US20020001723A1 - Multi-layer sheet comprising a protective polyurethane layer - Google Patents
Multi-layer sheet comprising a protective polyurethane layer Download PDFInfo
- Publication number
- US20020001723A1 US20020001723A1 US09/395,823 US39582399A US2002001723A1 US 20020001723 A1 US20020001723 A1 US 20020001723A1 US 39582399 A US39582399 A US 39582399A US 2002001723 A1 US2002001723 A1 US 2002001723A1
- Authority
- US
- United States
- Prior art keywords
- cross
- polyurethane
- polycarbonate
- linked
- multilayer sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004814 polyurethane Substances 0.000 title claims abstract description 117
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 114
- 230000001681 protective effect Effects 0.000 title description 10
- 239000004417 polycarbonate Substances 0.000 claims abstract description 75
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 71
- 239000004971 Cross linker Substances 0.000 claims abstract description 24
- 229920005862 polyol Polymers 0.000 claims abstract description 15
- 150000003077 polyols Chemical class 0.000 claims abstract description 15
- 239000002253 acid Substances 0.000 claims abstract description 14
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 8
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 8
- 229920000768 polyamine Polymers 0.000 claims abstract description 8
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 8
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 8
- 239000010410 layer Substances 0.000 claims description 36
- 239000000203 mixture Substances 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 18
- 239000008199 coating composition Substances 0.000 claims description 18
- 239000012790 adhesive layer Substances 0.000 claims description 11
- 229920000554 ionomer Polymers 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 8
- 229920001577 copolymer Polymers 0.000 claims description 8
- 239000006185 dispersion Substances 0.000 claims description 8
- 238000004132 cross linking Methods 0.000 claims description 7
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 5
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000004716 Ethylene/acrylic acid copolymer Substances 0.000 claims 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 claims 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 17
- 239000000853 adhesive Substances 0.000 description 15
- 230000001070 adhesive effect Effects 0.000 description 15
- 239000011527 polyurethane coating Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 239000000049 pigment Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000004698 Polyethylene Substances 0.000 description 9
- 239000000975 dye Substances 0.000 description 9
- -1 e.g. CymelTM 303 Chemical class 0.000 description 9
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 238000005299 abrasion Methods 0.000 description 7
- 239000011253 protective coating Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229920000058 polyacrylate Polymers 0.000 description 5
- 238000007756 gravure coating Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 3
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 150000001541 aziridines Chemical class 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229920005906 polyester polyol Polymers 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 229920006264 polyurethane film Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000004383 yellowing Methods 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920003182 Surlyn® Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920003009 polyurethane dispersion Polymers 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- LSFGICLHZZSFEN-UHFFFAOYSA-N 2-(aziridin-1-yl)butanoic acid 2-ethyl-2-(hydroxymethyl)propane-1,3-diol Chemical compound CCC(C(O)=O)N1CC1.CCC(C(O)=O)N1CC1.CCC(C(O)=O)N1CC1.CCC(CO)(CO)CO LSFGICLHZZSFEN-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- VFUYUMOOAYKNNO-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;3-(2-methylaziridin-1-yl)propanoic acid Chemical compound CCC(CO)(CO)CO.CC1CN1CCC(O)=O.CC1CN1CCC(O)=O.CC1CN1CCC(O)=O VFUYUMOOAYKNNO-UHFFFAOYSA-N 0.000 description 1
- UWHCZFSSKUSDNV-UHFFFAOYSA-N 3-(aziridin-1-yl)propanoic acid;2-ethyl-2-(hydroxymethyl)propane-1,3-diol Chemical compound OC(=O)CCN1CC1.OC(=O)CCN1CC1.OC(=O)CCN1CC1.CCC(CO)(CO)CO UWHCZFSSKUSDNV-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- FYAMXEPQQLNQDM-UHFFFAOYSA-N Tris(1-aziridinyl)phosphine oxide Chemical compound C1CN1P(N1CC1)(=O)N1CC1 FYAMXEPQQLNQDM-UHFFFAOYSA-N 0.000 description 1
- AVUYXHYHTTVPRX-UHFFFAOYSA-N Tris(2-methyl-1-aziridinyl)phosphine oxide Chemical compound CC1CN1P(=O)(N1C(C1)C)N1C(C)C1 AVUYXHYHTTVPRX-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- KAPCRJOPWXUMSQ-UHFFFAOYSA-N [2,2-bis[3-(aziridin-1-yl)propanoyloxymethyl]-3-hydroxypropyl] 3-(aziridin-1-yl)propanoate Chemical compound C1CN1CCC(=O)OCC(COC(=O)CCN1CC1)(CO)COC(=O)CCN1CC1 KAPCRJOPWXUMSQ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 125000001046 glycoluril group Chemical group [H]C12N(*)C(=O)N(*)C1([H])N(*)C(=O)N2* 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000007760 metering rod coating Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001054 red pigment Substances 0.000 description 1
- 238000007777 rotary screen coating Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/06—Polyurethanes from polyesters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/29—Laminated material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2203/00—Applications of adhesives in processes or use of adhesives in the form of films or foils
- C09J2203/306—Applications of adhesives in processes or use of adhesives in the form of films or foils for protecting painted surfaces, e.g. of cars
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/10—Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
- C09J2301/16—Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer
- C09J2301/162—Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer the carrier being a laminate constituted by plastic layers only
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2475/00—Presence of polyurethane
- C09J2475/006—Presence of polyurethane in the substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2839—Web or sheet containing structurally defined element or component and having an adhesive outermost layer with release or antistick coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2848—Three or more layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31573—Next to addition polymer of ethylenically unsaturated monomer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31573—Next to addition polymer of ethylenically unsaturated monomer
- Y10T428/31576—Ester monomer type [polyvinylacetate, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31573—Next to addition polymer of ethylenically unsaturated monomer
- Y10T428/31583—Nitrile monomer type [polyacrylonitrile, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31573—Next to addition polymer of ethylenically unsaturated monomer
- Y10T428/31587—Hydrocarbon polymer [polyethylene, polybutadiene, etc.]
Definitions
- the present invention relates to a cross-linked polyurethane composition and a multilayer sheet comprising a polymeric film and a cross-linked polyurethane layer.
- the multilayer sheet can be used to protect a surface and can in particular be used to protect a car body. Accordingly, the present invention also relates to an automobile of which at least a part of the body is protected by the multilayer sheet.
- the invention also relates to a method for making the multilayer sheet.
- Polyurethane coatings are well known as protective coatings on various substrates to provide resistance to environmental weathering, chemical exposure, heat and abrasion. Polyurethanes are generally optically transparent and have found application in the protection of articles that have a variety of uses including both interior and exterior applications. Polyurethane coatings have further been used to cover and protect a base substrate having indicia or other decorative features thereon. Such decorative articles may have interior as well as exterior uses.
- WO 94/13465 describes a polyurethane based protective layer for protecting an embossed multilayer film. It is taught that a surface layer containing the reaction product of an aliphatic diisocyanate and a polyester polyol, polycarbonate polyol or polyacrylic polyol provides a good protection for interior as well as exterior uses. It is further disclosed that the polyurethane-based protective surface layer can be cross-linked or uncross-linked and can be solvent borne as well as aqueous borne.
- WO 94/13496 discloses a multilayer graphic article that comprises a substrate, at least one color layer disposed thereon and a protective surface layer.
- the protective surface layer may comprise a polyurethane obtained from the reaction of an aromatic diisocyanate and a polyether polyol or a polyurethane obtained from the reaction of an aliphatic diisocyanate and a polyester polyol, polycarbonate polyol or polyacrylic polyol.
- WO 93/24551 discloses that aqueous polyurethane dispersions can be used to produce a coating on various substrates. It is further mentioned that the they may be used for the provision of e.g.
- polyurethanes depending on their composition, can possess many desirable properties such as good chemical resistance, water resistance, solvent resistance, toughness, abrasion resistance and durability.
- WO 93/24551 further discloses that polycarbonate polyol based polyurethanes can provide high performance aqueous polyurethane dispersions in terms of chemical, water, solvent and stain resistance of coatings derived therefrom.
- polycarbonate polyols are said to be expensive and the supply would not always be guaranteed.
- Polyurethane protective coatings have been used on conformable films to protect parts of the body of an automobile.
- the body of a car may need to be protected near the trunk where the body may be prone to damaging due to loading and unloading of articles.
- a fully satisfactory protective coating for this application has not yet been found despite the many protective coatings known in the art.
- Desirable properties for such a protective coating include good optical transparency, high weatherability, high heat resistance, high chemical resistance, high solvent resistance, high water resistance and high abrasion resistance.
- the protective coating desirably also has a good flexibility and can preferably be pigmented with dyes to obtain a colored protective layer without however substantially impairing the other desirable properties of the protective layer.
- the present invention provides a multilayer sheet comprising a polymeric film having on a first major side a cross-linked polyurethane layer, the major part of said cross-linked polyurethane layer comprising a polycarbonate based polyurethane containing acid groups and cross-linked with a cross-linker, the polycarbonate based polyurethane comprising the reaction product of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate and the uncross-linked polycarbonate based polyurethane having a Koenig hardness of at least 150 seconds.
- the multilayer sheet of the present invention has good abrasion and scratch resistance, high heat, solvent and weathering, resistance. Moreover, multilayer sheets with excellent optical properties such as clarity and transparency can be provided. Also, the polyurethane coating can be colored to provide colored versions of the multilayer sheets without substantially impairing the other desirable properties of the sheet.
- the multilayer sheets are useful in a variety of applications including both indoor as well as outdoor applications and they can be readily converted.
- the present invention also provides a method of making a multilayer sheet comprising:
- the polycarbonate based polyurethane comprises the reaction product of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate and the uncross-linked polycarbonate based polyurethane having a Koenig hardness of at least 150 seconds.
- the present invention further provides a cross-linked polyurethane composition
- a cross-linked polyurethane composition comprising a polycarbonate based polyurethane containing acid groups and cross-linked with a cross-linker, the polycarbonate based polyurethane comprising the reaction product of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate and the uncross-linked polycarbonate based polyurethane having a Koenig hardness of at least 150 seconds.
- the cross-linked polyurethane layer of the multilayer sheet of the present invention comprises a major amount of a cross-linked polycarbonate based polyurethane derived from the reaction of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate, preferably an aliphatic diisocyanate.
- the polycarbonate-based polyurethane further contains acid groups, preferably carboxylic acid groups, that provide the necessary cross-linking sites to the polyurethane.
- the polycarbonate-based polyurethane has an acid number of at least 15 mg KOH/g and more preferably at least 18 mg KOH/g.
- the polycarbonate-based polyurethane of the polyurethane layer should have a Koenig hardness of at least 150 seconds, preferably at least 175 seconds and more preferably at least 200 seconds. It has been found that if the polycarbonate-based polyurethane does not meet the Koenig hardness, the desired chemical and heat resistance as well as the desired abrasion resistance could not be achieved. It has further been found that other polyurethanes, e.g. polyester based polyurethanes, although meeting the Koenig hardness requirement of at least 150 seconds also fail to yield a protective layer that has the desired chemical and heat resistance as well as the desired abrasion resistance.
- the cross-linked polycarbonate based polyurethane should form the major part of the polyurethane layer.
- “major part” means at least 60% by weight.
- the cross-linked polycarbonate polyurethane constitutes at least 80% by weight and more preferably at least 90% by weight of the total weight of the polyurethane layer. The best results can be achieved when the cross-linked polycarbonate based polyurethane constitutes about 100% by weight of the polyurethane layer.
- the polycarbonate-based polyurethane is preferably an aqueous borne dispersion.
- Aqueous borne dispersions of polycarbonate based polyurethanes and their method of preparation are well-known in the art and has been described in for example GB1549458 and GB1549459.
- Polycarbonate based polyurethanes for use in connection with the present invention are commercially available and include for example NEOREZTM R-986 and NEOREZTM R-985 available from Zeneca Resins, Frankfurt, Germany and ALBERDINGKTM U 911 available from Aberdingk-Boley GmbH, Krefeld, Germany.
- the polycarbonate-based polyurethane is cross-linked with a suitable cross-linker that readily reacts with the acid groups of the polycarbonate-based polyurethane.
- the cross-linker allows for curing at a temperature below 100° C.
- Cross-linking at low temperature is particularly desirable when the polymeric film of the multilayer-layer sheet has a low softening point.
- cross-linkers that can be used to cross-link the polycarbonate based polyurethane include melamines such as e.g.
- a particularly preferred class of cross-linkers for use in this invention are the polyfunctional aziridines. Examples of suitable polyfunctional aziridines include those disclosed in U.S. Pat. No. 3,225,013. Preferably, the polyfunctional aziridine is a trifunctional aziridine.
- polyfunctional aziridines include those available under the trade designations “XAMA-2” (trimethylolpropane-tris-(.beta.-(N-aziridinyl)propionate) and “XAMA-7” (pentaerythritol-tris-(.beta.-(N-aziridinyl)propionate) from B.F. Goodrich Chemical Co., Cleveland, Ohio, and “NeoCryl CX-100” from Zeneca Resins, Wilmington, Mass..
- the cross-linker will generally be used in an amount of 5 parts by weight to 15 parts by weight for 100 parts by weight of the polycarbonate-based polyurethane.
- the polyurethane layer may contain further components conventionally employed in protective coatings such as for example an anti-oxidant or an Ultraviolet radiation stabilizer.
- the polyurethane layer of the present invention can be pigmented if a particular tinting of the multilayer-layer sheet is desired.
- inorganic or organic pigments somewhat reduces the excellent properties of the polyurethane layer, they can be added to the polyurethane layer while still achieving a good and useful weatherability, chemical and heat resistance as well as a good abrasion and scratch resistance.
- Particularly preferred coloring pigments are dye pigments and most preferably aqueous borne dye pigments.
- Dye pigments suitable for the addition to the polyurethane layer may be in the form of a paste that comprises the dye pigment mixed with a water soluble or water dispersible binder.
- Commercially available dye pigments that can be used in the polyurethane layer of this invention include IsoversaIm WL available from ISL Chemie GmbH and the dye pigments available from BASF under the trade name LuconylTM.
- dye pigments can be added to the polyurethane layer in an amount of 0,5 phr (parts per hundred) up to 10 phr without reducing the beneficial properties of the polyurethane layer to an unacceptable level.
- a cross-linked polyurethane layer of the present invention typically has an E-modulus (also known as Young modulus) of at least 750N/mm 2 , a tensile strength at break between 22 and 44N/mm 2 and an elongation at break of 30 to 140%.
- E-modulus also known as Young modulus
- the polyurethane layer of the present invention is provided on a polymeric film to obtain the multilayer sheet of the present invention.
- Polymeric films on which the polyurethane layer can be provided include polyurethane films, polyester films and polyolefin films such as polypropylene film, polyethylene films and films formed from blends of polyethylene and polypropylene, films formed from ethylene modified copolymers such as ethylene-vinylacetate, ethylene-(meth)acrylic acid, ethylene-methacrylate and blends of these materials.
- Polymeric films with particularly desirable properties for use in a multilayer sheet to protect the body of an automobile include the ionomers of olefin/vinyl carboxylate copolymers such as ethylene-acrylic acid and ethylene-methacrylic acid copolymers combined with various metal cations including cations of lithium, sodium, potassium, zinc, aluminum and calcium.
- Suitable commercial ionomer resins include the SurlynTM family of materials available from E.I. DuPont de Nemours & Co.
- Polymeric films formed from ionomers of olefin/vinyl carboxylate copolymers have excellent optical characteristics, high flexibility, good heat resistance and desired shrinkage behavior. Combined with the polyurethane layer of this invention, a multilayer sheet results that has excellent protective properties for use in exterior applications.
- the multilayer sheet further comprises an adhesive layer on the major side of the polymeric film opposite to the major side of the polymeric film carrying the polyurethane layer.
- the adhesive layer is generally protected by a conventional release liner.
- a suitable adhesive layer for use in this embodiment preferably includes a normally tacky pressure sensitive adhesive. The latter is being preferred in the present invention.
- Particularly suitable pressure sensitive adhesives are, for example, based on polyacrylates, synthetic and natural rubbers, polybutadiene and copolymers or polyisoprenes and copolymers. Silicone based adhesives such as polydimethylsiloxane and polymethylphenylsiloxane may also be used.
- Particularly preferred pressure sensitive adhesives for use in this invention are polyacrylate based adhesives because they provide such properties as high clarity, UV-stability and aging resistance.
- Polyacrylate adhesives that can be used in this invention include, for example, those described in U.S. Pat. No. 4,418,120; U.S. Pat. No. Re 24,906 (Ulrich), U.S. Pat. No. 4,619,867; U.S. Pat. No. 4,835,217 and WO 87/00189.
- the polyacrylate pressure sensitive adhesive comprises a cross-linked copolymer of a C 4 -C 12 alkylacrylate and an acrylic acid.
- the polyacrylate pressure sensitive adhesive preferably also comprises a tackifier such as rosin ester.
- Adhesives useful in the invention may incorporate additives such as ground glass, titanium dioxide, silica, glass beads, waxes, tackifiers, low molecular weight thermo-plastics, oligomeric species, plasticizers, pigments, metallic flakes and metallic powders as long as they are provided in an amount that does not materially adversely effect the adhesive bond to the surface.
- the adhesive layer is provided at a thickness of 25 to 560 microns.
- the adhesive has an initial repositionability so that the sheet can be adjusted to fit at a desired place before a permanent bond is formed.
- such repositionability may be achieved by providing a layer of minute glass bubbles on the adhesive surface as disclosed in U.S. Pat. No. 3,331,729.
- the multilayer sheet of the present invention can be obtained by coating a coating composition comprising the polycarbonate-based polyurethane on a major side of the polymeric film.
- the polymeric film Prior to coating, the polymeric film is preferably corona treated or alternatively, one or more primer layers may be provided on the polymeric film to assure good coatability and adherence of the polyurethane layer to the polymeric film.
- aqueous borne is meant that the major part of the fluid phase of the dispersion consists of water.
- the fluid phase may further contain organic solvents, in particular water miscible solvents.
- the fluid phase of the dispersion will contain at least 60% by weight and more preferably at least 80% by weight of water.
- the coating composition further contains the cross-linker and any other optional compounds such as dye pigments.
- the total amount of solids of the coating composition will typically vary between 25% by weight and 50% by weight. In connection with a preferred embodiment of the present invention, at least 80% by weight and more preferably between 90% by weight and 100% by weight of the solids will be formed by the polycarbonate-based polyurethane and the cross-linker.
- the coating composition will generally be applied in an amount sufficient to obtain a dried thickness of 5 to 15 microns.
- any conventional coating technique may be employed for coating the polyurethane coating composition on the polymeric film.
- useful coating techniques include meyer bar coating, spray coating, screen printing, rotary screen coating, as well as gravure coating such as direct (forward) gravure coating, reverse gravure coating and offset gravure coating.
- Cross-linking of the coated polyurethane coating composition will generally be achieved by heating. Heating may be accomplished by supplying direct heat or indirectly for example by infrared radiation. Typically, the coating is heated to a temperature of 50° C. to 140° C., preferably 90° C. to 125° C. for 20 seconds to 5 minutes and preferably 20 seconds to 60 seconds to obtain a sufficient level of cross-linking of the polyurethane layer.
- the opposite side of the polymeric film can be coated with an adhesive coating composition to provide an adhesive layer to the polymeric film.
- the adhesive coating composition may be solventless, solvent based or water based.
- the adhesive layer may be laminated to the polymeric film.
- the adhesive layer may be provided after coating of the polyurethane coating composition to the polymeric film or prior to coating of the polyurethane coating composition.
- Films of the polyurethanes with crosslinker were prepared by knife coating the mixtures at a wet thickness of ca. 140 microns onto a release-coated paper, drying for 5 min. at 23° C. and then curing in a forced air oven at 95° C. for 3 minutes to give cured films having a thickness of between 25 and 50 microns.
- E Modulus measurements were made according to DIN (Deutsche Industrie Norm) 53457 using the same tensile tester as described above. The jaws of the tensile tester were moved apart at a rate of 1 mm/min. E—Modulus measurement range was between 0.05-0.25%. The test samples used for measurement of E-modulus were 100 mm in length and 25.4 mm in width.
- test fluids used were methyl isobutylketone (MIBK) and “FAM (type B)” test fuel described in the Test Method DIN (Deutsche Industrie Norm) 51604 B.
- Acid number of polyurethanes employed in the coating compositions was measured according to DIN (Deutsche Industrie Norm) 53402 and recorded in mg KOH per g of solid polymer.
- a 250 micron thick film of ethylene—methacrylic acid copolymer ionomer with Zn—cations (an ionomer) (available as SURLYN (TM)-1705-1 from DuPont) was extruded using conventional methods.
- the composition used to extrude the ionomer film included an ultraviolet radiation stabilization package similar to that recommended by the polymer resin manufacturer and comprising a pair of ultraviolet radiation absorbers, a hindered amine light stabilizer and an antioxidant.
- the resulting ionomer film was then corona discharge treated on one side at a net power of 500 Joules/second with a line speed of 18 cm/second.
- the corona-treated side of the film was then laminated to a 33 micron thick layer of acrylate pressure-sensitive adhesive supported on a polyethylene-coated paper liner bearing a silicone release layer on the polyethylene coating.
- a coating composition was then prepared from 100 parts by weight of water-based polyurethane resin made from a polycarbonate diol and an aliphatic diisocyanate (35% solids, available as NeoRez (TM) R-986 from Zeneca Resins, Frankfurt, Germany) and 3.5 parts by weight of a polyfunctional aziridine crosslinker (available as NeoCryl (TM) CX-100 from Zeneca Resins, Frankfurt, Germany) by mixing the two components in an open container using a motorized propeller stirrer for five minutes at 23° C.
- water-based polyurethane resin made from a polycarbonate diol and an aliphatic diisocyanate (35% solids, available as NeoRez (TM) R-986 from Zeneca Resins, Frankfurt, Germany
- a polyfunctional aziridine crosslinker available as NeoCryl (TM) CX-100 from Zeneca Resins, Frankfurt, Germany
- the polyurethane type employed in the PU coating composition for Example 1 is shown in Table 1 below.
- the content of the coating composition, including the polyurethane and crosslinker, is summarized in Table 2.
- composition thus prepared was then coated onto the non-adhesive, corona-treated side of the film using a coating rod to give a wet coating thickness of 18.3 ⁇ m (0.72 mils).
- the polyurethane coating was allowed to dry for 15 sec at 23° C. and then cured in a forced air oven at a temperature of 90° C. for 30 sec.
- the protective film thus prepared was stored at 23° C. and 50% relative humidity for 72 hrs before testing.
- Table 3 shows the tensile and elongation properties as well as the E-modulus of the self-supported polyurethane films, independent of any substrate.
- Table 4 shows the Hoffmnan Scratch Resistance and the Heat/Solvent Resistance of the polyurethane-coated films of the Examples.
- the protective release liner was removed from the pressure-sensitive adhesive layer and the sheet was applied to the painted bumper of an automobile using a hand-held plastic applicator (commonly referred to as a squeegie, commercially available at RHEO PLASTICS, Minnesota, USA) designed for adhering adhesive-coated films to smooth substrates.
- a hand-held plastic applicator commonly referred to as a squeegie, commercially available at RHEO PLASTICS, Minnesota, USA
- the sheet conformed well to the bumper could be applied in a bubble-free manner and was not scratched during the application process.
- Examples 2-3 were prepared in the same manner as Example 1, with the exception that two other polycarbonate-based waterborne polyurethanes were employed in the coating compositions, respectively.
- Example 2 used NeoRezTM R-985 from Zeneca Resins as the polyurethane component of the coating composition and Example 3 employed a third polycarbonate-based polyurethane (available as Alberdingk U 911 from Alberdingk-Boley GmbH, 47829, Krefeld, Germany).
- Comparative Examples 1-7 were prepared in the same manner as Example 1. Each Comparative Example employed a different waterborne polyurethane polymer as summarized in Table 1.
- Comparative Examples 1-6 show that polyurethanes based on polyether and polyester diol segments cannot pass the Scratch Resistance Test.
- Comparative Example 7 shows a polycarbonate-based polyurethane (having a low Koenig Hardness of only 80) that cannot pass the Scratch Resistance Test.
- Example 1 was repeated with the exception that the polyurethane coating composition comprised 30.00 parts by weight polycarbonate-based polyurethane (available as Neorez 986 from Zeneca Resins), 1.05 parts by weight polyaziridine crosslinker (available as Neocryl CX 100 from Zeneca Resins) and additionally 1.17 parts by weight of a red pigment paste (available as WL 00894/3174 from ISL Chemie GmbH, 51515 Kuerten, Germany).
- polycarbonate-based polyurethane available as Neorez 986 from Zeneca Resins
- polyaziridine crosslinker available as Neocryl CX 100 from Zeneca Resins
- red pigment paste available as WL 00894/3174 from ISL Chemie GmbH, 51515 Kuerten, Germany.
- the coating composition was applied to a film and cured as in Example 1. An aesthetically attractive red film was obtained which had physical properties almost identical ample 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Laminated Bodies (AREA)
- Adhesive Tapes (AREA)
- Polyurethanes Or Polyureas (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Paints Or Removers (AREA)
Abstract
The present invention provides a multilayer sheet comprising a polymeric film having on a first major side a cross-linked polyurethane layer, the major part of said cross-linked polyurethane layer comprising a polycarbonate based polyurethane containing acid groups and cross-linked with a cross-linker, the polycarbonate-based polyurethane comprising the reaction product of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate and the uncross-linked polycarbonate-based polyurethane having a Koenig hardness of at least 150 seconds.
Description
- The present invention relates to a cross-linked polyurethane composition and a multilayer sheet comprising a polymeric film and a cross-linked polyurethane layer. The multilayer sheet can be used to protect a surface and can in particular be used to protect a car body. Accordingly, the present invention also relates to an automobile of which at least a part of the body is protected by the multilayer sheet. The invention also relates to a method for making the multilayer sheet.
- Polyurethane coatings are well known as protective coatings on various substrates to provide resistance to environmental weathering, chemical exposure, heat and abrasion. Polyurethanes are generally optically transparent and have found application in the protection of articles that have a variety of uses including both interior and exterior applications. Polyurethane coatings have further been used to cover and protect a base substrate having indicia or other decorative features thereon. Such decorative articles may have interior as well as exterior uses.
- For example, WO 94/13465 describes a polyurethane based protective layer for protecting an embossed multilayer film. It is taught that a surface layer containing the reaction product of an aliphatic diisocyanate and a polyester polyol, polycarbonate polyol or polyacrylic polyol provides a good protection for interior as well as exterior uses. It is further disclosed that the polyurethane-based protective surface layer can be cross-linked or uncross-linked and can be solvent borne as well as aqueous borne.
- WO 94/13496 discloses a multilayer graphic article that comprises a substrate, at least one color layer disposed thereon and a protective surface layer. The protective surface layer may comprise a polyurethane obtained from the reaction of an aromatic diisocyanate and a polyether polyol or a polyurethane obtained from the reaction of an aliphatic diisocyanate and a polyester polyol, polycarbonate polyol or polyacrylic polyol. WO 93/24551 discloses that aqueous polyurethane dispersions can be used to produce a coating on various substrates. It is further mentioned that the they may be used for the provision of e.g. protective or decorative coatings since polyurethanes, depending on their composition, can possess many desirable properties such as good chemical resistance, water resistance, solvent resistance, toughness, abrasion resistance and durability. WO 93/24551 further discloses that polycarbonate polyol based polyurethanes can provide high performance aqueous polyurethane dispersions in terms of chemical, water, solvent and stain resistance of coatings derived therefrom. However such polycarbonate polyols are said to be expensive and the supply would not always be guaranteed.
- Polyurethane protective coatings have been used on conformable films to protect parts of the body of an automobile. For example, the body of a car may need to be protected near the trunk where the body may be prone to damaging due to loading and unloading of articles. A fully satisfactory protective coating for this application has not yet been found despite the many protective coatings known in the art. Desirable properties for such a protective coating include good optical transparency, high weatherability, high heat resistance, high chemical resistance, high solvent resistance, high water resistance and high abrasion resistance. Furthermore, the protective coating desirably also has a good flexibility and can preferably be pigmented with dyes to obtain a colored protective layer without however substantially impairing the other desirable properties of the protective layer.
- The present invention provides a multilayer sheet comprising a polymeric film having on a first major side a cross-linked polyurethane layer, the major part of said cross-linked polyurethane layer comprising a polycarbonate based polyurethane containing acid groups and cross-linked with a cross-linker, the polycarbonate based polyurethane comprising the reaction product of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate and the uncross-linked polycarbonate based polyurethane having a Koenig hardness of at least 150 seconds.
- The multilayer sheet of the present invention has good abrasion and scratch resistance, high heat, solvent and weathering, resistance. Moreover, multilayer sheets with excellent optical properties such as clarity and transparency can be provided. Also, the polyurethane coating can be colored to provide colored versions of the multilayer sheets without substantially impairing the other desirable properties of the sheet. The multilayer sheets are useful in a variety of applications including both indoor as well as outdoor applications and they can be readily converted.
- The present invention also provides a method of making a multilayer sheet comprising:
- (i) coating a coating composition comprising a polycarbonate based polyurethane containing acid groups and a cross-linker on a major side of a polymeric film, and
- (ii) cross-linking the thus obtained coating, wherein the polycarbonate based polyurethane comprises the reaction product of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate and the uncross-linked polycarbonate based polyurethane having a Koenig hardness of at least 150 seconds.
- The present invention further provides a cross-linked polyurethane composition comprising a polycarbonate based polyurethane containing acid groups and cross-linked with a cross-linker, the polycarbonate based polyurethane comprising the reaction product of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate and the uncross-linked polycarbonate based polyurethane having a Koenig hardness of at least 150 seconds.
- The cross-linked polyurethane layer of the multilayer sheet of the present invention comprises a major amount of a cross-linked polycarbonate based polyurethane derived from the reaction of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate, preferably an aliphatic diisocyanate. The polycarbonate-based polyurethane further contains acid groups, preferably carboxylic acid groups, that provide the necessary cross-linking sites to the polyurethane. Preferably, the polycarbonate-based polyurethane has an acid number of at least 15 mg KOH/g and more preferably at least 18 mg KOH/g.
- The polycarbonate-based polyurethane of the polyurethane layer should have a Koenig hardness of at least 150 seconds, preferably at least 175 seconds and more preferably at least 200 seconds. It has been found that if the polycarbonate-based polyurethane does not meet the Koenig hardness, the desired chemical and heat resistance as well as the desired abrasion resistance could not be achieved. It has further been found that other polyurethanes, e.g. polyester based polyurethanes, although meeting the Koenig hardness requirement of at least 150 seconds also fail to yield a protective layer that has the desired chemical and heat resistance as well as the desired abrasion resistance.
- Although it is possible to blend the polycarbonate based polyurethane with other polyurethanes such as for example polyurethanes based on polyether or polyester polyols or polycarbonate based polyurethanes with a lower Koenig hardness than 150 seconds, the cross-linked polycarbonate based polyurethane should form the major part of the polyurethane layer. In accordance with the present invention, “major part” means at least 60% by weight. Preferably, the cross-linked polycarbonate polyurethane constitutes at least 80% by weight and more preferably at least 90% by weight of the total weight of the polyurethane layer. The best results can be achieved when the cross-linked polycarbonate based polyurethane constitutes about 100% by weight of the polyurethane layer.
- The polycarbonate-based polyurethane is preferably an aqueous borne dispersion. Aqueous borne dispersions of polycarbonate based polyurethanes and their method of preparation are well-known in the art and has been described in for example GB1549458 and GB1549459. Polycarbonate based polyurethanes for use in connection with the present invention are commercially available and include for example NEOREZ™ R-986 and NEOREZ™ R-985 available from Zeneca Resins, Frankfurt, Germany and ALBERDINGK™ U 911 available from Aberdingk-Boley GmbH, Krefeld, Germany.
- The polycarbonate-based polyurethane is cross-linked with a suitable cross-linker that readily reacts with the acid groups of the polycarbonate-based polyurethane. Preferably, the cross-linker allows for curing at a temperature below 100° C. Cross-linking at low temperature is particularly desirable when the polymeric film of the multilayer-layer sheet has a low softening point. Examples of cross-linkers that can be used to cross-link the polycarbonate based polyurethane include melamines such as e.g. Cymel™ 303, Cymel™ 373 available from Cyanamide company, ureas, benzoguanamines such as Cymel™ 1123 glycolurils such as Cymel™ 1172 and multifunctional carbodiimides such as UCARLINK™ XL 29 SE available from Eurochem. A particularly preferred class of cross-linkers for use in this invention are the polyfunctional aziridines. Examples of suitable polyfunctional aziridines include those disclosed in U.S. Pat. No. 3,225,013. Preferably, the polyfunctional aziridine is a trifunctional aziridine. Particular examples are trimethylol propane tris[3-aziridinyl propionate]; trimethylol propane tris[3(2-methyl-aziridinyl)-propionate]; trimethylol propane tris[2-aziridinyl butyrate]; tris(1-aziridinyl)phosphine oxide; tris(2-methyl-1-aziridinyl)phosphine oxide; pentaerythritol tris-3-(l-aziridinyl propionate); and pentaerythritol tetrakis-3-(1-aziridinyl propionate). Commercially available polyfunctional aziridines include those available under the trade designations “XAMA-2” (trimethylolpropane-tris-(.beta.-(N-aziridinyl)propionate) and “XAMA-7” (pentaerythritol-tris-(.beta.-(N-aziridinyl)propionate) from B.F. Goodrich Chemical Co., Cleveland, Ohio, and “NeoCryl CX-100” from Zeneca Resins, Wilmington, Mass..
- The cross-linker will generally be used in an amount of 5 parts by weight to 15 parts by weight for 100 parts by weight of the polycarbonate-based polyurethane.
- The polyurethane layer may contain further components conventionally employed in protective coatings such as for example an anti-oxidant or an Ultraviolet radiation stabilizer. Further, the polyurethane layer of the present invention can be pigmented if a particular tinting of the multilayer-layer sheet is desired. Although the addition of inorganic or organic pigments somewhat reduces the excellent properties of the polyurethane layer, they can be added to the polyurethane layer while still achieving a good and useful weatherability, chemical and heat resistance as well as a good abrasion and scratch resistance. Particularly preferred coloring pigments are dye pigments and most preferably aqueous borne dye pigments. Dye pigments suitable for the addition to the polyurethane layer may be in the form of a paste that comprises the dye pigment mixed with a water soluble or water dispersible binder. Commercially available dye pigments that can be used in the polyurethane layer of this invention include IsoversaIm WL available from ISL Chemie GmbH and the dye pigments available from BASF under the trade name Luconyl™. Typically, dye pigments can be added to the polyurethane layer in an amount of 0,5 phr (parts per hundred) up to 10 phr without reducing the beneficial properties of the polyurethane layer to an unacceptable level.
- A cross-linked polyurethane layer of the present invention typically has an E-modulus (also known as Young modulus) of at least 750N/mm 2, a tensile strength at break between 22 and 44N/mm2 and an elongation at break of 30 to 140%.
- The polyurethane layer of the present invention is provided on a polymeric film to obtain the multilayer sheet of the present invention. Polymeric films on which the polyurethane layer can be provided include polyurethane films, polyester films and polyolefin films such as polypropylene film, polyethylene films and films formed from blends of polyethylene and polypropylene, films formed from ethylene modified copolymers such as ethylene-vinylacetate, ethylene-(meth)acrylic acid, ethylene-methacrylate and blends of these materials. Polymeric films with particularly desirable properties for use in a multilayer sheet to protect the body of an automobile include the ionomers of olefin/vinyl carboxylate copolymers such as ethylene-acrylic acid and ethylene-methacrylic acid copolymers combined with various metal cations including cations of lithium, sodium, potassium, zinc, aluminum and calcium. Suitable commercial ionomer resins include the Surlyn™ family of materials available from E.I. DuPont de Nemours & Co.
- Polymeric films formed from ionomers of olefin/vinyl carboxylate copolymers have excellent optical characteristics, high flexibility, good heat resistance and desired shrinkage behavior. Combined with the polyurethane layer of this invention, a multilayer sheet results that has excellent protective properties for use in exterior applications.
- In a preferred embodiment in connection with the present invention, the multilayer sheet further comprises an adhesive layer on the major side of the polymeric film opposite to the major side of the polymeric film carrying the polyurethane layer. The adhesive layer is generally protected by a conventional release liner. A suitable adhesive layer for use in this embodiment preferably includes a normally tacky pressure sensitive adhesive. The latter is being preferred in the present invention. Particularly suitable pressure sensitive adhesives are, for example, based on polyacrylates, synthetic and natural rubbers, polybutadiene and copolymers or polyisoprenes and copolymers. Silicone based adhesives such as polydimethylsiloxane and polymethylphenylsiloxane may also be used. Particularly preferred pressure sensitive adhesives for use in this invention are polyacrylate based adhesives because they provide such properties as high clarity, UV-stability and aging resistance. Polyacrylate adhesives that can be used in this invention include, for example, those described in U.S. Pat. No. 4,418,120; U.S. Pat. No. Re 24,906 (Ulrich), U.S. Pat. No. 4,619,867; U.S. Pat. No. 4,835,217 and WO 87/00189. Preferably, the polyacrylate pressure sensitive adhesive comprises a cross-linked copolymer of a C 4-C12 alkylacrylate and an acrylic acid. The polyacrylate pressure sensitive adhesive preferably also comprises a tackifier such as rosin ester. Adhesives useful in the invention may incorporate additives such as ground glass, titanium dioxide, silica, glass beads, waxes, tackifiers, low molecular weight thermo-plastics, oligomeric species, plasticizers, pigments, metallic flakes and metallic powders as long as they are provided in an amount that does not materially adversely effect the adhesive bond to the surface. Generally, the adhesive layer is provided at a thickness of 25 to 560 microns. For certain applications, such as applying the multilayer sheet to a car body, it is often desirable that the adhesive has an initial repositionability so that the sheet can be adjusted to fit at a desired place before a permanent bond is formed. Typically, such repositionability may be achieved by providing a layer of minute glass bubbles on the adhesive surface as disclosed in U.S. Pat. No. 3,331,729.
- The multilayer sheet of the present invention can be obtained by coating a coating composition comprising the polycarbonate-based polyurethane on a major side of the polymeric film. Prior to coating, the polymeric film is preferably corona treated or alternatively, one or more primer layers may be provided on the polymeric film to assure good coatability and adherence of the polyurethane layer to the polymeric film. It is furthermore desirable to coat the polycarbonate-based polyurethane from an aqueous borne dispersion. By the term “aqueous borne” is meant that the major part of the fluid phase of the dispersion consists of water. The fluid phase may further contain organic solvents, in particular water miscible solvents. Preferably, the fluid phase of the dispersion will contain at least 60% by weight and more preferably at least 80% by weight of water. The coating composition further contains the cross-linker and any other optional compounds such as dye pigments. The total amount of solids of the coating composition will typically vary between 25% by weight and 50% by weight. In connection with a preferred embodiment of the present invention, at least 80% by weight and more preferably between 90% by weight and 100% by weight of the solids will be formed by the polycarbonate-based polyurethane and the cross-linker. The coating composition will generally be applied in an amount sufficient to obtain a dried thickness of 5 to 15 microns.
- Any conventional coating technique may be employed for coating the polyurethane coating composition on the polymeric film. Examples of useful coating techniques include meyer bar coating, spray coating, screen printing, rotary screen coating, as well as gravure coating such as direct (forward) gravure coating, reverse gravure coating and offset gravure coating.
- Cross-linking of the coated polyurethane coating composition will generally be achieved by heating. Heating may be accomplished by supplying direct heat or indirectly for example by infrared radiation. Typically, the coating is heated to a temperature of 50° C. to 140° C., preferably 90° C. to 125° C. for 20 seconds to 5 minutes and preferably 20 seconds to 60 seconds to obtain a sufficient level of cross-linking of the polyurethane layer.
- In accordance with a preferred embodiment in connection with the present invention, the opposite side of the polymeric film can be coated with an adhesive coating composition to provide an adhesive layer to the polymeric film. The adhesive coating composition may be solventless, solvent based or water based. As an alternative to coating, the adhesive layer may be laminated to the polymeric film. The adhesive layer may be provided after coating of the polyurethane coating composition to the polymeric film or prior to coating of the polyurethane coating composition. The invention is further illustrated by means of the following examples without however the intention to limit the invention thereto.
- The following test methods are used in the examples:
- Hoffmnan Scratch Resistance Test
- Scratch and mar resistance were measured by a Balanced-Beam Scrape tester described in ASTM (American Society of Testing Materials)—2197-86—The Hoffman stylus was held at 45 degrees from the vertical, the top sloping in the direction of the test sample travel, and was held in place by a fulcrum elevated at 22 degrees. Weights of 75 g, 100 g and 250 g, respectively, were placed on the weight support, the beam was lowered until the loop rested on top of the test specimen, following which the sliding platform was slowly pushed across the specimen. The scratch tests were performed at 25° C.
- The films were evaluated visually and given the ratings:
= pass (No permanent damage/mar/mark on the top coat) * = pass (the mar on the top coat recovered) + = fail (permanent damage/mar/mark on the top coat) - Tensile, Elongation and E-modulus
- Films of the polyurethanes with crosslinker were prepared by knife coating the mixtures at a wet thickness of ca. 140 microns onto a release-coated paper, drying for 5 min. at 23° C. and then curing in a forced air oven at 95° C. for 3 minutes to give cured films having a thickness of between 25 and 50 microns.
- Tensile and elongation measurements were then made according to DIN 53455 using a commercially available tensile tester available as Model 1446 from Zwick GMbH (Ulm, Germany). The jaws of the tensile tester were moved apart at 300 mm/min. The samples used for tensile and elongation measurements were 100 mm length×25.4 mm in width. The thickness of the film was measured with a spring micrometer and used in the calculations.
- E—Modulus measurements were made according to DIN (Deutsche Industrie Norm) 53457 using the same tensile tester as described above. The jaws of the tensile tester were moved apart at a rate of 1 mm/min. E—Modulus measurement range was between 0.05-0.25%. The test samples used for measurement of E-modulus were 100 mm in length and 25.4 mm in width.
- Heat Resistance
- Samples of adhesive-coated (bottom side) and polyurethane-coated (top side) films were adhered to an aluminum plate and then stored first for 24 h under at 23° C. They were then placed in a forced air oven for two days at 120° C. The test plates bearing adhered films were removed from the oven, allowed to cool and evaluated visually for signs of yellowing.
- The visual ratings were:
= pass (no yellowing), + = fail (yellowing) - Solvent Resistance Test
- Applied samples of adhesive-coated films were mounted in an American Association of Textile Chemists and Colorists (A.A.T.C.C.) crockmeter, commercially available as Model CM5, from Atlas Electric Devices Co (Chicago, Ill., USA). The rub test was done according to A.A.T.C.C. test method 8—1972.
- The test fluids used were methyl isobutylketone (MIBK) and “FAM (type B)” test fuel described in the Test Method DIN (Deutsche Industrie Norm) 51604 B.
- 2×5 inch samples of the adhesive-coated films having cured polyurethane top coats were adhered to an aluminum panel, the panel was mounted into the A.A.T.C.C. crockmeter. Cotton wool was used as rub cloth, which was soaked with the test fluid. The sample surface was rubbed with solvent-soaked cotton pad for a total of 50 cycles.
- The solvent resistance was rated visually with the following meanings:
= pass (no rub trace), + = fail (rub trace/rub off) - Koenig Hardness
- The value for Koenig Hardness (measured according to DIN (Deutsche Industrie Norm) 53157) of the uncrosslinked dried polyurethane films was taken from the product literature of the polyurethane suppliers.
- Acid Number
- Acid number of polyurethanes employed in the coating compositions was measured according to DIN (Deutsche Industrie Norm) 53402 and recorded in mg KOH per g of solid polymer.
- A 250 micron thick film of ethylene—methacrylic acid copolymer ionomer with Zn—cations (an ionomer) (available as SURLYN (TM)-1705-1 from DuPont) was extruded using conventional methods. The composition used to extrude the ionomer film included an ultraviolet radiation stabilization package similar to that recommended by the polymer resin manufacturer and comprising a pair of ultraviolet radiation absorbers, a hindered amine light stabilizer and an antioxidant.
- The resulting ionomer film was then corona discharge treated on one side at a net power of 500 Joules/second with a line speed of 18 cm/second.
- The corona-treated side of the film was then laminated to a 33 micron thick layer of acrylate pressure-sensitive adhesive supported on a polyethylene-coated paper liner bearing a silicone release layer on the polyethylene coating.
- The second side of the Surlyn (TM) film was then corona discharge treated using the same conditions as above.
- A coating composition was then prepared from 100 parts by weight of water-based polyurethane resin made from a polycarbonate diol and an aliphatic diisocyanate (35% solids, available as NeoRez (TM) R-986 from Zeneca Resins, Frankfurt, Germany) and 3.5 parts by weight of a polyfunctional aziridine crosslinker (available as NeoCryl (TM) CX-100 from Zeneca Resins, Frankfurt, Germany) by mixing the two components in an open container using a motorized propeller stirrer for five minutes at 23° C.
- The polyurethane type employed in the PU coating composition for Example 1 is shown in Table 1 below. The content of the coating composition, including the polyurethane and crosslinker, is summarized in Table 2.
- The composition thus prepared was then coated onto the non-adhesive, corona-treated side of the film using a coating rod to give a wet coating thickness of 18.3 μm (0.72 mils). The polyurethane coating was allowed to dry for 15 sec at 23° C. and then cured in a forced air oven at a temperature of 90° C. for 30 sec.
- The protective film thus prepared was stored at 23° C. and 50% relative humidity for 72 hrs before testing.
- The tests outlined under Test Methods above were performed and the results recorded in Tables 3 and 4. Table 3 shows the tensile and elongation properties as well as the E-modulus of the self-supported polyurethane films, independent of any substrate. Table 4 shows the Hoffmnan Scratch Resistance and the Heat/Solvent Resistance of the polyurethane-coated films of the Examples.
- The resulting adhesive-coated sheet was clear, virtually colorless and free of surface defects.
- The protective release liner was removed from the pressure-sensitive adhesive layer and the sheet was applied to the painted bumper of an automobile using a hand-held plastic applicator (commonly referred to as a squeegie, commercially available at RHEO PLASTICS, Minnesota, USA) designed for adhering adhesive-coated films to smooth substrates. The sheet conformed well to the bumper, could be applied in a bubble-free manner and was not scratched during the application process.
- The color of the painted bumper was clearly visible through the protective film and the sheet itself was difficult to detect visually.
- Examples 2-3 were prepared in the same manner as Example 1, with the exception that two other polycarbonate-based waterborne polyurethanes were employed in the coating compositions, respectively.
- Example 2 used NeoRez™ R-985 from Zeneca Resins as the polyurethane component of the coating composition and Example 3 employed a third polycarbonate-based polyurethane (available as Alberdingk U 911 from Alberdingk-Boley GmbH, 47829, Krefeld, Germany).
- Composition of the polyurethane coatings as well as the properties of resulting films are summarized in Tables 1-4.
- Comparative Examples 1-7 were prepared in the same manner as Example 1. Each Comparative Example employed a different waterborne polyurethane polymer as summarized in Table 1.
- Comparative Examples 1-6 show that polyurethanes based on polyether and polyester diol segments cannot pass the Scratch Resistance Test.
- Comparative Example 7 shows a polycarbonate-based polyurethane (having a low Koenig Hardness of only 80) that cannot pass the Scratch Resistance Test.
- Composition of the polyurethane coatings as well as the properties of resulting films are summarized in Tables 1-4.
- Example 1 was repeated with the exception that the polyurethane coating composition comprised 30.00 parts by weight polycarbonate-based polyurethane (available as Neorez 986 from Zeneca Resins), 1.05 parts by weight polyaziridine crosslinker (available as Neocryl CX 100 from Zeneca Resins) and additionally 1.17 parts by weight of a red pigment paste (available as WL 00894/3174 from ISL Chemie GmbH, 51515 Kuerten, Germany).
- The coating composition was applied to a film and cured as in Example 1. An aesthetically attractive red film was obtained which had physical properties almost identical ample 1.
- The red film was applied to a painted bumper of an automobile having the same red The protective sheet was difficult to see after application to the substrate.
TABLE 1 Acid Koenig Diol Number Hardness PUs Type PU Trade name (mg KOH/g) (sec) 1 PC NeoRez ™ R-986 21.5 200 2 PC NeoRez ™ R-985 20.5 220 3 PC Alberdingk ™ U 911 18.9 150 C1 PE NeoRez ™ R-960 30.0 130 C2 PH NeoRez ™ R-970 16.0 30 C3 PE NeoRez ™ R-981 29.0 115 C4 PE Alberdingk ™ U 325 14.4 30 C5 PE Alberdingk ™ U 610 19.8 50 C6 PE Alberdingk ™ U 910 17.5 155 C7 PC Alberdingk ™ U 615 23.4 80 -
TABLE 2 Aziridine Crosslinker Polyurethane Resin Dispersion PU coating Dispersion (NeoCryl CX 100) Composition (parts by weight) (parts by weight) 1 100 3.5 2 100 3.5 3 100 3.0 C1 100 3.4 C2 100 3.9 C3 100 3.2 C4 100 4.0 C5 100 3.0 C6 100 3.0 C7 100 3.9 -
TABLE 3 Properties of unsupported films of dried polyurethanes Cured PU E-modulus Tensile strength at Elongation at break Films (N/mm2) break (N/mm2) (%) 1 773.2 37.4 113.0 2 924.1 37.1 51.0 3 828.3 25.7 49.5 C1 600.8 33.7 100.0 C2 37.6 11.8 181.0 C3 516.8 31.8 150.0 C4 <5.0 19.2 246.0 C5 90.7 22.0 107.0 C6 754.7 24.9 61.0 C7 159.9 31.9 213.0 -
TABLE 4 Properties of Cured PU-coated films of the invention Hoffmann Scratch Resistance (weight of load) Heat and Solvent Resistance 75 100 250 Test Fuel Example grams grams grams Heat FAM B MIBK 1 2 3 * + C1 + + + + C2 + + + + + C3 + + + C4 + + + + + C5 + + + + C6 + + + + C7 + + + +
Claims (21)
1. Multilayer sheet comprising a polymeric film having on a first major side a cross-linked polyurethane layer, the major part of said cross-linked polyurethane layer comprising a polycarbonate based polyurethane containing acid groups and cross-linked with a crosslinker, the polycarbonate based polyurethane comprising the reaction product of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate and the uncross-linked polycarbonate based polyurethane having a Koenig hardness of at least 150 seconds.
2. Multilayer sheet according to claim 1 wherein said polymeric film is formed from an olefinic polymer.
3. Multilayer sheet according to claim 2 wherein said polymeric film is formed from an ionomer of an olefin-vinyl carboxylic acid copolymer.
4. Multilayer sheet according to claim 3 wherein said ionomer is an ionomer of an ethylene/acrylic acid copolymer or an ethylene/methacrylic acid copolymer.
5. Multilayer sheet according to claim 1 wherein said polymeric film comprises on the second major side opposite to the first major side an adhesive layer.
6. Multilayer sheet according to claim 5 wherein said adhesive layer comprises a normally tacky pressure sensitive adhesive.
7. Multilayer sheet according to claim 5 wherein said adhesive layer is protected by a release liner.
8. Multilayer sheet according to claim 1 wherein said cross-linker is a polyfunctional aziridine.
9. Multilayer sheet according to claim 1 wherein said cross-linked polyurethane layer comprises 90% to 100% by weight of the total weight of the cross-linked polyurethane layer of said polycarbonate based polyurethane cross-linked with a cross-linker.
10. Multilayer sheet according to claim 1 wherein said cross-linked polyurethane layer has an E-modulus of at least 750 N/mm2, a tensile strength at break between 22 and 44 N/mm2 and an elongation at break of 30 to 140%.
11. Multilayer sheet according to claim 1 wherein the polycarbonate based polyurethane has an acid number of at least 15 mg KOH/g.
12. Multilayer sheet according to claim 1 wherein said sheet is affixed to a surface of an automobile.
13. Method of making a multilayer sheet comprising:
(i) coating a coating composition comprising a polycarbonate based polyurethane containing acid groups and a cross-linker on a major side of a polymeric film, and
(ii) cross-linking the thus obtained coating to effect cross-linking, wherein the polycarbonate based polyurethane comprises the reaction product of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate and the uncross-linked polycarbonate based polyurethane having a Koenig hardness of at least 150 seconds.
14. Method according to claim 13 wherein said cross-linker is a polyfunctional aziridine.
15. Method according to claim 13 wherein the total amount of said polycarbonate based polyurethane and cross-linker constitutes 90 to 100% by weight of the total amount of solids of said coating composition.
16. Method according to claim 13 wherein said coating composition is an aqueous borne dispersion.
17. Method according to claim 13 wherein the polymeric film is formed from an ionomer of an olefin-vinyl carboxylic acid copolymer.
18. Method according to claim 13 wherein there is further applied an adhesive layer to the major side of the polymeric film opposite to the major side to which the coating composition comprising the polycarbonate based polyurethane is applied.
19. A cross-linked polyurethane composition comprising a polycarbonate based polyurethane containing acid groups and cross-linked with a cross-linker, the polycarbonate based polyurethane comprising the reaction product of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate and the uncrosslinked polycarbonate based polyurethane having a Koenig hardness of at least 150 seconds.
20. A cross-linked polyurethane composition according to claim 19 comprising 90% to 100% by weight of the total weight of the cross-linked polyurethane composition of said polycarbonate based polyurethane cross-linked with a cross-linker.
21. A cross-linked polyurethane composition according to claim 20 wherein said crosslinked polyurethane composition has an E-modulus of at least 750 N/mm2, a tensile strength at break between 22 and 44 N/mm2 and an elongation at break of 30 to 140%.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP98203796.2 | 1998-11-11 | ||
| EP98203796A EP1004608B1 (en) | 1998-11-11 | 1998-11-11 | Multi-layer sheet comprising a protective polyurethane layer |
| EP98203796 | 1998-11-11 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20020001723A1 true US20020001723A1 (en) | 2002-01-03 |
| US6383644B2 US6383644B2 (en) | 2002-05-07 |
Family
ID=8234320
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/395,823 Expired - Lifetime US6383644B2 (en) | 1998-11-11 | 1999-09-14 | Multi-layer sheet comprising a protective polyurethane layer |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US6383644B2 (en) |
| EP (1) | EP1004608B1 (en) |
| JP (1) | JP4579420B2 (en) |
| AU (1) | AU1098500A (en) |
| DE (1) | DE69827142T2 (en) |
| ES (1) | ES2230654T3 (en) |
| WO (1) | WO2000027900A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060182984A1 (en) * | 2005-02-17 | 2006-08-17 | Abele Wolfgang P | Protected polycarbonate films having thermal and UV radiation stability, and method of making |
| US20100122562A1 (en) * | 2007-03-30 | 2010-05-20 | Airbus Operations Gmbh | Metal-cutting machining method and semi-finished product |
| CN103118868A (en) * | 2010-05-20 | 2013-05-22 | 艾利丹尼森公司 | Surface treated films and/or laminates |
| WO2013173424A1 (en) * | 2012-05-16 | 2013-11-21 | 3M Innovative Properties Company | Decorative sheet containing a polyurethane layer and structure |
| US20170096581A1 (en) * | 2015-10-02 | 2017-04-06 | Resinate Materials Group, Inc. | High performance coatings |
| US10253209B2 (en) * | 2013-06-24 | 2019-04-09 | 3M Innovative Properties Company | Paint replacement film with polymer layer containing polyurethane |
| US11091581B2 (en) * | 2014-05-21 | 2021-08-17 | Dupont Teijin Films U.S. Limited Partnership | Coated polyester films |
| US11141963B2 (en) * | 2016-08-24 | 2021-10-12 | Bando Chemical Industries, Ltd. | Surface protective film |
Families Citing this family (58)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002294181A (en) * | 2001-03-21 | 2002-10-09 | Three M Innovative Properties Co | Decorative sheet |
| ATE276881T1 (en) * | 2001-12-07 | 2004-10-15 | 3M Innovative Properties Co | MULTI-LAYER FILM CONTAINING A POLYURETHANE PROTECTIVE LAYER |
| CN1639291A (en) * | 2002-03-05 | 2005-07-13 | 3M创新有限公司 | Marking film, receptor sheet and marking film for vehicles |
| JP4116336B2 (en) * | 2002-06-07 | 2008-07-09 | Sriスポーツ株式会社 | Golf club head |
| DE602004026800D1 (en) * | 2003-03-04 | 2010-06-10 | Seiko Epson Corp | Aqueous recording liquid and printed material containing dispersed pigments |
| US7401843B2 (en) * | 2003-07-24 | 2008-07-22 | Tremco Incorporated | Recreational vehicle roofing coating |
| KR100547804B1 (en) * | 2003-08-18 | 2006-01-31 | 삼성전자주식회사 | Cell search method and system of mobile station for inter-system handover |
| US7147923B2 (en) * | 2003-12-19 | 2006-12-12 | 3M Innovative Properties Company | Flexible polymer window |
| US7229520B2 (en) * | 2004-02-26 | 2007-06-12 | Film Technologies International, Inc. | Method for manufacturing spandrel glass film with metal flakes |
| CN101115814B (en) * | 2004-10-12 | 2011-05-04 | 3M创新有限公司 | Protective films |
| JP5017790B2 (en) * | 2005-03-30 | 2012-09-05 | 大日本印刷株式会社 | Decorative sheet |
| KR101419056B1 (en) | 2005-04-29 | 2014-07-11 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Multilayer polyurethane protective films |
| US8772398B2 (en) * | 2005-09-28 | 2014-07-08 | Entrotech Composites, Llc | Linerless prepregs, composite articles therefrom, and related methods |
| EP2404729B1 (en) | 2005-10-21 | 2020-06-17 | Entrotech, Inc. | Composite articles comprising protective sheets and related methods |
| CN101522417B (en) | 2006-10-04 | 2013-05-22 | 3M创新有限公司 | Method for preparing multilayer polyurethane protective film |
| EP2463094B1 (en) | 2006-10-23 | 2019-12-04 | Entrotech, Inc. | Articles comprising protective sheets and related methods |
| US8545960B2 (en) | 2006-10-23 | 2013-10-01 | Entrotech, Inc. | Articles comprising protective sheets and related methods |
| WO2008109733A1 (en) * | 2007-03-07 | 2008-09-12 | 3M Innovative Properties Company | Adhesive-backed polymeric film storage method and assembly |
| EP2193024A4 (en) | 2007-09-25 | 2013-11-06 | Entrotech Inc | Paint replacement films, composites therefrom, and related methods |
| US10981371B2 (en) | 2008-01-19 | 2021-04-20 | Entrotech, Inc. | Protected graphics and related methods |
| CN101225610B (en) * | 2008-01-29 | 2010-07-21 | 福建思嘉环保材料科技有限公司 | TPU clad net |
| US9752022B2 (en) | 2008-07-10 | 2017-09-05 | Avery Dennison Corporation | Composition, film and related methods |
| JP5662651B2 (en) * | 2009-05-01 | 2015-02-04 | スリーエム イノベイティブ プロパティズ カンパニー | Surface protective film and multilayer film including the same |
| JP2013521162A (en) | 2010-03-04 | 2013-06-10 | エイブリィ デニソン コーポレーション | Non-PVC film and non-PVC film laminate |
| EP2439062B1 (en) | 2010-10-11 | 2014-12-10 | Coroplast Fritz Müller GmbH & Co. KG | Technical adhesive strip and use of same to stick films or non-woven fabrics in construction |
| DE202010014075U1 (en) | 2010-10-11 | 2012-01-12 | Coroplast Fritz Müller Gmbh & Co. Kg | Technical adhesive tape for bonding foils or nonwovens in the construction sector |
| DE102011007974A1 (en) | 2011-01-04 | 2012-07-05 | Thomas Moog | Preparing a multilayered film, which is poured on roller forming endless film web and has solid colored front visible side and rear side provided with adhesive layer, useful for applying on 3-dimensionally formed surfaces of vehicle parts |
| WO2012122206A1 (en) | 2011-03-10 | 2012-09-13 | Avery Dennison Corporation | Surface treated film and/or laminate |
| WO2012141723A2 (en) * | 2011-04-15 | 2012-10-18 | Avery Dennison Corporation | Surface treated film and/or laminate |
| WO2012141994A2 (en) | 2011-04-15 | 2012-10-18 | Avery Dennison Corporation | Surface treated film and/or laminate |
| KR20140103123A (en) | 2011-11-21 | 2014-08-25 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | A paint protective film comprising nanoparticles |
| WO2013133862A1 (en) | 2012-03-07 | 2013-09-12 | Avery Dennison Corporation | Surface treated film and/or laminate |
| WO2013154695A2 (en) | 2012-04-09 | 2013-10-17 | Avery Dennison Corporation | Surface treated film and/or laminate |
| WO2014119426A1 (en) * | 2013-01-29 | 2014-08-07 | 日東電工株式会社 | Multilayer adhesive sheet |
| WO2014119357A1 (en) * | 2013-01-29 | 2014-08-07 | 日東電工株式会社 | Multilayer adhesive sheet |
| KR20150014160A (en) | 2013-07-29 | 2015-02-06 | 칭다오 팬텀 골프 용품 유한공사 | Carboxyl branched chain cutting agent of golf ball cover ionomer resin, golf ball coating composition and method for manufacturing golf ball |
| KR101521021B1 (en) | 2013-07-31 | 2015-05-21 | 칭다오 팬텀 골프 용품 유한공사 | Golf ball and method for manufacturing them |
| MX2016007964A (en) | 2013-12-30 | 2016-09-09 | Avery Dennison Corp | Polyurethane protective film. |
| EP3122828B1 (en) | 2014-03-26 | 2025-10-15 | 3M Innovative Properties Company | Polyurethane compositions, films, and methods thereof |
| WO2015175911A1 (en) | 2014-05-16 | 2015-11-19 | 3M Innovative Properties Company | Paint protection films |
| KR20170023104A (en) | 2014-06-24 | 2017-03-02 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Polyurethane aerosol compositions, articles, and related methods |
| BR112017002096A2 (en) | 2014-07-31 | 2017-11-21 | 3M Innovative Properties Co | thermoplastic polyurethane compositions and articles and methods thereof |
| EP4624543A2 (en) | 2015-04-30 | 2025-10-01 | Design Blue Limited | Multilayer polyurethane protective films |
| US11034138B2 (en) | 2015-05-29 | 2021-06-15 | Dow Global Technologies Llc | Coated films and packages formed from same |
| CN109071989B (en) * | 2016-05-09 | 2021-10-01 | 阿克佐诺贝尔国际涂料股份有限公司 | Bisphenol A-free ethylene/(meth)acrylic acid copolymer composition for metal can coating |
| US10933608B2 (en) | 2016-08-19 | 2021-03-02 | Wilsonart Llc | Surfacing materials and method of manufacture |
| US11077639B2 (en) | 2016-08-19 | 2021-08-03 | Wilsonart Llc | Surfacing materials and method of manufacture |
| US11504955B2 (en) | 2016-08-19 | 2022-11-22 | Wilsonart Llc | Decorative laminate with matte finish and method of manufacture |
| US11745475B2 (en) | 2016-08-19 | 2023-09-05 | Wilsonart Llc | Surfacing materials and method of manufacture |
| KR102434145B1 (en) | 2016-09-20 | 2022-08-18 | 엔트로테크 아이엔씨 | Defect-Reduced Paint Appliques, Articles and Methods |
| TWI757341B (en) | 2016-09-29 | 2022-03-11 | 美商陶氏全球科技有限責任公司 | Coated films and articles formed from same |
| JP2020519496A (en) | 2017-05-10 | 2020-07-02 | スリーエム イノベイティブ プロパティズ カンパニー | Fluoropolymer articles and related methods |
| WO2019027846A1 (en) | 2017-07-31 | 2019-02-07 | 3M Innovative Properties Company | Polymeric surfacing film having double outline defining geometric shapes therein |
| WO2019067983A1 (en) | 2017-09-28 | 2019-04-04 | Wilsonart Llc | High pressure decorative laminate having a top layer of energy cured acrylated urethane polymer |
| US11590745B2 (en) | 2017-09-29 | 2023-02-28 | Dow Global Technologies Llc | Partially coated films and packages formed from same |
| EP4065366A1 (en) | 2019-11-30 | 2022-10-05 | DuPont Electronics, Inc. | Cover window assembly, related articles and methods |
| EP4132784A1 (en) | 2020-04-10 | 2023-02-15 | 3M Innovative Properties Company | Film comprising polyamide polyurethane layer |
| JP2023532687A (en) | 2020-06-29 | 2023-07-31 | スリーエム イノベイティブ プロパティズ カンパニー | Composite film comprising hard coat composition and thermoplastic polyurethane |
Family Cites Families (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA677797A (en) | 1955-11-18 | 1964-01-14 | Minnesota Mining And Manufacturing Company | Sheet material having a pressure-sensitive adhesive coating of acrylate ester copolymer |
| US3331729A (en) | 1963-02-14 | 1967-07-18 | Minnesota Mining & Mfg | Adhesive bonding method and product |
| US3225013A (en) | 1964-10-12 | 1965-12-21 | Minnesota Mining & Mfg | Curable compositions of an organic acid anhydride and an alkylenimine derivative |
| US4066591A (en) | 1975-06-02 | 1978-01-03 | Ppg Industries, Inc. | Water-reduced urethane coating compositions |
| US4046729A (en) | 1975-06-02 | 1977-09-06 | Ppg Industries, Inc. | Water-reduced urethane coating compositions |
| US4083824A (en) * | 1977-04-20 | 1978-04-11 | Armstrong Cork Company | Non-vinyl surface covering composition |
| US4301053A (en) * | 1980-01-29 | 1981-11-17 | General Electric Company | Polyurethane resin coating composition |
| US4418120A (en) | 1982-07-19 | 1983-11-29 | Minnesota Mining And Manufacturing Co. | Tackified crosslinked acrylic adhesives |
| US4619867A (en) | 1983-06-14 | 1986-10-28 | Minnesota Mining And Manufacturing Company | Azlactone-containing pressure-sensitive adhesives |
| AU582876B2 (en) | 1985-07-08 | 1989-04-13 | Minnesota Mining And Manufacturing Company | Crosslinked pressure-sensitive adhesive |
| US4835217A (en) | 1985-10-17 | 1989-05-30 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesive having broad useful temperature range |
| DE3613492A1 (en) * | 1986-04-22 | 1987-10-29 | Bayer Ag | METHOD FOR THE PRODUCTION OF AQUEOUS DISPERSIONS OF POLYURETHANE-POLYHANE SUBSTANCES, THE DISPERSIONS AVAILABLE ACCORDING TO THIS METHOD AND THEIR USE AS OR FOR THE PRODUCTION OF COATING AGENTS |
| JPH024736A (en) * | 1988-06-22 | 1990-01-09 | Hitachi Maxell Ltd | Polycarbonate polyol, aromatic polycarbonate polyurethane resin, coating material, cast film, magnetic recording media |
| GB8919918D0 (en) * | 1989-09-04 | 1989-10-18 | Ici Plc | Polymeric film |
| US5532058A (en) * | 1990-12-10 | 1996-07-02 | H. B. Fuller Licensing & Financing, Inc. | Dry-bonded film laminate employing polyurethane dispersion adhesives with improved crosslinkers |
| EP0495752B1 (en) * | 1991-01-14 | 1995-03-01 | Ciba-Geigy Ag | Bisacylphosphine sulfide |
| US5415935A (en) * | 1992-03-31 | 1995-05-16 | E. I. Du Pont De Nemours And Company | Polymeric release film |
| DE4216536A1 (en) * | 1992-05-19 | 1993-11-25 | Bayer Ag | Water-thinnable polyester polyols and their use |
| GB9211794D0 (en) | 1992-06-04 | 1992-07-15 | Ici Resins Bv | Aqueous coating compositions |
| US5405675A (en) | 1992-12-10 | 1995-04-11 | Minnesota Mining And Manufacturing Company | Embossed multilayer film |
| US5468532A (en) | 1992-12-10 | 1995-11-21 | Minnesota Mining And Manufacturing Company | Multilayer graphic article with color layer |
| JPH08118575A (en) * | 1994-10-25 | 1996-05-14 | Sekisui Chem Co Ltd | Laminated sheet for coating and manufacture thereof |
| SE503631C2 (en) * | 1995-09-15 | 1996-07-22 | Tarkett Ab | Halogen-free flooring material |
| US5972148A (en) * | 1998-07-20 | 1999-10-26 | Skitech Partners | Process for applying a releasible protective layer to an adhesive surface of a flexible sheet flooring product |
-
1998
- 1998-11-11 EP EP98203796A patent/EP1004608B1/en not_active Expired - Lifetime
- 1998-11-11 DE DE69827142T patent/DE69827142T2/en not_active Expired - Lifetime
- 1998-11-11 ES ES98203796T patent/ES2230654T3/en not_active Expired - Lifetime
-
1999
- 1999-09-14 US US09/395,823 patent/US6383644B2/en not_active Expired - Lifetime
- 1999-09-29 AU AU10985/00A patent/AU1098500A/en not_active Abandoned
- 1999-09-29 JP JP2000581076A patent/JP4579420B2/en not_active Expired - Fee Related
- 1999-09-29 WO PCT/US1999/022774 patent/WO2000027900A1/en not_active Ceased
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060182984A1 (en) * | 2005-02-17 | 2006-08-17 | Abele Wolfgang P | Protected polycarbonate films having thermal and UV radiation stability, and method of making |
| US20100122562A1 (en) * | 2007-03-30 | 2010-05-20 | Airbus Operations Gmbh | Metal-cutting machining method and semi-finished product |
| US9034462B2 (en) * | 2007-03-30 | 2015-05-19 | Airbus Operations Gmbh | Metal-cutting machining method and semi-finished product |
| CN103118868A (en) * | 2010-05-20 | 2013-05-22 | 艾利丹尼森公司 | Surface treated films and/or laminates |
| WO2013173424A1 (en) * | 2012-05-16 | 2013-11-21 | 3M Innovative Properties Company | Decorative sheet containing a polyurethane layer and structure |
| JP2013237216A (en) * | 2012-05-16 | 2013-11-28 | Three M Innovative Properties Co | Decorative sheet and structure |
| US9695338B2 (en) | 2012-05-16 | 2017-07-04 | 3M Innovative Properties Company | Decorative sheet containing a polyurethane layer and structure |
| US10253209B2 (en) * | 2013-06-24 | 2019-04-09 | 3M Innovative Properties Company | Paint replacement film with polymer layer containing polyurethane |
| US11091581B2 (en) * | 2014-05-21 | 2021-08-17 | Dupont Teijin Films U.S. Limited Partnership | Coated polyester films |
| US20170096581A1 (en) * | 2015-10-02 | 2017-04-06 | Resinate Materials Group, Inc. | High performance coatings |
| US10745585B2 (en) * | 2015-10-02 | 2020-08-18 | Resinate Materials Group, Inc. | High performance coatings |
| US11141963B2 (en) * | 2016-08-24 | 2021-10-12 | Bando Chemical Industries, Ltd. | Surface protective film |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2002529277A (en) | 2002-09-10 |
| ES2230654T3 (en) | 2005-05-01 |
| US6383644B2 (en) | 2002-05-07 |
| DE69827142T2 (en) | 2006-03-09 |
| WO2000027900A1 (en) | 2000-05-18 |
| JP4579420B2 (en) | 2010-11-10 |
| DE69827142D1 (en) | 2004-11-25 |
| EP1004608B1 (en) | 2004-10-20 |
| AU1098500A (en) | 2000-05-29 |
| EP1004608A1 (en) | 2000-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6383644B2 (en) | Multi-layer sheet comprising a protective polyurethane layer | |
| EP1318011B1 (en) | Multi-layer sheet comprising a protective polyurethane layer | |
| US5468532A (en) | Multilayer graphic article with color layer | |
| KR102504518B1 (en) | Paint film appliques with reduced defects, articles, and methods | |
| CN100549049C (en) | Pressure-sensitive adhesive tape and preparation method thereof | |
| CN1494487A (en) | Printable films and coating compositions exhibiting stain resistance | |
| US20060127666A1 (en) | Multilayer sheet comprising a protective polyurethane layer | |
| JP4364993B2 (en) | Marking film | |
| JP2005206724A (en) | Decorative film | |
| JP2000265136A (en) | Automotive coating film | |
| US10550297B2 (en) | Paint protection films | |
| EP0688844B1 (en) | A clinging sheet | |
| JP7226977B2 (en) | Decorative film for vehicle exterior | |
| JP2006192609A (en) | Decorative film | |
| JP2002097422A (en) | Pressure-sensitive adhesive sheet | |
| JP4035887B2 (en) | Surface protection film | |
| JP2024031213A (en) | transfer sheet | |
| JP5928086B2 (en) | Manufacturing method of printing substrate | |
| JP2001011401A (en) | Adhesive sheet |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUCHS, IRIS;REEL/FRAME:010243/0663 Effective date: 19990825 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |