agaatgttca caggcgcata cgctacaatg acccgattct 420 tgctagcctt ttctcggtct tgcaaacaac cgccggcagc ttagtatata aatacacatg 480 tacatacctc tctccgtatc ctcgtaatca ttttcttgta tttatcgtct tttcgctgta 540 aaaactttat cacacttatc tcaaatacac ttattaaccg cttttactat tatcttctac 600 gctgacagta atatcaaaca gtgacacata ttaaacacag tggtttcttt gcataaacac 660 catcagcctc aagtcgtcaa gtaaagattt cgtgttcatg cagatagata acaatctata 720 tgttgataat tagcgttgcc tcatcaatgc gagatccgtt taaccggacc ctagtgcact 780 taccccacgt tcggtccact gtgtgccgaa catgctcctt cactatttta acatgtgg 838 <210> SEQ ID NO 22 <211> LENGTH: 9 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 22 aatatattt 9
Claims (21)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/816,894 US20020073448A1 (en) | 1997-08-06 | 2001-03-23 | Matrix attachment regions |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US6611897P | 1997-08-06 | 1997-08-06 | |
| US09/122,400 US6245974B1 (en) | 1997-08-06 | 1998-07-24 | Matrix attachment regions |
| US09/816,894 US20020073448A1 (en) | 1997-08-06 | 2001-03-23 | Matrix attachment regions |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/122,400 Division US6245974B1 (en) | 1997-08-06 | 1998-07-24 | Matrix attachment regions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020073448A1 true US20020073448A1 (en) | 2002-06-13 |
Family
ID=22067358
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/122,400 Expired - Lifetime US6245974B1 (en) | 1997-08-06 | 1998-07-24 | Matrix attachment regions |
| US09/816,894 Abandoned US20020073448A1 (en) | 1997-08-06 | 2001-03-23 | Matrix attachment regions |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/122,400 Expired - Lifetime US6245974B1 (en) | 1997-08-06 | 1998-07-24 | Matrix attachment regions |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US6245974B1 (en) |
| EP (1) | EP1005560A1 (en) |
| JP (1) | JP2001520861A (en) |
| AR (1) | AR013400A1 (en) |
| AU (1) | AU749014B2 (en) |
| BR (1) | BR9811849A (en) |
| CA (1) | CA2298052A1 (en) |
| WO (1) | WO1999007866A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7129062B2 (en) | 2001-01-26 | 2006-10-31 | Selexis Sa | Matrix attachment regions and methods for use thereof |
| WO2011022471A1 (en) * | 2009-08-19 | 2011-02-24 | Dow Agrosciences Llc | Detection of aad-1 event das-40278-9 |
| US8252917B2 (en) | 2003-10-24 | 2012-08-28 | Selexis S.A. | High efficiency gene transfer and expression in mammalian cells by a multiple transfection procedure of MAR sequences |
| US9204599B2 (en) | 2009-08-19 | 2015-12-08 | Dow Agrosciences Llc | Detection of AAD1 event DAS-40278-9 |
| US10460386B2 (en) | 2004-10-14 | 2019-10-29 | Cfph, Llc | System and method for facilitating a wireless financial transaction |
| US11685928B2 (en) | 2020-09-30 | 2023-06-27 | Nobell Foods, Inc. | Recombinant fusion proteins for producing milk proteins in plants |
| US11840717B2 (en) | 2020-09-30 | 2023-12-12 | Nobell Foods, Inc. | Host cells comprising a recombinant casein protein and a recombinant kinase protein |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19848017A1 (en) * | 1998-10-17 | 2000-04-20 | Multigene Biotech Gmbh | Episomally replicating vectors, useful in gene therapy, contain origins of replication and scaffold-matrix attached region sequences but no viral coding sequences |
| DE19942149A1 (en) * | 1999-09-03 | 2001-03-15 | Daniele Zink | Process for the expression of exogenous sequences in mammalian cells |
| KR100408844B1 (en) | 2000-07-29 | 2003-12-06 | 한국산업기술평가원 | Expression vector using for animal cell |
| US6933136B2 (en) | 2002-09-20 | 2005-08-23 | Novo Nordisk A/S | Method for making recombinant proteins |
| DE602006014942D1 (en) * | 2005-03-04 | 2010-07-29 | Celltrion Inc | EXPRESSION VECTOR FOR ANIMAL CELL CONTAINING AT LEAST ONE COPY OF MAR DNA SEQUENCES AT THE 3 'END OF THE TRANSCRIPTION REFINING RANGE OF A GENE AND METHOD FOR EXPRESSING A FOREIGN AGGREGATION USING THE VECTOR |
| JP6261863B2 (en) * | 2009-11-24 | 2018-01-17 | ダウ アグロサイエンシィズ エルエルシー | AAD-12 event 416, related transgenic soybean lines, and its event specific identification |
| UA118332C2 (en) | 2011-09-22 | 2019-01-10 | Емджен Інк. | Cs27l antigen binding proteins |
| AR091069A1 (en) | 2012-05-18 | 2014-12-30 | Amgen Inc | PROTEINS OF UNION TO ANTIGEN DIRECTED AGAINST THE ST2 RECEIVER |
| UY35148A (en) | 2012-11-21 | 2014-05-30 | Amgen Inc | HETERODIMERIC IMMUNOGLOBULINS |
| US9580486B2 (en) | 2013-03-14 | 2017-02-28 | Amgen Inc. | Interleukin-2 muteins for the expansion of T-regulatory cells |
| US9708375B2 (en) | 2013-03-15 | 2017-07-18 | Amgen Inc. | Inhibitory polypeptides specific to WNT inhibitors |
| KR101882366B1 (en) | 2013-05-30 | 2018-07-30 | 키닉사 파마슈티컬스, 리미티드 | Oncostatin m receptor antigen binding proteins |
| JP6668241B2 (en) | 2013-09-05 | 2020-03-18 | アムジエン・インコーポレーテツド | Fc-containing molecules exhibit predictable, consistent and reproducible glycoform properties |
| MY188430A (en) | 2015-04-10 | 2021-12-08 | Amgen Inc | Interleukin-2 muteins for the expansion of t-regulatory cells |
| CN116063543A (en) | 2015-04-24 | 2023-05-05 | 豪夫迈·罗氏有限公司 | Multispecific antigen-binding proteins |
| US11591382B2 (en) | 2015-09-22 | 2023-02-28 | Genentech, Inc. | Expression of Fc-containing proteins |
| PL3359576T3 (en) | 2015-10-08 | 2025-04-14 | Zymeworks Bc Inc. | Antigen-binding polypeptide constructs comprising kappa and lambda light chains and uses thereof |
| CN105331630A (en) * | 2015-10-29 | 2016-02-17 | 中国农业大学 | Method for enhancing corn exogenous gene expression |
| ES2875274T3 (en) | 2015-11-02 | 2021-11-10 | Hoffmann La Roche | Procedures for preparing fucosylated and afucosylated forms of a protein |
| KR20250133490A (en) | 2016-05-04 | 2025-09-05 | 암젠 인크 | Interleukin-2 muteins for the expansion of t-regulatory cells |
| EP3488002B1 (en) * | 2016-07-22 | 2021-03-31 | Oregon Health & Science University | Single cell whole genome libraries and combinatorial indexing methods of making thereof |
| US11981891B2 (en) | 2018-05-17 | 2024-05-14 | Illumina, Inc. | High-throughput single-cell sequencing with reduced amplification bias |
| PE20220706A1 (en) | 2019-08-13 | 2022-05-04 | Amgen Inc | INTERLEUKIN-2 MUTEINS FOR THE EXPANSION OF REGULATORY T CELLS |
| CR20220341A (en) | 2019-12-17 | 2022-08-19 | Amgen Inc | DUAL INTERLEUKIN-2 AGONIST/TNF RECEPTOR FOR USE IN THERAPY |
| US10894812B1 (en) | 2020-09-30 | 2021-01-19 | Alpine Roads, Inc. | Recombinant milk proteins |
| WO2025006529A1 (en) | 2023-06-27 | 2025-01-02 | Amgen Inc. | Charge pair mutations to enable correct heavy-light chain pairing |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6040185A (en) * | 1993-04-19 | 2000-03-21 | Novartis Ag | Genetic stabilizing elements |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU673859B2 (en) | 1992-10-05 | 1996-11-28 | North Carolina State University | Method for increasing expression and reducing expression variability of foreign genes in plant cells |
| US5773695A (en) | 1996-01-26 | 1998-06-30 | North Carolina State University | Plant nuclear scaffold attachment region and method for increasing gene expression in transgenic cells |
-
1998
- 1998-07-24 US US09/122,400 patent/US6245974B1/en not_active Expired - Lifetime
- 1998-08-05 AU AU86936/98A patent/AU749014B2/en not_active Ceased
- 1998-08-05 EP EP98938407A patent/EP1005560A1/en not_active Withdrawn
- 1998-08-05 JP JP2000506349A patent/JP2001520861A/en active Pending
- 1998-08-05 WO PCT/US1998/016344 patent/WO1999007866A1/en not_active Ceased
- 1998-08-05 CA CA002298052A patent/CA2298052A1/en not_active Abandoned
- 1998-08-05 BR BR9811849-8A patent/BR9811849A/en not_active IP Right Cessation
- 1998-08-06 AR ARP980103898A patent/AR013400A1/en unknown
-
2001
- 2001-03-23 US US09/816,894 patent/US20020073448A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6040185A (en) * | 1993-04-19 | 2000-03-21 | Novartis Ag | Genetic stabilizing elements |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7129062B2 (en) | 2001-01-26 | 2006-10-31 | Selexis Sa | Matrix attachment regions and methods for use thereof |
| US10669562B2 (en) | 2003-10-24 | 2020-06-02 | Selexis S.A. | High efficiency gene transfer and expression in mammalian cells by a multiple transfection procedure of MAR sequences |
| US8252917B2 (en) | 2003-10-24 | 2012-08-28 | Selexis S.A. | High efficiency gene transfer and expression in mammalian cells by a multiple transfection procedure of MAR sequences |
| US9879297B2 (en) | 2003-10-24 | 2018-01-30 | Selexis Sa | High efficiency gene transfer and expression in mammalian cells by amultiple transfection procedure of MAR sequences |
| US10460386B2 (en) | 2004-10-14 | 2019-10-29 | Cfph, Llc | System and method for facilitating a wireless financial transaction |
| US9204599B2 (en) | 2009-08-19 | 2015-12-08 | Dow Agrosciences Llc | Detection of AAD1 event DAS-40278-9 |
| WO2011022471A1 (en) * | 2009-08-19 | 2011-02-24 | Dow Agrosciences Llc | Detection of aad-1 event das-40278-9 |
| US11685928B2 (en) | 2020-09-30 | 2023-06-27 | Nobell Foods, Inc. | Recombinant fusion proteins for producing milk proteins in plants |
| US11840717B2 (en) | 2020-09-30 | 2023-12-12 | Nobell Foods, Inc. | Host cells comprising a recombinant casein protein and a recombinant kinase protein |
| US11952606B2 (en) | 2020-09-30 | 2024-04-09 | Nobell Foods, Inc. | Food compositions comprising recombinant milk proteins |
| US12077798B2 (en) | 2020-09-30 | 2024-09-03 | Nobell Foods, Inc. | Food compositions comprising recombinant milk proteins |
| US12139737B2 (en) | 2020-09-30 | 2024-11-12 | Nobell Foods, Inc. | Host cells comprising a recombinant casein protein and a recombinant kinase protein |
| US12241109B2 (en) | 2020-09-30 | 2025-03-04 | Nobell Foods, Inc. | Host cells comprising a recombinant casein protein and a recombinant kinase protein |
Also Published As
| Publication number | Publication date |
|---|---|
| AU749014B2 (en) | 2002-06-13 |
| JP2001520861A (en) | 2001-11-06 |
| CA2298052A1 (en) | 1999-02-18 |
| AR013400A1 (en) | 2000-12-27 |
| BR9811849A (en) | 2000-08-08 |
| AU8693698A (en) | 1999-03-01 |
| EP1005560A1 (en) | 2000-06-07 |
| WO1999007866A1 (en) | 1999-02-18 |
| US6245974B1 (en) | 2001-06-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6245974B1 (en) | Matrix attachment regions | |
| EP0904276B1 (en) | A plant nuclear scaffold attachment region which increases gene expression | |
| US6100448A (en) | Increasing expression of transgenes in plant cells using insulator elements | |
| US6239328B1 (en) | Method for reducing expression variability of transgenes in plant cells | |
| US6911541B2 (en) | Promoter fragment that is recognized by the product of the tobacco Nic gene | |
| Zamir et al. | Tomato genome is comprised largely of fast-evolving, low copy-number sequences | |
| WO1997027207A9 (en) | A plant nuclear scaffold attachment region which increases gene expression | |
| EP0602113B1 (en) | Callus-specific promoters | |
| US20010047525A1 (en) | Novel root-preferred promoter elements and methods of use | |
| EP1135512B1 (en) | Artificial matrix attachment region for increasing expression of genes introduced in plant cells | |
| AU742932B2 (en) | Method for reducing expression variability of transgenes in plants cells | |
| US20020169297A1 (en) | Genetic insulator for preventing influence by another gene promoter | |
| US20040016014A1 (en) | High efficiency germline transformation system | |
| US6433248B1 (en) | Trans-activation of transcription from viral RNA | |
| WO2000077176A1 (en) | Method for obtaining low copy transgenes by direct dna transformation | |
| CA2244204C (en) | A plant nuclear scaffold attachment region which increases gene expression | |
| Finch | An introduction to molecular technology | |
| Finch | molecular technology | |
| US20090205078A1 (en) | Maize Leaf- and Stalk-Preferred Promoter |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:NORTH CAROLINA STATE UNIVERSITY, RALEIGH;REEL/FRAME:044445/0247 Effective date: 20171113 |
|
| AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNORS:NATIONAL SCIENCE FOUNDATION;NORTH CAROLINA STATE UNIVERSITY;REEL/FRAME:056582/0142 Effective date: 20210618 |