US20020009458A1 - DNA sequences, molecules, vectors and vaccines for feline calicivirus disease and methods for producing and using same - Google Patents
DNA sequences, molecules, vectors and vaccines for feline calicivirus disease and methods for producing and using same Download PDFInfo
- Publication number
- US20020009458A1 US20020009458A1 US09/827,864 US82786401A US2002009458A1 US 20020009458 A1 US20020009458 A1 US 20020009458A1 US 82786401 A US82786401 A US 82786401A US 2002009458 A1 US2002009458 A1 US 2002009458A1
- Authority
- US
- United States
- Prior art keywords
- fcv
- gene
- splicing
- plasmid
- nucleotide sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108091028043 Nucleic acid sequence Proteins 0.000 title claims abstract description 56
- 239000013598 vector Substances 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 31
- 229960005486 vaccine Drugs 0.000 title claims abstract description 24
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims abstract description 18
- 201000010099 disease Diseases 0.000 title claims abstract description 17
- 241000714201 Feline calicivirus Species 0.000 title claims description 161
- 210000004027 cell Anatomy 0.000 claims abstract description 68
- 108090000565 Capsid Proteins Proteins 0.000 claims abstract description 25
- 102100023321 Ceruloplasmin Human genes 0.000 claims abstract description 24
- 210000003527 eukaryotic cell Anatomy 0.000 claims abstract description 21
- 229920001184 polypeptide Polymers 0.000 claims abstract description 18
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 18
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 18
- 238000004113 cell culture Methods 0.000 claims abstract description 14
- 210000000805 cytoplasm Anatomy 0.000 claims abstract description 8
- 239000002773 nucleotide Substances 0.000 claims description 70
- 125000003729 nucleotide group Chemical group 0.000 claims description 70
- 101150111062 C gene Proteins 0.000 claims description 43
- 108020004511 Recombinant DNA Proteins 0.000 claims description 29
- 239000013604 expression vector Substances 0.000 claims description 20
- 102000053602 DNA Human genes 0.000 claims description 7
- 108090000623 proteins and genes Proteins 0.000 abstract description 86
- 210000000234 capsid Anatomy 0.000 abstract description 53
- 102000004169 proteins and genes Human genes 0.000 abstract description 6
- 238000013518 transcription Methods 0.000 abstract description 5
- 230000035897 transcription Effects 0.000 abstract description 5
- 238000011161 development Methods 0.000 abstract description 4
- 108091026890 Coding region Proteins 0.000 abstract 2
- 125000003275 alpha amino acid group Chemical group 0.000 abstract 1
- 239000013612 plasmid Substances 0.000 description 130
- 239000012634 fragment Substances 0.000 description 116
- 108020004414 DNA Proteins 0.000 description 52
- 108020004707 nucleic acids Proteins 0.000 description 51
- 102000039446 nucleic acids Human genes 0.000 description 51
- 150000007523 nucleic acids Chemical class 0.000 description 51
- 230000029087 digestion Effects 0.000 description 41
- 241000701087 Felid alphaherpesvirus 1 Species 0.000 description 40
- 230000014509 gene expression Effects 0.000 description 30
- 230000004927 fusion Effects 0.000 description 20
- 238000003752 polymerase chain reaction Methods 0.000 description 20
- 238000011534 incubation Methods 0.000 description 19
- 238000010276 construction Methods 0.000 description 18
- 238000010561 standard procedure Methods 0.000 description 17
- 241000700605 Viruses Species 0.000 description 14
- 239000002299 complementary DNA Substances 0.000 description 14
- 241000282324 Felis Species 0.000 description 12
- 241000282326 Felis catus Species 0.000 description 12
- 238000002255 vaccination Methods 0.000 description 10
- 102000005936 beta-Galactosidase Human genes 0.000 description 9
- 108010005774 beta-Galactosidase Proteins 0.000 description 9
- 102000037865 fusion proteins Human genes 0.000 description 9
- 108020001507 fusion proteins Proteins 0.000 description 9
- 238000001890 transfection Methods 0.000 description 9
- 230000003612 virological effect Effects 0.000 description 9
- 108091035707 Consensus sequence Proteins 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000003259 recombinant expression Methods 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 239000000969 carrier Substances 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 238000002965 ELISA Methods 0.000 description 6
- 108020000999 Viral RNA Proteins 0.000 description 6
- 230000000890 antigenic effect Effects 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 229940027941 immunoglobulin g Drugs 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- 239000007983 Tris buffer Substances 0.000 description 5
- 230000003321 amplification Effects 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 238000002703 mutagenesis Methods 0.000 description 5
- 231100000350 mutagenesis Toxicity 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 238000003118 sandwich ELISA Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 108020005067 RNA Splice Sites Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 108020005202 Viral DNA Proteins 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 4
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000002779 inactivation Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 230000010474 transient expression Effects 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 3
- 241000711895 Bovine orthopneumovirus Species 0.000 description 3
- 230000001594 aberrant effect Effects 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 239000000287 crude extract Substances 0.000 description 3
- 230000000120 cytopathologic effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000010839 reverse transcription Methods 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- -1 gentamycine Chemical compound 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000701083 Bovine alphaherpesvirus 1 Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000004729 Feline Leukemia Diseases 0.000 description 1
- 241000725579 Feline coronavirus Species 0.000 description 1
- 241000713800 Feline immunodeficiency virus Species 0.000 description 1
- 241000714165 Feline leukemia virus Species 0.000 description 1
- 241000701925 Feline parvovirus Species 0.000 description 1
- 101150082239 G gene Proteins 0.000 description 1
- 108700002232 Immediate-Early Genes Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 102000004407 Lactalbumin Human genes 0.000 description 1
- 108090000942 Lactalbumin Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108010046722 Thrombospondin 1 Proteins 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- VIYFPAMJCJLZKD-UHFFFAOYSA-L disodium;(4-nitrophenyl) phosphate Chemical compound [Na+].[Na+].[O-][N+](=O)C1=CC=C(OP([O-])([O-])=O)C=C1 VIYFPAMJCJLZKD-UHFFFAOYSA-L 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 208000005098 feline infectious peritonitis Diseases 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- PGBHMTALBVVCIT-VCIWKGPPSA-N framycetin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CN)O2)N)O[C@@H]1CO PGBHMTALBVVCIT-VCIWKGPPSA-N 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 229940099472 immunoglobulin a Drugs 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229940023832 live vector-vaccine Drugs 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 229940031346 monovalent vaccine Drugs 0.000 description 1
- 229940031348 multivalent vaccine Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 244000052613 viral pathogen Species 0.000 description 1
- 239000000277 virosome Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/16011—Caliciviridae
- C12N2770/16022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/44—Vectors comprising a special translation-regulating system being a specific part of the splice mechanism, e.g. donor, acceptor
Definitions
- the present invention generally relates to the feline calicivirus (FCV) disease and, in particular, to nucleotide sequences (nucleic acids) that encode polypeptides and to methods for obtaining and using said nucleotide sequences.
- the nucleotide sequences may comprise modified or recombinant DNA sequences or molecules.
- the nucleotide sequences are capable of being transcribed in the cytoplasm of eukaryotic cells without being disadvantageously altered by the splicing machinery naturally found in such cells.
- the present invention further relates to live recombinant expression vectors comprising said nucleotide sequences or molecules and to cell cultures transformed or infected with such live recombinant expression vectors.
- the present invention also relates to vaccines comprising such recombinant expression vectors and/or nucleotide sequences or molecules and, in particular, vaccines for preventing or treating feline calicivirus disease.
- recombinant vectors such as the feline herpes virus vector (FHV-1) may be used as a live carrier for developing vaccines against feline pathogens, e.g., feline leukemia virus, feline immunodeficiency virus, feline calicivirus, feline parvovirus, feline coronavirus and feline Chlamydia.
- feline pathogens e.g., feline leukemia virus, feline immunodeficiency virus, feline calicivirus, feline parvovirus, feline coronavirus and feline Chlamydia.
- feline pathogens e.g., feline leukemia virus, feline immunodeficiency virus, feline calicivirus, feline parvovirus, feline coronavirus and feline Chlamydia.
- feline pathogens e.g., feline leukemia virus, feline immunodeficiency virus, feline calicivirus, feline parvovirus, feline cor
- Introns are precisely spliced out of the initial gene transcript (pre-mRNA) before it is transported to the cytoplasm of the cell for translation. Sequences immediately bordering splice junctions are typically conserved in eukaryotic genes. conserveed junction sequences located between an exon and an intron are generally referred to as the 5′ splice sites or donor sites. Sequences located at the boundary between an intron and an exon are generally referred to as the 3′ splice sites, or acceptor sites.
- branch point sequence typically located within the intron, usually 10 to 50 nucleotides upstream from an acceptor site.
- consensus sequences typically represent basic sequences of nucleotides that are derived from a large set of observed similar sequences in a specific region of a nucleic acid molecule. (See Stenesh, J., Dictionary of Biochemistry and Molecular Biology, Second Ed., John Wiley & Sons (1989)).
- the calicivirus capsid (C) gene encodes the calicivirus capsid protein, which has been identified as an important antigen for developing vaccines for feline calicivirus disease. Although consensus DNA sequences, which are closely related to the splicing signals (donor, acceptor and branching sites) have been identified in genes coding for other eukaryotic proteins, as well as viruses that replicate in eukaryotes, no consensus DNA sequences for the calicivirus capsid (C) protein gene, including the calicivirus capsid (C) gene of FCV strain 2280, have been identified or isolated.
- feline calicivirus genes are transcribed in the cytoplasm of feline calicivirus transformed or infected cells.
- potential splicing signals if any, are not accessible to the splicing machinery typically located in the nucleus of such infected cells. Thus, if any splicing signals exist, then they are not able to play a role in the processing of viral RNA.
- RNAs are spliced.
- foreign genes inserted in a recombinant FHV-1 virus (vector) are transcribed in the nucleus of the infected cells.
- the resulting RNAs are accessible to the splicing machinery of the infected cells.
- Bovine respiratory syncytial virus is a viral pathogen whose genes are transcribed in the cytoplasm of infected cells. It has been reported that inactivation of splicing signals in the BRSV glycoprotein G gene, which normally could not be detected in bovine cells infected with a recombinant bovine herpesvirus 1 vector (BHV-1) containing the G gene, resulted in the expression of the gene in bovine cells infected by a recombinant BHV-1 virus having the mutated gene. See F. A Rijsewijk, R. C. Ruuls, K. Westerink and J. T.
- a primary object of the present invention is to provide (1) an isolated or purified recombinant DNA sequence or molecule that is capable of being transcribed by eukaryotic cells without being disadvantageously altered by the splicing machinery of the eukaryotic cells, and (2) methods for making and using the isolated or purified DNA sequence or molecule.
- Another object of the present invention is to provide recombinant or DNA sequences that code for polypeptides (proteins) that may be naturally transcribed in the cytoplasm of cells, which DNA sequences are modified so as to be capable of being transcribed in the nucleus of eukaryotic cells without being altered by the splicing machinery of the cells and without causing amino acid sequence or functional properties of the polypeptides thereof to be disadvantageously altered.
- Still yet another object of the present invention to provide methods for obtaining isolated or purified recombinant DNA sequences that effectively encode the feline calicivirus (FCV) capsid protein.
- FCV feline calicivirus
- a further object of the present invention is to identify or isolate DNA sequences in the feline calicivirus C gene, and in particular the FCV C gene of FCV strain 2280, that are identical or closely related to the consensus splicing sequences, signals, or sites (donor, acceptor and branching sites) and to identify or isolate DNA sequences therein that will result in either retaining, eliminating or inactivating the consensus and/or splicing sequences, signals or sites when such consensus and/or splicing sequences are modified and/or eliminated therefrom.
- a further object of the present invention is to provide recombinant or modified DNA sequences or DNA molecules containing such recombinant or modified DNA sequences that are capable of encoding or expressing the FCV capsid protein without being altered by the splicing machinery of the eukaryotic cells.
- LRCs live recombinant carriers
- Another object of the present invention is to provide a live recombinant FHV-1 expression vector comprising modified or recombinant DNA sequences derived from the FCV gene that codes for the FCV capsid protein, wherein said sequences are capable of being (1) transcribed in the nucleus of eukaryotic cells without being altered by the splicing machinery of eukaryotic organisms and (2) introduced into a eukaryotic organism through the use of live recombinant carriers (LRCs) whose transcription occurs in the nucleus of eukaryotic cells.
- LRCs live recombinant carriers
- Another object of the present invention is to provide a vaccine, and in particular a vaccine for the prevention or treatment of feline calicivirus (FCV) disease, which comprises recombinant vectors and/or said recombinant DNA molecules.
- FCV feline calicivirus
- a further object of the present invention is to provide a culture of host cells that is transformed or infected a recombinant expression vector comprising modified or recombinant DNA sequences, in particular modified or recombinant DNA sequences derived from the FCV gene that codes for the FCV capsid protein, wherein said sequences are capable of being transcribed in the nucleus of eukaryotic cells without being altered by the splicing machinery the host cells.
- FIG. 1 is the nucleotide sequence of the calicivirus capsid gene of the feline calicivirus strain FCV 2280 (SEQ ID: 23).
- FIG. 2 is nucleotides 1183 to 1584 (SEQ ID NO: 24) of the nucleotide sequence coding for feline calicivirus capsid gene of the feline calicivirus strain FCV 2280 of FIG. 1.
- FIG. 3 represents the restriction map of plasmid pCALI.
- FIG. 4 represents the restriction map of plasmid pRSVCALI.
- FIG. 5 represents the restriction map of plasmid pRSVC1LAC.
- FIG. 6 represents the restriction map of plasmid pRSVC2LAC.
- FIG. 7 represents the restriction map of plasmid pRSVC3LAC.
- FIG. 8 represents the restriction map of plasmid pRSVC4LAC.
- FIG. 9 represents the restriction map of plasmid pRSVC5LAC.
- FIG. 10 represents the restriction map of plasmid pRSVC6LAC.
- FIG. 11 represents the restriction map of plasmid pRSVC7LAC.
- FIG. 12 represents the restriction map of plasmid pRSVC8LAC.
- FIG. 13 represents the restriction map of plasmid pRSVC9LAC.
- FIG. 14 represents the restriction map of plasmid pdTKRSVC1LAC.
- FIG. 15 represents the restriction map of plasmid pdTKRSVC8LAC.
- FCV 2280 feline calicivirus cell line
- SAH-2280 MS a cell culture, which is equivalent to FCV 2280 and designated herein as SAH-2280 MS, has been deposited with the American Type Culture Collection depository in Rockville, Md., in accordance with the Budapest Treaty. The deposited culture has been assigned ATCC Registration No. VR-2555. The depository has been instructed to afford permanence of the deposit for at least thirty years or at least five years after the most recent request, whichever period is longer.
- the culture will be replaced (1) for at least thirty years from the date of the original deposit or at least five years from the date of the most recent request for release of a sample or (2) for the life of any patent issued on this application, whichever period is longer.
- the aforementioned deposit has been made under conditions that assure ready accessibility to the culture by the public when a patent is granted on this patent application, whereby all restrictions to the availability to the public of the deposited culture will be irrevocably removed upon issuance of the patent. Access to the deposit will be made available during the pendency of this patent application to one determined by the Commissioner of Patent and Trademarks to be entitled thereto.
- the present invention is based, in part, on the discovery that the failure of certain DNA sequences coding for polypeptides to be expressed in the nucleus of eukaryotic host cells when introduced therein by a recombinant FHV-1 vector is due to aberrant splicing of certain nucleotide sequences that are identical or similar to consensus nucleotide splicing sites.
- the aberrant splicing is caused by the natural splicing machinery found in eukaryotic cells.
- such aberrant splicing may be reduced and/or completely avoided by deleting, modifying and/or otherwise inactivating certain consensus sequences/splicing sites that may exist in DNA sequences, such as the feline calicivirus C gene, so that such consensus sequences/splicing sites are either not present or not recognized by the splicing machinery found in eukaryotic cells.
- the present invention comprises recombinant (modified) DNA sequences that permit the transcription thereof in the nucleus of eukaryotic cells without being altered by the cells? splicing machinery.
- the present invention comprises recombinant DNA sequences of the feline calicivirus C gene, which codes for the FCV capsid protein and which contains splicing sites that have been modified or removed therefrom.
- the DNA sequences of the present invention are obtained or derived from feline calicivirus (FCV) strain 2280 in which modifications have been made in the capsid gene thereof.
- FCV feline calicivirus
- the preferred DNA sequences are substantially identical to that of the naturally occurring capsid gene with the exception that various of the splicing sites therein have been modified (by deletion or alteration/mutation) so that donor and/or acceptor sites are inactivated.
- the DNA sequences of the present invention are capable of being transcribed in the nucleus of eukaryotic organisms without being altered by the cells' splicing machinery and without functionally altering the amino acid sequence of the FCV capsid protein encoded thereby.
- the present invention further comprises recombinant DNA sequences of a highly variable region of the FCV gene of FCV strain 2280 that codes for the FCV capsid protein.
- portions of the variable region of the C gene of FCV may be modified (by deletion or alteration/mutation) and isolated using known genetic engineering techniques.
- antigenic determinants for FCV disease are located within the variable region of the capsid protein and that, since the nucleotide sequence of this region of the capsid gene is highly variable among feline calicivirus strains, the splicing signals identified herein in strain FCV 2280 can differ in sequence and position (sometimes greatly) from those found in the same region of other strains. Moreover, this region contains B-cell epitope(s) which induce sero-neutralizing antibodies in cats.
- Preferred nucleotide sequences of the present invention and their position in the variable region of the capsid protein of the calicivirus C (capsid) gene of feline calicivirus strain FCV 2280 are listed below in Table 1 of the Examples. The listed sequences are closely related to the known consensus DNA sequences of the splicing signals.
- the portions of the genome of FCV which are modified include portions of the variable region of the capsid gene which are either identical or closely related to the consensus sequences of the splicing signals (sites).
- sites the consensus sequences of the splicing signals
- the entire calicivirus capsid gene was cloned and sequenced, a comparison thereof with the known consensus sequences for splicing signals (donor, acceptor and branching sites) was made and those sequences within this region of the capsid gene which were identical and closely related to the known consensus sequences for splicing sites were identified.
- FIG. 1 SEQ ID NO: 23
- FIG. 2 SEQ ID NO: 24
- the precise location and composition of the splicing sites can be determined by reference to Tables 1 and 2 and FIGS. 1 and 2 below.
- splicing site D1 comprises nucleotides 1-6 of the variable region of the C gene of FCV strain 2280 (nucleotides 1183-1188 of the C gene of FCV strain 2280).
- Splicing site D2 comprises nucleotides 8-13 of the variable region of the C gene of FCV strain 2280 (nucleotides 1190-1195 of the C gene of FCV strain 2280).
- Splicing site D3 comprises nucleotides 13-19 of the variable region of the C gene of FCV strain 2280 (nucleotides 1195-1201 of the C gene of FCV strain 2280).
- Splicing site D4 comprises nucleotides 33-37 of the variable region of the C gene of FCV strain 2280 (nucleotides 1215-1219 of the C gene of FCV strain 2280).
- Splicing site D5 comprises nucleotides 113-121 of the variable region of the C gene of FCV strain 2280 (nucleotides 1295-1303 of the C gene of FCV strain 2280).
- Splicing site D6 comprises nucleotides 209-217 of the variable region of the C gene of FCV strain 2280 (nucleotides 1391-1399 of the C gene of FCV strain 2280).
- Splicing site D7 comprises nucleotides 247-251 of the variable region of the C gene of FCV strain 2280 (nucleotides 1429-1433 of the C gene of FCV strain 2280).
- Splicing site D8 comprises nucleotides 296-302 of the variable region of the C gene of FCV strain 2280 (nucleotides 1478-1484 of the C gene of FCV strain 2280).
- Splicing site D9 comprises nucleotides 361-368 of the variable region of the C gene of FCV strain 2280 (nucleotides 1543-1550 of the C gene of FCV strain 2280).
- Splicing site Al comprises nucleotides 58-70 of the variable region of the C gene of FCV strain 2280 (nucleotides 1240-1252 of the C gene of FCV strain 2280).
- Splicing site A2 comprises nucleotides 103-116 of the variable region of the C gene of FCV strain 2280 (nucleotides 1285-1298 of the C gene of FCV strain 2280).
- Splicing site A3 comprises nucleotides 272-285 of the variable region of the C gene of FCV strain 2280 (nucleotides 1454-1467 of the C gene of FCV strain 2280).
- Splicing site A4 comprises nucleotides 341-355 of the variable region of the C gene of FCV strain 2280 (nucleotides 1523-1537 of the C gene of FCV strain 2280).
- nucleotide (DNA) sequences of the present invention are designated below as C1, C3, C4, C5, C6, C7, C8 and C9. The precise characteristics of the nucleotide sequences are described below in Tables 1 and 2.
- the nucleotide sequences are derived or obtained from the capsid protein gene of strain FCV 2280. Of preference among the nucleotide sequences of the present invention are sequences C1, C5, C6, C7, C8 and C9, of which C5, C7 and C9 are more preferred, C7 and C9 are even more preferred, and C7 is most preferred.
- Sequence C1 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein splicing sites D1, D2, D3, D4 and D9 have been deleted therefrom.
- Sequence C3 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein splicing site D9 has been deleted therefrom.
- Sequence C4 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein splicing sites D1, D2, D3 and D4 have been deleted therefrom.
- Sequence C5 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein splicing site D9 has been deleted therefrom and the splicing sites D4, D5 and A2 have been modified so as to be inactivated.
- Sequence C6 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein splicing sites D4, D5 and A2 have been modified so as to be inactivated.
- Sequence C7 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein splicing site D9 has been deleted therefrom and the splicing sites D2, D3, D4, D5 and A2 have been modified so as to be inactivated.
- Sequence C8 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein the splicing sites designated herein as D2, D3, D4, D5 and A2 have been modified so as to be inactivated.
- Sequence C9 is the nucleotide sequence of the capsid gene wherein the splicing sites D1, D2, D3, D4 and D9 has been deleted therefrom and the splicing sites D5 and A2 have been modified so as to be inactivated.
- the present invention comprises DNA molecules that contain recombinant (modified) DNA sequences that are capable of being transcribed in the nucleus of eukaryotic cells without being altered by the cells' splicing machinery.
- the recombinant DNA molecules disclosed herein are capable of expressing the portions (antigenic determinants) of the FCV capsid protein, which is coded for thereby.
- the recombinant (modified) DNA molecules may be obtained from FCV strain 2280 and, in particular, may be derived from DNA sequences coding for the (antigenic portions of) FCV capsid protein of FCV strain 2280.
- the recombinant molecules of the present invention may be fused to DNA sequences of the LacZ gene, which code for ⁇ -galactosidase.
- the recombinant DNA molecules of the present invention may also comprise expression cassettes that have the recombinant (modified) portion of the FCV 2280 capsid gene.
- the modified or recombinant nucleic acid (DNA) sequences may be introduced into a live recombinant carrier and expressed, for example by: (a) transforming host cells (CRFK) with live recombinant carrier; (b) expressing the genome introduced into the expression vector; (c) harvesting the cell culture, and (d) isolating the synthesized capsid protein.
- expression of the fusion proteins by the recombinant DNA molecules may be achieved by any suitable conventional means including, without limitation, use of Crandell-Rees Feline Kidney (CRFK) cells.
- the CRFK cells may be transfected with plasmids comprising LacZ fusions under the control of the Rous sarcoma retrovirus long terminal repeat promoter (RSVp) (which promoter is known to be able to drive expression of the LacZ gene—in plasmid pRSVLACE—in feline cells) and SV40 early transcript cleavage and polyadenylation sequences.
- RSVp Rous sarcoma retrovirus long terminal repeat promoter
- Expression may be validated by immunodetection in extracts of transfected cells by sandwich ELISA using different combinations of antibodies specific to ⁇ -galactosidase or to the capsid portion of the fusion protein.
- Plasmids that may be used in accordance with the present invention include, but are not limited to, pRSVClLAC, pRSVC2LAC, pRSVC3LAC, pRSVC4LAC, pRSVC5LAC, pRSVC6LAC, pRSVC7LAC, pRSVC8LAC and pRSVC9LAC, whose structures and constructions are discussed in the Examples below.
- transient expression of CRFK cells transfected with plasmid pRSVLACE may be used as a reference.
- such fusions may contain either all regions or sub-regions of the variable segment in order to retain or exclude some of the splicing signals.
- some of the remaining splicing sites may be mutated to inactivate them and retain the antigenicity (and/or original amino acid sequence) of the original (heterologous or homologous) polypeptide (such as the amino acid sequence of the capsid protein and/or ⁇ -galactosidase).
- the nucleotide sequences or molecules of the present invention may be introduced in any suitable expression vector with the aim of expression of a polypeptide in susceptible host cells and/or host organisms.
- recombinant expression vectors of the present invention preferably comprise recombinant (modified) DNA sequences that are capable of being transcribed in the nucleus of eukaryotic cells without being altered by the cells' splicing machinery and being introduced into a eukaryotic organism with the use of live recombinant carriers (LRCs).
- the recombinant vectors may comprise, without limitation, recombinant (modified) DNA sequences that are derived from FCV genes coding for the FCV capsid protein, and preferably derived from FCV strain 2280 coding for the FCV capsid protein.
- the recombinant expression vectors of the present invention may include, without limitation, live recombinant feline herpes virus-1 (FHV-1) vectors that are useful as live carriers for the development of vaccines for feline calicivirus (FCV) disease.
- FHV-1 live recombinant feline herpes virus-1
- the live recombinant feline herpes virus-1 (FHV-1) vectors may be modified to provide the recombinant nucleotide sequences and/or recombinant DNA molecules of the present invention incorporated therein.
- modifications of FHV-1 vectors of the present invention are introduced in a permissive position, i.e., a position or region that may be used for the incorporation of the modification without disrupting essential functions of the vector, such as those necessary for infection or replication.
- the recombinant FHV-1 vectors of the present invention may include the (heterologous) recombinant DNA molecules of the present invention flanked by appropriate FHV-1 sequences whereby recombination occurs between sequences of the heterologous recombinant DNA molecules and sequences of the FHV vector.
- Recombinant viral progeny is thereafter produced in cell culture and can be selected for, by example, genotypically or phenotypically, by hybridization, detecting enzyme activity encoded by a gene co-integrated along with the heterologous recombinant DNA molecule or detecting the antigenic (heterologous or homologous) polypeptide expressed by the recombinant FHV immunologically.
- Recombinant viruses can also be selected positively based on resistance to compounds such as neomycine, gentamycine, or mycophenolic acid.
- the selected recombinant FHV can be cultured on a large scale in cell culture where after recombinant FHV containing material or (heterologous or homologous) polypeptides expressed by said FHV can be collected therefrom.
- the present invention also comprises cell cultures transformed or infected with the recombinant (FHV-1) vectors described above.
- Preferred cell cultures of the present invention include, without limitation, Crandell-Rees Feline Kidney (CRFK) cells that have been infected with the recombinant FHV-1 vectors of the present invention.
- CRFK Crandell-Rees Feline Kidney
- such recombinant FHV-1 vectors can be grown on cell cultures of feline origin (such as CRFK cells) and harvested by collecting the tissue cell culture fluids and/or cells and the live vaccine prepared therefrom in the form of a suspension or may be lyphophilized.
- the present invention comprises vaccines, which contain the recombinant expression vectors and/or said recombinant DNA sequences.
- the vaccines of the present invention may be used for the prevention and treatment of diseases, such as feline calicivirus (FCV) disease.
- the vaccines of the present invention may comprise the recombinant FHV-1 vectors (having the recombinant DNA molecules of the present invention which include the DNA sequences of the present invention of the FCV 2280 capsid gene with the modified splicing sites), in a pharmaceutically-acceptable carrier.
- the recombinant FHV vector of the present invention may also serve as a monovalent or multivalent vaccine.
- the term “pharmaceutically-acceptable carrier” refers to those liquid or solid compositions which are susceptible of being used as an excipient (vehicle) for introducing the vector into an animal to be vaccinated therewith.
- liquid compositions are water, physiological serum, saline phosphate buffers, solutions containing adjuvants, detergents, stabilizers and substances which facilitate transfection, liposome suspensions, virosome suspensions and emulsions.
- Such liquid compositions may be administered, inter alia, orally, intranasally, oronasally or parentally (i.e., intradermally, subcutaneously or intramuscularly).
- Solid compositions include microparticles containing an expression vector of the present invention, which are administered by parental or oral routes.
- Vaccination with a live vector vaccine of the present invention is generally followed by replication of an FHV-1 mutant within an inoculated host, in vivo expression of the (heterologous or homologous) polypeptide (such as the FCV capsid protein) along with the FHV polypeptides.
- the polypeptides (such as the FCV capsid protein) expressed in the inoculated host will then elicit or cause an immune response that will effectively immunize the host against subsequent infection against a specific pathogen (such as the FCV disease).
- mutants when referring to nucleotides and nucleotide sequences, refers to nucleotides and nucleotides sequences obtained by altering the native or original state (in specific nucleotides) and/or order (in sequences) thereof by means and instrumentalities that are well-known to the skilled artisan. It is to be understood that any suitable mutation may be made to the nucleotides and nucleotide sequences by using routine techniques that are well known so long as the objects and principles of the present invention, as discussed throughout this description, are not offended or compromised.
- Dilutions, quantities, etc., which are expressed herein in terms of percentages are, unless otherwise specified, percentages given in terms of percent weight per volume (w/v).
- dilutions, quantities, etc., which are expressed in terms of % (v/v) refer to percentage in terms of volume per volume.
- dilutions, quantities, etc., which are expressed in terms of % (v/w) refer to percentage in terms of volume per weigh.
- dilutions, quantities, etc., which are expressed in terms of % (w/w) refer to percentage in terms of weight per weight.
- nucleotide (DNA) sequences of the present invention incorporating such sequences therein, the recombinant vectors incorporating such recombinant DNA molecules therein, the cells cultures infected with such recombinant vectors and the vaccines which comprise such recombinant vectors, the following Examples are now presented for the purposes of illustration and are neither meant to be, nor should they be, read as being restrictive or limiting in any way.
- FCV Feline Calicivirus
- FCV viral strain FCV 2280 MS (which is deposited in the American Type Culture Collection under accession number VR 2555) is grown on Crandell-Reese Feline Kidney cells (CRFK) (deposited in the American Type Cell Culture Collection under accession number CCL94). The cells are grown at 37?
- the cells are then infected with approximately 0.01 virus particle per cell at a cell confluence of about 50% to 80%, as visually observed (as used in the Examples herein, 100% confluence is defined as 10 5 cell/cm of plate) and then incubated for two to three days at 37° C. in an atmosphere having 3% CO 2 in culture medium having the same composition as that described above.
- the viral particle containing pellet is then resuspended in 10 mM TRIS (tris-(Hydroxymethyl)aminomethane) (pH 7.5) and 1 mM EDTA (ethylenediaminetetraacetate).
- TRIS tris-(Hydroxymethyl)aminomethane
- EDTA ethylenediaminetetraacetate
- This suspension is then loaded on a cushion of 25% sucrose in 10 mM TRIS (pH 7.5) and 1 mM EDTA and is centrifuged at 25000 RPM (SW 28 rotor) for 2 hours at 4° C, generating a viral pellet. After decanting the supernatant from the resulting pellet, the viral pellet is then resuspended in a mixture of 10 mM TRIS (pH 7.5), 10 mM NaCl, 10 mM EDTA, 0.5% (w/v) SDS (Sodium Dodecyl Sulphate) and 500 ⁇ g proteinase K (BOEHRINGER) per ml of the suspension and incubated for 2 hours at 50° C.
- 10 mM TRIS pH 7.5
- 10 mM NaCl 10 mM EDTA
- SDS Sodium Dodecyl Sulphate
- BOEHRINGER proteinase K
- Viral RNA is then purified by successive phenol/chloroform extractions until the aqueous phase is clear. The clear aqueous phase is then subjected to ethanol precipitation. The precipitated FCV genomic viral RNA is then resuspended in 1 ⁇ 2 ml MilliQ water (MilliQ ZMFQO5001, MILLIPORE).
- CALI14 and CALI23 Two cDNA fragments, named CALI14 and CALI23, corresponding to the whole capsid gene sequence, is then obtained by reverse transcription and Polymerase Chain Reaction (PCR) amplification from the precipitated FCV genomic viral RNA obtained as described above in Example 2.
- the CALI14 cDNA fragment (whose sequence is set forth below) is obtained by reverse transcription of the precipitated FCV genomic viral RNA from Example 2, done in a total volume of 25 ⁇ l, consisting of: 0.5 ⁇ l of the precipitated FCV genomic viral RNA; 10 mM Tris (pH 8.3); 50 mM KCl; 5 mM MgCl 2 ; 1 mM of dATP; 1 mM of dCTP; 1 mM of dGTP; 1 mM of dTTP; and 4 ⁇ M of primer CALI4 (EUROGENTEC), whose sequence is described below. The reaction mixture is then incubated for 5 minutes at 95° C. and then put immediately on ice.
- PHARMACIA Moloney Murine Leukemia virus reverse transcriptase
- PARMACIA RNAse inhibitor
- Amplification of the CALI4 cDNA fragment is done by, first, adjusting the above described 25 ⁇ l reaction mixture to a final volume of 100 ⁇ l consisting of reversed transcribed FCV genome viral DNA, 10 mM Tris (pH 8.3), 50 mM KCl, 2 mM MgCl 2 , 0.25 mM of dNTP and 1 ⁇ M of primers CALI1 (EUROGENTEC) and CALI4 (EUROGENTEC), whose sequences are described below. Amplification is then performed using a thermal cycler (PHARMACIA LKB Gene ATAQ controller) with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 60° C. for 1 minute; and (3) 72° C. for 2 minutes. The cycle is repeated 40 times and followed by incubation for 10 minutes at 72° C. The amplified CALI14 cDNA fragment obtained in this fashion is about 0.7 kilo basepairs (kbp).
- the CAL123 cDNA fragment is obtained in the same manner as described above for the CALI14 cDNA fragment with the exceptions that reverse transcription is performed with primer CALI2 at a concentration of 1 ⁇ M and amplification is performed with primers CALI2CLON (EUROGENTEC) and CALI3 (EUROGENTEC), at a final concentration of 0.25 ⁇ M with the same cycle parameters as specified above: (1) 95° C. for 2 minutes; (2) 60° C. for 30 seconds; and (3) 72° C. for 2 minutes.
- the amplified CAL123 cDNA fragment is about 1.5 kbp.
- Plasmid pCALI having the whole capsid gene sequence, is then constructed from the CALI14 and CAL123 cDNA fragments, as follows. First, the CALI14 cDNA fragment is treated with T4 DNA polymerase (PHARMACIA). Next, the CALI14 cDNA fragment is cloned in plasmid pBSLK1 (described in European Patent Application No. 517,292) which has been previously digested with SmaI, resulting in plasmid pCALI14.
- plasmid pBSLK1 described in European Patent Application No. 517,292
- the CALI23 cDNA fragment is then double digested with SphI and BsmI and cloned into plasmid pCALI14, which has been previously subjected to a double digestion with SphI and BsmI, resulting in plasmid pCALI.
- the complete nucleotide sequence of the capsid gene is determined using double-stranded plasmid pCALI as template and primers (EUROGENTEC) made either to the vectors just outside the insert to be sequenced or to previously obtained sequences inside the insert. Sequencing is performed in a chain termination reaction using T7 polymerase (PHARMACIA) and S 35 dATP (AMERSHAM). The sequence obtained is set forth in FIG. 1 (SEQ ID NO: 23).
- variable region of the capsid gene is then identified by comparison with known published capsid gene sequences of feline calicivirus strains (Virus Research 33 (1994) p. 39-53 and J. Of Gen. Virology 74 (1993) pp. 2519-2524). From this comparison, it is determined that the variable region-of the capsid gene of feline calicivirus strain FCV 2280 is found from nucleotide 1183 to 1584, inclusive, as noted in FIG. 1 (SEQ ID NO: 23). This portion of the capsid gene is shown in FIG. 2 (SEQ ID NO: 24).
- An intermediate plasmid pRSVCALI is then constructed having an FCV-capsid gene expression cassette
- the intermediate expression plasmid pRSVCALI contains the Rous sarcoma retrovirus (RSV) long terminal repeat promoter and the SV40 late transcript cleavage and polyadenylation signals.
- RSV Rous sarcoma retrovirus
- PRSVCALI is constructed by the insertion of the capsid gene cDNA, obtained from pCALI, as described in Example 3, in the intermediate expression plasmid pRSVpolyAL (the structure and construction of which is described in PCT/EP94/02990).
- Insertion of the capsid gene cDNA from pCALI in the intermediate plasmid pRSVpolyAL is performed by, first, obtaining uracilated single-stranded pCALI DNA and then subjecting this uracilated single-stranded pCALI DNA to site-directed mutagenesis following the supplier recommendations (BioRad Muta-Gene Phagemid In Vitro Mutagenesis Kit), generating pCALIMUT. Mutagenesis is performed using the four synthetic primers (EUROGENTEC), as follows:
- pCALIMUT is subjected to a double digestion by BglII and BamHI and the 2.1 kbp fragment is isolated therefrom.
- the plasmid pRSVpolyAL is digested with BglII.
- the 2.1 kbp BglII-BamHI fragment from pCALIMUT is then inserted into the BglII site of the pRSVpolyAL, generating plasmid pRSVCALI.
- a cotransfection plasmid, pdTKRSVCLAC is then constructed containing both an FCV capsid gene and a LacZ expression cassette.
- pdTKRSVCLAC is constructed for use in the cotransfection of feline cells with FHV-1 viral DNA.
- plasmid pHCMVLACE (whose structure and construction are described in PCT/EP94/02990) is subjected to a double digestion with BclI and BamHI and the 3.8 kbp LacZ expression cassette isolated therefrom.
- LacZ expression cassette contained on a 3.8 kbp BclI-BamHI fragment of pHCMVLACE, is then inserted into the BamHI site of pRSVCALI, generating the plasmid pRSVCLAC.
- the plasmid pRSVCLAC is then subjected to a double digestion with BclI and BamHI and the 6.6 kbp BclI-BamHI fragment is isolated therefrom.
- Plasmid pdTK (whose structure and construction are described in PCT/EP94/02990) is then subjected to a double digestion with BamHI.
- a live recombinant FHV-1 carrier (containing the capsid and the LacZ gene) is then obtained by cotransfection (using the procedure described in PCT/EP94/02990) of CRFK cells with purified FHV-1 DNA (as described in PCT/EP94/02990) using the cotransfection plasmid pdTKRSVCLAC, which is obtained as described in Example 5, giving a mixture of wild-type and recombinant FHV-1 viruses.
- LRC Live Recombinant Carrier
- This 0.37 kbp DNA fragment is then subjected to a double digestion with NcoI and AatII.
- a resulting 0.34 kbp fragment is then isolated therefrom and cloned into the 5.7 kbp fragment of plasmid pRSVLACE (whose structure and construction are described in PCT/EP94/02990), which is obtained by subjecting pRSVLACE to a double digestion with NcoI and AatII, generating plasmid pRSVC1DLAC.
- the approximately 0.86 kbp DNA fragment is then subjected to a double digestion with NheI and AatII and a resulting 0.62 kbp NheI-AatII fragment is isolated therefrom.
- Plasmid pRSVC1DLAC is then subjected to a double digestion with NheI and AatII and the 6.0 kbp fragment isolated therefrom.
- the 0.62 kbp NheI-AatII fragment is then cloned into the 6.0 kbp fragment of plasmid pRSVC1DLAC, thereby generating plasmid pRSVClLAC.
- This approximately 0.46 kbp DNA fragment is then subjected to a double digestion with NcoI and AatII and a resulting 0.43 kbp NcoI-AatII fragment is isolated therefrom.
- Plasmid pRSVLACE which is described in PCT/EP94/02990, is then subjected to a double digestion with NcoI and AatII and a resulting 5.7 kbp NcoI-AatII fragment is isolated therefrom.
- the 0.43 kbp NcoI-AatII fragment is then cloned into the 5.7 kbp NcoI-AatII fragment, generating plasmid pRSVC2DLAC.
- a DNA fragment of approximately 0.86 kbp is amplified by PCR using plasmid pRSVLACE as a template and synthetic primers (EUROGENTEC) FLIA and FLIB described above.
- the amplification is performed with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle is repeated 30 times and followed by incubation for 10 minutes at 720 C.
- the approximately 0.86 kbp DNA fragment is then subjected to a double digestion with NheI and AatII and a resulting 0.62 kbp NheI-AatII fragment is isolated therefrom.
- Plasmid pRSVC2DLAC is also subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom.
- the 0.62 kbp NheI-AatII fragment is then cloned into the 6.1 kbp fragment of plasmid pRSVC2DLAC, thereby generating plasmid pRSVC2LAC.
- This approximately 0.41 kbp DNA fragment is then subjected to double digestion with NcoI and AatII and a resulting 0.38 kbp NcoI-AatII fragment is isolated therefrom.
- This 0.38 kbp NcoI-AatII fragment is then cloned into the 5.7 kbp NcoI AatII fragment of plasmid pRSVLACE (described in PCT/EP94/02990), which is obtained by subjecting pRSVLACE to a double digestion with NcoI and AatII, thereby generating plasmid pRSVC3DLAC.
- the approximately 0.86 kbp DNA fragment is then subjected to a double digestion with NheI and AatII and a resulting 0.62 kbp NheI-AatII fragment is isolated therefrom.
- Plasmid pRSVC3DLAC was then subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom.
- the 0.62 kbp NheI-Aatll fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC3DLAC, generating plasmid pRSVC3LAC.
- the approximately 0.86 kbp DNA fragment was then subjected to a double digestion with NheI and AatII and a resulting 0.62 kbp NheI-AatII fragment was isolated therefrom.
- Plasmid pRSVC4DLAC was then subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom.
- the 0.62 kbp NheI-AatII fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC4DLAC, generating plasmid pRSVC4LAC.
- uracilated single-stranded DNA from plasmid pRSVCALI, described above in Example 4 was subjected to site-directed mutagenesis following the supplier recommendations (BioRad Muta-Gene Phagemid In Vitro Mutagenesis Kit). Mutagenesis was done using the two synthetic primers (EUROGENTEC) described below:
- pRSVCALIMUT The resulting plasmid is called pRSVCALIMUT.
- the 0.41 kbp DNA fragment was then subjected to a double digestion with NcoI and AatII and the resulting 0.38 kbp fragment cloned into a 5.7 kbp fragment of plasmid pRSVLACE (described in PCT/EP94/02990) which had been obtained by previously subjecting pRSVLACE to a double digestion with NcoI and AatII.
- the resulting plasmid was pRSVC5DLAC.
- the 0.86 kbp DNA fragment was then subjected to a double digestion with NheI and AatII and the resulting 0.62 kbp fragment isolated therefrom.
- Plasmid pRSVC5DLAC was subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom.
- the 0.62 kbp NheI-AatII fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC5DLAC, generating plasmid pRSVC5LAC.
- the 0.86 kbp DNA fragment was then subjected to a double digestion with NheI and AatII and the resulting 0.62 kbp fragment isolated therefrom.
- Plasmid pRSVC6DLAC was subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom.
- the 0.62 kbp NheI-AatII fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC6DLAC, generating plasrnid pRSVC6LAC.
- the 0.86 kbp DNA fragment was then subjected to a double digestion with NheI and AatII and the resulting 0.62 kbp fragment isolated therefrom.
- Plasmid pRSVC7DLAC was subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom.
- the 0.62 kbp NheI-AatII fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC7DLAC, generating plasmid pRSVC7LAC.
- the 0.86 kbp DNA fragment was then subjected to a double digestion with NheI and AatII and the resulting 0.62 kbp fragment isolated therefrom.
- Plasmid pRSVC8DLAC was also subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom.
- the 0.62 kbp NheI-AatII fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC8DLAC, generating plasmid pRSVC8LAC.
- Plasmid pRSVC9DLAC was also subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom.
- the 0.62 kbp NheI-AatII fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC9DLAC, generating plasmid pRSVC9LAC.
- the culture medium was then replaced by the same medium to which had been added respective 40 ⁇ g samples of the respective plasmid DNAs and respective 40 ⁇ g samples of Lipofectin®. Total volume was 2 ml. Duration of transfection was 5 hours at 37° C. in an atmosphere having 3% CO 2 .
- the cells in PBS medium were then subjected to a cycle of freezing and thawing.
- the cell lysates of each triplicate transfection were then pooled and used for transient expression analysis.
- a series of twofold dilutions (in PBS) of the cell lysates were done and 50 ⁇ l of each dilution were analyzed by a sandwich ELISA for the production of the capsid/ ⁇ -galactosidase fusion protein.
- a rabbit polyclonal anti- ⁇ -galactosidase antiserum (CAPPELTM Research Products) was used for the capture of the fusion protein and a monoclonal anti-B-galactosidase antibody (BOEHRINGER-MANNHEIM) was used as the second antibody.
- Detection was done with an alkaline phosphatase-conjugated goat anti-mouse IgG (Jackson ImmunoResearch Laboratories, Inc.) and Disodium p-Nitrophenyl Phosphate (SIGMA®) as substrate.
- alkaline phosphatase-conjugated goat anti-mouse IgG Jackson ImmunoResearch Laboratories, Inc.
- SIGMA® Disodium p-Nitrophenyl Phosphate
- Plasmids pdTKRSVC1LAC and pdTKRSVC8LAC containing, respectively, the C1LAC and C8LAC fision gene expression cassettes, were constructed for the cotransfection of feline cells with FHV-1 viral DNA (as described below).
- Plasmid pdTKRSVC1LAC was constructed by, first, digesting plasmid pRSVC1LAC (described in Example 7) with BclI and BamHI and a 4.1 kbp BclI-BamHI fragment was isolated therefrom. The 4.1 kbp BclI-BamHI fragment was then inserted in intermediate transfer plasmid pdTK (described in PCTIEP94/02990), which had been previously digested with BaniHI, generating plasmid pdTKRSVC1LAC.
- Plasmid pdTKRSVC8LAC was constructed by, first, digesting plasmid pRSVC8LAC (described in Example 7) with BclI and BaniHI and a 4.1 kbp BclI-BamHI fragment was isolated therefrom. The 4.1 kbp BclI-BamHI fragment was then inserted in intermediate transfer plasmid pdTK, which had been previously digested with BamHI, generating plasmid pdTKRSVC8LAC.
- Two live recombinant carriers were obtained by cotransfection (as described in PCT/EP94/02990, Example 17) of CRFK cells (as described above) with purified FHV-1 DNA and cotransfection plasmid pdTKRSVC1LAC (described in Example 9) or pdTKRSVC8LAC (described in Example 9).
- Recombinant plaques were purified based on the expression of the ⁇ -galactosidase activity (as described in PCT/EP94/02990, Example 17) of the fusion genes.
- Two purified recombinant FHV-1 viruses, named C1 and C8, were obtained from cotransfection with FHV-1 viral DNA of, respectively, plasmid pdTKRSVC1LAC and pdTKRSVC8LAC.
- the two recombinant FHV-1 vectors (having the recombinant DNA molecules of the present invention which include the DNA sequences of the present invention of the FCV 2280 capsid gene with the modified splicing sites) were used to determine if the splicing signals were also effectively inactivated in the context of feline cells infected with recombinant viruses having the fusion genes. Both viruses expressed the fusion proteins as determined by ELISA and Western blot analyses, thereby indicating that splicing signals are also effectively inactivated in the context of feline cells infected with recombinant viruses having the fusion genes.
- This example was designed to evaluate in vivo expression and immunogenicity of the fusion proteins C1 LAC and C8LAC after vaccination of cats with recombinant FHV-1 C1 and C8, respectively.
- SPF Specific-pathogen-free cats of about 10 weeks of age were intranasally vaccinated twice three weeks apart with ca. 10 5.5 TCID 50 per dose of either recombinant C1 (C1 group, 5 cats), obtained as described in Example 10, or recombinant C8 (C8 group, 5 cats), obtained as described in Example 10, or recombinant FHV-1 TKLAC, described in PCT/EP94/02990, (TKLAC group, 5 cats).
- FHV-1 recombinant TKLAC carries the LacZ gene, under the control of the human cytomegalovirus (HCMV) immediate early gene promoter. Inoculation of the recombinant viruses C1, C8 and TKLAC was done by applying 0.5 ml of the viral suspension in each nostril.
- Oronasal secretions were taken from all the specimens of each of the three groups and analyzed by ELISA for the presence of secreted immunoglobulin A (sIgA) specific to calicivirus or ⁇ -galactosidase.
- SIgA immunoglobulin A
- Table 3 summarizes the ELISA analyses of oronasal secretions. The values represent mean optical density ⁇ 1000.
- the oronasal secretions were tested for sIgA specific to ⁇ -galactosidase and for sIgA specific to calicivirus strain F9.
- Day refers to the time after the first vaccination which is day 1. Second vaccination was done on day 21 and challenge on day 42.
- Table 4 summarizes the ELISA analyses of serum IgG. The values represent mean optical density ⁇ 1000.
- the sera were tested for IgG specific to calicivirus strain F9.
- Day refers to the time after the first vaccination which is day 1. Second vaccination was done on day 21 and challenge on day 42.
- TABLE 4 Group Day C1 C8 TKLAC 1 0 0 0 14 93 76 0 21 34 37 0 35 397 510 0 42 325 440 0 63 1290 1416 1531
- Results presented in Table 3 and Table 4 demonstrate that recombinant C1 and C8 replicate in SPF cats and induced both systemic and mucosal antibody responses against FCV. This shows that the C1LAC and C8LAC fusions genes are expressed in feline cells infected in vivo with FHV-1 recombinants C1 and C8 respectively.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Nucleotide sequences obtained from the genome of the capsid gene of FCV strain 2280 wherein the splicing sites have been modified, so as to be deleted or inactivated are provided. The nucleotide sequences include DNA sequences that encode polypeptides, such as the capsid gene of FCV strain 2280, whereby the coding sequences are capable of being transcribed in the nucleus of a eukaryotic organism without the DNA coding sequence being altered by the organism's natural splicing machinery and the amino acid structure of the expressed protein is not altered. The recombinant molecules may be incorporated into FHV-1 vectors that are used to infect cell cultures for use, inter alia, in the development of vaccines and, in particular vaccines for preventing or treating FCV disease. Also provided are methods for obtaining nucleotide sequences coding for polypeptides that are naturally transcribed in the cytoplasm of cells and, in particular, DNA sequences coding for the FCV capsid protein, which sequences are modified so as to permit the transcription thereof in the nucleus of eukaryotic cells without the modified coding sequence being altered by the eukaryotic cells' splicing machinery.
Description
- The present invention generally relates to the feline calicivirus (FCV) disease and, in particular, to nucleotide sequences (nucleic acids) that encode polypeptides and to methods for obtaining and using said nucleotide sequences. The nucleotide sequences may comprise modified or recombinant DNA sequences or molecules. The nucleotide sequences are capable of being transcribed in the cytoplasm of eukaryotic cells without being disadvantageously altered by the splicing machinery naturally found in such cells. The present invention further relates to live recombinant expression vectors comprising said nucleotide sequences or molecules and to cell cultures transformed or infected with such live recombinant expression vectors. The present invention also relates to vaccines comprising such recombinant expression vectors and/or nucleotide sequences or molecules and, in particular, vaccines for preventing or treating feline calicivirus disease.
- It is known that recombinant vectors, such as the feline herpes virus vector (FHV-1), may be used as a live carrier for developing vaccines against feline pathogens, e.g., feline leukemia virus, feline immunodeficiency virus, feline calicivirus, feline parvovirus, feline coronavirus and feline Chlamydia. See, for example, WO 94/0361, WO 91/01332 and Wardley, R. C., et al., J. of Gen. Virology (1992), 73, 1811-1818. However, the use of such recombinant FHV-1 vectors typically has been restricted to expressing feline leukemia (Wardley, R. C., et al., J. of Gen. Virology (1992), 73, 1811-1818) or feline infectious peritonitis disease virus antigens (PCT/EP94/02990 (WO 95/07987)). No successful attempts of using recombinant FHV-1 vectors for expressing antigenic determinants for the feline calicivirus disease has been known. While myriad influencing factors have been postulated, no one factor or set of factors has been identified as being the source of this failure.
- Almost all gene sequences that encode proteins or polypeptides in eukaryotes are characterized as either coding (exon) or non-coding (intron) sequences. Introns are precisely spliced out of the initial gene transcript (pre-mRNA) before it is transported to the cytoplasm of the cell for translation. Sequences immediately bordering splice junctions are typically conserved in eukaryotic genes. Conserved junction sequences located between an exon and an intron are generally referred to as the 5′ splice sites or donor sites. Sequences located at the boundary between an intron and an exon are generally referred to as the 3′ splice sites, or acceptor sites. Further, short conserved sequences, referred to as branch point sequence, are typically located within the intron, usually 10 to 50 nucleotides upstream from an acceptor site. (See The RNA World, eds. R. F. Gesteland, J. F. Atkins, Cold Spring Harbor Laboratory Press (1993)).
- So called consensus sequences typically represent basic sequences of nucleotides that are derived from a large set of observed similar sequences in a specific region of a nucleic acid molecule. (See Stenesh, J., Dictionary of Biochemistry and Molecular Biology, Second Ed., John Wiley & Sons (1989)). Known consensus sequences (DNA sequences) of the splicing signals include:
5′ splice site or donor site: C AAG/GTA G AGT 3′ splice site or acceptor site: (T C)9NCAG/G, wherein N = A or G or T or C Branch point sequence: C TNC TTA GAC - (See, P. Senapathy, et al., Methods in Enzymology, Vol. 183, pp. 252-278 (1993)).
- The calicivirus capsid (C) gene encodes the calicivirus capsid protein, which has been identified as an important antigen for developing vaccines for feline calicivirus disease. Although consensus DNA sequences, which are closely related to the splicing signals (donor, acceptor and branching sites) have been identified in genes coding for other eukaryotic proteins, as well as viruses that replicate in eukaryotes, no consensus DNA sequences for the calicivirus capsid (C) protein gene, including the calicivirus capsid (C) gene of FCV strain 2280, have been identified or isolated.
- In nature, feline calicivirus genes are transcribed in the cytoplasm of feline calicivirus transformed or infected cells. (See, Hagan and Bruner?s Microbiology and Infectious Diseases of Domestic Animals, eds. J F Timoney, J H Gillespie, F W Scott and J E Barlough, 8th edition, Comstock Publishing Ass. Cornell University Press (1988), (2nd Printing 1992)). As such, potential splicing signals, if any, are not accessible to the splicing machinery typically located in the nucleus of such infected cells. Thus, if any splicing signals exist, then they are not able to play a role in the processing of viral RNA.
- On the other hand, transcription of FHV-1 genes occurs in the nucleus of infected cells and it has been observed that some of the transcribed RNAs are spliced. Further, foreign genes inserted in a recombinant FHV-1 virus (vector) are transcribed in the nucleus of the infected cells. As a consequence, the resulting RNAs are accessible to the splicing machinery of the infected cells.
- Bovine respiratory syncytial virus (BRSV) is a viral pathogen whose genes are transcribed in the cytoplasm of infected cells. It has been reported that inactivation of splicing signals in the BRSV glycoprotein G gene, which normally could not be detected in bovine cells infected with a
recombinant bovine herpesvirus 1 vector (BHV-1) containing the G gene, resulted in the expression of the gene in bovine cells infected by a recombinant BHV-1 virus having the mutated gene. See F. A Rijsewijk, R. C. Ruuls, K. Westerink and J. T. Van Oirschot, Department of Bovine Virology, Institute for Animal Science and Health, ID-DLO Lelystad, The Netherlands, at the 20th International Herpesvirus Workshop, Jul. 29-Aug. 3, 1995, University of Groningen, The Netherlands. However, the findings do not indicate, among other things, (1) the identity and position of the mutated splicing sites, (2) whether such splicing sites are present in the FCV C gene, or (3) whether the inactivation of such splicing sites, if present, would permit the complete or partial expression thereof in the nucleus of cells infected therewith. - Accordingly, there remains a need for recombinant DNA sequences, DNA molecules containing such DNA sequences that code for polypeptides or proteins that are naturally transcribed in the cytoplasm of cells and methods for making or using same. In particular, there remains a need for modified DNA sequences coding for the FCV capsid protein that are capable of being transcribed in the nucleus of eukaryotic cells without being altered by the cells' splicing machinery. Moreover, there remains a need for recombinant expression vectors that include such DNA sequences, cell cultures transformed or infected with such recombinant vectors and vaccines including such recombinant vectors and/or recombinant DNA sequences for the prevention and treatment of FCV disease.
- A primary object of the present invention is to provide (1) an isolated or purified recombinant DNA sequence or molecule that is capable of being transcribed by eukaryotic cells without being disadvantageously altered by the splicing machinery of the eukaryotic cells, and (2) methods for making and using the isolated or purified DNA sequence or molecule.
- Another object of the present invention is to provide recombinant or DNA sequences that code for polypeptides (proteins) that may be naturally transcribed in the cytoplasm of cells, which DNA sequences are modified so as to be capable of being transcribed in the nucleus of eukaryotic cells without being altered by the splicing machinery of the cells and without causing amino acid sequence or functional properties of the polypeptides thereof to be disadvantageously altered.
- Still yet another object of the present invention to provide methods for obtaining isolated or purified recombinant DNA sequences that effectively encode the feline calicivirus (FCV) capsid protein.
- A further object of the present invention is to identify or isolate DNA sequences in the feline calicivirus C gene, and in particular the FCV C gene of FCV strain 2280, that are identical or closely related to the consensus splicing sequences, signals, or sites (donor, acceptor and branching sites) and to identify or isolate DNA sequences therein that will result in either retaining, eliminating or inactivating the consensus and/or splicing sequences, signals or sites when such consensus and/or splicing sequences are modified and/or eliminated therefrom.
- A further object of the present invention is to provide recombinant or modified DNA sequences or DNA molecules containing such recombinant or modified DNA sequences that are capable of encoding or expressing the FCV capsid protein without being altered by the splicing machinery of the eukaryotic cells.
- It is a further object of the present invention to provide recombinces that are capable of being introduced into a eukaryotic organism through the use of live recombinant carriers (LRCs) whose transcription occurs in the nucleus of eukaryotic cells.
- Another object of the present invention is to provide a live recombinant FHV-1 expression vector comprising modified or recombinant DNA sequences derived from the FCV gene that codes for the FCV capsid protein, wherein said sequences are capable of being (1) transcribed in the nucleus of eukaryotic cells without being altered by the splicing machinery of eukaryotic organisms and (2) introduced into a eukaryotic organism through the use of live recombinant carriers (LRCs) whose transcription occurs in the nucleus of eukaryotic cells.
- It is a particular object of the present invention to provide DNA sequences or molecules that may be used in conjunction with an FHV-1 vector as a live carrier for the development of vaccines, including vaccines comprising antigenic determinants associated with FCV disease. Another object of the present invention is to provide a vaccine, and in particular a vaccine for the prevention or treatment of feline calicivirus (FCV) disease, which comprises recombinant vectors and/or said recombinant DNA molecules.
- A further object of the present invention, is to provide a culture of host cells that is transformed or infected a recombinant expression vector comprising modified or recombinant DNA sequences, in particular modified or recombinant DNA sequences derived from the FCV gene that codes for the FCV capsid protein, wherein said sequences are capable of being transcribed in the nucleus of eukaryotic cells without being altered by the splicing machinery the host cells.
- Additional objects and advantages of the present invention will be set forth in the following detailed description or may be learned from practicing or using the present invention.
- The objects and advantages may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims. It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not to be viewed as being restrictive of the invention, as claimed.
- The accompanying drawings, which are incorporated in, and constitute a part of the specification, illustrate embodiments of the present invention and, together with the description, serve to explain the principles of the present invention.
- FIG. 1 is the nucleotide sequence of the calicivirus capsid gene of the feline calicivirus strain FCV 2280 (SEQ ID: 23).
- FIG. 2 is nucleotides 1183 to 1584 (SEQ ID NO: 24) of the nucleotide sequence coding for feline calicivirus capsid gene of the feline calicivirus strain FCV 2280 of FIG. 1.
- FIG. 3 represents the restriction map of plasmid pCALI.
- FIG. 4 represents the restriction map of plasmid pRSVCALI.
- FIG. 5 represents the restriction map of plasmid pRSVC1LAC.
- FIG. 6 represents the restriction map of plasmid pRSVC2LAC.
- FIG. 7 represents the restriction map of plasmid pRSVC3LAC.
- FIG. 8 represents the restriction map of plasmid pRSVC4LAC.
- FIG. 9 represents the restriction map of plasmid pRSVC5LAC.
- FIG. 10 represents the restriction map of plasmid pRSVC6LAC.
- FIG. 11 represents the restriction map of plasmid pRSVC7LAC.
- FIG. 12 represents the restriction map of plasmid pRSVC8LAC.
- FIG. 13 represents the restriction map of plasmid pRSVC9LAC.
- FIG. 14 represents the restriction map of plasmid pdTKRSVC1LAC.
- FIG. 15 represents the restriction map of plasmid pdTKRSVC8LAC.
- All patents, patent application s and literatures cited in this description are incorporated herein by reference in their entirety. In the case of inconsistencies, the present disclosure, including definitions, will prevail.
- Throughout this description, a feline calicivirus cell line, designated as FCV 2280, is described. For the purposes of the present invention, and to aid the skilled artisan in practicing the present invention, a cell culture, which is equivalent to FCV 2280 and designated herein as SAH-2280 MS, has been deposited with the American Type Culture Collection depository in Rockville, Md., in accordance with the Budapest Treaty. The deposited culture has been assigned ATCC Registration No. VR-2555. The depository has been instructed to afford permanence of the deposit for at least thirty years or at least five years after the most recent request, whichever period is longer. Should the deposit become non-viable or be inadvertently destroyed, the culture will be replaced (1) for at least thirty years from the date of the original deposit or at least five years from the date of the most recent request for release of a sample or (2) for the life of any patent issued on this application, whichever period is longer. With respect to the availability of the culture, the aforementioned deposit has been made under conditions that assure ready accessibility to the culture by the public when a patent is granted on this patent application, whereby all restrictions to the availability to the public of the deposited culture will be irrevocably removed upon issuance of the patent. Access to the deposit will be made available during the pendency of this patent application to one determined by the Commissioner of Patent and Trademarks to be entitled thereto.
- The present invention is based, in part, on the discovery that the failure of certain DNA sequences coding for polypeptides to be expressed in the nucleus of eukaryotic host cells when introduced therein by a recombinant FHV-1 vector is due to aberrant splicing of certain nucleotide sequences that are identical or similar to consensus nucleotide splicing sites. The aberrant splicing is caused by the natural splicing machinery found in eukaryotic cells. For example, when using calicivirus capsid/LacZ fusion genes inserted in FHV-1 vectors and the like, failure of expression of such genes has been attributed to the presence of splicing signals in such foreign genes that are recognized by feline cells infected by FHV-1 xpression vectors.
- In accordance with the present invention, such aberrant splicing may be reduced and/or completely avoided by deleting, modifying and/or otherwise inactivating certain consensus sequences/splicing sites that may exist in DNA sequences, such as the feline calicivirus C gene, so that such consensus sequences/splicing sites are either not present or not recognized by the splicing machinery found in eukaryotic cells.
- In a preferred embodiment, the present invention comprises recombinant (modified) DNA sequences that permit the transcription thereof in the nucleus of eukaryotic cells without being altered by the cells? splicing machinery. In one aspect, the present invention comprises recombinant DNA sequences of the feline calicivirus C gene, which codes for the FCV capsid protein and which contains splicing sites that have been modified or removed therefrom.
- Preferably, the DNA sequences of the present invention are obtained or derived from feline calicivirus (FCV) strain 2280 in which modifications have been made in the capsid gene thereof. The preferred DNA sequences are substantially identical to that of the naturally occurring capsid gene with the exception that various of the splicing sites therein have been modified (by deletion or alteration/mutation) so that donor and/or acceptor sites are inactivated. The DNA sequences of the present invention are capable of being transcribed in the nucleus of eukaryotic organisms without being altered by the cells' splicing machinery and without functionally altering the amino acid sequence of the FCV capsid protein encoded thereby.
- The preferred DNA sequences from the feline calicivirus C gene that are identical or homologous to the consensus splicing signals or sites (donor, acceptor and branching) are described below. The location and composition of these splicing sites are described below in Tables 1 and 2.
- In another preferred embodiment, the present invention further comprises recombinant DNA sequences of a highly variable region of the FCV gene of FCV strain 2280 that codes for the FCV capsid protein. To identify and provide the sequences of the present invention, portions of the variable region of the C gene of FCV may be modified (by deletion or alteration/mutation) and isolated using known genetic engineering techniques. It is important to note that, in accordance with the present invention, antigenic determinants for FCV disease are located within the variable region of the capsid protein and that, since the nucleotide sequence of this region of the capsid gene is highly variable among feline calicivirus strains, the splicing signals identified herein in strain FCV 2280 can differ in sequence and position (sometimes greatly) from those found in the same region of other strains. Moreover, this region contains B-cell epitope(s) which induce sero-neutralizing antibodies in cats.
- Preferred nucleotide sequences of the present invention and their position in the variable region of the capsid protein of the calicivirus C (capsid) gene of feline calicivirus strain FCV 2280 are listed below in Table 1 of the Examples. The listed sequences are closely related to the known consensus DNA sequences of the splicing signals.
- The portions of the genome of FCV which are modified include portions of the variable region of the capsid gene which are either identical or closely related to the consensus sequences of the splicing signals (sites). To achieve such modification, the entire calicivirus capsid gene was cloned and sequenced, a comparison thereof with the known consensus sequences for splicing signals (donor, acceptor and branching sites) was made and those sequences within this region of the capsid gene which were identical and closely related to the known consensus sequences for splicing sites were identified.
- To aid in understanding and practicing the present invention, the sequence of the cloned FCV 2280 capsid gene is presented in FIG. 1 (SEQ ID NO: 23), while the variable region of the capsid gene is presented in FIG. 2 (SEQ ID NO: 24). The precise location and composition of the splicing sites can be determined by reference to Tables 1 and 2 and FIGS. 1 and 2 below.
- In particular, splicing site D1 comprises nucleotides 1-6 of the variable region of the C gene of FCV strain 2280 (nucleotides 1183-1188 of the C gene of FCV strain 2280). Splicing site D2 comprises nucleotides 8-13 of the variable region of the C gene of FCV strain 2280 (nucleotides 1190-1195 of the C gene of FCV strain 2280).
- Splicing site D3 comprises nucleotides 13-19 of the variable region of the C gene of FCV strain 2280 (nucleotides 1195-1201 of the C gene of FCV strain 2280).
- Splicing site D4 comprises nucleotides 33-37 of the variable region of the C gene of FCV strain 2280 (nucleotides 1215-1219 of the C gene of FCV strain 2280).
- Splicing site D5 comprises nucleotides 113-121 of the variable region of the C gene of FCV strain 2280 (nucleotides 1295-1303 of the C gene of FCV strain 2280).
- Splicing site D6 comprises nucleotides 209-217 of the variable region of the C gene of FCV strain 2280 (nucleotides 1391-1399 of the C gene of FCV strain 2280).
- Splicing site D7 comprises nucleotides 247-251 of the variable region of the C gene of FCV strain 2280 (nucleotides 1429-1433 of the C gene of FCV strain 2280).
- Splicing site D8 comprises nucleotides 296-302 of the variable region of the C gene of FCV strain 2280 (nucleotides 1478-1484 of the C gene of FCV strain 2280).
- Splicing site D9 comprises nucleotides 361-368 of the variable region of the C gene of FCV strain 2280 (nucleotides 1543-1550 of the C gene of FCV strain 2280).
- Splicing site Al comprises nucleotides 58-70 of the variable region of the C gene of FCV strain 2280 (nucleotides 1240-1252 of the C gene of FCV strain 2280).
- Splicing site A2 comprises nucleotides 103-116 of the variable region of the C gene of FCV strain 2280 (nucleotides 1285-1298 of the C gene of FCV strain 2280).
- Splicing site A3 comprises nucleotides 272-285 of the variable region of the C gene of FCV strain 2280 (nucleotides 1454-1467 of the C gene of FCV strain 2280).
- Splicing site A4 comprises nucleotides 341-355 of the variable region of the C gene of FCV strain 2280 (nucleotides 1523-1537 of the C gene of FCV strain 2280).
- The nucleotide (DNA) sequences of the present invention are designated below as C1, C3, C4, C5, C6, C7, C8 and C9. The precise characteristics of the nucleotide sequences are described below in Tables 1 and 2. Preferably, the nucleotide sequences are derived or obtained from the capsid protein gene of strain FCV 2280. Of preference among the nucleotide sequences of the present invention are sequences C1, C5, C6, C7, C8 and C9, of which C5, C7 and C9 are more preferred, C7 and C9 are even more preferred, and C7 is most preferred.
- Sequence C1 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein splicing sites D1, D2, D3, D4 and D9 have been deleted therefrom.
- Sequence C3 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein splicing site D9 has been deleted therefrom.
- Sequence C4 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein splicing sites D1, D2, D3 and D4 have been deleted therefrom.
- Sequence C5 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein splicing site D9 has been deleted therefrom and the splicing sites D4, D5 and A2 have been modified so as to be inactivated.
- Sequence C6 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein splicing sites D4, D5 and A2 have been modified so as to be inactivated.
- Sequence C7 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein splicing site D9 has been deleted therefrom and the splicing sites D2, D3, D4, D5 and A2 have been modified so as to be inactivated.
- Sequence C8 is the nucleotide sequence of the capsid gene of strain FCV 2280 wherein the splicing sites designated herein as D2, D3, D4, D5 and A2 have been modified so as to be inactivated.
- Sequence C9 is the nucleotide sequence of the capsid gene wherein the splicing sites D1, D2, D3, D4 and D9 has been deleted therefrom and the splicing sites D5 and A2 have been modified so as to be inactivated.
- In another preferred embodiment, the present invention comprises DNA molecules that contain recombinant (modified) DNA sequences that are capable of being transcribed in the nucleus of eukaryotic cells without being altered by the cells' splicing machinery. The recombinant DNA molecules disclosed herein are capable of expressing the portions (antigenic determinants) of the FCV capsid protein, which is coded for thereby. In accordance with this aspect of the present invention, the recombinant (modified) DNA molecules may be obtained from FCV strain 2280 and, in particular, may be derived from DNA sequences coding for the (antigenic portions of) FCV capsid protein of FCV strain 2280. In a further embodiment, the recombinant molecules of the present invention may be fused to DNA sequences of the LacZ gene, which code for β-galactosidase. The recombinant DNA molecules of the present invention may also comprise expression cassettes that have the recombinant (modified) portion of the FCV 2280 capsid gene.
- In still another preferred embodiment of the present invention, the modified or recombinant nucleic acid (DNA) sequences may be introduced into a live recombinant carrier and expressed, for example by: (a) transforming host cells (CRFK) with live recombinant carrier; (b) expressing the genome introduced into the expression vector; (c) harvesting the cell culture, and (d) isolating the synthesized capsid protein. Moreover, expression of the fusion proteins by the recombinant DNA molecules may be achieved by any suitable conventional means including, without limitation, use of Crandell-Rees Feline Kidney (CRFK) cells. The CRFK cells may be transfected with plasmids comprising LacZ fusions under the control of the Rous sarcoma retrovirus long terminal repeat promoter (RSVp) (which promoter is known to be able to drive expression of the LacZ gene—in plasmid pRSVLACE—in feline cells) and SV40 early transcript cleavage and polyadenylation sequences. Expression may be validated by immunodetection in extracts of transfected cells by sandwich ELISA using different combinations of antibodies specific to β-galactosidase or to the capsid portion of the fusion protein. Plasmids that may be used in accordance with the present invention include, but are not limited to, pRSVClLAC, pRSVC2LAC, pRSVC3LAC, pRSVC4LAC, pRSVC5LAC, pRSVC6LAC, pRSVC7LAC, pRSVC8LAC and pRSVC9LAC, whose structures and constructions are discussed in the Examples below. In this context, transient expression of CRFK cells transfected with plasmid pRSVLACE may be used as a reference.
- In this regard, it is noted that such fusions may contain either all regions or sub-regions of the variable segment in order to retain or exclude some of the splicing signals. In addition, some of the remaining splicing sites may be mutated to inactivate them and retain the antigenicity (and/or original amino acid sequence) of the original (heterologous or homologous) polypeptide (such as the amino acid sequence of the capsid protein and/or β-galactosidase).
- In still another preferred embodiment, the nucleotide sequences or molecules of the present invention may be introduced in any suitable expression vector with the aim of expression of a polypeptide in susceptible host cells and/or host organisms. In this aspect of the present invention, recombinant expression vectors of the present invention preferably comprise recombinant (modified) DNA sequences that are capable of being transcribed in the nucleus of eukaryotic cells without being altered by the cells' splicing machinery and being introduced into a eukaryotic organism with the use of live recombinant carriers (LRCs). The recombinant vectors may comprise, without limitation, recombinant (modified) DNA sequences that are derived from FCV genes coding for the FCV capsid protein, and preferably derived from FCV strain 2280 coding for the FCV capsid protein. Further, the recombinant expression vectors of the present invention may include, without limitation, live recombinant feline herpes virus-1 (FHV-1) vectors that are useful as live carriers for the development of vaccines for feline calicivirus (FCV) disease.
- In accordance with the present invention, the live recombinant feline herpes virus-1 (FHV-1) vectors may be modified to provide the recombinant nucleotide sequences and/or recombinant DNA molecules of the present invention incorporated therein. Preferably, modifications of FHV-1 vectors of the present invention are introduced in a permissive position, i.e., a position or region that may be used for the incorporation of the modification without disrupting essential functions of the vector, such as those necessary for infection or replication.
- Further, the recombinant FHV-1 vectors of the present invention may include the (heterologous) recombinant DNA molecules of the present invention flanked by appropriate FHV-1 sequences whereby recombination occurs between sequences of the heterologous recombinant DNA molecules and sequences of the FHV vector. Recombinant viral progeny is thereafter produced in cell culture and can be selected for, by example, genotypically or phenotypically, by hybridization, detecting enzyme activity encoded by a gene co-integrated along with the heterologous recombinant DNA molecule or detecting the antigenic (heterologous or homologous) polypeptide expressed by the recombinant FHV immunologically. Recombinant viruses can also be selected positively based on resistance to compounds such as neomycine, gentamycine, or mycophenolic acid. The selected recombinant FHV can be cultured on a large scale in cell culture where after recombinant FHV containing material or (heterologous or homologous) polypeptides expressed by said FHV can be collected therefrom.
- The present invention also comprises cell cultures transformed or infected with the recombinant (FHV-1) vectors described above. Preferred cell cultures of the present invention include, without limitation, Crandell-Rees Feline Kidney (CRFK) cells that have been infected with the recombinant FHV-1 vectors of the present invention. In accordance with the present invention, such recombinant FHV-1 vectors can be grown on cell cultures of feline origin (such as CRFK cells) and harvested by collecting the tissue cell culture fluids and/or cells and the live vaccine prepared therefrom in the form of a suspension or may be lyphophilized.
- In a further preferred embodiment, the present invention comprises vaccines, which contain the recombinant expression vectors and/or said recombinant DNA sequences. The vaccines of the present invention may be used for the prevention and treatment of diseases, such as feline calicivirus (FCV) disease. Preferably, the vaccines of the present invention may comprise the recombinant FHV-1 vectors (having the recombinant DNA molecules of the present invention which include the DNA sequences of the present invention of the FCV 2280 capsid gene with the modified splicing sites), in a pharmaceutically-acceptable carrier. It will be appreciated that the recombinant FHV vector of the present invention may also serve as a monovalent or multivalent vaccine. As used herein, the term “pharmaceutically-acceptable carrier” refers to those liquid or solid compositions which are susceptible of being used as an excipient (vehicle) for introducing the vector into an animal to be vaccinated therewith. Examples of such liquid compositions are water, physiological serum, saline phosphate buffers, solutions containing adjuvants, detergents, stabilizers and substances which facilitate transfection, liposome suspensions, virosome suspensions and emulsions. Such liquid compositions may be administered, inter alia, orally, intranasally, oronasally or parentally (i.e., intradermally, subcutaneously or intramuscularly). Solid compositions include microparticles containing an expression vector of the present invention, which are administered by parental or oral routes.
- It is well within the ability of a person skilled in the art using routine experimentation to determine the thresholds and therapeutic dosages or frequency at which the vaccines should be administered for any given application or administration route. The useful dosage to be administered will vary according to, inter alia, the age and weight of the animal to be inoculated and the mode of administration. A suitable dosage can be, for example, between about 10 3-107 pfu per animal. Vaccination with a live vector vaccine of the present invention is generally followed by replication of an FHV-1 mutant within an inoculated host, in vivo expression of the (heterologous or homologous) polypeptide (such as the FCV capsid protein) along with the FHV polypeptides. The polypeptides (such as the FCV capsid protein) expressed in the inoculated host will then elicit or cause an immune response that will effectively immunize the host against subsequent infection against a specific pathogen (such as the FCV disease).
- The efficacy of the vaccines of the present invention to, in vivo, express the fusion (heterologous or homologous) polypeptides (proteins) in feline cells after vaccination with the recombinant viruses and confer protection against FCV disease upon cats, was tested by vaccinating cats with the recombinant viruses Cl and C8 and measuring the seroconversion of the cats against the fusion proteins.
- As used herein, the term “mutants”, when referring to nucleotides and nucleotide sequences, refers to nucleotides and nucleotides sequences obtained by altering the native or original state (in specific nucleotides) and/or order (in sequences) thereof by means and instrumentalities that are well-known to the skilled artisan. It is to be understood that any suitable mutation may be made to the nucleotides and nucleotide sequences by using routine techniques that are well known so long as the objects and principles of the present invention, as discussed throughout this description, are not offended or compromised.
- The techniques, procedures and methods employed herein, including the recombinant DNA technology referred to, the DNA clonings and sequencing techniques and procedures and the methods referred to, the methods, techniques and procedures for obtaining, identifying and isolating the nucleotides and nucleotide sequences referred to and the methods procedures and techniques for isolating desired DNA fragments, combining DNA fragments with appropriate expression signals in appropriate expression vectors; and introducing expression vectors in an appropriate hosts therefor, are those which are described in Molecular Cloning, Laboratory manual, (Sambrook, Fritsch, Maniatis) 2nd edition (1989) and Molecular Cloning, A Laboratory Manual, (Maniatis, Fritsch and Sambrook) Cold Spring Harbor Laboratory (1982), all of which are well-known to those skilled in the art.
- Cell and tissue culturing techniques and procedures used herein are those which are described by Doyle, et al., in Cell and Tissue Culture: Laboratory Procedures, John Wiley Publishing (1993).
- Dilutions, quantities, etc., which are expressed herein in terms of percentages are, unless otherwise specified, percentages given in terms of percent weight per volume (w/v). As used herein, dilutions, quantities, etc., which are expressed in terms of % (v/v), refer to percentage in terms of volume per volume. As used herein, dilutions, quantities, etc., which are expressed in terms of % (v/w), refer to percentage in terms of volume per weigh. As used herein, dilutions, quantities, etc., which are expressed in terms of % (w/w), refer to percentage in terms of weight per weight.
- Temperatures referred to herein are given in degrees centigrade (° C.).
- Having described the nucleotide (DNA) sequences of the present invention, the recombinant DNA molecules incorporating such sequences therein, the recombinant vectors incorporating such recombinant DNA molecules therein, the cells cultures infected with such recombinant vectors and the vaccines which comprise such recombinant vectors, the following Examples are now presented for the purposes of illustration and are neither meant to be, nor should they be, read as being restrictive or limiting in any way.
- FCV viral strain FCV 2280 MS (which is deposited in the American Type Culture Collection under accession number VR 2555) is grown on Crandell-Reese Feline Kidney cells (CRFK) (deposited in the American Type Cell Culture Collection under accession number CCL94). The cells are grown at 37? C in an atmosphere having 3% of CO 2 and in culture media of: (1) 500 ml of medium 199 with Earle's salts, 2.2 g/l NaHCO3 and L-glutamine(GIBCO); (2) 500 ml of Ham's F12 with L-glutamine (GIBCO); (3) 25 ml of lactalbumin hydrolysate (GIBCO); (4) 25 ml of fetal calf serum (GIBCO); and (5) 5 ml of a fructose solution (conc. of 200 grams of fructose/l). The cells are then infected with approximately 0.01 virus particle per cell at a cell confluence of about 50% to 80%, as visually observed (as used in the Examples herein, 100% confluence is defined as 105 cell/cm of plate) and then incubated for two to three days at 37° C. in an atmosphere having 3% CO2 in culture medium having the same composition as that described above.
- Supernatants are then decanted from about 2 10 8 CRFK cells infected with SAH-2280 MS, obtained as described above in Example 1, when the cytopathic effect is almost complete, as determined by visual observation. The collected supernatant is then clarified by centrifugation at 500 G for 10 minutes and the clarified supernatant is decanted from the resulting pellet. The clarified supernatant is then centrifuged at 25000 RPM (SW 28 BECKMAN rotor) and 4° C. for one hour, and the resulting supernatant is then decanted from the resulting viral particle-containing pellet. The viral particle containing pellet is then resuspended in 10 mM TRIS (tris-(Hydroxymethyl)aminomethane) (pH 7.5) and 1 mM EDTA (ethylenediaminetetraacetate).
- This suspension is then loaded on a cushion of 25% sucrose in 10 mM TRIS (pH 7.5) and 1 mM EDTA and is centrifuged at 25000 RPM (SW 28 rotor) for 2 hours at 4° C, generating a viral pellet. After decanting the supernatant from the resulting pellet, the viral pellet is then resuspended in a mixture of 10 mM TRIS (pH 7.5), 10 mM NaCl, 10 mM EDTA, 0.5% (w/v) SDS (Sodium Dodecyl Sulphate) and 500 μg proteinase K (BOEHRINGER) per ml of the suspension and incubated for 2 hours at 50° C.
- Viral RNA is then purified by successive phenol/chloroform extractions until the aqueous phase is clear. The clear aqueous phase is then subjected to ethanol precipitation. The precipitated FCV genomic viral RNA is then resuspended in ½ ml MilliQ water (MilliQ ZMFQO5001, MILLIPORE).
- Two cDNA fragments, named CALI14 and CALI23, corresponding to the whole capsid gene sequence, is then obtained by reverse transcription and Polymerase Chain Reaction (PCR) amplification from the precipitated FCV genomic viral RNA obtained as described above in Example 2. The CALI14 cDNA fragment (whose sequence is set forth below) is obtained by reverse transcription of the precipitated FCV genomic viral RNA from Example 2, done in a total volume of 25 μl, consisting of: 0.5 μl of the precipitated FCV genomic viral RNA; 10 mM Tris (pH 8.3); 50 mM KCl; 5 mM MgCl 2; 1 mM of dATP; 1 mM of dCTP; 1 mM of dGTP; 1 mM of dTTP; and 4 μM of primer CALI4 (EUROGENTEC), whose sequence is described below. The reaction mixture is then incubated for 5 minutes at 95° C. and then put immediately on ice. Next, 20 units of Moloney Murine Leukemia virus reverse transcriptase (PHARMACIA) and 25 units of RNAse inhibitor (PHARMACIA) are added to the reaction mixture. This mixture is then incubated for 1 hour at 42° C. and finally for 5 minutes at 99° C.
- Amplification of the CALI4 cDNA fragment is done by, first, adjusting the above described 25 μl reaction mixture to a final volume of 100 μl consisting of reversed transcribed FCV genome viral DNA, 10 mM Tris (pH 8.3), 50 mM KCl, 2 mM MgCl 2, 0.25 mM of dNTP and 1 μM of primers CALI1 (EUROGENTEC) and CALI4 (EUROGENTEC), whose sequences are described below. Amplification is then performed using a thermal cycler (PHARMACIA LKB Gene ATAQ controller) with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 60° C. for 1 minute; and (3) 72° C. for 2 minutes. The cycle is repeated 40 times and followed by incubation for 10 minutes at 72° C. The amplified CALI14 cDNA fragment obtained in this fashion is about 0.7 kilo basepairs (kbp).
- The CAL123 cDNA fragment is obtained in the same manner as described above for the CALI14 cDNA fragment with the exceptions that reverse transcription is performed with primer CALI2 at a concentration of 1 μM and amplification is performed with primers CALI2CLON (EUROGENTEC) and CALI3 (EUROGENTEC), at a final concentration of 0.25 μM with the same cycle parameters as specified above: (1) 95° C. for 2 minutes; (2) 60° C. for 30 seconds; and (3) 72° C. for 2 minutes. The amplified CAL123 cDNA fragment is about 1.5 kbp.
- The sequences of the various primers referred to above are as follows:
- CALI1:
- 5′ GATGTGTTCGAAGTTTGAGCATG 3′ (SEQ ID NO: 1)
- CALI2:
- 5′ GTGTTCGTGACAGTATCAATCAAGCCCAAAATTGAATTC 3′ (SEQ ID NO: 2)
- CALI2CLON:
- 5° CGCGGATCCGTCGACCGCATGCGTGTTCGTGACAGTATCAATCAAGCCCAAAATTGAATTC 3′ (SEQ ID NO: 3)
- CALI3:
- 5′ GGGAAAAGAGTTGACTCTGAGTGGGAGGC 3′ (SEQ ID NO: 4)
- CALI4:
- 5′ CACCAGAGCCAGAAATAGAGAACCTAAC 3′ (SEQ ID NO: 5)
- Plasmid pCALI, having the whole capsid gene sequence, is then constructed from the CALI14 and CAL123 cDNA fragments, as follows. First, the CALI14 cDNA fragment is treated with T4 DNA polymerase (PHARMACIA). Next, the CALI14 cDNA fragment is cloned in plasmid pBSLK1 (described in European Patent Application No. 517,292) which has been previously digested with SmaI, resulting in plasmid pCALI14. The CALI23 cDNA fragment is then double digested with SphI and BsmI and cloned into plasmid pCALI14, which has been previously subjected to a double digestion with SphI and BsmI, resulting in plasmid pCALI.
- The complete nucleotide sequence of the capsid gene is determined using double-stranded plasmid pCALI as template and primers (EUROGENTEC) made either to the vectors just outside the insert to be sequenced or to previously obtained sequences inside the insert. Sequencing is performed in a chain termination reaction using T7 polymerase (PHARMACIA) and S 35dATP (AMERSHAM). The sequence obtained is set forth in FIG. 1 (SEQ ID NO: 23).
- The variable region of the capsid gene is then identified by comparison with known published capsid gene sequences of feline calicivirus strains (Virus Research 33 (1994) p. 39-53 and J. Of Gen. Virology 74 (1993) pp. 2519-2524). From this comparison, it is determined that the variable region-of the capsid gene of feline calicivirus strain FCV 2280 is found from nucleotide 1183 to 1584, inclusive, as noted in FIG. 1 (SEQ ID NO: 23). This portion of the capsid gene is shown in FIG. 2 (SEQ ID NO: 24).
- Those portions of the variable region of the capsid gene (SEQ ID NO: 24) that match the consensus splicing sequences noted above are then identified by comparison with sequences of known published consensus splicing sites which are set forth above (See, P. Senapathy, et al., Methods in Enzymology, Vol. 183, pps. 252-278 (1993)). From this comparison, consensus splicing sites that are present in the variable region of the capsid gene of feline calicivirus strain FCV 2280 are identified. These identified consensus sequences are set forth below in Table 1, wherein bold characters represent nucleotides which match with the consensus splicing sequences; and further wherein position refers to the nucleotide sequence of FIG. 2 (SEQ ID NO: 24).
TABLE 1 Donor Sites Acceptor Sites Label, Position Sequence Label, Position Sequence D1, 1-6 /GTTAGT A1, 58-70 CCCGGTATTCCAG/ (SEQ ID NO: 6) D2, 8-13 AAA/GTG A2, 103-116 CTTACCCCTGCAG/G (SEQ ID NO: 7) D3, 13-19 G/GTGGGT A3, 272-285 TTTTATCACCACAG/ (SEQ ID NO: 8) D4, 33-37 AG/GTG A4, 341-355 TTGTTGTGTACCAG/G (SEQ ID NO: 9) D5, 113-121 CAG/GTAATT D6, 209-217 AAA/GTATGT D7, 247-251 G/GTGA D8, 296-302 AAG/GTAA D9, 361-368 CAC/GTGGG - An intermediate plasmid pRSVCALI is then constructed having an FCV-capsid gene expression cassette The intermediate expression plasmid pRSVCALI contains the Rous sarcoma retrovirus (RSV) long terminal repeat promoter and the SV40 late transcript cleavage and polyadenylation signals.
- PRSVCALI is constructed by the insertion of the capsid gene cDNA, obtained from pCALI, as described in Example 3, in the intermediate expression plasmid pRSVpolyAL (the structure and construction of which is described in PCT/EP94/02990).
- Insertion of the capsid gene cDNA from pCALI in the intermediate plasmid pRSVpolyAL is performed by, first, obtaining uracilated single-stranded pCALI DNA and then subjecting this uracilated single-stranded pCALI DNA to site-directed mutagenesis following the supplier recommendations (BioRad Muta-Gene Phagemid In Vitro Mutagenesis Kit), generating pCALIMUT. Mutagenesis is performed using the four synthetic primers (EUROGENTEC), as follows:
- CALIMUT1:
- 5′GGGCGAATTTCGAGCTCGGTACCAGATCTCTCGAAGTTCCAACATGTGCTC AA CCTGCGC 3′ (SEQ ID NO: 10)
- CALIMUT2:
- 5′ CTATGGCTGGGACCCCCACTTTAG 3′ (SEQ ID NO: 11)
- CALIMUT3:
- 5′ GTGGGACTGTGACCAGTCTCCACTAC 3′ (SEQ ID NO: 12)
- CALIMUT4:
- 5′ CTGTCACGAACACGGATCCAAGCTTTTGTTCCC 3′ (SEQ ID NO: 13)
- Next, pCALIMUT is subjected to a double digestion by BglII and BamHI and the 2.1 kbp fragment is isolated therefrom. Similarly, the plasmid pRSVpolyAL is digested with BglII. The 2.1 kbp BglII-BamHI fragment from pCALIMUT is then inserted into the BglII site of the pRSVpolyAL, generating plasmid pRSVCALI.
- A cotransfection plasmid, pdTKRSVCLAC is then constructed containing both an FCV capsid gene and a LacZ expression cassette. pdTKRSVCLAC is constructed for use in the cotransfection of feline cells with FHV-1 viral DNA.
- First, plasmid pHCMVLACE (whose structure and construction are described in PCT/EP94/02990) is subjected to a double digestion with BclI and BamHI and the 3.8 kbp LacZ expression cassette isolated therefrom.
- The plasmid pRSVCALI, obtained as described above in Example 4, is digested with BamHI.
- The LacZ expression cassette, contained on a 3.8 kbp BclI-BamHI fragment of pHCMVLACE, is then inserted into the BamHI site of pRSVCALI, generating the plasmid pRSVCLAC.
- The plasmid pRSVCLAC is then subjected to a double digestion with BclI and BamHI and the 6.6 kbp BclI-BamHI fragment is isolated therefrom.
- Plasmid pdTK (whose structure and construction are described in PCT/EP94/02990) is then subjected to a double digestion with BamHI.
- The 6.6 kbp BclI-BamHI fragment is then cloned into the BamHI site of intermediate transfer plasmid pdTK, thereby generating the cotransfection plasmid pdTKRSVCLAC.
- A live recombinant FHV-1 carrier (containing the capsid and the LacZ gene) is then obtained by cotransfection (using the procedure described in PCT/EP94/02990) of CRFK cells with purified FHV-1 DNA (as described in PCT/EP94/02990) using the cotransfection plasmid pdTKRSVCLAC, which is obtained as described in Example 5, giving a mixture of wild-type and recombinant FHV-1 viruses.
- To achieve the production of the Live Recombinant Carrier (LRC), first a recombinant plaque is purified based on the expression of the LacZ gene (using the procedure as described in PCT/EP94/02990).
- Next, expression of the capsid gene is evaluated by a sandwich ELISA on crude extracts of CRFK cells infected with the purified recombinant. CRFK cells at 80% confluence (visually observed) are infected with the recombinant FHV-1 at a multiplicity of infection of 5 to 10.
- After 24 hours (when the cytopathic effect is almost complete), cells and growth medium are subjected to one cycle of freezing and thawing. Fifty microliters of these crude extracts are analyzed in ELISA using, as the first antibody, the monoclonal antibody FCV 2-1A or FCV 2-2A for capture of the antigen and, as the second antibody, a polyclonal anti-serum of a cat immunized with calicivirus strain FCV 2280. (Monoclonal antibodies FCV 2-1A and FCV 2-2A are directed against the variable region of the calicivirus capsid protein and are obtainable from CUSTOM MONOCLONALS, WA 98020, USA). Detection was performed with an alkaline phosphatase-conjugated goat anti-cat IgG (Jackson ImmunoResearch Laboratories, Inc.).
- No expression of the capsid protein is detected.
- A. Construction of Plasmid pRSVC1LAC
- First, using plasmid pRSVCALI (described in Example 4) as template and synthetic primers (EUROGENTEC) F1A and FIB (whose sequences are described below) an approximately 0.37 kbp DNA fragment is amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle is repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The sequences of F1A and F1B are as follows:
- F1A:
- 5′ TTGGGATAGGTGTTCACCATGGCAACTGACTACATTG 3′ (SEQ ID NO: 14)
- F1B:
- 5′ CATTGCCCACGTGGACGTCATTCCAGCTAGCATCCTGGTACA 3′ (SEQ ID NO: 15)
- This 0.37 kbp DNA fragment is then subjected to a double digestion with NcoI and AatII. A resulting 0.34 kbp fragment is then isolated therefrom and cloned into the 5.7 kbp fragment of plasmid pRSVLACE (whose structure and construction are described in PCT/EP94/02990), which is obtained by subjecting pRSVLACE to a double digestion with NcoI and AatII, generating plasmid pRSVC1DLAC.
- Then, using plasmid pRSVLACE as a template and synthetic primers (EUROGENTEC) FLIA and FLIB described below, an approximately 0.86 kbp DNA fragment is amplified by PCR using standard techniques and with the following cycle parameters : (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle is repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The sequences of FLAC1 and FLAC2 are as follows:
- FLAC1:
- 5′ CACCAGATCTCACCATGGCTAGCGCCGTCGTTTTACAACG 3′ (SEQ ID NO: 16)
- FLAC2:
- 5′ CCACCACGCTCATCGATAATTTCACCGCCGAAAGGCGCG 3′ (SEQ ID NO: 17)
- The approximately 0.86 kbp DNA fragment is then subjected to a double digestion with NheI and AatII and a resulting 0.62 kbp NheI-AatII fragment is isolated therefrom. Plasmid pRSVC1DLAC is then subjected to a double digestion with NheI and AatII and the 6.0 kbp fragment isolated therefrom. The 0.62 kbp NheI-AatII fragment is then cloned into the 6.0 kbp fragment of plasmid pRSVC1DLAC, thereby generating plasmid pRSVClLAC.
- B. Construction of Plasmid pRSVC2LAC
- First, using plasmid pRSVCALI (described in Example 4) as a template and synthetic primers (EUROGENTEC) F2A and F2B (whose sequences are described below) an approximately 0.46 kbp DNA fragment is amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle is repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The sequences of F2A and F2B are as follows:
- F2A:
- 5′ CCAATAACTGTTACACACCATGGTTAGTGAAAGTGG 3′ (SEQ ID NO: 18)
- F2B:
- 5′ GTGTAACCAAGAAGGACGTCATTCCAGCTTGCAAGGGTGACATCGG 3′ (SEQ ID NO: 19)
- This approximately 0.46 kbp DNA fragment is then subjected to a double digestion with NcoI and AatII and a resulting 0.43 kbp NcoI-AatII fragment is isolated therefrom. Plasmid pRSVLACE, which is described in PCT/EP94/02990, is then subjected to a double digestion with NcoI and AatII and a resulting 5.7 kbp NcoI-AatII fragment is isolated therefrom. The 0.43 kbp NcoI-AatII fragment is then cloned into the 5.7 kbp NcoI-AatII fragment, generating plasmid pRSVC2DLAC.
- Then, a DNA fragment of approximately 0.86 kbp is amplified by PCR using plasmid pRSVLACE as a template and synthetic primers (EUROGENTEC) FLIA and FLIB described above. The amplification is performed with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle is repeated 30 times and followed by incubation for 10 minutes at 720 C.
- The approximately 0.86 kbp DNA fragment is then subjected to a double digestion with NheI and AatII and a resulting 0.62 kbp NheI-AatII fragment is isolated therefrom. Plasmid pRSVC2DLAC is also subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom. The 0.62 kbp NheI-AatII fragment is then cloned into the 6.1 kbp fragment of plasmid pRSVC2DLAC, thereby generating plasmid pRSVC2LAC.
- C. Construction of Plasmid pRSVC3LAC
- First, using plasmid pRSVCALI (described in Example 4) as a template and synthetic primers (EUROGENTEC) F2A and F1B described above, an approximately 0.41 kbp DNA fragment is amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle is repeated 30 times and followed by incubation for 10 minutes at 72° C.
- This approximately 0.41 kbp DNA fragment is then subjected to double digestion with NcoI and AatII and a resulting 0.38 kbp NcoI-AatII fragment is isolated therefrom. This 0.38 kbp NcoI-AatII fragment is then cloned into the 5.7 kbp NcoI AatII fragment of plasmid pRSVLACE (described in PCT/EP94/02990), which is obtained by subjecting pRSVLACE to a double digestion with NcoI and AatII, thereby generating plasmid pRSVC3DLAC.
- Then, using plasmid pRSVLACE as template and synthetic primers (EUROGENTEC) FL1A and FL1B described above, a DNA fragment of approximately 0.86 kbp is amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle is repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The approximately 0.86 kbp DNA fragment is then subjected to a double digestion with NheI and AatII and a resulting 0.62 kbp NheI-AatII fragment is isolated therefrom. Plasmid pRSVC3DLAC, was then subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom. The 0.62 kbp NheI-Aatll fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC3DLAC, generating plasmid pRSVC3LAC.
- D. Construction of Plasmid pRSVC4LAC
- First, using plasmid pRSVCALI (described in Example 4) as template and synthetic primers (EUROGENTEC) F1A and F2B described above, an approximately 0.45 kbp DNA fragment was amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle was repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The approximately 0.45 kbp DNA fragment was then subjected to a double digestion with NcoI and AatII and a resulting 0.42 kbp NcoI-AatII fragment was isolated therefrom. This 0.42 kbp NcoI-AatII fragment was then cloned into the 5.7 kbp fragment of plasmid pRSVLACE (described in PCT/EP94/02990) which had been obtained by previously subjecting pRSVLACE to a double digestion with NcoI and AatII, generating plasmid pRSVC4DLAC.
- Then, using plasmid pRSVLACE as template and synthetic primers (EUROGENTEC) FL1A and FL1B described above a DNA fragment of approximately 0.86 kbp was amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle was repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The approximately 0.86 kbp DNA fragment was then subjected to a double digestion with NheI and AatII and a resulting 0.62 kbp NheI-AatII fragment was isolated therefrom. Plasmid pRSVC4DLAC, was then subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom. The 0.62 kbp NheI-AatII fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC4DLAC, generating plasmid pRSVC4LAC.
- E. Construction of Plasmid pRSVC5LAC
- First, uracilated single-stranded DNA from plasmid pRSVCALI, described above in Example 4, was subjected to site-directed mutagenesis following the supplier recommendations (BioRad Muta-Gene Phagemid In Vitro Mutagenesis Kit). Mutagenesis was done using the two synthetic primers (EUROGENTEC) described below:
- MUTVAR1:
- 5′ CAATGTAGTCAGTTGCTACGCCGATCCCAAGCTTTGACCCTCCGCTCTCACT AA CTGTAACAG 3′ (SEQ ID NO: 20)
- MUTVAR2:
- 5′ GCTGGTTGTAATTGCATAGTTGCCCGCCGGTGTTAGCTTTTCAGGAATTG 3′ (SEQ ID NO: 21)
- The resulting plasmid is called pRSVCALIMUT.
- Using plasmid pRSVCALIMUT as template and synthetic primers (EUROGENTEC) F2A and F1B described above, a DNA fragment of about 0.41 kbp was amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle was repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The 0.41 kbp DNA fragment was then subjected to a double digestion with NcoI and AatII and the resulting 0.38 kbp fragment cloned into a 5.7 kbp fragment of plasmid pRSVLACE (described in PCT/EP94/02990) which had been obtained by previously subjecting pRSVLACE to a double digestion with NcoI and AatII. The resulting plasmid was pRSVC5DLAC.
- Then, using plasmid pRSVLACE as template and synthetic primers (EUROGENTEC) FL1A and FL1B described above, a DNA fragment of about 0.86 kbp was amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle was repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The 0.86 kbp DNA fragment was then subjected to a double digestion with NheI and AatII and the resulting 0.62 kbp fragment isolated therefrom. Plasmid pRSVC5DLAC, was subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom. The 0.62 kbp NheI-AatII fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC5DLAC, generating plasmid pRSVC5LAC.
- F. Construction of Plasmid pRSVC6LAC
- First, using plasmid pRSVCALIMUT as template and synthetic primers (EUROGENTEC) F2A and F2B described above, a DNA fragment of about 0.46 kbp was amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle was repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The 0.46 kbp DNA fragment was subjected to a double digestion with NcoI and AatII and the resulting 0.43 kbp fragment obtained therefrom was cloned into the 5.7 kbp fragment of plasmid pRSVLACE (described in PCT/EP94/02990) which had been previously obtained by subjecting pRSVLACE to a double digestion with NcoI and AatII. The resulting plasmid is pRSVC6DLAC.
- Then, using plasmid pRSVLACE as template and synthetic primers (EUROGENTEC) FL1A and FL1B described above, a DNA fragment of about 0.86 kbp was amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle was repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The 0.86 kbp DNA fragment was then subjected to a double digestion with NheI and AatII and the resulting 0.62 kbp fragment isolated therefrom. Plasmid pRSVC6DLAC, was subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom. The 0.62 kbp NheI-AatII fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC6DLAC, generating plasrnid pRSVC6LAC.
- G. Construction of Plasmid pRSVC7LAC
- First, using plasmid pRSVCALIMUT as template and synthetic primers (EUROGENTEC) F1B described above and F7 described below, a DNA fragment of about 0.41 kbp was amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle was repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The sequence of F7 is the following:
- F7:
- 5′ CCAATAACTGTTACACACCATGGTTAGTGAGAGCGGAGGGTCAAAGCTTGGG 3′ (SEQ ID NO: 22)
- The 0.41 kbp DNA fragment was then subjected to a double digestion with NcoI and AatII and the resulting 0.38 kbp fragment cloned into the 5.7 kbp fragment of plasmid pRSVLACE (described in PCT/EP94/02990) which had been obtained by previously subjecting pRSVLACE to a double digestion with NcoI and AatII. The resulting plasmid was pRSVC7DLAC.
- Then, using plasmid pRSVLACE as template and synthetic primers (EUROGENTEC) FL1A and FL1B described above, a DNA fragment of about 0.86 kbp was amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle was repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The 0.86 kbp DNA fragment was then subjected to a double digestion with NheI and AatII and the resulting 0.62 kbp fragment isolated therefrom. Plasmid pRSVC7DLAC, was subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom. The 0.62 kbp NheI-AatII fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC7DLAC, generating plasmid pRSVC7LAC.
- H. Construction of Plasmid pRSVC8LAC
- Using plasmid pRSVCALIMUT as template and synthetic primers (EUROGENTEC) F7 and F2B described above, a DNA fragment of about 0.46 kbp was amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle was repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The 0.46 kbp DNA fragment was subjected to a double digestion with NcoI and AatII and the resulting 0.43 kbp fragment cloned into the 5.7 kbp fragment of plasmid pRSVLACE (described in PCT/EP94/02990) which had previously been obtained by subjecting pRSVLACE to a double digestion with NcoI and AatII. The resulting plasmid was pRSVC8DLAC.
- Then, using plasmid pRSVLACE as template and synthetic primers (EUROGENTEC) FL1A and FL1B described above, a DNA fragment of about 0.86 kbp was amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle was repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The 0.86 kbp DNA fragment was then subjected to a double digestion with NheI and AatII and the resulting 0.62 kbp fragment isolated therefrom. Plasmid pRSVC8DLAC, was also subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom. The 0.62 kbp NheI-AatII fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC8DLAC, generating plasmid pRSVC8LAC.
- I. Construction of Plasmid pRSVC9LAC:
- First, using plasmid pRSVCALIMUT as template and synthetic primers (EUROGENTEC) F1A and F1B described above, a DNA fragment of about 0.37 kbp was amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle was repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The 0.37 kbp DNA fragment was then subjected to a double digestion with NcoI and AatII and the resulting 0.34 kbp fragment cloned into the 5.7 kbp fragment of plasmid pRSVLACE (described in PCT/EP94/02990) which had been obtained by previously subjecting pRSVLACE to a double digestion with NcoI and AatlI. The resulting plasmid was pSRVC9DLAC.
- Then, using plasmid pRSVLACE as template and synthetic primers (EUROGENTEC) FL1A and FL1B described above, a DNA fragment of about 0.86 kbp was amplified by PCR using standard techniques and with the following cycle parameters: (1) 95° C. for 2 minutes; (2) 55° C. for 1 minute; (3) 72° C. for 2 minutes. The cycle was repeated 30 times and followed by incubation for 10 minutes at 72° C.
- The 0.86 kbp DNA fragment was then subjected to a double digestion with NheI and AatII and the resulting 0.62 kbp fragment isolated therefrom. Plasmid pRSVC9DLAC, was also subjected to a double digestion with NheI and AatII and the 6.1 kbp fragment isolated therefrom. The 0.62 kbp NheI-AatII fragment was then cloned into the 6.1 kbp fragment of plasmid pRSVC9DLAC, generating plasmid pRSVC9LAC.
- Transient expression of the LacZ gene and the feline calicivirus capsid/LacZ fusion genes was evaluated in CRFK cells transfected, respectively, with plasmid pRSVLACE (described in PCT/EP94/02990) or each of the final plasmids described in Example 7 (plasmids pRSVClLAC, pRSVC2LAC, pRSVC3LAC, pRSVC4LAC, pRSVC5LAC, pRSVC6LAC, pRSVC7LAC, pRSVC8LAC and pRSVC9LAC).
- Each of the ten transfections were performed with Lipofectin? (GIBCO BRL) following the supplier recommendations. CRFK cells were transfected in respective multidish 6 well plates (NUNCLON®, NUNC A/S, Denmark). Each well was seeded with 7 10 5 cells in the medium described above in Example 1 from which the serum had been omitted. The plates were then incubated for 30 to 60 minutes at 37° C. in an atmosphere having 3% CO2, until cells were attached to the plates (as visually observed).
- The culture medium was then replaced by the same medium to which had been added respective 40 μg samples of the respective plasmid DNAs and respective 40 μg samples of Lipofectin®. Total volume was 2 ml. Duration of transfection was 5 hours at 37° C. in an atmosphere having 3% CO 2.
- After transfection, 2 ml of growth medium with serum was added to each well and the plates were then incubated for 24 hours at 37° C. in an atmosphere having 3% CO 2. Each transfection was done in triplicate. Then, the medium was removed and 500 μl of phosphate buffer (PBS, Dulbecco's phosphate buffer saline, without calcium and magnesium; GIBCO BRL) was added to the cells of each well.
- The cells in PBS medium were then subjected to a cycle of freezing and thawing. The cell lysates of each triplicate transfection were then pooled and used for transient expression analysis.
- A series of twofold dilutions (in PBS) of the cell lysates were done and 50 μl of each dilution were analyzed by a sandwich ELISA for the production of the capsid/β-galactosidase fusion protein. A rabbit polyclonal anti-β-galactosidase antiserum (CAPPEL™ Research Products) was used for the capture of the fusion protein and a monoclonal anti-B-galactosidase antibody (BOEHRINGER-MANNHEIM) was used as the second antibody. Detection was done with an alkaline phosphatase-conjugated goat anti-mouse IgG (Jackson ImmunoResearch Laboratories, Inc.) and Disodium p-Nitrophenyl Phosphate (SIGMA®) as substrate.
- Development of the reaction was followed spectrophotometrically at 405 nm (TITERTEK) for a period of 30 to 60 minutes.
- Table 2 summarizes the level of expression and the characteristics of the different fusion genes with regard to the capsid portion sequence fused to the LacZ gene and mutations introduced to inactivate splicing signals, wherein: CnLAC (n=1, 9) designates transfection done with plasmid pRSVCnLAC (n=1, 9); LacZ, designates transfection done with plasmid pRSVLACE; Position refers to the sequence in FIG. 2 (SEQ ID NO: 24); Expression has been measured by an ELISA specific to β-galactosidase and is indicated as percentage of the transfection giving the highest optical density (C7LAC fusion=100%); and Position refers to the sequence in FIG. 2 (SEQ ID NO: 24).
TABLE 2 Characteristics of the Capsid/LacZ Fusion Genes Splicing Sites Mutated Splicing Label Position Excluded Sites Expression (%) C1LAC 40-360 D1?D4, D9 none 64 C2LAC 1-402 none none 5 C3LAC 1-360 D9 none 4 C4LAC 40-402 D1?D4 none 42 C5LAC 1-360 D9 D4, D5, A2 77 C6LAC 1-402 none D4, D5, A2 70 C7LAC 1-360 D9 D2, D3, D4, D5, A2 100 C8LAC 1-402 none D2, D3, D4, D5, A2 70 C9LAC 40-360 D1?D4, D9 D5, A2 88 LacZ — — — 70 - Similar results were obtained when detection was performed in a sandwich ELISA using the rabbit polyclonal anti-B-galactosidase antiserum (CAPPEL™ Research Products) for capture of the fusion protein and as second antibody, monoclonal antibody FCV 2-1 A or FCV 2-2A, in the same manner as described above in Example 6.
- From this data, it is apparent that expression of the fusion genes is negatively affected by the presence of splicing signals located in the sequence coding for the capsid part of the fusion. Removal or specific mutagenesis of some of these signals can lead to a 25-fold increase in expression of the fusion protein (fusion C7LAC in comparison to fusion C3LAC). Inactivation of signals contained within the 120 first nucleotides (D1→D5) results in the highest increase of expression among the different combinations tested. Nevertheless, it is expected that inactivation of the remaining sites can increase expression to an even higher level.
- Plasmids pdTKRSVC1LAC and pdTKRSVC8LAC containing, respectively, the C1LAC and C8LAC fision gene expression cassettes, were constructed for the cotransfection of feline cells with FHV-1 viral DNA (as described below).
- Plasmid pdTKRSVC1LAC was constructed by, first, digesting plasmid pRSVC1LAC (described in Example 7) with BclI and BamHI and a 4.1 kbp BclI-BamHI fragment was isolated therefrom. The 4.1 kbp BclI-BamHI fragment was then inserted in intermediate transfer plasmid pdTK (described in PCTIEP94/02990), which had been previously digested with BaniHI, generating plasmid pdTKRSVC1LAC.
- Plasmid pdTKRSVC8LAC was constructed by, first, digesting plasmid pRSVC8LAC (described in Example 7) with BclI and BaniHI and a 4.1 kbp BclI-BamHI fragment was isolated therefrom. The 4.1 kbp BclI-BamHI fragment was then inserted in intermediate transfer plasmid pdTK, which had been previously digested with BamHI, generating plasmid pdTKRSVC8LAC.
- Two live recombinant carriers were obtained by cotransfection (as described in PCT/EP94/02990, Example 17) of CRFK cells (as described above) with purified FHV-1 DNA and cotransfection plasmid pdTKRSVC1LAC (described in Example 9) or pdTKRSVC8LAC (described in Example 9).
- Recombinant plaques were purified based on the expression of the β-galactosidase activity (as described in PCT/EP94/02990, Example 17) of the fusion genes. Two purified recombinant FHV-1 viruses, named C1 and C8, were obtained from cotransfection with FHV-1 viral DNA of, respectively, plasmid pdTKRSVC1LAC and pdTKRSVC8LAC.
- Expression of the fusion genes was confirmed, as described in Example 6, by a sandwich ELISA on crude extracts of CRFK cells infected with each of the purified recombinants.
- Large stocks of recombinant viruses C1 and C8 were then produced by infection of CRFK cells at 80% confluence (visually observed) and a multiplicity of infection of 0.01. After 48 to 72 hours, when cytopathic effect was almost complete, the cell suspension was clarified by centrifugation at 500 g for 10 minutes. The supernatant, containing the recombinant virus, was collected and stored at -80° C. These stocks were used for further vaccination experiments.
- The two recombinant FHV-1 vectors (having the recombinant DNA molecules of the present invention which include the DNA sequences of the present invention of the FCV 2280 capsid gene with the modified splicing sites) were used to determine if the splicing signals were also effectively inactivated in the context of feline cells infected with recombinant viruses having the fusion genes. Both viruses expressed the fusion proteins as determined by ELISA and Western blot analyses, thereby indicating that splicing signals are also effectively inactivated in the context of feline cells infected with recombinant viruses having the fusion genes.
- This example was designed to evaluate in vivo expression and immunogenicity of the fusion proteins C1 LAC and C8LAC after vaccination of cats with recombinant FHV-1 C1 and C8, respectively.
- Specific-pathogen-free (SPF) cats of about 10 weeks of age were intranasally vaccinated twice three weeks apart with ca. 10 5.5 TCID50 per dose of either recombinant C1 (C1 group, 5 cats), obtained as described in Example 10, or recombinant C8 (C8 group, 5 cats), obtained as described in Example 10, or recombinant FHV-1 TKLAC, described in PCT/EP94/02990, (TKLAC group, 5 cats). FHV-1 recombinant TKLAC carries the LacZ gene, under the control of the human cytomegalovirus (HCMV) immediate early gene promoter. Inoculation of the recombinant viruses C1, C8 and TKLAC was done by applying 0.5 ml of the viral suspension in each nostril.
- All the specimens of each of the three groups were then challenged oronasally, 3 weeks after the second vaccination. These challenges were done by inoculation with ca. 10 6 TCID50 of the virulent calicivirus strain F9 (isolated and described by (1)) by giving 0.5 ml of the viral suspension orally and by applying 0.25 ml of the viral suspension in each nostril.
- Oronasal secretions were taken from all the specimens of each of the three groups and analyzed by ELISA for the presence of secreted immunoglobulin A (sIgA) specific to calicivirus or β-galactosidase.
- Blood samples were also taken and analyzed for sero-neutralizing titers against calicivirus strain F9 and FCV 2280 as well as for the presence of immunoglobulin G (IgG) specific to strain F9.
- Table 3 summarizes the ELISA analyses of oronasal secretions. The values represent mean optical density×1000. The oronasal secretions were tested for sIgA specific to β-galactosidase and for sIgA specific to calicivirus strain F9. Day refers to the time after the first vaccination which is
day 1. Second vaccination was done on day 21 and challenge on day 42.TABLE 3 Anti-FCV Anti-β-galactosidase Group Group Day C1 C8 TKLAC C1 C8 TKLAC 2 0 0 0 108 109 113 7 108 110 0 462 287 442 14 163 142 0 536 404 486 22 275 284 0 417 312 428 28 235 234 0 511 392 511 35 165 147 0 222 174 249 42 113 134 0 121 107 131 45 89 73 0 114 115 114 49 591 628 44 103 102 107 52 312 415 144 105 118 111 56 319 241 303 99 110 105 59 66 100 336 105 108 103 63 121 91 311 104 105 99 - Table 4 summarizes the ELISA analyses of serum IgG. The values represent mean optical density×1000. The sera were tested for IgG specific to calicivirus strain F9. Day refers to the time after the first vaccination which is
day 1. Second vaccination was done on day 21 and challenge on day 42.TABLE 4 Group Day C1 C8 TKLAC 1 0 0 0 14 93 76 0 21 34 37 0 35 397 510 0 42 325 440 0 63 1290 1416 1531 - Results presented in Table 3 and Table 4 demonstrate that recombinant C1 and C8 replicate in SPF cats and induced both systemic and mucosal antibody responses against FCV. This shows that the C1LAC and C8LAC fusions genes are expressed in feline cells infected in vivo with FHV-1 recombinants C1 and C8 respectively.
- Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, many equivalents to the specific preferred embodiments that are described above. Such equivalents are intended to be encompassed in the scope of the following claims.
-
1 24 23 base pairs nucleic acid single linear nucleic acid 1 GATGTGTTCG AAGTTTGAGC ATG 23 39 base pairs nucleic acid single linear nucleic acid 2 GTGTTCGTGA CAGTATCAAT CAAGCCCAAA ATTGAATTC 39 61 base pairs nucleic acid single linear nucleic acid 3 CGCGGATCCG TCGACCGCAT GCGTGTTCGT GACAGTATCA ATCAAGCCCA AAATTGAATT 60 C 61 29 base pairs nucleic acid single linear nucleic acid 4 GGGAAAAGAG TTGACTCTGA GTGGGAGGC 29 28 base pairs nucleic acid single linear nucleic acid 5 CACCAGAGCC AGAAATAGAG AACCTAAC 28 13 base pairs nucleic acid single linear nucleic acid 6 CCCGGTATTC CAG 13 14 base pairs nucleic acid single linear nucleic acid 7 CTTACCCCTG CAGG 14 14 base pairs nucleic acid single linear nucleic acid 8 TTTTATCACC ACAG 14 15 base pairs nucleic acid single linear nucleic acid 9 TTGTTGTGTA CCAGG 15 60 base pairs nucleic acid single linear nucleic acid 10 GGGCGAATTT CGAGCTCGGT ACCAGATCTC TCGAAGTTCC AACATGTGCT CAACCTGCGC 60 24 base pairs nucleic acid single linear nucleic acid 11 CTATGGCTGG GACCCCCACT TTAG 24 26 base pairs nucleic acid single linear nucleic acid 12 GTGGGACTGT GACCAGTCTC CACTAC 26 33 base pairs nucleic acid single linear nucleic acid 13 CTGTCACGAA CACGGATCCA AGCTTTTGTT CCC 33 37 base pairs nucleic acid single linear nucleic acid 14 TTGGGATAGG TGTTCACCAT GGCAACTGAC TACATTG 37 42 base pairs nucleic acid single linear nucleic acid 15 CATTGCCCAC GTGGACGTCA TTCCAGCTAG CATCCTGGTA CA 42 40 base pairs nucleic acid single linear nucleic acid 16 CACCAGATCT CACCATGGCT AGCGCCGTCG TTTTACAACG 40 39 base pairs nucleic acid single linear nucleic acid 17 CCACCACGCT CATCGATAAT TTCACCGCCG AAAGGCGCG 39 36 base pairs nucleic acid single linear nucleic acid 18 CCAATAACTG TTACACACCA TGGTTAGTGA AAGTGG 36 46 base pairs nucleic acid single linear nucleic acid 19 GTGTAACCAA GAAGGACGTC ATTCCAGCTT GCAAGGGTGA CATCGG 46 63 base pairs nucleic acid single linear nucleic acid 20 CAATGTAGTC AGTTGCTACG CCGATCCCAA GCTTTGACCC TCCGCTCTCA CTAACTGTAA 60 CAG 63 50 base pairs nucleic acid single linear nucleic acid 21 GCTGGTTGTA ATTGCATAGT TGCCCGCCGG TGTTAGCTTT TCAGGAATTG 50 52 base pairs nucleic acid single linear nucleic acid 22 CCAATAACTG TTACACACCA TGGTTAGTGA GAGCGGAGGG TCAAAGCTTG GG 52 2007 base pairs nucleic acid single linear nucleic acid 23 ATGTGCTCAA CCTGCGCTAA CGTGCTTAAA TACTATGGCT GGGATCCCCA CTTTAGATTA 60 GTTGTCAACC CCAACAAATT CCTTTCTGTT GGCTTTTGTG ATAACCCTCT TATGTGTTG 120 TATCCAGACT TGCTTCCTGA ATTTGGAACC CTGTGGGACT GTGACCAGTC TCCACTACA 180 ATTTATTTGG AATCTATTCT TGGAGATGAT GAATGGGCTT CTACCTATGA GGCCATTGA 240 CCCAGCGTAC CCCCAATGCA CTGGGATGCT ATGGGTAAGA TTTTCCAACC ACACCCTGG 300 GTTCTGATGC ACCATATCAT TGGTGAAGTC GCCAAGGCTT GGGACCCAAA CCTACCACT 360 TTTTGCTTAG AGGCTGATGA TGGTTCTATC ACGGCCCCTG AGCAAGGAAC GGTTGTTGG 420 GGGGTCATTG CCGAGCCTAG TGCACAAATG TCAACAGCTG CTGATATGGC CACAGGGAA 480 AGCGTTGACT CTGAGTGGGA GGCATTCTTT TCCTTCCACA CCAGCGTCAA CTGGAGTAC 540 ACAGAAACTC AAGGAAAGAT TTTATTCAAA CAATCTTTGG GACCCCTCCT AAACCCATA 600 CTTGAACATC TTGCTAAGCT GTATGTTGCT TGGTCTGGAT CTATTGATGT TAGGTTCTC 660 ATCTCTGGTT CTGGAGTATA TGGGGGAAAA CTTGCTGCCA TTGTCGTACC ACCTGGTGT 720 GACCCCGTTC AAAGTACATC AATGCTGCAA TACCCTCATG TTCTCTTTGA CGCTCGTCA 780 GTGGAACCAG TTATCTTCTC TATTCCTGAT TTAAGGAGTA CTCTCTATCA CCTTATATC 840 GATACTGATA CTACTTCCCT TGTGATTATG GTGTATAATG ATCTCATTAA CCCTTATGC 900 AGTGATACAA ACTCTTCTGG ATGCATCGTT ACAGTTGAAA CCAAGCCGGG GCCAGATTT 960 AAGTTCCACC TTCTAAAACC ACCTGGATCA ATGCTGACAC ACGGTTCAAT ACCTGCTG 1020 CTCATCCCAA AGTCGTCCTC CCTTTGGATT GGCAATCGCT ATTGGTCTGA TATCACTG 1080 TTTCTTGTCC GTCCCTTTGT CTTCCAAGCA AACCGACACT TTGATTTTAA TCAGGAAA 1140 GCTGGGTGGA GCACGCCGAG ATTCCGGCCA ATAACTGTTA CAGTTAGTGA AAGTGGTG 1200 TCAAAGCTTG GGATAGGTGT TGCAACTGAC TACATTGTTC CCGGTATTCC AGATGGCT 1260 CCAGACACAA CAATTCCTGA AAAGCTTACC CCTGCAGGTA ATTATGCAAT TACAACCA 1320 AATAACAGTG ACATTGCTAC GGCTACTGAA TACGACCATG CTGATGAAAT CAAAAACA 1380 ACAAACTTTA AAAGTATGTA CATCTGTGGA TCATTGCAAA GAGCTTGGGG TGACAAGA 1440 ATATCTAATA CTGCTTTTAT CACCACAGCA GTCAAGGAAG GTAACAGCAT CACACCGT 1500 AACACAATTG ACATGACTAA GCTTGTTGTG TACCAGGATG CTCACGTGGG CAATGATG 1560 CAAACTTCCG ATGTCACCCT TGCACTTCTT GGTTACACAG GAATTGGTGA ACAAGCAA 1620 GGTTCAGATA GAGATAGAGT GGTGCGAATC AGTGTCCTAC CAGAAACTGG TGCCCGTG 1680 GGCAACCACC CCATCTTCTA CAAAAATACA ATTAAATTGG GCTATGTGAT TAGGTCTA 1740 GATGTGTTTA ACTCCCAGAT CCTCCACACG TCCAGACAAC TATCCCTAAA TCACTACC 1800 CTTCCACCTG ATTCCTTTGC TGTCTATAGA ATAATTGATT CTAATGGTTC ATGGTTTG 1860 ATTGGTATTG ATAGTGATGG TTTCTCTTTT GTTGGTGTTT CTAGTTTACC CACACTGG 1920 TTTCCTCTCT CTGCCTCCTA CATGGGAATT CAATTGGCAA AAATCAGGCT TGCCTCAA 1980 ATTAGGAGTA GTATGACAAA ATTATGA 2007 402 base pairs nucleic acid single linear nucleic acid 24 GTTAGTGAAA GTGGTGGGTC AAAGCTTGGG ATAGGTGTTG CAACTGACTA CATTGTTCCC 60 GGTATTCCAG ATGGCTGGCC AGACACAACA ATTCCTGAAA AGCTTACCCC TGCAGGTAA 120 TATGCAATTA CAACCAGCAA TAACAGTGAC ATTGCTACGG CTACTGAATA CGACCATGC 180 GATGAAATCA AAAACAACAC AAACTTTAAA AGTATGTACA TCTGTGGATC ATTGCAAAG 240 GCTTGGGGTG ACAAGAAGAT ATCTAATACT GCTTTTATCA CCACAGCAGT CAAGGAAGG 300 AACAGCATCA CACCGTCTAA CACAATTGAC ATGACTAAGC TTGTTGTGTA CCAGGATGC 360 CACGTGGGCA ATGATGTGCA AACTTCCGAT GTCACCCTTG CA 402
Claims (26)
1. A method for providing an isolated nucleotide sequence that is capable of being naturally transcribed in the cytoplasm of eukaryotic cells without being altered by splicing machinery found within the cells, the method comprising modifying a consensus splicing site of the DNA sequence.
2. The method of claim 1 , wherein the consensus splicing site is deleted.
3. The method of claim 1 , wherein the nucleotide sequence codes for the FCV capsid protein.
4. The method of claim 1 , wherein the nucleotide sequence comprises the FCV C gene of FCV strain 2280.
5. The method of claim 1 , wherein the consensus splicing site is a member selected from the group consisting of D1, D2, D3, D4, D5, D6, D7, D8, D9, Al, A2, A3 and A4.
6. An isolated nucleotide sequence comprising a feline calicivirus C gene having at least one modified or deleted consensus splicing site.
7. The isolated nucleotide sequence of claim 6 , wherein said nucleotide sequence is capable of being transcribed in the nucleus of eukaryotic cells without being altered by splicing machinery found in the eukaryotic cells.
8. An isolated nucleotide sequence obtained from the feline calicivirus C gene of FCV strain 2280 wherein the D1, D2, D3, D4 and D9 splicing sites have been deleted therefrom.
9. An isolated nucleotide sequence obtained from the feline calicivirus C gene of FCV strain 2280 wherein the D9 splicing site has been deleted therefrom.
10. An isolated nucleotide sequence obtained from the feline calicivirus C gene of FCV strain 2280 wherein the D1, D2, D3 and D4 splicing sites have been deleted therefrom.
11. An isolated nucleotide sequence obtained from the feline calicivirus C gene of FCV strain 2280 wherein the D9 splicing site has been deleted therefrom and the D4, D5 and A2 splicing sites have been inactivated.
12. An isolated nucleotide sequence obtained from the feline calicivirus C gene of FCV strain 2280 wherein the D4, D5 and A2 splicing sites have been inactivated.
13. An isolated nucleotide sequence obtained from the feline calicivirus C gene of FCV strain 2280 wherein the D9 splicing site has been deleted therefrom and the D2, D3, D4, D5 and A2 splicing sites have been inactivated.
14. An isolated nucleotide sequence obtained from the feline calicivirus C gene of FCV strain 2280 wherein the D2, D3, D4, D5 and A2 splicing sites have been inactivated.
15. An isolated nucleotide sequence obtained from the feline calicivirus C gene of FCV strain 2280 wherein the D1, D2, D3, D4 and D9 splicing sites have been deleted therefrom and the D5 and A2 splicing sites have been inactivated.
16. An isolated recombinant DNA molecule wherein a nucleotide sequence of claim 6 , 7, 8, 9, 10, 11, 12, 13, 14 or 15 is fused to a DNA sequence coding for a polypeptide.
17. The isolated recombinant DNA molecule of claim 16 , wherein the polypeptide is the FCV capsid protein of FCV strain 2280.
18. An expression vector capable of expressing a nucleotide sequence in the nucleus of eukaryotic cells.
19. The expression vector of claim 18 , comprising a live FHV-1 expression vector.
20. The expression vector of claim 18 , comprising a recombinant DNA molecule of claims 16 or 17.
21. A cell culture, comprising transformed cells infected with the recombinant (FHV-1) vector of claims 18, 19 or 20.
22. The cell culture of claim 21 , wherein the transformed cells comprise CRFK cells.
23. A vaccine comprising the expression vector of claim 18 .
24. A vaccine comprising the recombinant DNA molecule of claim 16 , 17 or 18.
25. A vaccine for preventing or treating feline calicivirus (FCV) disease, comprising the expression vector of claim 18 .
26. A vaccine for preventing or treating feline calicivirus (FCV) disease, comprising the recombinant DNA molecule of claims 16, 17 or 18.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/827,864 US20020009458A1 (en) | 1997-06-10 | 2001-04-06 | DNA sequences, molecules, vectors and vaccines for feline calicivirus disease and methods for producing and using same |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/872,056 US6231863B1 (en) | 1997-06-10 | 1997-06-10 | DNA sequences, molecules, vectors and vaccines for feline calicivirus disease and methods for producing and using same |
| US09/827,864 US20020009458A1 (en) | 1997-06-10 | 2001-04-06 | DNA sequences, molecules, vectors and vaccines for feline calicivirus disease and methods for producing and using same |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/872,056 Division US6231863B1 (en) | 1997-06-10 | 1997-06-10 | DNA sequences, molecules, vectors and vaccines for feline calicivirus disease and methods for producing and using same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020009458A1 true US20020009458A1 (en) | 2002-01-24 |
Family
ID=25358745
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/872,056 Expired - Lifetime US6231863B1 (en) | 1997-06-10 | 1997-06-10 | DNA sequences, molecules, vectors and vaccines for feline calicivirus disease and methods for producing and using same |
| US09/827,864 Abandoned US20020009458A1 (en) | 1997-06-10 | 2001-04-06 | DNA sequences, molecules, vectors and vaccines for feline calicivirus disease and methods for producing and using same |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/872,056 Expired - Lifetime US6231863B1 (en) | 1997-06-10 | 1997-06-10 | DNA sequences, molecules, vectors and vaccines for feline calicivirus disease and methods for producing and using same |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US6231863B1 (en) |
| EP (1) | EP0975773A1 (en) |
| JP (1) | JP2002510202A (en) |
| AU (1) | AU731624B2 (en) |
| BR (1) | BR9811096A (en) |
| NZ (1) | NZ501579A (en) |
| WO (1) | WO1998056929A1 (en) |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU5329300A (en) * | 1999-06-10 | 2001-01-02 | Michigan State University | Feline calicivirus isolated from cat urine and vaccines thereof |
| FR2796396A1 (en) * | 1999-07-16 | 2001-01-19 | Merial Sas | FELIN CALICIVIRUS GENE AND RECOMBINANT VACCINE INCORPORATING THEM |
| US6541458B1 (en) | 1999-07-16 | 2003-04-01 | Merial | Feline calicivirus genes and vaccines in particular recombinant vaccines |
| US6534066B1 (en) | 1999-07-16 | 2003-03-18 | Merial | Inactivated vaccine against feline calicivirosis |
| FR2796281B1 (en) * | 1999-07-16 | 2001-10-26 | Merial Sas | INACTIVE VACCINE AGAINST FELINE CALICIVIROSE |
| FR2796282B1 (en) * | 1999-07-16 | 2001-10-26 | Merial Sas | INACTIVE VACCINE AGAINST FELINE CALICIVIROSE |
| FR2796397B1 (en) * | 1999-07-16 | 2006-09-01 | Merial Sas | FELIN CALICIVIRUS GENES AND VACCINES, INCLUDING RECOMBINANT VACCINES |
| US7850978B2 (en) | 1999-07-16 | 2010-12-14 | Merial Limited | Vaccine against feline calicivirus |
| US7101565B2 (en) | 2002-02-05 | 2006-09-05 | Corpak Medsystems, Inc. | Probiotic/prebiotic composition and delivery method |
| EP1606391B1 (en) * | 2003-03-14 | 2011-01-19 | Regents of the University of California | Virulent systemic feline calicivirus |
| US7309495B2 (en) * | 2003-03-14 | 2007-12-18 | The Regents Of The University Of California | Hemorrhagic feline calicivirus |
| US7306807B2 (en) | 2004-09-13 | 2007-12-11 | Wyeth | Hemorrhagic feline calicivirus, calicivirus vaccine and method for preventing calicivirus infection or disease |
| EP2292250A1 (en) * | 2005-07-28 | 2011-03-09 | Pfizer Products Inc. | Methods of vaccine administration, new feline caliciviruses, and treatments for immunizing animals against feline parvovirus and feline herpes virus |
| US20080299149A1 (en) * | 2007-05-30 | 2008-12-04 | Wyeth | Raccoon Poxvirus Expressing Genes of Feline Antigens |
| EP3337503A1 (en) * | 2015-08-20 | 2018-06-27 | Merial, Inc. | Fcv recombinant vaccines and uses thereof |
| EP3389706A1 (en) | 2015-12-14 | 2018-10-24 | Boehringer Ingelheim Vetmedica, Inc. | Hybrid core feline vaccines |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1991001332A1 (en) | 1989-07-21 | 1991-02-07 | The Upjohn Company | Feline calicivirus capsid protein and nucleotide sequence |
| PT606452E (en) | 1992-07-30 | 2003-03-31 | Akzo Nobel Nv | RECOMBINANT FELINE HERPES VECTOR VECTORS |
| GB9408717D0 (en) | 1994-05-03 | 1994-06-22 | Biotech & Biolog Scien Res | DNA sequences |
-
1997
- 1997-06-10 US US08/872,056 patent/US6231863B1/en not_active Expired - Lifetime
-
1998
- 1998-06-04 WO PCT/EP1998/003326 patent/WO1998056929A1/en not_active Ceased
- 1998-06-04 AU AU82126/98A patent/AU731624B2/en not_active Ceased
- 1998-06-04 JP JP50150899A patent/JP2002510202A/en active Pending
- 1998-06-04 NZ NZ501579A patent/NZ501579A/en unknown
- 1998-06-04 EP EP98932112A patent/EP0975773A1/en not_active Withdrawn
- 1998-06-04 BR BR9811096-9A patent/BR9811096A/en not_active IP Right Cessation
-
2001
- 2001-04-06 US US09/827,864 patent/US20020009458A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| NZ501579A (en) | 2001-11-30 |
| EP0975773A1 (en) | 2000-02-02 |
| BR9811096A (en) | 2000-07-18 |
| US6231863B1 (en) | 2001-05-15 |
| JP2002510202A (en) | 2002-04-02 |
| AU731624B2 (en) | 2001-04-05 |
| WO1998056929A1 (en) | 1998-12-17 |
| AU8212698A (en) | 1998-12-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6231863B1 (en) | DNA sequences, molecules, vectors and vaccines for feline calicivirus disease and methods for producing and using same | |
| CN100447247C (en) | Recombinant infectious non-segmented negative-strand RNA virus | |
| JP3411307B2 (en) | Recombinant avipox virus, culture of cells infected with the virus, and vaccine derived from the virus | |
| HUT67138A (en) | Attenvated, genetically-engineered pseudorabies virus s-prv-155 and uses thereof | |
| US11278613B2 (en) | Lyssavirus antigen constructs | |
| CA1264688A (en) | Pseudorabies virus mutants, vaccines containing same, methods for the production of same and methods for the use of same | |
| JP2001510338A (en) | Recombinant live avian vaccine using avian infectious laryngotracheitis virus as a vector | |
| JP2000501927A (en) | Recombinant live vaccine based on feline herpesvirus 1 against infectious feline peritonitis | |
| US7645455B2 (en) | Chimeric lyssavirus nucleic acids and polypeptides | |
| JP3420258B2 (en) | Canine Coronavirus Subunit Vaccine | |
| US6241989B1 (en) | Recombinant multivalent viral vaccine | |
| EP0576092B1 (en) | Recombinant Feline herpesvirus vaccine | |
| WO1984002847A1 (en) | Methods and materials for development of parvovirus vaccine | |
| EP0606452B1 (en) | Vector vaccines of recombinant feline herpesvirus | |
| CN101020055B (en) | SARS vaccine based on replicative vaccinia virus vector | |
| CA2113641A1 (en) | Recombinant infectious bovine rhinotracheitis virus | |
| US7087234B1 (en) | Recombinant multivalent viral vaccine | |
| JPH05501950A (en) | Mutant pseudorabies virus and vaccines containing it | |
| EP0704529A2 (en) | Vaccine against rabbit hemorrhagic disease virus | |
| GB2282601A (en) | Coronavirus vaccines | |
| UA75035C2 (en) | Attenuated recombinant herpes virus of cattle of type i (bhv-1), vaccine containing it and a method for the detection of animals injected with recombinant viral vaccine | |
| CN1318592C (en) | O type foot and mouth disease virus DNA vaccine and its preparing method | |
| MXPA99011361A (en) | Dna sequences, molecules, vectors and vaccines for feline calicivirus disease and methods for producing and using same | |
| KR20030074593A (en) | Rabbit hemorrhagic disease vaccine and antigens | |
| US7238672B1 (en) | Chimeric lyssavirus nucleic acids and polypeptides |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |