US20020039949A1 - Power roller bearing of toroidal-type continuously variable transmission unit - Google Patents
Power roller bearing of toroidal-type continuously variable transmission unit Download PDFInfo
- Publication number
- US20020039949A1 US20020039949A1 US09/972,234 US97223401A US2002039949A1 US 20020039949 A1 US20020039949 A1 US 20020039949A1 US 97223401 A US97223401 A US 97223401A US 2002039949 A1 US2002039949 A1 US 2002039949A1
- Authority
- US
- United States
- Prior art keywords
- power roller
- outer race
- raceway grooves
- roller bearing
- toroidal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 43
- 239000010410 layer Substances 0.000 claims abstract description 41
- 230000006835 compression Effects 0.000 claims abstract description 23
- 238000007906 compression Methods 0.000 claims abstract description 23
- 239000002344 surface layer Substances 0.000 claims abstract description 15
- 230000003746 surface roughness Effects 0.000 claims abstract description 8
- 238000005096 rolling process Methods 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 15
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 10
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 claims description 7
- 229920002313 fluoropolymer Polymers 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 239000011133 lead Substances 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 238000005480 shot peening Methods 0.000 abstract description 11
- 230000002708 enhancing effect Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 10
- 239000003921 oil Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 238000011282 treatment Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000005255 carburizing Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- 229910000954 Medium-carbon steel Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H15/00—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
- F16H15/02—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
- F16H15/04—Gearings providing a continuous range of gear ratios
- F16H15/06—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
- F16H15/32—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
- F16H15/36—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
- F16H15/38—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/583—Details of specific parts of races
- F16C33/585—Details of specific parts of races of raceways, e.g. ribs to guide the rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/64—Special methods of manufacture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/10—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for axial load mainly
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/54—Surface roughness
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2361/00—Apparatus or articles in engineering in general
- F16C2361/65—Gear shifting, change speed gear, gear box
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Definitions
- the present invention relates to a power roller bearing of a toroidal-type continuously variable transmission unit adapted to be used for a transmission of, for example, an automobile, general industrial machine, transportation equipment, etc.
- a toroidal-type continuously variable transmission unit adapted to be used for a transmissions of, for example, an automobile, general industrial machine, transportation equipment, etc. comprises an input disc and an output disc opposed to each other, a power roller provided between the input and output discs, a loading cam mechanism for pushing the input and output discs toward each other, etc.
- the input disc can be rotated by means of a drive source such as an engine. Power that is based on the rotation of the input disc is transmitted to the output disc through the power roller.
- the power roller is provided for swinging motion between the input disc and the output disc.
- the power roller is provided with traction portions that are in rolling contact with the two discs, individually.
- the power roller is rotatably supported by means of a power roller bearing that functions as a thrust bearing.
- the power roller bearing is provided with an end portion of the power roller that functions as an inner race, an outer race, balls provided for rolling motion between the outer race and the power roller, etc.
- the power roller is supported for swinging motion between the input disc and the output disc by means of a trunnion.
- the gear ratio of the toroidal-type continuously variable transmission unit can be changed by changing the angle of inclination of the power roller.
- the power roller bearing constructed in this manner hardly apparently differs from a conventional thrust ball bearing that is used to support a rotating shaft on which thrust load acts except for the arrangement of the power roller. Accordingly, a study has been made to produce power roller bearings at low cost by using parts that are designed for existing thrust ball bearings.
- a power roller bearing apparently resembles a thrust ball bearing, however, its power roller functions quite differently from the inner race of the conventional thrust ball bearing. More specifically, the distribution of load that acts on the power roller itself and the behavior of the balls in contact with the outer race and the power roller considerably differ from those of the conventional thrust ball bearing, so that improvement must inevitably be made in consideration of those differences.
- the power roller functions as a power transmitting member for transmitting torque from the input disc to the output disc.
- This power roller is equivalent to a transmission gear in a gear-type multistage transmission.
- the power roller of this type rotates at high speed under heavy forces of pressure from the input disc and the output disc, so that it generates intense heat.
- the heat from the power roller serves to heat the balls and the like.
- high-viscosity traction oil which is developed for the purpose of power transmission, as lubricating oil to be supplied between the outer race and the power roller.
- the traction portions of the power roller that touch the input disc and the output disc face each other at a circumferential distance of 180° on the outer peripheral edge of the power roller.
- the heavy forces of pressure from the input disc and the output disc intensively act on the traction portions of the power roller as a resultant force that combines radial load and thrust load.
- a very high contact pressure develops in the traction portions of the power roller that touch the input disc and the output disc.
- a conventional bearing is used under a contact pressure of 2 to 3 GPa (gigapascals) or less, for example.
- the contact pressure ranges from 2.5 to 3.5 GPa in a normal deceleration mode. In some cases, the contact pressure may even reach 4 GPa in a maximum deceleration mode.
- the heavy forces of pressure from the input disc and the output disc intensively act as a radial load in positions at a distance of 180° from each other on the traction portions of the power roller.
- This radial load causes the power roller to undergo compressive deformation in the radial direction. Since this compressive deformation causes the power roller to warp, it is hardly possible to allow a plurality of balls between the power roller and the outer race uniformly to share thrust load that acts on the power roller. Thrust load that acts on these balls increases in positions at an angular distance of 90° from the positions of contact (traction portions of the power roller) between the power roller and the input and output discs. In consequence, pressures of contact between the individual balls and raceway grooves vary, so that some of the balls roll in the raceway grooves under very high contact pressures.
- the applicant hereof also proposed a technique in which an input disc, an output disc, and a power roller in contact with them are subjected to ground finish after they are subjected to carburizing treatment. Further, the applicant hereof proposed a technique in which input and output discs and a power roller are subjected to ground finish after they are subjected to carburizing-nitriding treatment so that the hardness and effective case depth of the respective surfaces of these members can be adjusted to appropriate values (2 mm to 4 mm) that stand locally high contact pressures (see Jpn. Pat. Appln. KOKAI Publication No. 7-71555).
- the molecular structure of the traction oil may be decomposed as the power roller is heated, in particular.
- the traction coefficient worsens, and the safety factor for gloss slip also lowers.
- the traction oil is degenerated, moreover, it is hard to form oil films on the respective surfaces of the power roller, balls, etc. Accordingly, there is a possibility of the traction portions of the power roller and the surfaces of the respective raceway grooves of the power roller and the outer race undergoing early flaking. These phenomena cause the life performance of the power roller bearing to lower.
- the power roller bearing Since the power roller bearing is originally designed for power transmission, it is important to minimize loss of the dynamic torque of the bearing itself, thereby improving the torque transmissibility. Despite the aforesaid improvement, however, a substantial dynamic torque loss may be caused to lower the torque transmissibility, depending on the dimensions of the balls and the respective raceway grooves of the power roller and the outer race. If the hardness and effective case depth of the respective surfaces of the power roller and the like are adjusted in the aforesaid manner, moreover, the edges of the raceway grooves or the balls sometimes may be broken early, or the respective contact surfaces of the raceway grooves and the balls may be marred, so that the life performance of the power roller bearing may be lowered.
- the object of the present invention is to provide a power roller bearing of a toroidal-type continuously variable transmission unit, of which the life performance can be restrained from lowering.
- a power roller bearing of a toroidal-type continuously variable transmission unit of the present invention is provided for swinging motion between an input disc capable of being rotated by means of a drive source and an output disc opposed to the input disc, and comprises an outer race, a power roller in rolling contact with the input disc and output disc, and balls provided for rolling motion between the outer race and the power roller, the outer race and the power roller having annular raceway grooves in which the balls roll individually, at least one of the respective raceway grooves of the outer race and the power roller being formed having treated-surface layers for enhancing the endurance thereof.
- the treated-surface layers based on a first aspect of the present invention include super-finished surfaces with the surface roughness of 0.05 Ra or less, formed on both the respective raceway grooves of the outer race and the power roller, and low-friction layers formed on at least one of the super-finished surfaces.
- heat generated in the power roller bearing can be reduced by lessening friction that is produced as the balls roll in the respective raceway grooves of the outer race and the power roller.
- the respective surfaces of the raceway grooves are not liable to flaking, so that the life of the power roller bearing can be lengthened.
- the dynamic torque of the power roller bearing is lessened, and the general power transmission efficiency of the toroidal-type continuously variable transmission unit is improved. If the transmission unit is applied to an automobile, therefore, the fuel consumption ratio can be improved at the same time.
- the low-friction layers are formed of lubricative substances selected from at least one of materials including gold, silver, lead, molybdenum disulfide (MoS 2 ), tungsten disulfide (WS 2 ), and fluoroplastics.
- lubricative substances selected from at least one of materials including gold, silver, lead, molybdenum disulfide (MoS 2 ), tungsten disulfide (WS 2 ), and fluoroplastics.
- some of the lubricative substances including gold, silver, lead, or fluoroplastic are gradually scraped from the low-friction layers by means of frictional force that is produced as the bearing rotates. As the particles of the scraped lubricative substances are transferred to a fellow surface that is touched by the balls, thin films of the lubricative substances are formed on the fellow surface, whereby the bearing is lubricated.
- the layer of molybdenum disulfide or tungsten disulfide is formed on the surface of each ball or the surface of the raceway groove of the power roller or the outer race by sputtering. According to the power roller bearing using these low-friction layers, heat can be restrained more securely, so that the life of this bearing can be lengthened.
- the treated-surface layers of the power roller bearing of the present invention include residual compression stress layers formed by shot-peening on at least one of the respective raceway grooves of the outer race and the power roller. These residual compression stress layers serve to ease stress that is generated as the balls roll in the raceway grooves. Thus, the fatigue life of the power roller bearing can be improved.
- FIG. 1 is a longitudinal sectional view showing a part of a single-cavity half-toroidal-type continuously variable transmission unit according to a first embodiment of the present invention
- FIG. 2 is a sectional view showing a power roller bearing of the same embodiment
- FIG. 3A is a plan view of an outer race of the power roller bearing of the same embodiment
- FIG. 3B is a sectional view of the outer race taken along line III-III of FIG. 3A;
- FIG. 4A is a plan view of a plan view of a power roller of the power roller bearing of the same embodiment
- FIG. 4B is a sectional view of the power roller taken along line IV-IV of FIG. 4A;
- FIG. 5 is a sectional view showing a ball of the power roller bearing of the same embodiment
- FIG. 6 is a flowchart showing some of manufacturing processes for an outer race and a power roller according to a second embodiment of the present invention
- FIG. 7 is an enlarged sectional view schematically showing the surface of a raceway groove of the outer race or the power roller obtained in the manufacturing processes shown in FIG. 6;
- FIG. 8 is a flowchart showing some of manufacturing processes for an outer race and a power roller according to a third embodiment of the present invention.
- FIG. 9 is an enlarged sectional view schematically showing the surface of a raceway groove of the outer race or the power roller obtained in the manufacturing processes shown in FIG. 8.
- FIGS. 1 to 5 A first embodiment of the present invention will now be described with reference to FIGS. 1 to 5 .
- FIG. 1 is a partial sectional view of an automotive transmission 21 that uses a single-cavity half-toroidal-type continuously variable transmission unit 20 as an example of a toroidal-type continuously variable transmission unit.
- FIG. 2 is a sectional view of a power roller bearing 11 that functions as a thrust bearing of the toroidal-type continuously variable transmission unit 20 .
- the single-cavity half-toroidal-type continuously variable transmission unit 20 that is used in the transmission 21 comprises an input shaft 1 capable of being rotated by means of a drive source E that includes an engine or the like, an input disc 2 , an output disc 3 , a power roller 10 , and a loading cam mechanism 6 for use as push means.
- the input disc 2 is supported on the input shaft 1 and can rotates in association with the input shaft 1 .
- the output disc 3 is rotatably supported on the input shaft 1 so as to face the input disc 2 .
- the output disc 3 can rotates integrally with an output transmitting member 3 a for fetching power that is based on the rotation of the input shaft 1 .
- This output transmitting member 3 a can rotate in association with an output shaft (not shown).
- the power roller 10 is provided for swinging motion between the input disc 2 and the output disc 3 , and is in rolling contact with both the discs 2 and 3 .
- the loading cam mechanism 6 is located on the backside of the input disc 2 .
- the loading cam mechanism 6 is provided with a cam disc 4 and a cam roller 5 .
- the cam disc 4 rotates integrally with the input shaft 1 in a manner such that it is fitted on a spline portion 1 a that is formed on the input shaft 1 .
- a cam face 22 that is formed of a circumferential recess and projection are formed on that surface of the cam disc 4 which faces the input disc 2 .
- the cam disc 4 can rotates in association with the drive source E.
- the cam roller 5 is located between the cam disc 4 and the input disc 2 .
- the cam roller 5 is provided for rotation around an axis Q in the radial direction with respect to an axis P of the input shaft 1 .
- a plurality of cam rollers 5 are arranged around the axis P of the input shaft 1 .
- a trunnion 8 is provided between the input disc 2 and the output disc 3 .
- the trunnion 8 can swing around a pivot 7 in the direction indicated by arrow R in FIG. 1.
- a displacement shaft 9 is provided in the central portion of the trunnion 8 .
- the power roller 10 is rotatably supported on the displacement shaft 9 .
- the power roller 10 includes a traction portion 10 a that is in rolling contact with the input disc 2 and the output disc 3 . Between the input disc 2 and output disc 3 , the power roller 10 changes its angle of inclination in accordance with the gear ratio of the toroidal-type continuously variable transmission unit 20 . An end portion 10 b of the power roller 10 functions as an inner race of the power roller bearing 11 , which will be mentioned later.
- the power roller bearing 11 for use as a thrust bearing is provided between the trunnion 8 and the power roller 10 .
- the power roller bearing 11 is provided with the end portion 10 b of the power roller 10 that serves as the inner race, an outer race 13 , a plurality of balls 12 as rolling elements, and a retainer 14 .
- the outer race 13 has an annular shape.
- the outer race 13 is supported on the trunnion 8 .
- the balls 12 have a spherical shape each.
- the balls 12 are arranged individually for rolling motion between the power roller 10 and the outer race 13 .
- the retainer 14 which has an annular shape, is located between the outer race 13 and the power roller 10 .
- the retainer 14 holds the balls 12 for rolling motion.
- the power roller bearing 11 with the aforementioned configuration is provided for swinging motion between the input disc 2 and the output disc 3 .
- the input disc 2 is pushed toward the output disc 3 by means of the loading cam mechanism 6 , the turning force of the input disc 2 that is rotated by means of the drive source E is transmitted to the output disc 3 through the power roller 10 .
- the output transmitting member 3 a rotates integrally with the output disc 3 , the rotation of the input disc 2 is fetched as power.
- the loading cam mechanism 6 pushes the input disc 2 toward the output disc 3 in the aforesaid manner so that the power roller 10 comes into rolling contact with both the input and output discs 2 and 3 , load in the thrusting direction acts on the power roller 10 .
- the power roller bearing 11 supports the load in the thrusting direction the input disc 2 and the output disc 3 apply to the power roller 10 , and allows the power roller 10 to rotate.
- a raceway groove 15 is formed on an end face 17 of the outer race 13 .
- a raceway groove 16 is formed on an end face 18 of the power roller 10 in a position opposite to the raceway groove 15 of the outer race 13 .
- the raceway grooves 15 and 16 are formed like rings on their corresponding end faces 17 and 18 .
- the raceway grooves 15 and 16 have an arcuate cross section each.
- Base materials that individually constitute the outer race 13 and the power roller 10 have super-finished surfaces 23 a and 24 a that are formed by super-finishing the respective surfaces of the raceway grooves 15 and 16 .
- the surface roughness of these super-finished surfaces 23 a and 24 a is adjusted to 0.05 Ra or less.
- Low-friction layers 23 b and 24 b are formed on the super-finished surfaces 23 a and 24 a, respectively.
- the super-finished surfaces 23 a and 24 a and the low-friction layers 23 b and 24 b constitute treated-surface layers 23 and 24 .
- a treated-surface layer 25 including a low-friction layer 25 b is formed also on the surface of each ball 12 .
- These low-friction layers 23 b, 24 b and 25 b are formed individually of lubricative substances selected from at least one of materials including gold, silver, lead, molybdenum disulfide (MOS 2 ), tungsten disulfide (WS 2 ), and fluoroplastics.
- MOS 2 molybdenum disulfide
- WS 2 tungsten disulfide
- fluoroplastics In the low-friction layers 23 b, 24 b and 25 b that are formed of lubricative substances including gold, silver, lead, and fluoroplastics, among those substances, their lubricative substances are gradually scraped from the respective surfaces of the base materials as the power roller bearing 11 rotates.
- films of molybdenum disulfide and tungsten disulfide have their own lubricative surfaces, these lubricative surfaces wear little by little as they develop lubricating properties.
- the films of molybdenum disulfide and tungsten disulfide are formed on the respective surfaces of the balls 12 and the raceway grooves 15 and 16 by sputtering.
- the super-finished surfaces 23 a and 24 a with the surface roughness of 0.05 Ra or less are formed on the respective raceway grooves 15 and 16 of the outer race 13 and the power roller 10 , and the low-friction layers 23 b and 24 b of molybdenum disulfide or the like are further formed on the super-finished surfaces.
- the low-friction layer 25 b is formed also on the surface of each ball 12 . Accordingly, the value of heat developed as the balls 12 roll in the raceway grooves 15 and 16 can be lowered.
- the respective surfaces of the raceway grooves 15 and 16 are not liable to flaking, so that the life of the power roller bearing 11 of the toroidal-type continuously variable transmission unit 20 can be lengthened.
- the low-friction layers 23 b and 24 b are formed on both the raceway groove 15 of the outer race 13 and the raceway groove 16 of the power roller 10 .
- the low-friction layer 23 b or 24 b may be formed on one of the raceway grooves 15 and 16 .
- the life of the power roller bearing 11 can be also lengthened.
- lowering of the life performance of the power roller bearing 11 of the toroidal-type continuously variable transmission unit 20 can be restrained by forming the low-friction layer 23 b or 24 b on at least one of the respective raceway grooves 15 and 16 of the outer race 13 and the power roller 10 .
- the dynamic torque of the power roller bearing 11 is lessened, and the general power transmission efficiency of the toroidal-type continuously variable transmission unit 20 is improved. If the transmission unit is applied to an automobile, therefore, the fuel consumption ratio can be improved at the same time.
- a toroidal-type continuously variable transmission unit of this embodiment like the embodiment shown in FIG. 1, comprises an input disc 2 , an output disc 3 , a loading cam mechanism 6 , a power roller 10 , a power roller bearing 11 , etc.
- the power roller bearing 11 is composed of an end portion 10 b of the power roller 10 that functions as an inner race, a plurality of balls 12 , an outer race 13 , etc.
- the respective surface regions of a raceway groove 15 of the outer race 13 and a raceway groove 16 of the power roller 10 are formed having treated-surface layers 23 and 24 that include residual compression stress layers 23 c and 24 c (schematically shown in FIG. 7), respectively.
- the treated-surface layers 23 and 24 that include the residual compression stress layers 23 c and 24 c are formed by shot-peening the surfaces of the raceway grooves 15 and 16 , respectively.
- These treated-surface layers 23 and 24 that include the residual compression stress layers 23 c and 24 c individually have residual compression stresses within the range from ⁇ 20 kgf/mm 2 to ⁇ 100 kgf/mm 2 .
- Step S 1 in FIG. 6 a workpiece as a material is forged. After the workpiece is formed into the shape of a nearly finished product by this forging work, the process advances to Step S 2 . After the workpiece is cut in Step S 2 , the process advances to Step S 3 . After the workpiece is subjected to heat treatment such as carburizing treatment or carburizing-nitriding treatment in Step S 3 , the process advances to Step S 4 .
- Step S 5 After the workpiece is ground into the same shape as a product in Step S 4 , the process advances to Step S 5 .
- Step S 6 After the respective surfaces of the raceway grooves 15 and 16 and the like are subjected to super-finishing work and the like in Step S 5 , the process advances to Step S 6 .
- Step S 6 the respective surfaces of the raceway grooves 15 and 16 and the like are shot-peened to obtain the outer race 13 and the power roller 10 that have desired shapes and the residual compression stress layers 23 c and 24 c.
- depressions 45 and protuberances 46 are formed on the respective surfaces of the raceway grooves 15 and 16 , that is, the respective surfaces of the residual compression stress layers 23 c and 24 c, by shot-peening. Since a lubricant such as traction oil or the lubricative substances described in connection with the first embodiment are held in the depressions 45 , the power roller bearing 11 can be prevented from being lubricated unsatisfactorily. Thus, the life of the power roller bearing 11 can be lengthened.
- Step S 6 shot-peening is carried out in Step S 6 after the raceway grooves 15 and 16 are ground in Step S 4 . Accordingly, the outer race 13 and the power roller 10 can be completed without removing the residual compression stress layers 23 c and 24 c from the respective surfaces of the raceway grooves 15 and 16 of the outer race 13 and the power roller 10 .
- the residual compression stress layers 23 c and 24 c serve to ease stress that is generated as the balls 12 roll in the raceway grooves 15 and 16 .
- the fatigue life of the power roller bearing 11 can be improved.
- FIG. 8 shows processes according to a third embodiment of the present invention that are used to form an outer race 13 and a power roller 10 .
- the respective surfaces of raceway grooves 15 and 16 are shot-peened in Step ST 5 after cutting work is carried out in Step S 4 . Thereafter, the respective surfaces of the raceway grooves 15 and 16 are super-finished in Step ST 6 .
- like symbols are used to designate like processes of FIG. 6, and a description of those processes is omitted.
- the rotational frequency of the input shaft 1 was set at 4,000 rpm, and input torque form the drive source E at 390 Nm. Further, the endurance test was conducted with use of synthetic traction oil as lubricating oil and with the temperature of this lubricating oil at 100° C.
- a product A of the present invention and a product B of the present invention uses outer races and power rollers that were formed individually in the processes shown in FIG. 8.
- a product C of the present invention uses a outer race and a power roller that were formed in the processes shown in FIG. 6.
- Comparative examples A, B and C use outer races and power rollers in which the respective surfaces of their raceway grooves were not shot-peened.
- the residual compression stress layers 23 c and 24 c are formed on both the respective raceway grooves 15 and 16 of the outer race 13 and the power roller 10 .
- the residual compression stress layer 23 c or 24 c may be formed on one of the raceway grooves 15 and 16 .
- the life of the power roller bearing 11 can be lengthened also.
- the low-friction layer 25 b described in connection with the first embodiment may be formed on the surface of each ball 12 .
- the residual compression stress layers 23 c and 24 c is formed on the raceway grooves 15 and 16 by shot-peening.
- the low-friction layer 23 b or 24 b may be formed on one of the raceway grooves 15 and 16 .
- the residual compression stress layer 23 c or 24 c is formed on the other by shot-peening.
- any other portions than the raceway grooves 15 and 16 may be shot-peened.
- the aforesaid residual compression stress layers 23 c and 24 c may be formed by barreling or the like instead of shot-peening.
- the improvement of the rolling fatigue life by the aforesaid shot-peening is also applicable to individual traction surfaces of the toroidal-type continuously variable transmission unit 20 .
- conditions for these traction surfaces including high temperature, high speed, high contact pressure, presence of spins, and use of traction oil, etc., are similar to those for the power roller bearing 11 .
- the technique of the present invention is also effective for the traction surfaces.
- the results of the experiment shown in Table 1 indicate that this technique is also effective for the traction surfaces. More specifically, the life of the discs 2 and 3 or the power roller 10 can be lengthened by shot-peening at least one of the respective traction surfaces of the discs and the power roller.
- the power roller bearing of the present invention can be suitably used for a transmission of, for example, a general industrial machine or transportation equipment, as well as a power transmission system of an automobile.
- the present invention is applicable to full-toroidal-type continuously variable transmission units as well as to half-toroidal-type continuously variable transmission units.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Friction Gearing (AREA)
Abstract
A power roller bearing of a toroidal-type continuously variable transmission unit that is used for a transmission of an automobile or the like comprises a power roller, an outer race, balls, a retainer, etc. Annular raceway grooves are formed individually on the respective opposite end faces of the outer race and the power roller. Treated-surface layers for enhancing the endurance of the power roller bearing are formed individually on the respective surfaces of the raceway grooves. The treated-surface layers include super-finished surfaces with the surface roughness of 0.05 Ra or less, formed individually on the raceway grooves, and low-friction layers formed individually on the super-finished surfaces. Alternatively, the treated-surface layers include residual compression stress layers formed on the respective surface layer portions of the raceway grooves by shot-peening.
Description
- This is a Continuation Application of PCT Application No. PCT/JP00/02201, filed Apr. 5, 2000, which was not published under PCT Article 21(2) in English.
- This application is based upon and claims the benefit of priority from the prior Japanese Patent Applications No. 11-098841, filed Apr. 6, 1999; and No. 11-098842, filed Apr. 6, 1999, the entire contents of both of which are incorporated herein by reference.
- 1. Field of the Invention
- The present invention relates to a power roller bearing of a toroidal-type continuously variable transmission unit adapted to be used for a transmission of, for example, an automobile, general industrial machine, transportation equipment, etc.
- 2. Description of the Related Art
- A toroidal-type continuously variable transmission unit adapted to be used for a transmissions of, for example, an automobile, general industrial machine, transportation equipment, etc. comprises an input disc and an output disc opposed to each other, a power roller provided between the input and output discs, a loading cam mechanism for pushing the input and output discs toward each other, etc.
- The input disc can be rotated by means of a drive source such as an engine. Power that is based on the rotation of the input disc is transmitted to the output disc through the power roller. The power roller is provided for swinging motion between the input disc and the output disc. The power roller is provided with traction portions that are in rolling contact with the two discs, individually. The power roller is rotatably supported by means of a power roller bearing that functions as a thrust bearing.
- The power roller bearing is provided with an end portion of the power roller that functions as an inner race, an outer race, balls provided for rolling motion between the outer race and the power roller, etc. The power roller is supported for swinging motion between the input disc and the output disc by means of a trunnion. The gear ratio of the toroidal-type continuously variable transmission unit can be changed by changing the angle of inclination of the power roller.
- The power roller bearing constructed in this manner hardly apparently differs from a conventional thrust ball bearing that is used to support a rotating shaft on which thrust load acts except for the arrangement of the power roller. Accordingly, a study has been made to produce power roller bearings at low cost by using parts that are designed for existing thrust ball bearings.
- Although a power roller bearing apparently resembles a thrust ball bearing, however, its power roller functions quite differently from the inner race of the conventional thrust ball bearing. More specifically, the distribution of load that acts on the power roller itself and the behavior of the balls in contact with the outer race and the power roller considerably differ from those of the conventional thrust ball bearing, so that improvement must inevitably be made in consideration of those differences.
- While the inner race of the conventional thrust ball bearing is a member that simply supports a shaft, for example, the power roller functions as a power transmitting member for transmitting torque from the input disc to the output disc. This power roller is equivalent to a transmission gear in a gear-type multistage transmission. The power roller of this type rotates at high speed under heavy forces of pressure from the input disc and the output disc, so that it generates intense heat. The heat from the power roller serves to heat the balls and the like. Thus, it is essential to use high-viscosity traction oil, which is developed for the purpose of power transmission, as lubricating oil to be supplied between the outer race and the power roller.
- The traction portions of the power roller that touch the input disc and the output disc face each other at a circumferential distance of 180° on the outer peripheral edge of the power roller. The heavy forces of pressure from the input disc and the output disc intensively act on the traction portions of the power roller as a resultant force that combines radial load and thrust load. Thus, a very high contact pressure develops in the traction portions of the power roller that touch the input disc and the output disc.
- A conventional bearing is used under a contact pressure of 2 to 3 GPa (gigapascals) or less, for example. In the case of a power roller bearing that is used in a toroidal-type continuously variable transmission unit for a vehicle, on the other hand, the contact pressure ranges from 2.5 to 3.5 GPa in a normal deceleration mode. In some cases, the contact pressure may even reach 4 GPa in a maximum deceleration mode.
- Further, the heavy forces of pressure from the input disc and the output disc intensively act as a radial load in positions at a distance of 180° from each other on the traction portions of the power roller. This radial load causes the power roller to undergo compressive deformation in the radial direction. Since this compressive deformation causes the power roller to warp, it is hardly possible to allow a plurality of balls between the power roller and the outer race uniformly to share thrust load that acts on the power roller. Thrust load that acts on these balls increases in positions at an angular distance of 90° from the positions of contact (traction portions of the power roller) between the power roller and the input and output discs. In consequence, pressures of contact between the individual balls and raceway grooves vary, so that some of the balls roll in the raceway grooves under very high contact pressures.
- In order to prevent high contact pressures from lowering the life performance, it is essential specially to adjust the materials, surface hardness, and surface roughness of the traction portions of the power roller in contact with the input and output discs and the respective raceway grooves of the power roller and the outer race that are touched by the balls.
- In order to lengthen the life of the power roller bearing, based on this background, the applicant hereof proposed a technique in which balls are formed of medium-carbon steel or high-carbon steel and the hardness and strength of the ball surface are adjusted by carburizing-nitriding treatment or quenching and tempering treatments (see Jpn. Pat. Appln. KOKAI Publication No. 7-208568).
- The applicant hereof also proposed a technique in which an input disc, an output disc, and a power roller in contact with them are subjected to ground finish after they are subjected to carburizing treatment. Further, the applicant hereof proposed a technique in which input and output discs and a power roller are subjected to ground finish after they are subjected to carburizing-nitriding treatment so that the hardness and effective case depth of the respective surfaces of these members can be adjusted to appropriate values (2 mm to 4 mm) that stand locally high contact pressures (see Jpn. Pat. Appln. KOKAI Publication No. 7-71555).
- Although the hardness, effective case depth, and surface roughness of the power roller and balls are rationalized by using traction oil for power roller bearings, use of appropriate materials for the individual members, and surface treatments, as mentioned before, the endurance of the power roller bearing can be improved only limitedly by it alone.
- In some cases, the molecular structure of the traction oil, synthetic oil, may be decomposed as the power roller is heated, in particular. In these cases, the traction coefficient worsens, and the safety factor for gloss slip also lowers. If the traction oil is degenerated, moreover, it is hard to form oil films on the respective surfaces of the power roller, balls, etc. Accordingly, there is a possibility of the traction portions of the power roller and the surfaces of the respective raceway grooves of the power roller and the outer race undergoing early flaking. These phenomena cause the life performance of the power roller bearing to lower.
- Since the power roller bearing is originally designed for power transmission, it is important to minimize loss of the dynamic torque of the bearing itself, thereby improving the torque transmissibility. Despite the aforesaid improvement, however, a substantial dynamic torque loss may be caused to lower the torque transmissibility, depending on the dimensions of the balls and the respective raceway grooves of the power roller and the outer race. If the hardness and effective case depth of the respective surfaces of the power roller and the like are adjusted in the aforesaid manner, moreover, the edges of the raceway grooves or the balls sometimes may be broken early, or the respective contact surfaces of the raceway grooves and the balls may be marred, so that the life performance of the power roller bearing may be lowered.
- Accordingly, the object of the present invention is to provide a power roller bearing of a toroidal-type continuously variable transmission unit, of which the life performance can be restrained from lowering.
- A power roller bearing of a toroidal-type continuously variable transmission unit of the present invention is provided for swinging motion between an input disc capable of being rotated by means of a drive source and an output disc opposed to the input disc, and comprises an outer race, a power roller in rolling contact with the input disc and output disc, and balls provided for rolling motion between the outer race and the power roller, the outer race and the power roller having annular raceway grooves in which the balls roll individually, at least one of the respective raceway grooves of the outer race and the power roller being formed having treated-surface layers for enhancing the endurance thereof.
- The treated-surface layers based on a first aspect of the present invention include super-finished surfaces with the surface roughness of 0.05 Ra or less, formed on both the respective raceway grooves of the outer race and the power roller, and low-friction layers formed on at least one of the super-finished surfaces.
- According to this invention, heat generated in the power roller bearing can be reduced by lessening friction that is produced as the balls roll in the respective raceway grooves of the outer race and the power roller. Thus, the respective surfaces of the raceway grooves are not liable to flaking, so that the life of the power roller bearing can be lengthened. According to this invention, the dynamic torque of the power roller bearing is lessened, and the general power transmission efficiency of the toroidal-type continuously variable transmission unit is improved. If the transmission unit is applied to an automobile, therefore, the fuel consumption ratio can be improved at the same time.
- Preferably, the low-friction layers are formed of lubricative substances selected from at least one of materials including gold, silver, lead, molybdenum disulfide (MoS 2), tungsten disulfide (WS2), and fluoroplastics. Among these substances, some of the lubricative substances including gold, silver, lead, or fluoroplastic are gradually scraped from the low-friction layers by means of frictional force that is produced as the bearing rotates. As the particles of the scraped lubricative substances are transferred to a fellow surface that is touched by the balls, thin films of the lubricative substances are formed on the fellow surface, whereby the bearing is lubricated. Since layers of molybdenum disulfide and tungsten disulfide as the lubricative substances have their own lubricative surfaces, these lubricative surfaces wear little by little as they develop lubricating properties. The layer of molybdenum disulfide or tungsten disulfide is formed on the surface of each ball or the surface of the raceway groove of the power roller or the outer race by sputtering. According to the power roller bearing using these low-friction layers, heat can be restrained more securely, so that the life of this bearing can be lengthened.
- In order to achieve the above object, the treated-surface layers of the power roller bearing of the present invention based on a second aspect include residual compression stress layers formed by shot-peening on at least one of the respective raceway grooves of the outer race and the power roller. These residual compression stress layers serve to ease stress that is generated as the balls roll in the raceway grooves. Thus, the fatigue life of the power roller bearing can be improved.
- FIG. 1 is a longitudinal sectional view showing a part of a single-cavity half-toroidal-type continuously variable transmission unit according to a first embodiment of the present invention;
- FIG. 2 is a sectional view showing a power roller bearing of the same embodiment;
- FIG. 3A is a plan view of an outer race of the power roller bearing of the same embodiment;
- FIG. 3B is a sectional view of the outer race taken along line III-III of FIG. 3A;
- FIG. 4A is a plan view of a plan view of a power roller of the power roller bearing of the same embodiment;
- FIG. 4B is a sectional view of the power roller taken along line IV-IV of FIG. 4A;
- FIG. 5 is a sectional view showing a ball of the power roller bearing of the same embodiment;
- FIG. 6 is a flowchart showing some of manufacturing processes for an outer race and a power roller according to a second embodiment of the present invention;
- FIG. 7 is an enlarged sectional view schematically showing the surface of a raceway groove of the outer race or the power roller obtained in the manufacturing processes shown in FIG. 6;
- FIG. 8 is a flowchart showing some of manufacturing processes for an outer race and a power roller according to a third embodiment of the present invention; and
- FIG. 9 is an enlarged sectional view schematically showing the surface of a raceway groove of the outer race or the power roller obtained in the manufacturing processes shown in FIG. 8.
- A first embodiment of the present invention will now be described with reference to FIGS. 1 to 5.
- FIG. 1 is a partial sectional view of an
automotive transmission 21 that uses a single-cavity half-toroidal-type continuouslyvariable transmission unit 20 as an example of a toroidal-type continuously variable transmission unit. FIG. 2 is a sectional view of apower roller bearing 11 that functions as a thrust bearing of the toroidal-type continuouslyvariable transmission unit 20. - As shown in FIG. 1, the single-cavity half-toroidal-type continuously
variable transmission unit 20 that is used in thetransmission 21 comprises an input shaft 1 capable of being rotated by means of a drive source E that includes an engine or the like, aninput disc 2, anoutput disc 3, apower roller 10, and a loading cam mechanism 6 for use as push means. - The
input disc 2 is supported on the input shaft 1 and can rotates in association with the input shaft 1. Theoutput disc 3 is rotatably supported on the input shaft 1 so as to face theinput disc 2. Theoutput disc 3 can rotates integrally with an output transmitting member 3 a for fetching power that is based on the rotation of the input shaft 1. This output transmitting member 3 a can rotate in association with an output shaft (not shown). - The
power roller 10 is provided for swinging motion between theinput disc 2 and theoutput disc 3, and is in rolling contact with both the 2 and 3. The loading cam mechanism 6 is located on the backside of thediscs input disc 2. - The loading cam mechanism 6 is provided with a cam disc 4 and a
cam roller 5. The cam disc 4 rotates integrally with the input shaft 1 in a manner such that it is fitted on aspline portion 1 a that is formed on the input shaft 1. Acam face 22 that is formed of a circumferential recess and projection are formed on that surface of the cam disc 4 which faces theinput disc 2. The cam disc 4 can rotates in association with the drive source E. - The
cam roller 5 is located between the cam disc 4 and theinput disc 2. Thecam roller 5 is provided for rotation around an axis Q in the radial direction with respect to an axis P of the input shaft 1. A plurality ofcam rollers 5 are arranged around the axis P of the input shaft 1. - When the cam disc 4 is rotated by means of the drive source E that includes the engine, in the loading cam mechanism 6 with the configuration described above, the
cam rollers 5 is pushed toward theinput disc 2 by means of thecam face 22. Then, theinput disc 2 is pushed toward theoutput disc 3 by means of thecam rollers 5. A push force generating mechanism such as a hydraulic piston may be used in place of the loading cam mechanism 6 that functions as the push means. - A
trunnion 8 is provided between theinput disc 2 and theoutput disc 3. Thetrunnion 8 can swing around apivot 7 in the direction indicated by arrow R in FIG. 1. Adisplacement shaft 9 is provided in the central portion of thetrunnion 8. Thepower roller 10 is rotatably supported on thedisplacement shaft 9. - The
power roller 10 includes a traction portion 10 a that is in rolling contact with theinput disc 2 and theoutput disc 3. Between theinput disc 2 andoutput disc 3, thepower roller 10 changes its angle of inclination in accordance with the gear ratio of the toroidal-type continuouslyvariable transmission unit 20. Anend portion 10 b of thepower roller 10 functions as an inner race of thepower roller bearing 11, which will be mentioned later. - The
power roller bearing 11 for use as a thrust bearing is provided between thetrunnion 8 and thepower roller 10. As shown in FIG. 2, thepower roller bearing 11 is provided with theend portion 10 b of thepower roller 10 that serves as the inner race, anouter race 13, a plurality ofballs 12 as rolling elements, and aretainer 14. - As shown in FIG. 3A, the
outer race 13 has an annular shape. Theouter race 13 is supported on thetrunnion 8. Theballs 12 have a spherical shape each. Theballs 12 are arranged individually for rolling motion between thepower roller 10 and theouter race 13. Theretainer 14, which has an annular shape, is located between theouter race 13 and thepower roller 10. Theretainer 14 holds theballs 12 for rolling motion. - The
power roller bearing 11 with the aforementioned configuration is provided for swinging motion between theinput disc 2 and theoutput disc 3. When theinput disc 2 is pushed toward theoutput disc 3 by means of the loading cam mechanism 6, the turning force of theinput disc 2 that is rotated by means of the drive source E is transmitted to theoutput disc 3 through thepower roller 10. As the output transmitting member 3 a rotates integrally with theoutput disc 3, the rotation of theinput disc 2 is fetched as power. - Since the loading cam mechanism 6 pushes the
input disc 2 toward theoutput disc 3 in the aforesaid manner so that thepower roller 10 comes into rolling contact with both the input and 2 and 3, load in the thrusting direction acts on theoutput discs power roller 10. Thepower roller bearing 11 supports the load in the thrusting direction theinput disc 2 and theoutput disc 3 apply to thepower roller 10, and allows thepower roller 10 to rotate. - As shown in FIGS. 3A and 3B, a
raceway groove 15 is formed on anend face 17 of theouter race 13. As shown in FIGS. 4A and 4B, araceway groove 16 is formed on anend face 18 of thepower roller 10 in a position opposite to theraceway groove 15 of theouter race 13. The 15 and 16 are formed like rings on their corresponding end faces 17 and 18. As shown in FIGS. 3B and 4B, theraceway grooves 15 and 16 have an arcuate cross section each.raceway grooves - Base materials that individually constitute the
outer race 13 and thepower roller 10 have super-finished surfaces 23 a and 24 a that are formed by super-finishing the respective surfaces of the 15 and 16. The surface roughness of these super-finished surfaces 23 a and 24 a is adjusted to 0.05 Ra or less. Low-raceway grooves 23 b and 24 b are formed on the super-finished surfaces 23 a and 24 a, respectively. The super-finished surfaces 23 a and 24 a and the low-friction layers 23 b and 24 b constitute treated-friction layers 23 and 24. As shown in FIG. 5, a treated-surface layers surface layer 25 including a low-friction layer 25 b is formed also on the surface of eachball 12. These low- 23 b, 24 b and 25 b are formed individually of lubricative substances selected from at least one of materials including gold, silver, lead, molybdenum disulfide (MOS2), tungsten disulfide (WS2), and fluoroplastics. In the low-friction layers 23 b, 24 b and 25 b that are formed of lubricative substances including gold, silver, lead, and fluoroplastics, among those substances, their lubricative substances are gradually scraped from the respective surfaces of the base materials as thefriction layers power roller bearing 11 rotates. As the particles of the scraped lubricative substances are transferred to a fellow surface that is touched by theballs 12, thin films of the lubricative substances are formed also on the fellow surface. The films of these lubricative substances serve to lubricate thepower roller bearing 11. - Since films of molybdenum disulfide and tungsten disulfide have their own lubricative surfaces, these lubricative surfaces wear little by little as they develop lubricating properties. The films of molybdenum disulfide and tungsten disulfide are formed on the respective surfaces of the
balls 12 and the 15 and 16 by sputtering.raceway grooves - According to the arrangement described above, the super-finished surfaces 23 a and 24 a with the surface roughness of 0.05 Ra or less are formed on the
15 and 16 of therespective raceway grooves outer race 13 and thepower roller 10, and the low- 23 b and 24 b of molybdenum disulfide or the like are further formed on the super-finished surfaces. The low-friction layers friction layer 25 b is formed also on the surface of eachball 12. Accordingly, the value of heat developed as theballs 12 roll in the 15 and 16 can be lowered. Thus, the respective surfaces of theraceway grooves 15 and 16 are not liable to flaking, so that the life of theraceway grooves power roller bearing 11 of the toroidal-type continuouslyvariable transmission unit 20 can be lengthened. - In the embodiment described above, the low-
23 b and 24 b are formed on both thefriction layers raceway groove 15 of theouter race 13 and theraceway groove 16 of thepower roller 10. Alternatively, however, the low- 23 b or 24 b may be formed on one of thefriction layer 15 and 16. In this case, the life of theraceway grooves power roller bearing 11 can be also lengthened. Thus, lowering of the life performance of thepower roller bearing 11 of the toroidal-type continuouslyvariable transmission unit 20 can be restrained by forming the low- 23 b or 24 b on at least one of thefriction layer 15 and 16 of therespective raceway grooves outer race 13 and thepower roller 10. - According to the present invention, the dynamic torque of the
power roller bearing 11 is lessened, and the general power transmission efficiency of the toroidal-type continuouslyvariable transmission unit 20 is improved. If the transmission unit is applied to an automobile, therefore, the fuel consumption ratio can be improved at the same time. - A toroidal-type continuously variable transmission unit of this embodiment, like the embodiment shown in FIG. 1, comprises an
input disc 2, anoutput disc 3, a loading cam mechanism 6, apower roller 10, apower roller bearing 11, etc. Thepower roller bearing 11 is composed of anend portion 10 b of thepower roller 10 that functions as an inner race, a plurality ofballs 12, anouter race 13, etc. - The respective surface regions of a
raceway groove 15 of theouter race 13 and araceway groove 16 of thepower roller 10 are formed having treated- 23 and 24 that include residual compression stress layers 23 c and 24 c (schematically shown in FIG. 7), respectively. The treated-surface layers 23 and 24 that include the residual compression stress layers 23 c and 24 c are formed by shot-peening the surfaces of thesurface layers 15 and 16, respectively. These treated-raceway grooves 23 and 24 that include the residual compression stress layers 23 c and 24 c individually have residual compression stresses within the range from −20 kgf/mm2 to −100 kgf/mm2.surface layers - The
outer race 13 and thepower roller 10 with the aforementioned configurations are obtained according to the following processes. First, in Step S1 in FIG. 6, a workpiece as a material is forged. After the workpiece is formed into the shape of a nearly finished product by this forging work, the process advances to Step S2. After the workpiece is cut in Step S2, the process advances to Step S3. After the workpiece is subjected to heat treatment such as carburizing treatment or carburizing-nitriding treatment in Step S3, the process advances to Step S4. - After the workpiece is ground into the same shape as a product in Step S 4, the process advances to Step S5. After the respective surfaces of the
15 and 16 and the like are subjected to super-finishing work and the like in Step S5, the process advances to Step S6. In Step S6, the respective surfaces of theraceway grooves 15 and 16 and the like are shot-peened to obtain theraceway grooves outer race 13 and thepower roller 10 that have desired shapes and the residual compression stress layers 23 c and 24 c. - As is schematically shown in FIG. 7,
depressions 45 andprotuberances 46 are formed on the respective surfaces of the 15 and 16, that is, the respective surfaces of the residual compression stress layers 23 c and 24 c, by shot-peening. Since a lubricant such as traction oil or the lubricative substances described in connection with the first embodiment are held in theraceway grooves depressions 45, thepower roller bearing 11 can be prevented from being lubricated unsatisfactorily. Thus, the life of thepower roller bearing 11 can be lengthened. - In the present embodiment, shot-peening is carried out in Step S 6 after the
15 and 16 are ground in Step S4. Accordingly, theraceway grooves outer race 13 and thepower roller 10 can be completed without removing the residual compression stress layers 23 c and 24 c from the respective surfaces of the 15 and 16 of theraceway grooves outer race 13 and thepower roller 10. The residual compression stress layers 23 c and 24 c serve to ease stress that is generated as theballs 12 roll in the 15 and 16. Thus, the fatigue life of theraceway grooves power roller bearing 11 can be improved. - FIG. 8 shows processes according to a third embodiment of the present invention that are used to form an
outer race 13 and apower roller 10. In the processes shown in FIG. 8, the respective surfaces of 15 and 16 are shot-peened in Step ST5 after cutting work is carried out in Step S4. Thereafter, the respective surfaces of theraceway grooves 15 and 16 are super-finished in Step ST6. In FIG. 8, like symbols are used to designate like processes of FIG. 6, and a description of those processes is omitted.raceway grooves - If the
outer race 13 and thepower roller 10 are formed in the processes shown in FIG. 8, residual compression stress layers 23 c and 24 c and super-finished surfaces 23 a and 24 a are formed on the respective surfaces of the 15 and 16 as is schematically shown in FIG. 9. More specifically, theraceway grooves protuberances 46 shown in FIG. 7 are removed by super-finishing work (Step ST6), whereupon thedepressions 45 remain on the respective surfaces of the residual compression stress layers 23 c and 24 c. Since the aforesaid lubricant is held in thesedepressions 45, thepower roller bearing 11 can be lubricated satisfactorily. In this case, therefore, the life of thepower roller bearing 11 can be lengthened also. - In order to ascertain the function of the
power roller bearing 11 according to the present invention, the inventors hereof conducted an endurance test on the toroidal-type continuouslyvariable transmission unit 20 that is provided with theouter race 13 and thepower roller 10 described above. TABLE 1 shows results of this test.TABLE 1 Life Defect Invention 100 hours None product A or more Invention 100 hours None product B or more Invention 100 hours None product C or more Comparative 65 hours Separation of raceway example A groove surfaces Comparative 68 hours Separation of raceway example B groove surfaces Comparative 59 hours Separation of raceway example C groove surfaces - In the test described above, the rotational frequency of the input shaft 1 was set at 4,000 rpm, and input torque form the drive source E at 390 Nm. Further, the endurance test was conducted with use of synthetic traction oil as lubricating oil and with the temperature of this lubricating oil at 100° C.
- In Table 1, a product A of the present invention and a product B of the present invention uses outer races and power rollers that were formed individually in the processes shown in FIG. 8. A product C of the present invention uses a outer race and a power roller that were formed in the processes shown in FIG. 6. Comparative examples A, B and C use outer races and power rollers in which the respective surfaces of their raceway grooves were not shot-peened.
- According to the test results shown in Table 1, none of the shot-peened products A, B and C of the present invention was broken in a test time of 100 hours. In all of the comparative examples A, B and C, the respective surfaces of the raceway grooves underwent flaking in a test time of about 60 hours.
- Thus,
power roller bearings 11 of high life performance were able to be obtained in a manner such that the respective surfaces of the 15 and 16 were shot-peened to form the treated-raceway grooves 23 and 24 including the residual compression stress layers 23 c and 24 c.surface layers - In order to apply a relatively high residual compression stress of, e.g., −100 kgf/mm 2 to the residual compression stress layers 23 c and 24 c, shots must be struck hard against the respective surfaces of the
15 and 16. In this case, fine cracks sometimes may be formed in the surfaces of theraceway grooves 15 and 16. These fine cracks can be removed by effecting super-finishing work (Step ST6) after carrying out shot-peening operation (Step ST5) in the processes shown in FIG. 8.raceway grooves - In the second and third embodiments described above, the residual compression stress layers 23 c and 24 c are formed on both the
15 and 16 of therespective raceway grooves outer race 13 and thepower roller 10. Alternatively, however, the residual 23 c or 24 c may be formed on one of thecompression stress layer 15 and 16. In this case, the life of theraceway grooves power roller bearing 11 can be lengthened also. Further, the low-friction layer 25 b described in connection with the first embodiment may be formed on the surface of eachball 12. In this case, the residual compression stress layers 23 c and 24 c is formed on the 15 and 16 by shot-peening. Alternatively, the low-raceway grooves 23 b or 24 b may be formed on one of thefriction layer 15 and 16. In this case, the residualraceway grooves 23 c or 24 c is formed on the other by shot-peening. Thus, the life of thecompression stress layer power roller bearing 11 of the toroidal-type continuouslyvariable transmission unit 20 can be lengthened by forming the treated- 23 and 24 on at least one of the respective surfaces of thesurface layers raceway groove 15 of theouter race 13 and theraceway groove 16 of thepower roller 10. - It is to be understood, moreover, that any other portions than the
15 and 16 may be shot-peened. The aforesaid residual compression stress layers 23 c and 24 c may be formed by barreling or the like instead of shot-peening.raceway grooves - The improvement of the rolling fatigue life by the aforesaid shot-peening is also applicable to individual traction surfaces of the toroidal-type continuously
variable transmission unit 20. Thus, conditions for these traction surfaces, including high temperature, high speed, high contact pressure, presence of spins, and use of traction oil, etc., are similar to those for thepower roller bearing 11. The technique of the present invention is also effective for the traction surfaces. The results of the experiment shown in Table 1 indicate that this technique is also effective for the traction surfaces. More specifically, the life of the 2 and 3 or thediscs power roller 10 can be lengthened by shot-peening at least one of the respective traction surfaces of the discs and the power roller. - As is evident from the above description, the power roller bearing of the present invention can be suitably used for a transmission of, for example, a general industrial machine or transportation equipment, as well as a power transmission system of an automobile. The present invention is applicable to full-toroidal-type continuously variable transmission units as well as to half-toroidal-type continuously variable transmission units.
- Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Claims (2)
1. In a power roller bearing of a toroidal-type continuously variable transmission unit, which is provided for swinging motion between an input disc capable of being rotated by means of a drive source and an output disc opposed to said input disc, the power roller bearing of the toroidal-type continuously variable transmission unit comprising:
an outer race;
a power roller in rolling contact with said input disc and output disc; and
balls provided for rolling motion between said outer race and said power roller,
said outer race and said power roller having annular raceway grooves in which said balls roll individually,
at least one of the respective raceway grooves of said outer race, heat-treated and ground, and said power roller being formed having treated-surface layers including super-finished surfaces with the surface roughness of 0.05 Ra or less and residual compression stress layers shot-peened so that the residual compression stress therein ranges from −20 kgf/mm2 to −100 kgf/mm2.
2. In a power roller bearing of a toroidal-type continuously variable transmission unit, which is provided for swinging motion between an input disc capable of being rotated by means of a drive source and an output disc opposed to said input disc, the power roller bearing of the toroidal-type continuously variable transmission unit comprising:
an outer race;
a power roller in rolling contact with said input disc and output disc; and
balls provided for rolling motion between said outer race and said power roller,
said outer race and said power roller having annular raceway grooves in which said balls roll individually,
both of the respective raceway grooves of said outer race and said power roller being formed having super-finished surfaces with the surface roughness of 0.05 Ra or less and low-friction layers on at least one of the super-finished surfaces, the low-friction layers being formed of at least one of lubricative substances including gold, silver, lead, molybdenum disulfide, tungsten disulfide, and fluoroplastics.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/412,798 US6905437B2 (en) | 1999-04-06 | 2003-04-11 | Power roller bearing of toroidal-type continuously variable transmission unit |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11098841A JP2000291755A (en) | 1999-04-06 | 1999-04-06 | Power roller bearing for toroidal type continuously variable transmission |
| JP09884299A JP3951499B2 (en) | 1999-04-06 | 1999-04-06 | Power roller bearing for toroidal type continuously variable transmission |
| JP11-098842 | 1999-04-06 | ||
| JP11-098841 | 1999-04-06 | ||
| PCT/JP2000/002201 WO2000060254A1 (en) | 1999-04-06 | 2000-04-05 | Power roller bearing of toroidal type continuously variable transmission |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2000/002201 Continuation WO2000060254A1 (en) | 1999-04-06 | 2000-04-05 | Power roller bearing of toroidal type continuously variable transmission |
| PCT/JP2000/002201 Continuation-In-Part WO2000060254A1 (en) | 1999-04-06 | 2000-04-05 | Power roller bearing of toroidal type continuously variable transmission |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/412,798 Continuation US6905437B2 (en) | 1999-04-06 | 2003-04-11 | Power roller bearing of toroidal-type continuously variable transmission unit |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020039949A1 true US20020039949A1 (en) | 2002-04-04 |
Family
ID=26439950
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/972,234 Abandoned US20020039949A1 (en) | 1999-04-06 | 2001-10-05 | Power roller bearing of toroidal-type continuously variable transmission unit |
| US10/412,798 Expired - Lifetime US6905437B2 (en) | 1999-04-06 | 2003-04-11 | Power roller bearing of toroidal-type continuously variable transmission unit |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/412,798 Expired - Lifetime US6905437B2 (en) | 1999-04-06 | 2003-04-11 | Power roller bearing of toroidal-type continuously variable transmission unit |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US20020039949A1 (en) |
| DE (1) | DE10084447T1 (en) |
| WO (1) | WO2000060254A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060058152A1 (en) * | 2004-05-27 | 2006-03-16 | Nissan Motor Co., Ltd. | Rolling element and a process for producing the rolling element |
| EP3246584A1 (en) * | 2016-05-18 | 2017-11-22 | Gereedschapswerktuigenindustrie Hembrug B.V. | A ball bearing and a method of finishing a grooved raceway |
| US10823467B2 (en) * | 2015-03-30 | 2020-11-03 | Carrier Corporation | Low-oil refrigerants and vapor compression systems |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2379960B (en) * | 2001-07-10 | 2005-06-22 | Koyo Seiko Co | Toroidal continuously variable transmission. |
| DE102008060761A1 (en) * | 2008-12-05 | 2010-06-10 | Schaeffler Kg | roller bearing |
| JP6870916B2 (en) * | 2016-03-24 | 2021-05-12 | Ntn株式会社 | Wear-resistant treatment method for rolling bearings and bearing raceway surfaces |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3198735A (en) | 1961-10-20 | 1965-08-03 | Edward R Lamson | Solid lubricant composition and method for lubricating anti-friction bearing structures |
| US3843962A (en) | 1973-08-20 | 1974-10-22 | Rogers Corp | Bearing |
| US4258084A (en) * | 1978-10-17 | 1981-03-24 | Potters Industries, Inc. | Method of reducing fuel consumption by peening |
| JPS63126618A (en) | 1986-11-17 | 1988-05-30 | Yoshimitsu Ozawa | Bending press |
| JPS63126618U (en) * | 1987-02-13 | 1988-08-18 | ||
| JPH03199716A (en) * | 1989-12-27 | 1991-08-30 | Toyota Motor Corp | Bearing part |
| JP3486753B2 (en) * | 1992-01-24 | 2004-01-13 | 光洋精工株式会社 | Manufacturing method of bearing parts |
| JPH0735217A (en) * | 1993-07-23 | 1995-02-07 | Nippon Seiko Kk | Rolling sliding parts |
| JP3604415B2 (en) | 1993-08-31 | 2004-12-22 | 日本精工株式会社 | Toroidal continuously variable transmission |
| JP3525471B2 (en) | 1994-01-18 | 2004-05-10 | 日本精工株式会社 | Toroidal continuously variable transmission |
| JPH07286649A (en) * | 1994-04-18 | 1995-10-31 | Nippon Seiko Kk | Toroidal type continuously variable transmission |
| JP3681022B2 (en) * | 1995-12-21 | 2005-08-10 | 光洋精工株式会社 | Rolling bearing |
| JP3699803B2 (en) | 1997-05-09 | 2005-09-28 | 光洋精工株式会社 | Manufacturing method of bearing and bearing |
| US6174257B1 (en) * | 1997-07-04 | 2001-01-16 | Nsk Ltd. | Toroidal type continuously variable transmission |
| DE19829631B4 (en) * | 1997-07-04 | 2006-01-19 | Nsk Ltd. | Continuously adjustable toroidal transmission |
| JP3733992B2 (en) * | 1997-08-11 | 2006-01-11 | 日本精工株式会社 | Thrust ball bearing |
-
2000
- 2000-04-05 WO PCT/JP2000/002201 patent/WO2000060254A1/en not_active Ceased
- 2000-04-05 DE DE10084447T patent/DE10084447T1/en not_active Ceased
-
2001
- 2001-10-05 US US09/972,234 patent/US20020039949A1/en not_active Abandoned
-
2003
- 2003-04-11 US US10/412,798 patent/US6905437B2/en not_active Expired - Lifetime
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060058152A1 (en) * | 2004-05-27 | 2006-03-16 | Nissan Motor Co., Ltd. | Rolling element and a process for producing the rolling element |
| US7462128B2 (en) | 2004-05-27 | 2008-12-09 | Nissan Motor Co., Ltd. | Rolling element and a process for producing the rolling element |
| US10823467B2 (en) * | 2015-03-30 | 2020-11-03 | Carrier Corporation | Low-oil refrigerants and vapor compression systems |
| EP3246584A1 (en) * | 2016-05-18 | 2017-11-22 | Gereedschapswerktuigenindustrie Hembrug B.V. | A ball bearing and a method of finishing a grooved raceway |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2000060254A1 (en) | 2000-10-12 |
| US20030181287A1 (en) | 2003-09-25 |
| US6905437B2 (en) | 2005-06-14 |
| DE10084447T1 (en) | 2002-06-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5735769A (en) | Toroidal type continuously variable transmission parts having increased life | |
| US6858096B2 (en) | Rolling element for a continuously variable transmission (CVT), a CVT using the rolling element and a method for producing the rolling element | |
| US6905437B2 (en) | Power roller bearing of toroidal-type continuously variable transmission unit | |
| US6368245B1 (en) | Toroidal-type continuously variable transmission | |
| US6375593B2 (en) | Power roller bearing and a troidal type continuously variable transmission system | |
| US20030190994A1 (en) | Toroidal-type continuously variable transmission | |
| US6174257B1 (en) | Toroidal type continuously variable transmission | |
| JP3951499B2 (en) | Power roller bearing for toroidal type continuously variable transmission | |
| US6572452B2 (en) | Disc for toroidal type continuously variable transmission and working method therefor | |
| US20040132579A1 (en) | Roller bearing and method of making the same | |
| JP2001004003A (en) | Toroidal type continuously variable transmission | |
| JP3951401B2 (en) | Loading cam for toroidal type continuously variable transmission | |
| US6383112B1 (en) | Toroidal-type continuously variable transmission | |
| US6780139B2 (en) | Toroidal continuously variable transmission | |
| JP2003166610A (en) | Toroidal continuously variable transmission | |
| EP2811204A1 (en) | Toroidal-type continuously variable transmission | |
| JP3733992B2 (en) | Thrust ball bearing | |
| JPH1089350A (en) | Thrust ball bearing | |
| JPH07279974A (en) | Ball bearing | |
| US5697863A (en) | Extended life infinitely variable traction roller transmission with different toric traction roller disks | |
| JP4288760B2 (en) | Power roller bearing for toroidal-type continuously variable transmission | |
| EP1757824A2 (en) | Tapered roller bearing and automotive pinion shaft supporting apparatus with such bearing | |
| JP2001193810A (en) | Planetary roller power transmission device | |
| JP4752295B2 (en) | Toroidal continuously variable transmission | |
| EP1508724A2 (en) | Toroidal type continuously variable transmission |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NSK LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ITOH, HIROYUKI;IMANISHI, TAKASHI;GOTO, NOBUO;AND OTHERS;REEL/FRAME:012239/0209;SIGNING DATES FROM 20010920 TO 20010921 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |