US20020025438A1 - Stable adhesive composite material made of polyurethane and of another thermoplastic material, a process for its production and a method for its use in motor vehicles - Google Patents
Stable adhesive composite material made of polyurethane and of another thermoplastic material, a process for its production and a method for its use in motor vehicles Download PDFInfo
- Publication number
- US20020025438A1 US20020025438A1 US09/919,384 US91938401A US2002025438A1 US 20020025438 A1 US20020025438 A1 US 20020025438A1 US 91938401 A US91938401 A US 91938401A US 2002025438 A1 US2002025438 A1 US 2002025438A1
- Authority
- US
- United States
- Prior art keywords
- polyurethane
- layer
- composite material
- composite
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 44
- 239000004814 polyurethane Substances 0.000 title claims abstract description 41
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000008569 process Effects 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000012815 thermoplastic material Substances 0.000 title abstract description 4
- 239000000853 adhesive Substances 0.000 title 1
- 230000001070 adhesive effect Effects 0.000 title 1
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 25
- 125000001033 ether group Chemical group 0.000 claims abstract description 10
- -1 polyethylene Polymers 0.000 claims description 45
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 28
- 229920001577 copolymer Polymers 0.000 claims description 25
- 229920001169 thermoplastic Polymers 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 18
- 229920001228 polyisocyanate Polymers 0.000 claims description 15
- 239000005056 polyisocyanate Substances 0.000 claims description 15
- 239000004417 polycarbonate Substances 0.000 claims description 14
- 229920000515 polycarbonate Polymers 0.000 claims description 14
- 229920003023 plastic Polymers 0.000 claims description 12
- 239000004033 plastic Substances 0.000 claims description 12
- 238000002360 preparation method Methods 0.000 claims description 9
- 239000004952 Polyamide Substances 0.000 claims description 7
- 229920002647 polyamide Polymers 0.000 claims description 7
- 229920005830 Polyurethane Foam Polymers 0.000 claims description 6
- 229920000578 graft copolymer Polymers 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 5
- 229920002292 Nylon 6 Polymers 0.000 claims description 4
- 239000011496 polyurethane foam Substances 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920000098 polyolefin Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 239000011527 polyurethane coating Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 41
- 150000001875 compounds Chemical class 0.000 description 34
- 239000003054 catalyst Substances 0.000 description 16
- 229920000570 polyether Polymers 0.000 description 16
- 239000004721 Polyphenylene oxide Substances 0.000 description 15
- 229920005862 polyol Polymers 0.000 description 14
- 150000003077 polyols Chemical class 0.000 description 13
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 12
- 125000003118 aryl group Chemical group 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 9
- 150000003951 lactams Chemical class 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 7
- 238000010276 construction Methods 0.000 description 7
- 239000012948 isocyanate Substances 0.000 description 7
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000004604 Blowing Agent Substances 0.000 description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 239000012190 activator Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 150000002513 isocyanates Chemical class 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical class COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 239000004359 castor oil Substances 0.000 description 4
- 235000019438 castor oil Nutrition 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 4
- 239000004872 foam stabilizing agent Substances 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical class O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- 150000003440 styrenes Chemical class 0.000 description 4
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- 229920002367 Polyisobutene Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 3
- 229920005906 polyester polyol Polymers 0.000 description 3
- 239000013047 polymeric layer Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- UIAFKZKHHVMJGS-UHFFFAOYSA-N 2,4-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1O UIAFKZKHHVMJGS-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- SLRMQYXOBQWXCR-UHFFFAOYSA-N 2154-56-5 Chemical compound [CH2]C1=CC=CC=C1 SLRMQYXOBQWXCR-UHFFFAOYSA-N 0.000 description 2
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 241000611421 Elia Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical group NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical class CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 2
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 238000012662 bulk polymerization Methods 0.000 description 2
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229920006245 ethylene-butyl acrylate Polymers 0.000 description 2
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 2
- 229920005676 ethylene-propylene block copolymer Polymers 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 230000001408 fungistatic effect Effects 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000002683 reaction inhibitor Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- IUTCEZPPWBHGIX-UHFFFAOYSA-N tin(2+) Chemical class [Sn+2] IUTCEZPPWBHGIX-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- ZBBLRPRYYSJUCZ-GRHBHMESSA-L (z)-but-2-enedioate;dibutyltin(2+) Chemical compound [O-]C(=O)\C=C/C([O-])=O.CCCC[Sn+2]CCCC ZBBLRPRYYSJUCZ-GRHBHMESSA-L 0.000 description 1
- 0 *(C1=CC=CC=C1)C1=CC=CC=C1.CC.CC.CO.CO Chemical compound *(C1=CC=CC=C1)C1=CC=CC=C1.CC.CC.CO.CO 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- OYWRDHBGMCXGFY-UHFFFAOYSA-N 1,2,3-triazinane Chemical class C1CNNNC1 OYWRDHBGMCXGFY-UHFFFAOYSA-N 0.000 description 1
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- OEVVKKAVYQFQNV-UHFFFAOYSA-N 1-ethenyl-2,4-dimethylbenzene Chemical compound CC1=CC=C(C=C)C(C)=C1 OEVVKKAVYQFQNV-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- AXFVIWBTKYFOCY-UHFFFAOYSA-N 1-n,1-n,3-n,3-n-tetramethylbutane-1,3-diamine Chemical compound CN(C)C(C)CCN(C)C AXFVIWBTKYFOCY-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- GGPLWEZGITVTJX-UHFFFAOYSA-N 2,2,4-trimethyl-1,4,2-oxazasilinane Chemical compound CN1CCO[Si](C)(C)C1 GGPLWEZGITVTJX-UHFFFAOYSA-N 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- MAQOZOILPAMFSW-UHFFFAOYSA-N 2,6-bis[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=C(CC=3C(=CC=C(C)C=3)O)C=C(C)C=2)O)=C1 MAQOZOILPAMFSW-UHFFFAOYSA-N 0.000 description 1
- RZEWIYUUNKCGKA-UHFFFAOYSA-N 2-(2-hydroxyethylamino)ethanol;octadecanoic acid Chemical compound OCCNCCO.CCCCCCCCCCCCCCCCCC(O)=O RZEWIYUUNKCGKA-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- XBQRPFBBTWXIFI-UHFFFAOYSA-N 2-chloro-4-[2-(3-chloro-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound C=1C=C(O)C(Cl)=CC=1C(C)(C)C1=CC=C(O)C(Cl)=C1 XBQRPFBBTWXIFI-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical class CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 1
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- UMPGNGRIGSEMTC-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl]phenol Chemical compound C1C(C)CC(C)(C)CC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 UMPGNGRIGSEMTC-UHFFFAOYSA-N 0.000 description 1
- SIDJPCTYGKAAFX-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-4-propylcyclohexyl]phenol Chemical compound C1CC(CCC)CCC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 SIDJPCTYGKAAFX-UHFFFAOYSA-N 0.000 description 1
- XJGTVJRTDRARGO-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)propan-2-yl]benzene-1,3-diol Chemical compound C=1C=C(O)C=C(O)C=1C(C)(C)C1=CC=C(O)C=C1 XJGTVJRTDRARGO-UHFFFAOYSA-N 0.000 description 1
- JHSDIILQGDBNPD-UHFFFAOYSA-N 4-[2-[4-[tris[4-[2-(4-hydroxyphenyl)propan-2-yl]phenoxy]methoxy]phenyl]propan-2-yl]phenol Chemical compound C=1C=C(OC(OC=2C=CC(=CC=2)C(C)(C)C=2C=CC(O)=CC=2)(OC=2C=CC(=CC=2)C(C)(C)C=2C=CC(O)=CC=2)OC=2C=CC(=CC=2)C(C)(C)C=2C=CC(O)=CC=2)C=CC=1C(C)(C)C1=CC=C(O)C=C1 JHSDIILQGDBNPD-UHFFFAOYSA-N 0.000 description 1
- RQTDWDATSAVLOR-UHFFFAOYSA-N 4-[3,5-bis(4-hydroxyphenyl)phenyl]phenol Chemical compound C1=CC(O)=CC=C1C1=CC(C=2C=CC(O)=CC=2)=CC(C=2C=CC(O)=CC=2)=C1 RQTDWDATSAVLOR-UHFFFAOYSA-N 0.000 description 1
- NIRYBKWMEWFDPM-UHFFFAOYSA-N 4-[3-(4-hydroxyphenyl)-3-methylbutyl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(C)CCC1=CC=C(O)C=C1 NIRYBKWMEWFDPM-UHFFFAOYSA-N 0.000 description 1
- LIDWAYDGZUAJEG-UHFFFAOYSA-N 4-[bis(4-hydroxyphenyl)-phenylmethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)(C=1C=CC(O)=CC=1)C1=CC=CC=C1 LIDWAYDGZUAJEG-UHFFFAOYSA-N 0.000 description 1
- BOCLKUCIZOXUEY-UHFFFAOYSA-N 4-[tris(4-hydroxyphenyl)methyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 BOCLKUCIZOXUEY-UHFFFAOYSA-N 0.000 description 1
- ZRWNRAJCPNLYAK-UHFFFAOYSA-N 4-bromobenzamide Chemical compound NC(=O)C1=CC=C(Br)C=C1 ZRWNRAJCPNLYAK-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 1
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 239000004114 Ammonium polyphosphate Substances 0.000 description 1
- 239000004156 Azodicarbonamide Substances 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- QSXSQNZHOLPZMM-UHFFFAOYSA-N CC.CC.CC.CC.CCC.II.OC1=CC=C(CC2=CC=C(O)C=C2)C=C1 Chemical compound CC.CC.CC.CC.CCC.II.OC1=CC=C(CC2=CC=C(O)C=C2)C=C1 QSXSQNZHOLPZMM-UHFFFAOYSA-N 0.000 description 1
- KQQVCJIQIBFDCO-UHFFFAOYSA-N CC1(C)CCCC(C2=CC=C(O)C=C2)(C2=CC=C(O)C=C2)C1.CC1=CC=C(C2(C3=CC=C(O)C=C3)CC(C)(C)CC2C)C=C1.CC1CC(C)(C)CC(C2=CC=C(O)C=C2)(C2=CC=C(O)C=C2)C1 Chemical compound CC1(C)CCCC(C2=CC=C(O)C=C2)(C2=CC=C(O)C=C2)C1.CC1=CC=C(C2(C3=CC=C(O)C=C3)CC(C)(C)CC2C)C=C1.CC1CC(C)(C)CC(C2=CC=C(O)C=C2)(C2=CC=C(O)C=C2)C1 KQQVCJIQIBFDCO-UHFFFAOYSA-N 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- BQMQLJQPTQPEOV-UHFFFAOYSA-N OP(=O)OC=C Chemical class OP(=O)OC=C BQMQLJQPTQPEOV-UHFFFAOYSA-N 0.000 description 1
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- KYPYTERUKNKOLP-UHFFFAOYSA-N Tetrachlorobisphenol A Chemical compound C=1C(Cl)=C(O)C(Cl)=CC=1C(C)(C)C1=CC(Cl)=C(O)C(Cl)=C1 KYPYTERUKNKOLP-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- CQQXCSFSYHAZOO-UHFFFAOYSA-L [acetyloxy(dioctyl)stannyl] acetate Chemical compound CCCCCCCC[Sn](OC(C)=O)(OC(C)=O)CCCCCCCC CQQXCSFSYHAZOO-UHFFFAOYSA-L 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 150000003927 aminopyridines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 1
- 229920001276 ammonium polyphosphate Polymers 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 1
- 235000019399 azodicarbonamide Nutrition 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229940114055 beta-resorcylic acid Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- RGAMPJYGTCSRAG-UHFFFAOYSA-N bis[2-(diethylamino)ethyl] hexanedioate Chemical compound CCN(CC)CCOC(=O)CCCCC(=O)OCCN(CC)CC RGAMPJYGTCSRAG-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006085 branching agent Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- JQZRVMZHTADUSY-UHFFFAOYSA-L di(octanoyloxy)tin Chemical compound [Sn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O JQZRVMZHTADUSY-UHFFFAOYSA-L 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- RJGHQTVXGKYATR-UHFFFAOYSA-L dibutyl(dichloro)stannane Chemical compound CCCC[Sn](Cl)(Cl)CCCC RJGHQTVXGKYATR-UHFFFAOYSA-L 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- HGQSXVKHVMGQRG-UHFFFAOYSA-N dioctyltin Chemical compound CCCCCCCC[Sn]CCCCCCCC HGQSXVKHVMGQRG-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical class C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- PYBNTRWJKQJDRE-UHFFFAOYSA-L dodecanoate;tin(2+) Chemical compound [Sn+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O PYBNTRWJKQJDRE-UHFFFAOYSA-L 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- SCGNHRAWPUMGDV-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical compound C=C.OC(=O)C=C.OC(=O)C=C SCGNHRAWPUMGDV-UHFFFAOYSA-N 0.000 description 1
- QUPDWYMUPZLYJZ-UHFFFAOYSA-N ethyl Chemical compound C[CH2] QUPDWYMUPZLYJZ-UHFFFAOYSA-N 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical compound CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 229920006228 ethylene acrylate copolymer Polymers 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N methanesulfonic acid Substances CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- WCYWZMWISLQXQU-UHFFFAOYSA-N methyl Chemical compound [CH3] WCYWZMWISLQXQU-UHFFFAOYSA-N 0.000 description 1
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N methylene hexane Natural products CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- MJNLXAZOTQSLTM-UHFFFAOYSA-N n-[[[ethylaminomethyl(dimethyl)silyl]oxy-dimethylsilyl]methyl]ethanamine Chemical compound CCNC[Si](C)(C)O[Si](C)(C)CNCC MJNLXAZOTQSLTM-UHFFFAOYSA-N 0.000 description 1
- ZWRDBWDXRLPESY-UHFFFAOYSA-N n-benzyl-n-ethylethanamine Chemical compound CCN(CC)CC1=CC=CC=C1 ZWRDBWDXRLPESY-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- HOKMYEORIPLLGI-KVVVOXFISA-N n-ethylethanamine;(z)-octadec-9-enoic acid Chemical compound CCNCC.CCCCCCCC\C=C/CCCCCCCC(O)=O HOKMYEORIPLLGI-KVVVOXFISA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- UKODFQOELJFMII-UHFFFAOYSA-N pentamethyldiethylenetriamine Chemical compound CN(C)CCN(C)CCN(C)C UKODFQOELJFMII-UHFFFAOYSA-N 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 1
- 229960001553 phloroglucinol Drugs 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006295 polythiol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920003226 polyurethane urea Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- NWELCUKYUCBVKK-UHFFFAOYSA-N pyridin-2-ylhydrazine Chemical class NNC1=CC=CC=N1 NWELCUKYUCBVKK-UHFFFAOYSA-N 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- NESLWCLHZZISNB-UHFFFAOYSA-M sodium phenolate Chemical compound [Na+].[O-]C1=CC=CC=C1 NESLWCLHZZISNB-UHFFFAOYSA-M 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- MOMGDEWWZBKDDR-UHFFFAOYSA-M sodium;3,4,5,6-tetrahydro-2h-azepin-7-olate Chemical compound [Na+].O=C1CCCCC[N-]1 MOMGDEWWZBKDDR-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- 229920002397 thermoplastic olefin Polymers 0.000 description 1
- 229920006345 thermoplastic polyamide Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- SYRHIZPPCHMRIT-UHFFFAOYSA-N tin(4+) Chemical class [Sn+4] SYRHIZPPCHMRIT-UHFFFAOYSA-N 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- RKBCYCFRFCNLTO-UHFFFAOYSA-N triisopropylamine Chemical compound CC(C)N(C(C)C)C(C)C RKBCYCFRFCNLTO-UHFFFAOYSA-N 0.000 description 1
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical group NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
- B32B27/365—Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/12—Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
- C09J175/08—Polyurethanes from polyethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/24—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
- B32B2037/243—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0278—Polyurethane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/04—Polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/10—Polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2369/00—Polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2375/00—Polyureas; Polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2398/00—Unspecified macromolecular compounds
- B32B2398/20—Thermoplastics
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31507—Of polycarbonate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31562—Next to polyamide [nylon, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31565—Next to polyester [polyethylene terephthalate, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31573—Next to addition polymer of ethylenically unsaturated monomer
- Y10T428/31587—Hydrocarbon polymer [polyethylene, polybutadiene, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31598—Next to silicon-containing [silicone, cement, etc.] layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
- Y10T428/31739—Nylon type
Definitions
- the present invention provides composite materials comprising at least two different plastic material layers directly bonded to one another, of which one layer consists of polyurethane and the layer directly bonded to it consists of a different thermoplastic plastic material.
- the object of the present invention was to adequately improve the bonding adhesion between a layer made of a polyurethane and a layer directly bonded thereto made of another thermoplastic material.
- layer A) has a residual content of reaction components containing ether groups of no more than 400 ppm, and preferably of no more than 100 ppm, which result from the polyurethane preparation.
- reaction components which contain ether groups are isocyanate-reactive components which did not react with the isocyanate component in the preparation or formation of the polyurethane which forms layer A).
- polyurethanes or polyurethane ureas used in accordance with the present invention as layer A) are obtained by the reaction of one or more polyisocyanates, with one or more polyfunctional compounds containing isocyanate-reactive hydrogen atoms, preferably polyols.
- Suitable polyisocyanates are preferably those which are known in polyurethane chemistry and which are conventionally used therein.
- these include aromatic polyisocyanates such as, for example, 2,4-diisocyanatotoluene, and technical mixtures thereof with 2,6-diisocyanato-toluene, 4,4′-diisocyanatodiphenylmethane, and mixtures thereof with the corresponding 2,4′- and 2,2′-isomers, polyisocyanate mixtures of the diphenylmethane series, those which can be obtained in known per se manner by phosgenation of aniline/formaldehyde condensation, the biuret- or isocyanate-containing modification products of these technical polyisocyanates, and, in particular, NCO prepolymers of the aforementioned type which are based on these technical polyisocyanates and on the simple polyols and/or polyether polyols and/or polyester polyols of the
- modified polyisocyanates the prepolymers which are known in polyurethane chemistry, which have terminal isocyanate groups and have number average molecular weights in the range of 400 to 10,000 g/mol, preferably 600 to 8,000 g/mol and more preferably of 800 to 5,000 g/mol, are of particular interest.
- These compounds are prepared in the known manner per se by reacting excess quantities of one or more simple polyisocyanates, of the type cited above as examples, with one or more organic compounds containing at least two groups which are capable of reacting with isocyanate groups, in particular, organic polyhydroxyl compounds.
- Suitable polyhydroxyl compounds of this kind may be simple polyhydric alcohols having number average molecular weights in the range of 62 to 599 g/mol, preferably 62 to 200 g/mol, such as, for example, ethylene glycol, trimethylolpropane, 1,2-propanediol, 1,4-butanediol or 2,3-butanediol, and relatively high-molecular weight polyether polyols and/or polyester polyols of the kind known per se in polyurethane chemistry, having number average molecular weights of 600 to 8,000 g/mol, preferably 800 to 4,000 g/mol, and containing at least two, generally 2 to 8, preferably 2 to 4 primary and/or secondary hydroxyl groups.
- NCO prepolymers which have been obtained, for example, from low-molecular weight (number average) polyisocyanates of the type cited above by way of example, and from less preferred compounds possessing groups which are reactive with isocyanate groups, such as, for example, polythioether polyols, hydroxyl-containing polyacetals, polyhydroxypolycarbonates, hydroxyl-group containing polyesteramides ides or hydroxyl-group containing copolymer of olefinically unsaturated compounds.
- NCO prepolymers Compounds which are suitable for the preparation of NCO prepolymers and which possess groups, and in particular, hydroxyl groups, which are reactive with isocyanate groups include, for example, the compounds as disclosed in U.S. Pat. No. 4,218,543, the disclosure of which is herein incorporated by reference.
- these compounds which possess groups which are reactive with isocyanate groups are caused to react with simple polyisocyanates of the kind given above as examples, with an excess of NCO being maintained
- the NCO prepolymers generally have an NCO content of 10 to 25% wt. by weight, preferably 15 to 22% by weight.
- NCO prepolymers and “prepolymers having terminal isocyanate groups” are understood to comprise both the reaction products as such and mixtures thereof with excess quantities of unreacted starting polyisocyanates, which are frequently also referred to as “semi-prepolymers”.
- the polyisocyanate component has an average functionality of 2 to 3, preferably 2.3 to 2.7.
- Suitable aliphatic diols include those characterized by an OH value of at least 200 mg KOH/g, preferably at least 500 mg KOH/g and include the cross-linked chain-extenders which are conventionally used in polyurethane chemistry, such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,3-propanediol. Diols which have an improved compatibility with the polyols of the polyfunctional, isocyanate-reactive component are preferred.
- Examples of these include, compounds such as 1,4-butanediol, 1,3-butanediol, 2,3-butanediol, 2-methyl-1,3-propanediol. It is, of course, also possible to use the aliphatic diols as mixtures with each other.
- polystyrene resin examples include those polyols having an average OH number of 5 to 500 mg KOH/g and an average functionality of 2 to 4. Those polyols having an average OH number of 10 to 50 mg KOH/g and an average functionality of 2.7 to 3 are preferred.
- polyols include polyhydroxypolyethers, which are known in polyurethane chemistry and are attainable by the alkoxylation of suitable starter molecules such as, for example, ethylene glycol, diethylene glycol, 1,4-dihydroxybutane, 1,6-dihydroxyhexane, dimethylolpropane, glycerol, pentaerythritol, sorbitol or saccharose.
- Compounds which can also function as suitable starter molecules include, for example, ammonia, or amines such as ethylene-diamine, hexamethylenediamine, 2,4-diaminotoluene or aniline, aminoalcohols, or phenols such as, for example, bisphenol A.
- the alkoxylation can be carried out, for example, using propylene oxide and/or ethylene oxide in any order.
- Polyester polyols which are also suitable to be used as polyfunctional isocyanate-reactive components include those of the type obtainable in known manner per se, by the reaction of one or more low-molecular weight alcohols with one or more polybasic carboxylic acids such as, for example, adipic acid, phthalic acid, hexahydrophthalic acid or tetrahydrophthalic acid, or with the anhydrides of these acids, preferably, provided that the viscosity of the isocyanate-reactive component is not too high.
- a preferred polyol, which has ester groups is castor oil.
- Preparations which comprise castor oil such as those which can be obtained by dissolving resins, for example, aldehydeketone resins, are also suitable, as are modifications of castor oil and polyols based on other natural oils.
- Suitable compounds also include, for example, those high-molecular weight polyhydroxypolyethers in which high-molecular weight polyadducts or polycondensates or polymers are present in finely dispersed, dissolved or grafted form.
- modified polyhydroxyl compounds are generally obtained, for example, when polyaddition reactions (for example, reactions between polyisocyanates and aminofunctional compounds) or polycondensation reactions (for example, between formaldehyde and phenols and/or amines) are allowed to proceed in situ in the hydroxyl-group containing compounds.
- Polyhydroxyl compounds modified by vinyl polymers such as those which are obtained by, for example, the polymerization of styrene and acrylonitrile in the presence of polyethers (as described in, for example, U.S. Pat. Nos. 3,383,351, 3,304,273, 3,523,093, and 3,110,695, the disclosures of which are herein incorporated by reference; DE-A 1,152,5369), or of polyether carbonate polyols (as described in DE-PS 1,769,795, and in U.S. Pat. No. 3,637,909, the disclosure of which is herein incorporated by reference), are also suitable for the preparation of polyurethanes.
- polyether polyols which have been modified, in accordance with DE-A 2,442,101, 2,844,922 and 2,646,141, by graft polymerization with vinyl phosphonates, and, optionally, (meth)acrylonitrile, (meth)acrylamide or OH-functional (meth)acrylic esters, plastics having a special flame resistance are produced.
- the composite layer A) may be foamed or in solid form such as, for example, a paint or coating.
- auxiliary substances and additives such as, for example, separating agents, blowing agents, fillers, catalysts and flameproofing agents can be used.
- Auxiliary substances and additives which may optionally be used include:
- Suitable organic blowing agents include, for example, acetone, ethyl acetate, halogen-substituted alkanes such as methylene chloride, chloroform, ethylidene chloride, vinylidene chloride, monofluorotrichloro-methane, chlorodifluoro-methane, dichlorodifluoromethane, as well as butane, hexane, hexane or diethyl ether;
- suitable inorganic blowing agents include, for example, air, CO 2 , or N 2 O.
- a blowing action can also be achieved by adding compounds which decompose at temperatures above room temperature with the release of gases such as, for example, nitrogen.
- gases such as, for example, nitrogen.
- examples of such compounds include azo compounds such as, for example, azodicarbonamide or azobisisobutyronitrile.
- blowing agents and details regarding the use of blowing agents are given in Kunststoff-Handbuch, Volume VII, edited by Vieweg and Hochtlen, Carl Hanser Verlag, Kunststoff, 1966, for example, on pages 108 and 109, 453 to 455 and 507 to 510.
- Catalysts of the type known per se include, for example, tertiary amines, such as trimethylamine, tributylamine, N-methylmorpholine, N-ethylmorpholine, N,N,N′,N′-tetramethylethylenediamine, pentamethyldiethylenetriamine and higher homologues (DE Offenlegungsschriften 2,624,527 and 2,624,524), 1,4-diazabicyclo-[2.2.2]octane, N-methyl-N′-(dimethylamino-ethylpiperazine, bis(dimethyl-aminoalkyl)piperazine (DE Offenlegungsschriften 2,737,787), N,N-dimethylbenzylamine, N,N-dimethylcyclohexylamine, N,N-diethylbenzylamine, bis(N,N-diethylaminoethyl) adipate, N,N,N′
- Tertiary amine catalysts possessing hydrogen atoms which are active towards isocyanate groups are, for example, triethanolamine, triisopropyl-amine, N-methyldiethanolamine, N-methyldiethanolamine, N,N-dimethyl-ethanolamine, their reaction products with alkylene oxides such as propylene oxide and/or ethylene oxide as well as secondary-tertiary amines as in DE Offenlegungsschrift 2,732,292.
- Suitable catalysts include the silaamines containing carbon-silicon bonds, such as are described, for example, in DE 1,229,290 (believed to correspond to U.S. Pat. No. 3,620,984, the disclosure of which is herein incorporated by reference), for example, 2,2,4-trimethyl-2-silamorpholine and 1,3-diethylaminomethyltetramethyldisiloxane
- Also suitable to be used as catalysts include the nitrogen-containing bases such as tetraalkylammonium hydroxides, as are alkali metal hydroxides such as sodium hydroxide, alkali metal phenolates Such Is sodium phenolate or alkali metal alkoxides such as sodium methylate. Hexahydrotriazines can also he used as catalysts (DE Offenlegungsschrift 1,769,043).
- Organometallic compounds and in particular, organotin compounds, can also be used as catalysts.
- sulfur-containing compounds such as dioctyltin mercaptide (as described in DE Auslegeschrift 1,769,367, and in U.S. Pat. No.
- suitable organotin compounds are chiefly tin(II) salts of carboxylic acids such as, for example, tin(II) acetate, tin(II) octoate, tin(II) ethylhexoate and tin(II) laurate, and the tin(IV) compounds such as, for example, dibutyltin oxide, dibutyltin dichloride, dibutyltin diacetate, dibutyltin dilaurate, dimethyltin dilaurate, dibutyltin maleate and dioctyltin diacetate.
- carboxylic acids such as, for example, tin(II) acetate, tin(II) octoate, tin(II) ethylhexoate and tin(II) laurate
- tin(IV) compounds such as, for example, dibutyltin oxide, di
- All the above-mentioned catalysts may, of course, be used as mixtures.
- Of particular interest here are combinations of organometallic compounds and amidines, aminopyridines or hydrazinopyridines (as described in, for example, DE Offenlegungsschriften 2,434,185, 2,601,802 and 2,603,834).
- the catalysts are generally used in a quantity of between about 0.001 and l 10% by wt., based on the total quantity of compounds having at least two hydrogen atoms which are reactive with isocyanates.
- emulsifiers and foam stabilizers can also be used in the production of layer A).
- suitable emulsifiers are the sodium salts of castor oil sulfonates or salts of fatty acids and amines, such as oleic acid diethylamine or stearic acid diethanolamine.
- Alkali metal salts or ammonium salts of sulfonic acids such as, for instance, dodecylbenzenesulfonic acid or dinaphthyl-methanesulfonic acid, or of fatty acids such as ricinoleic acid or of polymeric fatty acids can also be used as surface-active additives.
- Suitable foam stabilizers typically comprise polyether siloxanes, especially water-soluble representatives thereof. These compounds are generally built up in such a way that a copolymer of ethylene oxide and propylene oxide is bonded to a polydimethylsiloxane group.
- foam stabilizers are described, for example, in U.S. Pat. Nos. 2,834,748, 2,917,480 and 3,629,308, the disclosures of which are herein incorporated by reference.
- Polysiloxane-polyoxyalkylene copolymers which are multiple branched via allophanate groups as described in DE Offenlegungsschrift 2,558,523 are of particular interest.
- Reaction inhibitors such as, for example, acid-reacting substances such as hydrochloric acid or organic acid halides, also cell regulators of the kind known per se such as, for example, paraffins, fatty alcohols or dimethylpolysiloxanes, as well as pigments or dyes and flameproofing agents of the kind known per se such as, for example, tris(chloroethyl) phosphate, tricresyl phosphate or ammonium phosphate and ammonium polyphosphate, also stabilizers against the effects of aging and weathering, plasticizers, and substances which exert a fungistatic and bacteriostatic effect, as well as fillers such as barium sulfate, kieselguhr, carbon black and prepared chalk may be included in the polyurethane forming reaction mixture which is used as layer A) of the composites of the invention.
- acid-reacting substances such as hydrochloric acid or organic acid halides
- cell regulators of the kind known per se
- thermoplastic plastic materials which comprises layer B) of the invention.
- Thermoplastic polyolefins are preferred and include compounds such as, for example, polypropylenes or polyethylenes, polycarbonates, polyester carbonates, styrene copolymers, rubber-containing graft styrene copolymers, such as ABS polymers, polyamides and/or thermoplastic mixtures thereof.
- thermoplastic plastic material of layer B is particularly suitable as the thermoplastic plastic material of layer B).
- Polyolefins such as polyethylene of high density and of low density, i.e. those having densities in the range of from 0.91 g/cm 3 to 0.97 g/cm 3 , which can be prepared by known processes (Ullmann (4th Ed.) 19, page 167 et seq., Winnacker-Kückler (4th Ed.) 6, 353 to 367, Elias and Vohwinkel, Neue Polymere Werkstoffe für die von für, Kunststoff, Hanser, 1983.)
- Polypropylenes having weight average molecular weights of 10,000 g/mol to 1,000,000 g/mol are also suitable. Methods for preparing these are described in, for example, Ullmann (5th Ed.) A10, page 615 et seq.; Houben-Weyl E20/2, page 722 et seq.; Ullmann (4th Ed.) 19, page 195 et seq.; and Kirk-Othmer (3rd Ed.) 16, page 357 et seq.
- Copolymers of the above-mentioned olefins, or with other ⁇ -olefins are also suitable to be used as thermoplastic plastics materials for layer B) of the present invention.
- Some suitable examples include:
- EVAs ethylene-vinyl acetate copolymers
- EEAs ethylene-ethyl acrylate copolymers
- EBAs ethylene-butyl acrylate copolymers
- EASs acrylic acid-ethylene acrylate copolymers
- EVKs ethylene-vinyl carbazole copolymers
- EPBs ethylene-propylene block copolymers
- EPDMs ethylene-propylene-diene copolymers
- PBs polybutylenes
- PMPs polymethylpentenes
- PIBs polyisobutylenes
- NBRs acrylonitrile-butadiene copolymers
- thermoplastic plastic materials which according to the invention are suitable for use as the composite layer B) also include thermoplastic, aromatic polycarbonates, and in particular, those based on diphenols corresponding to formula (I):
- A represents a single bond, C 1 -C 5 alkylene radical, a C 2 -C 5 alkylidene radical , a C 5 -C 6 cycloalkylidene radical, —S—, —SO 2 —, —O—, —CO—, or a C 6 -C 12 arylene radical, which can optionally be condensed with other aromatic rings containing hetero atoms;
- B 1 and B 2 each independently represents a C 1 -C 8 -alkyl radical, a C 6 -C 10 aryl radical, and preferably a phenyl radical, a C 7 -C 12 aralkyl radical, and preferably a benzyl radical, a halogen atom, and preferably chlorine or bromine;
- each x independently represents 0, 1 or 2;
- p represents 1 or 0;
- R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, and preferably chlorine or bromine, a C 1 -C 8 alkyl radical, a C 5 cycloalkyl radical, a C 6 -C 10 aryl radical, and preferably a phenyl radical, and a C 7 -C 12 aralkyl radical, preferably a phenyl C 1 -C 4 alkyl radical, and in particular a benzyl radical;
- m represents an integer from 4 to 7, preferably 4 or 5;
- R 3 and R 4 are each independently selected for each Z and each represents, independently of one another, a hydrogen atom, a C 1 -C 6 alkyl radical, and preferably a hydrogen atom, a methyl radical or an ethyl radical;
- Z represents carbon, with the proviso that on at least one Z atom, R 3 and R 4 simultaneously denote an alkyl radical.
- Example of suitable diphenols corresponding to formula (I) above include, for example, hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, 2,2-bis(4-hydroxyphenyl)-propane, 2,4-bis(4-hydroxyphenyl)-2-methylbutane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis(3-chloro-4-hydroxyphenyl)propane, 2,2-b is(3,5-dibromo-4-hydroxyphenyl)propane.
- the preferred diphenols corresponding to formula (I) are 2,2-bis(4-hydroxyphenyl)-propane, 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane and 1,1-bis(4-hydroxyphenyl)cyclohexane.
- the polycarbonates which are suitable according to the invention may be branched in known manner. To be more precise, they are preferably branched by the incorporation of 0.05 to 2.0 mol %, based on the sum of the diphenols used, of compounds which are trifunctional or more than trifunctional such as, for example, those compounds having three or more than three phenolic groups. Examples of suitable compounds are
- Some other trifunctional compounds which can be used include 2,4-dihydroxybenzoic acid, trimesic acid, cyanuric chloride and 3,3-bis(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dyhydroindole.
- the preferred polycarbonates are the copolycarbonates of bisphenol A with up to 15 mol %, based on the molar sum of diphenols, of 2,2-bis(3,5-dibromo-4-hydroxy-phenyl)propane.
- aromatic polycarbonates to be used for the production of layer B) of the composite may be partially replaced by aromatic polyester carbonates.
- Aromatic polycarbonates and/or aromatic polyester carbonates suitable as a thermoplastic plastic material for layer B) are known in the literature, and/or can be prepared by methods known in the literature.
- Aromatic polycarbonates and/or aromatic polyester carbonates can be prepared, for example, by the reaction of diphenols with carbonyl halides, preferably phosgene, and/or with aromatic dicarboxylic dihalides, preferably benzene dicarboxylic dihalides, by the phase interface process, optionally, with the use of chain stoppers and, optionally, with the use of branching agents which are trifunctional or more than trifunctional.
- ethylenically unsaturated monomers i.e. vinyl monomers
- the copolymers are resinous and free from rubber.
- the preferred styrene copolymers are those comprising at least one monomer from the series styrene, ⁇ -methylstyrene and/or ring-substituted styrene, together with at least one monomer from the series acrylonitrile, methacrylonitrile, methyl methacrylate, maleic anhydride and/or N-substituted maleimide.
- thermoplastic copolymer is 60 to 95% by weight of the styrene monomer and 40 to 5% by weight of the other vinyl monomers (based on 100% by weight of the copolymer).
- Particularly preferred copolymers are those comprising styrene with acrylonitrile, and, optionally, with methyl methacrylate, of ⁇ -methylstyrene with acrylonitrile, rural, optionally, with methyl methacrylate, or of styrene and ⁇ -methylstyrene with acrylonitrile, and, optionally, with methyl methacrylate.
- the styrene-acrylonitrile copolymers are known in the art and can be prepared by radical polymerization, in particular by emulsion, suspension, solution or bulk polymerization. These copolymers preferably have weight average molecular weights (M w ), (as determined by light scattering or by sedimentation) of between 15,000 and 200,000 g/mol.
- Particularly preferred copolymers also include statistically built-up copolymers of styrene and maleic anhydride, which can be prepared from the corresponding monomer, with incomplete reactions, preferably by a continuous bulk or solution polymerization.
- the proportions of these two components of the statistically built-up styrene-maleic anhydride copolymers which are suitable according to the invention can vary within wide limits.
- the preferred maleic anhydride content is from 5 to 25% by weight.
- the polymers may also contain ring-substituted styrenes, such as p-methylstyrene, 2,4-dimethylstyrene and other substituted styrenes, such as ⁇ -methylstyrene.
- ring-substituted styrenes such as p-methylstyrene, 2,4-dimethylstyrene and other substituted styrenes, such as ⁇ -methylstyrene.
- the number average molecular weights (number average ⁇ overscore (M) ⁇ n ) of the styrene-maleic anhydride copolymers can vary over a wide range. The range is preferably from 60,000 to 200,000 g/mol. A limiting viscosity of 0.3 to 0.9 (as measured in dimethylformamide at 25° C.) is preferred for these products.
- Graft copolymers arc also suitable for use as thermoplastic plastic materials for the layer B). These include graft copolymers which have rubber-like elastic properties and are substantially obtainable from at least two of the following, monomers: chloroprene, 1,3-butadiene, isoprene, styrene, acrylonitrile, ethylene, propylene, vinyl acetate and (meth)acrylic esters having at least 1 to 18 C atoms in the alcohol component.
- Such polymers of this type include those as described in, for example, “Methoden der organischen Chemie” (Houben-Weyl), Vol. 14/1, Georg Thieme Verlag, Stuttgart, 1961, pp. 393-406.
- the preferred graft polymers are partially cross-linked and have gel contents of more than 20% by weight, preferably more than 40% by weight, and most preferably more than 60% by weight.
- the preferred graft copolymers include, for example, copolymers consisting of styrene and/or acrylonitrile and/or alkyl (meth)acrylates grafted onto polybutadiene, EPDM, butadiene-styrene copolymers and acrylic rubbers of the type described; polybutadienes, butadiene/styrene copolymers or butadiene/acrylonitrile copolymers, polyisobutenes or polyisoprenes grafted with alkyl acrylates or alkyl methacrylates, vinyl acetate, acrylonitrile, styrene and/or alkylstyrenes.
- Particularly preferred polymers are, for example, ABS polymers.
- the graft copolymers can be prepared by known processes, such as, for example, bulk, suspension, emulsion or bulk-suspension processes.
- a preferred copolyamide is prepared by activated anionic polymerization, with polycaprolactam as chief component.
- the activated anionic polymerization of lactams to polyamides is carried out by preparing a solution of catalyst in lactam, optionally, with an impact-resistance modifier and, separately, a solution of an activator in a lactam, the compositions of the two solutions generally being such that combining them in equal proportions produces the required overall formulation. This is not, however, necessary.
- Different compositions can equally well be chosen such as, for example, a concentrated activator melt and a catalyst melt can be added to a lactam melt. Depending on compatibilities, other additives can be added to the activator melt, the catalyst melt or, optionally, to the lactam melt.
- the polymerization is effected by mixing together the individual solutions to form the overall formulation at 80° C. to 200° C., preferably 100° C. to 140° C.
- the catalyst is an alkali metal lactam or alkaline-earth lactam, preferably as a solution in lactam, and is most preferably sodium caprolactamate in ⁇ -caprolactam.
- the activator for the purpose of the invention can be one of the N-alkyl lactams or acid chlorides or, preferably, aliphatic isocyanates, particularly preferably oligomers of hexamethylene diisocyanate. Both the pure substance and as a solution, for example, in N-methylpyrrolidone, can be used as the activator. A solution of the activator is preferred.
- the composites of the invention can be produced in known manner.
- Layer B) of the composite which comprises a thermoplastic polymers is preferably prepared in advance, and the polyurethane forming reaction system is applied onto the prefabricated thermoplastic polymer comprising layer B), and allowed to react to form the polyurethane layer A) of the composite.
- these can already be premixed or can be mixed in the known manner, during the deposition or application process.
- Application of the polyurethane reaction components is typically (and preferably) effected by spraying, knife-coating or calendering. It is also possible to produce the composites according to the invention by means of coextrusion, using known methods.
- the polyurethane reaction components are reacted by the single-stage method or the one-step process, by the prepolymer method, or the semi-prepolymer process.
- foaming can also be carried out in accordance with the present invention in closed molds.
- the reaction mixture is introduced into a mold which already contains layer B) of the composite.
- Suitable mold materials are metal, for example, aluminum, or plastics, for example, epoxy resin.
- the foamable reaction mixture foams in the mold and forms the composite molding.
- the foaming in the mold can be carried out in such a way that the surface of the molding has a cellular structure. It can also be carried out in such a way that the molding has a solid skin and a cellular core.
- Cold-curing foamed plastics can also be produced according to the invention.
- Foamed plastics can, of course, also be produced by block foaming or by the per se known double conveyor belt process, which is preferred for the continuous production of the composites according to the invention.
- the production of polyurethane composites in a sandwich construction is also preferred.
- This type of process can be set up as a depot-constructing process or as a cover-constructing process.
- Both the depot method of construction and the cover method of construction are known per se.
- the depot process filling method of construction
- two half-shells such as, for example, covering layers made of plastic materials
- the cover method of construction the core of PU foam is placed in a mold, and then covered with a suitable covering material such as, for example, with one of the above-mentioned thermoplastics.
- the cover method of construction is preferred for the construction of sandwich composites.
- a subsequent additional coating of layer A) can be effected by the conventional known processes of painting, metallizing, or by an additional coating with a polymeric layer (such as, for example, like layer A)).
- the composites according to the invention are used mainly in the manufacture of motor vehicles, in particular for the interior lining, for example, as coating material for dashboards or for covering pillars.
- molecular weight refers to the number average molecular weight unless otherwise specified.
- the polymeric layer A) was mechanically separated from the composite, mechanically comminuted, and extracted with solvents such as, for example, methylene chloride. It was then possible to determine the unreacted polyether constituents in the extract by means of chromatography in combination with NMR spectroscopy or IR spectroscopy.
- the polymeric layer A) was applied in the form of a thin film to the support layer B), in accordance with the relevant DIN Standard.
- the force of separation during the separation of the composite such as, for example, by a conventional roller peel test in accordance with DIN 53 357, was then measured.
- MDI 4,4′-(diisocyanatodiphenylmethane
- NCO:OH stoichiometric proportions
- a polyethylene oxide of the same molar mass (M n 7,000 g/mol) and having unreactive end groups (end groups: diphenylmethyl and methyl) was added in a concentration of 4,000 ppm. The mixture was then poured immediately onto the polycarbonate support layer B), with a casting frame around the polycarbonate support to ensure that a uniform layer thickness was obtained.
- the polyurethane foam layer was removed by peeling off sample strips of 20 mm in width (90° roller peel test), and measuring the separating force in order to determine the bonding adhesion. After the separation of the substrate from the polyurethane layer, the concentration of polyether on the substrate surface was ascertained by X-ray photoelectron spectroscopy (XPS) via determination of the C—O content of the Cls line.
- XPS X-ray photoelectron spectroscopy
- FIG. 1 The increase over time in the concentration of polyether on the separated substrate surface is shown in FIG. 1. It can be seen from FIG. 2 that an increase in the concentration of polyether at the interface of the two layers during the course of storage (as determined via the C—O content by XPS on the separated substrate surface) lead to a decrease in the bonding adhesion.
- the increase over time in the concentration of polyether on the separated substrate surface rose after 14 days to C—O contents of 20 atom. % at separating forces of 2.5 N.
- the lower concentration of unreacted polyether compared with Example 1 thus showed a distinct decrease in the separating force.
- Example 1 was repeated, without addition of the proportion of unreacted polyether, for storage times of up to 30 days at 80° C. and 80% relative humidity.
- the separating force for the determination of the bonding adhesion was >6 N in all cases.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
The present invention relates to composite materials made of at least one composite layer of a polyurethane and of a second composite layer which is directly bonded to the first layer and which consists of a thermoplastic material that is different from the polyurethane of layer A). The polyurethane material of layer A) is characterized by a residual content of free reaction components containing ether groups of no more than 400 ppm, and preferably of no more than 100 ppm. The invention also relates to a process for the production of these composite materials and to a method of their use as materials in motor vehicles.
Description
- The present invention provides composite materials comprising at least two different plastic material layers directly bonded to one another, of which one layer consists of polyurethane and the layer directly bonded to it consists of a different thermoplastic plastic material.
- It is known that composites comprising a thermoplastic material and a polyurethane, in particular a polyurethane foam, do not exhibit adequate bonding adhesion. This bonding adhesion can be improved by the use of adhesion-promoting layers. This approach is, however, undesirable for applications in the automobile industry, where such composite materials are increasingly being employed, because the required working-tip and recycling processes entail the use of materials which preferably differ as little as possible.
- Therefore, the object of the present invention was to adequately improve the bonding adhesion between a layer made of a polyurethane and a layer directly bonded thereto made of another thermoplastic material.
- This object is achieved according to the invention by the provision of a composite material consisting of at least two layers directly bonded to one another, comprising
- A. at least one layer comprising a polyurethane formed by the reaction of (a) at least one polyisocyanate, with (b) at least one isocyanate-reactive component, and
- B) at least one other (or second) layer which is directly bonded to the polyurethane layer A), and which comprises a thermoplastic plastic material that is different from the polyurethane layer A),
- wherein layer A) has a residual content of reaction components containing ether groups of no more than 400 ppm, and preferably of no more than 100 ppm, which result from the polyurethane preparation.
- This content of reaction components which contain ether groups are isocyanate-reactive components which did not react with the isocyanate component in the preparation or formation of the polyurethane which forms layer A).
- The polyurethanes or polyurethane ureas used in accordance with the present invention as layer A) are obtained by the reaction of one or more polyisocyanates, with one or more polyfunctional compounds containing isocyanate-reactive hydrogen atoms, preferably polyols.
- Suitable polyisocyanates are preferably those which are known in polyurethane chemistry and which are conventionally used therein. In particular, these include aromatic polyisocyanates such as, for example, 2,4-diisocyanatotoluene, and technical mixtures thereof with 2,6-diisocyanato-toluene, 4,4′-diisocyanatodiphenylmethane, and mixtures thereof with the corresponding 2,4′- and 2,2′-isomers, polyisocyanate mixtures of the diphenylmethane series, those which can be obtained in known per se manner by phosgenation of aniline/formaldehyde condensation, the biuret- or isocyanate-containing modification products of these technical polyisocyanates, and, in particular, NCO prepolymers of the aforementioned type which are based on these technical polyisocyanates and on the simple polyols and/or polyether polyols and/or polyester polyols of the type described below as being suitable polyfunctional components containing isocyanate-reactive hydrogen atoms, as well as any mixtures of such isocyanates, provided that they are sufficiently stable upon storage.
- Among the high-molecular weight, modified polyisocyanates, the prepolymers which are known in polyurethane chemistry, which have terminal isocyanate groups and have number average molecular weights in the range of 400 to 10,000 g/mol, preferably 600 to 8,000 g/mol and more preferably of 800 to 5,000 g/mol, are of particular interest. These compounds are prepared in the known manner per se by reacting excess quantities of one or more simple polyisocyanates, of the type cited above as examples, with one or more organic compounds containing at least two groups which are capable of reacting with isocyanate groups, in particular, organic polyhydroxyl compounds. Suitable polyhydroxyl compounds of this kind may be simple polyhydric alcohols having number average molecular weights in the range of 62 to 599 g/mol, preferably 62 to 200 g/mol, such as, for example, ethylene glycol, trimethylolpropane, 1,2-propanediol, 1,4-butanediol or 2,3-butanediol, and relatively high-molecular weight polyether polyols and/or polyester polyols of the kind known per se in polyurethane chemistry, having number average molecular weights of 600 to 8,000 g/mol, preferably 800 to 4,000 g/mol, and containing at least two, generally 2 to 8, preferably 2 to 4 primary and/or secondary hydroxyl groups. One may, of course, also use those NCO prepolymers which have been obtained, for example, from low-molecular weight (number average) polyisocyanates of the type cited above by way of example, and from less preferred compounds possessing groups which are reactive with isocyanate groups, such as, for example, polythioether polyols, hydroxyl-containing polyacetals, polyhydroxypolycarbonates, hydroxyl-group containing polyesteramides ides or hydroxyl-group containing copolymer of olefinically unsaturated compounds.
- Compounds which are suitable for the preparation of NCO prepolymers and which possess groups, and in particular, hydroxyl groups, which are reactive with isocyanate groups include, for example, the compounds as disclosed in U.S. Pat. No. 4,218,543, the disclosure of which is herein incorporated by reference. During the production of the NCO prepolymers, these compounds which possess groups which are reactive with isocyanate groups are caused to react with simple polyisocyanates of the kind given above as examples, with an excess of NCO being maintained The NCO prepolymers generally have an NCO content of 10 to 25% wt. by weight, preferably 15 to 22% by weight. It follows from this that, in the context of the present invention, “NCO prepolymers” and “prepolymers having terminal isocyanate groups” are understood to comprise both the reaction products as such and mixtures thereof with excess quantities of unreacted starting polyisocyanates, which are frequently also referred to as “semi-prepolymers”.
- The polyisocyanate component has an average functionality of 2 to 3, preferably 2.3 to 2.7.
- In order to establish a given NCO content in the isocyanate component, it may be useful to mix together portions of crude MDI and an NCO prepolymer. The proportion of material of high functionality (functionality >4) contained in the crude MDI can readily be tolerated, provided that the average functionality of 3 up to the isocyanate component is not exceeded.
- Suitable aliphatic diols include those characterized by an OH value of at least 200 mg KOH/g, preferably at least 500 mg KOH/g and include the cross-linked chain-extenders which are conventionally used in polyurethane chemistry, such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,3-propanediol. Diols which have an improved compatibility with the polyols of the polyfunctional, isocyanate-reactive component are preferred. Examples of these include, compounds such as 1,4-butanediol, 1,3-butanediol, 2,3-butanediol, 2-methyl-1,3-propanediol. It is, of course, also possible to use the aliphatic diols as mixtures with each other.
- Other suitable polyfunctional, isocyanate-reactive components include those polyols having an average OH number of 5 to 500 mg KOH/g and an average functionality of 2 to 4. Those polyols having an average OH number of 10 to 50 mg KOH/g and an average functionality of 2.7 to 3 are preferred. Examples of such polyols include polyhydroxypolyethers, which are known in polyurethane chemistry and are attainable by the alkoxylation of suitable starter molecules such as, for example, ethylene glycol, diethylene glycol, 1,4-dihydroxybutane, 1,6-dihydroxyhexane, dimethylolpropane, glycerol, pentaerythritol, sorbitol or saccharose. Compounds which can also function as suitable starter molecules include, for example, ammonia, or amines such as ethylene-diamine, hexamethylenediamine, 2,4-diaminotoluene or aniline, aminoalcohols, or phenols such as, for example, bisphenol A. The alkoxylation can be carried out, for example, using propylene oxide and/or ethylene oxide in any order.
- Polyester polyols which are also suitable to be used as polyfunctional isocyanate-reactive components include those of the type obtainable in known manner per se, by the reaction of one or more low-molecular weight alcohols with one or more polybasic carboxylic acids such as, for example, adipic acid, phthalic acid, hexahydrophthalic acid or tetrahydrophthalic acid, or with the anhydrides of these acids, preferably, provided that the viscosity of the isocyanate-reactive component is not too high. A preferred polyol, which has ester groups, is castor oil. Preparations which comprise castor oil, such as those which can be obtained by dissolving resins, for example, aldehydeketone resins, are also suitable, as are modifications of castor oil and polyols based on other natural oils.
- Suitable compounds also include, for example, those high-molecular weight polyhydroxypolyethers in which high-molecular weight polyadducts or polycondensates or polymers are present in finely dispersed, dissolved or grafted form. Such modified polyhydroxyl compounds are generally obtained, for example, when polyaddition reactions (for example, reactions between polyisocyanates and aminofunctional compounds) or polycondensation reactions (for example, between formaldehyde and phenols and/or amines) are allowed to proceed in situ in the hydroxyl-group containing compounds. Such processes are known and described in, for example, DE-AS 1,168,075 and 1,280,142, as well as in DE-A 2,324,134, 2,423,984, 2,512,385, 2,513,815, 2,550,796, 2,550,797, 2,550,833, 2,550,882, 2,633,293 and 2,639,254. According to the processes described in, for example, U.S. Pat. No. 3,869,413, the disclosure of which is herein incorporated by reference, or in DE-A 2,550,860, it is even possible to mix a prepared aqueous polymer dispersion with a polyhydroxyl compound, and subsequently, to remove the water from the mixture.
- Polyhydroxyl compounds modified by vinyl polymers, such as those which are obtained by, for example, the polymerization of styrene and acrylonitrile in the presence of polyethers (as described in, for example, U.S. Pat. Nos. 3,383,351, 3,304,273, 3,523,093, and 3,110,695, the disclosures of which are herein incorporated by reference; DE-A 1,152,5369), or of polyether carbonate polyols (as described in DE-PS 1,769,795, and in U.S. Pat. No. 3,637,909, the disclosure of which is herein incorporated by reference), are also suitable for the preparation of polyurethanes. If polyether polyols are used which have been modified, in accordance with DE-A 2,442,101, 2,844,922 and 2,646,141, by graft polymerization with vinyl phosphonates, and, optionally, (meth)acrylonitrile, (meth)acrylamide or OH-functional (meth)acrylic esters, plastics having a special flame resistance are produced.
- Representatives of the compounds mentioned above to be used as polyfunctional isocyanate-reactive compounds are described in, for example, High Polymers, Vol. XVI, “Polyurethane Chemistry and Technology”, by Saunders-Frisch, Interscience Publishers, New York, London,
Volume 1, 1982, pages 32-42 and pages 44-54 and Volume II, 1984, pages 5-6 and 198-199, and in Kunststoff-Handbuch, Volume VII, Carl Hanser Verlag, Munich, 1983, for example, on pages 45-61. - Mixtures of the compounds listed may, of course, also be used.
- The restriction of the average OH number and of the average functionality of the isocyanate-reactive component results, in particular, from the increasing embrittlement of the resulting polyurethane. In principle, however, the person of ordinary skill in the art knows the possible ways of influencing the polymeric/physical properties of polyurethanes, so that NCO component, the aliphatic diol and the polyol can be advantageously matched or coordinated with one another in a favorable manner.
- The composite layer A) may be foamed or in solid form such as, for example, a paint or coating.
- All known per se auxiliary substances and additives such as, for example, separating agents, blowing agents, fillers, catalysts and flameproofing agents can be used.
- Auxiliary substances and additives which may optionally be used include:
- a) water and/or highly volatile inorganic or organic substances as blowing agents. Suitable organic blowing agents include, for example, acetone, ethyl acetate, halogen-substituted alkanes such as methylene chloride, chloroform, ethylidene chloride, vinylidene chloride, monofluorotrichloro-methane, chlorodifluoro-methane, dichlorodifluoromethane, as well as butane, hexane, hexane or diethyl ether; suitable inorganic blowing agents include, for example, air, CO 2, or N2O. A blowing action can also be achieved by adding compounds which decompose at temperatures above room temperature with the release of gases such as, for example, nitrogen. Examples of such compounds include azo compounds such as, for example, azodicarbonamide or azobisisobutyronitrile. Further examples of blowing agents and details regarding the use of blowing agents are given in Kunststoff-Handbuch, Volume VII, edited by Vieweg and Hochtlen, Carl Hanser Verlag, Munich, 1966, for example, on pages 108 and 109, 453 to 455 and 507 to 510.
- b) Catalysts of the type known per se include, for example, tertiary amines, such as trimethylamine, tributylamine, N-methylmorpholine, N-ethylmorpholine, N,N,N′,N′-tetramethylethylenediamine, pentamethyldiethylenetriamine and higher homologues (DE Offenlegungsschriften 2,624,527 and 2,624,524), 1,4-diazabicyclo-[2.2.2]octane, N-methyl-N′-(dimethylamino-ethylpiperazine, bis(dimethyl-aminoalkyl)piperazine (DE Offenlegungsschriften 2,737,787), N,N-dimethylbenzylamine, N,N-dimethylcyclohexylamine, N,N-diethylbenzylamine, bis(N,N-diethylaminoethyl) adipate, N,N,N′,N′-tetramethyl-1,3-butanediamine, N,N′-dimethyl-β-phenylethylamine, 1,2-dimethylimidazole, 2-methylimidazole, monocyclic and bicyclic amidines (DE, Offenlegungsschrift 1,720,633), bis(dialkylamino)alkyl ether (as described in U.S. Pat. No. 3,330,782 the disclosure of which is herein incorporated by reference, DE-Auslegungschrift 1,030,558, DE Offenlegungsschriften 1,804,361 and 2,618,280) as well as tertiary amines containing amide groups (preferably formamide groups) as in DE Offenlegungsschriften 2,523,633 and 2,732,292). Known per se Mannich bases made from secondary amines, such as dimethylamine, and from aldehydes, preferably formaldehyde, or ketones such as acetone, methyl ethyl ketone or cyclohexanone, and from phenols, such as phenol, nonyl phenol or bisphenol, are also suitable catalysts.
- Tertiary amine catalysts possessing hydrogen atoms which are active towards isocyanate groups are, for example, triethanolamine, triisopropyl-amine, N-methyldiethanolamine, N-methyldiethanolamine, N,N-dimethyl-ethanolamine, their reaction products with alkylene oxides such as propylene oxide and/or ethylene oxide as well as secondary-tertiary amines as in DE Offenlegungsschrift 2,732,292.
- Other suitable catalysts include the silaamines containing carbon-silicon bonds, such as are described, for example, in DE 1,229,290 (believed to correspond to U.S. Pat. No. 3,620,984, the disclosure of which is herein incorporated by reference), for example, 2,2,4-trimethyl-2-silamorpholine and 1,3-diethylaminomethyltetramethyldisiloxane
- Also suitable to be used as catalysts include the nitrogen-containing bases such as tetraalkylammonium hydroxides, as are alkali metal hydroxides such as sodium hydroxide, alkali metal phenolates Such Is sodium phenolate or alkali metal alkoxides such as sodium methylate. Hexahydrotriazines can also he used as catalysts (DE Offenlegungsschrift 1,769,043).
- The reaction between NCO groups and isocyanate-reactive hydrogen atoms is also greatly accelerated by lactam and azalactams, with an associative component first of all being formed between the lactam and the compound containing isocyanate-reactive hydrogen atoms. Such associative compounds and their catalytic action are described in DE Offenlegungsschriften 2,062,286, 2,062,289 and 2,117,576 (believed to correspond to U.S. Pat. No. 3,758,444, the disclosure of which is herein incorporated by reference), 2,129,198, 2,330,175 and 2,330,211.
- Organometallic compounds, and in particular, organotin compounds, can also be used as catalysts. Besides sulfur-containing compounds such as dioctyltin mercaptide (as described in DE Auslegeschrift 1,769,367, and in U.S. Pat. No. 3,645,927, the disclosure of which is herein incorporated by reference), suitable organotin compounds are chiefly tin(II) salts of carboxylic acids such as, for example, tin(II) acetate, tin(II) octoate, tin(II) ethylhexoate and tin(II) laurate, and the tin(IV) compounds such as, for example, dibutyltin oxide, dibutyltin dichloride, dibutyltin diacetate, dibutyltin dilaurate, dimethyltin dilaurate, dibutyltin maleate and dioctyltin diacetate.
- All the above-mentioned catalysts may, of course, be used as mixtures. Of particular interest here are combinations of organometallic compounds and amidines, aminopyridines or hydrazinopyridines (as described in, for example, DE Offenlegungsschriften 2,434,185, 2,601,802 and 2,603,834).
- Further representatives of catalysts to be used according to the invention and details regarding the mechanism of action of the catalysts are described in, for example, Kunststoff-Handbuch, Volume VII, edited by Vieweg and Höchtlen, Carl Hanser Verlag, Munich, 1966, on pages 96 to 102.
- The catalysts are generally used in a quantity of between about 0.001 and
l 10% by wt., based on the total quantity of compounds having at least two hydrogen atoms which are reactive with isocyanates. - c) Surface-active additives, such as emulsifiers and foam stabilizers can also be used in the production of layer A). Examples of suitable emulsifiers are the sodium salts of castor oil sulfonates or salts of fatty acids and amines, such as oleic acid diethylamine or stearic acid diethanolamine. Alkali metal salts or ammonium salts of sulfonic acids such as, for instance, dodecylbenzenesulfonic acid or dinaphthyl-methanesulfonic acid, or of fatty acids such as ricinoleic acid or of polymeric fatty acids can also be used as surface-active additives.
- Suitable foam stabilizers typically comprise polyether siloxanes, especially water-soluble representatives thereof. These compounds are generally built up in such a way that a copolymer of ethylene oxide and propylene oxide is bonded to a polydimethylsiloxane group. Such foam stabilizers are described, for example, in U.S. Pat. Nos. 2,834,748, 2,917,480 and 3,629,308, the disclosures of which are herein incorporated by reference. Polysiloxane-polyoxyalkylene copolymers which are multiple branched via allophanate groups as described in DE Offenlegungsschrift 2,558,523 are of particular interest.
- d) Reaction inhibitors such as, for example, acid-reacting substances such as hydrochloric acid or organic acid halides, also cell regulators of the kind known per se such as, for example, paraffins, fatty alcohols or dimethylpolysiloxanes, as well as pigments or dyes and flameproofing agents of the kind known per se such as, for example, tris(chloroethyl) phosphate, tricresyl phosphate or ammonium phosphate and ammonium polyphosphate, also stabilizers against the effects of aging and weathering, plasticizers, and substances which exert a fungistatic and bacteriostatic effect, as well as fillers such as barium sulfate, kieselguhr, carbon black and prepared chalk may be included in the polyurethane forming reaction mixture which is used as layer A) of the composites of the invention.
- Other examples of surface-active additives and foam stabilizers which can optionally to be used in the invention, as well as of cell regulators, reaction inhibitors, stabilizers, flame retardants, plasticizers, dyes and fillers, and of fungistatic and bacteriostatic substances, together with details regarding the method of use and mode of action of these additives, are given in Kunststoff-Handbuch, Volume VII, edited by Vieweg and Höchtlen, Carl Hanser Verlag, Munich, 1966, for example, on pages 103-113.
- All the known thermoplastics are suitable for use as thermoplastic plastic materials which comprises layer B) of the invention. Thermoplastic polyolefins are preferred and include compounds such as, for example, polypropylenes or polyethylenes, polycarbonates, polyester carbonates, styrene copolymers, rubber-containing graft styrene copolymers, such as ABS polymers, polyamides and/or thermoplastic mixtures thereof.
- The following polymers are particularly suitable as the thermoplastic plastic material of layer B):
- Polyolefins such as polyethylene of high density and of low density, i.e. those having densities in the range of from 0.91 g/cm 3 to 0.97 g/cm3, which can be prepared by known processes (Ullmann (4th Ed.) 19, page 167 et seq., Winnacker-Kückler (4th Ed.) 6, 353 to 367, Elias and Vohwinkel, Neue Polymere Werkstoffe für die industrielle Anwendung, Munich, Hanser, 1983.)
- Polypropylenes having weight average molecular weights of 10,000 g/mol to 1,000,000 g/mol, and which can be prepared by known processes, are also suitable. Methods for preparing these are described in, for example, Ullmann (5th Ed.) A10, page 615 et seq.; Houben-Weyl E20/2, page 722 et seq.; Ullmann (4th Ed.) 19, page 195 et seq.; and Kirk-Othmer (3rd Ed.) 16, page 357 et seq.
- Copolymers of the above-mentioned olefins, or with other α-olefins, are also suitable to be used as thermoplastic plastics materials for layer B) of the present invention. Some suitable examples include:
- polymers of ethylene with butene, hexene and/or octene;
- EVAs (ethylene-vinyl acetate copolymers);
- EEAs (ethylene-ethyl acrylate copolymers);
- EBAs (ethylene-butyl acrylate copolymers);
- EASs (acrylic acid-ethylene acrylate copolymers);
- EVKs (ethylene-vinyl carbazole copolymers);
- EPBs (ethylene-propylene block copolymers);
- EPDMs (ethylene-propylene-diene copolymers);
- PBs (polybutylenes);
- PMPs (polymethylpentenes);
- PIBs (polyisobutylenes);
- NBRs (acrylonitrile-butadiene copolymers);
- polyisoprenes;
- methyl-butylene copolymers;
- and
- isoprene-isobutylene copolymers;
- Methods of preparation of such polymers are described in, for example, Kunststoff-Handbuch, Volume IV, Munich, Hanser Verlag, Ullmann (4th Ed.) 19, page 167 et seq.; Winnacker-Kückler (4th Ed.) 6, 353 to 367; Elias and Vohwinkel, Neue Polymere Werkstoffe, Munich, Hanser, 1983; and Franck and Biederbick, Kunststoff Kompendium Wurzburg, Vogel, 1984.
-
- wherein:
- A represents a single bond, C 1-C5 alkylene radical, a C2-C5 alkylidene radical , a C5-C6cycloalkylidene radical, —S—, —SO2—, —O—, —CO—, or a C6-C12 arylene radical, which can optionally be condensed with other aromatic rings containing hetero atoms;
- B 1 and B2: each independently represents a C1-C8-alkyl radical, a C6-C10 aryl radical, and preferably a phenyl radical, a C7-C12 aralkyl radical, and preferably a benzyl radical, a halogen atom, and preferably chlorine or bromine;
- each x: independently represents 0, 1 or 2;
- and
- p represents 1 or 0;
-
- wherein
- R 1 and R2 each independently represent a hydrogen atom, a halogen atom, and preferably chlorine or bromine, a C1-C8 alkyl radical, a C5 cycloalkyl radical, a C6-C10aryl radical, and preferably a phenyl radical, and a C7-C12 aralkyl radical, preferably a phenyl C1-C4 alkyl radical, and in particular a benzyl radical;
- m represents an integer from 4 to 7, preferably 4 or 5;
- R 3 and R4 are each independently selected for each Z and each represents, independently of one another, a hydrogen atom, a C1-C6 alkyl radical, and preferably a hydrogen atom, a methyl radical or an ethyl radical; and
- Z represents carbon, with the proviso that on at least one Z atom, R 3 and R4 simultaneously denote an alkyl radical.
- Example of suitable diphenols corresponding to formula (I) above include, for example, hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, 2,2-bis(4-hydroxyphenyl)-propane, 2,4-bis(4-hydroxyphenyl)-2-methylbutane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis(3-chloro-4-hydroxyphenyl)propane, 2,2-b is(3,5-dibromo-4-hydroxyphenyl)propane.
- The preferred diphenols corresponding to formula (I) are 2,2-bis(4-hydroxyphenyl)-propane, 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane and 1,1-bis(4-hydroxyphenyl)cyclohexane.
-
- wherein:
- 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane (formula (IIa)) is particularly preferred.
- The polycarbonates which are suitable according to the invention may be branched in known manner. To be more precise, they are preferably branched by the incorporation of 0.05 to 2.0 mol %, based on the sum of the diphenols used, of compounds which are trifunctional or more than trifunctional such as, for example, those compounds having three or more than three phenolic groups. Examples of suitable compounds are
- phloroglucinol,
- 4,6-dimethyl-2,4,6-tri(4-hydroxyphenyl)heptene-2,4,6-dimethyl-2,4,6-tri(4-hydroxyphenyl)heptene,
- 1,3,5-tri(4-hydroxyphenyl)benzene,
- 1,1-tri(4-hydroxyphenyl)ethane,
- tri(4-hydroxyphenyl)phenylmethane,
- 2,2-bis(4,4-bis(4-hydroxyphenyl)cyclohexylpropane,
- 2,4-bis(4-hydroxyphenyl)isopropyl)phenol,
- 2,6-bis(2-hydroxy-5′-methylbenzyl)-4-methylphenol,
- 2-(4-hydroxyphenyl)-2-(2,4-dihydroxyphenyl)propane,
- hexa(4-(4-hydroxyphenylisopropyl)phenyl)ortho-terephthalic ester,
- tetra(4-hydroxyphenyl)methane,
- tetra(4-(4-hydroxyphenylisopropyl)phenoxy)methane and
- 1,4-bis(4′-4″-dihydroxytriphenyl)methyl)benzene.
- Some other trifunctional compounds which can be used include 2,4-dihydroxybenzoic acid, trimesic acid, cyanuric chloride and 3,3-bis(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dyhydroindole.
- In addition to bisphenol A homopolycarbonate, the preferred polycarbonates are the copolycarbonates of bisphenol A with up to 15 mol %, based on the molar sum of diphenols, of 2,2-bis(3,5-dibromo-4-hydroxy-phenyl)propane.
- The aromatic polycarbonates to be used for the production of layer B) of the composite may be partially replaced by aromatic polyester carbonates.
- Aromatic polycarbonates and/or aromatic polyester carbonates suitable as a thermoplastic plastic material for layer B) are known in the literature, and/or can be prepared by methods known in the literature. For the preparation of aromatic polycarbonates, see, for example, Schnell, “Chemistry and Physics of Polycarbonates”, Interscience Publishers, 1964.
- Aromatic polycarbonates and/or aromatic polyester carbonates can be prepared, for example, by the reaction of diphenols with carbonyl halides, preferably phosgene, and/or with aromatic dicarboxylic dihalides, preferably benzene dicarboxylic dihalides, by the phase interface process, optionally, with the use of chain stoppers and, optionally, with the use of branching agents which are trifunctional or more than trifunctional.
- Other thermoplastic plastic materials which are suitable for use as layer B) of the composites of the invention include the styrene copolymers of one or at least two ethylenically unsaturated monomers (i.e. vinyl monomers) such as, for example, of styrene, α-methylstyrene, ring-substituted styrenes, acrylonitrile, methacrylonitrile, methyl methacrylate, maleic anhydride, N-substituted maleimides and (meth)acrylic esters having from 1 to 8 C atoms in the alcohol component.
- The copolymers are resinous and free from rubber.
- The preferred styrene copolymers are those comprising at least one monomer from the series styrene, α-methylstyrene and/or ring-substituted styrene, together with at least one monomer from the series acrylonitrile, methacrylonitrile, methyl methacrylate, maleic anhydride and/or N-substituted maleimide.
- It is preferred that the relative weight ratios in the thermoplastic copolymer are 60 to 95% by weight of the styrene monomer and 40 to 5% by weight of the other vinyl monomers (based on 100% by weight of the copolymer).
- Particularly preferred copolymers are those comprising styrene with acrylonitrile, and, optionally, with methyl methacrylate, of α-methylstyrene with acrylonitrile, rural, optionally, with methyl methacrylate, or of styrene and α-methylstyrene with acrylonitrile, and, optionally, with methyl methacrylate.
- The styrene-acrylonitrile copolymers are known in the art and can be prepared by radical polymerization, in particular by emulsion, suspension, solution or bulk polymerization. These copolymers preferably have weight average molecular weights (M w), (as determined by light scattering or by sedimentation) of between 15,000 and 200,000 g/mol.
- Particularly preferred copolymers also include statistically built-up copolymers of styrene and maleic anhydride, which can be prepared from the corresponding monomer, with incomplete reactions, preferably by a continuous bulk or solution polymerization.
- The proportions of these two components of the statistically built-up styrene-maleic anhydride copolymers which are suitable according to the invention can vary within wide limits. The preferred maleic anhydride content is from 5 to 25% by weight.
- Instead of styrene, the polymers may also contain ring-substituted styrenes, such as p-methylstyrene, 2,4-dimethylstyrene and other substituted styrenes, such as α-methylstyrene.
- The number average molecular weights (number average {overscore (M)} n) of the styrene-maleic anhydride copolymers can vary over a wide range. The range is preferably from 60,000 to 200,000 g/mol. A limiting viscosity of 0.3 to 0.9 (as measured in dimethylformamide at 25° C.) is preferred for these products.
- Graft copolymers arc also suitable for use as thermoplastic plastic materials for the layer B). These include graft copolymers which have rubber-like elastic properties and are substantially obtainable from at least two of the following, monomers: chloroprene, 1,3-butadiene, isoprene, styrene, acrylonitrile, ethylene, propylene, vinyl acetate and (meth)acrylic esters having at least 1 to 18 C atoms in the alcohol component. Such polymers of this type include those as described in, for example, “Methoden der organischen Chemie” (Houben-Weyl), Vol. 14/1, Georg Thieme Verlag, Stuttgart, 1961, pp. 393-406. The preferred graft polymers are partially cross-linked and have gel contents of more than 20% by weight, preferably more than 40% by weight, and most preferably more than 60% by weight.
- The preferred graft copolymers include, for example, copolymers consisting of styrene and/or acrylonitrile and/or alkyl (meth)acrylates grafted onto polybutadiene, EPDM, butadiene-styrene copolymers and acrylic rubbers of the type described; polybutadienes, butadiene/styrene copolymers or butadiene/acrylonitrile copolymers, polyisobutenes or polyisoprenes grafted with alkyl acrylates or alkyl methacrylates, vinyl acetate, acrylonitrile, styrene and/or alkylstyrenes.
- Particularly preferred polymers are, for example, ABS polymers.
- The graft copolymers can be prepared by known processes, such as, for example, bulk, suspension, emulsion or bulk-suspension processes.
- Thermoplastic polyamides which can be used for layer B) of the composites according to the invention include, for example, polyamide 66 (polyhexamethylene adipinamide), or polyamides of cyclic lactams having 5 to 12 C (carbon) atoms, preferably of lauryl lactam and more preferably of ε-caprolactam=polyamide 6 (polycaprolactam), or copolyamides containing as
chief components 6 or 66, or mixtures thereof with the above-mentioned polyamides as chief component. A preferred copolyamide is prepared by activated anionic polymerization, with polycaprolactam as chief component. - On an industrial scale, the activated anionic polymerization of lactams to polyamides is carried out by preparing a solution of catalyst in lactam, optionally, with an impact-resistance modifier and, separately, a solution of an activator in a lactam, the compositions of the two solutions generally being such that combining them in equal proportions produces the required overall formulation. This is not, however, necessary. Different compositions can equally well be chosen such as, for example, a concentrated activator melt and a catalyst melt can be added to a lactam melt. Depending on compatibilities, other additives can be added to the activator melt, the catalyst melt or, optionally, to the lactam melt.
- The polymerization is effected by mixing together the individual solutions to form the overall formulation at 80° C. to 200° C., preferably 100° C. to 140° C.
- The catalyst is an alkali metal lactam or alkaline-earth lactam, preferably as a solution in lactam, and is most preferably sodium caprolactamate in ε-caprolactam.
- The activator for the purpose of the invention can be one of the N-alkyl lactams or acid chlorides or, preferably, aliphatic isocyanates, particularly preferably oligomers of hexamethylene diisocyanate. Both the pure substance and as a solution, for example, in N-methylpyrrolidone, can be used as the activator. A solution of the activator is preferred.
- The composites of the invention can be produced in known manner. Layer B) of the composite which comprises a thermoplastic polymers is preferably prepared in advance, and the polyurethane forming reaction system is applied onto the prefabricated thermoplastic polymer comprising layer B), and allowed to react to form the polyurethane layer A) of the composite. Depending on the reactivity of the polyurethane reaction components, these can already be premixed or can be mixed in the known manner, during the deposition or application process. Application of the polyurethane reaction components is typically (and preferably) effected by spraying, knife-coating or calendering. It is also possible to produce the composites according to the invention by means of coextrusion, using known methods.
- In particular, the polyurethane reaction components are reacted by the single-stage method or the one-step process, by the prepolymer method, or the semi-prepolymer process.
- During the production of the PU (polyurethane) foamed plastic, foaming can also be carried out in accordance with the present invention in closed molds. In this case, the reaction mixture is introduced into a mold which already contains layer B) of the composite. Suitable mold materials are metal, for example, aluminum, or plastics, for example, epoxy resin. The foamable reaction mixture foams in the mold and forms the composite molding. Here, the foaming in the mold can be carried out in such a way that the surface of the molding has a cellular structure. It can also be carried out in such a way that the molding has a solid skin and a cellular core. In this embodiment, one can proceed by introducing foamable reaction mixture into the mold in a quantity such that the foamed plastic formed just fills the mold. However, one can also operate by introducing more of the foamable reaction mixture into the mold than is necessary in order to fill the interior of the mold with foamed plastic. In the latter case, the operation involves “overcharging”; such a procedure is generally known in the art.
- In many cases known per se “external release agents”, Such as silicone oils, are used concomitantly during the foaming in the mold. It is also possible to use so-called “internal release agents”, optionally, mixed with external release agents.
- Cold-curing foamed plastics can also be produced according to the invention.
- Foamed plastics can, of course, also be produced by block foaming or by the per se known double conveyor belt process, which is preferred for the continuous production of the composites according to the invention.
- The production of polyurethane composites in a sandwich construction is also preferred. This type of process can be set up as a depot-constructing process or as a cover-constructing process. Both the depot method of construction and the cover method of construction are known per se. In the depot process (filling method of construction), two half-shells (such as, for example, covering layers made of plastic materials) are prepared, then placed in a mold and the cavity between the shells is foamed with the PU foam. In the cover method of construction, the core of PU foam is placed in a mold, and then covered with a suitable covering material such as, for example, with one of the above-mentioned thermoplastics. The cover method of construction is preferred for the construction of sandwich composites.
- To produce solid PU materials, the two PU reaction components are caused to react by straightforward mixing at room temperature, as explained above.
- A subsequent additional coating of layer A) can be effected by the conventional known processes of painting, metallizing, or by an additional coating with a polymeric layer (such as, for example, like layer A)).
- The composites according to the invention are used mainly in the manufacture of motor vehicles, in particular for the interior lining, for example, as coating material for dashboards or for covering pillars.
- As used herein, the term molecular weight refers to the number average molecular weight unless otherwise specified.
- The invention is explained by means of the following Examples.
- The content of unreacted reaction components containing ether groups in the polyurethane comprising layer A) of the composite was determined as follows:
- The polymeric layer A) was mechanically separated from the composite, mechanically comminuted, and extracted with solvents such as, for example, methylene chloride. It was then possible to determine the unreacted polyether constituents in the extract by means of chromatography in combination with NMR spectroscopy or IR spectroscopy.
- The bonding adhesion was tested in the following way, in accordance with DIN 53 357.
- The polymeric layer A) was applied in the form of a thin film to the support layer B), in accordance with the relevant DIN Standard. The force of separation during the separation of the composite such as, for example, by a conventional roller peel test in accordance with DIN 53 357, was then measured.
- A polyurethane layer A) having the following composition was applied to a polymeric support layer B) consisting of polycarbonate based on bisphenol A (number average molecular weight (M n)=12,000 g/mol).
- To this end, a trifunctional polyether prepared from propylene oxide and ethylene oxide and having a molar mass (M n)=7,000 g/mol, was thoroughly mixed with 4,4′-(diisocyanatodiphenylmethane (MDI), and water (1% by eight, based on the weight of MDI) in stoichiometric proportions (NCO:OH). To simulate free, unreacted polyether, a polyethylene oxide of the same molar mass (Mn=7,000 g/mol) and having unreactive end groups (end groups: diphenylmethyl and methyl) was added in a concentration of 4,000 ppm. The mixture was then poured immediately onto the polycarbonate support layer B), with a casting frame around the polycarbonate support to ensure that a uniform layer thickness was obtained.
- Following storage of these composites under the conditions in which the technical product was used (storage for 0 to 14 days at 80° C. and 80% relative humidity), the polyurethane foam layer was removed by peeling off sample strips of 20 mm in width (90° roller peel test), and measuring the separating force in order to determine the bonding adhesion. After the separation of the substrate from the polyurethane layer, the concentration of polyether on the substrate surface was ascertained by X-ray photoelectron spectroscopy (XPS) via determination of the C—O content of the Cls line.
- The increase over time in the concentration of polyether on the separated substrate surface is shown in FIG. 1. It can be seen from FIG. 2 that an increase in the concentration of polyether at the interface of the two layers during the course of storage (as determined via the C—O content by XPS on the separated substrate surface) lead to a decrease in the bonding adhesion.
- Example 1 was repeated, but an unreacted polyether was added in a concentration of 400 ppm (instead of 4,000 ppm); polyethylene oxide, M n=7,000 g/mol, having unreactive end groups: dimethyl and methyl. The increase over time in the concentration of polyether on the separated substrate surface rose after 14 days to C—O contents of 20 atom. % at separating forces of 2.5 N. The lower concentration of unreacted polyether compared with Example 1 thus showed a distinct decrease in the separating force.
- Example 1 was repeated, without addition of the proportion of unreacted polyether, for storage times of up to 30 days at 80° C. and 80% relative humidity. The separating force for the determination of the bonding adhesion was >6 N in all cases.
- These three Examples show that the bonding adhesion decreases markedly when the unreacted residual content of the component containing ether groups rises above 400 ppm.
- Although the invention has been described in detail in the foregoing for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as it may be limited by the claims.
Claims (10)
1. A composite material comprising at least two layers of different plastics materials which are directly bonded to each other, comprising:
A) at least one layer comprising polyurethane, and
B) at least one layer which is directly bonded to layer A) and comprising a thermoplastic plastic material which is different from A),
wherein layer A) has a residual content of reaction components containing ether groups of no more than 400 ppm, which result from the polyurethane preparation.
2. The composite material of claim 1 , wherein layer A) has a residual content of reaction components containing ether groups of no more than 100 ppm, which result from the polyurethane preparation.
3. The composite material of claim 1 , wherein the polyurethane of layer A) of the composite comprises a polyurethane foam or a polyurethane coating.
4. The composite material of claim 1 , wherein the thermoplastic plastics material of layer B) of the composite comprises a polycarbonate, a polyester carbonate, a styrene copolymer or of a corresponding graft copolymer, or mixtures thereof.
5. The composite material of claim 1 , wherein the thermoplastic plastics material of layer B) of the composite comprises a polyolefin or a polyamide.
6. The composite material of claim 5 , wherein said polyolefin is selected from the group consisting of polyethylene, polypropylene and ethylene-propylene copolymers.
7. The composite material of claim 5 , wherein said polyamide is selected from the group consisting of preferably polyamide 6 and polyamide 6.6.
8. The composite material of claim 4 , wherein the polyurethane of layer A) of the composite comprises a polyurethane foam having a residual content of reaction components containing ether groups of no more than 100 ppm, and the thermoplastic plastics material of layer B) of the composite comprises a polycarbonate.
9. A process for the production of a composite material comprising at least two layers of different plastics materials which are directly bonded to one another, comprising:
(1) applying (A) a polyurethane-forming reaction system comprising (a) an organic polyisocyanate and (b) an isocyanate-reactive component, onto (B) a prefabricated thermoplastic polymer, and
(2) allowing the polyurethane-forming reaction system to fully react, thereby forming a composite material comprising at least two different plastics layers, wherein the polyurethane-forming reaction system has a residual content of reaction components containing ether groups of at most 400 ppm.
10. The process of claim 8 , wherein the polyurethane-forming reaction system has a residual content of reaction components containing ether groups of no more than 100 ppm.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/919,384 US6428895B1 (en) | 1999-05-26 | 2001-07-31 | Stable adhesive composite material made of polyurethane and of another thermoplastic material, a process for its production and a method for its use in motor vehicles |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19924092A DE19924092A1 (en) | 1999-05-26 | 1999-05-26 | Adhesion-stable composite material made of polyurethane and another thermoplastic material, a process for its production and its use in motor vehicles |
| DE19924092.2 | 1999-05-26 | ||
| DE19924092 | 1999-05-26 | ||
| US09/571,226 US6296908B1 (en) | 1999-05-26 | 2000-05-16 | Stable adhesive composite material made of polyurethane and of another thermoplastic material, a process for its production and a method for its use in motor vehicles |
| US09/919,384 US6428895B1 (en) | 1999-05-26 | 2001-07-31 | Stable adhesive composite material made of polyurethane and of another thermoplastic material, a process for its production and a method for its use in motor vehicles |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/571,226 Division US6296908B1 (en) | 1999-05-26 | 2000-05-16 | Stable adhesive composite material made of polyurethane and of another thermoplastic material, a process for its production and a method for its use in motor vehicles |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20020025438A1 true US20020025438A1 (en) | 2002-02-28 |
| US6428895B1 US6428895B1 (en) | 2002-08-06 |
Family
ID=7909223
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/571,226 Expired - Fee Related US6296908B1 (en) | 1999-05-26 | 2000-05-16 | Stable adhesive composite material made of polyurethane and of another thermoplastic material, a process for its production and a method for its use in motor vehicles |
| US09/919,384 Expired - Fee Related US6428895B1 (en) | 1999-05-26 | 2001-07-31 | Stable adhesive composite material made of polyurethane and of another thermoplastic material, a process for its production and a method for its use in motor vehicles |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/571,226 Expired - Fee Related US6296908B1 (en) | 1999-05-26 | 2000-05-16 | Stable adhesive composite material made of polyurethane and of another thermoplastic material, a process for its production and a method for its use in motor vehicles |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US6296908B1 (en) |
| EP (1) | EP1055717A3 (en) |
| JP (1) | JP2001010004A (en) |
| KR (1) | KR20000077422A (en) |
| BR (1) | BR0002118A (en) |
| CA (1) | CA2308997A1 (en) |
| DE (1) | DE19924092A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040262801A1 (en) * | 2002-08-23 | 2004-12-30 | Hamid Hojaji | Methods and formulations for producing low density products |
| US20070122615A1 (en) * | 2003-10-03 | 2007-05-31 | Mitsuteru Mutsuda | Molded composite article, process for producing the same, and a joinable resin |
Families Citing this family (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7344769B1 (en) | 2000-07-24 | 2008-03-18 | High Voltage Graphics, Inc. | Flocked transfer and article of manufacture including the flocked transfer |
| US7364782B2 (en) | 2000-07-24 | 2008-04-29 | High Voltage Graphics, Inc. | Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film |
| US6929771B1 (en) | 2000-07-31 | 2005-08-16 | High Voltage Graphics, Inc. | Method of decorating a molded article |
| US8354050B2 (en) | 2000-07-24 | 2013-01-15 | High Voltage Graphics, Inc. | Co-molded direct flock and flock transfer and methods of making same |
| US7338697B2 (en) | 2000-07-24 | 2008-03-04 | High Voltage Graphics, Inc. | Co-molded direct flock and flock transfer and methods of making same |
| DE10109226A1 (en) * | 2001-02-26 | 2002-09-05 | Bayer Ag | Polycarbonate composition with improved adhesion to foam, useful for making molded articles and composites, contains copolymer of styrene and carboxylated monomer |
| EP1416471B1 (en) * | 2001-08-06 | 2006-09-13 | Index Corporation | Device and method for judging dog s feeling from cry vocal c haracter analysis |
| WO2003031083A1 (en) | 2001-10-05 | 2003-04-17 | High Voltage Graphics, Inc. | Screen printed resin film applique or transfer made from liquid plastic dispersion |
| EP1302988A3 (en) * | 2001-10-12 | 2007-01-24 | Bayer MaterialScience AG | Photovoltaic modules with a thermoplastic adhesive layer and method for fabricating the same |
| CA2489868A1 (en) | 2002-07-03 | 2004-01-15 | High Voltage Graphics, Inc. | Process for printing and molding a flocked article |
| US20040050482A1 (en) | 2002-07-03 | 2004-03-18 | Abrams Louis Brown | Flocked articles and methods of making same |
| US7410682B2 (en) * | 2002-07-03 | 2008-08-12 | High Voltage Graphics, Inc. | Flocked stretchable design or transfer |
| DE10358932A1 (en) * | 2002-12-17 | 2005-07-28 | Henkel Kgaa | Production of polyurethane prepolymers with isocyanate end groups, useful for the production of one- or two-component adhesive/sealants, comprises mixing an unsymmetrical diisocyanate and a polyol in the presence of a carboxylic acid amide |
| US7465485B2 (en) | 2003-12-23 | 2008-12-16 | High Voltage Graphics, Inc. | Process for dimensionalizing flocked articles or wear, wash and abrasion resistant flocked articles |
| US7393576B2 (en) | 2004-01-16 | 2008-07-01 | High Voltage Graphics, Inc. | Process for printing and molding a flocked article |
| CA2588404C (en) | 2004-11-22 | 2011-06-28 | Marc S. Schneider | Energy absorbing padding for sports application |
| WO2007016342A2 (en) | 2005-07-28 | 2007-02-08 | High Voltage Graphics, Inc. | Flocked articles having noncompatible insert and porous film |
| CA2628575C (en) * | 2005-12-06 | 2014-07-08 | Tyco Healthcare Group Lp | Biocompatible surgical compositions |
| JP5485551B2 (en) | 2005-12-06 | 2014-05-07 | コヴィディエン リミテッド パートナーシップ | Bioabsorbable compounds and compositions containing them |
| JP2009518519A (en) * | 2005-12-06 | 2009-05-07 | タイコ ヘルスケア グループ リミテッド パートナーシップ | Carbodiimide crosslinking of functionalized polyethylene glycol |
| EP2633834A1 (en) | 2005-12-06 | 2013-09-04 | Covidien LP | Bioabsorbable Surgical Composition |
| EP1968617A4 (en) * | 2005-12-06 | 2012-05-02 | Tyco Healthcare | Biocompatible tissue sealants and adhesives |
| EP1960446A4 (en) * | 2005-12-08 | 2010-11-24 | Tyco Healthcare | Biocompatible surgical compositions |
| US8449714B2 (en) | 2005-12-08 | 2013-05-28 | Covidien Lp | Biocompatible surgical compositions |
| WO2008101115A1 (en) | 2007-02-14 | 2008-08-21 | High Voltage Graphics, Inc. | Sublimation dye printed textile |
| US9752022B2 (en) | 2008-07-10 | 2017-09-05 | Avery Dennison Corporation | Composition, film and related methods |
| US20120088054A1 (en) | 2010-03-04 | 2012-04-12 | Avery Dennison Corporation | Non-PVC Film and Non-PVC Film Laminate |
| DE102009035807A1 (en) | 2009-08-01 | 2011-02-03 | Bayer Materialscience Ag | Improved adhesion between thermoplastics and polyurethane |
| EP2885119B1 (en) | 2012-08-02 | 2018-05-02 | Ferguson, Gary Wayne | Moulded plastic articles with contact between two dissimilar plastics |
| US9193214B2 (en) | 2012-10-12 | 2015-11-24 | High Voltage Graphics, Inc. | Flexible heat sealable decorative articles and method for making the same |
| CA2935150A1 (en) | 2013-12-30 | 2015-07-09 | Avery Dennison Corporation | Polyurethane protective film |
| KR102448130B1 (en) | 2014-09-12 | 2022-09-27 | 에보닉 오퍼레이션스 게엠베하 | Low-emission polyurethane foam prepared with isocyanate-reactive amine catalyst |
| US20250318844A1 (en) * | 2024-04-11 | 2025-10-16 | Profound Medical Inc. | Ultrasound Applicator With Laser |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1216492A (en) * | 1967-04-21 | 1970-12-23 | Dunlop Co Ltd | Composite sheet material |
| GB1326298A (en) | 1970-06-27 | 1973-08-08 | Henkel & Cie Gmbh | Process for bonding expanded plastics |
| DE2324203C3 (en) * | 1973-05-12 | 1978-12-21 | Bayer Ag, 5090 Leverkusen | Process for the production of adhesives based on polyurethane |
| US4039517A (en) | 1974-05-29 | 1977-08-02 | Dai-Ichi Kogyo Seiyaku Co., Ltd. | Hydrophilic and thermoreactive urethane compositions with improved properties |
| DE3151375A1 (en) * | 1981-12-24 | 1983-07-07 | Bayer Ag, 5090 Leverkusen | COMPOSITE DISC WITH POLYURETHANE INTERMEDIATE LAYER |
| DE3528812A1 (en) * | 1985-08-10 | 1987-02-12 | Bayer Ag | LAMINATES |
| JPS62250032A (en) * | 1986-04-22 | 1987-10-30 | Takeda Chem Ind Ltd | Soft urethane foam and polyether polyol composition for said foam |
| DE3633365A1 (en) | 1986-10-01 | 1988-04-14 | Bayer Ag | If appropriate, cell-shaped polyurethanes, which have been connected or made up with another material, and process for their production |
| DE4214192A1 (en) * | 1992-04-30 | 1993-11-11 | Bayer Ag | Composite molded body |
| CA2095876A1 (en) * | 1992-06-05 | 1993-12-06 | Nigel Barksby | Isocyante-terminated prepolymers derived from polyether polyol mixtures having low monol content and their use in polyurethanes |
| JP3487646B2 (en) * | 1994-08-16 | 2004-01-19 | 電気化学工業株式会社 | Synthetic resin composite |
| CA2175403C (en) * | 1995-05-05 | 2008-09-02 | Stephen D. Seneker | Aqueous polyurethane dispersions based on polyether polyols of low monol content |
| US5756196A (en) * | 1996-12-19 | 1998-05-26 | General Electric Company | Composition and method for enhancing the surface adhesion of polyurethane foam to surfaces of thermoplastic blends |
| DE19746265A1 (en) * | 1997-10-20 | 1999-04-22 | Bayer Ag | Directly bonded composite of different plastic materials, used e.g. in motor industry |
| DE19858270A1 (en) * | 1998-12-17 | 2000-06-21 | Ticona Gmbh | Composite body made of engineering thermoplastics and polyurethane elastomers using an adhesion promoter |
-
1999
- 1999-05-26 DE DE19924092A patent/DE19924092A1/en not_active Withdrawn
-
2000
- 2000-05-12 EP EP00110167A patent/EP1055717A3/en not_active Withdrawn
- 2000-05-16 US US09/571,226 patent/US6296908B1/en not_active Expired - Fee Related
- 2000-05-19 CA CA002308997A patent/CA2308997A1/en not_active Abandoned
- 2000-05-25 KR KR1020000028269A patent/KR20000077422A/en not_active Withdrawn
- 2000-05-25 BR BR0002118-0A patent/BR0002118A/en not_active IP Right Cessation
- 2000-05-25 JP JP2000154733A patent/JP2001010004A/en active Pending
-
2001
- 2001-07-31 US US09/919,384 patent/US6428895B1/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040262801A1 (en) * | 2002-08-23 | 2004-12-30 | Hamid Hojaji | Methods and formulations for producing low density products |
| US20070122615A1 (en) * | 2003-10-03 | 2007-05-31 | Mitsuteru Mutsuda | Molded composite article, process for producing the same, and a joinable resin |
| US8173262B2 (en) | 2003-10-03 | 2012-05-08 | Daicel-Evonik Ltd. | Molded composite article, process for producing the same, and a joinable resin |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2001010004A (en) | 2001-01-16 |
| US6428895B1 (en) | 2002-08-06 |
| US6296908B1 (en) | 2001-10-02 |
| KR20000077422A (en) | 2000-12-26 |
| EP1055717A3 (en) | 2000-12-27 |
| CA2308997A1 (en) | 2000-11-26 |
| DE19924092A1 (en) | 2000-11-30 |
| BR0002118A (en) | 2001-02-20 |
| EP1055717A2 (en) | 2000-11-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6428895B1 (en) | Stable adhesive composite material made of polyurethane and of another thermoplastic material, a process for its production and a method for its use in motor vehicles | |
| CN102575036B (en) | Improved adhesion between thermoplastics and polyurethanes | |
| CA1141878A (en) | Thermosetting molding compositions and a process for the production of moldings | |
| US4797320A (en) | Composite plastic moldings and a process for their production | |
| US6461732B1 (en) | Composites consisting of polyurethane and a thermoplastic material containing an inorganic polar additive | |
| US4524102A (en) | Microcellular polyurethane foams having integral skin | |
| TWI642722B (en) | Polycarbonate composition having improved adhesion to the polyurethane layer | |
| JPH0263832A (en) | Polyurethane molded form with specific contour multilayer sheet and manufacture thereof | |
| TW201522495A (en) | Polycarbonate composition having improved adhesion to the polyurethane layer | |
| CA1246263A (en) | Stable dispersions of polyureas and/or polyhydrazodicarbonamides in relatively high molecular weight hydroxyl-group containing materials, a process for the production thereof and the use thereof for the production of polyurethane plastics | |
| JP2025523890A (en) | Method for producing a composite member having a support comprising a polycarbonate with a specific OH content | |
| CN105637020A (en) | Polycarbonate composition with improved adhesion to polyurethane layer | |
| US6485836B2 (en) | Composite material comprising polyurethane and at least one thermoplastic plastics material, a process for the production thereof and the use thereof in motor vehicles | |
| JPH0730286B2 (en) | Polyurethane-based reactive materials and their use in the manufacture of paints | |
| US7638197B2 (en) | Composite elements made from polyurethane materials having surfaces consisting of thermoplastic or metallic layers and a process for their production | |
| MXPA04011548A (en) | Polyisocyanates and polyurethanes that contain polymer modificators and the use thereof. | |
| CN110088178B (en) | Composite component | |
| US3640938A (en) | Polyurethane composition and its use to form polystyrene laminates | |
| MXPA00005171A (en) | Adhesion-stable composite material comprising polyurethane and a further thermoplastic material, a method for its manufacture and its use in vehicles | |
| MXPA00005174A (en) | Composite material comprising polyurethane and at least one thermoplastic resin, method for its production and its use in cars | |
| WO1985003665A1 (en) | Synthesis of polyurethane products |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060806 |