US20020019605A1 - Intraocular irrigation/aspiration device - Google Patents
Intraocular irrigation/aspiration device Download PDFInfo
- Publication number
- US20020019605A1 US20020019605A1 US09/242,749 US24274999A US2002019605A1 US 20020019605 A1 US20020019605 A1 US 20020019605A1 US 24274999 A US24274999 A US 24274999A US 2002019605 A1 US2002019605 A1 US 2002019605A1
- Authority
- US
- United States
- Prior art keywords
- aspiration device
- intraocular irrigation
- intraocular
- mid
- dimension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002262 irrigation Effects 0.000 title claims abstract description 42
- 238000003973 irrigation Methods 0.000 title claims abstract description 42
- 239000012530 fluid Substances 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims description 15
- 239000013536 elastomeric material Substances 0.000 claims description 3
- 239000003978 infusion fluid Substances 0.000 claims description 3
- 238000004945 emulsification Methods 0.000 description 11
- 208000002177 Cataract Diseases 0.000 description 8
- 238000001802 infusion Methods 0.000 description 7
- 239000002775 capsule Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000011824 nuclear material Substances 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 210000002159 anterior chamber Anatomy 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000004412 visual outcomes Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00736—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/84—Drainage tubes; Aspiration tips
- A61M1/85—Drainage tubes; Aspiration tips with gas or fluid supply means, e.g. for supplying rinsing fluids or anticoagulants
Definitions
- the present invention relates generally to intraocular irrigation/aspiration devices.
- cataracts in which the lens of the eye becomes clouded, is common, and can lead to blindness. It has become accepted practice to alleviate this condition by surgically removing the cataract-affected lens and replacing it by an artificial intraocular lens.
- the cataract-affected lens is usually removed by manual extraction or phaco-emulsification.
- Manual extraction requires expression of the nucleus of the lens through a wound of about 12 mm in length.
- the residual peripheral lens material is then removed by an intraocular irrigation/aspiration device.
- phaco-emulsification As described, for example, in U.S. Patent No. 3,589,363, enables removal of the cataract-affected lens through a much smaller incision of about 2.5-4 mm, for example, 3.2 mm. This is accomplished using high frequency ultrasound energy, typically of 40 kHz frequency, that is transmitted by a phaco-emulsification needle to fragment or emulsify the nucleus of the cataract-affected lens. Once fragmented or emulsified, the nuclear material is aspirated through a lumen of the phaco-emulsification needle.
- high frequency ultrasound energy typically of 40 kHz frequency
- Japanese patent application No. 80-38451 describes a phaco-emulsification tip having a reduced diameter portion proximal of the tip face that reduces the suction flow rate and allows shortening of the overall length of the tip.
- WO 94/22402 describes a phaco-emulsification method and tip wherein the tip is configured to enhance generation of shockwaves and/or focussing of shockwaves.
- Some embodiments of phaco-emulsification tip includes a lumen having a diameter smaller than the diameter of the opening at the distal endface of the tip.
- An improved phaco-emulsification needle is also described and claimed in Austrialian patent application No. 33365/95 (International Patent Application No PCT/AU95/00558), in the name of the present applicant, wherein the needle includes a mid-region portion having a plurality of outwardly extending projections forming longitudinally-oriented grooves.
- the grooves ensure adequate cooling of the needle in the vicinity of the entry wound, thereby reducing the risk of thermal damage to tissue in the vicinity of the entry wound.
- Some embodiments of that invention include reduced-diameter portions to accommodate the presence of the longitudinally-oriented grooves.
- an intraocular irrigation/aspiration device After treatment with the phaco-emulsification needle it is necessary to remove the residual lens material by means of an intraocular irrigation/aspiration device.
- This device includes a tip which is inserted through the incision in the eye.
- the tip includes a small opening at its distal end which opening is about 0.3 mm in dimension.
- a lumen leads from the opening through the device to an aspiration device.
- the device includes an outer sleeve which extends to a point adjacent to the tip to form an external conduit which is connected to a supply of fluid.
- the intraocular irrigation/aspiration device In operation of the intraocular irrigation/aspiration device, it is important to ensure that there is a balance between infusion and aspiration of fluids so as to maintain stable pressure and volume within the intraocular chambers. This reduces the likelihood of inadvertent aspiration of structures such as the iris, or the delicate posterior capsule which divides the eye into anterior and posterior chambers.
- the posterior capsule is liable to rupture if engaged by the aspiration port which may result in loss of the vitreous gel which fills the posterior chamber of the eye.
- An intact capsule is also important to support a posterior chamber intraocular lens implant, and therefore inadvertent rupture of the posterior capsule is a serious complication which may result in an unsatisfactory technical result and a poor visual outcome from cataract surgery.
- An outer sleeve of the irrigation/aspiration device may be formed from rigid plastic or metal which resist deformation by the incision.
- a rigid sleeve however, increases leakage from the wound reducing pressure within the eye, and the ability to maintain a stable chamber volume of fluid.
- a soft outer sleeve is better able to seal the incision and reduce wound leakage.
- a tight sealed incision may compress a soft sleeve and reduce the flow and infusion of the irrigating fluid into the eye which is necessary to replace aspirated fluid and maintain a stable chamber with respect to pressure and volume.
- the present invention provides an intraocular irrigation/aspiration device in which the aspiration of fluid and lens material is regulated and the post occlusion surge phenomenon is reduced.
- an intraocular irrigation/aspiration device including a hollow shaft having first and second ends, a tip at the first end of the shaft, said tip including an opening and a lumen extending from the opening to the second end of the shaft, wherein the lumen has a portion of reduced internal cross-sectional area over at least part of its length.
- FIG. 1 is perspective view of a first embodiment of intraocular irrigation/aspiration device according to the present invention
- FIG. 2 is a view similar to FIG. 1 with an outer sleeve shown in phantom;
- FIG. 3 is a longitudinal section through the device of FIGS. 1 and 2;
- FIG. 4 is a perspective view of a second embodiment of intraocular irrigation/aspiration device according to the present invention.
- FIG. 5 is a view similar to FIG. 4 with an outer sleeve shown in phantom;
- FIG. 6 is a longitudinal section through the device of FIGS. 4 and 5;
- FIG. 7 is a perspective view of a third embodiment of intraocular irrigation/aspiration device according to the present invention.
- FIG. 8 is a view similar to FIG. 7 with an outer sleeve shown in phantom;
- FIG. 9 is a longitudinal section through the device of FIGS. 7 and 8;
- FIG. 10 is a transverse section along the line 10 - 10 of FIG. 9;
- FIG. 11 is a side elevation of a modified form of device in accordance with the present invention including a bent distal portion;
- FIG. 12 is a side elevation of a modified form of device in accordance with the present invention including a curved shaft.
- FIGS. 1 to 3 there is shown an intraocular irrigation/aspiration device 10 in accordance with the present invention.
- the device 10 includes a shaft 12 having a first or distal end 14 and a second or proximal end 16 .
- the shaft 12 is hollow and includes a lumen 18 extending from the distal end 14 to the proximal end 16 .
- a distal tip portion 20 which includes an opening 22 . Adjacent the tip portion 20 there is provided a mid-region portion 24 of reduced external and internal dimension.
- the shaft 12 is typically formed of metal. Extending around the shaft 12 is an annular external sleeve 26 .
- the sleeve 26 is formed of any suitable material which may be elastomeric material or metal. Elastomeric material is far more flexible than metal and is therefore preferred for most applications.
- the sleeve 26 and the shaft 12 define an annular external passageway or conduit 28 extending between the first and second ends 14 and 16 .
- the opening 22 is typically about 0.3 mm in lateral dimension.
- the shaft 12 at the distal tip portion 20 is typically of the order of 0.6 to 1.0 mm in internal cross sectional dimension such as about 0.8 mm in internal cross sectional dimension.
- the shaft 12 at the mid-region portion 24 is of lesser internal dimension than the distal portion and is typically of the order of 0.1 to 0.5 mm in internal cross sectional dimension such as about 0.3 mm.
- the shaft 12 at the tip portion 20 is typically of the order of 0.8 to 1.2 mm in external cross sectional dimension such as about 1.00 mm in external cross sectional dimension.
- the mid-region portion 24 is typically about 0.4 to 0.8 mm in external cross sectional dimension such as about 0.6 mm.
- the shaft 12 may have a wall thickness of about 0.1 mm.
- the sleeve 26 may have an internal cross-sectional dimension of about 1.5 to 3 mm such as about 2 mm.
- the device 10 is inserted through an incision in an eye such that the distal tip portion 20 is located within the eye and the wall of the eye is in engagement with the outer sleeve 26 at a point corresponding with the proximal portion 24 .
- Fluid is infused into the eye through the annular passageway 28 and simultaneously fluid and residual lens material is aspirated through the opening 22 and the lumen 18 .
- the presence of the mid-region portion 24 of the lumen 18 with reduced internal diameter means that if there is a temporary blockage or occlusion of the opening 22 , which is then released suddenly, the surge of fluid along the lumen 18 is constrained by the reduced diameter of the proximal portion compared to the distal portion. This reduces fluctuations in volume and pressure in the intraocular chambers of the eye.
- the narrower proximal lumen also increases the resistance to aspirational flow whilst maintaining the size of the aspiration port 22 , at approximately 0.3 mm.
- the device therefore favourably regulates aspirational flow.
- the device 10 is connected to a handle 30 .
- the handle 30 contains a first conduit 32 which is connected in use to an aspirator (not shown) and a second conduit 34 which is connected in use to a supply of fluid (not shown).
- the conduit 32 is connected to the lumen 18 and the conduit 34 is connected to the passageway 28 .
- the handle 30 may be formed separately from the device 10 or it may be formed integrally therewith.
- the reduced external cross-sectional dimension of the mid-region portion 24 enables a small incision in the eye to engage closely with the shaft 12 .
- the device also enhances the flow of infusion fluid necessary to compensate for fluctuations in chamber pressure and volume caused by aspiration. The balance between infusion and aspiration is therefore enhanced which increases the stability of the chamber and improves the safety of the cataract procedure.
- the irrigation/aspiration device therefore helps regulate aspirational flow, and reduces the post occlusion surge phenomena, but also improves the infusion of irrigating fluid available to respond to reductions in chamber volume and pressure.
- FIGS. 4 to 6 there is shown a second embodiment of an intraocular irrigation/aspiration device 40 in accordance with the present invention.
- the embodiment of FIGS. 4 to 6 is similar to that of FIGS. 1 to 3 and like reference numerals denote like parts.
- the mid-region portion of lumen 18 is of reduced internal cross-sectional dimension compared to the distal portion as in the first embodiment.
- the external cross-sectional dimension of the proximal portion 42 of the shaft 12 is substantially the same as the external cross-sectional dimension of the distal portion.
- the shaft 12 has substantially the same external cross-sectional dimension throughout as best seen in FIG. 6.
- FIGS. 7 to 10 there is shown a third embodiment of an intraocular irrigation/aspiration device 50 in accordance with the present invention.
- the embodiment of FIGS. 7 to 10 is similar to that of FIGS. 1 to 3 and like reference numerals denote like parts.
- a mid-region portion 52 of the shaft 12 has reduced internal and external cross-sectional dimensions as in FIGS. 1 to 3 .
- the mid-region portion 52 also has a plurality of outwardly extending spaced external projections 54 as best seen in FIG. 10.
- the projections 54 are preferably in the form of longitudinally extending ribs. The projections 54 ensure that the sleeve 26 even when formed of elastomeric or other flexible material is not pushed firmly into engagement with the shaft 12 by the wall of the eye. This ensures that there is always a clear path for infusion liquid to pass to the interior of the eye along the passageway 28 .
- the sleeve 26 may have at least one opening 56 adjacent a distal end thereof for escape of irrigating fluid.
- there are two opposed openings 56 one on either side, for this purpose. Openings equivalent to the openings 56 may also be found in the first and second embodiments of the present invention described hereinabove.
- FIG. 11 there is shown an intraocular irrigation/aspiration device 60 in accordance with the present invention (with the sleeve 26 absent for greater clarity) in which the distal portion 62 is bent compared to the remainder of the shaft 12 , that is, the distal portion 62 is inclined at an angle to the remainder of the shaft 12 .
- the distal portion 20 is aligned with the remainder of the shaft 12 .
- FIG. 12 there is shown an intraocular irrigation/aspiration device 70 in accordance with the present invention which includes a curved shaft 72 whereas in the embodiments of FIGS. 1 to 10 the shaft 12 is straight.
- the various components such as the shaft 12 and the annular sleeve 26 in the device of the present invention are preferably circular in shape in which case the cross-sectional dimensions referred to hereabove may be referred to as cross-sectional diameters. However, it is to be understood that the various components of the device of the present invention may have other cross-sectional shapes.
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- External Artificial Organs (AREA)
- Prostheses (AREA)
Abstract
An intraocular irrigation/aspiration device (10) including a hollow shaft (12) with a distal tip portion (20) and a proximal portion (24). The shaft (12) includes a lumen (18) extending through the shaft (12) wherein the lumen (18) is of reduced cross-sectional area in the proximal portion (24) so as to regulate aspiration of fluid and reduce post occlusion surge phenomena. Preferably, the device (10) includes an outer sleeve (26) which is flexible so as to enable a small incision in the eye to engage closely with the shaft (12).
Description
- The present invention relates generally to intraocular irrigation/aspiration devices.
- Occurrence of the disease known as cataracts, in which the lens of the eye becomes clouded, is common, and can lead to blindness. It has become accepted practice to alleviate this condition by surgically removing the cataract-affected lens and replacing it by an artificial intraocular lens.
- The cataract-affected lens is usually removed by manual extraction or phaco-emulsification. Manual extraction requires expression of the nucleus of the lens through a wound of about 12 mm in length. The residual peripheral lens material is then removed by an intraocular irrigation/aspiration device.
- The technique known as phaco-emulsification, as described, for example, in U.S. Patent No. 3,589,363, enables removal of the cataract-affected lens through a much smaller incision of about 2.5-4 mm, for example, 3.2 mm. This is accomplished using high frequency ultrasound energy, typically of 40 kHz frequency, that is transmitted by a phaco-emulsification needle to fragment or emulsify the nucleus of the cataract-affected lens. Once fragmented or emulsified, the nuclear material is aspirated through a lumen of the phaco-emulsification needle.
- Japanese patent application No. 80-38451 describes a phaco-emulsification tip having a reduced diameter portion proximal of the tip face that reduces the suction flow rate and allows shortening of the overall length of the tip.
- WO 94/22402 describes a phaco-emulsification method and tip wherein the tip is configured to enhance generation of shockwaves and/or focussing of shockwaves. Some embodiments of phaco-emulsification tip includes a lumen having a diameter smaller than the diameter of the opening at the distal endface of the tip.
- An improved phaco-emulsification needle is also described and claimed in Austrialian patent application No. 33365/95 (International Patent Application No PCT/AU95/00558), in the name of the present applicant, wherein the needle includes a mid-region portion having a plurality of outwardly extending projections forming longitudinally-oriented grooves. The grooves ensure adequate cooling of the needle in the vicinity of the entry wound, thereby reducing the risk of thermal damage to tissue in the vicinity of the entry wound. Some embodiments of that invention include reduced-diameter portions to accommodate the presence of the longitudinally-oriented grooves.
- After the nuclear material of the lens has been aspirated or emulsified by use of the phaco-emulsification needle and aspirated through a lumen thereof, there remains in the eye residual lens material which is derived from softer lens material which originally surrounded the nucleus.
- After treatment with the phaco-emulsification needle it is necessary to remove the residual lens material by means of an intraocular irrigation/aspiration device. This device includes a tip which is inserted through the incision in the eye. The tip includes a small opening at its distal end which opening is about 0.3 mm in dimension. A lumen leads from the opening through the device to an aspiration device. Further, the device includes an outer sleeve which extends to a point adjacent to the tip to form an external conduit which is connected to a supply of fluid.
- There is no need to apply energy to the intraocular irrigation/aspiration device as the lens nucleus has already been fragmented or emulsified during phaco-emulsification. The device is connected to an aspirator which applies suction to the lumen and hence to the opening at the tip. In this way residual lens material is drawn through the opening and then along the lumen so as to remove the residual lens material from the interior of the eye. Simultaneously, fluid is fed through the external conduit to the interior of the eye to replace the aspirated fluid and maintain the volume of fluid and pressure within the chamber of the eye.
- In operation of the intraocular irrigation/aspiration device, it is important to ensure that there is a balance between infusion and aspiration of fluids so as to maintain stable pressure and volume within the intraocular chambers. This reduces the likelihood of inadvertent aspiration of structures such as the iris, or the delicate posterior capsule which divides the eye into anterior and posterior chambers. The posterior capsule is liable to rupture if engaged by the aspiration port which may result in loss of the vitreous gel which fills the posterior chamber of the eye. An intact capsule is also important to support a posterior chamber intraocular lens implant, and therefore inadvertent rupture of the posterior capsule is a serious complication which may result in an unsatisfactory technical result and a poor visual outcome from cataract surgery. It has been found that the distal opening or port of the tip of the aspiration device sometimes becomes transiently blocked or occluded during aspiration such as by a relatively large piece of residual lens material. This leads to a temporary increase in vacuum within the lumen which is relieved when the blocking material is eventually drawn through the opening with equalisation of pressure within the chamber of the eye and the aspiration device. However, this equalisation of pressure can induce a surge of fluid along the lumen and a transient reduction in pressure and volume within the pressure of the eye or chamber instability. It is important that adequate infusion of fluid is available to counteract the reduction in pressure and volume.
- An outer sleeve of the irrigation/aspiration device may be formed from rigid plastic or metal which resist deformation by the incision. A rigid sleeve however, increases leakage from the wound reducing pressure within the eye, and the ability to maintain a stable chamber volume of fluid. A soft outer sleeve is better able to seal the incision and reduce wound leakage. A tight sealed incision however, may compress a soft sleeve and reduce the flow and infusion of the irrigating fluid into the eye which is necessary to replace aspirated fluid and maintain a stable chamber with respect to pressure and volume.
- The present invention provides an intraocular irrigation/aspiration device in which the aspiration of fluid and lens material is regulated and the post occlusion surge phenomenon is reduced.
- In accordance with one aspect of the present invention there is provided an intraocular irrigation/aspiration device including a hollow shaft having first and second ends, a tip at the first end of the shaft, said tip including an opening and a lumen extending from the opening to the second end of the shaft, wherein the lumen has a portion of reduced internal cross-sectional area over at least part of its length.
- The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
- FIG. 1 is perspective view of a first embodiment of intraocular irrigation/aspiration device according to the present invention;
- FIG. 2 is a view similar to FIG. 1 with an outer sleeve shown in phantom;
- FIG. 3 is a longitudinal section through the device of FIGS. 1 and 2;
- FIG. 4 is a perspective view of a second embodiment of intraocular irrigation/aspiration device according to the present invention;
- FIG. 5 is a view similar to FIG. 4 with an outer sleeve shown in phantom;
- FIG. 6 is a longitudinal section through the device of FIGS. 4 and 5;
- FIG. 7 is a perspective view of a third embodiment of intraocular irrigation/aspiration device according to the present invention;
- FIG. 8 is a view similar to FIG. 7 with an outer sleeve shown in phantom;
- FIG. 9 is a longitudinal section through the device of FIGS. 7 and 8;
- FIG. 10 is a transverse section along the line 10-10 of FIG. 9;
- FIG. 11 is a side elevation of a modified form of device in accordance with the present invention including a bent distal portion; and
- FIG. 12 is a side elevation of a modified form of device in accordance with the present invention including a curved shaft.
- In FIGS. 1 to 3, there is shown an intraocular irrigation/
aspiration device 10 in accordance with the present invention. - The
device 10 includes ashaft 12 having a first ordistal end 14 and a second orproximal end 16. Theshaft 12 is hollow and includes alumen 18 extending from thedistal end 14 to theproximal end 16. At thedistal end 14 there is provided adistal tip portion 20 which includes an opening 22. Adjacent thetip portion 20 there is provided amid-region portion 24 of reduced external and internal dimension. - The
shaft 12 is typically formed of metal. Extending around theshaft 12 is an annularexternal sleeve 26. Thesleeve 26 is formed of any suitable material which may be elastomeric material or metal. Elastomeric material is far more flexible than metal and is therefore preferred for most applications. Thesleeve 26 and theshaft 12 define an annular external passageway orconduit 28 extending between the first and second ends 14 and 16. - The
opening 22 is typically about 0.3 mm in lateral dimension. Further, theshaft 12 at thedistal tip portion 20 is typically of the order of 0.6 to 1.0 mm in internal cross sectional dimension such as about 0.8 mm in internal cross sectional dimension. Theshaft 12 at themid-region portion 24 is of lesser internal dimension than the distal portion and is typically of the order of 0.1 to 0.5 mm in internal cross sectional dimension such as about 0.3 mm. - Further, the
shaft 12 at thetip portion 20 is typically of the order of 0.8 to 1.2 mm in external cross sectional dimension such as about 1.00 mm in external cross sectional dimension. Themid-region portion 24 is typically about 0.4 to 0.8 mm in external cross sectional dimension such as about 0.6 mm. Theshaft 12 may have a wall thickness of about 0.1 mm. - The
sleeve 26 may have an internal cross-sectional dimension of about 1.5 to 3 mm such as about 2 mm. - In use, the
device 10 is inserted through an incision in an eye such that thedistal tip portion 20 is located within the eye and the wall of the eye is in engagement with theouter sleeve 26 at a point corresponding with theproximal portion 24. Fluid is infused into the eye through theannular passageway 28 and simultaneously fluid and residual lens material is aspirated through theopening 22 and thelumen 18. The presence of themid-region portion 24 of thelumen 18 with reduced internal diameter means that if there is a temporary blockage or occlusion of theopening 22, which is then released suddenly, the surge of fluid along thelumen 18 is constrained by the reduced diameter of the proximal portion compared to the distal portion. This reduces fluctuations in volume and pressure in the intraocular chambers of the eye. - The narrower proximal lumen also increases the resistance to aspirational flow whilst maintaining the size of the
aspiration port 22, at approximately 0.3 mm. The device therefore favourably regulates aspirational flow. - Reducing the size of the aspiration port to less than 0.3 mm would increase the resistance to aspiration flow, but would compromise the efficiency of removal of soft lens material as only smaller fragments could be engaged by the aspiration port. Furthermore, simply reducing the size of the aspiration port to less than 0.3 mm would not diminish the post occlusion surge phenomena described previously.
- Further, as can be seen in FIG. 3 especially the
device 10 is connected to ahandle 30. Thehandle 30 contains afirst conduit 32 which is connected in use to an aspirator (not shown) and asecond conduit 34 which is connected in use to a supply of fluid (not shown). Theconduit 32 is connected to thelumen 18 and theconduit 34 is connected to thepassageway 28. Thehandle 30 may be formed separately from thedevice 10 or it may be formed integrally therewith. - Also, the reduced external cross-sectional dimension of the
mid-region portion 24, especially in the case where thesleeve 26 is formed of elastomeric or other flexible material, enables a small incision in the eye to engage closely with theshaft 12. This reduces wound leakage, but also increases the infusion of fluid compared with a conventional intraocular irrigation/aspiration device. The device also enhances the flow of infusion fluid necessary to compensate for fluctuations in chamber pressure and volume caused by aspiration. The balance between infusion and aspiration is therefore enhanced which increases the stability of the chamber and improves the safety of the cataract procedure. The irrigation/aspiration device therefore helps regulate aspirational flow, and reduces the post occlusion surge phenomena, but also improves the infusion of irrigating fluid available to respond to reductions in chamber volume and pressure. - The balance between the outflow of fluid from the eye due to aspiration and wound leakage, and the inflow of fluid due to irrigation, is favourably influenced by the design of the irrigation/aspiration device resulting in a deeper more stable pressurised anterior chamber enhancing the safety of this phase of the cataract procedure.
- In FIGS. 4 to 6 there is shown a second embodiment of an intraocular irrigation/
aspiration device 40 in accordance with the present invention. The embodiment of FIGS. 4 to 6 is similar to that of FIGS. 1 to 3 and like reference numerals denote like parts. - Further, in the second embodiment the mid-region portion of
lumen 18 is of reduced internal cross-sectional dimension compared to the distal portion as in the first embodiment. However, the external cross-sectional dimension of theproximal portion 42 of theshaft 12 is substantially the same as the external cross-sectional dimension of the distal portion. Thus, theshaft 12 has substantially the same external cross-sectional dimension throughout as best seen in FIG. 6. - In the second embodiment the advantage of reduction of surge of pressure after occlusion and the regulation of aspiration is still obtained as with the first embodiment but the ability to operate with a small incision in the eye with improved infusion of fluid compared with conventional devices is not achieved.
- In FIGS. 7 to 10 there is shown a third embodiment of an intraocular irrigation/
aspiration device 50 in accordance with the present invention. The embodiment of FIGS. 7 to 10 is similar to that of FIGS. 1 to 3 and like reference numerals denote like parts. - In the third embodiment shown in FIGS. 7 to 10 a
mid-region portion 52 of theshaft 12 has reduced internal and external cross-sectional dimensions as in FIGS. 1 to 3. However, themid-region portion 52 also has a plurality of outwardly extending spacedexternal projections 54 as best seen in FIG. 10. As shown, theprojections 54 are preferably in the form of longitudinally extending ribs. Theprojections 54 ensure that thesleeve 26 even when formed of elastomeric or other flexible material is not pushed firmly into engagement with theshaft 12 by the wall of the eye. This ensures that there is always a clear path for infusion liquid to pass to the interior of the eye along thepassageway 28. - Further, as can be seen in FIG. 7, the
sleeve 26 may have at least oneopening 56 adjacent a distal end thereof for escape of irrigating fluid. Preferably, there are twoopposed openings 56, one on either side, for this purpose. Openings equivalent to theopenings 56 may also be found in the first and second embodiments of the present invention described hereinabove. - In FIG. 11, there is shown an intraocular irrigation/
aspiration device 60 in accordance with the present invention (with thesleeve 26 absent for greater clarity) in which thedistal portion 62 is bent compared to the remainder of theshaft 12, that is, thedistal portion 62 is inclined at an angle to the remainder of theshaft 12. In the embodiments of FIGS. 1 to 10 thedistal portion 20 is aligned with the remainder of theshaft 12. - In FIG. 12 there is shown an intraocular irrigation/
aspiration device 70 in accordance with the present invention which includes acurved shaft 72 whereas in the embodiments of FIGS. 1 to 10 theshaft 12 is straight. - The various components such as the
shaft 12 and theannular sleeve 26 in the device of the present invention are preferably circular in shape in which case the cross-sectional dimensions referred to hereabove may be referred to as cross-sectional diameters. However, it is to be understood that the various components of the device of the present invention may have other cross-sectional shapes. - Modifications and variations such as would be apparent to a skilled addressee are deemed within the scope of the present invention.
Claims (20)
1. An intraocular irrigation/aspiration device (10, 40, 50, 60, 70) for aspirating emulsified material from an intraocular cavity, the device (10, 40, 50, 60, 70) including a hollow shaft (12) having distal and proximal ends (14, 16), a lateral surface, a tip (20) at the distal end of the shaft (12), said tip (20) including an opening (22) in the lateral surface, the opening (22) having a dimension, and a lumen (18) extending from the opening (22) to the proximal end (16) of the shaft (12), wherein the lumen (18) has a first portion defining a chamber having a first internal cross-sectional area that communicates with the opening (22), and a second portion having a second internal cross-sectional area disposed between the chamber and the proximal end (16), the second cross-sectional area being smaller than the first cross-sectional area, the first and second cross-sectional areas and dimension of the opening (22) being selected to reduce pressure fluctuations in the intraocular cavity arising from post-occlusion surge events.
2. An intraocular irrigation/aspiration device (10, 40, 50, 60, 70) according to claim 1 , characterized in that the hollow shaft (12) includes a distal tip portion (20) containing the chamber [having the opening] and a mid-region portion (24, 52), the distal tip portion (20) having the [a] first internal cross-sectional area and the mid-region (24, 52) having the [a] second internal cross-sectional area.
3. An intraocular irrigation/aspiration device (10, 40, 50, 60, 70) according to claims 1 or 2, characterized in that the distal tip portion (20) has an internal cross-sectional dimension in the range from about 0.6 to 1.00 mm.
4. An intraocular irrigation/aspiration device (10, 40, 50, 60, 70) according to any of claims 1 to 3 , characterized in that the mid-region portion (24, 52) has an internal cross-sectional dimension in the range from about 0.1 to 0.5 mm.
5. An intraocular irrigation/aspiration device (10, 60, 70) according to any one of claims 2 to 4 , characterized in that the mid-region portion (24) has an external dimension smaller than the external dimension of the distal tip portion (20)
6. An intraocular irrigation/aspiration device (10, 60, 70) according to claim 5 , characterized in that the distal tip portion (20) has an external cross-sectional dimension in the range from about 0.8 to 1.2 mm.
7. An intraocular irrigation/aspiration device (10, 60, 70) according to claim 5 or 6, characterized in that the mid-region portion (24) has an external cross-sectional dimension in the range from about 0.4 to 0.8 mm.
8. An intraocular irrigation/aspiration device (40, 50) according to any one of claims 2 to 4 , characterized in that the mid-region portion (24, 52) is of substantially the same external cross-sectional dimension as the distal tip portion (20).
9. An intraocular irrigation/aspiration device (40, 50) according to claim 8 , characterized in that the distal tip portion (20) and the mid-region portion (24, 52) have external cross-sectional dimensions in the range from about 0.8 to 1.2 mm.
10. An intraocular irrigation/aspiration device (50) according to any one of claims 2 to 4 , characterized in that the mid-region portion (52) has an external dimension smaller than the external dimension of the distal tip portion (20), and the mid-region (52) portion has a plurality of outwardly extending spaced external projections (54) so as to ensure that there is a clear path for infusion liquid.
11. An intraocular irrigation/aspiration device (50) according to claim 10 , characterized in that the projections (54) are in the form of longitudinally extending ribs.
12. An intraocular irrigation/aspiration device (10, 40, 50, 60, 70) according to any one of the preceding claims, characterized in that an annular external sleeve (26) extends around the shaft (12).
13. An intraocular irrigation/aspiration device (10, 40, 50, 60, 70) according to claim 12 , characterized in that the sleeve (26) is flexible.
14. An intraocular irrigation/aspiration device (10, 40, 50, 60, 70) according to claim 13 , characterized in that the sleeve (26) is formed of elastomeric material.
15. An intraocular irrigation/aspiration device (10, 40, 50, 60, 70) according to any one of claims 12 to 14 , characterized in that the sleeve (26) has at least one opening (56) adjacent a distal end thereof for escape of irrigating fluid.
16. An intraocular irrigation/aspiration device (10, 40, 50, 60, 70) according to any one of claims 12 to 15 , characterized in that the sleeve (26) has an internal cross-sectional dimension in the range of from about 1.5 to 3.0 mm.
17. An intraocular irrigation/aspiration device (10, 40, 50, 60, 70) according to any one of claims 12 to 16 , characterized in that the sleeve (26) together with the shaft (12) defines an annular external passageway (28) extending between the first and second ends (14, 16) of the shaft (12).
18. An intraocular irrigation/aspiration device (10, 40, 50, 60, 70) according to claim 17 , characterized in that the device (10, 40, 50, 60, 70) is connected to a handle (30) containing a first conduit (32) arranged to be connected to an aspirator and a second conduit (34) arranged to be connected to a supply of fluid, the first conduit (32) being connected to the lumen (18) and the second conduit (34) being connected to the annular external passageway (23).
19. An intraocular irrigation/aspiration device (60, 70) according to any of the preceding claims, characterized in that the distal tip portion (62, 72) has a first longitudinal axis and the mid-region portion (24) has a second longitudinal axis, wherein the first and second longitudinal axes are not collinear.
20. An intraocular irrigation/aspiration device (10, 40, 50, 60, 70) according to any of the preceding claims, characterized in that the opening (22) has a dimension of at least 0.3 mm.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AUPO1787 | 1996-08-22 | ||
| AUPO1787A AUPO178796A0 (en) | 1996-08-22 | 1996-08-22 | Intraocular irrigation/aspiration device |
| PCT/AU1997/000536 WO1998007398A1 (en) | 1996-08-22 | 1997-08-22 | Intraocular irrigation/aspiration device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US6340355B1 US6340355B1 (en) | 2002-01-22 |
| US20020019605A1 true US20020019605A1 (en) | 2002-02-14 |
Family
ID=3796100
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/242,749 Expired - Lifetime US6340355B1 (en) | 1996-08-22 | 1997-08-22 | Intraocular irrigation/aspiration device |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US6340355B1 (en) |
| EP (2) | EP0928177B1 (en) |
| AT (1) | ATE343993T1 (en) |
| AU (1) | AUPO178796A0 (en) |
| DE (1) | DE69736899T2 (en) |
| ES (1) | ES2276431T3 (en) |
| WO (1) | WO1998007398A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060224163A1 (en) * | 2005-03-30 | 2006-10-05 | Sutton Thomas B | Phaco aspiration flow restrictor with bypass tube |
| CN100448416C (en) * | 2003-09-17 | 2009-01-07 | 博士伦公司 | Phacoemulsification needle |
| US20090326507A1 (en) * | 2008-06-26 | 2009-12-31 | Garry Tsaur | Small container |
Families Citing this family (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999042036A1 (en) * | 1998-02-20 | 1999-08-26 | General Surgical Innovations, Inc. | Bendable, reusable medical instruments with improved fatigue life |
| US5997499A (en) * | 1998-06-04 | 1999-12-07 | Alcon Laboratories, Inc. | Tip for a liquefaction handpiece |
| US6398759B1 (en) * | 1998-06-04 | 2002-06-04 | Alcon Manufacturing, Ltd. | Liquefracture handpiece tip |
| US5989212A (en) * | 1998-06-04 | 1999-11-23 | Alcon Laboratories, Inc. | Pumping chamber for a liquefaction handpiece having a countersink electrode |
| ATE296579T1 (en) * | 1998-10-26 | 2005-06-15 | Human Med Ag | DEVICE FOR REMOVAL OF DISEASES IN HUMAN AND VETERINARY MEDICINE |
| AUPQ644400A0 (en) | 2000-03-23 | 2000-04-20 | Oversby Pty Ltd | An aspiration flow modulation device |
| US7833215B2 (en) * | 2002-04-04 | 2010-11-16 | Angiodynamics, Inc. | Catheter fluid lock method and device |
| US6942635B2 (en) * | 2002-04-04 | 2005-09-13 | Angiodynamics, Inc. | Blood treatment catheter and method |
| US7160268B2 (en) * | 2002-08-05 | 2007-01-09 | Alcon, Inc. | Container for delivery of fluid to ophthalmic surgical handpiece |
| US6921385B2 (en) | 2002-08-05 | 2005-07-26 | Alcon, Inc. | Apparatus for delivery of fluid to opthalmic surgical handpiece |
| US6893414B2 (en) * | 2002-08-12 | 2005-05-17 | Breg, Inc. | Integrated infusion and aspiration system and method |
| DE10254568A1 (en) * | 2002-11-21 | 2004-06-09 | Westfälische Wilhelms-Universität Münster | Gastric tube and method of introducing a gastric tube |
| US20060047254A1 (en) * | 2003-04-04 | 2006-03-02 | Ravi Nallakrishnan | Phacoemulsification needle |
| US20040199171A1 (en) * | 2003-04-04 | 2004-10-07 | Takayuki Akahoshi | Phacoemulsification needle |
| US20050020990A1 (en) * | 2003-04-04 | 2005-01-27 | Ravi Nallakrishnan | Phacoemulsification needle |
| US7494477B2 (en) * | 2003-09-02 | 2009-02-24 | Pulsecath B.V. | Catheter pump, catheter and fittings therefore and methods of using a catheter pump |
| US7351219B2 (en) * | 2004-01-08 | 2008-04-01 | Alcon, Inc. | Method and instrumentation for cooling a surgical incision |
| US7857794B2 (en) | 2004-06-14 | 2010-12-28 | Alcon, Inc. | Handpiece tip |
| US7066923B2 (en) * | 2004-06-25 | 2006-06-27 | Alcon, Inc. | Surgical method and apparatus using dual irrigation paths |
| US7094229B2 (en) * | 2004-06-25 | 2006-08-22 | Alcon, Inc. | Surgical method and apparatus |
| US20060036215A1 (en) * | 2004-08-12 | 2006-02-16 | Mikhail Boukhny | Surgical apparatus |
| US20060047241A1 (en) * | 2004-09-02 | 2006-03-02 | Mikhail Boukhny | Surgical apparatus |
| US7063680B2 (en) * | 2004-09-09 | 2006-06-20 | Alcon, Inc. | Surgical apparatus |
| US7704244B2 (en) * | 2004-09-09 | 2010-04-27 | Alcon, Inc. | Surgical method |
| US7329261B2 (en) * | 2004-12-20 | 2008-02-12 | Bausch & Lomb Incorporated | No port phacoemulsification needle sleeve |
| US20070260173A1 (en) * | 2006-05-05 | 2007-11-08 | Alcon, Inc. | Irrigation/aspiration tip |
| US7981074B2 (en) | 2006-11-02 | 2011-07-19 | Novartis Ag | Irrigation/aspiration system |
| US7967775B2 (en) * | 2007-01-09 | 2011-06-28 | Alcon, Inc. | Irrigation/aspiration tip |
| US9149387B2 (en) | 2008-09-04 | 2015-10-06 | Novartis Ag | Varying material properties of a single fluidic line in ophthalmology tubing |
| US8631831B2 (en) | 2008-09-04 | 2014-01-21 | Alcon Research, Ltd. | Multi-compliant tubing |
| US9351871B2 (en) | 2008-11-12 | 2016-05-31 | Alcon Research, Ltd. | Distal plastic end infusion/aspiration tip |
| US8545462B2 (en) | 2009-11-11 | 2013-10-01 | Alcon Research, Ltd. | Patch for irrigation/aspiration tip |
| US8784361B2 (en) | 2010-12-07 | 2014-07-22 | Alcon Research, Ltd. | Combined coaxial and bimanual irrigation/aspiration apparatus |
| US8475480B2 (en) | 2011-01-04 | 2013-07-02 | Alcon Research Ltd | Multi-sleeved surgical ultrasonic vibrating tool suited for phacoemulsification in a manner that prevents thermal injury to ocular tissue |
| US9433725B2 (en) | 2011-12-23 | 2016-09-06 | Alcon Research, Ltd. | Combined coaxial and bimanual irrigation/aspiration apparatus |
| CA2882220A1 (en) * | 2012-12-11 | 2014-06-19 | Alcon Research Ltd. | Phacoemulsification hand piece with integrated aspiration and irrigation pump |
| US11684511B2 (en) | 2013-03-15 | 2023-06-27 | Johnson & Johnson Surgical Vision, Inc. | Irrigation and aspiration sleeve for phacoemulsification |
| DK2986331T3 (en) | 2013-06-06 | 2019-02-18 | Novartis Ag | TRANSFORM IRRIGATION / EXTRACTION DEVICE |
| US9731065B2 (en) | 2013-12-05 | 2017-08-15 | Novartis Ag | Devices, systems, and methods for tip vacuum control during aspiration |
| US9610193B2 (en) | 2013-12-05 | 2017-04-04 | Novartis Ag | Forward flow impeding infusion sleeve and associated systems and methods |
| PL3295906T3 (en) * | 2016-09-14 | 2022-01-03 | FRITZ RUCK Ophthalmologische Systeme GmbH | System for performing a phacoemulsification |
| CN109350353B (en) * | 2018-10-18 | 2023-10-17 | 溧阳市中医医院 | Device for sucking and removing posterior chamber viscoelastic agent for central hole type artificial lens implantation and use method |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NL145136C (en) | 1967-07-25 | 1900-01-01 | ||
| IT8352816V0 (en) * | 1983-01-07 | 1983-01-07 | Ferrando Ugo Gardi Giovanni E | SURGICAL MEDICAL APPLICATION CATHETER |
| DE8704459U1 (en) * | 1987-03-25 | 1988-07-21 | Erbe Elektromedizin GmbH, 7400 Tübingen | Handle with a double cannula |
| US4963147A (en) * | 1987-09-18 | 1990-10-16 | John M. Agee | Surgical instrument |
| US5169386A (en) * | 1989-09-11 | 1992-12-08 | Bruce B. Becker | Method and catheter for dilatation of the lacrimal system |
| US5217465A (en) * | 1992-02-28 | 1993-06-08 | Alcon Surgical, Inc. | Flexible and steerable aspiration tip for microsurgery |
| AU4055793A (en) | 1993-03-31 | 1994-10-24 | Peter L. Davis | Phacoemulsification method and tip |
| US5358473A (en) * | 1993-04-30 | 1994-10-25 | Mitchell Paul G | Apparatus and method for the removal of adherent viscoelastic material |
| US5547473A (en) * | 1994-05-12 | 1996-08-20 | Syntec, Inc. | Pneumatic vitrectomy for retinal attachment |
| US5824041A (en) * | 1994-06-08 | 1998-10-20 | Medtronic, Inc. | Apparatus and methods for placement and repositioning of intraluminal prostheses |
| JP3585265B2 (en) * | 1994-07-29 | 2004-11-04 | 株式会社ニデック | Ophthalmic ultrasound surgery device |
| ATE497747T1 (en) * | 1994-09-02 | 2011-02-15 | Oversby Pty Ltd | PHACO EMULSIFICATION NEEDLE WITH NOTCHES |
| US5928218A (en) * | 1994-12-16 | 1999-07-27 | Gelbfish; Gary A. | Medical material removal method and associated instrumentation |
| WO1996038091A1 (en) | 1995-06-02 | 1996-12-05 | Surgical Design Corporation | Phacoemulsification handpiece, sleeve, and tip |
| US5735811A (en) * | 1995-11-30 | 1998-04-07 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced fluid delivery |
| US5788680A (en) * | 1996-07-09 | 1998-08-04 | Linder; Gerald Seymour | Dual-lumen suction catheter with multiple apertures in the vent lumen |
-
1996
- 1996-08-22 AU AUPO1787A patent/AUPO178796A0/en not_active Abandoned
-
1997
- 1997-08-22 ES ES97935360T patent/ES2276431T3/en not_active Expired - Lifetime
- 1997-08-22 US US09/242,749 patent/US6340355B1/en not_active Expired - Lifetime
- 1997-08-22 EP EP97935360A patent/EP0928177B1/en not_active Expired - Lifetime
- 1997-08-22 DE DE69736899T patent/DE69736899T2/en not_active Expired - Lifetime
- 1997-08-22 WO PCT/AU1997/000536 patent/WO1998007398A1/en active IP Right Grant
- 1997-08-22 AT AT97935360T patent/ATE343993T1/en not_active IP Right Cessation
- 1997-08-22 EP EP06022759A patent/EP1779825A3/en not_active Ceased
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100448416C (en) * | 2003-09-17 | 2009-01-07 | 博士伦公司 | Phacoemulsification needle |
| US20060224163A1 (en) * | 2005-03-30 | 2006-10-05 | Sutton Thomas B | Phaco aspiration flow restrictor with bypass tube |
| US8241242B2 (en) | 2005-03-30 | 2012-08-14 | Abbott Medical Optics Inc. | Phacoaspiration flow restrictor with bypass tube |
| US20090326507A1 (en) * | 2008-06-26 | 2009-12-31 | Garry Tsaur | Small container |
Also Published As
| Publication number | Publication date |
|---|---|
| DE69736899T2 (en) | 2007-06-21 |
| US6340355B1 (en) | 2002-01-22 |
| ATE343993T1 (en) | 2006-11-15 |
| EP0928177B1 (en) | 2006-11-02 |
| EP0928177A1 (en) | 1999-07-14 |
| EP0928177A4 (en) | 2004-07-28 |
| ES2276431T3 (en) | 2007-06-16 |
| DE69736899D1 (en) | 2006-12-14 |
| AUPO178796A0 (en) | 1996-09-12 |
| EP1779825A3 (en) | 2010-08-25 |
| WO1998007398A1 (en) | 1998-02-26 |
| EP1779825A2 (en) | 2007-05-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6340355B1 (en) | Intraocular irrigation/aspiration device | |
| US6126629A (en) | Multiple port phaco needle | |
| US5741226A (en) | Phacoemulsification handpiece, sleeve, and tip | |
| EP1371347B1 (en) | Grooved phaco-emulsification needle | |
| US5718676A (en) | Grooved phaco-emulsification needle | |
| US7014629B2 (en) | Tapered infusion sleeve portal | |
| US7204820B2 (en) | Phacoemulsification needle | |
| US20030004455A1 (en) | Bi-manual phaco needle | |
| US20070219482A1 (en) | No port phacoemulsification needle sleeve | |
| US5814010A (en) | Safety-vac capsule polisher | |
| WO2005092258A1 (en) | Phacoemulsification needle | |
| EP1464311B1 (en) | Phacoemulsification needle | |
| AU717553B2 (en) | Intraocular irrigation/aspiration device | |
| US20050245886A1 (en) | Anti-ocular chamber collapse sleeve | |
| WO2005110509A1 (en) | Tapered infusion sleeve portal | |
| MXPA97001540A (en) | Grooved needle for emulsification of f |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: OVERSBY PTY LTD., AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BARRETT, GRAHAM D.;REEL/FRAME:009907/0433 Effective date: 19990330 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| SULP | Surcharge for late payment | ||
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |