US20020044358A1 - Fabricating optical waveguide gratings - Google Patents
Fabricating optical waveguide gratings Download PDFInfo
- Publication number
- US20020044358A1 US20020044358A1 US09/242,720 US24272000A US2002044358A1 US 20020044358 A1 US20020044358 A1 US 20020044358A1 US 24272000 A US24272000 A US 24272000A US 2002044358 A1 US2002044358 A1 US 2002044358A1
- Authority
- US
- United States
- Prior art keywords
- writing light
- light pattern
- exposures
- grating
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002840 optical waveguide grating Methods 0.000 title claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 230000003287 optical effect Effects 0.000 claims abstract description 9
- 230000000737 periodic effect Effects 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 57
- 239000013307 optical fiber Substances 0.000 claims description 5
- 230000002123 temporal effect Effects 0.000 claims 1
- 239000000835 fiber Substances 0.000 description 59
- 230000010363 phase shift Effects 0.000 description 11
- 238000013519 translation Methods 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 231100000812 repeated exposure Toxicity 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/02123—Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
- G02B6/02152—Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating involving moving the fibre or a manufacturing element, stretching of the fibre
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/02123—Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
- G02B6/02133—Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating using beam interference
- G02B6/02138—Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating using beam interference based on illuminating a phase mask
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S359/00—Optical: systems and elements
- Y10S359/90—Methods
Definitions
- Dispersion compensation is an attractive technique allowing the upgrade of the existing installed standard fibre network to operation at 1.5 ⁇ m where it exhibits a dispersion of ⁇ (about) 17 ps/nm.km which would otherwise prohibit high capacity (eg. 10 Gbit/s) data transmission.
- Chirped fibre gratings are currently the most attractive technique for fibre dispersion compensation [ 1 ]. This is because they are generally low loss, compact, polarisation insensitive devices which do not tend to suffer from optical non-linearity which is the case with the main competing technology, dispersion compensating fibre.
- chirped gratings must exhibit both high dispersion, ⁇ 1700 ps/nm, sufficient to compensate the dispersion of around 100 km of standard fibre at a wavelength of 1.55 ⁇ m, and a bandwidth of around 5 nm. This implies a need for a chirped grating of length 1 m.
- Fibre gratings are generally created by exposing the core of an optical fibre to a periodic UV intensity pattern [ 2 ]. This is typically established using either an interferometer or a phase mask [ 3 ]. To date, phase masks are the preferred approach owing to the stability of the interference pattern that they produce. The length of the grating can be increased by placing the fibre behind the phase mask and scanning the UV beam along it. Techniques for post chirping a linear grating after fabrication include applying either a strain [ 1 ] or temperature gradient [ 4 ] to it. However these techniques are limited due to the length of the initial grating ( ⁇ 10 cm with available phase masks) and the length over which a linear temperature or strain gradient can be applied. Alternatively more complex step chirped phase masks can be employed [ 5 ]. However, all of these techniques are currently limited to a grating length of about 10 cm.
- the moving fibre/phase mask scanning beam technique [ 6 ]. This technique is based on inducing phase shifts between the phase mask and the fibre as the phase mask and fibre are scanned with the UV beam. Apodisation is achieved by dithering the relative phase between the two at the edges of the grating. Like all the previous techniques the one draw back with this technique is that it is again limited to gratings the length of available phase masks, ⁇ 10 cm at present.
- a technique for potentially writing longer gratings has been reported by Stubbe et al [ 7 ].
- a fibre is mounted on an air-bearing stage and continuously moved behind a stationary grating writing interferometer.
- the position of the fibre is continuously monitored with a linear interferometer.
- the UV laser is pulsed to write groups of grating lines with period defined by the writing interferometer.
- a long grating can be written by writing several groups of grating lines in a linearly adjacent series, with controlled phase between the sections.
- the phase shift between each group of grating lines is controlled via the linear interferometer and a computer which sets the time the laser pulses.
- a short pulse, ⁇ 10 ns, is required such that the position of the writing lines is effectively stationary and accurately controlled with respect to fibre motion. Having said this, however, jitter in the pulse timing and in the linear interferometer position will give detrimental random phase errors in the grating. Chirped gratings can potentially be fabricated by continuously introducing phase shifts between adjacent groups along the grating. Obviously the maximum translation speed is limited by the number of grating lines written with one laser pulse and the maximum repetition rate of the pulsed laser. It is also proposed in this paper that apodisation is achieved by multiple writing scans of the grating.
- This invention provides a method of fabricating an optical waveguide grating having a plurality of grating lines of refractive index variation, the method comprising the steps of:
- Embodiments of the invention provide a number of advantages over previous techniques:
- the technique offers the further advantage that the CW laser may be extremely stable, whereas pulsed lasers (e.g. those used in [ 7 ]) may suffer from pulse-to-pulse instability which is not averaged.
- the high peak powers of the pulsed laser may cause non-linear grating writing effects.
- This invention also provides apparatus for fabricating an optical fibre grating having a plurality of grating lines of refractive index variation, the apparatus comprising:
- a writing light beam source for repeatedly exposing a spatially periodic writing light pattern onto a photosensitive optical waveguide
- [0019] means for moving the writing light pattern and/or the waveguide between successive exposures or groups of exposures of the writing light pattern, characterised in that
- the successive exposures or groups of exposures overlap so that each of at least a majority of the grating lines is generated by at least two exposures to different respective regions of the writing light pattern.
- FIG. 1 is a schematic diacram of a fibre grating fabrication apparatus
- FIGS. 2 a to 2 c are schematic diagrams showing a grating fabrication process by repeated exposures
- FIGS. 3 a and 3 b are schematic timing diagrams showing the modulation of a UV beam.
- FIGS. 4 a and 4 b are schematic graphs characterising a 20 cm grating produced by the apparatus of FIG. 1.
- FIG. 1 is a schematic diagram of a fibre grating fabrication apparatus.
- An optical fibre (e.g. a single mode photorefractive fibre) 10 is mounted on a crossed roller bearing translation stage 20 (such as a Newport PMLW160001) which allows for a continuous scan over 40 cm.
- the fibre 10 is positioned behind a short ( ⁇ 5 mm) phase mask 30 (e.g a mask available from either QPS or Lasiris).
- the fibre is continuously and steadily linearly translated or scanned in a substantially longitudinal fibre direction during the grating exposure process.
- UV light at a wavelength of 244 nm from a Coherent FRED laser 40 is directed to the fibre/phase mask via an acoustic-optic modulator 50 (e.g. a Gooch & Housego, M110-4(BR)) operating on the first order.
- acoustic-optic modulator 50 e.g. a Gooch & Housego, M110-4(BR)
- the relative position of the fibre to the interference pattern of the phase mask is continuously monitored with a Zygo, ZMI1000 differential interferometer 55 .
- the interferometer continuously outputs a 32-bit number (a position value) which gives the relative position with a ⁇ 1.24 nm resolution.
- This output position value is compared by a controller 70 with switching position data output from a fast computer 60 (e.g. an HP Vectra series 4 5/166 with National Instruments AT-DIO-32F) in order that the controller can determine whether the UV beam should be on or off at that position. Whether the UV beam is in fact on or off at any time is dependent on the state of a modulation control signal generated by the controller 70 and used to control the acousto-optic modulator 50 .
- the controller 70 compares that position value with the switching position data currently output by the computer 60 . If, for illustration, the interferometer is arranged so that the position values numerically increase as the fibre scan proceeds, then the controller 70 detects when the position value becomes greater than or equal to the current switching position data received from the computer 60 . When that condition is satisfied, the controller 70 toggles the state of the modulation control signal, i.e. from “off” to “on” or vice-versa. At the same time, the controller 70 sends a signal back to the computer 60 requesting the next switching position data corresponding to the next switching position.
- UV beam is strobed or modulated (under control of the switching position data generated by the computer 60 ) with a time period matching or close to: phase ⁇ ⁇ mask ⁇ ⁇ projected ⁇ ⁇ fringe ⁇ ⁇ pitch fibre ⁇ ⁇ translation ⁇ ⁇ speed
- This expression is based on a time period of a temporally regular modulation of the UV beam, and so assumes that the fibre is translated at a constant velocity by the translation stage.
- the switching on and off of the UV beam is in fact related to the longitudinal position of the fibre, so that in order to generate a grating the UV beam should be turned on and off as the fibre is translated to align the interference pattern arising from successive exposures through the phase mask.
- FIGS. 2 a to 2 c are schematic diagrams showing a grating fabrication process by repeated exposures of the fibre to the UV beam.
- FIG. 2 a illustrates (very schematically) a refractive index change induced in the fibre by a first exposure through the phase mask.
- FIGS. 2 a to 2 c illustrate a feature of the normal operation of a phase mask of this type, namely that the pitch of the lines or fringes of the interference pattern projected onto the fibre (which gives rise to the lines of the grating) is half that of (i.e. twice as close as that of) the lines physically present (e.g. etched) in the phase mask.
- the phase mask has a “physical” pitch of 1 ⁇ m, and the lines projected onto the fibre have a pitch of 0.5 ⁇ m.
- the UV beam is modulated by the acousto-optic modulator in a periodic fashion synchronised with the translation of the fibre.
- successive exposures such as the two subsequent exposures shown in FIGS. 2 b and 2 c, generate periodic refractive index changes aligned with and overlapping the first exposure of FIG. 2 a.
- the refractive index change providing each individual grating “element” or fringe is actually generated or built up by the cumulative effects of multiple exposures through different parts of the phase mask as the fibre moves along behind the phase mask.
- each exposure can be of a relatively low power (which in turn means that the output power of the laser 40 can be relatively low); and (b) the grating can be apodised by varying the relative positions of successive exposures (this will be described below with reference to FIG. 3 b ).
- each of the successive exposures of the fibre to UV light through the phase mask 30 could be a very short pulse (to “freeze” the motion of the fibre as the exposure is made), this has not proved necessary and in fact the present embodiment uses an exposure duty cycle in a range from below 10% to about 50%, although a wider range of duty cycles is possible.
- An example of a simple regular exposure duty cycle is shown schematically in FIG. 3 a, which in fact illustrates the state of the modulation control signal switching between an “on” state (in which light is passed by the acousto-optic modulator) and an “off” state (in which light is substantially blocked by the acousto-optic modulator).
- the period, ⁇ , of the modulation corresponds to the time taken for the fibre 10 to be translated by one (or an integral number) spatial period of the interference pattern generated by the phase mask 30 .
- n g (z) in an ideal grating can be described as a raised cosine profile:
- ⁇ ON / ⁇ is the fraction of the period that the beam is on (i.e. the duty cycle).
- the computer in this embodiment actually generates the switching positions internally as “real” numbers (obviously subject to the limitation of the number of bits used), but then converts them for output to the controller into the same unit system as that output by the Zygo interferometer, namely multiples of a “Zygo unit” of 1.24 nm.
- This internal conversion by the computer makes the comparison of the actual position and the required switching position much easier and therefore quicker for the controller.
- a random digitisation routine is employed in the computer 60 to avoid digitisation errors during the conversion from real numbers to Zygo units. This involves adding a random amount in the range of ⁇ 0.5 Zygo units to the real number position data before that number is quantised into Zygo units.
- an effective resolution can be obtained of:
- the technique offers the further advantage that the CW laser is extremely stable whereas pulsed lasers (as required in the technique proposed by Stubbe et al [ 7 ]) may suffer from pulse-to-pulse instability which, in the Stubbe et al technique, is not averaged over multiple exposures.
- the high peak powers of a pulsed laser may cause non-linear grating writing effects, which are avoided or alleviated by using longer and repeated exposures in the present technique.
- Apodisation is achieved by effectively dithering the grating writing interferometer position in the fibre to wash out or attenuate the grating strength. However, if the overall duty cycle of the exposure is kept the same, and just the timing of each exposure dithered, the average index change along the grating is kept constant.
- FIG. 3 b illustrates an applied dither of about ⁇ /3 from the original (undithered) exposure times.
- This technique of apodising is better with an exposure duty cycle of less than 50%, to allow a timing margin for 100% apodisation.
- One example of the use of this technique is to generate a grating with a contrast increasing at one end of the grating according to a raised cosine envelope, and decreasing at the other end of the grating in accordance with a similar raised cosine envelope, and remaining substantially constant along the central section of the grating.
- This apodisation can be achieved particularly easily with the present technique, as the central section requires no phase shift between successive exposures, and the two raised cosine envelopes require a phase shift that varies linearly with longitudinal position of the fibre.
- the required phase shifts can be calculated straightforwardly by the computer 60 , under the control of a simple computer program relating required phase shift to linear position of the fibre (effectively communicated back to the computer 60 by the controller 70 , whenever the controller 70 requests a next switching position data value).
- phase profiles and in particular a linear chirp can be built up by the computer 60 inducing phase shifts along the grating as it is fabricated.
- the maximum wavelength is inversely proportional to the beam diameter.
- an improvement can be obtained (with respect to the technique of [ 6 ]) by incorporating a short, linearly chirped phase mask.
- the UV beam is also slowly scanned (by another PZT translation stage, not shown) across the phase mask.
- FIGS. 4 a and 4 b are schematic graphs showing the characterisation of a 20 cm linearly chirped grating written at a fibre translation speed of 200 ⁇ m/s with the basic technique described earlier, i.e. with a fixed mask.
- the writing light beam is switched at a switching rate of 400 Hz.
- the fibre advances by one projected fringe between exposures.
- FIG. 4 a is a graph of reflectivity against wavelength
- FIG. 4 b is a graph of time delay against wavelength.
- the wavelength (horizontal) axes of the two graphs have the same scale, which for clarity of the diagram is recited under FIG. 4 b only.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Optical Integrated Circuits (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
A method of fabricating an optical waveguide grating having a plurality of grating lines of refractive index variation comprises the steps of: (i) repeatedly exposing a spatially periodic writing, light pattern onto a photosensitive optical waveguide, and (ii) moving the writing light pattern and/or the waveguide between successive exposures of the writing light pattern, so that each of at least a majority of the grating lines is generated by at least two exposures to different respective regions of the writing light pattern.
Description
- Dispersion compensation is an attractive technique allowing the upgrade of the existing installed standard fibre network to operation at 1.5 μm where it exhibits a dispersion of ˜(about) 17 ps/nm.km which would otherwise prohibit high capacity (eg. 10 Gbit/s) data transmission.
- Chirped fibre gratings are currently the most attractive technique for fibre dispersion compensation [ 1]. This is because they are generally low loss, compact, polarisation insensitive devices which do not tend to suffer from optical non-linearity which is the case with the main competing technology, dispersion compensating fibre.
- For present practical applications chirped gratings must exhibit both high dispersion, ˜1700 ps/nm, sufficient to compensate the dispersion of around 100 km of standard fibre at a wavelength of 1.55 μm, and a bandwidth of around 5 nm. This implies a need for a chirped grating of length 1 m.
- Fibre gratings are generally created by exposing the core of an optical fibre to a periodic UV intensity pattern [ 2]. This is typically established using either an interferometer or a phase mask [3]. To date, phase masks are the preferred approach owing to the stability of the interference pattern that they produce. The length of the grating can be increased by placing the fibre behind the phase mask and scanning the UV beam along it. Techniques for post chirping a linear grating after fabrication include applying either a strain [1] or temperature gradient [4] to it. However these techniques are limited due to the length of the initial grating (˜10 cm with available phase masks) and the length over which a linear temperature or strain gradient can be applied. Alternatively more complex step chirped phase masks can be employed [5]. However, all of these techniques are currently limited to a grating length of about 10 cm.
- In addition to chirping the grating, it is also sometimes desirable to be able to apodise (window) the gratings to reduce multiple reflections within them and to improve the linearity of the time delay characteristics. A powerful technique has been developed which allows chirped and apodised gratings to be written directly in a fibre, referred to as “the moving fibre/phase mask scanning beam technique” [ 6]. This technique is based on inducing phase shifts between the phase mask and the fibre as the phase mask and fibre are scanned with the UV beam. Apodisation is achieved by dithering the relative phase between the two at the edges of the grating. Like all the previous techniques the one draw back with this technique is that it is again limited to gratings the length of available phase masks, ˜10 cm at present.
- This problem has been overcome in one approach by Kashyap et al using several 10 cm step-chirped phase masks [ 5]. These are scanned in series to obtain a longer grating. The phase “glitch” or discontinuity between the sections is subsequently UV “trimmed” to minimise its impact. However this is a time consuming and costly process. In addition the effect of the UV trimming will vary with grating ageing.
- A technique for potentially writing longer gratings has been reported by Stubbe et al [ 7]. In this case a fibre is mounted on an air-bearing stage and continuously moved behind a stationary grating writing interferometer. The position of the fibre is continuously monitored with a linear interferometer. The UV laser is pulsed to write groups of grating lines with period defined by the writing interferometer. A long grating can be written by writing several groups of grating lines in a linearly adjacent series, with controlled phase between the sections. The phase shift between each group of grating lines is controlled via the linear interferometer and a computer which sets the time the laser pulses. A short pulse, ˜10 ns, is required such that the position of the writing lines is effectively stationary and accurately controlled with respect to fibre motion. Having said this, however, jitter in the pulse timing and in the linear interferometer position will give detrimental random phase errors in the grating. Chirped gratings can potentially be fabricated by continuously introducing phase shifts between adjacent groups along the grating. Obviously the maximum translation speed is limited by the number of grating lines written with one laser pulse and the maximum repetition rate of the pulsed laser. It is also proposed in this paper that apodisation is achieved by multiple writing scans of the grating.
- This invention provides a method of fabricating an optical waveguide grating having a plurality of grating lines of refractive index variation, the method comprising the steps of:
- (i) repeatedly exposing a spatially periodic writing light pattern onto a photosensitive optical waveguide; and
- (ii) moving the writing light pattern and/or the waveguide between successive exposures or groups of exposures of the writing light pattern, characterised in that the successive exposures or groups of exposures overlap so that each of at least a majority of the grating lines is generated by at least two exposures to different respective regions of the writing light pattern.
- Embodiments of the invention provide a number of advantages over previous techniques:
- 1. The realisation that the laser does not have to be pulsed but just has to be on for a particular duty cycle—preferably less than 50% of the period. This allows an externally modulated CW (continuous wave) laser to be used.
- 2. With this technique the grating lines are re-written by several successive exposures of the writing light beam at every grating period (or integral number of grating periods). Thus the footprint defined by the writing light beam is significantly overlapped with the previous lines. Significant averaging of the writing process is achieved thus improving the effective accuracy and resolution of the system, compared to that of [ 7] where a group of lines is written in a single exposure, and the fibre is then advanced to a fresh portion where a further group of lines is written in a single exposure.
- 3. Effectively controlling the grating writing process on a line-by-line basis allows accurate apodisation to be achieved. This may be performed in embodiments of the invention by dithering the grating writing interferometer position in the fibre to wash out or attenuate the grating strength whilst keeping the average index change constant.
- 4. The technique offers the further advantage that the CW laser may be extremely stable, whereas pulsed lasers (e.g. those used in [ 7]) may suffer from pulse-to-pulse instability which is not averaged. In addition the high peak powers of the pulsed laser may cause non-linear grating writing effects.
- 5 Arbitrary phase profiles and in particular a linear chirp can be built up by inducing phase shifts electronically along the grating as it grows. In a similar manner to the “Moving fibre/phase mask” technique [ 6] the maximum wavelength is inversely proportional to the beam diameter. This can be further improved in particular embodiments of the invention by incorporating a short, linearly chirped phase mask. Thus as the fibre is scanned the UV beam may be also slowly scanned across the phase mask, an additional small phase shift is induced, whilst most significantly we have access to writing lines of a different period allowing larger chirps to be built up.
- This invention also provides apparatus for fabricating an optical fibre grating having a plurality of grating lines of refractive index variation, the apparatus comprising:
- a writing light beam source for repeatedly exposing a spatially periodic writing light pattern onto a photosensitive optical waveguide; and
- means for moving the writing light pattern and/or the waveguide between successive exposures or groups of exposures of the writing light pattern, characterised in that
- the successive exposures or groups of exposures overlap so that each of at least a majority of the grating lines is generated by at least two exposures to different respective regions of the writing light pattern.
- The various sub-features defined here are equally applicable to each aspect of the present invention.
- The invention will now be described by way of example with reference to the accompanying drawings, throughout which like parts are referred to by like references, and in which:
- FIG. 1 is a schematic diacram of a fibre grating fabrication apparatus;
- FIGS. 2 a to 2 c are schematic diagrams showing a grating fabrication process by repeated exposures;
- FIGS. 3 a and 3 b are schematic timing diagrams showing the modulation of a UV beam; and
- FIGS. 4 a and 4 b are schematic graphs characterising a 20 cm grating produced by the apparatus of FIG. 1.
- FIG. 1 is a schematic diagram of a fibre grating fabrication apparatus. An optical fibre (e.g. a single mode photorefractive fibre) 10 is mounted on a crossed roller bearing translation stage 20 (such as a Newport PMLW160001) which allows for a continuous scan over 40 cm. The
fibre 10 is positioned behind a short (˜5 mm) phase mask 30 (e.g a mask available from either QPS or Lasiris). - The fibre is continuously and steadily linearly translated or scanned in a substantially longitudinal fibre direction during the grating exposure process.
- Ultraviolet (UV) light at a wavelength of 244 nm from a Coherent FRED laser 40 is directed to the fibre/phase mask via an acoustic-optic modulator 50 (e.g. a Gooch & Housego, M110-4(BR)) operating on the first order.
- The relative position of the fibre to the interference pattern of the phase mask is continuously monitored with a Zygo, ZMI1000
differential interferometer 55. The interferometer continuously outputs a 32-bit number (a position value) which gives the relative position with a ˜1.24 nm resolution. This output position value is compared by acontroller 70 with switching position data output from a fast computer 60 (e.g. an HP Vectra series 4 5/166 with National Instruments AT-DIO-32F) in order that the controller can determine whether the UV beam should be on or off at that position. Whether the UV beam is in fact on or off at any time is dependent on the state of a modulation control signal generated by thecontroller 70 and used to control the acousto-optic modulator 50. - So, as each position value is output by the interferometer, the
controller 70 compares that position value with the switching position data currently output by thecomputer 60. If, for illustration, the interferometer is arranged so that the position values numerically increase as the fibre scan proceeds, then thecontroller 70 detects when the position value becomes greater than or equal to the current switching position data received from thecomputer 60. When that condition is satisfied, thecontroller 70 toggles the state of the modulation control signal, i.e. from “off” to “on” or vice-versa. At the same time, thecontroller 70 sends a signal back to thecomputer 60 requesting the next switching position data corresponding to the next switching position. - If the fibre was scanned with the UV beam continuously directed onto the fibre, no grating would be written since the grating lines would be washed out by the movement.
-
- then a long grating would grow.
- This expression is based on a time period of a temporally regular modulation of the UV beam, and so assumes that the fibre is translated at a constant velocity by the translation stage. However, more generally, the switching on and off of the UV beam is in fact related to the longitudinal position of the fibre, so that in order to generate a grating the UV beam should be turned on and off as the fibre is translated to align the interference pattern arising from successive exposures through the phase mask.
- FIGS. 2 a to 2 c are schematic diagrams showing a grating fabrication process by repeated exposures of the fibre to the UV beam.
- In FIG. 2 a, the UV beam from the acousto-
optic modulator 50 passes through thephase mask 30 to impinge on thefibre 10. During the exposure process, thefibre 10 is being longitudinally translated by thetranslation stage 20 in a direction from right to left on the drawing. FIG. 2a illustrates (very schematically) a refractive index change induced in the fibre by a first exposure through the phase mask. - FIGS. 2 a to 2 c illustrate a feature of the normal operation of a phase mask of this type, namely that the pitch of the lines or fringes of the interference pattern projected onto the fibre (which gives rise to the lines of the grating) is half that of (i.e. twice as close as that of) the lines physically present (e.g. etched) in the phase mask. In this example, the phase mask has a “physical” pitch of 1 μm, and the lines projected onto the fibre have a pitch of 0.5 μm.
- The UV beam is modulated by the acousto-optic modulator in a periodic fashion synchronised with the translation of the fibre. In this way, successive exposures, such as the two subsequent exposures shown in FIGS. 2 b and 2 c, generate periodic refractive index changes aligned with and overlapping the first exposure of FIG. 2a. Thus, the refractive index change providing each individual grating “element” or fringe is actually generated or built up by the cumulative effects of multiple exposures through different parts of the phase mask as the fibre moves along behind the phase mask. This means (a) that the optical power needed to generate the grating can be distributed between potentially a large number of exposures, so each exposure can be of a relatively low power (which in turn means that the output power of the laser 40 can be relatively low); and (b) the grating can be apodised by varying the relative positions of successive exposures (this will be described below with reference to FIG. 3b).
- Although each of the successive exposures of the fibre to UV light through the
phase mask 30 could be a very short pulse (to “freeze” the motion of the fibre as the exposure is made), this has not proved necessary and in fact the present embodiment uses an exposure duty cycle in a range from below 10% to about 50%, although a wider range of duty cycles is possible. An example of a simple regular exposure duty cycle is shown schematically in FIG. 3a, which in fact illustrates the state of the modulation control signal switching between an “on” state (in which light is passed by the acousto-optic modulator) and an “off” state (in which light is substantially blocked by the acousto-optic modulator). The period, τ, of the modulation corresponds to the time taken for thefibre 10 to be translated by one (or an integral number) spatial period of the interference pattern generated by thephase mask 30. - As the duty cycle for the UV exposure increases, the grating contrast decreases (because of motion of the fibre during the exposure) but the writing efficiency increases (because more optical energy is delivered to the fibre per exposure). Thus, selection of the duty cycle to be used is a balance between these two requirements.
- Assuming linear growth, the index modulation, n g(z) in an ideal grating can be described as a raised cosine profile:
- n g(z)∝1+sin(2πz/Λ)
- where z is the position down the fibre and Λ the grating period. With the new technique we obtain:
- n g(z)∝(ΔΛON/Λ)[1+{sin(πΔΛON/Λ)/(πΔΛON/Λ)}sin(2π(z+ΔΛON/2)/Λ)]
- where ΔΛ ON/Λ is the fraction of the period that the beam is on (i.e. the duty cycle).
- For small values of ΔΛ ON/Λ a near 100% grating contrast is obtained however the efficiency of the grating writing is reduced to ˜ΔΛON/Λ because most of the UV beam is prevented from reaching the fibre.
- The maximum grating strength is obtained for ΔΛ ON/Λ=0.5 however the ratio of dc to ac index change is worse. For ΔΛON/Λ>0.5 the grating begins to be reduced whilst the dc index change continues to build.
- Experimentally, a good value for ΔΛ ON/Λ has been found to be ˜0.3-0.4.
- Thus, with embodiments of this technique, exposure of the grating lines or elements is repeated every grating period. Thus the footprint defined by the UV beam, which might for example for a 500 μm diameter beam, φ beam, consists of φbeam/Λ(˜1000) lines, is significantly overlapped with the previously exposed lines. Significant averaging of the writing process given by (φbeam/Λ)½ is therefore achieved, thus improving the effective accuracy and resolution of the system.
- The computer in this embodiment actually generates the switching positions internally as “real” numbers (obviously subject to the limitation of the number of bits used), but then converts them for output to the controller into the same unit system as that output by the Zygo interferometer, namely multiples of a “Zygo unit” of 1.24 nm. This internal conversion by the computer makes the comparison of the actual position and the required switching position much easier and therefore quicker for the controller. A random digitisation routine is employed in the
computer 60 to avoid digitisation errors during the conversion from real numbers to Zygo units. This involves adding a random amount in the range of ±0.5 Zygo units to the real number position data before that number is quantised into Zygo units. Thus an effective resolution can be obtained of: - 1.24 nm/(φ beam/Λ)½≈0.03 nm.
- The technique offers the further advantage that the CW laser is extremely stable whereas pulsed lasers (as required in the technique proposed by Stubbe et al [ 7]) may suffer from pulse-to-pulse instability which, in the Stubbe et al technique, is not averaged over multiple exposures. In addition the high peak powers of a pulsed laser may cause non-linear grating writing effects, which are avoided or alleviated by using longer and repeated exposures in the present technique.
- A refinement of the above technique, for producing apodised gratings, will now be described with reference to FIG. 3 b.
- Using the techniques described above, effectively controlling the grating writing process on a line-by-line basis allows accurate apodisation to be achieved.
- Apodisation is achieved by effectively dithering the grating writing interferometer position in the fibre to wash out or attenuate the grating strength. However, if the overall duty cycle of the exposure is kept the same, and just the timing of each exposure dithered, the average index change along the grating is kept constant.
- To completely wash out the grating subsequent on periods of the UV laser are shifted in phase (position) by ±π/2(±Λ/4). To achieve a reduced attenuation the amplitude or amount of dither is reduced. FIG. 3 b illustrates an applied dither of about ±π/3 from the original (undithered) exposure times.
- This technique of apodising is better with an exposure duty cycle of less than 50%, to allow a timing margin for 100% apodisation.
- One example of the use of this technique is to generate a grating with a contrast increasing at one end of the grating according to a raised cosine envelope, and decreasing at the other end of the grating in accordance with a similar raised cosine envelope, and remaining substantially constant along the central section of the grating. This apodisation can be achieved particularly easily with the present technique, as the central section requires no phase shift between successive exposures, and the two raised cosine envelopes require a phase shift that varies linearly with longitudinal position of the fibre.
- The required phase shifts can be calculated straightforwardly by the
computer 60, under the control of a simple computer program relating required phase shift to linear position of the fibre (effectively communicated back to thecomputer 60 by thecontroller 70, whenever thecontroller 70 requests a next switching position data value). - Other apodisation schemes are also possible. Compared with previous methods of dithering [ 6] this technique is not limited by the dynamics of a mechanical stage used for dithering, but instead simply adjusts the switching time of a
non-mechanical modulator element 50. It can also achieve substantially instantaneous phase shifts. - Furthermore, arbitrary phase profiles and in particular a linear chirp can be built up by the
computer 60 inducing phase shifts along the grating as it is fabricated. In a similar manner to the “Moving fibre/phase mask” technique [6] the maximum wavelength is inversely proportional to the beam diameter. However, with the present technique an improvement can be obtained (with respect to the technique of [6]) by incorporating a short, linearly chirped phase mask. Thus as the fibre is scanned the UV beam is also slowly scanned (by another PZT translation stage, not shown) across the phase mask. This scanning of the position of the UV beam in itself induces a small chirp, in accordance with the techniques described in reference [6], but more significantly the translated beam accesses writing lines of a different period allowing larger chirps to be built up. This has been tested using a 19 mm diameter, ˜20 nm chirped phase mask (sourced from Lasiris) with its central period around 1070 nm. This allows ˜30 nm chirped gratings centred around a central wavelength of 1550 nm to be fabricated. - FIGS. 4 a and 4 b are schematic graphs showing the characterisation of a 20 cm linearly chirped grating written at a fibre translation speed of 200 μm/s with the basic technique described earlier, i.e. with a fixed mask. At this fibre translation speed, for a projected fringe pitch of 0.5 μm the writing light beam is switched at a switching rate of 400 Hz. In other words, the fibre advances by one projected fringe between exposures. (It is noted that the limitation on fibre translation speed in these prototype experiments is the calculation speed of the
computer 60 used in the experiments, and that given a faster computer such as a Pentium or subsequent generation PC, much higher translation speeds of, say, 10 mm per second or more would be possible). - In particular, therefore, FIG. 4 a is a graph of reflectivity against wavelength, and FIG. 4b is a graph of time delay against wavelength. The wavelength (horizontal) axes of the two graphs have the same scale, which for clarity of the diagram is recited under FIG. 4b only.
- A ˜4nm bandwidth and dispersion of ˜500 ps/nm are observed.
- Such results have not been reported by any other method. Gratings up to 40 cm aend writing speeds up to 1 mm/s have been demonstrated. Lengths in excess of in and writing speeds up to 10 mm/s are feasible.
- In the above description, the fibre has been translated with respect to the phase mask, and in the later description the UV beam is translated with respect to the phase mask. However, it will be clear that the important thing is relative motion, and so the choice of which component (if any,) remains “fixed” and which is translated is relatively arbitrary. Having said this, however, the arrangement described above has been tested experimentally and has been found to be advantageously convenient to implement. It will also be apparent that in other embodiments each “exposure” could in fact involve a group of two or more exposures, with the position of the fibre with respect to the writing light beam being constant or substantially constant for exposures within a group, but different from group to group.
- 1. D. Garthe et al, Proc. ECOC, vol. 4, (post-deadline papers), pp. 11-14 (1994).
- 2. G. Meltz et al, Opt. Lett., 14(15), pp. 823-825, 1989.
- 3. K. O. Hill et al, Appl. Phys. Lett., 62(10), pp. 1035-1037, 1993.
- 4. R. I. Laming et al, Proc.ECOC'95, Brussels, Vol 2, Paper We.B.1.7, pp 585-8, Sep. 17-21 1995.
- 5. R. Kashyap et al, Electronics Letters, Vol 32 (15), pp. 1394-6, 1996.
- 6. M. J. Cole et al, Electronics Letters, Vol 31 (17), pp 1488-9, 1995.
- 7. R. Stubbe et al,
postdeadline paper 1, Proc. Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Portland, Oreg., Sep. 9-11, 1995.
Claims (14)
1. A method of fabricating an optical waveguide grating having a plurality of grating lines of refractive index variation, the method comprising the steps of:
(i) repeatedly exposing a spatially periodic writing light pattern onto a photosensitive optical waveguide (10); and
(ii) moving (20) the writing light pattern and/or the waveguide (10) between successive exposures or groups of exposures of the writing light pattern,
characterised in that
the successive exposures or groups of exposures overlap so that each of at least a majority of the grating lines is generated by at least two exposures to different respective regions of the writing light pattern.
2. A method according to claim 1 , in which step (i) comprises moving (20) the writing light pattern and/or the waveguide (10) between exposures a by a distance, in a substantially longitudinal waveguide direction, substantially equal to an integral number of spatial periods of the writing light pattern.
3. A method according to claim 2 , in which step (i) comprises moving (20) the writing light pattern and/or the waveguide (10) between exposures a by a distance, in a substantially longitudinal waveguide direction, substantially equal to one spatial period of the writing light pattern.
4. A method according to any one of claims 1 to 3 , in which step (ii) comprises:
detecting (55) the relative position of the writing light pattern and the waveguide (10);
comparing the detected relative position to predetermined switching positions related to the spatial period of the writing light pattern; and
controlling exposure of the writing light pattern in response to that comparison.
5. A method according to any one of the preceding claims, in which:
the writing light pattern is generated from one or more source light beams (40); and
exposure of the writing light pattern is controlled by directing the one or more source light beams through one or more optical modulators (50).
6. A method according to claim 5 , in which the writing light pattern is generated by directing the source light beam through a phase mask (30).
7. A method according to claim 5 or claim 6 , in which the one or more source light beams are substantially continuously generated (CW) light beams (40).
8. A method according to any one of the preceding claims, in which step (i) comprises moving the writing light pattern and/or the waveguide (10) at a substantially uniform relative velocity.
9. A method according to claim 8 , in which step (i) comprises substantially periodically exposing the writing light beam onto the waveguide (10), the exposures having a substantially constant temporal duty cycle.
10. A method according to claim 9 , in which step (i) comprises varying the time at which each exposure of the writing light beam is made to vary the spatial alignment along the waveguide (10) of successive exposures, thereby varying the contrast of grating lines generated by those exposures.
11. A method according to any one of the preceding claims, comprising varying the spatial period of the writing light beam during fabrication of the grating.
12. A method according to claim 6 and claim 11 , comprising directing the source light beam onto different regions of a chirped phase mask (30) in order to vary the spatial period of the writing light beam during fabrication of the grating.
13. A method according to any one of the preceding claims, in which the waveguide (10) is an optical fibre.
14. Apparatus for fabricating an optical fibre grating having a plurality of grating lines of refractive index variation, the apparatus comprising:
a writing light beam source (40) for repeatedly exposing a spatially periodic writing light pattern onto a photosensitive optical waveguide (10); and
means for moving the writing light pattern and/or the waveguide (10) between successive exposures or groups of exposures of the writing light pattern,
characterised in that
the successive exposures or groups of exposures overlap so that each of at least a majority of the grating lines is generated by at least two exposures to different respective regions of the writing light pattern.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/109,639 US6813079B2 (en) | 1996-08-23 | 2002-04-01 | Fabricating optical waveguide gratings |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB9617688A GB2316760A (en) | 1996-08-23 | 1996-08-23 | Fabricating optical waveguide gratings |
| GB9617688 | 1996-08-23 | ||
| GB9617688.8 | 1996-08-23 | ||
| PCT/GB1997/002099 WO1998008120A1 (en) | 1996-08-23 | 1997-08-04 | Fabricating optical waveguide gratings |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB1997/002099 A-371-Of-International WO1998008120A1 (en) | 1996-08-23 | 1997-08-04 | Fabricating optical waveguide gratings |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/109,639 Continuation US6813079B2 (en) | 1996-08-23 | 2002-04-01 | Fabricating optical waveguide gratings |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20020044358A1 true US20020044358A1 (en) | 2002-04-18 |
| US6384977B1 US6384977B1 (en) | 2002-05-07 |
Family
ID=10798853
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/242,720 Expired - Lifetime US6384977B1 (en) | 1996-08-23 | 1997-08-04 | Fabricating optical waveguide gratings |
| US10/109,639 Expired - Lifetime US6813079B2 (en) | 1996-08-23 | 2002-04-01 | Fabricating optical waveguide gratings |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/109,639 Expired - Lifetime US6813079B2 (en) | 1996-08-23 | 2002-04-01 | Fabricating optical waveguide gratings |
Country Status (12)
| Country | Link |
|---|---|
| US (2) | US6384977B1 (en) |
| EP (1) | EP0920646B1 (en) |
| JP (1) | JP4086319B2 (en) |
| AT (1) | ATE217979T1 (en) |
| AU (1) | AU716688B2 (en) |
| BR (1) | BR9711231A (en) |
| CA (1) | CA2264879C (en) |
| DE (1) | DE69712764T2 (en) |
| ES (1) | ES2176760T3 (en) |
| GB (1) | GB2316760A (en) |
| NZ (1) | NZ334292A (en) |
| WO (1) | WO1998008120A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020122628A1 (en) * | 1997-10-02 | 2002-09-05 | 3M Innovative Properties Company | Fabrication of chirped fiber bragg gratings of any desired bandwidth using frequency modulation |
| US20060285561A1 (en) * | 2004-12-20 | 2006-12-21 | Lawrence Shah | Pulsed laser source with adjustable grating compressor |
| US20140204436A1 (en) * | 2013-01-21 | 2014-07-24 | Tsinghua University | Methods and apparatuses for manufacturing ultralong fiber bragg gratings with arbitrary reflection wavelength |
| US20170090289A1 (en) * | 2015-09-24 | 2017-03-30 | Ushio Denki Kabushiki Kaisha | Method of manufacturing a structure on a substrate |
| CN107340565A (en) * | 2017-08-25 | 2017-11-10 | 武汉理工大学 | A kind of online device and method for preparing optical fiber optical grating array automatic switchover wavelength |
| CN112099140A (en) * | 2020-10-29 | 2020-12-18 | 歌尔股份有限公司 | Diffraction optical waveguide with uniform emergent brightness, manufacturing method and head-mounted display device |
Families Citing this family (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU742785B2 (en) | 1997-06-18 | 2002-01-10 | Pirelli Cavi E Sistemi S.P.A. | Chirped optical fibre grating |
| US5912999A (en) * | 1997-10-02 | 1999-06-15 | Minnesota Mining And Manufacturing Company | Method for fabrication of in-line optical waveguide index grating of any length |
| US6035083A (en) * | 1997-10-02 | 2000-03-07 | 3M Innovative Company | Method for writing arbitrary index perturbations in a wave-guiding structure |
| US6404956B1 (en) | 1997-10-02 | 2002-06-11 | 3M Intellectual Properties Company | Long-length continuous phase Bragg reflectors in optical media |
| GB9722550D0 (en) | 1997-10-24 | 1997-12-24 | Univ Southampton | Fabrication of optical waveguide gratings |
| AUPP209298A0 (en) * | 1998-03-02 | 1998-03-26 | Uniphase Fibre Components Pty Limited | Grating writing techniques |
| AU736337B2 (en) * | 1998-03-02 | 2001-07-26 | Jds Uniphase Corporation | Grating writing method and apparatus |
| GB9808265D0 (en) * | 1998-04-17 | 1998-06-17 | Univ Southampton | Optical fibre laser |
| AUPP425898A0 (en) * | 1998-06-22 | 1998-07-16 | University Of Sydney, The | An improved grating writing system |
| GB2352529B (en) * | 1999-05-05 | 2003-04-23 | Furukawa Electric Europ Ltd | Optic fibre grating manufactured using phase mask and variable filter |
| GB0005615D0 (en) | 2000-03-09 | 2000-05-03 | Univ Southampton | An optical processing device based on fiber grating |
| US6553163B2 (en) | 2000-03-30 | 2003-04-22 | Corning, Incorporated | Method and apparatus for writing a Bragg grating in a waveguide |
| AU4259501A (en) * | 2000-04-05 | 2001-10-15 | University Of Southampton | In-phase stitching of long fiber gratings |
| US6618152B2 (en) | 2000-05-09 | 2003-09-09 | Fuji Photo Film Co., Ltd. | Optical coherence tomography apparatus using optical-waveguide structure which reduces pulse width of low-coherence light |
| US6614959B1 (en) | 2000-07-27 | 2003-09-02 | Ciena Corporation | Methods of writing apodized fiber gratings and associated apparatuses |
| KR100342532B1 (en) * | 2000-08-04 | 2002-06-28 | 윤종용 | Fabrication device of polarization insensitive long period fiber grating |
| US20040033018A1 (en) * | 2000-08-07 | 2004-02-19 | Durkin Michael Kevan | Grating apodisation method and apparatus |
| GB2365992B (en) | 2000-08-14 | 2002-09-11 | Univ Southampton | Compound glass optical fibres |
| US6591039B2 (en) * | 2000-11-16 | 2003-07-08 | Corning Oil Spa | Method and equipment for writing a Bragg grating in a waveguide |
| US6898350B2 (en) * | 2001-01-18 | 2005-05-24 | General Dynamics Advanced Information Systems, Inc. | Interferometric focusing technique for forming taps in fibers |
| AUPR523501A0 (en) * | 2001-05-24 | 2001-06-21 | University Of Sydney, The | Optical lattice structure |
| JP3754634B2 (en) * | 2001-06-27 | 2006-03-15 | 独立行政法人科学技術振興機構 | Optical fiber grating manufacturing method and apparatus, optical fiber grating |
| NO314677B1 (en) | 2001-06-29 | 2003-04-28 | Optoplan As | FBG production system |
| US6803335B2 (en) | 2001-08-03 | 2004-10-12 | The University Of Southampton | Gallium lanthanum sulfide glasses and optical waveguides and devices using such glasses |
| EP1291985A1 (en) * | 2001-09-07 | 2003-03-12 | Corning O.T.I. S.p.A. | Gain flattening optical filter, optical amplifier comprising such an optical filter and method for manufacturing such an optical filter |
| US6834144B2 (en) | 2001-09-07 | 2004-12-21 | Avanex Corporation | Gain flattening optical filter, optical amplifier comprising such an optical filter and method for manufacturing such an optical filter |
| US6654521B2 (en) * | 2002-01-23 | 2003-11-25 | Teraxion Inc. | Diffraction compensation of FBG phase masks for multi-channel sampling applications |
| US6975794B2 (en) * | 2002-03-15 | 2005-12-13 | Intel Corporation | Method and apparatus for fabricating a waveguide Bragg grating using pulsed light |
| KR100426284B1 (en) * | 2002-03-29 | 2004-04-08 | 광주과학기술원 | Manugacture device of optical fiber grating and the manugacture method and optical fiber grating |
| US6801689B1 (en) * | 2002-04-30 | 2004-10-05 | Intel Corporation | Correcting the phase of waveguide bragg gratings |
| US6847762B2 (en) * | 2002-07-02 | 2005-01-25 | Intel Corporation | Monitoring and correcting bragg gratings during their fabrication |
| DE10231463A1 (en) * | 2002-07-05 | 2004-01-15 | Laser- Und Medizin-Technologie Gmbh, Berlin | Process for the microstructuring of optical waveguides for the production of optical functional elements |
| US6904202B1 (en) * | 2002-07-31 | 2005-06-07 | Intel Corporation | Writing waveguides with an arbitrary Bragg wavelength |
| DK200400179U3 (en) | 2004-06-21 | 2004-09-10 | Tl Lyngsaa As | Side-beam optical fiber by laser |
| US7085450B2 (en) * | 2004-12-22 | 2006-08-01 | 3M Innovative Properties Company | Fabrication of structures in an optical substrate |
| TWI258024B (en) | 2005-05-17 | 2006-07-11 | Univ Nat Chiao Tung | Method for sequential UV-writing fiber Bragg grating by real-time interferometric side-diffraction position monitoring |
| US8685628B2 (en) * | 2006-04-24 | 2014-04-01 | Stc.Unm | Large area patterning using interferometric lithography |
| KR100782879B1 (en) * | 2006-12-07 | 2007-12-06 | 한국전자통신연구원 | Optical fiber Bragg grating manufacturing apparatus and optical fiber and mid-infrared optical fiber laser having Bragg grating manufactured by the apparatus |
| TW200918977A (en) * | 2007-10-26 | 2009-05-01 | Univ Nat Chiao Tung | Method to modulate refractivity of the optic fiber grating |
| TWI364566B (en) * | 2008-02-18 | 2012-05-21 | Univ Nat Chiao Tung | Long-length fiber bragg gratings sequential uv writing by probing phase mask |
| CN115343796B (en) * | 2022-08-16 | 2024-03-22 | 常州莱特康光电科技有限公司 | Fiber grating apodization device and fiber grating apodization method |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3650605A (en) * | 1970-10-15 | 1972-03-21 | Xerox Corp | Interferometric apparatus with controlled scanning means |
| US4093338A (en) * | 1976-01-12 | 1978-06-06 | Bell Telephone Laboratories, Incorporated | Apparatus for piecewise generation of grating-like patterns |
| US4474427A (en) * | 1979-05-07 | 1984-10-02 | Canadian Patents & Development Limited | Optical fiber reflective filter |
| GB2212935A (en) * | 1987-12-08 | 1989-08-02 | Le I Yadernoi Fiz Im B P Konst | Holographic diffraction grating |
| US5066133A (en) * | 1990-10-18 | 1991-11-19 | United Technologies Corporation | Extended length embedded Bragg grating manufacturing method and arrangement |
| US5367588A (en) * | 1992-10-29 | 1994-11-22 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Communications | Method of fabricating Bragg gratings using a silica glass phase grating mask and mask used by same |
| US5363239A (en) * | 1992-12-23 | 1994-11-08 | At&T Bell Laboratories | Method for forming spatially-varying distributed Bragg reflectors in optical media |
| AUPM386794A0 (en) * | 1994-02-14 | 1994-03-10 | University Of Sydney, The | Optical grating |
| FR2728356B1 (en) * | 1994-12-15 | 1997-01-31 | Alcatel Fibres Optiques | DEVICE FOR PRINTING A BRAGG NETWORK IN AN OPTICAL FIBER |
| AUPN089895A0 (en) * | 1995-02-03 | 1995-03-02 | University Of Sydney, The | Broadband grating |
| US5604829A (en) * | 1995-04-17 | 1997-02-18 | Hughes Aircraft Company | Optical waveguide with diffraction grating and method of forming the same |
| GB9509874D0 (en) * | 1995-05-16 | 1995-07-12 | Univ Southampton | Optical waveguide grating |
| US5748814A (en) * | 1995-11-16 | 1998-05-05 | Institut National D'optique | Method for spatially controlling the period and amplitude of Bragg filters |
-
1996
- 1996-08-23 GB GB9617688A patent/GB2316760A/en not_active Withdrawn
-
1997
- 1997-08-04 AU AU37043/97A patent/AU716688B2/en not_active Expired
- 1997-08-04 NZ NZ334292A patent/NZ334292A/en not_active IP Right Cessation
- 1997-08-04 ES ES97933807T patent/ES2176760T3/en not_active Expired - Lifetime
- 1997-08-04 US US09/242,720 patent/US6384977B1/en not_active Expired - Lifetime
- 1997-08-04 BR BR9711231-3A patent/BR9711231A/en not_active Application Discontinuation
- 1997-08-04 JP JP51047898A patent/JP4086319B2/en not_active Expired - Lifetime
- 1997-08-04 DE DE69712764T patent/DE69712764T2/en not_active Expired - Lifetime
- 1997-08-04 CA CA002264879A patent/CA2264879C/en not_active Expired - Lifetime
- 1997-08-04 EP EP97933807A patent/EP0920646B1/en not_active Expired - Lifetime
- 1997-08-04 WO PCT/GB1997/002099 patent/WO1998008120A1/en active IP Right Grant
- 1997-08-04 AT AT97933807T patent/ATE217979T1/en active
-
2002
- 2002-04-01 US US10/109,639 patent/US6813079B2/en not_active Expired - Lifetime
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020122628A1 (en) * | 1997-10-02 | 2002-09-05 | 3M Innovative Properties Company | Fabrication of chirped fiber bragg gratings of any desired bandwidth using frequency modulation |
| US6728444B2 (en) * | 1997-10-02 | 2004-04-27 | 3M Innovative Properties Company | Fabrication of chirped fiber bragg gratings of any desired bandwidth using frequency modulation |
| US20060285561A1 (en) * | 2004-12-20 | 2006-12-21 | Lawrence Shah | Pulsed laser source with adjustable grating compressor |
| US20100111120A1 (en) * | 2004-12-20 | 2010-05-06 | Imra America, Inc. | Pulsed laser source with adjustable grating compressor |
| US8077749B2 (en) | 2004-12-20 | 2011-12-13 | Imra America, Inc. | Pulsed laser source with adjustable grating compressor |
| US20140204436A1 (en) * | 2013-01-21 | 2014-07-24 | Tsinghua University | Methods and apparatuses for manufacturing ultralong fiber bragg gratings with arbitrary reflection wavelength |
| US9488960B2 (en) * | 2013-01-21 | 2016-11-08 | Tsinghua University | Methods and apparatuses for manufacturing ultralong fiber Bragg gratings with arbitrary reflection wavelength |
| US20170090289A1 (en) * | 2015-09-24 | 2017-03-30 | Ushio Denki Kabushiki Kaisha | Method of manufacturing a structure on a substrate |
| US9983480B2 (en) * | 2015-09-24 | 2018-05-29 | Ushio Denki Kabushiki Kaisha | Method of manufacturing a structure on a substrate |
| CN107340565A (en) * | 2017-08-25 | 2017-11-10 | 武汉理工大学 | A kind of online device and method for preparing optical fiber optical grating array automatic switchover wavelength |
| CN112099140A (en) * | 2020-10-29 | 2020-12-18 | 歌尔股份有限公司 | Diffraction optical waveguide with uniform emergent brightness, manufacturing method and head-mounted display device |
Also Published As
| Publication number | Publication date |
|---|---|
| BR9711231A (en) | 2000-05-02 |
| US6813079B2 (en) | 2004-11-02 |
| ATE217979T1 (en) | 2002-06-15 |
| EP0920646B1 (en) | 2002-05-22 |
| AU3704397A (en) | 1998-03-06 |
| GB9617688D0 (en) | 1996-10-02 |
| US20020105727A1 (en) | 2002-08-08 |
| CA2264879C (en) | 2006-11-28 |
| ES2176760T3 (en) | 2002-12-01 |
| DE69712764T2 (en) | 2003-01-02 |
| AU716688B2 (en) | 2000-03-02 |
| DE69712764D1 (en) | 2002-06-27 |
| CA2264879A1 (en) | 1998-02-26 |
| US6384977B1 (en) | 2002-05-07 |
| EP0920646A1 (en) | 1999-06-09 |
| JP4086319B2 (en) | 2008-05-14 |
| GB2316760A (en) | 1998-03-04 |
| WO1998008120A1 (en) | 1998-02-26 |
| NZ334292A (en) | 1999-08-30 |
| JP2000516731A (en) | 2000-12-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6384977B1 (en) | Fabricating optical waveguide gratings | |
| Asseh et al. | A writing technique for long fiber Bragg gratings with complex reflectivity profiles | |
| EP0826161B1 (en) | Method and apparatus for fabricating an optical waveguide grating | |
| US6753118B2 (en) | Optical grating fabrication process | |
| US6973237B2 (en) | Method of producing optical fiber grating and production device therefor | |
| US7046866B2 (en) | System and method for fabricating Bragg gratings with overlapping exposures | |
| Mihailov et al. | Comparison of fiber Bragg grating dispersion-compensators made with holographic and e-beam written phase masks | |
| US7043121B2 (en) | Method and apparatus for writing apodized patterns | |
| US6834144B2 (en) | Gain flattening optical filter, optical amplifier comprising such an optical filter and method for manufacturing such an optical filter | |
| CA2640710C (en) | Apparatus and method for producing fibre bragg gratings in a waveguide | |
| US20030147588A1 (en) | Step-chirped, sampled optical waveguide gratings for WDM channel operations and method of manufacture therefor | |
| JP3693494B2 (en) | Chirped optical fiber filter manufacturing method and chirped optical fiber filter | |
| Stubbe et al. | Novel technique for writing long superstructured fiber Bragg gratings | |
| EP1291985A1 (en) | Gain flattening optical filter, optical amplifier comprising such an optical filter and method for manufacturing such an optical filter | |
| WO2001075496A1 (en) | In-phase stitching of long fiber gratings | |
| US6991891B1 (en) | Optical fiber laser | |
| Cortès et al. | Writing of Bragg gratings with wavelength flexibility using a Sagnac type interferometer and application to FH-CDMA | |
| CA2221167C (en) | Optical waveguide grating | |
| US20030012502A1 (en) | Method for imprinting slanted Bragg gratings into optical fibers and optical fibers produced by such method | |
| Liu et al. | Novel fiber Bragg grating fabrication method by high-precision shutter control | |
| Nasu et al. | Fabrication of Long Superstructure Fiber Bragg Gratings (SSFBGs) Using a Novel Scanning Phase-Mask Technique | |
| Mikel et al. | Design and simulation of fiber Bragg gratings with 760 nm central wavelength | |
| Gnazzo et al. | Improved Analysis and Design of Waveguide Bragg Grating Filters for Wavelength Division Multiplexing Applications |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: PIRELLI CAVI E SISTEMI S.P.A., ITALY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAMING, RICHARD IAN;COLE, MARTIN;REEL/FRAME:010536/0989;SIGNING DATES FROM 19991214 TO 20000107 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |