US20020043746A1 - Air spring and method for making the same - Google Patents
Air spring and method for making the same Download PDFInfo
- Publication number
- US20020043746A1 US20020043746A1 US09/975,948 US97594801A US2002043746A1 US 20020043746 A1 US20020043746 A1 US 20020043746A1 US 97594801 A US97594801 A US 97594801A US 2002043746 A1 US2002043746 A1 US 2002043746A1
- Authority
- US
- United States
- Prior art keywords
- clamp
- clamp seat
- clamp ring
- air spring
- flexible member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 6
- 238000003825 pressing Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/02—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
- F16F9/04—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall
- F16F9/05—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall the flexible wall being of the rolling diaphragm type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/02—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
- F16F9/04—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall
- F16F9/0454—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall characterised by the assembling method or by the mounting arrangement, e.g. mounting of the membrane
- F16F9/0463—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall characterised by the assembling method or by the mounting arrangement, e.g. mounting of the membrane with separate crimping rings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49909—Securing cup or tube between axially extending concentric annuli
- Y10T29/49913—Securing cup or tube between axially extending concentric annuli by constricting outer annulus
Definitions
- the invention relates to an air spring which includes a flexible member, which encloses an air volume, and two connecting parts. Each of the connecting parts has a clamp seat to which an end of the flexible member is attached with the aid of a clamp ring allocated to the clamp seat.
- the invention further relates to a method for making the air spring.
- Air springs of the above-mentioned kind are known from the state of the art as disclosed, for example, in U.S. Pat. No. 4,657,229. These air springs are especially utilized in motor vehicles for resiliently suspending the vehicle body relative to at least one axle of the vehicle.
- the clamp ring with which the flexible member of the air spring is attached to the clamp seat of a connecting part has an axially arranged cylindrical inner side in air springs known from the state of the art.
- a clamp ring of this kind can be produced in a simple manner because of its simple form. However, it is noted that the outer side of the flexible member and the clamp ring clamped thereon move relative to the clamp seat when pull or thrust loads act upon the flexible member of the air spring.
- the clamp ring also moves in the axial direction of the air spring because of the friction connection between the flexible member and the clamp ring.
- the clamp connection of the end of the flexible member on the clamp seat can loosen as a consequence of the axial movement of the flexible member and of the clamp ring.
- the danger that the flexible member separates from the clamp seat is especially great when the flexible member is configured to have a thick wall because then especially large shear deformations occur in the flexible member during a dynamic loading thereof which are transferred to the clamp ring.
- the air spring of the invention includes: a flexible member enclosing an air volume and having first and second end portions; a first connecting part having a first clamp seat for accommodating the first end portion thereon; a second connecting part having a second clamp seat for accommodating the second end portion thereon; a first clamp ring for attaching the first end portion to the first clamp seat; a second clamp ring for attaching the second end portion to the second clamp seat; and, at least one of the clamp seats being configured to be at least approximately convex and the one clamp ring corresponding to the one clamp seat having an inner side all of which is at least approximately concave.
- An approximately convex surface here means a convex surface as well as a surface for which the curvature of the convex surface is substituted by straight lines connected one to the other. The same applies to the concave surface.
- the clamp connection which comprises the clamp ring and the clamp seat, has a component part having an at least approximately concave surface and a component part having at least an approximately convex surface.
- the two components mutually engage via the end of the flexible member of the air spring.
- An advantage achieved with the invention is especially that a form-tight connection is provided via the flexible member of the air spring between the clamp ring and the clamp seat of the connecting part.
- This form-tight connection prevents the clamp ring together with the flexible member from being pulled from the clamp seat.
- the clamp action of the clamp ring is even increased when the flexible member tends to pull from the clamp seat because of the dynamic load.
- the clamp ring migrates with the flexible member in the axial direction so that the gap width between the clamp ring and the clamp seat becomes less and the clamp action is increased.
- a further advantage of the invention is that the inner surface of the clamp ring is available as an additional friction surface for the flexible member because the clamp ring cannot be pulled off with the flexible member from the clamp seat in the axial direction of the air spring. This leads to a clear increase of the holding force of the flexible member on the clamp seat.
- the convex surface of the clamp seat has a peripherally extending nose or projection.
- the projection is located in the part of the convex surface of the clamp seat which faces toward the air volume of the air spring.
- the length of the projection or nose corresponds to approximately 20% to 40% of the thickness which the flexible member has in the region of the clamp seat having the convex surface.
- the convex surface of the clamp seat has at least one peripherally extending groove in the portion thereof facing away from the air volume of the air spring.
- the advantage of this feature is that a greater low-temperature tightness and a greater high-temperature tightness of the air spring can be achieved with one or several peripherally extending grooves in'the above-mentioned region. This is so because the rubber material of the flexible member disposed on the clamp seat penetrates into the grooves. It has been shown that the low-temperature tightness and the high-temperature tightness is especially increased when the clamp seat includes a peripherally extending projection in addition to the at least one groove because the projection fixes the end of the flexible member in its position on the clamp seat.
- the grooves have a depth of 0.3 to 0.6 mm.
- the cross sections of the grooves are preferably selected to be triangular because grooves of this kind are easy to manufacture and facilitate an easy penetration of the rubber of the flexible member.
- the inner side of the clamp ring and the convex surface of the clamp seat conjointly define, over a region thereof, a channel tapered toward the air volume of the air spring.
- this channel is formed on the part of the clamp seat which is facing away from the air volume of the air spring.
- a peripherally extending projection or nose which faces toward the air volume of the air spring, extends from the end of the clamp seat having the convex surface.
- a peripherally extending flange extends from the end of the clamp seat having the convex surface facing away from the air volume of the air spring.
- the outer side of the clamp ring is cylindrical.
- the advantage of this feature is that conventional clamp tools having a cylindrical inner side can be used when making the air spring to radially press the clamp ring whereby the end of the flexible member is clamped between the clamp ring and the clamp seat.
- the clamp ring has a constant wall thickness over its entire height.
- the inner side of the clamp ring is first concavely formed during the radial pressing of the clamp ring when making the air spring utilizing a suitable clamp tool.
- the advantage of this embodiment is that the clamp ring can be made in a simple manner, for example, from a thin-walled tube or from band material.
- the clamp ring has an easily bendable zone at approximately half elevation.
- the advantage of this feature is that the clamp ring can be easily deformed by the clamp tool when making the air spring and the concave inner side can be simply formed.
- the bendable zone can, for example, be provided in that the outer side of the clamp ring is provided with a peripherally extending groove at about half elevation.
- FIG. 1 is a half section view of the air spring in accordance with an embodiment of the invention
- FIG. 2 is an expanded view of the detail region identified by reference numeral II in FIG. 1;
- FIG. 3 a is a section view of a clamp ring according to one embodiment of the invention.
- FIG. 3 b is a section view of a clamp ring according to another embodiment of the invention.
- FIG. 3 c is a section view of a clamp ring showing still another embodiment thereof.
- FIG. 4 is a side elevation view showing how the clamp ring is fixed in position on the clamp seat in accordance with an embodiment of the method of the invention.
- FIG. 1 shows an air spring 2 having a flexible member 4 which encloses an air volume 6 .
- Air springs of this kind are especially used in motor vehicles in order to spring suspend the vehicle body of the motor vehicle relative to at least one vehicle axle.
- the flexible member 4 is clamped between a first connecting part 8 in the form of a cover and a second connecting part 10 in the form of a roll-off piston.
- the respective ends of the flexible member 4 are pushed over respective clamp seats ( 12 , 14 ) of the connecting parts ( 8 , 10 ), respectively, and are clamped with the aid of respective clamp rings ( 16 , 18 ).
- the surface of the clamp seat ( 12 , 14 ), which faces toward the flexible member 4 is at least approximately convex and the entire inner side of the clamp ring ( 16 , 18 ), which faces toward the flexible member 4 is configured to be at least approximately concave.
- FIG. 2 shows a detail view of a portion of FIG. 1 and is referred to in the following to explain in greater detail the clamp connection comprising the clamp seat 12 and the clamp ring 16 .
- the surface of the clamp seat 12 which faces toward the flexible member 4 , is configured to be at least approximately convex; whereas, the inner side of the clamp ring 16 , which faces toward the flexible member 4 , is configured to be at least approximately concave.
- a form-tight connection is provided by the convex-concave configuration of the clamp connection which results between the clamp seat 12 and the clamp ring 16 with the flexible member 4 clamped therebetween. This form-tight connection substantially prevents an axial pull-off of the clamp ring 16 from the clamp seat 12 .
- the convex surface of the clamp seat 12 has a peripherally extending nose 20 in that portion of this surface which faces toward the air volume 6 of the air spring and is facing away from the connecting part 8 .
- the nose 20 supports a fixing of the end of the flexible member 4 on the clamp seat 12 with the aid of the clamp ring 16 and makes a pull-off of the flexible member 4 from the clamp seat 12 more difficult.
- the length of the nose 20 corresponds approximately to 20% to 40% of the thickness which the flexible member 4 has in the region of the clamp seat 12 .
- a dimensioning of the nose 20 in this manner prevents the nose from boring through the end of the flexible member 4 which is disposed on the clamp seat 12 . Nonetheless, it is ensured with this kind of dimensioning that the nose 20 digs sufficiently deep into the end of the flexible member 4 in order to reliably fix this end on the clamp seat 12 .
- the convex surface of the clamp seat 12 includes several peripherally extending grooves 22 which are located on the part of the convex surface of the clamp seat 12 which faces away from the air volume 6 of the air spring, that is, the grooves 22 face toward the connecting part 8 .
- the peripherally extending grooves 22 preferably have a triangular cross section. Rubber material of the flexible member 4 penetrates into the grooves 22 when the end of the flexible member 4 is pressed onto the clamp seat 12 with the aid of the clamp ring 16 so that, in the region of the clamp seat 12 , a high level of air tightness of the air spring 2 is ensured also for high and low temperatures.
- a pull-off of the flexible member 4 from the clamp seat 12 is made still more difficult than with the above-mentioned measures in that the inner side of the clamp ring 16 , which faces toward the flexible member 4 , and the convex surface of the clamp seat 12 on the side of the clamp connection, which faces away from the air volume 6 , form a channel which tapers toward the air volume 6 of the air spring.
- the tapering of the channel is indicated in FIG. 2 by the tangents 24 and 26 to the inner side of the clamp ring and to the convex surface of the clamp seat 12 , respectively.
- a peripherally extending projection 28 extends from the end of the clamp seat 12 which faces toward the air volume 6 of the air spring.
- the end of the flexible member 4 which is clamped on the clamp seat 12 with the aid of the clamp ring 16 , is additionally clamped between the end of the clamp ring 16 , which faces toward the air volume 6 , and the projection 28 .
- This clamping action becomes greater when an attempt is made to pull the flexible member 4 off the clamp seat 12 because then, the gap width between the end of the clamp ring 16 and the projection 18 becomes less.
- a peripherally extending flange 30 joins at the end of the clamp seat 12 which faces away from the air volume of the air spring; that is, the flange 30 faces toward the connection part 8 .
- the flange 30 fixes the push-on depth of the flexible member 4 onto the clamp seat 12 and furthermore defines a stop for the clamp ring 16 .
- FIG. 2 is a detail of FIG. 1 and shows the clamp connection of the flexible member 4 against the connecting part 8 .
- the clamp connection of the flexible member 4 can, however, be formed in the same way on the connecting part 10 .
- FIG. 3 a shows a cylindrical clamp ring ( 16 , 18 ) which has a constant wall thickness over its entire elevation.
- a clamp ring ( 16 , 18 ) of this kind is deformed by a clamp tool during clamping of the end of the flexible member onto the clamp seat so that the inner side of the clamp ring is deformed to be at least approximately concave. How this takes place is explained with respect to FIG. 4.
- the deformation of the clamp ring ( 16 , 18 ) utilizing the clamp tool is made simpler when the clamp ring ( 16 , 18 ) is provided with a soft-bending zone at about half elevation thereon.
- a clamp ring ( 16 , 18 ) of this kind is shown in FIG. 3 b wherein the soft-bending zone is formed in that the clamp ring ( 16 , 18 ) includes a peripherally extending groove 32 at its outer side at approximately half elevation.
- FIG. 3 c shows a clamp ring ( 16 , 18 ) whose outer side is configured to be cylindrical and whose inner side is configured to be already at least approximately concave.
- a clamp ring ( 16 , 18 ) of this kind needs only to be pressed radially for clamping an end of the flexible member to a clamp seat. This affords the advantage that conventional clamping tools can be used for pressing the clamp ring ( 16 , 18 ).
- FIG. 4 how an air spring of the kind shown in FIG. 1 is manufactured.
- the air spring has a clamp connection in accordance with FIG. 2 at least at one of its connecting parts ( 8 , 10 ).
- the flexible member 4 of the air spring is positioned on the clamp seat 12 in such a manner that the upper end of the flexible member 4 is contact engagement with the flange 30 .
- a cylindrical clamp ring 16 in accordance with FIG. 3 b is made available in such a manner that it encloses the end of the flexible member.
- the clamp ring 16 is radially pressed utilizing a clamp tool 34 in such a manner that the flexible member 4 is clamped between the clamp seat 12 and the clamp ring 16 and is locked or jammed in place.
- the clamp ring 16 (which had the form shown in FIG. 3 b before pressing), is deformed by the clamp tool in such a manner that the inner side of the clamp ring is at least approximately concave.
- the clamp tool 34 has a clamp jaw 36 , whose inner side (that is, the side facing toward the clamp ring 16 ) has that surface which the inner side of the clamp ring 16 is intended to have after pressing.
- the clamp ring 16 deforms easily during radial pressing via the clamp tool because of the peripherally extending groove 32 in the clamp ring (see also FIG. 3 b ).
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fluid-Damping Devices (AREA)
Abstract
An air spring includes a flexible member, which encloses an air volume, and two connecting parts. Each of the connecting parts has a clamp seat on which an end of the flexible member is attached with the aid of a clamp ring assigned to the clamp seat. The surface of at least one clamp seat is at least approximately convex and the total inner side of the clamp ring, which is assigned to the clamp seat, is configured to be at least approximately concave.
Description
- The invention relates to an air spring which includes a flexible member, which encloses an air volume, and two connecting parts. Each of the connecting parts has a clamp seat to which an end of the flexible member is attached with the aid of a clamp ring allocated to the clamp seat. The invention further relates to a method for making the air spring.
- Air springs of the above-mentioned kind are known from the state of the art as disclosed, for example, in U.S. Pat. No. 4,657,229. These air springs are especially utilized in motor vehicles for resiliently suspending the vehicle body relative to at least one axle of the vehicle. The clamp ring with which the flexible member of the air spring is attached to the clamp seat of a connecting part has an axially arranged cylindrical inner side in air springs known from the state of the art. A clamp ring of this kind can be produced in a simple manner because of its simple form. However, it is noted that the outer side of the flexible member and the clamp ring clamped thereon move relative to the clamp seat when pull or thrust loads act upon the flexible member of the air spring. The clamp ring also moves in the axial direction of the air spring because of the friction connection between the flexible member and the clamp ring. In the course of time, the clamp connection of the end of the flexible member on the clamp seat can loosen as a consequence of the axial movement of the flexible member and of the clamp ring. In the extreme case, it even can happen that the end of the flexible member is pulled off the clamp seat and the air spring suddenly becomes untight. The danger that the flexible member separates from the clamp seat is especially great when the flexible member is configured to have a thick wall because then especially large shear deformations occur in the flexible member during a dynamic loading thereof which are transferred to the clamp ring.
- It is an object of the invention to provide an air spring having a clamp connection which prevents, to the greatest extent possible, a dynamic separation of the flexible member from the clamp seat. It is another object of the invention to provide a method for making such an air spring which can be carried out in a simple and cost-effective manner.
- The air spring of the invention includes: a flexible member enclosing an air volume and having first and second end portions; a first connecting part having a first clamp seat for accommodating the first end portion thereon; a second connecting part having a second clamp seat for accommodating the second end portion thereon; a first clamp ring for attaching the first end portion to the first clamp seat; a second clamp ring for attaching the second end portion to the second clamp seat; and, at least one of the clamp seats being configured to be at least approximately convex and the one clamp ring corresponding to the one clamp seat having an inner side all of which is at least approximately concave.
- An approximately convex surface here means a convex surface as well as a surface for which the curvature of the convex surface is substituted by straight lines connected one to the other. The same applies to the concave surface.
- The basic idea of the invention is that the clamp connection, which comprises the clamp ring and the clamp seat, has a component part having an at least approximately concave surface and a component part having at least an approximately convex surface. The two components mutually engage via the end of the flexible member of the air spring.
- An advantage achieved with the invention is especially that a form-tight connection is provided via the flexible member of the air spring between the clamp ring and the clamp seat of the connecting part. This form-tight connection prevents the clamp ring together with the flexible member from being pulled from the clamp seat. Here, it is noted that the clamp action of the clamp ring is even increased when the flexible member tends to pull from the clamp seat because of the dynamic load. In this case, the clamp ring migrates with the flexible member in the axial direction so that the gap width between the clamp ring and the clamp seat becomes less and the clamp action is increased.
- A further advantage of the invention is that the inner surface of the clamp ring is available as an additional friction surface for the flexible member because the clamp ring cannot be pulled off with the flexible member from the clamp seat in the axial direction of the air spring. This leads to a clear increase of the holding force of the flexible member on the clamp seat.
- A further advantage of the invention is that the firm seat of the clamp ring on the clamp seat reduces the wear of the flexible member in the clamping region whereby the service life of the flexible member is increased. Still another advantage of the invention is that an especially thick flexible member can be clamped with the clamp connection according to the invention so that especially stable air springs can be manufactured.
- According to another feature of the invention, the convex surface of the clamp seat has a peripherally extending nose or projection. The advantage of this feature is that the projection additionally increases the holding force of the end of the flexible member on the clamp seat because the projection digs into the rubber of the flexible member.
- According to another feature of the invention, the projection is located in the part of the convex surface of the clamp seat which faces toward the air volume of the air spring. The advantage of this feature is that there is still an adequate length of the flexible member available rearward of the projection (that is, on the side facing away from the air volume of the air spring) into which the holding forces caused by the projection can be directed.
- According to still another feature of the invention, the length of the projection or nose corresponds to approximately 20% to 40% of the thickness which the flexible member has in the region of the clamp seat having the convex surface. The advantage of this feature is that even for a dynamic load of the flexible member, the danger is not present that the projection would bore through the flexible member.
- According to still another feature of the invention, the convex surface of the clamp seat has at least one peripherally extending groove in the portion thereof facing away from the air volume of the air spring. The advantage of this feature is that a greater low-temperature tightness and a greater high-temperature tightness of the air spring can be achieved with one or several peripherally extending grooves in'the above-mentioned region. This is so because the rubber material of the flexible member disposed on the clamp seat penetrates into the grooves. It has been shown that the low-temperature tightness and the high-temperature tightness is especially increased when the clamp seat includes a peripherally extending projection in addition to the at least one groove because the projection fixes the end of the flexible member in its position on the clamp seat. Preferably, the grooves have a depth of 0.3 to 0.6 mm. Furthermore, the cross sections of the grooves are preferably selected to be triangular because grooves of this kind are easy to manufacture and facilitate an easy penetration of the rubber of the flexible member.
- According to another feature of the invention, the inner side of the clamp ring and the convex surface of the clamp seat conjointly define, over a region thereof, a channel tapered toward the air volume of the air spring. Preferably, this channel is formed on the part of the clamp seat which is facing away from the air volume of the air spring. The advantage of this feature is that the flexible member is clamped stronger by the tapering channel than by a channel of uniform width when forces act on the flexible member which could lead to the flexible member being pulled off of the clamp seat. For the end of the flexible member, the tapering channel defines a type of bottleneck through which the end of the flexible member cannot be easily pulled through.
- According to still another feature of the invention, a peripherally extending projection or nose, which faces toward the air volume of the air spring, extends from the end of the clamp seat having the convex surface. The advantage of this feature is that the reliability is increased so that the flexible member will not be pulled off the clamp seat because the flexible member becomes clamped between the clamp ring and the above-mentioned projection when there is a pull-off movement.
- According to another feature of the invention, a peripherally extending flange extends from the end of the clamp seat having the convex surface facing away from the air volume of the air spring. The advantage of this feature is that the end of the flexible member can be placed at a defined position on the clamp seat during assembly of the air spring and, with the aid of the flange, the depth to which the clamp ring is pushed over is pregiven.
- According to another feature of the invention, the outer side of the clamp ring is cylindrical. The advantage of this feature is that conventional clamp tools having a cylindrical inner side can be used when making the air spring to radially press the clamp ring whereby the end of the flexible member is clamped between the clamp ring and the clamp seat.
- Another feature of the invention provides that the clamp ring has a constant wall thickness over its entire height. In this case, the inner side of the clamp ring is first concavely formed during the radial pressing of the clamp ring when making the air spring utilizing a suitable clamp tool. The advantage of this embodiment is that the clamp ring can be made in a simple manner, for example, from a thin-walled tube or from band material.
- According to another feature of the invention, the clamp ring has an easily bendable zone at approximately half elevation. The advantage of this feature is that the clamp ring can be easily deformed by the clamp tool when making the air spring and the concave inner side can be simply formed. The bendable zone can, for example, be provided in that the outer side of the clamp ring is provided with a peripherally extending groove at about half elevation.
- The invention will now be described with reference to the drawings wherein:
- FIG. 1 is a half section view of the air spring in accordance with an embodiment of the invention;
- FIG. 2 is an expanded view of the detail region identified by reference numeral II in FIG. 1;
- FIG. 3 a is a section view of a clamp ring according to one embodiment of the invention;
- FIG. 3 b is a section view of a clamp ring according to another embodiment of the invention;
- FIG. 3 c is a section view of a clamp ring showing still another embodiment thereof; and,
- FIG. 4 is a side elevation view showing how the clamp ring is fixed in position on the clamp seat in accordance with an embodiment of the method of the invention.
- FIG. 1 shows an
air spring 2 having aflexible member 4 which encloses anair volume 6. Air springs of this kind are especially used in motor vehicles in order to spring suspend the vehicle body of the motor vehicle relative to at least one vehicle axle. Theflexible member 4 is clamped between a first connectingpart 8 in the form of a cover and a second connectingpart 10 in the form of a roll-off piston. For this purpose, the respective ends of theflexible member 4 are pushed over respective clamp seats (12, 14) of the connecting parts (8, 10), respectively, and are clamped with the aid of respective clamp rings (16, 18). The surface of the clamp seat (12, 14), which faces toward theflexible member 4 is at least approximately convex and the entire inner side of the clamp ring (16, 18), which faces toward theflexible member 4 is configured to be at least approximately concave. - FIG. 2 shows a detail view of a portion of FIG. 1 and is referred to in the following to explain in greater detail the clamp connection comprising the
clamp seat 12 and theclamp ring 16. The surface of theclamp seat 12, which faces toward theflexible member 4, is configured to be at least approximately convex; whereas, the inner side of theclamp ring 16, which faces toward theflexible member 4, is configured to be at least approximately concave. A form-tight connection is provided by the convex-concave configuration of the clamp connection which results between theclamp seat 12 and theclamp ring 16 with theflexible member 4 clamped therebetween. This form-tight connection substantially prevents an axial pull-off of theclamp ring 16 from theclamp seat 12. - The convex surface of the
clamp seat 12 has a peripherally extendingnose 20 in that portion of this surface which faces toward theair volume 6 of the air spring and is facing away from the connectingpart 8. Thenose 20 supports a fixing of the end of theflexible member 4 on theclamp seat 12 with the aid of theclamp ring 16 and makes a pull-off of theflexible member 4 from theclamp seat 12 more difficult. Preferably, the length of thenose 20 corresponds approximately to 20% to 40% of the thickness which theflexible member 4 has in the region of theclamp seat 12. A dimensioning of thenose 20 in this manner prevents the nose from boring through the end of theflexible member 4 which is disposed on theclamp seat 12. Nonetheless, it is ensured with this kind of dimensioning that thenose 20 digs sufficiently deep into the end of theflexible member 4 in order to reliably fix this end on theclamp seat 12. - In addition to the
nose 20, the convex surface of theclamp seat 12 includes several peripherally extendinggrooves 22 which are located on the part of the convex surface of theclamp seat 12 which faces away from theair volume 6 of the air spring, that is, thegrooves 22 face toward the connectingpart 8. Theperipherally extending grooves 22 preferably have a triangular cross section. Rubber material of theflexible member 4 penetrates into thegrooves 22 when the end of theflexible member 4 is pressed onto theclamp seat 12 with the aid of theclamp ring 16 so that, in the region of theclamp seat 12, a high level of air tightness of theair spring 2 is ensured also for high and low temperatures. - A pull-off of the
flexible member 4 from theclamp seat 12 is made still more difficult than with the above-mentioned measures in that the inner side of theclamp ring 16, which faces toward theflexible member 4, and the convex surface of theclamp seat 12 on the side of the clamp connection, which faces away from theair volume 6, form a channel which tapers toward theair volume 6 of the air spring. The tapering of the channel is indicated in FIG. 2 by the 24 and 26 to the inner side of the clamp ring and to the convex surface of thetangents clamp seat 12, respectively. - A
peripherally extending projection 28 extends from the end of theclamp seat 12 which faces toward theair volume 6 of the air spring. The end of theflexible member 4, which is clamped on theclamp seat 12 with the aid of theclamp ring 16, is additionally clamped between the end of theclamp ring 16, which faces toward theair volume 6, and theprojection 28. This clamping action becomes greater when an attempt is made to pull theflexible member 4 off theclamp seat 12 because then, the gap width between the end of theclamp ring 16 and theprojection 18 becomes less. - A
peripherally extending flange 30 joins at the end of theclamp seat 12 which faces away from the air volume of the air spring; that is, theflange 30 faces toward theconnection part 8. Theflange 30 fixes the push-on depth of theflexible member 4 onto theclamp seat 12 and furthermore defines a stop for theclamp ring 16. - FIG. 2 is a detail of FIG. 1 and shows the clamp connection of the
flexible member 4 against the connectingpart 8. The clamp connection of theflexible member 4 can, however, be formed in the same way on the connectingpart 10. - FIG. 3 a shows a cylindrical clamp ring (16, 18) which has a constant wall thickness over its entire elevation. A clamp ring (16, 18) of this kind is deformed by a clamp tool during clamping of the end of the flexible member onto the clamp seat so that the inner side of the clamp ring is deformed to be at least approximately concave. How this takes place is explained with respect to FIG. 4. The deformation of the clamp ring (16, 18) utilizing the clamp tool is made simpler when the clamp ring (16, 18) is provided with a soft-bending zone at about half elevation thereon. A clamp ring (16, 18) of this kind is shown in FIG. 3b wherein the soft-bending zone is formed in that the clamp ring (16, 18) includes a peripherally extending
groove 32 at its outer side at approximately half elevation. - FIG. 3 c shows a clamp ring (16, 18) whose outer side is configured to be cylindrical and whose inner side is configured to be already at least approximately concave. A clamp ring (16, 18) of this kind needs only to be pressed radially for clamping an end of the flexible member to a clamp seat. This affords the advantage that conventional clamping tools can be used for pressing the clamp ring (16, 18).
- In the following, it will be explained together with FIG. 4 how an air spring of the kind shown in FIG. 1 is manufactured. The air spring has a clamp connection in accordance with FIG. 2 at least at one of its connecting parts ( 8, 10).
- First, the
flexible member 4 of the air spring is positioned on theclamp seat 12 in such a manner that the upper end of theflexible member 4 is contact engagement with theflange 30. - Thereafter, a
cylindrical clamp ring 16 in accordance with FIG. 3b is made available in such a manner that it encloses the end of the flexible member. Theclamp ring 16 is radially pressed utilizing aclamp tool 34 in such a manner that theflexible member 4 is clamped between theclamp seat 12 and theclamp ring 16 and is locked or jammed in place. During pressing, the clamp ring 16 (which had the form shown in FIG. 3b before pressing), is deformed by the clamp tool in such a manner that the inner side of the clamp ring is at least approximately concave. For this purpose, theclamp tool 34 has aclamp jaw 36, whose inner side (that is, the side facing toward the clamp ring 16) has that surface which the inner side of theclamp ring 16 is intended to have after pressing. Theclamp ring 16 deforms easily during radial pressing via the clamp tool because of theperipherally extending groove 32 in the clamp ring (see also FIG. 3b). - It is understood that the foregoing description is that of the preferred embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.
Claims (12)
1. An air spring comprising:
a flexible member enclosing an air volume and having first and second end portions;
a first connecting part having a first clamp seat for accommodating said first end portion thereon;
a second connecting part having a second clamp seat for accommodating said second end portion thereon;
a first clamp ring for attaching said first end portion to said first clamp seat;
a second clamp ring for attaching said second end portion to said second clamp seat; and,
at least one of said clamp seats being configured to be at least approximately convex and the one clamp ring corresponding to said one clamp seat having an inner side all of which is at least approximately concave.
2. The air spring of claim 1 , wherein said one clamp seat has a peripherally-extending nose which digs into the one end portion of said flexible member held between said one clamp ring and said one clamp seat.
3. The air spring of claim 2 , wherein said one clamp seat has a convex surface and a first portion of said convex surface faces toward said air volume; and, said peripherally-extending nose is disposed in said first portion of said convex surface.
4. The air spring of claim 3 , wherein said one end portion has a predetermined thickness in the region between said one clamp ring and said one clamp seat; and, said nose has a length extending from said clamp seat which corresponds to approximately 20% to 40% of said predetermined thickness.
5. The air spring of claim 3 , wherein a second portion of said convex surface faces away from said air volume; and, said one clamp seat has at least one peripherally-extending groove formed in said second portion of said convex surface.
6. The air spring of claim 1 , wherein said one clamp seat has a convex surface; said convex surface and said inner side of said clamp ring conjointly defining a channel and said channel is a tapered channel narrowing in a direction toward said air volume.
7. The air spring of claim 3 , wherein said peripherally-extending nose is a first nose; and, a peripherally-extending second nose is located at the end of said one clamp seat facing toward said air volume.
8. The air spring of claim 1 , wherein a peripherally-extending flange is located at the end of said one clamp seat facing away from said air volume.
9. The air spring of claim 1 , wherein said one clamp ring has an outer surface which is cylindrical.
10. The air spring of claim 1 , wherein said one clamp ring has a constant wall thickness over the entire elevation thereof.
11. A method of making an air spring which includes a flexible member enclosing an air volume and having first and second end portions; a first connecting part having a first clamp seat for accommodating said first end portion thereon; a second connecting part having a second clamp seat for accommodating said second end portion thereon; a first clamp ring for attaching said first end portion to said first clamp seat; a second clamp ring for attaching said second end portion to said second clamp seat; and, at least one of said clamp seats being configured to be at least approximately convex and the one clamp ring corresponding to said one clamp seat having an inner side all of which is at least approximately concave, the method comprising the steps of:
positioning said flexible member with one of said end portions on said one clamp seat;
placing said one clamp ring in place about said one end portion of said flexible member; and,
radially pressing said one clamp ring utilizing a clamping work tool so as to cause said one clamp ring to deform in such a manner that the inner side thereof becomes at least approximately concave thereby clamping said one end portion between said one clamp ring and said one clamp seat.
12. The method of claim 11 , wherein said one clamp ring has a bendably soft zone at approximately half elevation thereof.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10050777 | 2000-10-13 | ||
| DE10050777A DE10050777B4 (en) | 2000-10-13 | 2000-10-13 | Air spring and method for manufacturing an air spring |
| DE10050777.8 | 2000-10-13 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20020043746A1 true US20020043746A1 (en) | 2002-04-18 |
| US6749184B2 US6749184B2 (en) | 2004-06-15 |
Family
ID=7659662
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/975,948 Expired - Lifetime US6749184B2 (en) | 2000-10-13 | 2001-10-15 | Air spring and method for making the same |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US6749184B2 (en) |
| DE (1) | DE10050777B4 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060208403A1 (en) * | 2005-03-16 | 2006-09-21 | Arvinmeritor Technology, Llc | Air spring assembly with flexible can |
| EP2060832A3 (en) * | 2007-11-16 | 2011-11-30 | Continental Teves AG & Co. oHG | Clamp contour for a pressure admittable component and tensioner therefor |
| WO2014190123A1 (en) * | 2013-05-22 | 2014-11-27 | Firestone Industrial Products Company, Llc | End member and gas spring assembly including same |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10050777B4 (en) * | 2000-10-13 | 2004-09-30 | Continental Aktiengesellschaft | Air spring and method for manufacturing an air spring |
| DE10354574B3 (en) * | 2003-11-21 | 2005-01-27 | Contitech Luftfedersysteme Gmbh | Pneumatic spring with seamless hose roll bellows for suspension has fixing region with two trapezoid projections |
| US7325794B2 (en) | 2005-06-06 | 2008-02-05 | Bfs Diversified Products, Llc | Air spring assembly and method |
| US7404547B2 (en) * | 2005-07-27 | 2008-07-29 | Bfs Diversified Products, Llc | Multi-component end member assembly and air spring assembly including the same |
| DE102009052923A1 (en) * | 2009-11-12 | 2011-05-19 | Trw Automotive Gmbh | Ball joint and method for attaching a sealing bellows to a ball joint |
| DE102013206235A1 (en) | 2013-04-09 | 2014-10-09 | Continental Teves Ag & Co. Ohg | Air spring, in particular for vehicles |
| DE102018206907A1 (en) * | 2018-05-04 | 2019-11-07 | Continental Teves Ag & Co. Ohg | Air spring with special clamping ring |
| US11040389B2 (en) * | 2018-12-06 | 2021-06-22 | Continental Automotive Systems, Inc. | Guide tube retainment feature during crimping of guide tubes |
| DE102019212637A1 (en) | 2019-08-23 | 2021-02-25 | Contitech Luftfedersysteme Gmbh | Air springs and process for their manufacture |
| US20230191865A1 (en) * | 2021-12-20 | 2023-06-22 | Continental Automotive Systems, Inc. | Airspring gaiter with sliding joint |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1081779B (en) * | 1955-02-16 | 1960-05-12 | Continental Gummi Werke Ag | Toroidal hollow body made of rubber for air suspension, especially on vehicles |
| US4489474A (en) * | 1979-03-08 | 1984-12-25 | The Goodyear Tire & Rubber Company | Assembling method of rolling lobe airspring |
| DE3017733A1 (en) * | 1980-05-09 | 1981-11-12 | Continental Gummi-Werke Ag, 3000 Hannover | ROLL BELLOWS FOR VEHICLE AIR SUSPENSIONS |
| IT8220872V0 (en) * | 1981-03-27 | 1982-02-17 | Continental Gummi Werke Ag | ROLLING SPRING FOR PNEUMATIC SUSPENSIONS OF VEHICLES. |
| US4564177A (en) * | 1983-04-21 | 1986-01-14 | The Firestone Tire & Rubber Company | Clamp for non-beaded pneumatic assemblies |
| DE3346108A1 (en) * | 1983-12-21 | 1985-07-04 | Continental Gummi Werke Ag | AIR SUSPENSION, IN PARTICULAR FOR ROAD VEHICLES |
| US4784376A (en) * | 1987-06-17 | 1988-11-15 | The Firestone Tire & Rubber Company | End cap assembly for air spring |
| US5005808A (en) * | 1987-12-01 | 1991-04-09 | The Goodyear Tire & Rubber Company | Airspring end member and airspring assembly |
| US4899995A (en) * | 1988-12-29 | 1990-02-13 | Bridgestone/Firestone, Inc. | Clamp ring assembly for air spring |
| DE4118577C2 (en) * | 1991-06-06 | 1995-04-27 | Continental Ag | Air spring with a hose bellows made of elastomeric material |
| DE4118576A1 (en) * | 1991-06-06 | 1992-12-10 | Continental Ag | Pneumatic shock absorber with elastomeric bellows - has clamping ring to fix bellows end to connector support shoulder without damage to bellows |
| DE4211135A1 (en) * | 1992-04-03 | 1993-10-07 | Continental Ag | Method of sealingly connecting elastomer material air spring bellows to flange - involves clamping ring which is deformed during radial compression to create end ridges which bite into bellows and key into flange slot |
| US5374037A (en) * | 1993-09-20 | 1994-12-20 | Bridgestone/Firestone, Inc. | Clamp ring assembly for air spring |
| DE4423601C2 (en) * | 1994-07-06 | 1997-08-21 | Continental Ag | Air spring bellows made of elastomeric material |
| HU221999B1 (en) * | 1996-09-30 | 2003-03-28 | Phoenix Aktiengesellschaft | Pneumatic spring |
| US5941509A (en) * | 1997-04-18 | 1999-08-24 | Bridgestone/Firestone, Inc. | Clamp assembly for air actuator |
| US6036180A (en) * | 1998-02-26 | 2000-03-14 | Bridgestone/Firestone, Inc. | Tear-drop shaped clamp assembly and tapered end cap for an air spring |
| DE10050777B4 (en) * | 2000-10-13 | 2004-09-30 | Continental Aktiengesellschaft | Air spring and method for manufacturing an air spring |
-
2000
- 2000-10-13 DE DE10050777A patent/DE10050777B4/en not_active Expired - Fee Related
-
2001
- 2001-10-15 US US09/975,948 patent/US6749184B2/en not_active Expired - Lifetime
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060208403A1 (en) * | 2005-03-16 | 2006-09-21 | Arvinmeritor Technology, Llc | Air spring assembly with flexible can |
| EP2060832A3 (en) * | 2007-11-16 | 2011-11-30 | Continental Teves AG & Co. oHG | Clamp contour for a pressure admittable component and tensioner therefor |
| WO2014190123A1 (en) * | 2013-05-22 | 2014-11-27 | Firestone Industrial Products Company, Llc | End member and gas spring assembly including same |
| US9951837B2 (en) | 2013-05-22 | 2018-04-24 | Firestone Industrial Products Company, Llc | End member and gas spring assembly including same |
| US10962078B2 (en) | 2013-05-22 | 2021-03-30 | Firestone Industrial Products Company, Llc | End member and gas spring assembly including same |
Also Published As
| Publication number | Publication date |
|---|---|
| US6749184B2 (en) | 2004-06-15 |
| DE10050777A1 (en) | 2002-05-02 |
| DE10050777B4 (en) | 2004-09-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR950007167B1 (en) | Airspring end member and airspring assembly | |
| US6749184B2 (en) | Air spring and method for making the same | |
| EP0378748B1 (en) | End cap assembly for air spring | |
| US5374037A (en) | Clamp ring assembly for air spring | |
| JPS59205069A (en) | Multifunction liquid seal for damper, etc. | |
| US4807725A (en) | Floating caliper spot-type disc brake | |
| US5460354A (en) | Clamp assembly for air spring | |
| EP1366318B1 (en) | Coupling for connection of a tube or hose by pushing-in | |
| US4613018A (en) | Braking caliper for a spot-type disc brake | |
| US6397987B1 (en) | Dashpot piston in halves | |
| EP0939241B1 (en) | A tear-drop shaped clamp assembly and tapered end cap for an air spring | |
| KR101361087B1 (en) | Sealing device | |
| CN102667189B (en) | Ball and socket joint and method for fastening a sealing bellows on the ball and socket joint | |
| JPH10181528A (en) | Belt fastening device | |
| GB2044395A (en) | Attaching Diaphragm of Rolling Lobe Airspring | |
| US7040668B2 (en) | Tube joint | |
| EP1253345A2 (en) | A piston and a damping means with a piston | |
| US4189160A (en) | Sealing cup | |
| KR101188240B1 (en) | Seal device | |
| JP4417667B2 (en) | Seal structure and gas spring | |
| JP4644503B2 (en) | Hydraulic shock absorber | |
| JP4481769B2 (en) | Disc brake | |
| US4637617A (en) | Device for forcing piston ring radially outwardly | |
| WO2024185404A1 (en) | Shock absorber and method for manufacturing shock absorber | |
| CN120677329A (en) | Pulse damper with clamping sleeve and method for manufacturing pulse damper with clamping sleeve |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CONTINENTAL AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WODE, STEFAN;GLEU, JENS-UWE;REEL/FRAME:012352/0957;SIGNING DATES FROM 20011103 TO 20011120 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 12 |